
Developer Guide, Version 2

AWS IoT Greengrass

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass: Developer Guide, Version 2

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS IoT Greengrass Developer Guide, Version 2

Table of Contents

What is AWS IoT Greengrass? ... 1
New features ... 1
For first-time users ... 2
For existing users .. 2
How AWS IoT Greengrass works ... 2

Key concepts .. 3
Features of AWS IoT Greengrass ... 5

Greengrass feature compatibility by operating system .. 7
Choosing your AWS IoT Greengrass nucleus runtime .. 15

Greengrass nucleus ... 16
Greengrass nucleus lite .. 16

What's new in Version 2 ... 19
AWS IoT Greengrass Core v2.14.0 software update ... 21

Public component updates ... 23
AWS IoT Greengrass Core v2.13.0 software update ... 25

Public component updates ... 25
AWS IoT Greengrass Core v2.12.6 software update ... 27

Public component updates ... 27
AWS IoT Greengrass Core v2.12.5 software update ... 28

Public component updates ... 29
AWS IoT Greengrass Core v2.12.4 software update ... 29

Public component updates ... 30
AWS IoT Greengrass Core v2.12.3 software update ... 30

Public component updates ... 31
AWS IoT Greengrass Core v2.12.2 software update ... 33

Public component updates ... 33
AWS IoT Greengrass Core v2.12.1 software update ... 34

Public component updates ... 34
AWS IoT Greengrass Core v2.12.0 software update ... 36

Public component updates ... 37
AWS IoT Greengrass Core v2.11.3 software update ... 37

Public component updates ... 38
AWS IoT Greengrass Core v2.11.2 software update ... 39

Public component updates ... 39

iii

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass Core v2.11.1 software update ... 40
Public component updates ... 40

AWS IoT Greengrass Core v2.11.0 software update ... 41
Public component updates ... 42

AWS IoT Greengrass Core v2.10.3 software update ... 43
Public component updates ... 43

AWS IoT Greengrass Core v2.10.2 software update ... 44
Public component updates ... 44

AWS IoT Greengrass Core v2.10.1 software update ... 46
Public component updates ... 47

AWS IoT Greengrass Core v2.10.0 software update ... 48
Public component updates ... 48

AWS IoT Greengrass Core v2.9.6 software update ... 50
Public component updates ... 50

AWS IoT Greengrass Core v2.9.5 software update ... 51
Public component updates ... 51

AWS IoT Greengrass Core v2.9.4 software update ... 52
Public component updates ... 52

AWS IoT Greengrass Core v2.9.3 software update ... 53
Public component updates ... 54

AWS IoT Greengrass Core v2.9.2 software update ... 54
Public component updates ... 55

AWS IoT Greengrass Core v2.9.1 software update ... 55
Public component updates ... 56

AWS IoT Greengrass Core v2.9.0 software update ... 57
Public component updates ... 58

AWS IoT Greengrass Core v2.8.1 software update ... 60
Public component updates ... 60

AWS IoT Greengrass Core v2.8.0 software update ... 61
Public component updates ... 61

AWS IoT Greengrass Core v2.7.0 software update ... 63
Public component updates ... 64

AWS IoT Greengrass Core v2.6.0 software update ... 65
Public component updates ... 66

AWS IoT Greengrass Core v2.5.6 software update ... 70
Public component updates ... 71

iv

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass Core v2.5.5 software update ... 72
Public component updates ... 72

AWS IoT Greengrass Core v2.5.4 software update ... 73
Public component updates ... 73

AWS IoT Greengrass Core v2.5.3 software update ... 74
Public component updates ... 75

AWS IoT Greengrass Core v2.5.2 software update ... 76
Public component updates ... 76

AWS IoT Greengrass Core v2.5.1 software update ... 77
Public component updates ... 78

AWS IoT Greengrass Core v2.5.0 software update ... 79
Platform support updates .. 80
Public component updates ... 80

AWS IoT Greengrass Core v2.4.0 software update ... 84
Public component updates ... 85

AWS IoT Greengrass Core v2.3.0 software update ... 87
Public component updates ... 88

AWS IoT Greengrass Core v2.2.0 software update ... 89
Public component updates ... 89

AWS IoT Greengrass Core v2.1.0 software update ... 92
Platform support updates .. 93
Public component updates ... 93

AWS IoT Greengrass Core v2.0.5 software update ... 100
Public component updates ... 100

AWS IoT Greengrass Core v2.0.4 software update ... 101
Public component updates ... 102

Migrate from Version 1 ... 104
Can I run my V1 applications on V2? .. 104
Migration overview .. 104
Differences between V1 and V2 ... 105
Validate V1 core devices can run V2 software .. 116
Set up a new V2 core device .. 116

Step 1: Install Greengrass V2 on a new device .. 116
Step 2: Create and deploy V2 components to migrate V1 applications 117
Step 3: Test your V2 applications ... 121

Upgrade V1 core devices to V2 .. 122

v

AWS IoT Greengrass Developer Guide, Version 2

Step 1: Install the AWS IoT Greengrass Core software v2.x .. 122
Step 2: Deploy Greengrass V2 components to the core devices .. 126

Getting started .. 128
Prerequisites .. 129
Step 1: Set up an AWS account .. 130

Sign up for an AWS account .. 130
Create a user with administrative access .. 131

Step 2: Set up your environment ... 132
Step 3: Install the AWS IoT Greengrass Core software .. 138

Install the AWS IoT Greengrass Core software (console) ... 139
Install the AWS IoT Greengrass Core software (CLI) ... 145
Run the Greengrass software (Linux) ... 150
Verify the Greengrass CLI installation on the device .. 151

Step 4: Develop and test a component on your device ... 153
Step 5: Create your component in the AWS IoT Greengrass service ... 165
Step 6: Deploy your component .. 176
Next steps .. 182

Setting up Greengrass core devices ... 183
Supported platforms ... 183
Device requirements .. 183
Lambda function requirements .. 184
Set up an AWS account .. 186
Install the AWS IoT Greengrass Core software .. 187

Install with automatic provisioning .. 190
Install with manual provisioning ... 205
Install with fleet provisioning .. 243
Install with custom provisioning ... 289
Installer arguments .. 306

Run the AWS IoT Greengrass Core software .. 311
Check if the AWS IoT Greengrass Core software runs as a system service 311
Run the AWS IoT Greengrass Core software as a system service ... 313
Run the AWS IoT Greengrass Core software without a system service 313

Run AWS IoT Greengrass in Docker ... 314
Supported platforms and requirements .. 315
Software downloads .. 315
Choose how to provision AWS resources .. 316

vi

AWS IoT Greengrass Developer Guide, Version 2

Build the AWS IoT Greengrass image from a Dockerfile .. 316
Run AWS IoT Greengrass in Docker with automatic provisioning .. 322
Run AWS IoT Greengrass in Docker with manual provisioning ... 330
Troubleshooting AWS IoT Greengrass in a Docker container .. 352

Configure the AWS IoT Greengrass Core software ... 355
Deploy the Greengrass nucleus component ... 355
Configure the Greengrass nucleus as a system service .. 355
Control memory allocation with JVM options ... 359
Configure the user that runs components .. 361
Configure system resource limits .. 366
Connect on port 443 or through a network proxy ... 369
Use a device certificate signed by a private CA ... 376
Configure MQTT timeouts and cache settings ... 377
Configure Greengrass Nucleus on IPv6 network .. 377

Update the AWS IoT Greengrass Core software (OTA) .. 378
Requirements ... 378
Considerations for core devices ... 379
Greengrass nucleus update behavior ... 379
Perform an OTA update .. 381

Uninstall the AWS IoT Greengrass Core software ... 381
Tutorials ... 385

Develop a component that defers component updates .. 385
Prerequisites .. 386
Step 1: Install the Greengrass Development Kit CLI ... 387
Step 2: Develop a component that defers updates .. 388
Step 3: Publish the component to the AWS IoT Greengrass service .. 397
Step 4: Deploy and test the component on a core device ... 400

Interact with local IoT devices over MQTT ... 405
Prerequisites .. 406
Step 1: Review and update the core device AWS IoT policy .. 407
Step 2: Enable client device support ... 408
Step 3: Connect client devices .. 414
Step 4: Develop a component that communicates with client devices 417
Step 5: Develop a component that interacts with client device shadows 424

Get started with SageMaker AI Edge Manager .. 450
Prerequisites .. 451

vii

AWS IoT Greengrass Developer Guide, Version 2

Set up in SageMaker AI Edge Manager ... 453
Create the sample components .. 454
Run sample image classification inference ... 455

Perform sample image classification inference ... 459
Prerequisites .. 460
Step 1: Subscribe to the default notifications topic ... 461
Step 2: Deploy the TensorFlow Lite image classification component 461
Step 3: View inference results ... 463
Next steps .. 465

Perform sample image classification inference on images from a camera 466
Prerequisites .. 466
Step 1: Configure the camera module on your device ... 468
Step 2: Verify your subscription to the default notifications topic .. 470
Step 3: Modify the TensorFlow Lite image classification component configuration and
deploy it ... 470
Step 4: View inference results ... 472
Next steps .. 473

Components ... 474
AWS-provided components ... 474

Greengrass nucleus .. 489
Greengrass nucleus lite ... 527
Client device auth ... 530
CloudWatch metrics ... 605
AWS IoT Device Defender ... 629
Disk spooler ... 646
Docker application manager .. 650
Edge connector for Kinesis Video Streams ... 659
Greengrass CLI ... 667
IP detector ... 679
Firehose ... 689
Lambda launcher .. 707
Lambda manager .. 710
Lambda runtimes .. 719
Legacy subscription router ... 722
Local debug console .. 733
Log manager .. 749

viii

AWS IoT Greengrass Developer Guide, Version 2

Machine learning components ... 790
Modbus-RTU protocol adapter .. 911
MQTT bridge .. 942
MQTT 3.1.1 broker (Moquette) .. 966
MQTT 5 broker (EMQX) ... 973
Nucleus telemetry emitter ... 990
PKCS#11 provider .. 1003
Secret manager ... 1011
Secure tunneling .. 1022
Shadow manager ... 1033
Amazon SNS .. 1062
Stream manager ... 1078
Systems Manager Agent ... 1092
Token exchange service .. 1099
IoT SiteWise OPC UA collector .. 1102
IoT SiteWise OPC UA data source simulator .. 1112
IoT SiteWise publisher .. 1115
IoT SiteWise processor .. 1126

Publisher-supported components .. 1141
AIShield.Edge ... 1141
AI EdgeLabs Sensor ... 1142
Greengrass S3 Ingestor ... 1142

Community components .. 1143
Greengrass development tools ... 1147

Greengrass Development Kit CLI .. 1148
Greengrass Command Line Interface ... 1178
Use Greengrass Testing Framework ... 1195

Develop components .. 1211
Component lifecycle .. 1213
Component types ... 1213
Create components .. 1214
Test components with local deployments .. 1227
Publish components to deploy ... 1229
Interact with AWS services ... 1235
Run a Docker container .. 1239
Recipe reference ... 1262

ix

AWS IoT Greengrass Developer Guide, Version 2

Environment variables ... 1292
Deploy components to devices .. 1293

Core device deployments ... 1294
Platform dependency resolution .. 1294
Component dependency resolution ... 1294
Removing a device from a thing group ... 1295
Deployments ... 1296
Deployment options .. 1297
Create deployments ... 1299
Create subdeployments .. 1318
Revise deployments ... 1322
Cancel deployments .. 1324
Check deployment status ... 1325

Logging and monitoring ... 1329
Monitoring tools .. 1329
Monitor Greengrass logs .. 1330

Access file system logs .. 1331
Access CloudWatch Logs ... 1333
Access system service logs ... 1335
Enable logging to CloudWatch Logs .. 1337
Configure logging for AWS IoT Greengrass .. 1338
AWS CloudTrail logs .. 1340

Log API calls with CloudTrail .. 1340
AWS IoT Greengrass V2 information in CloudTrail ... 1341
AWS IoT Greengrass data events in CloudTrail .. 1342
AWS IoT Greengrass management events in CloudTrail .. 1346
Understanding AWS IoT Greengrass V2 log file entries ... 1346

Gather system health telemetry data ... 1348
Telemetry metrics .. 1349
Configure telemetry agent settings ... 1353
Subscribe to telemetry data in EventBridge .. 1353

Get deployment and component health status notifications ... 1361
Deployment status change event ... 1362
Component status change event .. 1363
Prerequisites for creating EventBridge rules .. 1366
Configure device health notifications (console) ... 1366

x

AWS IoT Greengrass Developer Guide, Version 2

Configure device health notifications (CLI) ... 1367
Configure device health notifications (AWS CloudFormation) .. 1369
See also .. 1369

Check core device status .. 1369
Check health of a core device ... 1370
Check health of a core device group ... 1370
Check core device component status ... 1371

Run Lambda functions .. 1372
Requirements .. 1373
Configure Lambda function lifecycle .. 1373
Configure Lambda function containerization .. 1374
Import a Lambda function as a component (console) ... 1377

Step 1: Choose a Lambda function to import ... 1377
Step 2: Configure Lambda function parameters ... 1378
Step 3: (Optional) Specify supported platforms for the Lambda function 1380
Step 4: (Optional) Specify component dependencies for the Lambda function 1381
Step 5: (Optional) Run the Lambda function in a container ... 1382
Step 6: Create the Lambda function component .. 1384

Import a Lambda function as a component (CLI) ... 1384
Step 1: Define the Lambda function configuration .. 1384
Step 2: Create the Lambda function component .. 1404

Communicate with the Greengrass nucleus, other components, and AWS IoT Core 1406
IPC client versions ... 1407
Supported SDKs ... 1408
Connect to the AWS IoT Greengrass Core IPC service ... 1408
Authorize components to perform IPC operations .. 1414

Wildcards in authorization policies .. 1416
Recipe variables in authorization policies ... 1416
Special characters in authorization policies ... 1416
Authorization policy examples .. 1417

Subscribe to IPC event streams .. 1421
Define subscription handlers ... 1421
Example subscription handlers .. 1424

IPC best practices .. 1432
Publish/subscribe local messages .. 1433

Minimum SDK versions ... 1434

xi

AWS IoT Greengrass Developer Guide, Version 2

Authorization ... 1435
PublishToTopic .. 1437
SubscribeToTopic .. 1445
Examples .. 1458

Publish/subscribe AWS IoT Core MQTT messages ... 1480
Minimum SDK versions ... 1480
Authorization ... 1481
PublishToIoTCore .. 1485
SubscribeToIoTCore .. 1495
Examples .. 1509

Interact with component lifecycle ... 1517
Minimum SDK versions ... 1518
Authorization ... 1518
UpdateState ... 1520
SubscribeToComponentUpdates ... 1520
DeferComponentUpdate ... 1522
PauseComponent ... 1523
ResumeComponent .. 1525

Interact with component configuration .. 1526
Minimum SDK versions ... 1526
GetConfiguration .. 1527
UpdateConfiguration ... 1528
SubscribeToConfigurationUpdate ... 1529
SubscribeToValidateConfigurationUpdates ... 1530
SendConfigurationValidityReport ... 1531

Retrieve secret values ... 1532
Minimum SDK versions ... 1533
Authorization ... 1533
GetSecretValue .. 1534
Examples .. 1540

Interact with local shadows .. 1546
Minimum SDK versions ... 1547
Authorization ... 1548
GetThingShadow .. 1559
UpdateThingShadow ... 1566
DeleteThingShadow ... 1575

xii

AWS IoT Greengrass Developer Guide, Version 2

ListNamedShadowsForThing .. 1581
Manage local deployments and components .. 1588

Minimum SDK versions ... 1589
Authorization ... 1589
CreateLocalDeployment .. 1592
ListLocalDeployments .. 1595
GetLocalDeploymentStatus .. 1595
ListComponents .. 1596
GetComponentDetails ... 1597
RestartComponent ... 1599
StopComponent .. 1599
CreateDebugPassword ... 1600

Authenticate and authorize client devices ... 1601
Minimum SDK versions ... 1602
Authorization ... 1603
VerifyClientDeviceIdentity .. 1604
GetClientDeviceAuthToken ... 1605
AuthorizeClientDeviceAction .. 1606
SubscribeToCertificateUpdates .. 1607

Interact with local IoT devices ... 1609
Client device components .. 1609
Connect client devices to core devices ... 1612

Requirements .. 1613
Greengrass components for client device support .. 1626
Configure cloud discovery (console) ... 1628
Configure cloud discovery (AWS CLI) ... 1628
Associate client devices .. 1628
Authenticating clients while offline ... 1631
Manage core device endpoints .. 1632
Choose an MQTT broker ... 1639
Connecting to an MQTT broker .. 1640
Test communications ... 1642
Greengrass discovery RESTful API .. 1654

Relay MQTT messages between client devices and AWS IoT Core .. 1660
Configure and deploy the MQTT bridge component .. 1661
Relay MQTT messages .. 1662

xiii

AWS IoT Greengrass Developer Guide, Version 2

Interact with client devices in components ... 1663
Configure and deploy the MQTT bridge component .. 1664
Receive MQTT messages from client devices ... 1665
Send MQTT messages to client devices .. 1665

Interact with and sync client device shadows ... 1666
Prerequisites .. 1666
Enable shadow manager to communicate with client devices ... 1667
Interact with client device shadows in components ... 1670
Sync client device shadows with AWS IoT Core ... 1670

Use IPv6 for local messaging .. 1670
Configure IP detector to use IPv6 .. 1670

Troubleshooting ... 1674
Greengrass discovery issues ... 1675
MQTT connection issues ... 1682

Interact with device shadows ... 1689
Interact with shadows in components .. 1689

Retrieve and modify shadow states ... 1690
React to shadow state changes .. 1691

Sync local device shadows with AWS IoT Core ... 1692
Prerequisites .. 1692
Configure the shadow manager component .. 1693
Sync local shadows .. 1694
Shadow merge conflict behavior .. 1695

Manage data streams .. 1696
Stream management workflow .. 1697
Requirements .. 1697
Data security ... 1698

Local data security ... 1698
Client authentication ... 1699

See also ... 1699
Configure stream manager .. 1700

Stream manager parameters ... 1700
See also .. 1703

Create custom components that use stream manager .. 1703
Define component recipes that use stream manager ... 1703
Connect to stream manager in application code .. 1715

xiv

AWS IoT Greengrass Developer Guide, Version 2

Use StreamManagerClient to work with streams ... 1718
Create message stream ... 1719
Append message .. 1723
Read messages .. 1730
List streams ... 1732
Describe message stream ... 1733
Update message stream ... 1736
Delete message stream ... 1740
See also .. 1741
Export configurations for supported cloud destinations ... 1741

Perform machine learning inference ... 1758
How AWS IoT Greengrass ML inference works .. 1758
What's different in AWS IoT Greengrass Version 2? ... 1760
Requirements .. 1760
Supported model sources .. 1760
Supported runtimes .. 1761
Machine learning components .. 1761
Use SageMaker AI Edge Manager .. 1769

How it works ... 1769
Requirements .. 1770
Get started with SageMaker AI Edge Manager .. 1772

Use Lookout for Vision ... 1772
Customize your machine learning components .. 1773

Modify the configuration of a public inference component ... 1774
Use a custom model with the sample inference component .. 1776
Create custom machine learning components ... 1780
Create a custom inference component ... 1783

Troubleshooting ... 1790
Failed to fetch library ... 1791
Cannot open shared object file ... 1791
Error: ModuleNotFoundError: No module named '<library>' .. 1792
No CUDA-capable device is detected ... 1793
No such file or directory ... 1793
RuntimeError: module compiled against API version 0xf but this version of NumPy is
<version> .. 1794
picamera.exc.PiCameraError: Camera is not enabled ... 1794

xv

AWS IoT Greengrass Developer Guide, Version 2

Memory errors .. 1795
Disk space errors .. 1795
Timeout errors .. 1795

Manage core devices with AWS Systems Manager .. 1796
Install the Systems Manager Agent ... 1797

Step 1: Complete general Systems Manager setup steps .. 1797
Step 2: Create an IAM service role for Systems Manager .. 1797
Step 3: Add permissions to the token exchange role ... 1798
Step 4: Deploy the Systems Manager Agent component .. 1802
Step 5: Verify core device registration with Systems Manager ... 1805

Uninstall the Systems Manager Agent .. 1806
Step 1: Deregister the core device from Systems Manager ... 1807
Step 2: Uninstall the Systems Manager Agent component ... 1807
Step 3: Uninstall the Systems Manager Agent software ... 1808

Security .. 1809
Data protection .. 1810

Data encryption .. 1811
Hardware security integration ... 1813

Device authentication and authorization ... 1824
X.509 certificates .. 1825
AWS IoT policies ... 1826
Update a core device's AWS IoT policy .. 1832
Minimal AWS IoT policy .. 1837
Minimal AWS IoT policy to support client devices .. 1839
Minimal AWS IoT policy for client devices .. 1841

Identity and access management .. 1843
Audience ... 1844
Authenticating with identities ... 1844
Managing access using policies ... 1847
See also .. 1850
How AWS IoT Greengrass works with IAM ... 1850
Identity-based policy examples ... 1855
Authorize core devices to interact with AWS services .. 1857
Minimal IAM policy for installer to provision resources ... 1862
Greengrass service role ... 1865
AWS managed policies .. 1874

xvi

AWS IoT Greengrass Developer Guide, Version 2

Cross-service confused deputy prevention ... 1880
Troubleshooting identity and access issues .. 1881

Allow device traffic through a proxy or firewall ... 1883
Endpoints for basic operation ... 1883
Endpoints for installation with automatic provisioning ... 1888
Endpoints for AWS-provided components .. 1889

Compliance validation .. 1889
FIPS endpoints ... 1890

Enable FIPS endpoints with deployment .. 1892
Install Nucleus with FIPS endpoints with manual resource provisioning 1893
Install FIPS endpoints with fleet provisioning ... 1929
Install FIPS endpoints with auto resource provisioning ... 1947
FIPS compliance first party components .. 1963

Resilience ... 1964
Infrastructure security .. 1965
Configuration and vulnerability analysis .. 1966
Code integrity ... 1966
VPC endpoints (AWS PrivateLink) .. 1968

Considerations for AWS IoT Greengrass VPC endpoints .. 1968
Create an interface VPC endpoint for AWS IoT Greengrass control plane operations 1969
Creating a VPC endpoint policy for AWS IoT Greengrass .. 1969
Operate an AWS IoT Greengrass core device in VPC .. 1970

Security best practices ... 1975
Grant minimum possible permissions .. 1976
Don't hardcode credentials in Greengrass components ... 1976
Don't log sensitive information ... 1976
Keep your device clock in sync ... 1977
Cipher Suite Recommendations .. 1977
See also .. 1977

Using AWS IoT Device Tester for AWS IoT Greengrass V2 .. 1978
AWS IoT Greengrass qualification suite .. 1978
Custom test suites ... 1979
Supported versions ... 1979

Latest IDT version for AWS IoT Greengrass V2 .. 1980
Earlier IDT versions for AWS IoT Greengrass .. 1980
Unsupported versions of AWS IoT Device Tester for AWS IoT Greengrass V2 1981

xvii

AWS IoT Greengrass Developer Guide, Version 2

Download IDT for AWS IoT Greengrass V2 .. 1986
Download IDT manually ... 1987
Download IDT programmatically .. 1988

Use IDT to run the AWS IoT Greengrass qualification suite ... 1993
Test suite versions .. 1994
Test group descriptions ... 1994
Prerequisites .. 1997
Configure your device to run IDT tests ... 2018
Configure IDT settings .. 2028
Run the AWS IoT Greengrass qualification suite ... 2045
Understanding results and logs .. 2049

Use IDT to develop and run your own test suites .. 2052
Download the latest version of IDT for AWS IoT Greengrass .. 1997
Test suite creation workflow ... 2053
Tutorial: Build and run the sample IDT test suite ... 2054
Tutorial: Develop a simple IDT test suite .. 2059
Create IDT test suite configuration files .. 2068
Configure the IDT test orchestrator ... 2076
Configure the IDT state machine .. 2083
Create IDT test case executables .. 2107
Use the IDT context ... 2114
Configure settings for test runners .. 2118
Debug and run custom test suites ... 2130
Review IDT test results and logs ... 2132
IDT usage metrics ... 2139

Troubleshooting IDT for AWS IoT Greengrass V2 ... 2145
Where to look for errors .. 2145
Resolving IDT for AWS IoT Greengrass V2 errors .. 2147

Support policy for AWS IoT Device Tester for AWS IoT Greengrass .. 2154
Greengrass based IoT solutions .. 2155

Eurotech ... 2155
Troubleshooting ... 2156

View AWS IoT Greengrass Core software and component logs ... 2156
AWS IoT Greengrass Core software issues ... 2156

ThrottlingException from ListDeployments API .. 2158
Unable to set up core device ... 2158

xviii

AWS IoT Greengrass Developer Guide, Version 2

Unable to start the AWS IoT Greengrass Core software as a system service 2158
Unable to set up nucleus as a system service ... 2158
Unable to connect to AWS IoT Core .. 2159
Out of memory error .. 2159
Unable to install Greengrass CLI .. 2159
User root is not allowed to execute ... 2160
com.aws.greengrass.lifecyclemanager.GenericExternalService: Could not determine user/
group to run with .. 2160
Failed to map segment from shared object: operation not permitted 2160
Failed to set up Windows service ... 2161
com.aws.greengrass.util.exceptions.TLSAuthException: Failed to get trust manager 2161
com.aws.greengrass.deployment.IotJobsHelper: No connection available during
subscribing to Iot Jobs descriptions topic. Will retry in sometime .. 2162
software.amazon.awssdk.services.iam.model.IamException: The security token included in
the request is invalid ... 2162
software.amazon.awssdk.services.iot.model.IotException: User: <user> is not authorized to
perform: iot:GetPolicy ... 2163
Error: com.aws.greengrass.shadowmanager.sync.model.FullShadowSyncRequest: Could
not execute cloud shadow get request ... 2163
Operation aws.greengrass#<operation> is not supported by Greengrass 2164
java.io.FileNotFoundException: <stream-manager-store-root-dir>/
stream_manager_metadata_store (Permission denied) ... 2165
com.aws.greengrass.security.provider.pkcs11.PKCS11CryptoKeyService: Private key or
certificate with label <label> does not exist .. 2165
software.amazon.awssdk.services.secretsmanager.model.SecretsManagerException: User:
<user> is not authorized to perform: secretsmanager:GetSecretValue on resource: <arn> 2165
software.amazon.awssdk.services.secretsmanager.model.SecretsManagerException: Access
to KMS is not allowed ... 2166
java.lang.NoClassDefFoundError: com/aws/greengrass/security/CryptoKeySpi 2167
com.aws.greengrass.security.provider.pkcs11.PKCS11CryptoKeyService:
CKR_OPERATION_NOT_INITIALIZED .. 2167
Greengrass core device stuck on nucleus v2.12.3 ... 2167

AWS IoT Greengrass cloud issues .. 2169
An error occurred (AccessDeniedException) when calling the CreateComponentVersion
operation: User: arn:aws:iam::123456789012:user/<username> is not authorized to
perform: null ... 2170

xix

AWS IoT Greengrass Developer Guide, Version 2

Invalid Input: Encountered following errors in Artifacts: {<s3ArtifactUri> = Specified
artifact resource cannot be accessed} ... 2170
INACTIVE deployment status ... 2170

Core device deployment issues .. 2171
Error: com.aws.greengrass.componentmanager.exceptions.PackageDownloadException:
Failed to download artifact ... 2172
Error:
com.aws.greengrass.componentmanager.exceptions.ArtifactChecksumMismatchException:
Integrity check for downloaded artifact failed. Probably due to file corruption. 2173
Error:
com.aws.greengrass.componentmanager.exceptions.NoAvailableComponentVersionException:
Failed to negotiate component <name> version with cloud and no local applicable version
satisfying requirement <requirements> .. 2174
software.amazon.awssdk.services.greengrassv2data.model.ResourceNotFoundException:
The latest version of Component <componentName> doesn't claim platform
<coreDevicePlatform> compatibility .. 2175
com.aws.greengrass.componentmanager.exceptions.PackagingException: The deployment
attempts to update the nucleus from aws.greengrass.Nucleus-<version> to
aws.greengrass.Nucleus-<version> but no component of type nucleus was included as
target component .. 2175
Error: com.aws.greengrass.deployment.exceptions.DeploymentException: Unable to
process deployment. Greengrass launch directory is not set up or Greengrass is not set up
as a system service .. 2176
Info:
com.aws.greengrass.deployment.exceptions.RetryableDeploymentDocumentDownloadException:
Greengrass Cloud Service returned an error when getting full deployment configuration 2177
Warn: com.aws.greengrass.deployment.DeploymentService: Failed to get thing group
hierarchy ... 2177
Info: com.aws.greengrass.deployment.DeploymentDocumentDownloader: Calling
Greengrass cloud to get full deployment configuration .. 2178
Caused by:
software.amazon.awssdk.services.greengrassv2data.model.GreengrassV2DataException:
null (Service: GreengrassV2Data, Status Code: 403, Request ID: <some_request_id>,
Extended Request ID: null) ... 2178

Core device component issues .. 2178
Warn: '<command>' is not recognized as an internal or external command 2179

xx

AWS IoT Greengrass Developer Guide, Version 2

Python script doesn't log messages ... 2180
Component configuration doesn't update when changing default configuration 2181
awsiot.greengrasscoreipc.model.UnauthorizedError ... 2182
com.aws.greengrass.authorization.exceptions.AuthorizationException: Duplicate policy ID
"<id>" for principal "<componentList>" ... 2182
com.aws.greengrass.tes.CredentialRequestHandler: Error in retrieving AwsCredentials from
TES (HTTP 400) .. 2183
com.aws.greengrass.tes.CredentialRequestHandler: Error in retrieving AwsCredentials from
TES (HTTP 403) .. 2184
com.aws.greengrass.tes.CredentialsProviderError: Could not load credentials from any
providers ... 2185
Received error when attempting to retrieve ECS metadata: Could not connect to the
endpoint URL: "<tokenExchangeServiceEndpoint>" ... 2185
copyFrom: <configurationPath> is already a container, not a leaf ... 2186
com.aws.greengrass.componentmanager.plugins.docker.exceptions.DockerLoginException:
Error logging into the registry using credentials - 'The stub received bad data.' 2186
java.io.IOException: Cannot run program "cmd" ...: [LogonUser] The password for this
account has expired. .. 2187
aws.greengrass.StreamManager: Instant exceeds minimum or maximum instant 2188

Core device Lambda function component issues ... 2189
The following cgroup subsystems are not mounted: devices, memory 2189
ipc_client.py:64,HTTP Error 400:Bad Request, b'No subscription exists for the source
<label-or-lambda-arn> and subject <label-or-lambda-arn> ... 2189

Component version discontinued .. 2190
Greengrass CLI issues ... 2190

java.lang.RuntimeException: Unable to create ipc client ... 2191
AWS CLI issues ... 2191

Error: Invalid choice: 'greengrassv2' ... 2191
Detailed deployment error codes .. 2192

Permission error ... 2193
Request error ... 2195
Component recipe error ... 2197
AWS component error, user component error, component error ... 2199
Device error ... 2200
Dependency error ... 2201
HTTP error ... 2202

xxi

AWS IoT Greengrass Developer Guide, Version 2

Network error .. 2203
Nucleus error ... 2203
Server error ... 2204
Cloud service error ... 2205
Generic errors .. 2206
Unknown error .. 2207

Detailed component status codes .. 2207
Tag your resources .. 2210

Using tags in AWS IoT Greengrass V2 .. 2210
Tag with the AWS Management Console .. 2210
Tag with the AWS IoT Greengrass V2 API .. 2210

Using tags with IAM policies ... 2211
AWS CloudFormation resources ... 2213

AWS IoT Greengrass and AWS CloudFormation templates .. 2213
ComponentVersion template example .. 2213
Deployment template example ... 2214

Learn more about AWS CloudFormation .. 2215
Open source software ... 2216
Document history .. 2217
AWS Glossary ... 2271

xxii

AWS IoT Greengrass Developer Guide, Version 2

What is AWS IoT Greengrass?

AWS IoT Greengrass is an open source Internet of Things (IoT) edge runtime and cloud service
that helps you build, deploy and manage IoT applications on your devices. You can use AWS
IoT Greengrass to build software that enables your devices to act locally on the data that they
generate, run predictions based on machine learning models, and filter and aggregate device data.
AWS IoT Greengrass enables your devices to collect and analyze data closer to where that data
is generated, react autonomously to local events, and communicate securely with other devices
on the local network. Greengrass devices can also communicate securely with AWS IoT Core and
export IoT data to the AWS Cloud. You can use AWS IoT Greengrass to build edge applications
using pre-built software modules, called components, that can connect your edge devices to AWS
services or third-party services. You can also use AWS IoT Greengrass to package and run your
software using Lambda functions, Docker containers, native operating system processes, or custom
runtimes of your choice.

The following example shows how an AWS IoT Greengrass device interacts with the AWS Cloud.

New features

AWS IoT Greengrass V2 introduces new features and improvements. The following includes more
information about the new features offered in version 2.

• What's new in AWS IoT Greengrass Version 2

New features 1

AWS IoT Greengrass Developer Guide, Version 2

For first-time users of AWS IoT Greengrass

If you're new to AWS IoT Greengrass, we recommend that you review the following section:

• How AWS IoT Greengrass works

Next, follow the getting started tutorial to try out the basic features of AWS IoT Greengrass. In
this tutorial, you install the AWS IoT Greengrass Core software on a device, develop a Hello World
component, and package that component for deployment.

For existing users of AWS IoT Greengrass V1

For current users of AWS IoT Greengrass V1, we recommend the following topics to help you
understand the differences between Greengrass version 1 and Greengrass version 2, and learn how
to move from version 1 to version 2:

• Migrate from AWS IoT Greengrass Version 1

How AWS IoT Greengrass works

The AWS IoT Greengrass client software, also called AWS IoT Greengrass Core software, runs on
Windows and Linux-based distributions, such as Ubuntu or Raspberry Pi OS, for devices with ARM
or x86 architectures. With AWS IoT Greengrass, you can program devices to act locally on the data
they generate, run predictions based on machine learning models, and filter and aggregate device
data. AWS IoT Greengrass enables local execution of AWS Lambda functions, Docker containers,
native OS processes, or custom runtimes of your choice.

AWS IoT Greengrass provides pre-built software modules called components that let you easily
extend edge device functionality. AWS IoT Greengrass components enable you to connect to AWS
services and third-party applications at the edge. After you develop your IoT applications, AWS
IoT Greengrass enables you to remotely deploy, configure, and manage those applications on your
fleet of devices in the field.

The following example shows how an AWS IoT Greengrass device interacts with the AWS IoT
Greengrass cloud service and other AWS services in the AWS Cloud.

For first-time users 2

AWS IoT Greengrass Developer Guide, Version 2

Key concepts for AWS IoT Greengrass

The following are essential concepts for understanding and using AWS IoT Greengrass:

AWS IoT thing

An AWS IoT thing is a representation of a specific device or logical entity. Information about a
thing is stored in the AWS IoT registry.

Greengrass core device

A device that runs the AWS IoT Greengrass Core software. A Greengrass core device is an AWS
IoT thing. You can add multiple core devices to AWS IoT thing groups to create and manage
groups of Greengrass core devices. For more information, see Setting up AWS IoT Greengrass
core devices.

Greengrass client device

A device that connects to and communicates with a Greengrass core device over MQTT. A
Greengrass client device is an AWS IoT thing. The core device can process, filter, and aggregate
data from client devices that connect to it. You can configure the core device to relay MQTT

Key concepts 3

AWS IoT Greengrass Developer Guide, Version 2

messages between client devices, the AWS IoT Core cloud service, and Greengrass components.
For more information, see Interact with local IoT devices.

Client devices can run FreeRTOS or use the AWS IoT Device SDK or Greengrass discovery API to
get information about core devices to which they can connect.

Greengrass component

A software module that is deployed to and runs on a Greengrass core device. All software
that is developed and deployed with AWS IoT Greengrass is modeled as a component. AWS
IoT Greengrass provides pre-built public components that provide features and functionality
that you can use in your applications. You can also develop your own custom components, on
your local device or in the cloud. After you develop a custom component, you can use the AWS
IoT Greengrass cloud service to deploy it to single or multiple core devices. You can create a
custom component and deploy that component to a core device. When you do, the core device
downloads the following resources to run the component:

• Recipe: A JSON or YAML file that describes the software module by defining component
details, configuration, and parameters.

• Artifact: The source code, binaries, or scripts that define the software that will run on your
device. You can create artifacts from scratch, or you can create a component using a Lambda
function, a Docker container, or a custom runtime.

• Dependency: The relationship between components that enables you to enforce automatic
updates or restarts of dependent components. For example, you can have a secure message
processing component dependent on an encryption component. This ensures that any
updates to the encryption component automatically update and restart the message
processing component.

For more information, see AWS-provided components and Develop AWS IoT Greengrass
components.

Deployment

The process to send components and apply the desired component configuration to a
destination target device, which can be a single Greengrass core device or a group of Greengrass
core devices. Deployments automatically apply any updated component configurations to the
target and include any other components that are defined as dependencies. You can also clone
an existing deployment to create a new deployment that uses the same components but is
deployed to a different target. Deployments are continuous, which means that any updates
you make to the components or the component configuration of a deployment automatically

Key concepts 4

https://docs.aws.amazon.com/freertos/latest/userguide/freertos-lib-gg-connectivity.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html

AWS IoT Greengrass Developer Guide, Version 2

get sent to all destination targets. For more information, see Deploy AWS IoT Greengrass
components to devices.

AWS IoT Greengrass Core software

As of version 2.14, AWS IoT Greengrass provides two alternative implementations of its
device runtime, an executable known as the nucleus. The first, and previously only, nucleus
is implemented in Java. This choice provides the greatest portability across architectures and
operating systems. However, it also comes with a dependency on the Java Virtual Machine,
resulting in a large memory footprint.

The second, newly added nucleus is implemented in C. This choice considerably reduces its
footprint. However, it requires distribution (or compilation from source) separately for different
target architectures and operating systems. When there is a need to distinguish the two, we will
refer to the first implementation as the nucleus classic and the latter as the nucleus lite.

• Optional components: These configurable components are provided by AWS IoT Greengrass
and enable additional features on your edge devices. Depending on your requirements, you
can choose the optional components that you want to deploy to your device, such as data
streaming, local machine learning inference, or a local command line interface. For more
information, see AWS-provided components.

You can upgrade your AWS IoT Greengrass Core software by deploying new versions of your
components to your device.

Features of AWS IoT Greengrass

AWS IoT Greengrass Version 2 consists of the following elements:

• Software distributions

• The Greengrass nucleus component, which is the minimum installation of the AWS IoT
Greengrass Core software. This component manages deployments, orchestration, and lifecycle
management of Greengrass components.

• Additional optional AWS-provided components that integrate with services, protocols, and
software.

• Greengrass development tools, which you can use to create, test, build, publish, and deploy
custom Greengrass components.

• The AWS IoT Device SDK, which contains the interprocess communication (IPC) library for
custom Greengrass components and the Greengrass discovery library for client devices.

Features of AWS IoT Greengrass 5

AWS IoT Greengrass Developer Guide, Version 2

• The Stream Manager SDK, which you can use to manage data streams on core devices.

• Cloud service

• AWS IoT Greengrass V2 API

• AWS IoT Greengrass V2 console

AWS IoT Greengrass Core software

You can use the AWS IoT Greengrass Core software that runs on your edge devices to do the
following:

• Process data streams on the local device with automatic exports to the AWS Cloud. For more
information, see Manage data streams on Greengrass core devices.

• Support MQTT messaging between AWS IoT and components. For more information, see
Publish/subscribe AWS IoT Core MQTT messages.

• Interact with local devices that connect and communicate over MQTT. For more information, see
Interact with local IoT devices.

• Support local publish and subscribe messaging between components. For more information, see
Publish/subscribe local messages.

• Deploy and invoke components and Lambda functions. For more information, see Deploy AWS
IoT Greengrass components to devices.

• Manage component lifecycles, such as with support for install and run scripts. For more
information, see AWS IoT Greengrass component recipe reference.

• Perform secure, over-the-air (OTA) software updates of the AWS IoT Greengrass Core software
and custom components. For more information, see Update the AWS IoT Greengrass Core
software (OTA) and Deploy AWS IoT Greengrass components to devices.

• Provide secure, encrypted storage of local secrets and controlled access by components. For
more information, see Secret manager.

• Secure connections between devices and the AWS Cloud with device authentication and
authorization. For more information, see Device authentication and authorization for AWS IoT
Greengrass.

You configure and manage Greengrass core devices through AWS IoT Greengrass APIs where you
create continuous software deployments. For more information, see Deploy AWS IoT Greengrass
components to devices.

Features of AWS IoT Greengrass 6

AWS IoT Greengrass Developer Guide, Version 2

Some features are supported on only certain platforms. For more information, see Greengrass
feature compatibility by operating system.

For more information about supported platforms, requirements, and downloads, see Setting up
AWS IoT Greengrass core devices.

By downloading this software, you agree to the Greengrass Core Software License Agreement.

Greengrass feature compatibility by operating system

AWS IoT Greengrass supports devices that run various operating systems. Some features are
supported on only certain operating systems. Use the following tables to learn which features are
available for each supported operating system. For more information about supported operating
systems, requirements, and how to set up Greengrass core devices, see Setting up AWS IoT
Greengrass core devices.

Messaging

Feature Linux Windows Greengrass lite
(Linux)

Exchange MQTT
messages between
AWS IoT and
components

Yes Yes
Yes

(except for MQTT5
extensions)

Exchange local
publish/subscribe
messages between
components Yes Yes Yes

Interact with local IoT
devices over MQTT

Yes Yes No

Greengrass feature compatibility by operating system 7

https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 2

Feature Linux Windows Greengrass lite
(Linux)

Interact with local
Modbus-RTU devices
using the Modbus-RT
U component Yes No No

Security

Feature Linux Windows Greengrass lite
(Linux)

Secure connections
with device authentic
ation and authoriza
tion Yes Yes Yes

Deploy and access
secure, encrypted
secrets from AWS
Secrets Manager Yes Yes No

Use a hardware
security module
(HSM) to securely
store the device's
private key and
certificate

Yes No No

Audit core devices
with AWS IoT Device
Defender

Yes Yes No

Greengrass feature compatibility by operating system 8

AWS IoT Greengrass Developer Guide, Version 2

Feature Linux Windows Greengrass lite
(Linux)

Use AWS credentials
to interact with AWS
services

Yes Yes Yes

Installation

Feature Linux Windows Greengrass lite
(Linux)

Install AWS IoT
Greengrass with
automatic provision
ing Yes Yes No

Install AWS IoT
Greengrass with
manual provisioning

Yes Yes Yes

Install AWS IoT
Greengrass with AWS
IoT fleet provisioning

Yes Yes Yes

Install AWS IoT
Greengrass with
custom provisioning
plugins Yes Yes No

Run AWS IoT
Greengrass in a
Docker container

Yes No No

Greengrass feature compatibility by operating system 9

AWS IoT Greengrass Developer Guide, Version 2

Feature Linux Windows Greengrass lite
(Linux)

using a prebuilt
Docker image

Note

AWS IoT Greengrass can be isntalled and run in a systemd-enabled docker container.

Remote maintenance and updates

Feature Linux Windows Greengass lite
(Linux)

Perform secure,
over-the-air (OTA)
software updates

Yes Yes Yes

Manage core devices
with AWS Systems
Manager

Yes No No

Connect to core
devices with AWS IoT
secure tunneling

Yes No Yes

Greengrass feature compatibility by operating system 10

AWS IoT Greengrass Developer Guide, Version 2

Machine learning

Feature Linux Windows Greengrass lite
(Linux)

Perform machine
learning inference
using Amazon
SageMaker AI Edge
Manager Yes Yes No

Perform machine
learning inference
using Amazon
Lookout for Vision Yes No No

Perform machine
learning inference
using DLR

Yes Yes No

Perform machine
learning inference
using TensorFlow

Yes Yes No

Component features

Feature Linux Windows Greengrass lite
(Linux)

Deploy and invoke
Lambda functions

Yes No No

Greengrass feature compatibility by operating system 11

AWS IoT Greengrass Developer Guide, Version 2

Feature Linux Windows Greengrass lite
(Linux)

Run Docker container
s in components

Yes Yes No

Process and export
high-volume data
streams using stream
manager Yes Yes Yes

Manage component
lifecycles with
lifecycle scripts

Yes Yes Yes

Interact with device
shadows

Yes Yes No

Upload logs to
Amazon CloudWatch
Logs

Yes Yes Yes

Upload data to
Amazon CloudWatc
h metrics using the
CloudWatch metrics
component Yes Yes No

Greengrass feature compatibility by operating system 12

AWS IoT Greengrass Developer Guide, Version 2

Feature Linux Windows Greengrass lite
(Linux)

Publish messages
to Amazon Simple
Notification Service
using the Amazon
SNS component Yes No No

Publish data to
Amazon Data
Firehose delivery
streams using stream
manager Yes Yes No

Publish data to
Amazon Data
Firehose delivery
streams using the
Firehose component Yes No No

Gather and act on
real-time system
telemetry metrics

Yes Yes No

Configure system
resource limits for
component processes

Yes No No

Pause and resume
component processes

Yes No No

Greengrass feature compatibility by operating system 13

AWS IoT Greengrass Developer Guide, Version 2

Feature Linux Windows Greengrass lite
(Linux)

Integrate with AWS
IoT SiteWise using
the AWS IoT SiteWise
components Yes Yes No

Publish video streams
to Amazon Kinesis
Video Streams using
the edge connector
for Kinesis Video
Streams component

Yes No No

Component development

Feature Linux Windows Greengrass lite
(Linux)

Develop component
s locally on core
devices

Yes Yes Yes

Interact with a core
device using the AWS
IoT Greengrass CLI

Yes Yes No

Interact with a core
device using the local
debug console

Yes Yes No

Greengrass feature compatibility by operating system 14

AWS IoT Greengrass Developer Guide, Version 2

Feature Linux Windows Greengrass lite
(Linux)

Use the AWS IoT
Device SDK for
Python in custom
components Yes Yes Yes

Use the AWS IoT
Device SDK for C++ in
custom components

Yes Yes Yes

Use the AWS IoT
Device SDK for Java
in custom component
s Yes Yes Yes

Device certification

Feature Linux Windows Greengrass lite
(Linux)

Use AWS IoT Device
Tester for AWS IoT
Greengrass V2 to
validate IoT devices Yes Yes No

Choosing your AWS IoT Greengrass nucleus runtime

As of version 2.14, AWS IoT Greengrass provides two alternative implementations of its device
runtime, an executable known as the nucleus. Despite their implementation differences, both
runtimes are compatible with the AWS IoT Greengrass service and APIs and allow you to deploy
components provided by AWS or develop custom components using the Greengrass SDK. It is also
possible to mix devices, using either type of nucleus within the same fleet as necessary.

Choosing your AWS IoT Greengrass nucleus runtime 15

AWS IoT Greengrass Developer Guide, Version 2

However, in order to achieve the desired portability or the specific memory saving benefits, it is
essential to ensure that the nucleus you deploy on your Greengrass devices is compatible with the
components you intend to use to accelerate the development of your AWS IoT solutions. To learn
more about component compatibility, see Components.

Ultimately, the choice between the two Greengrass runtime options will depend on your specific
use case, device constraints, feature requirements, and operating system.

Greengrass nucleus

AWS IoT Greengrass nucleus is the fully-featured runtime that enables you to run AWS IoT
Greengrass on a wide range of devices, including gateways, servers, and edge devices with more
compute resources. Consider choosing Greengrass nucleus classic if:

• Compute resources: Your device has sufficient compute resources, such as more than 1 GB of
RAM and a relatively powerful processor (for example, greater than 1 GHz clock).

• Full OS support is needed: Greengrass nucleus classic supports the widest range of operating
systems (including most Linux distros and Windows).

• Components compatibility: Greengrass nucleus classic offers the fullest compatibility with
existing components published by the AWS IoT service team and partners.

Greengrass nucleus lite

AWS IoT Greengrass nucleus lite is a lightweight, open-source runtime that enables you to run
AWS IoT Greengrass on resource-constrained devices. This can be useful for low-cost, single-board
computers with high-volume applications, such as smart home hubs, smart energy meters, smart
vehicles, edge AI, and robotics. Consider choosing Greengrass nucleus lite if your devices are:

• Resource constrained: Your device has limited resources, such as RAM memory (512 MB or less),
storage (FLASH) space or a low-performance processor (less than 1 GHz).

• Dependency limited: Your device vendor software platform does not support Java or the
specific JVM required by the nucleus classic.

• Operating system: Your devices run a distribution of Linux that supports systemd (for example:
Ubuntu, Yocto).

Greengrass nucleus 16

https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html

AWS IoT Greengrass Developer Guide, Version 2

Current limitations of Greengrass nucleus lite

As included in AWS IoT Greengrass v2.14, the nucleus lite (v.2.0) runtime offers a subset of the
functionality available by the nucleus classic (v2.14).

The AWS IoT Greengrass IPC (Inter-Process Communication) mechanism allows components to
communicate with the Greengrass nucleus. The lightweight version of the nucleus supports the
following subset:

Feature Availability

SubscribeToTopic Available

PublishToTopic Available

PublishToIoTCore Available

SubscribeToIoTCore Available

UpdateState Not currently available

SubscribeToComponentUpdates Not currently available

DeferComponentUpdate Not currently available

GetConfiguration Available

UpdateConfiguration Available

SubscribeToConfigurationUpdate Available

SubscribeToValidateConfigurationUpdates Not currently available.

SendConfigurationValidityReport Not currently available.

GetSecretValue Not currently available.

PutComponentMetric Not currently available

GetComponentDetails Not currently available

RestartComponent Not currently available

Greengrass nucleus lite 17

AWS IoT Greengrass Developer Guide, Version 2

Feature Availability

StopComponent Not currently available

CreateLocalDeployment Available

CancelLocalDeployment Not currently available

GetLocalDeploymentStatus Not currently available

ListLocalDeployments Not currently available

ListComponents Not currently available

ValidateAuthorizationToken Not currently available

CreateDebugPassword Not currently available

PauseComponent Not currently available

ResumeComponent Not currently available

GetThingShadow Not currently available

UpdateThingShadow Not currently available

DeleteThingShadow Not currently available

ListNamedShadowsForThing Not currently available

SubscribeToCertificateUpdates Not currently available

VerifyClientDeviceIdentity Not currently available

GetClientDeviceAuthToken Not currently available

AuthorizeClientDeviceAction Not currently available

Greengrass nucleus lite 18

AWS IoT Greengrass Developer Guide, Version 2

What's new in AWS IoT Greengrass Version 2

AWS IoT Greengrass Version 2 is a major version of AWS IoT Greengrass that introduces the
following features:

• Publisher-supported components – AWS IoT Greengrass now offers Publisher-supported
components. These components are developed, offered, and serviced by third-party vendors. For
more information, see Publisher-supported components.

• Operate a Greengrass device in VPC – Operating a Greengrass core device in VPC is now
available. This enables you to perform deployments in VPC without public internet access. For
more information, see Operate an AWS IoT Greengrass core device in VPC.

• Greengrass Testing Framework (GTF) – GTF for AWS IoT Greengrass Version 2 is now available.
GTF is a collection of building blocks to support end-to-end automation. It enables AWS IoT
Greengrass Version 2 internal customers to use the same testing framework that the service
team uses for qualifying software changes, automated acceptance, and quality assurance
purposes. For more information, see Greengrass Testing Framework on Github.

• PSA-certified – AWS IoT Greengrass nucleus versions 2.7.0 and later are now Platform Security
Architecture (PSA) certified. For more information, see AWS IoT Greengrass is PSA-certified.

AWS IoT Greengrass release notes provide details about AWS IoT Greengrass releases—new
features, updates and improvements, and general fixes. AWS IoT Greengrass has the following
types of releases:

• New feature releases for AWS IoT Greengrass

• AWS IoT Greengrass Core software updates

This section contains all of the AWS IoT Greengrass V2 release notes, latest first, and includes
major feature changes and significant bug fixes. For information about additional minor fixes, see
the aws-greengrass organization on GitHub.

Release notes

• Release: AWS IoT Greengrass Core v2.14.0 software update on December 16, 2024

• Release: AWS IoT Greengrass Core v2.13.0 software update on August 26, 2024

• Release: AWS IoT Greengrass Core v2.12.6 software update on May 24, 2024

• Release: AWS IoT Greengrass Core v2.12.5 software update on April 25, 2024

19

https://github.com/aws-greengrass/aws-greengrass-testing
https://www.psacertified.org/products/aws-iot-greengrass/
https://github.com/aws-greengrass

AWS IoT Greengrass Developer Guide, Version 2

• Release: AWS IoT Greengrass Core v2.12.4 software update on April 02, 2024

• Release: AWS IoT Greengrass Core v2.12.3 software update on March 27, 2024

• Release: AWS IoT Greengrass Core v2.12.2 software update on February 15, 2024

• Release: AWS IoT Greengrass Core v2.12.1 software update on December 8, 2023

• Release: AWS IoT Greengrass Core v2.12.0 software update on November 7, 2023

• Release: AWS IoT Greengrass Core v2.11.3 software update on October 18, 2023

• Release: AWS IoT Greengrass Core v2.11.2 software update on August 9, 2023

• Release: AWS IoT Greengrass Core v2.11.1 software update on July 21, 2023

• Release: AWS IoT Greengrass Core v2.11.0 software update on June 28, 2023

• Release: AWS IoT Greengrass Core v2.10.3 software update on June 21, 2023

• Release: AWS IoT Greengrass Core v2.10.2 software update on June 5, 2023

• Release: AWS IoT Greengrass Core v2.10.1 software update on May 11, 2023

• Release: AWS IoT Greengrass Core v2.10.0 software update on May 9, 2023

• Release: AWS IoT Greengrass Core v2.9.6 software update on April 20, 2023

• Release: AWS IoT Greengrass Core v2.9.5 software update on March 30, 2023

• Release: AWS IoT Greengrass Core v2.9.4 software update on February 24, 2023

• Release: AWS IoT Greengrass Core v2.9.3 software update on February 01, 2023

• Release: AWS IoT Greengrass Core v2.9.2 software update on December 22, 2022

• Release: AWS IoT Greengrass Core v2.9.1 software update on November 18, 2022

• Release: AWS IoT Greengrass Core v2.9.0 software update on November 15, 2022

• Release: AWS IoT Greengrass Core v2.8.1 software update on October 13, 2022

• Release: AWS IoT Greengrass Core v2.8.0 software update on October 7, 2022

• Release: AWS IoT Greengrass Core v2.7.0 software update on July 28, 2022

• Release: AWS IoT Greengrass Core v2.6.0 software update on June 27, 2022

• Release: AWS IoT Greengrass Core v2.5.6 software update on May 31, 2022

• Release: AWS IoT Greengrass Core v2.5.5 software update on April 6, 2022

• Release: AWS IoT Greengrass Core v2.5.4 software update on March 23, 2022

• Release: AWS IoT Greengrass Core v2.5.3 software update on January 6, 2022

• Release: AWS IoT Greengrass Core v2.5.2 software update on December 3, 2021

20

AWS IoT Greengrass Developer Guide, Version 2

• Release: AWS IoT Greengrass Core v2.5.1 software update on November 23, 2021

• Release: AWS IoT Greengrass Core v2.5.0 software update on November 12, 2021

• Release: AWS IoT Greengrass Core v2.4.0 software update on August 3, 2021

• Release: AWS IoT Greengrass Core v2.3.0 software update on June 29, 2021

• Release: AWS IoT Greengrass Core v2.2.0 software update on June 18, 2021

• Release: AWS IoT Greengrass Core v2.1.0 software update on April 26, 2021

• Release: AWS IoT Greengrass Core v2.0.5 software update on March 09, 2021

• Release: AWS IoT Greengrass Core v2.0.4 software update on February 04, 2021

Release: AWS IoT Greengrass Core v2.14.0 software update on
December 16, 2024

This release provides version 2.14.0 of the Greengrass nucleus component, and new AWS IoT
Greengrass nucleus lite updates. The AWS IoT Greengrass nucleus lite is a new runtime, available
for AWS IoT Greengrass version 2. It provides a reduced memory footprint alternative. This is a
good option for resource-constrained devices. It implements a subset of the nucleus functionality
with increased featured compatibility planned for future releases. The source code is available now
on Github. With the nucleus lite runtime you can:

• Deploy components to Greengrass core devices. Use the same recipe format, though some
advanced features may not be available yet.

• Applications deployed as Greengrass components can use the device SDKs to access the
supported Greengrass IPC APIs, such as: AWS IoT Core MQTT access, local pub/sub, and
Greengrass configuration access. See the compatibility chart for the list of supported IPC APIs.

• Some AWS managed components have been updated for nucleus lite support. See the AWS-
provided components for a list of existing compatible components.

New features:

• Uses less memory and disk space (less than 5MB of RAM and less than 5MB of storage).

• Components integrate with the host system’s service manager (systemd for currently supported
Linux platforms).

Things to watch out for:

AWS IoT Greengrass Core v2.14.0 software update 21

https://github.com/aws-greengrass/aws-greengrass-lite
https://docs.aws.amazon.com/greengrass/v2/developerguide/choosing-your-runtime.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html

AWS IoT Greengrass Developer Guide, Version 2

• AWS IoT Greengrass nucleus lite recipes are case-sensitive. Ensure the correct (keys) casing is
used as in the https://docs.aws.amazon.com/greengrass/v2/developerguide/component-recipe-
reference.htmlrecipe reference.

• The nucleus lite runtime supports thing group deployments, and does not yet support the
(single) Core device deployment target type. To deploy to a single Greengrass device, use a thing
group with only that one device in it.

• The nucleus lite runtime uses bounded memory resources; functionality which scales according
to usage on the classic runtime may fail due to exceeding resources available on lite. This
includes a current limitation on max of 50 MQTT subscriptions at a time, and maximum limits
on recipe file sizes and deployments. Some of these limits are configurable at compile time if
compiling the lite runtime yourself.

• The nucleus lite runtime does not ship with Java. To use components requiring Java, the system
will need Java already installed, or a component may be used to install Java.

• We recommend compiling the nucleus lite runtime from source and using your own build
tailored for your system. For Yocto systems, a layer is available to integrate the nucleus lite
runtime into your system image.

• Currently the nucleus lite assumes a Linux system using systemd, or a container image using
systemd.

• While you can manage Docker containers with recipe scripts, Greengrass managed container
artifacts are not yet available.

• The nucleus lite runtime does not yet have support for keys stored in a PKCS11 module. If your
use case requires keys stored on a secure element, the classic runtime can support this use case
currently. To prevent leaks of your device credentials, ensure production devices are using full
disk encryption.

Alongside the introduction of nucleus lite, we are also releasing nucleus v2.14.0. This update brings
significant enhancements to the existing Greengrass nucleus.

Key features and improvements:

• New dual-stack endpoint support enables IPv6 network communication.

• Enhanced resilience against nucleus restart failures and directory corruption.

• Fixed memory leaks in IPC PubSub subscription closures.

Release date: December 16, 2024

AWS IoT Greengrass Core v2.14.0 software update 22

https://docs.aws.amazon.com/greengrass/v2/developerguide/component-recipe-reference.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/component-recipe-reference.html

AWS IoT Greengrass Developer Guide, Version 2

Public component updates

The following table lists AWS-provided components that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus lite

Version 2.0.0 of the Greengrass nucleus lite is available.

New features

• Uses less memory and disk space (less than 5MB of RAM and less than
5MB of storage).

• Components integrate with the host system’s service manager
(systemd for currently supported Linux platforms).

Greengrass
nucleus

Version 2.14.0 of the Greengrass nucleus is available.

New features

• New dual-stack endpoint support enables IPv6 network communica
tion.

• Enhanced resilience against nucleus restart failures and directory
corruption.

Public component updates 23

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Bug fixes and improvements

• Fixed memory leaks in IPC PubSub subscription closures.

• Fixes run lifecycle of the component where it enters into ERRORED
state due to startup timeout when skipif condition is true.

• Fixes an issue where the core device fails to connect to AWS IoT Core
when the TLS policy is set to TLS13_1_3_2022_10.

Greengrass CLI Version 2.14.0 of the Greengrass CLI is available.

Bug fixes and improvements

• Validate deployment target parameter in the cli command.

Stream
manager

Version 2.14.0 of the Stream manager is available.

New features

• Adds a new configuration key for startup timeout. Default value is 120
seconds.

• Add recipe supports for Greengrass nucleus lite.

MQTT 5 broker
(EMQX)

Version 2.0.2 of the MQTT 5 broker (EMQX) is available.

Bug fixes and improvements

• Fixes an issue where EMQX starts up before the Client device auth
component is ready.

Lambda
runtimes
component

Version 2.0.9 of the Lambda runtimes component is available.

Bug fixes and improvements

• Fixes an syntax warning with Python 3.12

Lambda
manager
component

Version 2.3.5 of the Lambda manager component is available.

Bug fixes and improvements

• Improves performance by using epoll instead of nio when available

Public component updates 24

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Secret manager
component

Version 2.2.2 of the Secret manager component is available.

Bug fixes and improvements

• Fixes an issue where secret manager doesn’t download the secrets
configured with partial arns.

Secure
tunneling
component

Version 1.1.0 of the Secure tunneling component is available.

New features

• Add recipe supports for Greengrass nucleus lite

CloudWatc
h metrics
component

Version 1.1.0 of the CloudWatch metrics component is available.

New features

• Add recipe supports for Greengrass nucleus lite

Release: AWS IoT Greengrass Core v2.13.0 software update on
August 26, 2024

This release provides version 2.13.0 of the Greengrass nucleus component.

Release date: August 26, 2024

Public component updates

The following table lists AWS-provided components that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.

AWS IoT Greengrass Core v2.13.0 software update 25

AWS IoT Greengrass Developer Guide, Version 2

To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.13.0 of the Greengrass nucleus is available.

New features

• Support FIPS endpoint in Nucleus. For more information, see FIPS
endpoints.

Bug fixes and improvements

• Cancel deployment improvements - deployments can now be
cancelled while new configuration is being merged and while waiting
for services to start.

Stream
manager

Version 2.1.13 of the Stream manager component is available.

Bug fixes and improvements

• Support FIPS endpoint in AWS IoT SiteWise

Secret manager Version 2.2.0 of the Secret manager component is available.

New features

• Adds support for periodic refresh of configured secrets through a new
component configuration key.

• Adds support for a new request parameter in the GetSecretValue IPC
request to refresh the secrets per request

IP detector Version 2.2.0 of the IP detector component is available.

New features

• Adds support for IPv6. You can now use IPv6 for local messaging.

Public component updates 26

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Client device
auth

Version 2.5.1 of the Client device auth is available.

Bug fixes and improvements

• General bugs and fixes.

• Supports FIPS endpoint.

Local debug
console

Version 2.4.3 of the Local debug console is available.

Bug fixes and improvements

• Fixes an issue that incorrectly displayed STREAM_MANAGER_EXP
ORTER_MAX_BANDWIDTH in Mpbs instead of bytes/sec.

Release: AWS IoT Greengrass Core v2.12.6 software update on
May 24, 2024

This release provides version 2.12.6 of the Greengrass nucleus component and updates to AWS-
provided components.

Release date: May 24, 2024

Release details

• Public component updates

Public component updates

The following table lists components provided by AWS that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.

AWS IoT Greengrass Core v2.12.6 software update 27

AWS IoT Greengrass Developer Guide, Version 2

To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.12.6 of the Greengrass nucleus is available.

Bug fixes and improvements

• Fixes an issue that causes a crash at startup on certain ARMv8
processors, including the Jetson Nano.

Greengrass CLI Version 2.12.6 of the Greengrass CLI is available.

Bug fixes and improvements

• Version updated for Greengrass nucleus version 2.12.6 release.

Secret manager Version 2.1.8 of the secret manager is available.

Bug fixes and improvements

• Fixes an issue where secret manager doesn't accept a partial arn.

Release: AWS IoT Greengrass Core v2.12.5 software update on
April 25, 2024

This release provides version 2.12.5 of the Greengrass nucleus component and updates to AWS-
provided components.

Release date: April 25, 2024

Release details

• Public component updates

AWS IoT Greengrass Core v2.12.5 software update 28

AWS IoT Greengrass Developer Guide, Version 2

Public component updates

The following table lists components provided by AWS that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.12.5 of the Greengrass nucleus is available.

Bug fixes and improvements

• Fixes an issue where deployment rollback occasionally gets stuck while
rolling back a previously broken component with hard dependencies.

• Fixes an issue where the nucleus doesn't publish status updates after
fleet provisioning.

• Adds retries for the GetDeploymentConfiguration API after
getting 404 errors.

Release: AWS IoT Greengrass Core v2.12.4 software update on
April 02, 2024

This release provides version 2.12.4 of the Greengrass nucleus component and updates to AWS-
provided components.

Public component updates 29

AWS IoT Greengrass Developer Guide, Version 2

Release date: April 02, 2024

Release details

• Public component updates

Public component updates

The following table lists components provided by AWS that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.12.4 of the Greengrass nucleus is available.

Bug fixes and improvements

• Fixes an issue where the nucleus enters a deadlock condition during
startup on some Linux devices.

Release: AWS IoT Greengrass Core v2.12.3 software update on
March 27, 2024

This release provides version 2.12.3 of the Greengrass nucleus component and updates to AWS-
provided components.

Public component updates 30

AWS IoT Greengrass Developer Guide, Version 2

Release date: March 27, 2024

Release details

• Public component updates

Public component updates

The following table lists components provided by AWS that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.12.3 of the Greengrass nucleus is available.

Bug fixes and improvements

• Fixes an issue where the nucleus doesn't report the correct component
 status after the nucleus relaunches and during component recovery.

• General bug fixes and improvements.

Shadow
manager

Version 2.3.7 of the shadow manager component is available.

Public component updates 31

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Bug fixes and improvements

Fixes an issue where shadow manager periodically logs a NullPoint
erException error during a shadow manager sync.

Fleet provision
ing

Version 1.2.1 of the AWS IoT fleet provisioning plugin is available.

Bug fixes and improvements

Fixes an issue where the fleet provisioning plugin is offline during a
Greengrass nucleus startup. The fleet provisioning plugin now indefinit
ely retries MQTT connect calls.

IP detector Version 2.1.9 of the disk spooler component is available.

Bug fixes and improvements

Adjusts the IP acquired step to only send logs at the debug log level.

Moquette MQTT
3.1.1 broker
component

Version 2.3.6 of the Moquette MQTT 3.1.1 broker component is available.

Bug fixes and improvements

General bug fixes and improvements.

Lambda
manager

Version 2.3.3 of the Lambda manager component is available.

Bug fixes and improvements

General bug fixes and improvements.

Local debug
console

Version 2.4.2 of the local debug console component is available.

Bug fixes and improvements

General bug fixes and improvements.

Public component updates 32

AWS IoT Greengrass Developer Guide, Version 2

Release: AWS IoT Greengrass Core v2.12.2 software update on
February 15, 2024

This release provides version 2.12.2 of the Greengrass nucleus component and updates to AWS-
provided components.

Release date: February 15, 2024

Release details

• Public component updates

Public component updates

The following table lists components provided by AWS that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.12.2 of the Greengrass nucleus is available.

Bug fixes and improvements

• Fixes an issue where old logs weren't cleaned up properly.

• General bug fixes and improvements.

AWS IoT Greengrass Core v2.12.2 software update 33

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Shadow
manager

Version 2.3.6 of the shadow manager component is available.

Bug fixes and improvements

Fixes an issue where shadow properties that are deleted through AWS
Cloud updates while the device is offline continue to exist in the local
shadow after regaining connectivity.

Lambda
launcher

Version 2.0.13 of the lambda launcher component is available.

Bug fixes and improvements

General bug fixes and improvements.

Disk spooler Version 1.0.3 of the disk spooler component is available.

Bug fixes and improvements

Improves performance by reusing database connections.

Release: AWS IoT Greengrass Core v2.12.1 software update on
December 8, 2023

This release provides version 2.12.1 of the Greengrass nucleus component and updates to AWS-
provided components.

Release date: December 8, 2023

Release details

• Public component updates

Public component updates

The following table lists components provided by AWS that include new and updated features.

AWS IoT Greengrass Core v2.12.1 software update 34

AWS IoT Greengrass Developer Guide, Version 2

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.12.1 of the Greengrass nucleus is available.

Bug fixes and improvements

• Fixes an issue where the nucleus may duplicate MQTT subscriptions to
deployment topics leading to additional logging and MQTT publishes.

Client device
auth

Version 2.4.5 of the client device auth component is available.

New features

Adds support for wildcard prefixes for selecting thing names with the
selectionRule parameter.

Bug fixes and improvements

Fixes an issue where certificates aren't updated with new connectivity
information in certain cases.

Disk spooler Version 1.0.2 of the disk spooler component is available.

Public component updates 35

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Bug fixes and improvements

Fixes an issue where the MQTT message format field isn't persisted in
certain cases.

MQTT bridge Version 2.3.1 of the disk spooler component is available.

Bug fixes and improvements

Fixes an issue where the local MQTT client gets into a disconnect loop.

Stream
manager

Version 2.1.12 of the stream manager component is available.

Bug fixes and improvements

Updates the order that credentials are used so that Greengrass credentia
ls are preferred for AWS service requests.

Release: AWS IoT Greengrass Core v2.12.0 software update on
November 7, 2023

This release provides version 2.12.0 of the Greengrass nucleus component and updates to AWS-
provided components.

Release date: November 7, 2023

Release highlights

• Bootstrap on rollback – AWS IoT Greengrass now provides a Greengrass nucleus configuration
parameter called BootstrapOnRollback. This feature enables you to run the bootstrap
lifecycle steps as part of a rollback deployment.

Release details

• Public component updates

AWS IoT Greengrass Core v2.12.0 software update 36

AWS IoT Greengrass Developer Guide, Version 2

Public component updates

The following table lists components provided by AWS that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.12.0 of the Greengrass nucleus is available.

New features

• Enables you to run the bootstrap lifecycle steps as part of a rollback
deployment.

Release: AWS IoT Greengrass Core v2.11.3 software update on
October 18, 2023

This release provides version 2.11.3 of the Greengrass nucleus component.

Release date: October 18, 2023

Release details

• Public component updates

Public component updates 37

AWS IoT Greengrass Developer Guide, Version 2

Public component updates

The following table lists components provided by AWS that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.11.3 of the Greengrass nucleus is available.

Bug fixes and improvements

• Fixes an issue in the nucleus where it may improperly start a
component when its dependencies fail.

New features

• Adds configurable s3 endpoint type.

Lambda
manager

Version 2.3.1 of the Lambda manager component is available.

Bug fixes and improvements

• Adjusts log levels for certain errors.

Local deubg
console

Version 2.4.0 of the Lambda manager component is available.

New features

• Adds stream manager debugging console.

Public component updates 38

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Log manager Version 2.3.6 of the log manager component is available.

Bug fixes and improvements

• Adjusts log levels for certain errors.

Shadow
manager

Version 2.3.4 of the Shadow manager component is available.

Bug fixes and improvements

• Adds support for null and empty shadow state documents.

Release: AWS IoT Greengrass Core v2.11.2 software update on
August 9, 2023

This release provides version 2.11.2 of the Greengrass nucleus component.

Release date: August 9, 2023

Release details

• Public component updates

Public component updates

The following table lists components provided by AWS that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you

AWS IoT Greengrass Core v2.11.2 software update 39

AWS IoT Greengrass Developer Guide, Version 2

create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.11.2 of the Greengrass nucleus is available.

Bug fixes and improvements

• Fixes an issue in the nucleus MQTT 5 client where it may appear offline
when a large number (> 50) of subscriptions are in use.

• Adds a retry for the docker dial TCP failure.

Release: AWS IoT Greengrass Core v2.11.1 software update on
July 21, 2023

This release provides version 2.11.1 of the Greengrass nucleus component.

Release date: July 21, 2023

Release details

• Public component updates

Public component updates

The following table lists components provided by AWS that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.

AWS IoT Greengrass Core v2.11.1 software update 40

AWS IoT Greengrass Developer Guide, Version 2

To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.11.1 of the Greengrass nucleus is available.

Bug fixes and improvements

• Fixes an issue where the nucleus doesn't start if a bootstrap task fails
and the deployment metadata file is corrupted.

• Fixes an issue where on-demand Lambda components aren't reported
in deployment status updates.

• Adds support for duplicate authorization policy IDs.

Lambda
manager

Version 2.2.11 of the Lambda manager is available.

Bug fixes and improvements

• Fixes an issue where the LegacySubscriptionRouter configuration does
not update when the Lambda configuration changes.

Release: AWS IoT Greengrass Core v2.11.0 software update on
June 28, 2023

This release provides version 2.11.0 of the Greengrass nucleus component.

Release date: June 28, 2023

Release highlights

• Persistent disk spooler – AWS IoT Greengrass now provides a persistent spooler implementation
for messages spooled from Greengrass core devices to AWS IoT Core. This component will store
these outbound messages on disk. For more information, see Disk spooler.

AWS IoT Greengrass Core v2.11.0 software update 41

AWS IoT Greengrass Developer Guide, Version 2

• Local deployment improvements – You can now cancel local deployments, set deployment
failing handling polices, and get detailed deployment status.

• Logging speed improvements – Log upload speeds for the log manager component have been
improved.

Release details

• Public component updates

Public component updates

The following table lists components provided by AWS that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.11.0 of the Greengrass nucleus is available.

New features

• Enables you to cancel a local deployment.

• Enables you to configure a failure handling policy for a local
deployment.

• Adds support for a disk spooler plugin.

Public component updates 42

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Greengrass CLI Version 2.11.0 of the Greengrass CLI is available.

New features

• Enables you to cancel a local deployment.

• Enables you to configure a failure handling policy for a local
deployment.

• Improves detailed deployment status reporting.

Disk spooler Version 1.0.0 of the disk spooler component is available.

• The disk spooler component provides persistent storage of messages sent
from Greengrass core devices to AWS IoT Core.

Log manager Version 2.3.5 of the log manager component is available.

Improvements

Improves log upload speed.

Release: AWS IoT Greengrass Core v2.10.3 software update on
June 21, 2023

This release provides version 2.10.3 of the Greengrass nucleus component.

Release date: June 21, 2023

Release details

• Public component updates

Public component updates

The following table lists components provided by AWS that include new and updated features.

AWS IoT Greengrass Core v2.10.3 software update 43

AWS IoT Greengrass Developer Guide, Version 2

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.10.3 of the Greengrass nucleus is available.

Bug fixes and improvements

• Fixes an issue where Greengrass doesn't subscribe to deployment
notifications when using the PKCS#11 provider.

Release: AWS IoT Greengrass Core v2.10.2 software update on
June 5, 2023

This release provides version 2.10.2 of the Greengrass nucleus component.

Release date: June 5, 2023

Release details

• Public component updates

Public component updates

The following table lists components provided by AWS that include new and updated features.

AWS IoT Greengrass Core v2.10.2 software update 44

AWS IoT Greengrass Developer Guide, Version 2

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.10.2 of the Greengrass nucleus is available.

Bug fixes and improvements

• Allows case insensitive parsing of component lifecycles.

• Fixes an issue where the environment PATH variable was not recreated
 correctly.

• Fixes proxy URI encoding for components including stream manager
for usernames with special characters.

Client device
auth

Version 2.4.2 of the client device auth component is available.

New features

Adds a new startupTimeoutSeconds configuration option.

Lambda
manager

Version 2.2.9 of the Lambda manager component is available.

Bug fixes and improvements

Fixes an issue where the port number is corrupted due to a skewed clock.

Log manager Version 2.3.4 of the log manager component is available.

Public component updates 45

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Bug fixes and improvements

• Adds support for setting the periodicUploadIntervalSec
parameter to fractional values. The minimum is 1 microsecond.

• Fixes an issue where log manager doesn't respect the CloudWatch
putLogEvents limits.

MQTT 3.1
broker
(Moquette)

Version 2.3.3 of the MQTT 3.1 broker (Moquette) component is available.

New features

Adds a new startupTimeoutSeconds configuration option.

MQTT bridge Version 2.2.6 of the MQTT bridge component is available.

New features

Adds a new startupTimeoutSeconds configuration option.

Stream
manager

Version 2.1.7 of the stream manager component is available.

Bug fixes and improvements

Fixes an issue where stream manager fails to read the proxy configura
tion correctly.

Release: AWS IoT Greengrass Core v2.10.1 software update on
May 11, 2023

This release provides version 2.10.1 of the Greengrass nucleus component.

Release date: May 11, 2023

Release details

• Public component updates

AWS IoT Greengrass Core v2.10.1 software update 46

AWS IoT Greengrass Developer Guide, Version 2

Public component updates

The following table lists components provided by AWS that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.10.1 of the Greengrass nucleus is available.

Bug fixes and improvements

• Fixes an issue that could cause a crash at startup on certain ARMv8
processors, including the Jetson Nano.

• Greengrass no longer closes a component's standard in, this reverts the
behavior to the pre-2.10.0 behavior

Stream
manager

Version 2.1.6 of the new stream manager is available.

Bug fixes and improvements

Fixes an issue that could cause a crash at startup on certain ARMv8
processors, including the Jetson Nano.

Public component updates 47

AWS IoT Greengrass Developer Guide, Version 2

Release: AWS IoT Greengrass Core v2.10.0 software update on
May 9, 2023

This release provides version 2.10.0 of the Greengrass nucleus component and updates to AWS-
provided components.

Release date: May 9, 2023

Release highlights

• MQTT5 support – AWS IoT Greengrass now supports sending and receiving messages from AWS
IoT Core using MQTT5. For more information, see Publish AWS IoT Core MQTT messages.

Release details

• Public component updates

Public component updates

The following table lists components provided by AWS that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

AWS IoT Greengrass Core v2.10.0 software update 48

https://docs.aws.amazon.com/greengrass/v2/developerguide/ipc-iot-core-mqtt.html#ipc-operation-publishtoiotcore

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Greengrass
nucleus

Version 2.10.0 of the Greengrass nucleus is available.

New features

• Adds interpolateComponentConfiguration support for the
empty regular expression. Greengrass now interpolates from the root
config object.

• Adds support for MQTT5.

• Adds a mechanism for loading plugin components quickly without
scanning.

• Enables Greengrass to save disk space by deleting unused Docker
images.

Bug fixes and improvements

• Fixes an issue where rollback leaves certain configuration values in
place from a deployment.

• Fixes an issue where the Greengrass nucleus validates for an AWS
domain sequence in custom non-AWS credentials and data endpoints.

• Updates multi-group dependency resolution to re-resolve all group
dependencies via AWS Cloud negotiation, instead of locking to the
active version. This update also removes the deployment error code
INSTALLED_COMPONENT_NOT_FOUND .

• Updates the Greengrass nucleus to skip downloading Docker images
when they already exist locally.

• Updates the Greengrass nucleus to restart a component install step
before timeout expires.

• Additional minor fixes and improvements.

Shadow
manager

Version 2.3.2 of the new shadow manager is available.

Bug fixes and improvements

Fixes an issue where shadow manager enters the BROKEN state when the
local shadow database is corrupted.

Public component updates 49

AWS IoT Greengrass Developer Guide, Version 2

Release: AWS IoT Greengrass Core v2.9.6 software update on
April 20, 2023

This release provides version 2.9.6 of the Greengrass nucleus component.

Release date: April 20, 2023

Release details

• Public component updates

Public component updates

The following table lists components provided by AWS that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.9.6 of the Greengrass nucleus is available.

Bug fixes and improvements

• Fixes an issue where a Greengrass deployment fails with the error
LAUNCH_DIRECTORY_CORRUPTED and a subsequent device reboot
fails to start Greengrass. This error may occur when you move the

AWS IoT Greengrass Core v2.9.6 software update 50

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Greengrass device between multiple thing groups with deployments
that require Greengrass to restart.

Release: AWS IoT Greengrass Core v2.9.5 software update on
March 30, 2023

This release provides version 2.9.5 of the Greengrass nucleus component.

Release date: March 30, 2023

Release details

• Public component updates

Public component updates

The following table lists components provided by AWS that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

AWS IoT Greengrass Core v2.9.5 software update 51

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Greengrass
nucleus

Version 2.9.5 of the Greengrass nucleus is available.

New features

• Adds support for Greengrass nucleus software signature verification.

Bug fixes and improvements

• Fixes an issue where a deployment fails when the local recipe
metadata region doesn't match the Greengrass nucleus launch region.
The Greengrass nucleus now renegotiates with the cloud when this
happens.

• Fixes an issue where the MQTT message spooler fills up and never
removes messages.

• Additional minor fixes and improvements.

Release: AWS IoT Greengrass Core v2.9.4 software update on
February 24, 2023

This release provides version 2.9.4 of the Greengrass nucleus component.

Release date: February 24, 2023

Release details

• Public component updates

Public component updates

The following table lists components provided by AWS that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those

AWS IoT Greengrass Core v2.9.4 software update 52

AWS IoT Greengrass Developer Guide, Version 2

devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.9.4 of the Greengrass nucleus is available.

Bug fixes and improvements

• Checks for a null message before it drops QOS 0 messages.

• Truncates job status detail values if they exceed the 1024 character
 limit.

• Updates the bootstrap script for Windows to correctly read the
Greengrass root path if that path includes spaces.

• Updates subscribing to AWS IoT Core so that it drops client messages if
the subscription response wasn't sent.

• Ensures that the nucleus loads its configuration from backup files
when the main configuration file is corrupt or missing.

Release: AWS IoT Greengrass Core v2.9.3 software update on
February 01, 2023

This release provides version 2.9.3 of the Greengrass nucleus component.

Release date: February 01, 2023

Release details

• Public component updates

AWS IoT Greengrass Core v2.9.3 software update 53

AWS IoT Greengrass Developer Guide, Version 2

Public component updates

The following table lists components provided by AWS that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.9.3 of the Greengrass nucleus is available.

Bug fixes and improvements

• Ensures MQTT client IDs aren't duplicated.

• Adds more robust file-reading and writing to avoid and recover from
corruption.

• Retries docker image pull on specific network-related errors.

• Adds the noProxyAddresses option for MQTT connection.

Release: AWS IoT Greengrass Core v2.9.2 software update on
December 22, 2022

This release provides version 2.9.2 of the Greengrass nucleus component.

Release date: December 22, 2022

Public component updates 54

AWS IoT Greengrass Developer Guide, Version 2

Release details

• Public component updates

Public component updates

The following table lists AWS-provided components that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.9.2 of the Greengrass nucleus is available.

Bug fixes and improvements

• Fixes an issue where configuring interpolateCompone
ntConfiguration doesn't apply to an ongoing deployment.

• Uses OSHI to list all child processes.

Release: AWS IoT Greengrass Core v2.9.1 software update on
November 18, 2022

This release provides version 2.9.1 of the Greengrass nucleus component and updates to AWS-
provided components.

Public component updates 55

AWS IoT Greengrass Developer Guide, Version 2

Release date: November 18, 2022

Release highlights

• Log manager – Log manager now processes and directly uploads active log files instead of
waiting for new files to be rotated. This improvement significantly reduces log delays. For more
information, see Log manager

Release details

• Public component updates

Public component updates

The following table lists AWS-provided components that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.9.1 of the Greengrass nucleus is available.

Bug fixes and improvements

• Adds fix where Greengrass restarts if a deployment removes a plugin
component.

Public component updates 56

https://docs.aws.amazon.com/greengrass/v2/developerguide/log-manager-component.html

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Log manager Version 2.3.0 of the new log manager is available.

Note

We recommend that you upgrade to Greengrass nucleus 2.9.1 when
you upgrade to log manager 2.3.0.

New features

• Reduces log delays by processing and directly uploading active log files
instead of waiting for new files to be rotated.

Bug fixes and improvements

• Improves support of log rotation when rotating files with a unique
name.

• Additional minor fixes and improvements.

Release: AWS IoT Greengrass Core v2.9.0 software update on
November 15, 2022

This release provides version 2.9.0 of the Greengrass nucleus component and updates to AWS-
provided components.

Release date: November 15, 2022

Release highlights

• Offline authentication – AWS IoT Greengrass now supports offline authentication. You can
configure your AWS IoT Greengrass core device so that client devices can connect to a core
device, even when the core device isn't connected to the cloud. For more information, see Offline
authentication.

• Subdeployments – You can now create subdeployments. You can use a subdeployment to
resolve unsuccessful deployments. Each subdeployment can test a different configuration of

AWS IoT Greengrass Core v2.9.0 software update 57

https://docs.aws.amazon.com/greengrass/v2/developerguide/offline-authentication.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/offline-authentication.html

AWS IoT Greengrass Developer Guide, Version 2

an unsuccessful deployment on a smaller subset of devices. For more information, see Create
subdeployments.

Release details

• Public component updates

Public component updates

The following table lists AWS-provided components that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.9.0 of the Greengrass nucleus is available.

New features

• Adds the ability to create subdeployments that retry deployments with
a smaller subset of devices. This feature creates a more efficient way to
test and resolve unsuccessful deployments.

Bug fixes and improvements

• Improves support for systems that don't have useradd, groupadd,
and usermod.

Public component updates 58

https://docs.aws.amazon.com/greengrass/v2/developerguide/create-subdeployments.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/create-subdeployments.html

AWS IoT Greengrass Developer Guide, Version 2

Component Details

• Additional minor fixes and improvements.

Client device
auth

Version 2.3.0 of the client device auth component is available.

New features

• Adds support for offline authentication of client devices. With this
feature, client devices can continue to connect to the core device when
the core device isn't connected to the Internet.

• Adds support for customer-provided certificate authorities (CA). Your
core device uses a customer-provided CA as the root certificate to
generate MQTT broker certificates.

MQTT 5 broker
(EMQX)

Version 1.2.0 of the MQTT 5 broker (EMQX) component is available.

New features

Adds support for certificate chains.

Moquette MQTT
broker

Version 2.3.0 of the new Moquette MQTT broker component is available.

New features

Adds support for certificate chains.

Secret manager Version 2.1.4 of the new secret manager is available.

Bug fixes and improvements

Fixes an issue where cached secrets were being removed when secret
manager is deployed and Greengrass nucleus restarts.

Stream
manager

Version 2.1.2 of the new stream manager is available.

Bug fixes and improvements

Fixes an issue on Windows OS that use a non-English language.

Public component updates 59

AWS IoT Greengrass Developer Guide, Version 2

Release: AWS IoT Greengrass Core v2.8.1 software update on
October 13, 2022

This release provides version 2.8.1 of the Greengrass nucleus component.

Release date: October 13, 2022

Note

If you are using Greengrass nucleus version 2.8.0, we strongly recommend that you
upgrade to Greengrass nucleus version 2.8.1.

Release details

• Public component updates

Public component updates

The following table lists AWS-provided components that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

AWS IoT Greengrass Core v2.8.1 software update 60

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Greengrass
nucleus

Version 2.8.1 of the Greengrass nucleus is available.

Bug fixes and improvements

• Fixes an issue where deployment error codes were not generated
 correctly from Greengrass API errors.

• Fixes an issue where fleet status updates send inaccurate information
when a component reaches an ERRORED state during a deployment.

• Fixes an issue where deployments couldn’t complete when Greengrass
had more than 50 existing subscriptions.

Release: AWS IoT Greengrass Core v2.8.0 software update on
October 7, 2022

This release provides version 2.8.0 of the Greengrass nucleus component and version 1.1.0 of the
MQTT 5 broker (EMQX) component.

Release date: October 7, 2022

Release highlights

• Deployment error codes – The Greengrass nucleus now reports a deployment health status
response that includes detailed error codes when a component deployment can't be completed.
For more information, see Detailed deployment error codes.

• Component error statuses – The Greengrass nucleus now reports a component health status
response that includes detailed error statuses when a component enters the BROKEN or ERRORED
state. For more information, see Detailed component status codes.

Release details

• Public component updates

Public component updates

The following table lists AWS-provided components that include new and updated features.

AWS IoT Greengrass Core v2.8.0 software update 61

AWS IoT Greengrass Developer Guide, Version 2

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.8.0 of the Greengrass nucleus is available.

New features

• Updates the Greengrass nucleus to report a deployment health status
response that includes detailed error codes when there is a problem
deploying components to a core device. For more information, see
Detailed deployment error codes.

• Updates the Greengrass nucleus to report a component health status
response that includes detailed error codes when a component enters
the BROKEN or ERRORED state. For more information, see Detailed
component status codes.

• Expands status message fields to improve cloud availability informati
on for devices.

• Improves fleet status service robustness.

Bug fixes and improvements

• Allows a broken component to reinstall when its configuration
changes.

• Fixes an issue where a nucleus restart during bootstrap deployment
causes a deployment to fail.

Public component updates 62

AWS IoT Greengrass Developer Guide, Version 2

Component Details

• Fixes an issue in Windows where installation fails when a root path
contains spaces.

• Fixes an issue where a component shut down during a deployment
uses the shutdown script of the new version.

• Various shutdown improvements.

• Additional minor fixes and improvements.

MQTT 5 broker
(EMQX)

Version 1.1.0 of the MQTT 5 broker (EMQX) component is available.

New features

• Adds support for EMQX configurations including broker options and
plug-ins.

Bug fixes and improvements

• Updates EMQX to version 4.4.9.

Release: AWS IoT Greengrass Core v2.7.0 software update on
July 28, 2022

This release provides version 2.7.0 of the Greengrass nucleus component, version 2.1.0 of the
stream manager component, and version 2.2.5 of the Lambda manager component.

Release date: July 28, 2022

Release highlights

• Stream manager telemetry metrics – Stream manager now automatically sends telemetry
metrics to Amazon EventBridge, so you can create cloud applications that monitor and analyze
the volume of data that your core devices upload. For more information, see Gather system
health telemetry data from AWS IoT Greengrass core devices.

• Custom certificate authority (CA) – Client certificates signed by a custom certificate CA, where
the CA isn't registered with AWS IoT, are now supported. For more information, see Use a device
certificate signed by a private CA.

Release details

AWS IoT Greengrass Core v2.7.0 software update 63

AWS IoT Greengrass Developer Guide, Version 2

• Public component updates

Public component updates

The following table lists AWS-provided components that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.7.0 of the Greengrass nucleus is available.

New features

• Updates the Greengrass nucleus to send status updates to the AWS IoT
Greengrass cloud when the core device applies a local deployment.

• Adds support for client certificates signed by a custom certificate
authority (CA), where the CA isn't registered with AWS IoT. To use this
feature, you can set the new greengrassDataPlaneEndpoint

 configuration option to iotdata. For more information, see Use a
device certificate signed by a private CA.

Bug fixes and improvements

• Fixes an issue where the Greengrass nucleus rolls back a deployment in
certain scenarios when the nucleus is stopped or restarted. The nucleus
now resumes the deployment after the nucleus restarts.

Public component updates 64

AWS IoT Greengrass Developer Guide, Version 2

Component Details

• Updates the Greengrass installer to respect the --start argument
when you specify to set up the software as a system service.

• Updates the behavior of SubscribeToComponentUpdates to set the
deployment ID in events where the nucleus updated a component.

• Additional minor fixes and improvements.

Stream
manager

Version 2.1.0 of the stream manager component is available.

New features

• Updates this component to automatically send telemetry metrics to
Amazon EventBridge. For more information, see Gather system health
telemetry data from AWS IoT Greengrass core devices.

This feature requires v2.7.0 or later of the Greengrass nucleus
component.

• Version updated for Greengrass nucleus version 2.7.0 release.

Lambda
manager

Version 2.2.5 of the Lambda manager component is available.

New features

• Adds support for MQTT topic wildcards in event sources where you
subscribe to local publish/subscribe messages.

This feature requires v2.6.0 or later of the Greengrass nucleus
component.

• Version updated for Greengrass nucleus version 2.7.0 release.

Release: AWS IoT Greengrass Core v2.6.0 software update on
June 27, 2022

This release provides version 2.6.0 of the Greengrass nucleus component, new AWS-provided
components, and updates to AWS-provided components.

Release date: June 27, 2022

AWS IoT Greengrass Core v2.6.0 software update 65

AWS IoT Greengrass Developer Guide, Version 2

Release highlights

• Wildcards in local publish/subscribe topics – You can now use MQTT wildcards when you
subscribe to local publish/subscribe topics. For more information, see Publish/subscribe local
messages and SubscribeToTopic.

• Client device shadow support – You can now interact with client device shadows in custom
components and sync client device shadows with AWS IoT Core. For more information, see
Interact with and sync client device shadows.

• Local MQTT 5 support for client devices – You can now deploy the EMQX MQTT 5 broker to
use MQTT 5 features in communication between client devices and a core device. For more
information, see MQTT 5 broker (EMQX) and Connect client devices to core devices.

• Recipe variables in component configurations – You can now use specific recipe variables in
component configurations. You can use these recipe variables when you define a component's
default configuration in a recipe or when you configure a component in a deployment. For more
information, see Recipe variables and Use recipe variables in merge updates.

• Wildcards in IPC authorization policies – You can now use the * wildcard to match any
combination of characters in interprocess communication (IPC) authorization policies. This
wildcard enables you to allow access to multiple resources in a single authorization policy. For
more information, see Wildcards in authorization policies.

• IPC operations that manage local deployments and components – You can now develop
custom components that manage local deployments and view component details. For more
information, see IPC: Manage local deployments and components.

• IPC operations that authenticate and authorize client devices – You can now use these
operations to create a custom local broker component. For more information, see IPC:
Authenticate and authorize client devices.

Release details

• Public component updates

Public component updates

The following table lists AWS-provided components that include new and updated features.

Public component updates 66

AWS IoT Greengrass Developer Guide, Version 2

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.6.0 of the Greengrass nucleus is available.

New features

• Adds support for MQTT wildcards when you subscribe to local publish/
subscribe topics. For more information, see Publish/subscribe local
messages and SubscribeToTopic.

• Adds support for recipe variables in component configurations,
other than the component_dependency_name :configur
ation: json_pointer recipe variable. You can use these recipes
variables when you define a component's DefaultConfigurati
on in a recipe or when you configure a component in a deploymen
t. To enable this feature, set the interpolateComponentConfiguration
configuration option to true. For more information, see Recipe
variables and Use recipe variables in merge updates.

• Adds full support for the * wildcard in interprocess communication
(IPC) authorization policies. You can now specify the * character in
a resource string to match any combination of characters. For more
information, see Wildcards in authorization policies.

• Adds support for custom components to call IPC operations that the
Greengrass CLI uses. You can use these IPC operations to manage local

Public component updates 67

AWS IoT Greengrass Developer Guide, Version 2

Component Details

deployments, view component details, and generate a password that
you can use to sign in to the local debug console. For more informati
on, see IPC: Manage local deployments and components.

Bug fixes and improvements

• Fixes an issue where dependent components wouldn't react when their
hard dependencies restart or change states in certain scenarios.

• Improves error messages that the core device reports to the AWS IoT
Greengrass cloud service when a deployment fails.

• Fixes an issue where the Greengrass nucleus applied a thing
deployment twice in certain scenarios when the nucleus restarts.

• Additional minor fixes and improvements. For more information, see
the releases on GitHub.

MQTT 5 broker
(EMQX)

Version 1.0.0 of the new EMQX MQTT 5 broker component is available.

New features

• Adds support for the local EMQX MQTT 5 broker. Client devices can
connect to this MQTT broker to communicate with a core device using
MQTT 5 features.

Public component updates 68

https://github.com/aws-greengrass/aws-greengrass-nucleus/releases

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Shadow
manager

Version 2.2.0 of the shadow manager component is available.

New features

• Adds support for the local shadow service over the local publish/s
ubscribe interface. You can now communicate with the local publish/s
ubscribe message broker on shadow MQTT topics to get, update, and
delete shadows on the core device. This feature enables you to connect
client devices to the local shadow service by using the MQTT bridge to
relay messages on shadow topics between client devices and the local
publish/subscribe interface.

This feature requires v2.6.0 or later of the Greengrass nucleus
component. To connect client devices to the local shadow service, you
must also use v2.2.0 or later of the MQTT bridge component.

• Adds the direction option that you can configure to customize the
direction to sync shadows between the local shadow service and the
AWS Cloud. You can configure this option to reduce bandwidth and
connections to the AWS Cloud.

Client device
auth

Version 2.2.0 of the client device auth component is available.

New features

• Adds support for custom components to call interprocess communica
tion (IPC) operations to authenticate and authorize client devices. You
can use these operations in a custom MQTT broker component, for
example. For more information, see IPC: Authenticate and authorize
client devices.

• Adds the maxActiveAuthTokens , cloudQueueSize , and
threadPoolSize options that you can configure to tune how this
component performs.

Public component updates 69

https://docs.aws.amazon.com/iot/latest/developerguide/reserved-topics.html#reserved-topics-shadow

AWS IoT Greengrass Developer Guide, Version 2

Component Details

MQTT bridge Version 2.2.0 of the MQTT bridge component is available.

New features

• Adds support for MQTT topic wildcards (# and +) when you specify
local publish/subscribe as the source message broker.

This feature requires v2.6.0 or later of the Greengrass nucleus
component.

• Adds the targetTopicPrefix option, which you can specify to
configure the MQTT bridge to add a prefix to the target topic when it
relays a message.

Greengrass CLI Version 2.6.0 of the Greengrass CLI is available.

New features

• Adds support for custom components to call interprocess communica
tion (IPC) operations that the Greengrass CLI uses. You can use these
IPC operations to manage local deployments, view component details,
and generate a password that you can use to sign in to the local debug
console. For more information, see IPC: Manage local deployments and
components.

Bug fixes and improvements

• Additional minor fixes and improvements.

Release: AWS IoT Greengrass Core v2.5.6 software update on
May 31, 2022

This release provides version 2.5.6 of the Greengrass nucleus component and version 2.2.4 of the
log manager component.

Release date: May 31, 2022

Release details

• Public component updates

AWS IoT Greengrass Core v2.5.6 software update 70

AWS IoT Greengrass Developer Guide, Version 2

Public component updates

The following table lists AWS-provided components that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.5.6 of the Greengrass nucleus is available.

New features

• Adds support for hardware security modules that use ECC keys.
You can use a hardware security module (HSM) to securely store
the device's private key and certificate. For more information, see
Hardware security integration.

Bug fixes and improvements

• Fixes an issue where the deployment never completes when you
deploy a component with a broken install script in certain scenarios.

• Improves performance during startup.

• Additional minor fixes and improvements.

Log manager Version 2.2.4 of the log manager component is available.

Bug fixes and improvements

• Improves stability when handling invalid configurations.

Public component updates 71

AWS IoT Greengrass Developer Guide, Version 2

Component Details

• Additional minor fixes and improvements.

Release: AWS IoT Greengrass Core v2.5.5 software update on
April 6, 2022

This release provides version 2.5.5 of the Greengrass nucleus component.

Release date: April 6, 2022

Release details

• Public component updates

Public component updates

The following table lists AWS-provided components that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.5.5 of the Greengrass nucleus is available.

AWS IoT Greengrass Core v2.5.5 software update 72

AWS IoT Greengrass Developer Guide, Version 2

Component Details

New features

• Adds the GG_ROOT_CA_PATH environment variable for component
s, so you can access the root certificate authority (CA) certificate in
custom components.

Bug fixes and improvements

• Adds support for Windows devices that use a display language other
than English.

• Updates how the Greengrass nucleus parses Boolean installer
arguments, so you can specify a Boolean argument without a Boolean
value to specify a true value. For example, you can now specify
--provision instead of --provision true to install with
automatic resource provisioning.

• Fixes an issue where the core device didn't report its status to the AWS
IoT Greengrass cloud service after provisioning in certain scenarios.

• Additional minor fixes and improvements.

Release: AWS IoT Greengrass Core v2.5.4 software update on
March 23, 2022

This release provides version 2.5.4 of the Greengrass nucleus component and version 2.0.10 of the
Lambda launcher component.

Release date: March 23, 2022

Release details

• Public component updates

Public component updates

The following table lists AWS-provided components that include new and updated features.

AWS IoT Greengrass Core v2.5.4 software update 73

AWS IoT Greengrass Developer Guide, Version 2

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.5.4 of the Greengrass nucleus is available.

Bug fixes and improvements

• General bug fixes and improvements.

Lambda
launcher

Version 2.0.10 of the Lambda launcher component is available.

Bug fixes and improvements

• General bug fixes and improvements.

Release: AWS IoT Greengrass Core v2.5.3 software update on
January 6, 2022

This release provides version 2.5.3 of the Greengrass nucleus component and the new PKCS#11
provider component.

Release date: January 6, 2022

AWS IoT Greengrass Core v2.5.3 software update 74

AWS IoT Greengrass Developer Guide, Version 2

Release highlights

• Hardware security integration—You can now configure the AWS IoT Greengrass Core software
to use a private key and certificate that you securely store in a hardware security module (HSM).
For more information, see Hardware security integration.

Release details

• Public component updates

Public component updates

The following table lists AWS-provided components that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.5.3 of the Greengrass nucleus is available.

New features

• Adds support for hardware security integration. You can use a
hardware security module (HSM) to securely store the device's private
key and certificate. For more information, see Hardware security
integration.

Public component updates 75

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Bug fixes and improvements

• Fixes an issue with runtime exceptions while the nucleus establishes
MQTT connections with AWS IoT Core.

PKCS#11
provider

Version 2.0.0 of the PKCS#11 provider component is available.

New features

• Adds support for hardware security integration. You can use a
hardware security module (HSM) to securely store the device's private
key and certificate. For more information, see Hardware security
integration.

Release: AWS IoT Greengrass Core v2.5.2 software update on
December 3, 2021

This release provides version 2.5.2 of the Greengrass nucleus component.

Release date: December 3, 2021

Release details

• Public component updates

Public component updates

The following table lists AWS-provided components that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.

AWS IoT Greengrass Core v2.5.2 software update 76

AWS IoT Greengrass Developer Guide, Version 2

To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.5.2 of the Greengrass nucleus is available.

Bug fixes and improvements

• Fixes an issue where after the Greengrass nucleus updates, the
Windows service fails to start again after you stop it or reboot the
device.

AWS IoT Device
Defender

Version 3.0.1 of the AWS IoT Device Defender component is available.

This version of the AWS IoT Device Defender component expects different
configuration parameters than version 2.x. If you use a non-default
configuration for version 2.x, and you want to upgrade from v2.x to v3.x,
you must update the component's configuration. For more information, see
AWS IoT Device Defender component configuration.

New features

• Adds support for core devices that run Windows.

• Changes the component type from Lambda component to generic
component. This component now no longer depends on the legacy
subscription router component to create subscriptions.

• Adds the new UseInstaller configuration parameter that lets
you optionally disable the installation script that installs component
dependencies.

Release: AWS IoT Greengrass Core v2.5.1 software update on
November 23, 2021

This release provides version 2.5.1 of the Greengrass nucleus component.

AWS IoT Greengrass Core v2.5.1 software update 77

AWS IoT Greengrass Developer Guide, Version 2

Release date: November 23, 2021

Release details

• Public component updates

Public component updates

The following table lists AWS-provided components that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.5.1 of the Greengrass nucleus is available.

Bug fixes and improvements

• Adds support for 32-bit versions of the Java Runtime Environment
(JRE) on Windows.

• Changes thing group removal behavior for core devices whose AWS
IoT policy doesn't grant the greengrass:ListThingGroupsF
orCoreDevice permission. With this version, the deployment
continues, logs a warning, and doesn't remove components when you
remove the core device from a thing group. For more information, see
Deploy AWS IoT Greengrass components to devices.

Public component updates 78

AWS IoT Greengrass Developer Guide, Version 2

Component Details

• Fixes an issue with system environment variables that the Greengrass
nucleus makes available to Greengrass component processes. You can
now restart a component for it to use the latest system environment
variables.

Release: AWS IoT Greengrass Core v2.5.0 software update on
November 12, 2021

This release provides version 2.5.0 of the Greengrass nucleus component, new AWS-provided
components, and updates to AWS-provided components.

Release date: November 12, 2021

Release highlights

• Windows device support—You can now run the AWS IoT Greengrass Core software on devices
running Windows operating systems. For more information, see Greengrass feature compatibility
by operating system.

• New thing group removal behavior—You can now remove a core device from a thing group to
remove that thing group's components in the next deployment to that device.

Important

As a result of this change, a core device's AWS IoT policy must have the
greengrass:ListThingGroupsForCoreDevice permission. If you used the AWS IoT
Greengrass Core software installer to provision resources, the default AWS IoT policy
allows greengrass:*, which includes this permission. For more information, see Device
authentication and authorization for AWS IoT Greengrass.

• Hardware security support—You can now configure the AWS IoT Greengrass Core software to
use a hardware security module (HSM), so you can securely store the device's private key and
certificate. For more information, see Hardware security integration.

• HTTPS proxy support—You can now configure the AWS IoT Greengrass Core software to
connect through HTTPS proxies. For more information, see Connect on port 443 or through a
network proxy.

AWS IoT Greengrass Core v2.5.0 software update 79

AWS IoT Greengrass Developer Guide, Version 2

Release details

• Platform support updates

• Public component updates

Platform support updates

Platform Details

Windows AWS IoT Greengrass now supports running the AWS IoT Greengrass Core
software on the following versions of Windows:

• Windows 10

• Windows Server 2019

For more information, see Greengrass feature compatibility by operating
system.

Public component updates

The following table lists AWS-provided components that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Platform support updates 80

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Greengrass
nucleus

Version 2.5.0 of the Greengrass nucleus is available.

New features

• Adds support for core devices that run Windows.

• Change the behavior of thing group removal. With this version, you
can remove a core device from a thing group to uninstall that thing
group's components in the next deployment.

As a result of this change, a core device's AWS IoT policy must have the
greengrass:ListThingGroupsForCoreDevice permission. If
you used the AWS IoT Greengrass Core software installer to provision
resources, the default AWS IoT policy allows greengrass:* , which
includes this permission. For more information, see Device authentic
ation and authorization for AWS IoT Greengrass.

• Adds support for HTTPS proxy configurations. For more information,
see Connect on port 443 or through a network proxy.

• Adds the new windowsUser configuration parameter. You can use
this parameter to specify the default user to use to run components on
a Windows core device. For more information, see Configure the user
that runs components.

• Adds the new httpClient configuration options that you can use
to customize HTTP request timeouts to improve performance on slow
networks. For more information, see the httpClient configuration
parameter.

Bug fixes and improvements

• Fixes the bootstrap lifecycle option to restart the core device from a
component.

• Adds support for hyphens in recipe variables.

• Fixes IPC authorization for on-demand Lambda function components.

• Improves log messages and changes non-critical logs from INFO to
DEBUG level, so logs are more useful.

• Removes the iot:DescribeCertificate permission from the
default token exchange role that the Greengrass nucleus creates when

Public component updates 81

AWS IoT Greengrass Developer Guide, Version 2

Component Details

you install the AWS IoT Greengrass Core software with automatic
provisioning. This permission isn't used by the Greengrass nucleus.

• Fixes an issue so that the automatic provisioning script doesn't require
the iam:GetPolicy permission if iam:CreatePolicy is available
for the same policy.

• Additional minor fixes and improvements.

Greengrass CLI Version 2.5.0 of the Greengrass CLI is available.

New features

• Adds support for core devices that run Windows.

• Adds the new AuthorizedWindowsGroups configuration
parameter that you can specify to authorize system groups to use the
Greengrass CLI on Windows devices.

• Adds the windowsUser parameter for local deployments. You can
use this parameter specify the user to use to run components on a
Windows core device.

Public component updates 82

AWS IoT Greengrass Developer Guide, Version 2

Component Details

CloudWatch
metrics

Version 3.0.0 of the CloudWatch metrics component is available.

This version of the CloudWatch metrics component expects different
configuration parameters than version 2.x. If you use a non-default
configuration for version 2.x, and you want to upgrade from v2.x to v3.x,
you must update the component's configuration. For more information, see
CloudWatch metrics component configuration.

New features

• Adds support for core devices that run Windows.

• Changes the component type from Lambda component to generic
component. This component now no longer depends on the legacy
subscription router component to create subscriptions.

• Adds new InputTopic configuration parameter to specify the topic
to which the component subscribes to receive messages.

• Adds new OutputTopic configuration parameter to specify the topic
to which the component publishes status responses.

• Adds new PubSubToIoTCore configuration parameter to specify
whether to publish and subscribe to AWS IoT Core MQTT topics.

• Adds the new UseInstaller configuration parameter that lets
you optionally disable the installation script that installs component
dependencies.

Bug fixes and improvements

Adds support for duplicate timestamps in input data.

Public component updates 83

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Lambda
manager

Version 2.2.0 of the Lambda manager component is available.

Bug fixes and improvements

• Fixes an issue where Lambda functions couldn't write logs after a
restart.

• Fixes an issue where the legacy subscription router sends duplicate
 messages when there are wildcards in the topic.

• Fixes an issue where non-pinned Lambda functions couldn't use the
Greengrass interprocess communication (IPC) library in the AWS IoT
Device SDK.

Release: AWS IoT Greengrass Core v2.4.0 software update on
August 3, 2021

This release provides version 2.4.0 of the Greengrass nucleus component, new AWS-provided
components, and updates to AWS-provided components.

Release date: August 3, 2021

Release highlights

• System resource limits—The Greengrass nucleus component now supports system resource
limits. You can configure the maximum amount of CPU and RAM usage that each component's
processes can use on the core device. For more information, see Configure system resource limits
for components.

• Pause/resume components—The Greengrass nucleus now supports pausing and resuming
components. You can use the interprocess communication (IPC) library to develop custom
components that pause and resume other components' processes. For more information, see
PauseComponent and ResumeComponent.

• Install with AWS IoT fleet provisioning—Use the new AWS IoT fleet provisioning plugin to
install the AWS IoT Greengrass Core software on devices that connect to AWS IoT to provision
required AWS resources. Devices use a claim certificate to provision. You can embed the claim
certificate on devices during manufacturing, so each device can provision as soon as it comes

AWS IoT Greengrass Core v2.4.0 software update 84

AWS IoT Greengrass Developer Guide, Version 2

online. For more information, see Install AWS IoT Greengrass Core software with AWS IoT fleet
provisioning.

• Install with custom provisioning—Develop a custom provisioning plugin to provision required
AWS resources when you install the AWS IoT Greengrass Core software on devices. You can
create a Java application that runs during installation to set up Greengrass core devices for
your custom use case. For more information, see Install AWS IoT Greengrass Core software with
custom resource provisioning.

Release details

• Public component updates

Public component updates

The following table lists AWS-provided components that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.4.0 of the Greengrass nucleus is available.

New features

• Adds support for system resource limits. You can configure the
maximum amount of CPU and RAM usage that each component

Public component updates 85

AWS IoT Greengrass Developer Guide, Version 2

Component Details

's processes can use on the core device. For more information, see
Configure system resource limits for components.

• Adds IPC operations to pause and resume components. For more
information, see PauseComponent and ResumeComponent.

• Adds support for provisioning plugins. You can specify a JAR file to
run during installation to provision required AWS resources for a
Greengrass core device. The Greengrass nucleus includes an interface
that you can implement to develop custom provisioning plugins. For
more information, see Install AWS IoT Greengrass Core software with
custom resource provisioning.

• Adds the optional thing-name-policy argument to the AWS IoT
Greengrass Core software installer. You can use this option to specify
an existing or custom AWS IoT policy when you install the AWS IoT
Greengrass Core software with automatic resource provisioning.

Bug fixes and improvements

• Updates logging configuration on startup. This fixes an issue where the
logging configuration wasn't applied on startup.

• Updates the nucleus loader symlink to point to the component store in
the Greengrass root folder during installation. This update enables you
to delete the JAR file and other nucleus artifacts that you download
when you install the AWS IoT Greengrass Core software.

• Additional minor fixes and improvements. For more information, see
the releases on GitHub.

Greengrass CLI Version 2.4.0 of the Greengrass CLI is available.

New features

• Adds support for system resource limits. When you create a local
deployment, you can configure the maximum amount of CPU and RAM
usage that each component's processes can use on the core device. For
more information, see Configure system resource limits for component
s and the deployment create command.

Public component updates 86

https://github.com/aws-greengrass/aws-greengrass-nucleus/releases

AWS IoT Greengrass Developer Guide, Version 2

Component Details

AWS IoT fleet
provisioning by
claim

The AWS IoT fleet provisioning by claim plugin is now available. For more
information, see Install AWS IoT Greengrass Core software with AWS IoT
fleet provisioning.

New features

• Adds support to install the AWS IoT Greengrass Core software with
AWS IoT fleet provisioning. During installation, devices connect to AWS
IoT to provision required AWS resources and download device certifica
tes to use for regular operations.

Release: AWS IoT Greengrass Core v2.3.0 software update on
June 29, 2021

This release provides version 2.3.0 of the Greengrass nucleus component.

Release date: June 29, 2021

Release highlights

• Large configuration support—The Greengrass nucleus component now supports deployment
documents up to 10 MB. You can now deploy larger configuration updates to Greengrass
components.

Note

To use this feature, a core device's AWS IoT policy must allow the
greengrass:GetDeploymentConfiguration permission. If you used the AWS IoT
Greengrass Core software installer to provision resources, your core device's AWS IoT
policy allows greengrass:*, which includes this permission. For more information, see
Device authentication and authorization for AWS IoT Greengrass.

Release details

• Public component updates

AWS IoT Greengrass Core v2.3.0 software update 87

AWS IoT Greengrass Developer Guide, Version 2

Public component updates

The following table lists AWS-provided components that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.3.0 of the Greengrass nucleus is available.

New features

• Adds support for deployment configuration documents up to 10
MB, up from 7 KB (for deployments that target things) or 31 KB (for
deployments that target thing groups).

To use this feature, a core device's AWS IoT policy must allow the
greengrass:GetDeploymentConfiguration permission. If
you used the AWS IoT Greengrass Core software installer to provision
resources, your core device's AWS IoT policy allows greengrass:* ,
which includes this permission. For more information, see Device
authentication and authorization for AWS IoT Greengrass.

• Adds the iot:thingName recipe variable. You can use this recipe
variable to get the name of the core device's AWS IoT thing in a recipe.
For more information, see Recipe variables.

Public component updates 88

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Bug fixes and improvements

• Additional minor fixes and improvements. For more information, see
the releases on GitHub.

Release: AWS IoT Greengrass Core v2.2.0 software update on
June 18, 2021

This release provides version 2.2.0 of the Greengrass nucleus component, new AWS-provided
components, and updates to AWS-provided components.

Release date: June 18, 2021

Release highlights

• Client device support—The new AWS-provided client device components enable you to connect
client devices to your core devices using cloud discovery. You can sync client devices with AWS
IoT Core and interact with client devices in Greengrass components. For more information, see
Interact with local IoT devices.

• Local shadow service—The new shadow manager component enables the local shadow service
on your core devices. You can use this shadow service to interact with local shadows while offline
using the Greengrass interprocess communication (IPC) libraries in the AWS IoT Device SDK. You
can also use the shadow manager component to synchronize local shadow states with AWS IoT
Core. For more information, see Interact with device shadows.

Release details

• Public component updates

Public component updates

The following table lists AWS-provided components that include new and updated features.

AWS IoT Greengrass Core v2.2.0 software update 89

https://github.com/aws-greengrass/aws-greengrass-nucleus/releases

AWS IoT Greengrass Developer Guide, Version 2

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.2.0 of the Greengrass nucleus is available.

New features

• Adds IPC operations for local shadow management.

Bug fixes and improvements

• Reduces the size of the JAR file.

• Reduces memory usage.

• Fixes issues where the log configuration wasn't updated in certain
cases.

• Additional minor fixes and improvements. For more information, see
the releases on GitHub.

Shadow
manager

Version 2.0.0 of the new shadow manager component is available.

New features

• Adds support for classic and named shadows.

• Adds support for local shadow management using IPC.

• Adds support for shadow synchronization with AWS IoT Core.

Public component updates 90

https://github.com/aws-greengrass/aws-greengrass-nucleus/releases

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Client device
auth

Version 2.0.0 of the new client device auth component is available.

New features

• Adds support for Greengrass client devices, which are local IoT devices
that connect to a core device over MQTT.

• Adds support for authentication and authorization of client devices
and their MQTT actions.

Moquette MQTT
broker

Version 2.0.0 of the new Moquette MQTT broker component is available.

New features

• Adds support for a local Moquette MQTT broker that handles
communication with client devices.

MQTT bridge Version 2.0.0 of the new MQTT bridge component is available.

New features

• Adds support to relay messages between the local MQTT broker, the
local Greengrass publish/subscribe broker, and the AWS IoT Core
MQTT broker.

IP detector Version 2.0.0 of the new IP detector component is available.

New features

• Adds support to report a core device's local MQTT broker endpoints to
the AWS IoT Greengrass cloud service for client devices to connect.

Log manager Version 2.1.1 of the log manager component is available.

Bug fixes and improvements

• Fixes an issue where the system log configuration wasn't updated in
certain cases.

Public component updates 91

AWS IoT Greengrass Developer Guide, Version 2

Component Details

DLR object
detection

Version 2.1.2 of the DLR object detection is available.

Bug fixes and improvements

• Fixes an image scaling issue that resulted in inaccurate bounding boxes
in the sample DLR object detection inference results.

TensorFlow Lite
object detection

Version 2.1.1 of the TensorFlow Lite object detection is available.

Bug fixes and improvements

• Fixes an image scaling issue that resulted in inaccurate bounding boxes
in the sample TensorFlow Lite object detection inference results.

Release: AWS IoT Greengrass Core v2.1.0 software update on
April 26, 2021

This release provides version 2.1.0 of the Greengrass nucleus component and updates AWS-
provided components.

Release date: April 26, 2021

Release highlights

• Docker Hub and Amazon Elastic Container Registry (Amazon ECR) integration—The new
Docker application manager component enables you to download public or private images from
Amazon ECR. You can also use this component to download public images from Docker Hub and
AWS Marketplace. For more information, see Run a Docker container.

• Dockerfile and Docker images for AWS IoT Greengrass Core software—You can use the
Greengrass Docker image to run AWS IoT Greengrass in a Docker container that uses Amazon
Linux 2 as the base operating system. You can also use the AWS IoT Greengrass Dockerfile to
build your own Greengrass image. For more information, see Run AWS IoT Greengrass Core
software in a Docker container.

• Support for additional machine learning frameworks and platforms—You can deploy sample
machine learning inference components that use pre-trained models to perform sample image
classification and object detection using TensorFlow Lite 2.5.0 and DLR 1.6.0. This release also

AWS IoT Greengrass Core v2.1.0 software update 92

AWS IoT Greengrass Developer Guide, Version 2

extends sample machine learning support for Armv8 (AArch64) devices. For more information,
see Perform machine learning inference.

Release details

• Platform support updates

• Public component updates

Platform support updates

Platform Details

Docker A Dockerfile and Docker image for AWS IoT Greengrass are now available.

Dockerfile

AWS IoT Greengrass provides a Dockerfile to build a container image that
has AWS IoT Greengrass Core software and dependencies installed on an
Amazon Linux 2 (x86_64) base image. You can modify the base image
in the Dockerfile to run AWS IoT Greengrass on a different platform
architecture.

Docker image

AWS IoT Greengrass provides a pre-built Docker image that has AWS IoT
Greengrass Core software and dependencies installed on an Amazon
Linux 2 (x86_64) base image.

For more information, see Run AWS IoT Greengrass Core software in a
Docker container.

Public component updates

The following table lists AWS-provided components that include new and updated features.

Platform support updates 93

AWS IoT Greengrass Developer Guide, Version 2

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.1.0 of the Greengrass nucleus is available.

New features

• Supports downloading Docker images from private repositories in
Amazon ECR.

• Adds the following parameters to customize the MQTT configuration
on core devices:

• maxInFlightPublishes – The maximum number of unacknowl
edged MQTT QoS 1 messages that can be in flight at the same time.

• maxPublishRetry – The maximum number of times to retry a
message that fails to publish.

• Adds the fleetstatusservice configuration parameter to
configure the interval at which the core device publishes device status
to the AWS Cloud.

• Additional minor fixes and improvements. For more information, see
the releases on GitHub.

Bug fixes and improvements

• Fixes an issue that caused shadow deployments to be duplicated when
the nucleus restarts.

Public component updates 94

https://github.com/aws-greengrass/aws-greengrass-nucleus/releases

AWS IoT Greengrass Developer Guide, Version 2

Component Details

• Fixes an issue that caused the nucleus to crash when it encountered a
service load exception.

• Improves component dependency resolution to fail a deployment that
includes a circular dependency.

• Fixes an issue that prevented a plugin component from being
redeployed if that component had been previously removed from the
core device.

• Fix an issue that caused the HOME environment variable to be set to the
/greengrass/v2 /work directory for Lambda components or for
components that run as root. The HOME variable is now correctly set to
the home directory for the user that runs the component.

• Additional minor fixes and improvements. For more information, see
the releases on GitHub.

Docker applicati
on manager

Version 2.0.0 of the new Docker application manager component is available
.

New features

• Manages credentials to download images from private repositories in
Amazon ECR.

• Downloads public images from Amazon ECR, Docker Hub, and AWS
Marketplace.

Lambda
launcher

Version 2.0.4 of the Lambda launcher component is available.

Bug fixes and improvements

• Fixes an issue where the component doesn't correctly pass AddGroupO
wner to the Lambda function container.

Public component updates 95

https://github.com/aws-greengrass/aws-greengrass-nucleus/releases

AWS IoT Greengrass Developer Guide, Version 2

Component Details

Legacy
subscription
router

Version 2.1.0 of the legacy subscription router component is available.

Bug fixes and improvements

• Adds support to specify component names instead of ARNs for
source and target. If you specify a component name for a subscript
ion, you don't need to reconfigure the subscription each time the
version of the Lambda function changes.

Local debug
console

Version 2.1.0 of the local debug console component is available.

New features

• Uses HTTPS to secure your connection to the local debug console.
HTTPS is enabled by default.

Bug fixes and improvements

• You can dismiss flashbar messages in the configuration editor.

Log manager Version 2.1.0 of the log manager component is available.

Bug fixes and improvements

• Use defaults for logFileDirectoryPath and logFileRegex
that work for Greengrass components that print to standard output
(stdout) and standard error (stderr).

• Correctly route traffic through a configured network proxy when
uploading logs to CloudWatch Logs.

• Correctly handle colon characters (:) in log stream names. CloudWatch
Logs log stream names don't support colons.

• Simplify log stream names by removing thing group names from the
log stream.

• Remove an error log message that prints during normal behavior.

Public component updates 96

AWS IoT Greengrass Developer Guide, Version 2

Component Details

DLR image
classification

Version 2.1.1 of the DLR image classification component is available.

New features

• Use Deep Learning Runtime v1.6.0.

• Add support for sample image classification on Armv8 (AArch64)
 platforms. This extends machine learning support for Greengrass core
devices running NVIDIA Jetson, such as the Jetson Nano.

• Enable camera integration for sample inference. Use the new
UseCamera configuration parameter to enable the sample inference
code to access the camera on your Greengrass core device and run
inference locally on the captured image.

• Add support for publishing inference results to the AWS Cloud. Use the
new PublishResultsOnTopic configuration parameter to specify
the topic on which you want to publish results.

• Add the new ImageDirectory configuration parameter that
enables you to specify a custom directory for the image on which you
want to perform inference.

Bug fixes and improvements

• Write inference results to the component log file instead of a separate
inference file.

• Use the AWS IoT Greengrass Core software logging module to log
component output.

• Use the AWS IoT Device SDK to read the component configuration and
apply configuration changes.

Public component updates 97

https://github.com/neo-ai/neo-ai-dlr

AWS IoT Greengrass Developer Guide, Version 2

Component Details

DLR object
detection

Version 2.1.1 of the DLR object detection component is available.

New features

• Use Deep Learning Runtime v1.6.0.

• Add support for sample object detection on Armv8 (AArch64)
platforms. This extends machine learning support for Greengrass core
devices running NVIDIA Jetson, such as the Jetson Nano.

• Enable camera integration for sample inference. Use the new
UseCamera configuration parameter to enable the sample inference
code to access the camera on your Greengrass core device and run
inference locally on the captured image.

• Add support for publishing inference results to the AWS Cloud. Use the
new PublishResultsOnTopic configuration parameter to specify
the topic on which you want to publish results.

• Add the new ImageDirectory configuration parameter that
enables you to specify a custom directory for the image on which you
want to perform inference.

Bug fixes and improvements

• Write inference results to the component log file instead of a separate
inference file.

• Use the AWS IoT Greengrass Core software logging module to log
component output.

• Use the AWS IoT Device SDK to read the component configuration and
apply configuration changes.

DLR image
classification
model store

Version 2.1.1 of the DLR image classification model store component is
available.

New features

• Add a sample ResNet-50 image classification model for Armv8
(AArch64) platforms. This extends machine learning support for
Greengrass core devices running NVIDIA Jetson, such as the Jetson
Nano.

Public component updates 98

https://github.com/neo-ai/neo-ai-dlr

AWS IoT Greengrass Developer Guide, Version 2

Component Details

DLR object
detection
model store

Version 2.1.1 of the DLR object detection model store component is
available.

New features

• Add a sample YOLOv3 object detection model for Armv8 (AArch64)
 platforms. This extends machine learning support for Greengrass core
devices running NVIDIA Jetson, such as the Jetson Nano.

DLR installer Version 1.6.1 of the DLR component is available.

New features

• Install Deep Learning Runtime v1.6.0 and its dependencies.

• Add support for installing DLR on Armv8 (AArch64) platforms. This
extends machine learning support for Greengrass core devices running
NVIDIA Jetson, such as the Jetson Nano.

Bug fixes and improvements

• Install the AWS IoT Device SDK in the virtual environment to read the
component configuration and apply configuration changes.

• Additional minor bug fixes and improvements.

TensorFlow Lite
image classific
ation

Version 2.1.0 of the new TensorFlow Lite image classification component is
available.

New features

• Add support for sample image classification inference using TensorFlo
w Lite.

TensorFlow Lite
object detection

Version 2.1.0 of the new TensorFlow Lite object detection component is
available.

New features

• Add support for sample object detection inference using TensorFlow
Lite.

Public component updates 99

https://github.com/neo-ai/neo-ai-dlr
https://www.tensorflow.org/lite/guide/python
https://www.tensorflow.org/lite/guide/python
https://www.tensorflow.org/lite/guide/python
https://www.tensorflow.org/lite/guide/python

AWS IoT Greengrass Developer Guide, Version 2

Component Details

TensorFlow Lite
image classific
ation model
store

Version 2.1.0 of the new TensorFlow Lite image classification model store
component is available.

New features

• Provide a pre-trained MobileNet v1 quantized model for sample image
classification inference using TensorFlow Lite.

TensorFlow Lite
object detection
model store

Version 2.1.0 of the new TensorFlow Lite object detection model store
component is available.

New features

• Provide a pre-trained Single Shot Detection (SSD) MobileNet model
trained on the COCO dataset for sample object detection inference
using TensorFlow Lite.

TensorFlow Lite Version 2.5.0 of the new TensorFlow Lite component is available.

New features

• Install TensorFlow Lite v1.6.0 and its dependencies in a virtual
environment on Armv7, Armv8 (AArch64), and x86_64 platforms.

Release: AWS IoT Greengrass Core v2.0.5 software update on
March 09, 2021

This release provides version 2.0.5 of the Greengrass nucleus component and updates AWS-
provided components. It fixes an issue with network proxy support and an issue with the
Greengrass data plane endpoint in AWS China Regions.

Release date: March 09, 2021

Public component updates

The following table lists AWS-provided components that include new and updated features.

AWS IoT Greengrass Core v2.0.5 software update 100

https://www.tensorflow.org/lite/guide/python

AWS IoT Greengrass Developer Guide, Version 2

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.0.5 of the Greengrass nucleus is available.

Bug fixes and improvements

• Correctly routes traffic through a configured network proxy when
downloading AWS-provided components.

• Use the correct Greengrass data plane endpoint in AWS China Regions.

Release: AWS IoT Greengrass Core v2.0.4 software update on
February 04, 2021

This release provides version 2.0.4 of the Greengrass nucleus component. It includes the
new greengrassDataPlanePort parameter to configure HTTPS communication over
port 443 and fixes bugs. The minimal IAM policy now requires the iam:GetPolicy and
sts:GetCallerIdentity when the AWS IoT Greengrass Core software installer is run with --
provision true.

Release date: February 04, 2021

AWS IoT Greengrass Core v2.0.4 software update 101

AWS IoT Greengrass Developer Guide, Version 2

Public component updates

The following table lists AWS-provided components that include new and updated features.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Component Details

Greengrass
nucleus

Version 2.0.4 of the Greengrass nucleus is available.

New features

• Enables HTTPS traffic over port 443. You can use the new greengras
sDataPlanePort configuration parameter for version 2.0.4 of the
nucleus component to configure HTTPS communication to travel over
port 443 instead of the default port 8443. For more information, see
Configure HTTPS over port 443.

• Adds the work path recipe variable. You can use this recipe variable to
get the path to components' work folders, which you can use to share
files between components and their dependencies. For more informati
on, see the work path recipe variable.

Bug fixes and improvements

• Prevents the creation of the token exchange AWS Identity and Access
Management (IAM) role policy if a role policy already exists.

Public component updates 102

AWS IoT Greengrass Developer Guide, Version 2

Component Details

As a result of this change, the installer now requires the iam:GetPo
licy and sts:GetCallerIdentity when run with --provisi
on true . For more information, see Minimal IAM policy for installer
to provision resources.

• Correctly handles the cancellation of a deployment that has not yet
been registered successfully.

• Updates the configuration to remove older entries with newer
timestamps when rolling back a deployment.

• Additional minor fixes and improvements. For more information, see
the releases on GitHub.

Public component updates 103

https://github.com/aws-greengrass/aws-greengrass-nucleus/releases

AWS IoT Greengrass Developer Guide, Version 2

Migrate from AWS IoT Greengrass Version 1

AWS IoT Greengrass Version 2 is a major version release of the AWS IoT Greengrass Core software,
APIs, and console. AWS IoT Greengrass V2 introduces several improvements to AWS IoT Greengrass
V1, such as modular applications, deployments to large fleets of devices, and support for
additional platforms.

Note

After June 30, 2023 AWS IoT Greengrass Version 1 no longer receives feature updates,
enhancements, bug fixes, or security patches. For more information, see the AWS IoT
Greengrass V1 maintenance policy. If you use AWS IoT Greengrass V1, we strongly
recommend that you migrate to AWS IoT Greengrass V2.

Follow instructions in this guide to migrate from AWS IoT Greengrass V1 to AWS IoT Greengrass
V2.

Can I run my V1 applications on V2?

Most V1 applications can run on V2 core devices without needing to change the application code. If
your V1 applications use the following feature, you won't be able to run them on V2.

• The C and C++ Lambda function runtimes

If your V1 applications use either of the following features, you must modify your application code
to use the AWS IoT Device SDK V2 to run the applications on AWS IoT Greengrass V2.

• Interact with the local shadow service

• Publish messages to local connected devices (Greengrass devices)

Migration overview

At a high level, you can use the following procedure to upgrade core devices from AWS IoT
Greengrass V1 to AWS IoT Greengrass V2. The exact procedure that you follow depends on the
specific requirements for your environment.

Can I run my V1 applications on V2? 104

https://docs.aws.amazon.com/greengrass/v1/developerguide/maintenance-policy.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/maintenance-policy.html

AWS IoT Greengrass Developer Guide, Version 2

1. Understand the differences between V1 and V2

AWS IoT Greengrass V2 introduces new fundamental concepts for device fleets and deployable
software, and V2 simplifies several concepts from V1.

The AWS IoT Greengrass V2 cloud service and AWS IoT Greengrass Core software v2.x aren't
backward compatible with the AWS IoT Greengrass V1 cloud service and AWS IoT Greengrass
Core software v1.x. As a result, AWS IoT Greengrass V1 over-the-air (OTA) updates can't
upgrade core devices from V1 to V2.

2. Validate that V1 core devices can run V2

Validate that a V1 core device can run the AWS IoT Greengrass Core software v2.x and AWS IoT
Greengrass V2 features. AWS IoT Greengrass V2 has different device requirements than AWS
IoT Greengrass V1.

3. Set up a new device to test V1 applications on V2

To minimize risk to your devices in production, create a new device to test your V1 applications
on V2. After you install the AWS IoT Greengrass Core software v2.x, you can create and
deploy AWS IoT Greengrass V2 components to migrate and test your AWS IoT Greengrass V1
applications.

4. Upgrade V1 core devices to run V2

Upgrade an existing V1 core device to run the AWS IoT Greengrass Core software v2.x and AWS
IoT Greengrass V2 components. To migrate a fleet of devices from V1 to V2, you repeat this
step for each device in the fleet.

Differences between AWS IoT Greengrass V1 and AWS IoT
Greengrass V2

AWS IoT Greengrass V2 introduces new fundamental concepts for devices, fleets, and deployable
software. This section describes the V1 concepts that are different in V2.

Differences between V1 and V2 105

AWS IoT Greengrass Developer Guide, Version 2

Greengrass concepts and terminology

Concept AWS IoT Greengrass V1 AWS IoT Greengrass V2

Application code In AWS IoT Greengrass V1,
Lambda functions define the
software that runs on core
devices. In each Greengrass
group, you define subscript
ions and local resources that
the function uses. For Lambda
functions that the AWS IoT
Greengrass Core software
runs in a containerized
Lambda runtime environme
nt, you define container
parameters, such as memory
limits.

In AWS IoT Greengrass V2,
components are the software
modules that run on core
devices.

• Each component has a
recipe that defines the
component's metadata,
parameters, dependenc
ies, and scripts to run at
each step in the component
lifecycle.

• The recipe also defines
the component's artifacts,
which are binary files, such
as scripts, compiled code,
and static resources.

• When you deploy a
component to a core
device, the core device
downloads the component
recipe and artifacts to run
the component.

You can import your V1
Lambda functions as
components that run in a
Lambda runtime environme
nt in AWS IoT Greengrass V2.
When you import the Lambda
function, you specify the
subscriptions, local resources
, and container parameter

Differences between V1 and V2 106

AWS IoT Greengrass Developer Guide, Version 2

Concept AWS IoT Greengrass V1 AWS IoT Greengrass V2

s for the function. For more
information, see Step 2:
Create and deploy AWS IoT
Greengrass V2 components to
migrate AWS IoT Greengrass
V1 applications.

For more information about
how to create custom
components, see Develop
AWS IoT Greengrass
components.

Differences between V1 and V2 107

AWS IoT Greengrass Developer Guide, Version 2

Concept AWS IoT Greengrass V1 AWS IoT Greengrass V2

AWS IoT Greengrass groups
and deployments

In AWS IoT Greengrass V1, a
group defines the core device,
the settings and software for
that core device, and the list
of AWS IoT things that can
connect to that core device.
You create a deployment to
send a group's configuration
to a core device.

In AWS IoT Greengrass V2,
you use deployments to define
the software components and
configurations that run on
core devices.

• Each deployment targets
a single core device (which
is an AWS IoT thing) or an
AWS IoT thing group that
can contain multiple core
devices.

• Deployments to thing
groups are continuous, so
when you add a core device
to a thing group, it receives
the software configuration
for that group.

For more information, see
Deploy AWS IoT Greengrass
components to devices.

In AWS IoT Greengrass V2,
you can also create local
deployments using the
Greengrass CLI to test custom
software components on the
device where you develop
them. For more information,
see Create AWS IoT Greengras
s components.

Differences between V1 and V2 108

AWS IoT Greengrass Developer Guide, Version 2

Concept AWS IoT Greengrass V1 AWS IoT Greengrass V2

AWS IoT Greengrass Core
software

In AWS IoT Greengrass V1,
the AWS IoT Greengrass Core
software is a single package
that contains the software
and all of its features. The
edge device on which you
install the AWS IoT Greengras
s Core software is called a
Greengrass core.

In AWS IoT Greengrass V2,
the AWS IoT Greengrass
Core software is modular, so
that you can choose what to
install to control the memory
footprint.

• The Greengrass nucleus
component is the minimum
required installation of
the AWS IoT Greengrass
Core software. The edge
device on which you install
the nucleus is called a
Greengrass core device.

• The nucleus handles
deployments, orchestration,
and lifecycle managemen
t of other components on
the core device.

• Features such as stream
manager, secret manager,
and log manager are
components that you
deploy only when you need
those features. For more
information, see AWS-provi
ded components.

Differences between V1 and V2 109

AWS IoT Greengrass Developer Guide, Version 2

Concept AWS IoT Greengrass V1 AWS IoT Greengrass V2

Connectors In AWS IoT Greengrass V1,
connectors are prebuilt
modules that you deploy
to AWS IoT Greengrass V1
core devices to interact with
local infrastructure, device
protocols, AWS, and other
cloud services.

In AWS IoT Greengrass V2,
AWS provides Greengrass
components that implement
the functionality provided
by connectors in V1. The
following AWS IoT Greengras
s V2 components provide
Greengrass V1 connector
 functionality:

• CloudWatch metrics
component

• AWS IoT Device Defender
component

• Firehose component

• Modbus-RTU protocol
adapter component

• Amazon SNS component

For more information, see
AWS-provided components.

Differences between V1 and V2 110

AWS IoT Greengrass Developer Guide, Version 2

Concept AWS IoT Greengrass V1 AWS IoT Greengrass V2

Connected devices (Greengra
ss devices)

In AWS IoT Greengrass V1,
connected devices are AWS
IoT things that you add to a
Greengrass group to connect
to the core device in that
group and communicate over
MQTT. You must deploy that
group each time that you
add or remove a connected
device. You use subscriptions
to relay messages between
connected devices, AWS IoT
Core, and applications on the
core device.

In AWS IoT Greengrass V2,
connected devices are called
Greengrass client devices.

• You associate client devices
to core devices to connect
them and communicate
over MQTT.

• To authorize client devices
to connect, you define
authorization policies that
can apply to groups of
client devices, so you don't
need to create a deploymen
t to add or remove a client
device.

• To relay messages between
client devices, AWS IoT
Core, and Greengrass
components, you can
configure an optional
MQTT bridge component.

In both AWS IoT Greengrass
V1 and AWS IoT Greengrass
V2, devices can run FreeRTOS
or use the AWS IoT Device
SDK or Greengrass discovery
 API to get information about
core devices to which they
can connect. The Greengras
s discovery API is backward
compatible, so if you have
client devices that connect

Differences between V1 and V2 111

https://docs.aws.amazon.com/freertos/latest/userguide/freertos-lib-gg-connectivity.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html

AWS IoT Greengrass Developer Guide, Version 2

Concept AWS IoT Greengrass V1 AWS IoT Greengrass V2

to a V1 core device, you can
connect them to a V2 core
device without changing their
code.

For more information about
client devices, see Interact
with local IoT devices.

Local resources In AWS IoT Greengrass V1,
Lambda functions that run in
containers can be configure
d to access volumes and
devices on the core device's
file system. These file system
resources are known as local
resources.

In AWS IoT Greengrass V2,
you can run components
that are Lambda functions,
Docker containers, or native
operating system processes or
custom runtimes.

• When you import a
containerized Lambda
function as a component,
you must specify the local
resources that the function
uses.

• Non-containerized Lambda
functions and non-Lambd
a components can work
directly with local resources
on core devices, so you
don't need to specify the
local resources that the
component uses.

Differences between V1 and V2 112

AWS IoT Greengrass Developer Guide, Version 2

Concept AWS IoT Greengrass V1 AWS IoT Greengrass V2

Local shadow service In AWS IoT Greengrass V1,
the local shadow service
is enabled by default, and
supports only unnamed
classic shadows. You use the
AWS IoT Greengrass Core SDK
in your Lambda functions to
interact with shadows on your
devices.

In AWS IoT Greengrass V2,
you enable the local shadow
service by deploying the
shadow manager component.

• You can use the AWS IoT
Device SDK V2 in Lambda
functions and custom
components to interact
with shadows on your
devices.

• The local shadow service
supports named shadows.

• The local shadow service
lets you delete shadows
and synchronize deleted
shadows with AWS IoT
Core.

For more information, see
Interact with device shadows.

Differences between V1 and V2 113

AWS IoT Greengrass Developer Guide, Version 2

Concept AWS IoT Greengrass V1 AWS IoT Greengrass V2

Subscriptions In AWS IoT Greengrass V1,
you define subscriptions for a
Greengrass group to specify
communication channels
between Lambda functions
, connectors, connected
devices, the AWS IoT Core
MQTT broker, and the local
shadow service. Subscript
ions specify where Lambda
functions receive event
messages to consume as
function payloads.

In AWS IoT Greengrass V2,
you specify communica
tion channels without using
subscriptions.

• Components manage
their own communication
channels to interact with
local publish/subscribe
messages, AWS IoT Core
MQTT messages, and the
local shadow service.

• To develop a component
that reacts to messages
from another component
or the AWS IoT Core
MQTT broker, you
can use interprocess
communication (IPC)
interfaces for local
publish/subscribe
messaging and AWS IoT
Core MQTT messaging.

• To develop a component
that interacts with the
local shadow service, you
can use the IPC interface
for the local shadow
service.

• In the component
configuration, you define
authorization policies to
specify the topics and
local shadows that the

Differences between V1 and V2 114

AWS IoT Greengrass Developer Guide, Version 2

Concept AWS IoT Greengrass V1 AWS IoT Greengrass V2

component has permissio
n to use.

• To configure communica
tion channels between
client devices, the local
publish/subscribe broker,
and the AWS IoT Core
MQTT broker, you configure
and deploy the MQTT
bridge component. The
MQTT bridge component
enables you to interact with
client devices in component
s and relay messages
between client devices and
AWS IoT Core.

Accessing other AWS services In AWS IoT Greengrass V1,
you attach an AWS Identity
and Access Management
(IAM) role, called the group
role, to a Greengrass group.
The group role defines the
permissions that Lambda
functions and AWS IoT
Greengrass features on that
group's core device use to
access AWS services.

In AWS IoT Greengrass V2,
you attach an AWS IoT role
alias to a Greengrass core
device. The role alias points to
an IAM role called the token
exchange role. The token
exchange role defines the
permissions that Greengras
s components on the core
device use to access AWS
services. For more informati
on, see Authorize core devices
to interact with AWS services.

Differences between V1 and V2 115

AWS IoT Greengrass Developer Guide, Version 2

Validate V1 core devices can run V2 software

The AWS IoT Greengrass Core software v2.x has different requirements than the AWS IoT
Greengrass Core software v1.x. Before you upgrade V1 core devices to V2, review the device
requirements for AWS IoT Greengrass V2. AWS IoT Greengrass V2 doesn't currently support
migration for custom Linux-based systems using the Yocto Project.

You can use AWS IoT Device Tester (IDT) for AWS IoT Greengrass V2 to validate that devices meet
the requirements to run the AWS IoT Greengrass Core software v2.x. IDT is a downloadable testing
framework that runs on your host computer and connects to devices to be validated. Follow
instructions to use IDT to run the AWS IoT Greengrass qualification suite. When you configure IDT,
you can choose to validate whether devices support optional features, such as Docker, machine
learning (ML), data stream management, and hardware security integration.

If IDT reports V2 test failures or errors for a V1 core device, you can't upgrade that device from V1
to V2.

Set up a new V2 core device to test V1 applications

Set up a new AWS IoT Greengrass V2 core device to deploy and test AWS-provided components
and AWS Lambda functions for your AWS IoT Greengrass V1 applications. You can also use
this V2 core device to develop and test additional custom Greengrass components that run
native processes on core devices. After you test your applications on a V2 core device, you can
upgrade your existing V1 core devices to V2 and deploy the V2 components that provide your V1
functionality.

Step 1: Install AWS IoT Greengrass V2 on a new device

Install the AWS IoT Greengrass Core software v2.x on a new device. You can follow the getting
started tutorial to set up a device and learn how to develop and deploy components. This tutorial
uses automatic provisioning to quickly set up a device. When you install the AWS IoT Greengrass
Core software v2.x, specify the --deploy-dev-tools argument to deploy the Greengrass CLI,
so you can develop, test, and debug components directly on the device. For more information
about other installation options, including how to install the AWS IoT Greengrass Core software
behind a proxy or using a hardware security module (HSM), see Install the AWS IoT Greengrass Core
software.

Validate V1 core devices can run V2 software 116

https://www.yoctoproject.org/
https://aws.amazon.com/greengrass/device-tester/

AWS IoT Greengrass Developer Guide, Version 2

(Optional) Enable logging to Amazon CloudWatch Logs

To enable a V2 core device to upload logs to Amazon CloudWatch Logs, you can deploy the AWS-
provided log manager component. You can use CloudWatch Logs to view component logs, so you
can debug and troubleshoot without access to the core device's file system. For more information,
see Monitor AWS IoT Greengrass logs.

Step 2: Create and deploy AWS IoT Greengrass V2 components to
migrate AWS IoT Greengrass V1 applications

You can run most AWS IoT Greengrass V1 applications on AWS IoT Greengrass V2. You can import
Lambda functions as components that run on AWS IoT Greengrass V2, and you can use AWS-
provided components that offer the same functionality as AWS IoT Greengrass connectors.

You can also develop custom components to build any feature or runtime to run on Greengrass
core devices. For information about how to develop and test components locally, see Create AWS
IoT Greengrass components.

Topics

• Import V1 Lambda functions

• Use V1 connectors

• Run Docker containers

• Run machine learning inference

• Connect V1 Greengrass devices

• Enable the local shadow service

• Integrate with AWS IoT SiteWise

Import V1 Lambda functions

You can import Lambda functions as AWS IoT Greengrass V2 components. Choose from the
following approaches:

• Import V1 Lambda functions directly as Greengrass components.

• Update your Lambda functions to use the Greengrass libraries in the AWS IoT Device SDK v2, and
then import the Lambda functions as Greengrass components.

Step 2: Create and deploy V2 components to migrate V1 applications 117

AWS IoT Greengrass Developer Guide, Version 2

• Create custom components that use non-Lambda code and the AWS IoT Device SDK v2 to
implement the same functionality as your Lambda functions.

If your Lambda function uses features, such as stream manager or local secrets, you must define
dependencies on the AWS-provided components that package these features. When you deploy
the Lambda function component, the deployment also includes the component for each feature
that you define as a dependency. In the deployment, you can configure parameters, such as which
secrets to deploy to the core device. Not all V1 features require a component dependency for your
Lambda function on V2. The following list describes how to use V1 features in your V2 Lambda
function component.

• Access other AWS services

If your Lambda function uses AWS credentials to make requests to other AWS services, the core
device's token exchange role must allow the core device to perform the AWS operations that the
Lambda function uses. For more information, see Authorize core devices to interact with AWS
services.

• Stream manager

If your Lambda function uses stream manager, specify aws.greengrass.StreamManager as
a component dependency when you import the function. When you deploy the stream manager
component, specify the stream manager parameters to set for the target core devices. The core
device's token exchange role must allow the core device to access the AWS Cloud destinations
that you use with stream manager. For more information, see Stream manager.

• Local secrets

If your Lambda function uses local secrets, specify aws.greengrass.SecretManager as a
component dependency when you import the function. When you deploy the secret manager
component, specify the secret resources to deploy to the target core devices. The core device's
token exchange role must allow the core device to retrieve the secret resources to deploy. For
more information, see Secret manager.

When you deploy your Lambda function component, configure it to have an IPC authorization
policy that grants permission to use the GetSecretValue IPC operation in the AWS IoT Device SDK
V2.

• Local shadows

Step 2: Create and deploy V2 components to migrate V1 applications 118

AWS IoT Greengrass Developer Guide, Version 2

If your Lambda function interacts with local shadows, you must update the
Lambda function code to use the AWS IoT Device SDK V2. You must also specify
aws.greengrass.ShadowManager as a component dependency when you import the
function. For more information, see Interact with device shadows.

When you deploy your Lambda function component, configure it to have an IPC authorization
policy that grants permission to use the shadow IPC operations in the AWS IoT Device SDK V2.

• Subscriptions

• If your Lambda function subscribes to messages from a cloud source, specify those
subscriptions as event sources when you import the function.

• If your Lambda function subscribes to messages from another Lambda function, or if your
Lambda function publishes messages to AWS IoT Core or other Lambda functions, configure
and deploy the legacy subscription router component when you deploy your Lambda function.
When you deploy the legacy subscription router component, specify the subscriptions that the
Lambda function uses.

Note

The legacy subscription router component is required only if your Lambda function
uses the publish() function in the AWS IoT Greengrass Core SDK. If you update
your Lambda function code to use the interprocess communication (IPC) interface in
the AWS IoT Device SDK V2, you don't need to deploy the legacy subscription router
component. For more information, see the following interprocess communication
services:

• Publish/subscribe local messages

• Publish/subscribe AWS IoT Core MQTT messages

• If your Lambda function subscribes to messages from local connected devices, specify those
subscriptions as event sources when you import the function. You must also configure and
deploy the MQTT bridge component to relay messages from the connected devices to the local
publish/subscribe topics that you specify as event sources.

• If your Lambda function publishes messages to local connected devices, you must update the
Lambda function code to use the AWS IoT Device SDK V2 to publish local publish/subscribe
messages. You must also configure and deploy the MQTT bridge component to relay messages
from the local publish/subscribe message broker to the connected devices.

Step 2: Create and deploy V2 components to migrate V1 applications 119

AWS IoT Greengrass Developer Guide, Version 2

• Local volumes and devices

If your containerized Lambda function accesses local volumes or devices, specify those volumes
and devices when you import the Lambda function. This feature doesn't require a component
dependency.

For more information, see Run AWS Lambda functions.

Use V1 connectors

You can deploy AWS-provided components that offer the same functionality of some AWS IoT
Greengrass connectors. When you create the deployment, you can configure the connectors'
parameters.

The following AWS IoT Greengrass V2 components provide Greengrass V1 connector functionality:

• CloudWatch metrics component

• AWS IoT Device Defender component

• Firehose component

• Modbus-RTU protocol adapter component

• Amazon SNS component

Run Docker containers

AWS IoT Greengrass V2 doesn't provide a component to directly replace the V1 Docker application
deployment connector. However, you can use the Docker application manager component to
download Docker images, and then create custom components that run Docker containers from
the downloaded images. For more information, see Run a Docker container and Docker application
manager.

Run machine learning inference

AWS IoT Greengrass V2 provides an Amazon SageMaker AI Edge Manager component that installs
the Amazon SageMaker AI Edge Manager agent and enables you to use SageMaker AI Neo-
compiled models as model components on Greengrass core devices. AWS IoT Greengrass V2 also
provides components that install Deep Learning Runtime and TensorFlow Lite on your device.
You can use the corresponding DLR and TensorFlow Lite model and inference components to

Step 2: Create and deploy V2 components to migrate V1 applications 120

https://github.com/neo-ai/neo-ai-dlr
https://www.tensorflow.org/lite/guide/python

AWS IoT Greengrass Developer Guide, Version 2

perform sample image classification and object detection inference. To use other machine learning
frameworks, such as MXNet and TensorFlow, you can develop your own custom components that
use these frameworks.

Connect V1 Greengrass devices

Connected devices in AWS IoT Greengrass V1 are called client devices in AWS IoT Greengrass V2.
AWS IoT Greengrass V2 support for client devices is backward-compatible with AWS IoT Greengrass
V1, so you can connect V1 client devices to V2 core devices without changing their application
code. To enable client devices to connect to a V2 core device, deploy Greengrass components
that enable client device support, and associate the client devices to the core device. To relay
messages between client devices, the AWS IoT Core cloud service, and Greengrass components
(including Lambda functions), deploy and configure the MQTT bridge component. You can deploy
the IP detector component to automatically detect connectivity information, or you can manually
manage endpoints. For more information, see Interact with local IoT devices.

Enable the local shadow service

In AWS IoT Greengrass V2, the local shadow service is implemented by the AWS-provided shadow
manager component. AWS IoT Greengrass V2 also includes support for named shadows. To enable
your components to interact with local shadows and to sync shadow states to AWS IoT Core,
configure and deploy the shadow manager component, and use the shadow IPC operations in your
component code. For more information, see Interact with device shadows.

Integrate with AWS IoT SiteWise

If you use your V1 core device as an AWS IoT SiteWise gateway, follow instructions to set up your
new V2 core device as an AWS IoT SiteWise gateway. AWS IoT SiteWise provides an installation
script that deploys the AWS IoT SiteWise components for you.

Step 3: Test your AWS IoT Greengrass V2 applications

After you create and deploy V2 components to your new V2 core device, verify that your
applications meet your expectations. You can check the device's logs to view your components'
standard output (stdout) and standard error (stderr) messages. For more information, see Monitor
AWS IoT Greengrass logs.

If you deployed the Greengrass CLI to the core device, you can use it to debug components and
their configurations. For more information, see Greengrass CLI commands.

Step 3: Test your V2 applications 121

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/configure-gateway-ggv2.html

AWS IoT Greengrass Developer Guide, Version 2

After you verify that your applications work on a V2 core device, you can deploy your application's
Greengrass components to other core devices. If you developed custom components that run
native processes or Docker containers, you must first publish those components to the AWS IoT
Greengrass service to deploy them to other core devices.

Upgrade Greengrass V1 core devices to Greengrass V2

After you verify that your applications and components work on an AWS IoT Greengrass V2
core device, you can install the AWS IoT Greengrass Core software v2.x on your devices that
currently run v1.x, such as production devices. Then, deploy Greengrass V2 components to run your
Greengrass applications on the devices.

To upgrade a fleet of devices from V1 to V2, complete these steps for each device to upgrade. You
can use thing groups to deploy V2 components to a fleet of core devices.

Tip

We recommend that you create a script to automate the upgrade process for a fleet of
devices. If you use AWS Systems Manager to manage your fleet, you can use Systems
Manager to run that script on each device to upgrade your fleet from V1 to V2.
You can contact your AWS Enterprise Support representative with questions about how to
best automate the upgrade process.

Step 1: Install the AWS IoT Greengrass Core software v2.x

Choose from the following options to install the AWS IoT Greengrass Core software v2.x on a V1
core device:

• Upgrade in fewer steps

To upgrade in fewer steps, you can uninstall the v1.x software before you install the v2.x
software.

• Upgrade with minimal downtime

To upgrade with minimal downtime, you can install both versions of the AWS IoT Greengrass
Core software at the same time. After you install the AWS IoT Greengrass Core software v2.x and

Upgrade V1 core devices to V2 122

https://docs.aws.amazon.com/systems-manager/latest/userguide/what-is-systems-manager.html

AWS IoT Greengrass Developer Guide, Version 2

verify that your V2 applications operate correctly, you uninstall the AWS IoT Greengrass Core
software v1.x. Before you choose this option, consider the additional RAM required to run both
versions of the AWS IoT Greengrass Core software at the same time.

Uninstall AWS IoT Greengrass Core v1.x before you install v2.x

If you want to upgrade sequentially, uninstall the AWS IoT Greengrass Core software v1.x before
you install v2.x on your device.

To uninstall the AWS IoT Greengrass Core software v1.x

1. If the AWS IoT Greengrass Core software v1.x is running as a service, you must stop, disable,
and remove the service.

a. Stop the running AWS IoT Greengrass Core software v1.x service.

sudo systemctl stop greengrass

b. Wait until the service stops. You can use the list command to check the status of the
service.

sudo systemctl list-units --type=service | grep greengrass

c. Disable the service.

sudo systemctl disable greengrass

d. Remove the service.

sudo rm /etc/systemd/system/greengrass.service

2. If the AWS IoT Greengrass Core software v1.x is not running as a service, use the following
command to stop the daemon. Replace greengrass-root with the name of your Greengrass
root folder. The default location is /greengrass.

cd /greengrass-root/ggc/core/
sudo ./greengrassd stop

3. (Optional) Back up your Greengrass root folder and, if applicable, your custom write folder, to
a different folder on your device.

Step 1: Install the AWS IoT Greengrass Core software v2.x 123

https://docs.aws.amazon.com/greengrass/v1/developerguide/gg-core.html#write-directory

AWS IoT Greengrass Developer Guide, Version 2

a. Use the following command to copy the current Greengrass root folder to a different
folder, and then remove the root folder.

sudo cp -r /greengrass-root /path/to/greengrass-backup
rm -rf /greengrass-root

b. Use the following command to move the write folder to a different folder, and then
remove the write folder.

sudo cp -r /write-directory /path/to/write-directory-backup
rm -rf /write-directory

You can then use the installation instructions for AWS IoT Greengrass V2 to install the software on
your device.

Tip

To reuse a core device's identity when you migrate it from V1 to V2, follow instructions to
install the AWS IoT Greengrass Core software with manual provisioning. First remove the
V1 core software from the device, and then reuse the V1 core device's AWS IoT thing and
certificate, and update the certificate's AWS IoT policies to grant permissions that the v2.x
software requires.

Install AWS IoT Greengrass Core software v2.x on a device already running v1.x

If you install the AWS IoT Greengrass Core v2.x software on a device that is already running the
AWS IoT Greengrass Core software v1.x, keep the following in mind:

• The AWS IoT thing name for your V2 core device must be unique. Don't use the same thing name
as your V1 core device.

• The ports that you use for the AWS IoT Greengrass Core software v2.x must be different from the
ports that you use for v1.x.

• Configure the V1 stream manager to use a port other than 8088. For more information, see
Configure stream manager.

• Configure the V1 MQTT broker to use a port other than 8883. For more information, see
Configure the MQTT port for local messaging.

Step 1: Install the AWS IoT Greengrass Core software v2.x 124

https://docs.aws.amazon.com/greengrass/v1/developerguide/configure-stream-manager.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/gg-core.html#config-local-mqtt-port

AWS IoT Greengrass Developer Guide, Version 2

• AWS IoT Greengrass V2 doesn't provide the option to rename the Greengrass system service. If
you run Greengrass as a system service, you must do one of the following to avoid conflicting
system service names:

• Rename the Greengrass service for v1.x before you install v2.x.

• Install the AWS IoT Greengrass Core software v2.x without a system service, and then manually
configure the software as a system service with a name other than greengrass.

To rename the Greengrass service for v1.x

1. Stop the AWS IoT Greengrass Core software v1.x service.

sudo systemctl stop greengrass

2. Wait for the service to stop. The service can take up to a few minutes to stop. You can use
the list-units command to check whether the service stopped.

sudo systemctl list-units --type=service | grep greengrass

3. Disable the service.

sudo systemctl disable greengrass

4. Rename the service.

sudo mv /etc/systemd/system/greengrass.service /etc/systemd/system/greengrass-
v1.service

5. Reload the service and start it.

sudo systemctl daemon-reload
sudo systemctl reset-failed
sudo systemctl enable greengrass-v1
sudo systemctl start greengrass-v1

You can then use the installation instructions for AWS IoT Greengrass V2 to install the software on
your device.

Step 1: Install the AWS IoT Greengrass Core software v2.x 125

AWS IoT Greengrass Developer Guide, Version 2

Tip

To reuse a core device's identity when you migrate it from V1 to V2, follow instructions to
install the AWS IoT Greengrass Core software with manual provisioning. First remove the
V1 core software from the device, and then reuse the V1 core device's AWS IoT thing and
certificate, and update the certificate's AWS IoT policies to grant permissions that the v2.x
software requires.

Step 2: Deploy AWS IoT Greengrass V2 components to the core devices

After you install the AWS IoT Greengrass Core software v2.x on your device, create a deployment
that includes the following resources. To deploy components to a fleet of similar devices, create a
deployment for a thing group that contains those devices.

• Lambda function components that you created from your V1 Lambda functions. For more
information, see Run AWS Lambda functions.

• If you use V1 subscriptions, the legacy subscription router component.

• If you use stream manager, the stream manager component. For more information, see Manage
data streams on Greengrass core devices.

• If you use local secrets, the secret manager component.

• If you use V1 connectors, the AWS-provided connector components.

• If you use Docker containers, the Docker application manager component. For more information,
see Run a Docker container.

• If you use machine learning inference, components for machine learning support. For more
information, see Perform machine learning inference.

• If you use connected devices, the components for client device support. You must also
enable client device support and associate the client devices with your core device. For more
information, see Interact with local IoT devices.

• If you use device shadows, the shadow manager component. For more information, see Interact
with device shadows.

• If you upload logs from Greengrass core devices to Amazon CloudWatch Logs, the log manager
component. For more information, see Monitor AWS IoT Greengrass logs.

Step 2: Deploy Greengrass V2 components to the core devices 126

AWS IoT Greengrass Developer Guide, Version 2

• If you integrate with AWS IoT SiteWise, follow instructions to set up the V2 core device as an
AWS IoT SiteWise gateway. AWS IoT SiteWise provides an installation script that deploys the
AWS IoT SiteWise components for you.

• User-defined components that you developed to implement custom functionality.

For information about creating and revising deployments, see Deploy AWS IoT Greengrass
components to devices.

Step 2: Deploy Greengrass V2 components to the core devices 127

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/configure-gateway-ggv2.html

AWS IoT Greengrass Developer Guide, Version 2

Tutorial: Getting started with AWS IoT Greengrass V2

You can complete this getting started tutorial to learn the basic features of AWS IoT Greengrass
V2. In this tutorial, you do the following:

1. Install and configure the AWS IoT Greengrass Core software on a Linux device, such as a
Raspberry Pi, or a Windows device. This device is a Greengrass core device.

2. Develop a Hello World component on your Greengrass core device. Components are software
modules that run on Greengrass core devices.

3. Upload that component to AWS IoT Greengrass V2 in the AWS Cloud.

4. Deploy that component from the AWS Cloud to your Greengrass core device.

Note

This tutorial describes how to set up a development environment and explore the
features of AWS IoT Greengrass. For more information about how to set up and configure
production devices, see the following:

• Setting up AWS IoT Greengrass core devices

• Install the AWS IoT Greengrass Core software

You can expect to spend 20 to 30 minutes on this tutorial.

Topics

• Prerequisites

• Step 1: Set up an AWS account

• Step 2: Set up your environment

• Step 3: Install the AWS IoT Greengrass Core software

• Step 4: Develop and test a component on your device

• Step 5: Create your component in the AWS IoT Greengrass service

• Step 6: Deploy your component

• Next steps

128

AWS IoT Greengrass Developer Guide, Version 2

Prerequisites

To complete this getting started tutorial, you need the following:

• An AWS account. If you don't have one, see Step 1: Set up an AWS account.

• The use of an AWS Region that supports AWS IoT Greengrass V2. For the list of supported
Regions, see AWS IoT Greengrass V2 endpoints and quotas in the AWS General Reference.

• An AWS Identity and Access Management (IAM) user with administrator permissions.

• A device to set up as a Greengrass core device, such as a Raspberry Pi with Raspberry Pi OS
(previously called Raspbian), or a Windows 10 device. You must have administrator permissions
on this device, or the ability to acquire administrator privileges, such as through sudo. This
device must have an internet connection.

You can also choose to use a different device that meets the requirements to install and run the
AWS IoT Greengrass Core software.

If your development computer meets these requirements, you can set it up as your Greengrass
core device in this tutorial.

• Python 3.5 or later installed for all users on the device and added to the PATH environment
variable. On Windows, you must also have the Python Launcher for Windows installed for all
users.

Important

In Windows, Python doesn't install for all users by default. When you install Python,
you must customize the installation to configure it for the AWS IoT Greengrass Core
software to run Python scripts. For example, if you use the graphical Python installer, do
the following:

1. Select Install launcher for all users (recommended).

2. Choose Customize installation.

3. Choose Next.

4. Select Install for all users.

5. Select Add Python to environment variables.

6. Choose Install.

Prerequisites 129

https://en.wikipedia.org/wiki/Amazon_Web_Services#Availability_and_topology
https://docs.aws.amazon.com/general/latest/gr/greengrassv2.html
https://www.raspberrypi.org/downloads/
https://www.python.org/downloads/

AWS IoT Greengrass Developer Guide, Version 2

For more information, see Using Python on Windows in the Python 3 documentation.

• AWS Command Line Interface (AWS CLI) installed and configured with credentials on your
development computer and on your device. Make sure you use the same AWS Region to
configure the AWS CLI on your development computer and on your device. To use AWS IoT
Greengrass V2 with the AWS CLI, you must have one of the following versions or later:

• Minimum AWS CLI V1 version: v1.18.197

• Minimum AWS CLI V2 version: v2.1.11

Tip

You can run the following command to check the version of the AWS CLI that you have.

aws --version

For more information, see Installing, updating, and uninstalling the AWS CLI and Configuring the
AWS CLI in the AWS Command Line Interface User Guide.

Note

If you use a 32-bit ARM device, such as a Raspberry Pi with a 32-bit operating system,
install AWS CLI V1. AWS CLI V2 isn't available for 32-bit ARM devices. For more
information, see Installing, updating, and uninstalling the AWS CLI version 1.

Step 1: Set up an AWS account

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Step 1: Set up an AWS account 130

https://docs.python.org/3/using/windows.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv1.html
https://portal.aws.amazon.com/billing/signup

AWS IoT Greengrass Developer Guide, Version 2

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

Create a user with administrative access 131

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html

AWS IoT Greengrass Developer Guide, Version 2

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Step 2: Set up your environment

Note

These steps do not apply to nucleus lite.

Follow the steps in this section to set up a Linux or Windows device to use as your AWS IoT
Greengrass core device.

Set up a Linux device (Raspberry Pi)

These steps assume that you use a Raspberry Pi with Raspberry Pi OS. If you use a different device
or operating system, consult the relevant documentation for your device.

Step 2: Set up your environment 132

https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

AWS IoT Greengrass Developer Guide, Version 2

To set up a Raspberry Pi for AWS IoT Greengrass V2

1. Enable SSH on your Raspberry Pi to remotely connect to it. For more information, see SSH
(Secure shell) in the Raspberry Pi Documentation.

2. Find the IP address of your Raspberry Pi to connect to it with SSH. To do so, you can run the
following command on your Raspberry Pi.

hostname -I

3. Connect to your Raspberry Pi with SSH.

On your development computer, run the following command. Replace username with the
name of the user to sign in, and replace pi-ip-address with the IP address that you found in
the previous step.

ssh username@pi-ip-address

Important

If your development computer uses an earlier version of Windows, you might not have
the ssh command, or you might have ssh but can't connect to your Raspberry Pi.
To connect to your Raspberry Pi, you can install and configure PuTTY, which is a no-
cost, open source SSH client. Consult the PuTTY documentation to connect to your
Raspberry Pi.

4. Install the Java runtime, which AWS IoT Greengrass Core software requires to run. On your
Raspberry Pi, use the following commands to install Java 11.

sudo apt install default-jdk

When the installation completes, run the following command to verify that Java runs on your
Raspberry Pi.

java -version

The command prints the version of Java that runs on the device. The output might look similar
to the following example.

Step 2: Set up your environment 133

https://www.raspberrypi.com/documentation/computers/remote-access.html#ssh
https://www.raspberrypi.com/documentation/computers/remote-access.html#ssh
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://tartarus.org/~simon/putty-snapshots/htmldoc/Chapter2.html#gs

AWS IoT Greengrass Developer Guide, Version 2

openjdk version "11.0.9.1" 2020-11-04
OpenJDK Runtime Environment (build 11.0.9.1+1-post-Debian-1deb10u2)
OpenJDK 64-Bit Server VM (build 11.0.9.1+1-post-Debian-1deb10u2, mixed mode)

Tip: Set kernel parameters on a Raspberry Pi

If your device is a Raspberry Pi, you can complete the following steps to view and update its
Linux kernel parameters:

1. Open the /boot/cmdline.txt file. This file specifies Linux kernel parameters to apply
when the Raspberry Pi boots.

For example, on a Linux-based system, you can run the following command to use GNU
nano to open the file.

sudo nano /boot/cmdline.txt

2. Verify that the /boot/cmdline.txt file contains the following kernel parameters.
The systemd.unified_cgroup_hierarchy=0 parameter specifies to use cgroups v1
instead of cgroups v2.

cgroup_enable=memory cgroup_memory=1 systemd.unified_cgroup_hierarchy=0

If the /boot/cmdline.txt file doesn't contain these parameters, or it contains these
parameters with different values, update the file to contain these parameters and values.

3. If you updated the /boot/cmdline.txt file, reboot the Raspberry Pi to apply the
changes.

sudo reboot

Step 2: Set up your environment 134

AWS IoT Greengrass Developer Guide, Version 2

Set up a Linux device (other)

To set up a Linux device for AWS IoT Greengrass V2

1. Install the Java runtime, which AWS IoT Greengrass Core software requires to run. We
recommend that you use Amazon Corretto or OpenJDK long-term support versions. Version
8 or higher is required. The following commands show you how to install OpenJDK on your
device.

• For Debian-based or Ubuntu-based distributions:

sudo apt install default-jdk

• For Red Hat-based distributions:

sudo yum install java-11-openjdk-devel

• For Amazon Linux 2:

sudo amazon-linux-extras install java-openjdk11

• For Amazon Linux 2023:

sudo dnf install java-11-amazon-corretto -y

When the installation completes, run the following command to verify that Java runs on your
Linux device.

java -version

The command prints the version of Java that runs on the device. For example, on a Debian-
based distribution, the output might look similar to the following sample.

openjdk version "11.0.9.1" 2020-11-04
OpenJDK Runtime Environment (build 11.0.9.1+1-post-Debian-1deb10u2)
OpenJDK 64-Bit Server VM (build 11.0.9.1+1-post-Debian-1deb10u2, mixed mode)

2. (Optional) Create the default system user and group that runs components on the device. You
can also choose to let the AWS IoT Greengrass Core software installer create this user and

Step 2: Set up your environment 135

https://aws.amazon.com/corretto/
https://openjdk.java.net/

AWS IoT Greengrass Developer Guide, Version 2

group during installation with the --component-default-user installer argument. For
more information, see Installer arguments.

sudo useradd --system --create-home ggc_user
sudo groupadd --system ggc_group

3. Verify that the user that runs the AWS IoT Greengrass Core software (typically root), has
permission to run sudo with any user and any group.

a. Run the following command to open the /etc/sudoers file.

sudo visudo

b. Verify that the permission for the user looks like the following example.

root ALL=(ALL:ALL) ALL

4. (Optional) To run containerized Lambda functions, you must enable cgroups v1, and you must
enable and mount the memory and devices cgroups. If you don't plan to run containerized
Lambda functions, you can skip this step.

To enable these cgroups options, boot the device with the following Linux kernel parameters.

cgroup_enable=memory cgroup_memory=1 systemd.unified_cgroup_hierarchy=0

For information about viewing and setting kernel parameters for your device, see the
documentation for your operating system and boot loader. Follow the instructions to
permanently set the kernel parameters.

5. Install all other required dependencies on your device as indicated by the list of requirements
in Device requirements.

Set up a Windows device

To set up a Windows device for AWS IoT Greengrass V2

1. Install the Java runtime, which AWS IoT Greengrass Core software requires to run. We
recommend that you use Amazon Corretto or OpenJDK long-term support versions. Version 8
or higher is required.

Step 2: Set up your environment 136

https://en.wikipedia.org/wiki/Cgroups
https://aws.amazon.com/corretto/
https://openjdk.java.net/

AWS IoT Greengrass Developer Guide, Version 2

2. Check whether Java is available on the PATH system variable, and add it if not. The
LocalSystem account runs the AWS IoT Greengrass Core software, so you must add Java to the
PATH system variable instead of the PATH user variable for your user. Do the following:

a. Press the Windows key to open the start menu.

b. Type environment variables to search for the system options from the start menu.

c. In the start menu search results, choose Edit the system environment variables to open
the System properties window.

d. Choose Environment variables... to open the Environment Variables window.

e. Under System variables, select Path, and then choose Edit. In the Edit environment
variable window, you can view each path on a separate line.

f. Check if the path to the Java installation's bin folder is present. The path might look
similar to the following example.

C:\\Program Files\\Amazon Corretto\\jdk11.0.13_8\\bin

g. If the Java installation's bin folder is missing from Path, choose New to add it, and then
choose OK.

3. Open the Windows Command Prompt (cmd.exe) as an administrator.

4. Create the default user in the LocalSystem account on the Windows device. Replace password
with a secure password.

net user /add ggc_user password

Tip

Depending on your Windows configuration, the user's password might be set to expire
at a date in the future. To ensure your Greengrass applications continue to operate,
track when the password expires, and update it before it expires. You can also set the
user's password to never expire.

• To check when a user and its password expire, run the following command.

net user ggc_user | findstr /C:expires

• To set a user's password to never expire, run the following command.

Step 2: Set up your environment 137

https://en.wikipedia.org/wiki/PATH_(variable)

AWS IoT Greengrass Developer Guide, Version 2

wmic UserAccount where "Name='ggc_user'" set PasswordExpires=False

• If you’re using Windows 10 or later where the wmic command is deprecated, run the
following PowerShell command.

Get-CimInstance -Query "SELECT * from Win32_UserAccount WHERE name =
 'ggc_user'" | Set-CimInstance -Property @{PasswordExpires="False"}

5. Download and install the PsExec utility from Microsoft on the device.

6. Use the PsExec utility to store the user name and password for the default user in the
Credential Manager instance for the LocalSystem account. Replace password with the user's
password that you set earlier.

psexec -s cmd /c cmdkey /generic:ggc_user /user:ggc_user /pass:password

If the PsExec License Agreement opens, choose Accept to agree to the license and run the
command.

Note

On Windows devices, the LocalSystem account runs the Greengrass nucleus, and you
must use the PsExec utility to store the default user information in the LocalSystem
account. Using the Credential Manager application stores this information in the
Windows account of the currently logged on user, instead of the LocalSystem account.

Step 3: Install the AWS IoT Greengrass Core software

Follow the steps in this section to set up your Raspberry Pi as a AWS IoT Greengrass core device
that you can use for local development. In this section, you download and run an installer that does
the following to configure the AWS IoT Greengrass Core software for your device:

• Installs the Greengrass nucleus component. The nucleus is a mandatory component and is the
minimum requirement to run the AWS IoT Greengrass Core software on a device. For more
information, see Greengrass nucleus component.

Step 3: Install the AWS IoT Greengrass Core software 138

https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmic
https://docs.microsoft.com/en-us/sysinternals/downloads/psexec

AWS IoT Greengrass Developer Guide, Version 2

• Registers your device as an AWS IoT thing and downloads a digital certificate that allows your
device to connect to AWS. For more information, see Device authentication and authorization for
AWS IoT Greengrass.

• Adds the device's AWS IoT thing to a thing group, which is a group or fleet of AWS IoT things.
Thing groups enable you to manage fleets of Greengrass core devices. When you deploy
software components to your devices, you can choose to deploy to individual devices or to
groups of devices. For more information, see Managing devices with AWS IoT in the AWS IoT Core
Developer Guide.

• Creates the IAM role that allows your Greengrass core device to interact with AWS services.
By default, this role allows your device to interact with AWS IoT and send logs to Amazon
CloudWatch Logs. For more information, see Authorize core devices to interact with AWS
services.

• Installs the AWS IoT Greengrass command line interface (greengrass-cli), which you can
use to test custom components that you develop on the core device. For more information, see
Greengrass Command Line Interface.

Install the AWS IoT Greengrass Core software (console)

1. Sign in to the AWS IoT Greengrass console.

2. Under Get started with Greengrass, choose Set up core device.

3. Under Step 1: Register a Greengrass core device, for Core device name, enter the name of
the AWS IoT thing for your Greengrass core device. If the thing doesn't exist, the installer
creates it.

4. Under Step 2: Add to a thing group to apply a continuous deployment, for Thing group,
choose the AWS IoT thing group to which you want to add your core device.

• If you select Enter a new group name, then in Thing group name, enter the name of the
new group to create. The installer creates the new group for you.

• If you select Select an existing group, then in Thing group name, choose the existing group
that you want to use.

• If you select No group, then the installer doesn't add the core device to a thing group.

5. Under Step 3: Install the Greengrass Core software, complete the following steps.

Install the AWS IoT Greengrass Core software (console) 139

https://docs.aws.amazon.com/iot/latest/developerguide/iot-thing-management.html
https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Nucleus classic

1. Choose Nucleus classic as your core device's software runtime.

2. Choose your core device's operating system: Linux or Windows.

3. Provide your AWS credentials to the device so that the installer can provision the
AWS IoT and IAM resources for your core device. To increase security, we recommend
that you get temporary credentials for an IAM role that allows only the minimum
permissions necessary to provision. For more information, see Minimal IAM policy for
installer to provision resources.

Note

The installer doesn't save or store your credentials.

On your device, do one of the following to retrieve credentials and make them
available to the AWS IoT Greengrass Core software installer:

• (Recommended) Use temporary credentials from AWS IAM Identity Center

a. Provide the access key ID, secret access key, and session token from the IAM
Identity Center. For more information, see Manual credential refresh in
Getting and refreshing temporary credentials in the IAM Identity Center user
guide.

b. Run the following commands to provide the credentials to the AWS IoT
Greengrass Core software.

Linux or Unix

export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/
bPxRfiCYEXAMPLEKEY
export AWS_SESSION_TOKEN=AQoDYXdzEJr1K...o5OytwEXAMPLE=

Windows Command Prompt (CMD)

set AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE

Install the AWS IoT Greengrass Core software (console) 140

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html#how-to-get-temp-credentials
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html#how-to-get-temp-credentials

AWS IoT Greengrass Developer Guide, Version 2

set AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/
bPxRfiCYEXAMPLEKEY
set AWS_SESSION_TOKEN=AQoDYXdzEJr1K...o5OytwEXAMPLE=

PowerShell

$env:AWS_ACCESS_KEY_ID="AKIAIOSFODNN7EXAMPLE"
$env:AWS_SECRET_ACCESS_KEY="wJalrXUtnFEMI/K7MDENG/
bPxRfiCYEXAMPLEKEY"
$env:AWS_SESSION_TOKEN="AQoDYXdzEJr1K...o5OytwEXAMPLE="

• Use temporary security credentials from an IAM role:

a. Provide the access key ID, secret access key, and session token from an IAM
role that you assume. For more information about how to retrieve these
credentials, see Requesting temporary security credentials in the IAM User
Guide.

b. Run the following commands to provide the credentials to the AWS IoT
Greengrass Core software.

Linux or Unix

export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/
bPxRfiCYEXAMPLEKEY
export AWS_SESSION_TOKEN=AQoDYXdzEJr1K...o5OytwEXAMPLE=

Windows Command Prompt (CMD)

set AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
set AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/
bPxRfiCYEXAMPLEKEY
set AWS_SESSION_TOKEN=AQoDYXdzEJr1K...o5OytwEXAMPLE=

PowerShell

$env:AWS_ACCESS_KEY_ID="AKIAIOSFODNN7EXAMPLE"
$env:AWS_SECRET_ACCESS_KEY="wJalrXUtnFEMI/K7MDENG/
bPxRfiCYEXAMPLEKEY"
$env:AWS_SESSION_TOKEN="AQoDYXdzEJr1K...o5OytwEXAMPLE="

Install the AWS IoT Greengrass Core software (console) 141

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html

AWS IoT Greengrass Developer Guide, Version 2

• Use long-term credentials from an IAM user:

a. Provide the access key ID and secret access key for your IAM user. You can
create an IAM user for provisioning that you later delete. For the IAM policy to
give the user, see Minimal IAM policy for installer to provision resources. For
more information about how to retrieve long-term credentials, see Managing
access keys for IAM users in the IAM User Guide.

b. Run the following commands to provide the credentials to the AWS IoT
Greengrass Core software.

Linux or Unix

export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/
bPxRfiCYEXAMPLEKEY

Windows Command Prompt (CMD)

set AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
set AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/
bPxRfiCYEXAMPLEKEY

PowerShell

$env:AWS_ACCESS_KEY_ID="AKIAIOSFODNN7EXAMPLE"
$env:AWS_SECRET_ACCESS_KEY="wJalrXUtnFEMI/K7MDENG/
bPxRfiCYEXAMPLEKEY"

c. (Optional) If you created an IAM user to provision your Greengrass device,
delete the user.

d. (Optional) If you used the access key ID and secret access key from an existing
IAM user, update the keys for the user so that they are no longer valid. For
more information, see Updating access keys in the AWS Identity and Access
Management user guide.

4. Under Run the installer, complete the following steps.

Install the AWS IoT Greengrass Core software (console) 142

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_RotateAccessKey

AWS IoT Greengrass Developer Guide, Version 2

a. Under Download the installer, choose Copy and run the copied command on
your core device. This command downloads the latest version of the AWS IoT
Greengrass Core software and unzips it on your device.

b. Under Run the installer, choose Copy, and run the copied command on your core
device. This command uses the AWS IoT thing and thing group names that you
specified earlier to run the AWS IoT Greengrass Core software installer and set up
AWS resources for your core device.

This command also does the following:

• Set up the AWS IoT Greengrass Core software as a system service that runs at
boot. On Linux devices, this requires the Systemd init system.

Important

On Windows core devices, you must set up the AWS IoT Greengrass Core
software as a system service.

• Deploy the AWS IoT Greengrass CLI component, which is a command-line tool
that enables you to develop custom Greengrass components on the core device.

• Specify to use the ggc_user system user to run software components on
the core device. On Linux devices, this command also specifies to use the
ggc_group system group, and the installer creates the system user and group
for you.

When you run this command, you should see the following messages to indicate
that the installer succeeded.

Successfully configured Nucleus with provisioned resource details!
Configured Nucleus to deploy aws.greengrass.Cli component
Successfully set up Nucleus as a system service

Install the AWS IoT Greengrass Core software (console) 143

https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 2

Note

If you have a Linux device and it doesn't have systemd, the installer won't
set up the software as a system service, and you won't see the success
message for setting up the nucleus as a system service.

Nucleus lite

1. Choose Nucleus lite as your core device's software runtime.

2. Select your device set up method to provision your device to a Greengrass core device.

Option 1: Set up a device with package download (approximately 1MB)

1. Create an AWS IoT thing and the role for Greengrass.

2. Download the zip file that contains AWS IoT resources that your device needs to
connect to AWS IoT:

• A certificate and private key generated using AWS IoT's certificate authority.

• A schema file to initiate Greengrass installation for your device.

3. Download the package that will install the latest Greengrass Nucleus lite runtime to
your Raspberry Pi.

4. Provision your device to become an AWS IoT Greengrass Core device and connect it to
AWS IoT:

a. a. Transfer the Greengrass package and connection kit to your device using a USB
thumb drive, SCP/FTP, or SD cards.

b. b. Unzip the greengrass-package.zip file in the /GreengrassInstaller directory on
the device.

c. c. Unzip the connection kit zip file in the /directory on the device.

d. d. Run the provided command on the device to install AWS IoT Greengrass

5. Then, choose View core devices.

Option 2: Set up a device with a pre-configured whole disk sample image download
(approximately 100MB)

Install the AWS IoT Greengrass Core software (console) 144

https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 2

1. Create an AWS IoT thing and the role for Greengrass.

2. Download the zip file that contains AWS IoT resources that your device needs to
connect to AWS IoT:

• A certificate and private key generated using AWS IoT's certificate authority.

• A schema file to initiate Greengrass installation for your device.

3. Download the pre-configured whole disk sample image that contains Greengrass and
the operating system.

a. To transfer the connection kit and flash the image onto your device, follow the
readme file downloaded with the image.

b. To start Greengrass installation, turn on and boot the device from the flashed
image

4. Then, choose View core devices.

Option 3: Set up a device with your own custom build

1. Create an AWS IoT thing and the role for Greengrass.

2. Download the zip file that contains AWS IoT resources that your device needs to
connect to AWS IoT:

• A certificate and private key generated using AWS IoT's certificate authority.

• A schema file to initiate Greengrass installation for your device.

3. To customize and build your own image using Yocto from source code, and then use
the connection kit to install nucleus lite, follow the instructions on GitHub.

• Then, choose View core devices.

Install the AWS IoT Greengrass Core software (CLI)

Note

These steps do not apply to nucleus lite.

Install the AWS IoT Greengrass Core software (CLI) 145

AWS IoT Greengrass Developer Guide, Version 2

To install and configure the AWS IoT Greengrass Core software

1. On your Greengrass core device, run the following command to switch to the home directory.

Linux or Unix

cd ~

Windows Command Prompt (CMD)

cd %USERPROFILE%

PowerShell

cd ~

2. On your core device, download the AWS IoT Greengrass Core software to a file named
greengrass-nucleus-latest.zip.

Linux or Unix

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip > greengrass-nucleus-latest.zip

Windows Command Prompt (CMD)

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip > greengrass-nucleus-latest.zip

PowerShell

iwr -Uri https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip -OutFile greengrass-nucleus-latest.zip

By downloading this software, you agree to the Greengrass Core Software License Agreement.

3. Unzip the AWS IoT Greengrass Core software to a folder on your device. Replace
GreengrassInstaller with the folder that you want to use.

Install the AWS IoT Greengrass Core software (CLI) 146

https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 2

Linux or Unix

unzip greengrass-nucleus-latest.zip -d GreengrassInstaller && rm greengrass-
nucleus-latest.zip

Windows Command Prompt (CMD)

mkdir GreengrassInstaller && tar -xf greengrass-nucleus-latest.zip -
C GreengrassInstaller && del greengrass-nucleus-latest.zip

PowerShell

Expand-Archive -Path greengrass-nucleus-latest.zip -DestinationPath .\
\GreengrassInstaller
rm greengrass-nucleus-latest.zip

4. Run the following command to launch the AWS IoT Greengrass Core software installer. This
command does the following:

• Create the AWS resources that the core device requires to operate.

• Set up the AWS IoT Greengrass Core software as a system service that runs at boot. On Linux
devices, this requires the Systemd init system.

Important

On Windows core devices, you must set up the AWS IoT Greengrass Core software as
a system service.

• Deploy the AWS IoT Greengrass CLI component, which is a command-line tool that enables
you to develop custom Greengrass components on the core device.

• Specify to use the ggc_user system user to run software components on the core device.
On Linux devices, this command also specifies to use the ggc_group system group, and the
installer creates the system user and group for you.

Replace argument values in your command as follows.

a. /greengrass/v2 or C:\greengrass\v2: The path to the root folder to use to install
the AWS IoT Greengrass Core software.

Install the AWS IoT Greengrass Core software (CLI) 147

https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 2

b. GreengrassInstaller. The path to the folder where you unpacked the AWS IoT
Greengrass Core software installer.

c. region. The AWS Region in which to find or create resources.

d. MyGreengrassCore. The name of the AWS IoT thing for your Greengrass core device. If
the thing doesn't exist, the installer creates it. The installer downloads the certificates to
authenticate as the AWS IoT thing. For more information, see Device authentication and
authorization for AWS IoT Greengrass.

Note

The thing name can't contain colon (:) characters.

e. MyGreengrassCoreGroup. The name of AWS IoT thing group for your Greengrass core
device. If the thing group doesn't exist, the installer creates it and adds the thing to it. If
the thing group exists and has an active deployment, the core device downloads and runs
the software that the deployment specifies.

Note

The thing group name can't contain colon (:) characters.

f. GreengrassV2IoTThingPolicy. The name of the AWS IoT policy that allows the
Greengrass core devices to communicate with AWS IoT and AWS IoT Greengrass. If the
AWS IoT policy doesn't exist, the installer creates a permissive AWS IoT policy with this
name. You can restrict this policy's permissions for you use case. For more information, see
Minimal AWS IoT policy for AWS IoT Greengrass V2 core devices.

g. GreengrassV2TokenExchangeRole. The name of the IAM role that allows
the Greengrass core device to get temporary AWS credentials. If the role
doesn't exist, the installer creates it and creates and attaches a policy named
GreengrassV2TokenExchangeRoleAccess. For more information, see Authorize core
devices to interact with AWS services.

h. GreengrassCoreTokenExchangeRoleAlias. The alias to the IAM role that allows the
Greengrass core device to get temporary credentials later. If the role alias doesn't exist,
the installer creates it and points it to the IAM role that you specify. For more information,
see Authorize core devices to interact with AWS services.

Install the AWS IoT Greengrass Core software (CLI) 148

AWS IoT Greengrass Developer Guide, Version 2

Linux or Unix

sudo -E java -Droot="/greengrass/v2" -Dlog.store=FILE \
 -jar ./GreengrassInstaller/lib/Greengrass.jar \
 --aws-region region \
 --thing-name MyGreengrassCore \
 --thing-group-name MyGreengrassCoreGroup \
 --thing-policy-name GreengrassV2IoTThingPolicy \
 --tes-role-name GreengrassV2TokenExchangeRole \
 --tes-role-alias-name GreengrassCoreTokenExchangeRoleAlias \
 --component-default-user ggc_user:ggc_group \
 --provision true \
 --setup-system-service true \
 --deploy-dev-tools true

Windows Command Prompt (CMD)

java -Droot="C:\greengrass\v2" "-Dlog.store=FILE" ^
 -jar ./GreengrassInstaller/lib/Greengrass.jar ^
 --aws-region region ^
 --thing-name MyGreengrassCore ^
 --thing-group-name MyGreengrassCoreGroup ^
 --thing-policy-name GreengrassV2IoTThingPolicy ^
 --tes-role-name GreengrassV2TokenExchangeRole ^
 --tes-role-alias-name GreengrassCoreTokenExchangeRoleAlias ^
 --component-default-user ggc_user ^
 --provision true ^
 --setup-system-service true ^
 --deploy-dev-tools true

PowerShell

java -Droot="C:\greengrass\v2" "-Dlog.store=FILE" `
 -jar ./GreengrassInstaller/lib/Greengrass.jar `
 --aws-region region `
 --thing-name MyGreengrassCore `
 --thing-group-name MyGreengrassCoreGroup `
 --thing-policy-name GreengrassV2IoTThingPolicy `
 --tes-role-name GreengrassV2TokenExchangeRole `
 --tes-role-alias-name GreengrassCoreTokenExchangeRoleAlias `
 --component-default-user ggc_user `

Install the AWS IoT Greengrass Core software (CLI) 149

AWS IoT Greengrass Developer Guide, Version 2

 --provision true `
 --setup-system-service true `
 --deploy-dev-tools true

Note

If you are running AWS IoT Greengrass on a device with limited memory, you can
control the amount of memory that AWS IoT Greengrass Core software uses. To
control memory allocation, you can set JVM heap size options in the jvmOptions
configuration parameter in your nucleus component. For more information, see
Control memory allocation with JVM options.

When you run this command, you should see the following messages to indicate that the
installer succeeded.

Successfully configured Nucleus with provisioned resource details!
Configured Nucleus to deploy aws.greengrass.Cli component
Successfully set up Nucleus as a system service

Note

If you have a Linux device and it doesn't have systemd, the installer won't set up the
software as a system service, and you won't see the success message for setting up the
nucleus as a system service.

(Optional) Run the Greengrass software (Linux)

Note

These steps do not apply to nucleus lite.

If you installed the software as a system service, the installer runs the software for you. Otherwise,
you must run the software. To see if the installer set up the software as a system service, look for
the following line in the installer output.

Run the Greengrass software (Linux) 150

https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 2

Successfully set up Nucleus as a system service

If you don't see this message, do the following to run the software:

1. Run the following command to run the software.

sudo /greengrass/v2/alts/current/distro/bin/loader

The software prints the following message if it launches successfully.

Launched Nucleus successfully.

2. You must leave the current command shell open to keep the AWS IoT Greengrass Core
software running. If you use SSH to connect to the core device, run the following command on
your development computer to open a second SSH session that you can use to run additional
commands on the core device. Replace username with the name of the user to sign in, and
replace pi-ip-address with the IP address of the device.

ssh username@pi-ip-address

For more information about how to interact with the Greengrass system service, see Configure the
Greengrass nucleus as a system service.

Verify the Greengrass CLI installation on the device

Note

These steps do not apply to nucleus lite.

The Greengrass CLI can take up to a minute to deploy. Run the following command to check the
status of the deployment. Replace MyGreengrassCore with the name of your core device.

aws greengrassv2 list-effective-deployments --core-device-thing-name MyGreengrassCore

Verify the Greengrass CLI installation on the device 151

AWS IoT Greengrass Developer Guide, Version 2

The coreDeviceExecutionStatus indicates the status of the deployment to the core device.
When the status is SUCCEEDED, run the following command to verify that the Greengrass CLI is
installed and runs. Replace /greengrass/v2 with the path to the root folder.

Linux or Unix

/greengrass/v2/bin/greengrass-cli help

Windows Command Prompt (CMD)

C:\greengrass\v2\bin\greengrass-cli help

PowerShell

C:\greengrass\v2\bin\greengrass-cli help

The command outputs help information for the Greengrass CLI. If the greengrass-cli isn't
found, the deployment might have failed to install the Greengrass CLI. For more information, see
Troubleshooting AWS IoT Greengrass V2.

You can also run the following command to manually deploy the AWS IoT Greengrass CLI to your
device.

• Replace region with the AWS Region that you use. Make sure that you use the same AWS
Region that you used to configure the AWS CLI on your device.

• Replace account-id with your AWS account ID.

• Replace MyGreengrassCore with the name of your core device.

Linux, macOS, or Unix

aws greengrassv2 create-deployment \
 --target-arn "arn:aws:iot:region:account-id:thing/MyGreengrassCore" \
 --components '{
 "aws.greengrass.Cli": {
 "componentVersion": "2.14.0"
 }
 }'

Verify the Greengrass CLI installation on the device 152

AWS IoT Greengrass Developer Guide, Version 2

Windows Command Prompt (CMD)

aws greengrassv2 create-deployment ^
 --target-arn "arn:aws:iot:region:account-id:thing/MyGreengrassCore" ^
 --components "{\"aws.greengrass.Cli\":{\"componentVersion\":\"2.14.0\"}}"

PowerShell

aws greengrassv2 create-deployment `
 --target-arn "arn:aws:iot:region:account-id:thing/MyGreengrassCore" `
 --components '{\"aws.greengrass.Cli\":{\"componentVersion\":\"2.14.0\"}}'

Tip

You can add /greengrass/v2/bin (Linux) or C:\greengrass\v2\bin (Windows) to
your PATH environment variable to run greengrass-cli without its absolute path.

The AWS IoT Greengrass Core software and local development tools run on your device. Next, you
can develop a Hello World AWS IoT Greengrass component on your device.

Step 4: Develop and test a component on your device

A component is a software module that runs on AWS IoT Greengrass core devices. Components
enable you to create and manage complex applications as discrete building blocks that you can
reuse from one Greengrass core device to another. Every component is composed of a recipe and
artifacts.

• Recipes

Every component contains a recipe file, which defines its metadata. The recipe also specifies
the component's configuration parameters, component dependencies, lifecycle, and platform
compatibility. The component lifecycle defines the commands that install, run, and shut down
the component. For more information, see AWS IoT Greengrass component recipe reference.

You can define recipes in JSON or YAML format.

• Artifacts

Step 4: Develop and test a component on your device 153

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/YAML

AWS IoT Greengrass Developer Guide, Version 2

Components can have any number of artifacts, which are component binaries. Artifacts can
include scripts, compiled code, static resources, and any other files that a component consumes.
Components can also consume artifacts from component dependencies.

With AWS IoT Greengrass, you can use the Greengrass CLI to develop and test components locally
on a Greengrass core device without interaction with the AWS Cloud. When you complete your
local component, you can use the component recipe and artifacts to create that component in the
AWS IoT Greengrass service in the AWS Cloud, and then deploy it to all of your Greengrass core
devices. For more information about components, see Develop AWS IoT Greengrass components.

In this section, you learn how to create and run a basic Hello World component locally on your core
device.

To develop a Hello World component on your device

1. Create a folder for your components with subfolders for recipes and artifacts. Run the
following commands on your Greengrass core device to create these folders and change to the
component folder. Replace ~/greengrassv2 or %USERPROFILE%\greengrassv2 with the
path to the folder to use for local development.

Linux or Unix

mkdir -p ~/greengrassv2/{recipes,artifacts}
cd ~/greengrassv2

Windows Command Prompt (CMD)

mkdir %USERPROFILE%\greengrassv2\\recipes, %USERPROFILE%\greengrassv2\\artifacts
cd %USERPROFILE%\greengrassv2

PowerShell

mkdir ~/greengrassv2/recipes, ~/greengrassv2/artifacts
cd ~/greengrassv2

2. Use a text editor to create a recipe file that defines your component's metadata, parameters,
dependencies, lifecycle, and platform capability. Include the component version in the recipe

Step 4: Develop and test a component on your device 154

AWS IoT Greengrass Developer Guide, Version 2

file name so that you can identify which recipe reflects which component version. You can
choose YAML or JSON format for your recipe.

For example, on a Linux-based system, you can run the following command to use GNU nano
to create the file.

JSON

nano recipes/com.example.HelloWorld-1.0.0.json

YAML

nano recipes/com.example.HelloWorld-1.0.0.yaml

Note

AWS IoT Greengrass uses semantic versions for components. Semantic versions follow
a major.minor.patch number system. For example, version 1.0.0 represents the
first major release for a component. For more information, see the semantic version
specification.

3. Paste the following recipe into the file.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.HelloWorld",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "My first AWS IoT Greengrass component.",
 "ComponentPublisher": "Amazon",
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "Message": "world"
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "linux"

Step 4: Develop and test a component on your device 155

https://semver.org/
https://semver.org/

AWS IoT Greengrass Developer Guide, Version 2

 },
 "Lifecycle": {
 "Run": "python3 -u {artifacts:path}/hello_world.py {configuration:/
Message}"
 }
 },
 {
 "Platform": {
 "os": "windows"
 },
 "Lifecycle": {
 "Run": "py -3 -u {artifacts:path}/hello_world.py {configuration:/
Message}"
 }
 }
]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.HelloWorld
ComponentVersion: '1.0.0'
ComponentDescription: My first AWS IoT Greengrass component.
ComponentPublisher: Amazon
ComponentConfiguration:
 DefaultConfiguration:
 Message: world
Manifests:
 - Platform:
 os: linux
 Lifecycle:
 Run: |
 python3 -u {artifacts:path}/hello_world.py "{configuration:/Message}"
 - Platform:
 os: windows
 Lifecycle:
 Run: |
 py -3 -u {artifacts:path}/hello_world.py "{configuration:/Message}"

Step 4: Develop and test a component on your device 156

AWS IoT Greengrass Developer Guide, Version 2

This recipe's ComponentConfiguration section defines a parameter, Message, that defaults
to world. The Manifests section defines a manifest, which is a set of lifecycle instructions
and artifacts for a platform. You can define multiple manifests to specify different install
instructions for various platforms, for example. In the manifest, the Lifecycle section
instructs the Greengrass core device to run the Hello World script with the Message parameter
value as an argument.

4. Run the following command to create a folder for the component artifacts.

Linux or Unix

mkdir -p artifacts/com.example.HelloWorld/1.0.0

Windows Command Prompt (CMD)

mkdir artifacts\com.example.HelloWorld\1.0.0

PowerShell

mkdir artifacts\com.example.HelloWorld\1.0.0

Important

You must use the following format for the artifact folder path. Include the component
name and version that you specify in the recipe.

artifacts/componentName/componentVersion/

5. Use a text editor to create a Python script artifact file for your Hello World component.

For example, on a Linux-based system, you can run the following command to use GNU nano
to create the file.

nano artifacts/com.example.HelloWorld/1.0.0/hello_world.py

Copy and paste the following Python script into the file.

Step 4: Develop and test a component on your device 157

AWS IoT Greengrass Developer Guide, Version 2

import sys

message = "Hello, %s!" % sys.argv[1]

Print the message to stdout, which Greengrass saves in a log file.
print(message)

6. Use the local AWS IoT Greengrass CLI to manage components on your Greengrass core device.

Run the following command to deploy the component to the AWS IoT Greengrass core.
Replace /greengrass/v2 or C:\greengrass\v2 with your AWS IoT Greengrass V2 root
folder, and replace ~/greengrassv2 or %USERPROFILE%\greengrassv2 with your
component development folder.

Linux or Unix

sudo /greengrass/v2/bin/greengrass-cli deployment create \
 --recipeDir ~/greengrassv2/recipes \
 --artifactDir ~/greengrassv2/artifacts \
 --merge "com.example.HelloWorld=1.0.0"

Windows Command Prompt (CMD)

C:\greengrass\v2\bin\greengrass-cli deployment create ^
 --recipeDir %USERPROFILE%\greengrassv2\recipes ^
 --artifactDir %USERPROFILE%\greengrassv2\artifacts ^
 --merge "com.example.HelloWorld=1.0.0"

PowerShell

C:\greengrass\v2\bin\greengrass-cli deployment create `
 --recipeDir ~/greengrassv2/recipes `
 --artifactDir ~/greengrassv2/artifacts `
 --merge "com.example.HelloWorld=1.0.0"

This command adds the component that uses the recipe in recipes and the Python script
in artifacts. The --merge option adds or updates the component and version that you
specify.

Step 4: Develop and test a component on your device 158

AWS IoT Greengrass Developer Guide, Version 2

7. The AWS IoT Greengrass Core software saves stdout from component process to log files in the
logs folder. Run the following command to verify that the Hello World component runs and
prints messages.

Linux or Unix

sudo tail -f /greengrass/v2/logs/com.example.HelloWorld.log

Windows Command Prompt (CMD)

type C:\greengrass\v2\logs\com.example.HelloWorld.log

The type command writes the file's contents to the terminal. Run this command multiple
times to observe changes in the file.

PowerShell

gc C:\greengrass\v2\logs\com.example.HelloWorld.log -Tail 10 -Wait

You should see messages similar to the following example.

Hello, world!

Note

If the file doesn't exist, the local deployment may not be complete yet. If the file
doesn't exist within 15 seconds, the deployment likely failed. This can occur if your
recipe isn't valid, for example. Run the following command to view the AWS IoT
Greengrass core log file. This file includes logs from the Greengrass core device's
deployment service.

Linux or Unix

sudo tail -f /greengrass/v2/logs/greengrass.log

Step 4: Develop and test a component on your device 159

AWS IoT Greengrass Developer Guide, Version 2

Windows Command Prompt (CMD)

type C:\greengrass\v2\logs\greengrass.log

The type command writes the file's contents to the terminal. Run this command
multiple times to observe changes in the file.

PowerShell

gc C:\greengrass\v2\logs\greengrass.log -Tail 10 -Wait

8. Modify the local component to iterate and test your code. Open hello_world.py in a text
editor, and add the following code at line 4 to edit the message that the AWS IoT Greengrass
core logs.

message += " Greetings from your first Greengrass component."

The hello_world.py script should now have the following contents.

import sys

message = "Hello, %s!" % sys.argv[1]
message += " Greetings from your first Greengrass component."

Print the message to stdout, which Greengrass saves in a log file.
print(message)

9. Run the following command to update the component with your changes.

Linux or Unix

sudo /greengrass/v2/bin/greengrass-cli deployment create \
 --recipeDir ~/greengrassv2/recipes \
 --artifactDir ~/greengrassv2/artifacts \
 --merge "com.example.HelloWorld=1.0.0"

Windows Command Prompt (CMD)

C:\greengrass\v2\bin\greengrass-cli deployment create ^

Step 4: Develop and test a component on your device 160

AWS IoT Greengrass Developer Guide, Version 2

 --recipeDir %USERPROFILE%\greengrassv2\recipes ^
 --artifactDir %USERPROFILE%\greengrassv2\artifacts ^
 --merge "com.example.HelloWorld=1.0.0"

PowerShell

C:\greengrass\v2\bin\greengrass-cli deployment create `
 --recipeDir ~/greengrassv2/recipes `
 --artifactDir ~/greengrassv2/artifacts `
 --merge "com.example.HelloWorld=1.0.0"

This command updates the com.example.HelloWorld component with the latest Hello
World artifact.

10. Run the following command to restart the component. When you restart a component, the
core device uses the latest changes.

Linux or Unix

sudo /greengrass/v2/bin/greengrass-cli component restart \
 --names "com.example.HelloWorld"

Windows Command Prompt (CMD)

C:\greengrass\v2\bin\greengrass-cli component restart ^
 --names "com.example.HelloWorld"

PowerShell

C:\greengrass\v2\bin\greengrass-cli component restart `
 --names "com.example.HelloWorld"

11. Check the log again to verify that the Hello World component prints the new message.

Linux or Unix

sudo tail -f /greengrass/v2/logs/com.example.HelloWorld.log

Step 4: Develop and test a component on your device 161

AWS IoT Greengrass Developer Guide, Version 2

Windows Command Prompt (CMD)

type C:\greengrass\v2\logs\com.example.HelloWorld.log

The type command writes the file's contents to the terminal. Run this command multiple
times to observe changes in the file.

PowerShell

gc C:\greengrass\v2\logs\com.example.HelloWorld.log -Tail 10 -Wait

You should see messages similar to the following example.

Hello, world! Greetings from your first Greengrass component.

12. You can update the component's configuration parameters to test different configurations.
When you deploy a component, you can specify a configuration update, which defines how to
modify the component's configuration on the core device. You can specify which configuration
values to reset to default values and the new configuration values to merge onto the core
device. For more information, see Update component configurations.

Do the following:

a. Use a text editor to create a file called hello-world-config-update.json to contain
the configuration update

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano hello-world-config-update.json

b. Copy and paste the following JSON object into the file. This JSON object defines a
configuration update that merges the value friend to the Message parameter to update
its value. This configuration update doesn't specify any values to reset. You don't need to
reset the Message parameter because the merge update replaces the existing value.

{
 "com.example.HelloWorld": {
 "MERGE": {

Step 4: Develop and test a component on your device 162

AWS IoT Greengrass Developer Guide, Version 2

 "Message": "friend"
 }
 }
}

c. Run the following command to deploy the configuration update to the Hello World
component.

Linux or Unix

sudo /greengrass/v2/bin/greengrass-cli deployment create \
 --merge "com.example.HelloWorld=1.0.0" \
 --update-config hello-world-config-update.json

Windows Command Prompt (CMD)

C:\greengrass\v2\bin\greengrass-cli deployment create ^
 --merge "com.example.HelloWorld=1.0.0" ^
 --update-config hello-world-config-update.json

PowerShell

C:\greengrass\v2\bin\greengrass-cli deployment create `
 --merge "com.example.HelloWorld=1.0.0" `
 --update-config hello-world-config-update.json

d. Check the log again to verify that the Hello World component outputs the new message.

Linux or Unix

sudo tail -f /greengrass/v2/logs/com.example.HelloWorld.log

Windows Command Prompt (CMD)

type C:\greengrass\v2\logs\com.example.HelloWorld.log

The type command writes the file's contents to the terminal. Run this command
multiple times to observe changes in the file.

Step 4: Develop and test a component on your device 163

AWS IoT Greengrass Developer Guide, Version 2

PowerShell

gc C:\greengrass\v2\logs\com.example.HelloWorld.log -Tail 10 -Wait

You should see messages similar to the following example.

Hello, friend! Greetings from your first Greengrass component.

13. After you finish testing your component, remove it from your core device. Run the following
command.

Linux or Unix

sudo /greengrass/v2/bin/greengrass-cli deployment create --
remove="com.example.HelloWorld"

Windows Command Prompt (CMD)

C:\greengrass\v2\bin\greengrass-cli deployment create --
remove="com.example.HelloWorld"

PowerShell

C:\greengrass\v2\bin\greengrass-cli deployment create --
remove="com.example.HelloWorld"

Important

This step is required for you to deploy the component back to the core device after
you upload it to AWS IoT Greengrass. Otherwise, the deployment fails with a version
compatibility error because the local deployment specifies a different version of the
component.

Run the following command and verify that the com.example.HelloWorld component
doesn't appear in the list of components on your device.

Step 4: Develop and test a component on your device 164

AWS IoT Greengrass Developer Guide, Version 2

Linux or Unix

sudo /greengrass/v2/bin/greengrass-cli component list

Windows Command Prompt (CMD)

C:\greengrass\v2\bin\greengrass-cli component list

PowerShell

C:\greengrass\v2\bin\greengrass-cli component list

Your Hello World component is complete, and you can now upload it to the AWS IoT Greengrass
cloud service. Then, you can deploy the component to Greengrass core devices.

Step 5: Create your component in the AWS IoT Greengrass
service

When you finish developing a component on your core device, you can upload it to the AWS IoT
Greengrass service in the AWS Cloud. You can also directly create the component in the AWS IoT
Greengrass console. AWS IoT Greengrass provides a component management service that hosts
your components so that you can deploy them to individual devices or fleets of devices. To upload
a component to the AWS IoT Greengrass service, you complete the following steps:

• Upload component artifacts to an S3 bucket.

• Add each artifact's Amazon Simple Storage Service (Amazon S3) URI to the component recipe.

• Create a component in AWS IoT Greengrass from the component recipe.

In this section, you complete these steps on your Greengrass core device to upload your Hello
World component to the AWS IoT Greengrass service.

Step 5: Create your component in the AWS IoT Greengrass service 165

https://console.aws.amazon.com/greengrass
https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Create your component in AWS IoT Greengrass (console)

1. Use an S3 bucket in your AWS account to host AWS IoT Greengrass component artifacts. When
you deploy the component to a core device, the device downloads the component's artifacts
from the bucket.

You can use an existing S3 bucket, or you can create a new bucket.

a. In the Amazon S3 console, under Buckets, choose Create bucket.

b. For Bucket name, enter a unique bucket name. For example, you can use greengrass-
component-artifacts-region-123456789012. Replace 123456789012 with your
AWS account ID and region with the AWS Region that you use for this tutorial.

c. For AWS region, select the AWS Region that you use for this tutorial.

d. Choose Create bucket.

e. Under Buckets, choose the bucket that you created, upload the hello_world.py
script to the artifacts/com.example.HelloWorld/1.0.0 folder in the bucket. For
information about uploading objects to S3 buckets, see Uploading objects in the Amazon
Simple Storage Service User Guide.

f. Copy the S3 URI of the hello_world.py object in the S3 bucket. This URI should look
similar to the following example. Replace amzn-s3-demo-bucket with the name of the S3
bucket.

s3://amzn-s3-demo-bucket/artifacts/com.example.HelloWorld/1.0.0/hello_world.py

2. Allow the core device to access component artifacts in the S3 bucket.

Each core device has a core device IAM role that allows it to interact with AWS IoT and send
logs to the AWS Cloud. This device role doesn't allow access to S3 buckets by default, so you
must create and attach a policy that allows the core device to retrieve component artifacts
from the S3 bucket.

If your device's role already allows access to the S3 bucket, you can skip this step. Otherwise,
create an IAM policy that allows access and attach it to the role, as follows:

a. In the IAM console navigation menu, choose Policies, and then choose Create policy.

b. On the JSON tab, replace the placeholder content with the following policy. Replace
amzn-s3-demo-bucket with the name of the S3 bucket that contains component artifacts
for the core device to download.

Step 5: Create your component in the AWS IoT Greengrass service 166

https://console.aws.amazon.com/s3
https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html
https://console.aws.amazon.com/iam

AWS IoT Greengrass Developer Guide, Version 2

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket/*"
 }
]
}

c. Choose Next.

d. In the Policy details section, for Name, enter
MyGreengrassV2ComponentArtifactPolicy.

e. Choose Create policy.

f. In the IAM console navigation menu, choose Role, and then choose the name of
the role for the core device. You specified this role name when you installed the
AWS IoT Greengrass Core software. If you did not specify a name, the default is
GreengrassV2TokenExchangeRole.

g. Under Permissions, choose Add permissions, then choose Attach policies.

h. On the Add permissions page, select the check box next to the
MyGreengrassV2ComponentArtifactPolicy policy that you created, and then choose
Add permissions.

3. Use the component recipe to create a component in the AWS IoT Greengrass console.

a. In the AWS IoT Greengrass console navigation menu, choose Components, and then
choose Create component.

b. Under Component information, choose Enter recipe as JSON. The placeholder recipe
should look similar to the following example.

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.HelloWorld",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "My first AWS IoT Greengrass component.",
 "ComponentPublisher": "Amazon",

Step 5: Create your component in the AWS IoT Greengrass service 167

https://console.aws.amazon.com/iam
https://console.aws.amazon.com/greengrass
https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "Message": "world"
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "linux"
 },
 "Lifecycle": {
 "Run": "python3 -u {artifacts:path}/hello_world.py \"{configuration:/
Message}\""
 },
 "Artifacts": [
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.HelloWorld/1.0.0/hello_world.py"
 }
]
 },
 {
 "Platform": {
 "os": "windows"
 },
 "Lifecycle": {
 "Run": "py -3 -u {artifacts:path}/hello_world.py \"{configuration:/
Message}\""
 },
 "Artifacts": [
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.HelloWorld/1.0.0/hello_world.py"
 }
]
 }
]
}

c. Replace the placeholder URI in each Artifacts section with S3 URI of your
hello_world.py object.

d. Choose Create component.

Step 5: Create your component in the AWS IoT Greengrass service 168

AWS IoT Greengrass Developer Guide, Version 2

e. On the com.example.HelloWorld component page, verify that the Status of the
component is Deployable.

Create your component in AWS IoT Greengrass (AWS CLI)

To upload your Hello World component

1. Use an S3 bucket in your AWS account to host AWS IoT Greengrass component artifacts. When
you deploy the component to a core device, the device downloads the component's artifacts
from the bucket.

You can use an existing S3 bucket, or run the following command to create a bucket. This
command creates a bucket with your AWS account ID and AWS Region to form a unique bucket
name. Replace 123456789012 with your AWS account ID and region with the AWS Region
that you use for this tutorial.

aws s3 mb s3://greengrass-component-artifacts-123456789012-region

The command outputs the following information if the request succeeds.

make_bucket: greengrass-component-artifacts-123456789012-region

2. Allow the core device to access component artifacts in the S3 bucket.

Each core device has a core device IAM role that allows it to interact with AWS IoT and send
logs to the AWS Cloud. This device role doesn't allow access to S3 buckets by default, so you
must create and attach a policy that allows the core device to retrieve component artifacts
from the S3 bucket.

If the core device's role already allows access to the S3 bucket, you can skip this step.
Otherwise, create an IAM policy that allows access and attach it to the role, as follows:

a. Create a file called component-artifact-policy.json and copy the following JSON
into the file. This policy allows access to all files in an S3 bucket. Replace amzn-s3-demo-
bucket with the name of the S3 bucket.

{
 "Version": "2012-10-17",
 "Statement": [

Step 5: Create your component in the AWS IoT Greengrass service 169

AWS IoT Greengrass Developer Guide, Version 2

 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket/*"
 }
]
}

b. Run the following command to create the policy from the policy document in
component-artifact-policy.json.

Linux or Unix

aws iam create-policy \\
 --policy-name MyGreengrassV2ComponentArtifactPolicy \\
 --policy-document file://component-artifact-policy.json

Windows Command Prompt (CMD)

aws iam create-policy ^
 --policy-name MyGreengrassV2ComponentArtifactPolicy ^
 --policy-document file://component-artifact-policy.json

PowerShell

aws iam create-policy `
 --policy-name MyGreengrassV2ComponentArtifactPolicy `
 --policy-document file://component-artifact-policy.json

Copy the policy Amazon Resource Name (ARN) from the policy metadata in the output.
You use this ARN to attach this policy to the core device role in the next step.

c. Run the following command to attach the policy to the core device role. Replace
GreengrassV2TokenExchangeRole with the name of the role for the core device.
You specified this role name when you installed the AWS IoT Greengrass Core software.
Replace the policy ARN with the ARN from the previous step.

Step 5: Create your component in the AWS IoT Greengrass service 170

AWS IoT Greengrass Developer Guide, Version 2

Linux or Unix

aws iam attach-role-policy \\
 --role-name GreengrassV2TokenExchangeRole \\
 --policy-arn
 arn:aws:iam::123456789012:policy/MyGreengrassV2ComponentArtifactPolicy

Windows Command Prompt (CMD)

aws iam attach-role-policy ^
 --role-name GreengrassV2TokenExchangeRole ^
 --policy-arn
 arn:aws:iam::123456789012:policy/MyGreengrassV2ComponentArtifactPolicy

PowerShell

aws iam attach-role-policy `
 --role-name GreengrassV2TokenExchangeRole `
 --policy-arn
 arn:aws:iam::123456789012:policy/MyGreengrassV2ComponentArtifactPolicy

If the command has no output, it succeeded. The core device can now access artifacts that
you upload to this S3 bucket.

3. Upload the Hello World Python script artifact to the S3 bucket.

Run the following command to upload the script to the same path in the bucket where the
script exists on your AWS IoT Greengrass core. Replace amzn-s3-demo-bucket with the name
of the S3 bucket.

Linux or Unix

aws s3 cp \
 artifacts/com.example.HelloWorld/1.0.0/hello_world.py \
 s3://amzn-s3-demo-bucket/artifacts/com.example.HelloWorld/1.0.0/hello_world.py

Windows Command Prompt (CMD)

aws s3 cp ^

Step 5: Create your component in the AWS IoT Greengrass service 171

AWS IoT Greengrass Developer Guide, Version 2

 artifacts/com.example.HelloWorld/1.0.0/hello_world.py ^
 s3://amzn-s3-demo-bucket/artifacts/com.example.HelloWorld/1.0.0/hello_world.py

PowerShell

aws s3 cp `
 artifacts/com.example.HelloWorld/1.0.0/hello_world.py `
 s3://amzn-s3-demo-bucket/artifacts/com.example.HelloWorld/1.0.0/hello_world.py

The command outputs a line that starts with upload: if the request succeeds.

4. Add the artifact's Amazon S3 URI to the component recipe.

The Amazon S3 URI is composed of the bucket name and the path to the artifact object in the
bucket. Your script artifact's Amazon S3 URI is the URI that you upload the artifact to in the
previous step. This URI should look similar to the following example. Replace amzn-s3-demo-
bucket with the name of the S3 bucket.

s3://amzn-s3-demo-bucket/artifacts/com.example.HelloWorld/1.0.0/hello_world.py

To add the artifact to the recipe, add a list of Artifacts that contains a structure with the
Amazon S3 URI.

JSON

"Artifacts": [
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/com.example.HelloWorld/1.0.0/
hello_world.py"
 }
]

Open the recipe file in a text editor.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano recipes/com.example.HelloWorld-1.0.0.json

Step 5: Create your component in the AWS IoT Greengrass service 172

AWS IoT Greengrass Developer Guide, Version 2

Add the artifact to the recipe. Your recipe file should look similar to the following example.

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.HelloWorld",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "My first AWS IoT Greengrass component.",
 "ComponentPublisher": "Amazon",
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "Message": "world"
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "linux"
 },
 "Lifecycle": {
 "Run": "python3 -u {artifacts:path}/hello_world.py \"{configuration:/
Message}\""
 },
 "Artifacts": [
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.HelloWorld/1.0.0/hello_world.py"
 }
]
 },
 {
 "Platform": {
 "os": "windows"
 },
 "Lifecycle": {
 "Run": "py -3 -u {artifacts:path}/hello_world.py \"{configuration:/
Message}\""
 },
 "Artifacts": [
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.HelloWorld/1.0.0/hello_world.py"
 }
]

Step 5: Create your component in the AWS IoT Greengrass service 173

AWS IoT Greengrass Developer Guide, Version 2

 }
]
}

YAML

Artifacts:
 - URI: s3://amzn-s3-demo-bucket/artifacts/com.example.HelloWorld/1.0.0/
hello_world.py

Open the recipe file in a text editor.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano recipes/com.example.HelloWorld-1.0.0.yaml

Add the artifact to the recipe. Your recipe file should look similar to the following example.

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.HelloWorld
ComponentVersion: '1.0.0'
ComponentDescription: My first AWS IoT Greengrass component.
ComponentPublisher: Amazon
ComponentConfiguration:
 DefaultConfiguration:
 Message: world
Manifests:
 - Platform:
 os: linux
 Lifecycle:
 Run: |
 python3 -u {artifacts:path}/hello_world.py "{configuration:/Message}"
 Artifacts:
 - URI: s3://amzn-s3-demo-bucket/artifacts/com.example.HelloWorld/1.0.0/
hello_world.py
 - Platform:
 os: windows
 Lifecycle:
 Run: |

Step 5: Create your component in the AWS IoT Greengrass service 174

AWS IoT Greengrass Developer Guide, Version 2

 py -3 -u {artifacts:path}/hello_world.py "{configuration:/Message}"
 Artifacts:
 - URI: s3://amzn-s3-demo-bucket/artifacts/com.example.HelloWorld/1.0.0/
hello_world.py

5. Create a component resource in AWS IoT Greengrass from the recipe. Run the following
command to create the component from the recipe, which you provide as a binary file.

JSON

aws greengrassv2 create-component-version --inline-recipe fileb://recipes/
com.example.HelloWorld-1.0.0.json

YAML

aws greengrassv2 create-component-version --inline-recipe fileb://recipes/
com.example.HelloWorld-1.0.0.yaml

The response looks similar to the following example if the request succeeds.

{
 "arn":
 "arn:aws:greengrass:region:123456789012:components:com.example.HelloWorld:versions:1.0.0",
 "componentName": "com.example.HelloWorld",
 "componentVersion": "1.0.0",
 "creationTimestamp": "Mon Nov 30 09:04:05 UTC 2020",
 "status": {
 "componentState": "REQUESTED",
 "message": "NONE",
 "errors": {}
 }
}

Copy the arn from the output to check the state of the component in the next step.

Note

You can also see your Hello World component in the AWS IoT Greengrass console on
the Components page.

Step 5: Create your component in the AWS IoT Greengrass service 175

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

6. Verify that the component creates and is ready to be deployed. When you create a component,
its state is REQUESTED. Then, AWS IoT Greengrass validates that the component is deployable.
You can run the following command to query the component status and verify that your
component is deployable. Replace the arn with the ARN from the previous step.

aws greengrassv2 describe-component --arn
 "arn:aws:greengrass:region:123456789012:components:com.example.HelloWorld:versions:1.0.0"

If the component validates, the response indicates that the component state is DEPLOYABLE.

{
 "arn":
 "arn:aws:greengrass:region:123456789012:components:com.example.HelloWorld:versions:1.0.0",
 "componentName": "com.example.HelloWorld",
 "componentVersion": "1.0.0",
 "creationTimestamp": "2020-11-30T18:04:05.823Z",
 "publisher": "Amazon",
 "description": "My first Greengrass component.",
 "status": {
 "componentState": "DEPLOYABLE",
 "message": "NONE",
 "errors": {}
 },
 "platforms": [
 {
 "os": "linux",
 "architecture": "all"
 }
]
}

Your Hello World component is now available in AWS IoT Greengrass. You can deploy it back to this
Greengrass core device or to other core devices.

Step 6: Deploy your component

With AWS IoT Greengrass, you can deploy components to individual devices or groups of devices.
When you deploy a component, AWS IoT Greengrass installs and runs that component's software
on each target device. You specify which components to deploy and the configuration update to

Step 6: Deploy your component 176

AWS IoT Greengrass Developer Guide, Version 2

deploy for each component. You can also control how the deployment rolls out to the devices that
the deployment targets. For more information, see Deploy AWS IoT Greengrass components to
devices.

In this section, you deploy your Hello World component back to your Greengrass core device.

Deploy your component (console)

1. In the AWS IoT Greengrass console navigation menu, choose Components.

2. On the Components page, on the My components tab, choose com.example.HelloWorld.

3. On the com.example.HelloWorld page, choose Deploy.

4. From Add to deployment, choose Create new deployment, then choose Next.

5. On the Specify target page, do the following:

a. In the Name box, enter Deployment for MyGreengrassCore.

b. For Deployment target, choose Core device, and the name of the AWS IoT thing for your
core device. The default value in this tutorial is MyGreengrassCore.

c. Choose Next.

6. On the Select components page, under My components, verify that the
com.example.HelloWorld component is selected, and choose Next.

7. On the Configure components page, choose com.example.HelloWorld, and do the following:

a. Choose Configure component.

b. Under Configuration update, in Configuration to merge, enter the following
configuration.

{
 "Message": "universe"
}

This configuration update sets the Hello World Message parameter to universe for the
device in this deployment.

c. Choose Confirm.

d. Choose Next.

8. On the Configure advanced settings page, keep the default configuration settings, and
choose Next.

Step 6: Deploy your component 177

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

9. On the Review page, choose Deploy.

10. Verify that the deployment completes successfully. The deployment can take several minutes
to complete. Check the Hello World log to verify the change. Run the following command on
your Greengrass core device.

Linux or Unix

sudo tail -f /greengrass/v2/logs/com.example.HelloWorld.log

Windows Command Prompt (CMD)

type C:\greengrass\v2\\logs\\com.example.HelloWorld.log

PowerShell

gc C:\greengrass\v2\\logs\\com.example.HelloWorld.log -Tail 10 -Wait

You should see messages similar to the following example.

Hello, universe! Greetings from your first Greengrass component.

Note

If the log messages don't change, the deployment failed or didn't reach the core
device. This can occur if your core device isn't connected to the internet or doesn't have
permissions to retrieve artifacts from your S3 bucket. Run the following command
on your core device to view the AWS IoT Greengrass Core software log file. This file
includes logs from the Greengrass core device's deployment service.

Linux or Unix

sudo tail -f /greengrass/v2/logs/greengrass.log

Windows Command Prompt (CMD)

type C:\greengrass\v2\\logs\\greengrass.log

Step 6: Deploy your component 178

AWS IoT Greengrass Developer Guide, Version 2

The type command writes the file's contents to the terminal. Run this command
multiple times to observe changes in the file.

PowerShell

gc C:\greengrass\v2\\logs\\greengrass.log -Tail 10 -Wait

For more information, see Troubleshooting AWS IoT Greengrass V2.

Deploy your component (AWS CLI)

To deploy your Hello World component

1. On your development computer, create a file called hello-world-deployment.json and
copy the following JSON into the file. This file defines the components and configurations to
deploy.

{
 "components": {
 "com.example.HelloWorld": {
 "componentVersion": "1.0.0",
 "configurationUpdate": {
 "merge": "{\"Message\":\"universe\"}"
 }
 }
 }
}

This configuration file specifies to deploy version 1.0.0 of the Hello World component
that you developed and published in the previous procedure. The configurationUpdate
specifies to merge the component configuration in a JSON-encoded string. This configuration
update sets the Hello World Message parameter to universe for the device in this
deployment.

2. Run the following command to deploy the component to your Greengrass core device. You can
deploy to things, which are individual devices, or thing groups, which are groups of devices.
Replace MyGreengrassCore with the name of the AWS IoT thing for your core device.

Step 6: Deploy your component 179

AWS IoT Greengrass Developer Guide, Version 2

Linux or Unix

aws greengrassv2 create-deployment \
 --target-arn "arn:aws:iot:region:account-id:thing/MyGreengrassCore" \
 --cli-input-json file://hello-world-deployment.json

Windows Command Prompt (CMD)

aws greengrassv2 create-deployment ^
 --target-arn "arn:aws:iot:region:account-id:thing/MyGreengrassCore" ^
 --cli-input-json file://hello-world-deployment.json

PowerShell

aws greengrassv2 create-deployment `
 --target-arn "arn:aws:iot:region:account-id:thing/MyGreengrassCore" `
 --cli-input-json file://hello-world-deployment.json

The command outputs a response similar to the following example.

{
 "deploymentId": "deb69c37-314a-4369-a6a1-3dff9fce73a9",
 "iotJobId": "b5d92151-6348-4941-8603-bdbfb3e02b75",
 "iotJobArn": "arn:aws:iot:region:account-id:job/b5d92151-6348-4941-8603-
bdbfb3e02b75"
}

3. Verify that the deployment completes successfully. The deployment can take several minutes
to complete. Check the Hello World log to verify the change. Run the following command on
your Greengrass core device.

Linux or Unix

sudo tail -f /greengrass/v2/logs/com.example.HelloWorld.log

Windows Command Prompt (CMD)

type C:\greengrass\v2\\logs\\com.example.HelloWorld.log

Step 6: Deploy your component 180

AWS IoT Greengrass Developer Guide, Version 2

PowerShell

gc C:\greengrass\v2\\logs\\com.example.HelloWorld.log -Tail 10 -Wait

You should see messages similar to the following example.

Hello, universe! Greetings from your first Greengrass component.

Note

If the log messages don't change, the deployment failed or didn't reach the core
device. This can occur if your core device isn't connected to the internet or doesn't have
permissions to retrieve artifacts from your S3 bucket. Run the following command
on your core device to view the AWS IoT Greengrass Core software log file. This file
includes logs from the Greengrass core device's deployment service.

Linux or Unix

sudo tail -f /greengrass/v2/logs/greengrass.log

Windows Command Prompt (CMD)

type C:\greengrass\v2\\logs\\greengrass.log

The type command writes the file's contents to the terminal. Run this command
multiple times to observe changes in the file.

PowerShell

gc C:\greengrass\v2\\logs\\greengrass.log -Tail 10 -Wait

For more information, see Troubleshooting AWS IoT Greengrass V2.

Step 6: Deploy your component 181

AWS IoT Greengrass Developer Guide, Version 2

Next steps

You've completed this tutorial. The AWS IoT Greengrass Core software and your Hello World
component run on your device. Also, your Hello World component is available in the AWS IoT
Greengrass cloud service to deploy to other devices. For more information about the topics that
this tutorial explores, see the following:

• Create AWS IoT Greengrass components

• Publish components to deploy to your core devices

• Deploy AWS IoT Greengrass components to devices

Next steps 182

AWS IoT Greengrass Developer Guide, Version 2

Setting up AWS IoT Greengrass core devices

Complete the tasks in this section to install, configure, and run the AWS IoT Greengrass Core
software.

Note

This section describes advanced installation and configuration of the AWS IoT Greengrass
Core software. These steps do not apply to nucleus lite.If you're a first-time user of AWS IoT
Greengrass V2, we recommend that you first complete the getting started tutorial to set up
a core device and explore the features of AWS IoT Greengrass.

Topics

• Supported platforms

• Device requirements

• Lambda function requirements

• Set up an AWS account

• Install the AWS IoT Greengrass Core software

• Run the AWS IoT Greengrass Core software

• Run AWS IoT Greengrass Core software in a Docker container

• Configure the AWS IoT Greengrass Core software

• Update the AWS IoT Greengrass Core software (OTA)

• Uninstall the AWS IoT Greengrass Core software

Supported platforms

• Greengrass nucleus supported platforms

• Greengrass nucleus lite supported platforms

Device requirements

• Greengrass nucleus device requirements

Supported platforms 183

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-nucleus-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-nucleus-lite-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-nucleus-component.html

AWS IoT Greengrass Developer Guide, Version 2

• Greengrass nucleus lite device requirements

Lambda function requirements

Important

Greengrass Lambda functions are currently not supported by Greengrass nucleus lite.

Your device must meet the following requirements to run Lambda functions:

• A Linux-based operating system.

• Your device must have the mkfifo shell command.

• Your device must run the programming language libraries that a Lambda function requires. You
must install the required libraries on the device and add them to the PATH environment variable.
Greengrass supports all Lambda supported versions of Python, Node.js, and Java runtimes.
Greengrass doesn't apply any additional restrictions on deprecated Lambda runtime versions.
For more information about AWS IoT Greengrass support for Lambda runtimes, see Run AWS
Lambda functions.

• To run containerized Lambda functions, your device must meet the following requirements:

• Linux kernel version 4.4 or later.

• The kernel must support cgroups v1, and you must enable and mount the following cgroups:

• The memory cgroup for AWS IoT Greengrass to set the memory limit for containerized
Lambda functions.

• The devices cgroup for containerized Lambda functions to access system devices or volumes.

The AWS IoT Greengrass Core software doesn't support cgroups v2.

To meet this requirement, boot the device with the following Linux kernel parameters.

cgroup_enable=memory cgroup_memory=1 systemd.unified_cgroup_hierarchy=0

Lambda function requirements 184

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-nucleus-lite-component.html
https://en.wikipedia.org/wiki/Cgroups

AWS IoT Greengrass Developer Guide, Version 2

Tip

On a Raspberry Pi, edit the /boot/cmdline.txt file to set the device's kernel
parameters.

• You must enable the following Linux kernel configurations on the device:

• Namespace:

• CONFIG_IPC_NS

• CONFIG_UTS_NS

• CONFIG_USER_NS

• CONFIG_PID_NS

• Cgroups:

• CONFIG_CGROUP_DEVICE

• CONFIG_CGROUPS

• CONFIG_MEMCG

• Others:

• CONFIG_POSIX_MQUEUE

• CONFIG_OVERLAY_FS

• CONFIG_HAVE_ARCH_SECCOMP_FILTER

• CONFIG_SECCOMP_FILTER

• CONFIG_KEYS

• CONFIG_SECCOMP

• CONFIG_SHMEM

Tip

Check the documentation for your Linux distribution to learn how to verify and
set Linux kernel parameters. You can also use AWS IoT Device Tester for AWS IoT
Greengrass to verify that your device meets these requirements. For more information,
see Using AWS IoT Device Tester for AWS IoT Greengrass V2.

Lambda function requirements 185

AWS IoT Greengrass Developer Guide, Version 2

Set up an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

To create an administrator user, choose one of the following options.

Choose
one
way to
manage
your
administr
ator

To By You can also

In IAM
Identity
Center

(Recommen
ded)

Use short-term
credentials to access
AWS.

This aligns with the
security best practices
. For information
about best practices
, see Security best

Following the instructions
in Getting started in the
AWS IAM Identity Center
User Guide.

Configure programmatic
access by Configuring the
AWS CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface User
Guide.

Set up an AWS account 186

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html

AWS IoT Greengrass Developer Guide, Version 2

Choose
one
way to
manage
your
administr
ator

To By You can also

practices in IAM in the
IAM User Guide.

In IAM

(Not
recommend
ed)

Use long-term
credentials to access
AWS.

Following the instructions
in Create an IAM user for
emergency access in the
IAM User Guide.

Configure programmatic
access by Manage access keys
for IAM users in the IAM User
Guide.

Install the AWS IoT Greengrass Core software

AWS IoT Greengrass extends AWS to edge devices so that they can act on the data they generate,
while they use the AWS Cloud for management, analytics, and durable storage. Install the AWS
IoT Greengrass Core software on edge devices to integrate with AWS IoT Greengrass and the AWS
Cloud.

Important

Before you download and install the AWS IoT Greengrass Core software, check that your
core device meets the requirements to install and run the AWS IoT Greengrass Core
software v2.0.

The AWS IoT Greengrass Core software includes an installer that sets up your device as a
Greengrass core device. When you run the installer, you can configure options, such as the root
folder and the AWS Region to use. You can choose to have the installer create required AWS IoT
and IAM resources for you. You can also choose to deploy local development tools to configure a
device that you use for custom component development.

Install the AWS IoT Greengrass Core software 187

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started-emergency-iam-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started-emergency-iam-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

AWS IoT Greengrass Developer Guide, Version 2

The AWS IoT Greengrass Core software requires the following AWS IoT and IAM resources to
connect to the AWS Cloud and operate:

• An AWS IoT thing. When you register a device as an AWS IoT thing, that device can use a digital
certificate to authenticate with AWS. This certificate allows the device to communicate with AWS
IoT and AWS IoT Greengrass. For more information, see Device authentication and authorization
for AWS IoT Greengrass.

• (Optional) An AWS IoT thing group. You use thing groups to manage fleets of Greengrass core
devices. When you deploy software components to your devices, you can choose to deploy to
individual devices or to groups of devices. You can add a device to a thing group to deploy that
thing group's software components to the device. For more information, see Deploy AWS IoT
Greengrass components to devices.

• An IAM role. Greengrass core devices use the AWS IoT Core credentials provider to authorize calls
to AWS services with an IAM role. This role allows your device to interact with AWS IoT, send logs
to Amazon CloudWatch Logs, and download custom component artifacts from Amazon Simple
Storage Service (Amazon S3). For more information, see Authorize core devices to interact with
AWS services.

• An AWS IoT role alias. Greengrass core devices use the role alias to identify the IAM role to use.
The role alias enables you to change the IAM role but keep the device configuration the same.
For more information, see Authorizing direct calls to AWS services in the AWS IoT Core Developer
Guide.

Choose one of the following options to install the AWS IoT Greengrass Core software on your core
device.

• Quick installation

Choose this option to set up a Greengrass core device in as few steps as possible. The installer
creates the required AWS IoT and IAM resources for you. This option requires you to provide AWS
credentials to the installer to create resources in your AWS account.

You can't use this option to install behind a firewall or network proxy. If your devices are behind
a firewall or network proxy, consider manual installation.

For more information, see Install AWS IoT Greengrass Core software with automatic resource
provisioning.

• Manual installation

Install the AWS IoT Greengrass Core software 188

https://docs.aws.amazon.com/iot/latest/developerguide/authorizing-direct-aws.html

AWS IoT Greengrass Developer Guide, Version 2

Choose this option to create the required AWS resources manually or to install behind a firewall
or network proxy. By using a manual installation, you don't need to give the installer permission
to create resources in your AWS account, because you create the required AWS IoT and IAM
resources. You can also configure your device to connect on port 443 or through a network
proxy. You can also configure the AWS IoT Greengrass Core software to use a private key and
certificate that you store in a hardware security module (HSM), Trusted Platform Module (TPM),
or another cryptographic element.

For more information, see Install AWS IoT Greengrass Core software with manual resource
provisioning.

• Installation with AWS IoT fleet provisioning

Choose this option to create the required AWS resources from an AWS IoT fleet provisioning
template. You might choose this option to create similar devices in a fleet, or if you manufacture
devices that your customers later activate, such as vehicles or smart home devices. Devices
use claim certificates to authenticate and provision AWS resources, including an X.509 client
certificate that the device uses to connect to the AWS Cloud for normal operation. You can
embed or flash the claim certificates into the device's hardware during manufacturing, and you
can use the same claim certificate and key to provision multiple devices. You can also configure
devices to connect on port 443 or through a network proxy.

For more information, see Install AWS IoT Greengrass Core software with AWS IoT fleet
provisioning.

• Installation with custom provisioning

Choose this option to develop a custom Java application that provisions the required AWS
resources. You might choose this option if you create your own X.509 client certificates or if you
want more control over the provisioning process. AWS IoT Greengrass provides an interface that
you can implement to exchange information between your custom provisioning application and
the AWS IoT Greengrass Core software installer.

For more information, see Install AWS IoT Greengrass Core software with custom resource
provisioning.

AWS IoT Greengrass also provides containerized environments that run the AWS IoT Greengrass
Core software. You can use a Dockerfile to run AWS IoT Greengrass in a Docker container.

Install the AWS IoT Greengrass Core software 189

https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html

AWS IoT Greengrass Developer Guide, Version 2

Topics

• Install AWS IoT Greengrass Core software with automatic resource provisioning

• Install AWS IoT Greengrass Core software with manual resource provisioning

• Install AWS IoT Greengrass Core software with AWS IoT fleet provisioning

• Install AWS IoT Greengrass Core software with custom resource provisioning

• Installer arguments

Install AWS IoT Greengrass Core software with automatic resource
provisioning

The AWS IoT Greengrass Core software includes an installer that sets up your device as a
Greengrass core device. To set up a device quickly, the installer can provision the AWS IoT thing,
AWS IoT thing group, IAM role, and AWS IoT role alias that the core device requires to operate.
The installer can also deploy the local development tools to the core device, so you can use the
device to develop and test custom software components. The installer requires AWS credentials to
provision these resources and create the deployment.

If you can't provide AWS credentials to the device, you can provision the AWS resources that the
core device requires to operate. You can also deploy the development tools to a core device to use
as a development device. This enables you to provide fewer permissions to the device when you
run the installer. For more information, see Install AWS IoT Greengrass Core software with manual
resource provisioning.

Important

Before you download the AWS IoT Greengrass Core software, check that your core device
meets the requirements to install and run the AWS IoT Greengrass Core software v2.0.

Topics

• Set up the device environment

• Provide AWS credentials to the device

• Download the AWS IoT Greengrass Core software

• Install the AWS IoT Greengrass Core software

Install with automatic provisioning 190

AWS IoT Greengrass Developer Guide, Version 2

Set up the device environment

Follow the steps in this section to set up a Linux or Windows device to use as your AWS IoT
Greengrass core device.

Set up a Linux device

To set up a Linux device for AWS IoT Greengrass V2

1. Install the Java runtime, which AWS IoT Greengrass Core software requires to run. We
recommend that you use Amazon Corretto or OpenJDK long-term support versions. Version
8 or higher is required. The following commands show you how to install OpenJDK on your
device.

• For Debian-based or Ubuntu-based distributions:

sudo apt install default-jdk

• For Red Hat-based distributions:

sudo yum install java-11-openjdk-devel

• For Amazon Linux 2:

sudo amazon-linux-extras install java-openjdk11

• For Amazon Linux 2023:

sudo dnf install java-11-amazon-corretto -y

When the installation completes, run the following command to verify that Java runs on your
Linux device.

java -version

The command prints the version of Java that runs on the device. For example, on a Debian-
based distribution, the output might look similar to the following sample.

openjdk version "11.0.9.1" 2020-11-04
Install with automatic provisioning 191

https://aws.amazon.com/corretto/
https://openjdk.java.net/

AWS IoT Greengrass Developer Guide, Version 2

OpenJDK Runtime Environment (build 11.0.9.1+1-post-Debian-1deb10u2)
OpenJDK 64-Bit Server VM (build 11.0.9.1+1-post-Debian-1deb10u2, mixed mode)

2. (Optional) Create the default system user and group that runs components on the device. You
can also choose to let the AWS IoT Greengrass Core software installer create this user and
group during installation with the --component-default-user installer argument. For
more information, see Installer arguments.

sudo useradd --system --create-home ggc_user
sudo groupadd --system ggc_group

3. Verify that the user that runs the AWS IoT Greengrass Core software (typically root), has
permission to run sudo with any user and any group.

a. Run the following command to open the /etc/sudoers file.

sudo visudo

b. Verify that the permission for the user looks like the following example.

root ALL=(ALL:ALL) ALL

4. (Optional) To run containerized Lambda functions, you must enable cgroups v1, and you must
enable and mount the memory and devices cgroups. If you don't plan to run containerized
Lambda functions, you can skip this step.

To enable these cgroups options, boot the device with the following Linux kernel parameters.

cgroup_enable=memory cgroup_memory=1 systemd.unified_cgroup_hierarchy=0

For information about viewing and setting kernel parameters for your device, see the
documentation for your operating system and boot loader. Follow the instructions to
permanently set the kernel parameters.

5. Install all other required dependencies on your device as indicated by the list of requirements
in Device requirements.

Install with automatic provisioning 192

https://en.wikipedia.org/wiki/Cgroups

AWS IoT Greengrass Developer Guide, Version 2

Set up a Windows device

Note

This feature is available for v2.5.0 and later of the Greengrass nucleus component.

To set up a Windows device for AWS IoT Greengrass V2

1. Install the Java runtime, which AWS IoT Greengrass Core software requires to run. We
recommend that you use Amazon Corretto or OpenJDK long-term support versions. Version 8
or higher is required.

2. Check whether Java is available on the PATH system variable, and add it if not. The
LocalSystem account runs the AWS IoT Greengrass Core software, so you must add Java to the
PATH system variable instead of the PATH user variable for your user. Do the following:

a. Press the Windows key to open the start menu.

b. Type environment variables to search for the system options from the start menu.

c. In the start menu search results, choose Edit the system environment variables to open
the System properties window.

d. Choose Environment variables... to open the Environment Variables window.

e. Under System variables, select Path, and then choose Edit. In the Edit environment
variable window, you can view each path on a separate line.

f. Check if the path to the Java installation's bin folder is present. The path might look
similar to the following example.

C:\\Program Files\\Amazon Corretto\\jdk11.0.13_8\\bin

g. If the Java installation's bin folder is missing from Path, choose New to add it, and then
choose OK.

3. Open the Windows Command Prompt (cmd.exe) as an administrator.

4. Create the default user in the LocalSystem account on the Windows device. Replace password
with a secure password.

net user /add ggc_user password

Install with automatic provisioning 193

https://aws.amazon.com/corretto/
https://openjdk.java.net/
https://en.wikipedia.org/wiki/PATH_(variable)

AWS IoT Greengrass Developer Guide, Version 2

Tip

Depending on your Windows configuration, the user's password might be set to expire
at a date in the future. To ensure your Greengrass applications continue to operate,
track when the password expires, and update it before it expires. You can also set the
user's password to never expire.

• To check when a user and its password expire, run the following command.

net user ggc_user | findstr /C:expires

• To set a user's password to never expire, run the following command.

wmic UserAccount where "Name='ggc_user'" set PasswordExpires=False

• If you’re using Windows 10 or later where the wmic command is deprecated, run the
following PowerShell command.

Get-CimInstance -Query "SELECT * from Win32_UserAccount WHERE name =
 'ggc_user'" | Set-CimInstance -Property @{PasswordExpires="False"}

5. Download and install the PsExec utility from Microsoft on the device.

6. Use the PsExec utility to store the user name and password for the default user in the
Credential Manager instance for the LocalSystem account. Replace password with the user's
password that you set earlier.

psexec -s cmd /c cmdkey /generic:ggc_user /user:ggc_user /pass:password

If the PsExec License Agreement opens, choose Accept to agree to the license and run the
command.

Note

On Windows devices, the LocalSystem account runs the Greengrass nucleus, and you
must use the PsExec utility to store the default user information in the LocalSystem
account. Using the Credential Manager application stores this information in the
Windows account of the currently logged on user, instead of the LocalSystem account.

Install with automatic provisioning 194

https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmic
https://docs.microsoft.com/en-us/sysinternals/downloads/psexec

AWS IoT Greengrass Developer Guide, Version 2

Provide AWS credentials to the device

Provide your AWS credentials to your device so that the installer can provision the required AWS
resources. For more information about the required permissions, see Minimal IAM policy for
installer to provision resources.

To provide AWS credentials to the device

• Provide your AWS credentials to the device so that the installer can provision the AWS IoT
and IAM resources for your core device. To increase security, we recommend that you get
temporary credentials for an IAM role that allows only the minimum permissions necessary to
provision. For more information, see Minimal IAM policy for installer to provision resources.

Note

The installer doesn't save or store your credentials.

On your device, do one of the following to retrieve credentials and make them available to the
AWS IoT Greengrass Core software installer:

• (Recommended) Use temporary credentials from AWS IAM Identity Center

a. Provide the access key ID, secret access key, and session token from the IAM Identity
Center. For more information, see Manual credential refresh in Getting and
refreshing temporary credentials in the IAM Identity Center user guide.

b. Run the following commands to provide the credentials to the AWS IoT Greengrass
Core software.

Linux or Unix

export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
export AWS_SESSION_TOKEN=AQoDYXdzEJr1K...o5OytwEXAMPLE=

Windows Command Prompt (CMD)

set AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
set AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
set AWS_SESSION_TOKEN=AQoDYXdzEJr1K...o5OytwEXAMPLE=

Install with automatic provisioning 195

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html#how-to-get-temp-credentials
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html#how-to-get-temp-credentials

AWS IoT Greengrass Developer Guide, Version 2

PowerShell

$env:AWS_ACCESS_KEY_ID="AKIAIOSFODNN7EXAMPLE"
$env:AWS_SECRET_ACCESS_KEY="wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"
$env:AWS_SESSION_TOKEN="AQoDYXdzEJr1K...o5OytwEXAMPLE="

• Use temporary security credentials from an IAM role:

a. Provide the access key ID, secret access key, and session token from an IAM role
that you assume. For more information about how to retrieve these credentials, see
Requesting temporary security credentials in the IAM User Guide.

b. Run the following commands to provide the credentials to the AWS IoT Greengrass
Core software.

Linux or Unix

export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
export AWS_SESSION_TOKEN=AQoDYXdzEJr1K...o5OytwEXAMPLE=

Windows Command Prompt (CMD)

set AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
set AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
set AWS_SESSION_TOKEN=AQoDYXdzEJr1K...o5OytwEXAMPLE=

PowerShell

$env:AWS_ACCESS_KEY_ID="AKIAIOSFODNN7EXAMPLE"
$env:AWS_SECRET_ACCESS_KEY="wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"
$env:AWS_SESSION_TOKEN="AQoDYXdzEJr1K...o5OytwEXAMPLE="

• Use long-term credentials from an IAM user:

a. Provide the access key ID and secret access key for your IAM user. You can create an
IAM user for provisioning that you later delete. For the IAM policy to give the user, see
Minimal IAM policy for installer to provision resources. For more information about
how to retrieve long-term credentials, see Managing access keys for IAM users in the
IAM User Guide.

Install with automatic provisioning 196

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

AWS IoT Greengrass Developer Guide, Version 2

b. Run the following commands to provide the credentials to the AWS IoT Greengrass
Core software.

Linux or Unix

export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Windows Command Prompt (CMD)

set AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
set AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

PowerShell

$env:AWS_ACCESS_KEY_ID="AKIAIOSFODNN7EXAMPLE"
$env:AWS_SECRET_ACCESS_KEY="wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"

c. (Optional) If you created an IAM user to provision your Greengrass device, delete the
user.

d. (Optional) If you used the access key ID and secret access key from an existing
IAM user, update the keys for the user so that they are no longer valid. For more
information, see Updating access keys in the AWS Identity and Access Management
user guide.

Download the AWS IoT Greengrass Core software

You can download the latest version of the AWS IoT Greengrass Core software from the following
location:

• https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-latest.zip

Note

You can download a specific version of the AWS IoT Greengrass Core software from the
following location. Replace version with the version to download.

Install with automatic provisioning 197

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_RotateAccessKey
https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-latest.zip

AWS IoT Greengrass Developer Guide, Version 2

https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-version.zip

To download the AWS IoT Greengrass Core software

1. On your core device, download the AWS IoT Greengrass Core software to a file named
greengrass-nucleus-latest.zip.

Linux or Unix

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip > greengrass-nucleus-latest.zip

Windows Command Prompt (CMD)

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip > greengrass-nucleus-latest.zip

PowerShell

iwr -Uri https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip -OutFile greengrass-nucleus-latest.zip

By downloading this software, you agree to the Greengrass Core Software License Agreement.

2. (Optional) To verify the Greengrass nucleus software signature

Note

This feature is available with Greengrass nucleus version 2.9.5 and later.

a. Use the following command to verify your Greengrass nucleus artifact's signature:

Linux or Unix

jarsigner -verify -certs -verbose greengrass-nucleus-latest.zip

Install with automatic provisioning 198

https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 2

Windows Command Prompt (CMD)

The file name might look different depending on the JDK version you install. Replace
jdk17.0.6_10 with the JDK version you installed.

"C:\\Program Files\\Amazon Corretto\\jdk17.0.6_10\\bin\\jarsigner.exe" -
verify -certs -verbose greengrass-nucleus-latest.zip

PowerShell

The file name might look different depending on the JDK version you install. Replace
jdk17.0.6_10 with the JDK version you installed.

'C:\\Program Files\\Amazon Corretto\\jdk17.0.6_10\\bin\\jarsigner.exe' -
verify -certs -verbose greengrass-nucleus-latest.zip

b. The jarsigner invocation yields output that indicates the results of the verification.

i. If the Greengrass nucleus zip file is signed, the output contains the following
statement:

jar verified.

ii. If the Greengrass nucleus zip file isn't signed, the output contains the following
statement:

jar is unsigned.

c. If you provided the Jarsigner -certs option along with -verify and -verbose options,
the output also includes detailed signer certificate information.

3. Unzip the AWS IoT Greengrass Core software to a folder on your device. Replace
GreengrassInstaller with the folder that you want to use.

Linux or Unix

unzip greengrass-nucleus-latest.zip -d GreengrassInstaller && rm greengrass-
nucleus-latest.zip

Install with automatic provisioning 199

AWS IoT Greengrass Developer Guide, Version 2

Windows Command Prompt (CMD)

mkdir GreengrassInstaller && tar -xf greengrass-nucleus-latest.zip -
C GreengrassInstaller && del greengrass-nucleus-latest.zip

PowerShell

Expand-Archive -Path greengrass-nucleus-latest.zip -DestinationPath .\
\GreengrassInstaller
rm greengrass-nucleus-latest.zip

4. (Optional) Run the following command to see the version of the AWS IoT Greengrass Core
software.

java -jar ./GreengrassInstaller/lib/Greengrass.jar --version

Important

If you install a version of the Greengrass nucleus earlier than v2.4.0, don't remove this
folder after you install the AWS IoT Greengrass Core software. The AWS IoT Greengrass
Core software uses the files in this folder to run.
If you downloaded the latest version of the software, you install v2.4.0 or later, and you can
remove this folder after you install the AWS IoT Greengrass Core software.

Install the AWS IoT Greengrass Core software

Run the installer with arguments that specify to do the following:

• Create the AWS resources that the core device requires to operate.

• Specify to use the ggc_user system user to run software components on the core device. On
Linux devices, this command also specifies to use the ggc_group system group, and the installer
creates the system user and group for you.

• Set up the AWS IoT Greengrass Core software as a system service that runs at boot. On Linux
devices, this requires the Systemd init system.

Install with automatic provisioning 200

https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 2

Important

On Windows core devices, you must set up the AWS IoT Greengrass Core software as a
system service.

To set up a development device with local development tools, specify the --deploy-dev-
tools true argument. The local development tools can take up to a minute to deploy after the
installation completes.

For more information about the arguments that you can specify, see Installer arguments.

Note

If you are running AWS IoT Greengrass on a device with limited memory, you can control
the amount of memory that AWS IoT Greengrass Core software uses. To control memory
allocation, you can set JVM heap size options in the jvmOptions configuration parameter
in your nucleus component. For more information, see Control memory allocation with JVM
options.

To install the AWS IoT Greengrass Core software

1. Run the AWS IoT Greengrass Core installer. Replace argument values in your command as
follows.

Note

Windows has a path length limitation of 260 characters. If you are using Windows, use
a root folder like C:\greengrass\v2 or D:\greengrass\v2 to keep the Greengrass
components paths under the 260 character limit.

a. /greengrass/v2 or C:\greengrass\v2: The path to the root folder to use to install
the AWS IoT Greengrass Core software.

b. GreengrassInstaller. The path to the folder where you unpacked the AWS IoT
Greengrass Core software installer.

Install with automatic provisioning 201

AWS IoT Greengrass Developer Guide, Version 2

c. region. The AWS Region in which to find or create resources.

d. MyGreengrassCore. The name of the AWS IoT thing for your Greengrass core device. If
the thing doesn't exist, the installer creates it. The installer downloads the certificates to
authenticate as the AWS IoT thing. For more information, see Device authentication and
authorization for AWS IoT Greengrass.

Note

The thing name can't contain colon (:) characters.

e. MyGreengrassCoreGroup. The name of AWS IoT thing group for your Greengrass core
device. If the thing group doesn't exist, the installer creates it and adds the thing to it. If
the thing group exists and has an active deployment, the core device downloads and runs
the software that the deployment specifies.

Note

The thing group name can't contain colon (:) characters.

f. GreengrassV2IoTThingPolicy. The name of the AWS IoT policy that allows the
Greengrass core devices to communicate with AWS IoT and AWS IoT Greengrass. If the
AWS IoT policy doesn't exist, the installer creates a permissive AWS IoT policy with this
name. You can restrict this policy's permissions for you use case. For more information, see
Minimal AWS IoT policy for AWS IoT Greengrass V2 core devices.

g. GreengrassV2TokenExchangeRole. The name of the IAM role that allows
the Greengrass core device to get temporary AWS credentials. If the role
doesn't exist, the installer creates it and creates and attaches a policy named
GreengrassV2TokenExchangeRoleAccess. For more information, see Authorize core
devices to interact with AWS services.

h. GreengrassCoreTokenExchangeRoleAlias. The alias to the IAM role that allows the
Greengrass core device to get temporary credentials later. If the role alias doesn't exist,
the installer creates it and points it to the IAM role that you specify. For more information,
see Authorize core devices to interact with AWS services.

Install with automatic provisioning 202

AWS IoT Greengrass Developer Guide, Version 2

Linux or Unix

sudo -E java -Droot="/greengrass/v2" -Dlog.store=FILE \
 -jar ./GreengrassInstaller/lib/Greengrass.jar \
 --aws-region region \
 --thing-name MyGreengrassCore \
 --thing-group-name MyGreengrassCoreGroup \
 --thing-policy-name GreengrassV2IoTThingPolicy \
 --tes-role-name GreengrassV2TokenExchangeRole \
 --tes-role-alias-name GreengrassCoreTokenExchangeRoleAlias \
 --component-default-user ggc_user:ggc_group \
 --provision true \
 --setup-system-service true

Windows Command Prompt (CMD)

java -Droot="C:\greengrass\v2" "-Dlog.store=FILE" ^
 -jar ./GreengrassInstaller/lib/Greengrass.jar ^
 --aws-region region ^
 --thing-name MyGreengrassCore ^
 --thing-group-name MyGreengrassCoreGroup ^
 --thing-policy-name GreengrassV2IoTThingPolicy ^
 --tes-role-name GreengrassV2TokenExchangeRole ^
 --tes-role-alias-name GreengrassCoreTokenExchangeRoleAlias ^
 --component-default-user ggc_user ^
 --provision true ^
 --setup-system-service true

PowerShell

java -Droot="C:\greengrass\v2" "-Dlog.store=FILE" `
 -jar ./GreengrassInstaller/lib/Greengrass.jar `
 --aws-region region `
 --thing-name MyGreengrassCore `
 --thing-group-name MyGreengrassCoreGroup `
 --thing-policy-name GreengrassV2IoTThingPolicy `
 --tes-role-name GreengrassV2TokenExchangeRole `
 --tes-role-alias-name GreengrassCoreTokenExchangeRoleAlias `
 --component-default-user ggc_user `
 --provision true `

Install with automatic provisioning 203

AWS IoT Greengrass Developer Guide, Version 2

 --setup-system-service true

Important

On Windows core devices, you must specify --setup-system-service true to set
up the AWS IoT Greengrass Core software as a system service.

The installer prints the following messages if it succeeds:

• If you specify --provision, the installer prints Successfully configured Nucleus
with provisioned resource details if it configured the resources successfully.

• If you specify --deploy-dev-tools, the installer prints Configured Nucleus to
deploy aws.greengrass.Cli component if it created the deployment successfully.

• If you specify --setup-system-service true, the installer prints Successfully set
up Nucleus as a system service if it set up and ran the software as a service.

• If you don't specify --setup-system-service true, the installer prints Launched
Nucleus successfully if it succeeded and ran the software.

2. Skip this step if you installed Greengrass nucleus v2.0.4 or later. If you downloaded the latest
version of the software, you installed v2.0.4 or later.

Run the following command to set the required file permissions for your AWS IoT Greengrass
Core software root folder. Replace /greengrass/v2 with the root folder that you specified
in your installation command, and replace /greengrass with the parent folder for your root
folder.

sudo chmod 755 /greengrass/v2 && sudo chmod 755 /greengrass

If you installed the AWS IoT Greengrass Core software as a system service, the installer runs the
software for you. Otherwise, you must run the software manually. For more information, see Run
the AWS IoT Greengrass Core software.

Install with automatic provisioning 204

AWS IoT Greengrass Developer Guide, Version 2

Note

By default, the IAM role that the installer creates doesn't allow access to component
artifacts in S3 buckets. To deploy custom components that define artifacts in Amazon
S3, you must add permissions to the role to allow your core device to retrieve component
artifacts. For more information, see Allow access to S3 buckets for component artifacts.
If you don't yet have an S3 bucket for component artifacts, you can add these permissions
later after you create a bucket.

For more information about how to configure and use the software and AWS IoT Greengrass, see
the following:

• Configure the AWS IoT Greengrass Core software

• Develop AWS IoT Greengrass components

• Deploy AWS IoT Greengrass components to devices

• Greengrass Command Line Interface

Install AWS IoT Greengrass Core software with manual resource
provisioning

The AWS IoT Greengrass Core software includes an installer that sets up your device as a
Greengrass core device. To set up a device manually, you can create the required AWS IoT and IAM
resources for the device to use. If you create these resources manually, you don't need to provide
AWS credentials to the installer.

When you manually install the AWS IoT Greengrass Core software, you can also configure the
device to use a network proxy or connect to AWS on port 443. You might need to specify these
configuration options if your device runs behind a firewall or a network proxy, for example. For
more information, see Connect on port 443 or through a network proxy.

You can also configure the AWS IoT Greengrass Core software to use a hardware security module
(HSM) through the PKCS#11 interface. This feature enables you to securely store private key
and certificate files so that they aren't exposed or duplicated in software. You can store private
keys and certificates on a hardware module such as an HSM, a Trusted Platform Module (TPM),
or another cryptographic element. This feature is available on Linux devices only. For more
information about hardware security and requirements to use it, see Hardware security integration.

Install with manual provisioning 205

https://en.wikipedia.org/wiki/PKCS_11

AWS IoT Greengrass Developer Guide, Version 2

Important

Before you download the AWS IoT Greengrass Core software, check that your core device
meets the requirements to install and run the AWS IoT Greengrass Core software v2.0.

Topics

• Retrieve AWS IoT endpoints

• Create an AWS IoT thing

• Create the thing certificate

• Configure the thing certificate

• Create a token exchange role

• Download certificates to the device

• Set up the device environment

• Download the AWS IoT Greengrass Core software

• Install the AWS IoT Greengrass Core software

Retrieve AWS IoT endpoints

Get the AWS IoT endpoints for your AWS account, and save them to use later. Your device uses
these endpoints to connect to AWS IoT. Do the following:

1. Get the AWS IoT data endpoint for your AWS account.

aws iot describe-endpoint --endpoint-type iot:Data-ATS

The response looks similar to the following example, if the request succeeds.

{
 "endpointAddress": "device-data-prefix-ats.iot.us-west-2.amazonaws.com"
}

2. Get the AWS IoT credentials endpoint for your AWS account.

aws iot describe-endpoint --endpoint-type iot:CredentialProvider

Install with manual provisioning 206

AWS IoT Greengrass Developer Guide, Version 2

The response looks similar to the following example, if the request succeeds.

{
 "endpointAddress": "device-credentials-prefix.credentials.iot.us-
west-2.amazonaws.com"
}

Create an AWS IoT thing

AWS IoT things represent devices and logical entities that connect to AWS IoT. Greengrass core
devices are AWS IoT things. When you register a device as an AWS IoT thing, that device can use a
digital certificate to authenticate with AWS.

In this section, you create an AWS IoT thing that represents your device.

To create an AWS IoT thing

1. Create an AWS IoT thing for your device. On your development computer, run the following
command.

• Replace MyGreengrassCore with the thing name to use. This name is also the name of
your Greengrass core device.

Note

The thing name can't contain colon (:) characters.

aws iot create-thing --thing-name MyGreengrassCore

The response looks similar to the following example, if the request succeeds.

{
 "thingName": "MyGreengrassCore",
 "thingArn": "arn:aws:iot:us-west-2:123456789012:thing/MyGreengrassCore",
 "thingId": "8cb4b6cd-268e-495d-b5b9-1713d71dbf42"
}

Install with manual provisioning 207

AWS IoT Greengrass Developer Guide, Version 2

2. (Optional) Add the AWS IoT thing to a new or existing thing group. You use thing groups to
manage fleets of Greengrass core devices. When you deploy software components to your
devices, you can target individual devices or groups of devices. You can add a device to a
thing group with an active Greengrass deployment to deploy that thing group's software
components to the device. Do the following:

a. (Optional) Create an AWS IoT thing group.

• Replace MyGreengrassCoreGroup with the name of the thing group to create.

Note

The thing group name can't contain colon (:) characters.

aws iot create-thing-group --thing-group-name MyGreengrassCoreGroup

The response looks similar to the following example, if the request succeeds.

{
 "thingGroupName": "MyGreengrassCoreGroup",
 "thingGroupArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/
MyGreengrassCoreGroup",
 "thingGroupId": "4df721e1-ff9f-4f97-92dd-02db4e3f03aa"
}

b. Add the AWS IoT thing to a thing group.

• Replace MyGreengrassCore with the name of your AWS IoT thing.

• Replace MyGreengrassCoreGroup with the name of the thing group.

aws iot add-thing-to-thing-group --thing-name MyGreengrassCore --thing-group-
name MyGreengrassCoreGroup

The command doesn't have any output if the request succeeds.

Install with manual provisioning 208

AWS IoT Greengrass Developer Guide, Version 2

Create the thing certificate

When you register a device as an AWS IoT thing, that device can use a digital certificate to
authenticate with AWS. This certificate allows the device to communicate with AWS IoT and AWS
IoT Greengrass.

In this section, you create and download certificates that your device can use to connect to AWS.

If you want to configure the AWS IoT Greengrass Core software to use a hardware security module
(HSM) to securely store the private key and certificate, follow the steps to create the certificate
from a private key in an HSM. Otherwise, follow the steps to create the certificate and private key
in the AWS IoT service. The hardware security feature is available on Linux devices only. For more
information about hardware security and requirements to use it, see Hardware security integration.

Create the certificate and private key in the AWS IoT service

To create the thing certificate

1. Create a folder where you download the certificates for the AWS IoT thing.

mkdir greengrass-v2-certs

2. Create and download the certificates for the AWS IoT thing.

aws iot create-keys-and-certificate --set-as-active --certificate-pem-outfile
 greengrass-v2-certs/device.pem.crt --public-key-outfile greengrass-v2-certs/
public.pem.key --private-key-outfile greengrass-v2-certs/private.pem.key

The response looks similar to the following example, if the request succeeds.

{
 "certificateArn": "arn:aws:iot:us-west-2:123456789012:cert/
aa0b7958770878eabe251d8a7ddd547f4889c524c9b574ab9fbf65f32248b1d4",
 "certificateId":
 "aa0b7958770878eabe251d8a7ddd547f4889c524c9b574ab9fbf65f32248b1d4",
 "certificatePem": "-----BEGIN CERTIFICATE-----
MIICiTCCAfICCQD6m7oRw0uXOjANBgkqhkiG9w
 0BAQUFADCBiDELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAldBMRAwDgYDVQQHEwdTZ
 WF0dGxlMQ8wDQYDVQQKEwZBbWF6b24xFDASBgNVBAsTC0lBTSBDb25zb2xlMRIw
 EAYDVQQDEwlUZXN0Q2lsYWMxHzAdBgkqhkiG9w0BCQEWEG5vb25lQGFtYXpvbi5
 jb20wHhcNMTEwNDI1MjA0NTIxWhcNMTIwNDI0MjA0NTIxWjCBiDELMAkGA1UEBh

Install with manual provisioning 209

AWS IoT Greengrass Developer Guide, Version 2

 MCVVMxCzAJBgNVBAgTAldBMRAwDgYDVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBb
 WF6b24xFDASBgNVBAsTC0lBTSBDb25zb2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMx
 HzAdBgkqhkiG9w0BCQEWEG5vb25lQGFtYXpvbi5jb20wgZ8wDQYJKoZIhvcNAQE
 BBQADgY0AMIGJAoGBAMaK0dn+a4GmWIWJ21uUSfwfEvySWtC2XADZ4nB+BLYgVI
 k60CpiwsZ3G93vUEIO3IyNoH/f0wYK8m9TrDHudUZg3qX4waLG5M43q7Wgc/MbQ
 ITxOUSQv7c7ugFFDzQGBzZswY6786m86gpEIbb3OhjZnzcvQAaRHhdlQWIMm2nr
 AgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAtCu4nUhVVxYUntneD9+h8Mg9q6q+auN
 KyExzyLwaxlAoo7TJHidbtS4J5iNmZgXL0FkbFFBjvSfpJIlJ00zbhNYS5f6Guo
 EDmFJl0ZxBHjJnyp378OD8uTs7fLvjx79LjSTbNYiytVbZPQUQ5Yaxu2jXnimvw
 3rrszlaEXAMPLE=
-----END CERTIFICATE-----",
 "keyPair": {
 "PublicKey": "-----BEGIN PUBLIC KEY-----\
MIIBIjANBgkqhkEXAMPLEQEFAAOCAQ8AMIIBCgKCAQEAEXAMPLE1nnyJwKSMHw4h\
MMEXAMPLEuuN/dMAS3fyce8DW/4+EXAMPLEyjmoF/YVF/gHr99VEEXAMPLE5VF13\
59VK7cEXAMPLE67GK+y+jikqXOgHh/xJTwo
+sGpWEXAMPLEDz18xOd2ka4tCzuWEXAMPLEahJbYkCPUBSU8opVkR7qkEXAMPLE1DR6sx2HocliOOLtu6Fkw91swQWEXAMPLE
\\GB3ZPrNh0PzQYvjUStZeccyNCx2EXAMPLEvp9mQOUXP6plfgxwKRX2fEXAMPLEDa\
hJLXkX3rHU2xbxJSq7D+XEXAMPLEcw+LyFhI5mgFRl88eGdsAEXAMPLElnI9EesG\
FQIDAQAB\
-----END PUBLIC KEY-----\
",
 "PrivateKey": "-----BEGIN RSA PRIVATE KEY-----\
key omitted for security reasons\
-----END RSA PRIVATE KEY-----\
"
 }
}

Save the certificate's Amazon Resource Name (ARN) to use to configure the certificate later.

Create the certificate from a private key in an HSM

Note

This feature is available for v2.5.3 and later of the Greengrass nucleus component. AWS IoT
Greengrass doesn't currently support this feature on Windows core devices.

Install with manual provisioning 210

AWS IoT Greengrass Developer Guide, Version 2

To create the thing certificate

1. On the core device, initialize a PKCS#11 token in the HSM, and generate a private key. The
private key must be an RSA key with an RSA-2048 key size (or larger) or an ECC key.

Note

To use a hardware security module with ECC keys, you must use Greengrass nucleus
v2.5.6 or later.
To use a hardware security module and secret manager, you must use a hardware
security module with RSA keys.

Check the documentation for your HSM to learn how to initialize the token and generate
the private key. If your HSM supports object IDs, specify an object ID when you generate the
private key. Save the slot ID, user PIN, object label, object ID (if your HSM uses one) that you
specify when you initialize the token and generate the private key. You use these values later
when you import the thing certificate to the HSM and configure the AWS IoT Greengrass Core
software.

2. Create a certificate signing request (CSR) from the private key. AWS IoT uses this CSR to create
a thing certificate for the private key that you generated in the HSM. For information about
how to create a CSR from the private key, see the documentation for your HSM. The CSR is a
file, such as iotdevicekey.csr.

3. Copy the CSR from the device to your development computer. If SSH and SCP are enabled
on the development computer and the device, you can use the scp command on your
development computer to transfer the CSR. Replace device-ip-address with the IP address
of your device, and replace ~/iotdevicekey.csr with the path to the CSR file on the device.

scp device-ip-address:~/iotdevicekey.csr iotdevicekey.csr

4. On your development computer, create a folder where you download the certificate for the
AWS IoT thing.

mkdir greengrass-v2-certs

5. Use the CSR file to create and download the certificate for the AWS IoT thing to your
development computer.

Install with manual provisioning 211

AWS IoT Greengrass Developer Guide, Version 2

aws iot create-certificate-from-csr --set-as-active --certificate-signing-
request=file://iotdevicekey.csr --certificate-pem-outfile greengrass-v2-certs/
device.pem.crt

The response looks similar to the following example, if the request succeeds.

{
 "certificateArn": "arn:aws:iot:us-west-2:123456789012:cert/
aa0b7958770878eabe251d8a7ddd547f4889c524c9b574ab9fbf65f32248b1d4",
 "certificateId":
 "aa0b7958770878eabe251d8a7ddd547f4889c524c9b574ab9fbf65f32248b1d4",
 "certificatePem": "-----BEGIN CERTIFICATE-----
MIICiTCCAfICCQD6m7oRw0uXOjANBgkqhkiG9w
 0BAQUFADCBiDELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAldBMRAwDgYDVQQHEwdTZ
 WF0dGxlMQ8wDQYDVQQKEwZBbWF6b24xFDASBgNVBAsTC0lBTSBDb25zb2xlMRIw
 EAYDVQQDEwlUZXN0Q2lsYWMxHzAdBgkqhkiG9w0BCQEWEG5vb25lQGFtYXpvbi5
 jb20wHhcNMTEwNDI1MjA0NTIxWhcNMTIwNDI0MjA0NTIxWjCBiDELMAkGA1UEBh
 MCVVMxCzAJBgNVBAgTAldBMRAwDgYDVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBb
 WF6b24xFDASBgNVBAsTC0lBTSBDb25zb2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMx
 HzAdBgkqhkiG9w0BCQEWEG5vb25lQGFtYXpvbi5jb20wgZ8wDQYJKoZIhvcNAQE
 BBQADgY0AMIGJAoGBAMaK0dn+a4GmWIWJ21uUSfwfEvySWtC2XADZ4nB+BLYgVI
 k60CpiwsZ3G93vUEIO3IyNoH/f0wYK8m9TrDHudUZg3qX4waLG5M43q7Wgc/MbQ
 ITxOUSQv7c7ugFFDzQGBzZswY6786m86gpEIbb3OhjZnzcvQAaRHhdlQWIMm2nr
 AgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAtCu4nUhVVxYUntneD9+h8Mg9q6q+auN
 KyExzyLwaxlAoo7TJHidbtS4J5iNmZgXL0FkbFFBjvSfpJIlJ00zbhNYS5f6Guo
 EDmFJl0ZxBHjJnyp378OD8uTs7fLvjx79LjSTbNYiytVbZPQUQ5Yaxu2jXnimvw
 3rrszlaEXAMPLE=
-----END CERTIFICATE-----"
}

Save the certificate's ARN to use to configure the certificate later.

Configure the thing certificate

Attach the thing certificate to the AWS IoT thing that you created earlier, and add an AWS IoT
policy to the certificate to define the AWS IoT permissions for the core device.

To configure the thing's certificate

1. Attach the certificate to the AWS IoT thing.

Install with manual provisioning 212

AWS IoT Greengrass Developer Guide, Version 2

• Replace MyGreengrassCore with the name of your AWS IoT thing.

• Replace the certificate Amazon Resource Name (ARN) with the ARN of the certificate that
you created in the previous step.

aws iot attach-thing-principal --thing-name MyGreengrassCore
 --principal arn:aws:iot:us-west-2:123456789012:cert/
aa0b7958770878eabe251d8a7ddd547f4889c524c9b574ab9fbf65f32248b1d4

The command doesn't have any output if the request succeeds.

2. Create and attach an AWS IoT policy that defines the AWS IoT permissions for your Greengrass
core device. The following policy allows access to all MQTT topics and Greengrass operations,
so your device works with custom applications and future changes that require new Greengrass
operations. You can restrict this policy down based on your use case. For more information, see
Minimal AWS IoT policy for AWS IoT Greengrass V2 core devices.

If you have set up a Greengrass core device before, you can attach its AWS IoT policy instead of
creating a new one.

Do the following:

a. Create a file that contains the AWS IoT policy document that Greengrass core devices
require.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano greengrass-v2-iot-policy.json

Copy the following JSON into the file.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish",
 "iot:Subscribe",

Install with manual provisioning 213

AWS IoT Greengrass Developer Guide, Version 2

 "iot:Receive",
 "iot:Connect",
 "greengrass:*"
],
 "Resource": [
 "*"
]
 }
]
}

b. Create an AWS IoT policy from the policy document.

• Replace GreengrassV2IoTThingPolicy with the name of the policy to create.

aws iot create-policy --policy-name GreengrassV2IoTThingPolicy --policy-
document file://greengrass-v2-iot-policy.json

The response looks similar to the following example, if the request succeeds.

{
 "policyName": "GreengrassV2IoTThingPolicy",
 "policyArn": "arn:aws:iot:us-west-2:123456789012:policy/
GreengrassV2IoTThingPolicy",
 "policyDocument": "{
 \\"Version\\": \\"2012-10-17\\",
 \\"Statement\\": [
 {
 \\"Effect\\": \\"Allow\\",
 \\"Action\\": [
 \\"iot:Publish\\",
 \\"iot:Subscribe\\",
 \\"iot:Receive\\",
 \\"iot:Connect\\",
 \\"greengrass:*\\"
],
 \\"Resource\\": [
 \\"*\\"
]
 }
]
 }",

Install with manual provisioning 214

AWS IoT Greengrass Developer Guide, Version 2

 "policyVersionId": "1"
}

c. Attach the AWS IoT policy to the AWS IoT thing's certificate.

• Replace GreengrassV2IoTThingPolicy with the name of the policy to attach.

• Replace the target ARN with the ARN of the certificate for your AWS IoT thing.

aws iot attach-policy --policy-name GreengrassV2IoTThingPolicy
 --target arn:aws:iot:us-west-2:123456789012:cert/
aa0b7958770878eabe251d8a7ddd547f4889c524c9b574ab9fbf65f32248b1d4

The command doesn't have any output if the request succeeds.

Create a token exchange role

Greengrass core devices use an IAM service role, called the token exchange role, to authorize calls to
AWS services. The device uses the AWS IoT credentials provider to get temporary AWS credentials
for this role, which allows the device to interact with AWS IoT, send logs to Amazon CloudWatch
Logs, and download custom component artifacts from Amazon S3. For more information, see
Authorize core devices to interact with AWS services.

You use an AWS IoT role alias to configure the token exchange role for Greengrass core devices.
Role aliases enable you to change the token exchange role for a device but keep the device
configuration the same. For more information, see Authorizing direct calls to AWS services in the
AWS IoT Core Developer Guide.

In this section, you create a token exchange IAM role and an AWS IoT role alias that points to the
role. If you have already set up a Greengrass core device, you can use its token exchange role and
role alias instead of creating new ones. Then, you configure your device's AWS IoT thing to use that
role and alias.

To create a token exchange IAM role

1. Create an IAM role that your device can use as a token exchange role. Do the following:

a. Create a file that contains the trust policy document that the token exchange role
requires.

Install with manual provisioning 215

https://docs.aws.amazon.com/iot/latest/developerguide/authorizing-direct-aws.html

AWS IoT Greengrass Developer Guide, Version 2

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano device-role-trust-policy.json

Copy the following JSON into the file.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "credentials.iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

b. Create the token exchange role with the trust policy document.

• Replace GreengrassV2TokenExchangeRole with the name of the IAM role to create.

aws iam create-role --role-name GreengrassV2TokenExchangeRole --assume-role-
policy-document file://device-role-trust-policy.json

The response looks similar to the following example, if the request succeeds.

{
 "Role": {
 "Path": "/",
 "RoleName": "GreengrassV2TokenExchangeRole",
 "RoleId": "AROAZ2YMUHYHK5OKM77FB",
 "Arn": "arn:aws:iam::123456789012:role/GreengrassV2TokenExchangeRole",
 "CreateDate": "2021-02-06T00:13:29+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {

Install with manual provisioning 216

AWS IoT Greengrass Developer Guide, Version 2

 "Effect": "Allow",
 "Principal": {
 "Service": "credentials.iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
 }

c. Create a file that contains the access policy document that the token exchange role
requires.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano device-role-access-policy.json

Copy the following JSON into the file.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams",
 "s3:GetBucketLocation"
],
 "Resource": "*"
 }
]
}

Note

This access policy doesn't allow access to component artifacts in S3 buckets. To
deploy custom components that define artifacts in Amazon S3, you must add

Install with manual provisioning 217

AWS IoT Greengrass Developer Guide, Version 2

permissions to the role to allow your core device to retrieve component artifacts.
For more information, see Allow access to S3 buckets for component artifacts.
If you don't yet have an S3 bucket for component artifacts, you can add these
permissions later after you create a bucket.

d. Create the IAM policy from the policy document.

• Replace GreengrassV2TokenExchangeRoleAccess with the name of the IAM policy
to create.

aws iam create-policy --policy-name GreengrassV2TokenExchangeRoleAccess --
policy-document file://device-role-access-policy.json

The response looks similar to the following example, if the request succeeds.

{
 "Policy": {
 "PolicyName": "GreengrassV2TokenExchangeRoleAccess",
 "PolicyId": "ANPAZ2YMUHYHACI7C5Z66",
 "Arn": "arn:aws:iam::123456789012:policy/
GreengrassV2TokenExchangeRoleAccess",
 "Path": "/",
 "DefaultVersionId": "v1",
 "AttachmentCount": 0,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "CreateDate": "2021-02-06T00:37:17+00:00",
 "UpdateDate": "2021-02-06T00:37:17+00:00"
 }
}

e. Attach the IAM policy to the token exchange role.

• Replace GreengrassV2TokenExchangeRole with the name of the IAM role.

• Replace the policy ARN with the ARN of the IAM policy that you created in the previous
step.

Install with manual provisioning 218

AWS IoT Greengrass Developer Guide, Version 2

aws iam attach-role-policy --role-name GreengrassV2TokenExchangeRole --policy-
arn arn:aws:iam::123456789012:policy/GreengrassV2TokenExchangeRoleAccess

The command doesn't have any output if the request succeeds.

2. Create an AWS IoT role alias that points to the token exchange role.

• Replace GreengrassCoreTokenExchangeRoleAlias with the name of the role alias to
create.

• Replace the role ARN with the ARN of the IAM role that you created in the previous step.

aws iot create-role-alias --role-alias GreengrassCoreTokenExchangeRoleAlias --role-
arn arn:aws:iam::123456789012:role/GreengrassV2TokenExchangeRole

The response looks similar to the following example, if the request succeeds.

{
 "roleAlias": "GreengrassCoreTokenExchangeRoleAlias",
 "roleAliasArn": "arn:aws:iot:us-west-2:123456789012:rolealias/
GreengrassCoreTokenExchangeRoleAlias"
}

Note

To create a role alias, you must have permission to pass the token exchange IAM
role to AWS IoT. If you receive an error message when you try to create a role alias,
check that your AWS user has this permission. For more information, see Granting
a user permissions to pass a role to an AWS service in the AWS Identity and Access
Management User Guide.

3. Create and attach an AWS IoT policy that allows your Greengrass core device to use the role
alias to assume the token exchange role. If you have set up a Greengrass core device before,
you can attach its role alias AWS IoT policy instead of creating a new one. Do the following:

a. (Optional) Create a file that contains the AWS IoT policy document that the role alias
requires.

Install with manual provisioning 219

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html

AWS IoT Greengrass Developer Guide, Version 2

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano greengrass-v2-iot-role-alias-policy.json

Copy the following JSON into the file.

• Replace the resource ARN with the ARN of your role alias.

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iot:AssumeRoleWithCertificate",
 "Resource": "arn:aws:iot:us-west-2:123456789012:rolealias/
GreengrassCoreTokenExchangeRoleAlias"
 }
]
}

b. Create an AWS IoT policy from the policy document.

• Replace GreengrassCoreTokenExchangeRoleAliasPolicy with the name of the
AWS IoT policy to create.

aws iot create-policy --policy-name GreengrassCoreTokenExchangeRoleAliasPolicy
 --policy-document file://greengrass-v2-iot-role-alias-policy.json

The response looks similar to the following example, if the request succeeds.

{
 "policyName": "GreengrassCoreTokenExchangeRoleAliasPolicy",
 "policyArn": "arn:aws:iot:us-west-2:123456789012:policy/
GreengrassCoreTokenExchangeRoleAliasPolicy",
 "policyDocument": "{
 \\"Version\\":\\"2012-10-17\\",
 \\"Statement\\": [
 {

Install with manual provisioning 220

AWS IoT Greengrass Developer Guide, Version 2

 \\"Effect\\": \\"Allow\\",
 \\"Action\\": \\"iot:AssumeRoleWithCertificate\\",
 \\"Resource\\": \\"arn:aws:iot:us-west-2:123456789012:rolealias/
GreengrassCoreTokenExchangeRoleAlias\\"
 }
]
 }",
 "policyVersionId": "1"
}

c. Attach the AWS IoT policy to the AWS IoT thing's certificate.

• Replace GreengrassCoreTokenExchangeRoleAliasPolicy with the name of the
role alias AWS IoT policy.

• Replace the target ARN with the ARN of the certificate for your AWS IoT thing.

aws iot attach-policy --policy-name GreengrassCoreTokenExchangeRoleAliasPolicy
 --target arn:aws:iot:us-west-2:123456789012:cert/
aa0b7958770878eabe251d8a7ddd547f4889c524c9b574ab9fbf65f32248b1d4

The command doesn't have any output if the request succeeds.

Download certificates to the device

Earlier, you downloaded your device's certificate to your development computer. In this section,
you copy the certificate to your core device to set up the device with the certificates that it uses to
connect to AWS IoT. You also download the Amazon root certificate authority (CA) certificate. If you
use an HSM, you also import the certificate file into the HSM in this section.

• If you created the thing certificate and private key in the AWS IoT service earlier, follow the steps
to download the certificates with private key and certificate files.

• If you created the thing certificate from a private key in a hardware security module (HSM)
earlier, follow the steps to download the certificates with the private key and certificate in an
HSM.

Install with manual provisioning 221

AWS IoT Greengrass Developer Guide, Version 2

Download certificates with private key and certificate files

To download certificates to the device

1. Copy the AWS IoT thing certificate from your development computer to the device. If SSH and
SCP are enabled on the development computer and the device, you can use the scp command
on your development computer to transfer the certificate. Replace device-ip-address with
the IP address of your device.

scp -r greengrass-v2-certs/ device-ip-address:~

2. Create the Greengrass root folder on the device. You'll later install the AWS IoT Greengrass
Core software to this folder.

Note

Windows has a path length limitation of 260 characters. If you are using Windows, use
a root folder like C:\greengrass\v2 or D:\greengrass\v2 to keep the Greengrass
components paths under the 260 character limit.

Linux or Unix

• Replace /greengrass/v2 with the folder to use.

sudo mkdir -p /greengrass/v2

Windows Command Prompt

• Replace C:\greengrass\v2 with the folder to use.

mkdir C:\greengrass\v2

PowerShell

• Replace C:\greengrass\v2 with the folder to use.

Install with manual provisioning 222

AWS IoT Greengrass Developer Guide, Version 2

mkdir C:\greengrass\v2

3. (Linux only) Set the permissions of the parent of the Greengrass root folder.

• Replace /greengrass with the parent of the root folder.

sudo chmod 755 /greengrass

4. Copy the AWS IoT thing certificates to the Greengrass root folder.

Linux or Unix

• Replace /greengrass/v2 with the Greengrass root folder.

sudo cp -R ~/greengrass-v2-certs/* /greengrass/v2

Windows Command Prompt

• Replace C:\greengrass\v2 with the folder to use.

robocopy %USERPROFILE%\greengrass-v2-certs C:\greengrass\v2 /E

PowerShell

• Replace C:\greengrass\v2 with the folder to use.

cp -Path ~\greengrass-v2-certs* -Destination C:\greengrass\v2

5. Download the Amazon root certificate authority (CA) certificate. AWS IoT certificates are
associated with Amazon's root CA certificate by default.

Linux or Unix

sudo curl -o /greengrass/v2/AmazonRootCA1.pem https://www.amazontrust.com/
repository/AmazonRootCA1.pem

Install with manual provisioning 223

AWS IoT Greengrass Developer Guide, Version 2

Windows Command Prompt (CMD)

curl -o C:\greengrass\v2\\AmazonRootCA1.pem https://www.amazontrust.com/
repository/AmazonRootCA1.pem

PowerShell

iwr -Uri https://www.amazontrust.com/repository/AmazonRootCA1.pem -OutFile C:
\greengrass\v2\\AmazonRootCA1.pem

Download certificates with the private key and certificate in an HSM

Note

This feature is available for v2.5.3 and later of the Greengrass nucleus component. AWS IoT
Greengrass doesn't currently support this feature on Windows core devices.

To download certificates to the device

1. Copy the AWS IoT thing certificate from your development computer to the device. If SSH and
SCP are enabled on the development computer and the device, you can use the scp command
on your development computer to transfer the certificate. Replace device-ip-address with
the IP address of your device.

scp -r greengrass-v2-certs/ device-ip-address:~

2. Create the Greengrass root folder on the device. You'll later install the AWS IoT Greengrass
Core software to this folder.

Note

Windows has a path length limitation of 260 characters. If you are using Windows, use
a root folder like C:\greengrass\v2 or D:\greengrass\v2 to keep the Greengrass
components paths under the 260 character limit.

Install with manual provisioning 224

AWS IoT Greengrass Developer Guide, Version 2

Linux or Unix

• Replace /greengrass/v2 with the folder to use.

sudo mkdir -p /greengrass/v2

Windows Command Prompt

• Replace C:\greengrass\v2 with the folder to use.

mkdir C:\greengrass\v2

PowerShell

• Replace C:\greengrass\v2 with the folder to use.

mkdir C:\greengrass\v2

3. (Linux only) Set the permissions of the parent of the Greengrass root folder.

• Replace /greengrass with the parent of the root folder.

sudo chmod 755 /greengrass

4. Import the thing certificate file, ~/greengrass-v2-certs/device.pem.crt, into the HSM.
Check the documentation for your HSM to learn how to import certificates into it. Import the
certificate using the same token, slot ID, user PIN, object label, and object ID (if your HSM uses
one) where you generated the private key in the HSM earlier.

Note

If you generated the private key earlier without an object ID, and the certificate has
an object ID, set the private key's object ID to the same value as the certificate. Check

Install with manual provisioning 225

AWS IoT Greengrass Developer Guide, Version 2

the documentation for your HSM to learn how to set the object ID for the private key
object.

5. (Optional) Delete the thing certificate file, so that it exists only in the HSM.

rm ~/greengrass-v2-certs/device.pem.crt

6. Download the Amazon root certificate authority (CA) certificate. AWS IoT certificates are
associated with Amazon's root CA certificate by default.

Linux or Unix

sudo curl -o /greengrass/v2/AmazonRootCA1.pem https://www.amazontrust.com/
repository/AmazonRootCA1.pem

Windows Command Prompt (CMD)

curl -o C:\greengrass\v2\\AmazonRootCA1.pem https://www.amazontrust.com/
repository/AmazonRootCA1.pem

PowerShell

iwr -Uri https://www.amazontrust.com/repository/AmazonRootCA1.pem -OutFile C:
\greengrass\v2\\AmazonRootCA1.pem

Set up the device environment

Follow the steps in this section to set up a Linux or Windows device to use as your AWS IoT
Greengrass core device.

Set up a Linux device

To set up a Linux device for AWS IoT Greengrass V2

1. Install the Java runtime, which AWS IoT Greengrass Core software requires to run. We
recommend that you use Amazon Corretto or OpenJDK long-term support versions. Version
8 or higher is required. The following commands show you how to install OpenJDK on your
device.

Install with manual provisioning 226

https://aws.amazon.com/corretto/
https://openjdk.java.net/

AWS IoT Greengrass Developer Guide, Version 2

• For Debian-based or Ubuntu-based distributions:

sudo apt install default-jdk

• For Red Hat-based distributions:

sudo yum install java-11-openjdk-devel

• For Amazon Linux 2:

sudo amazon-linux-extras install java-openjdk11

• For Amazon Linux 2023:

sudo dnf install java-11-amazon-corretto -y

When the installation completes, run the following command to verify that Java runs on your
Linux device.

java -version

The command prints the version of Java that runs on the device. For example, on a Debian-
based distribution, the output might look similar to the following sample.

openjdk version "11.0.9.1" 2020-11-04
OpenJDK Runtime Environment (build 11.0.9.1+1-post-Debian-1deb10u2)
OpenJDK 64-Bit Server VM (build 11.0.9.1+1-post-Debian-1deb10u2, mixed mode)

2. (Optional) Create the default system user and group that runs components on the device. You
can also choose to let the AWS IoT Greengrass Core software installer create this user and
group during installation with the --component-default-user installer argument. For
more information, see Installer arguments.

sudo useradd --system --create-home ggc_user
sudo groupadd --system ggc_group

3. Verify that the user that runs the AWS IoT Greengrass Core software (typically root), has
permission to run sudo with any user and any group.

Install with manual provisioning 227

AWS IoT Greengrass Developer Guide, Version 2

a. Run the following command to open the /etc/sudoers file.

sudo visudo

b. Verify that the permission for the user looks like the following example.

root ALL=(ALL:ALL) ALL

4. (Optional) To run containerized Lambda functions, you must enable cgroups v1, and you must
enable and mount the memory and devices cgroups. If you don't plan to run containerized
Lambda functions, you can skip this step.

To enable these cgroups options, boot the device with the following Linux kernel parameters.

cgroup_enable=memory cgroup_memory=1 systemd.unified_cgroup_hierarchy=0

For information about viewing and setting kernel parameters for your device, see the
documentation for your operating system and boot loader. Follow the instructions to
permanently set the kernel parameters.

5. Install all other required dependencies on your device as indicated by the list of requirements
in Device requirements.

Set up a Windows device

Note

This feature is available for v2.5.0 and later of the Greengrass nucleus component.

To set up a Windows device for AWS IoT Greengrass V2

1. Install the Java runtime, which AWS IoT Greengrass Core software requires to run. We
recommend that you use Amazon Corretto or OpenJDK long-term support versions. Version 8
or higher is required.

2. Check whether Java is available on the PATH system variable, and add it if not. The
LocalSystem account runs the AWS IoT Greengrass Core software, so you must add Java to the
PATH system variable instead of the PATH user variable for your user. Do the following:

Install with manual provisioning 228

https://en.wikipedia.org/wiki/Cgroups
https://aws.amazon.com/corretto/
https://openjdk.java.net/
https://en.wikipedia.org/wiki/PATH_(variable)

AWS IoT Greengrass Developer Guide, Version 2

a. Press the Windows key to open the start menu.

b. Type environment variables to search for the system options from the start menu.

c. In the start menu search results, choose Edit the system environment variables to open
the System properties window.

d. Choose Environment variables... to open the Environment Variables window.

e. Under System variables, select Path, and then choose Edit. In the Edit environment
variable window, you can view each path on a separate line.

f. Check if the path to the Java installation's bin folder is present. The path might look
similar to the following example.

C:\\Program Files\\Amazon Corretto\\jdk11.0.13_8\\bin

g. If the Java installation's bin folder is missing from Path, choose New to add it, and then
choose OK.

3. Open the Windows Command Prompt (cmd.exe) as an administrator.

4. Create the default user in the LocalSystem account on the Windows device. Replace password
with a secure password.

net user /add ggc_user password

Tip

Depending on your Windows configuration, the user's password might be set to expire
at a date in the future. To ensure your Greengrass applications continue to operate,
track when the password expires, and update it before it expires. You can also set the
user's password to never expire.

• To check when a user and its password expire, run the following command.

net user ggc_user | findstr /C:expires

• To set a user's password to never expire, run the following command.

wmic UserAccount where "Name='ggc_user'" set PasswordExpires=False

Install with manual provisioning 229

AWS IoT Greengrass Developer Guide, Version 2

• If you’re using Windows 10 or later where the wmic command is deprecated, run the
following PowerShell command.

Get-CimInstance -Query "SELECT * from Win32_UserAccount WHERE name =
 'ggc_user'" | Set-CimInstance -Property @{PasswordExpires="False"}

5. Download and install the PsExec utility from Microsoft on the device.

6. Use the PsExec utility to store the user name and password for the default user in the
Credential Manager instance for the LocalSystem account. Replace password with the user's
password that you set earlier.

psexec -s cmd /c cmdkey /generic:ggc_user /user:ggc_user /pass:password

If the PsExec License Agreement opens, choose Accept to agree to the license and run the
command.

Note

On Windows devices, the LocalSystem account runs the Greengrass nucleus, and you
must use the PsExec utility to store the default user information in the LocalSystem
account. Using the Credential Manager application stores this information in the
Windows account of the currently logged on user, instead of the LocalSystem account.

Download the AWS IoT Greengrass Core software

You can download the latest version of the AWS IoT Greengrass Core software from the following
location:

• https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-latest.zip

Note

You can download a specific version of the AWS IoT Greengrass Core software from the
following location. Replace version with the version to download.

Install with manual provisioning 230

https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmic
https://docs.microsoft.com/en-us/sysinternals/downloads/psexec
https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-latest.zip

AWS IoT Greengrass Developer Guide, Version 2

https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-version.zip

To download the AWS IoT Greengrass Core software

1. On your core device, download the AWS IoT Greengrass Core software to a file named
greengrass-nucleus-latest.zip.

Linux or Unix

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip > greengrass-nucleus-latest.zip

Windows Command Prompt (CMD)

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip > greengrass-nucleus-latest.zip

PowerShell

iwr -Uri https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip -OutFile greengrass-nucleus-latest.zip

By downloading this software, you agree to the Greengrass Core Software License Agreement.

2. (Optional) To verify the Greengrass nucleus software signature

Note

This feature is available with Greengrass nucleus version 2.9.5 and later.

a. Use the following command to verify your Greengrass nucleus artifact's signature:

Linux or Unix

jarsigner -verify -certs -verbose greengrass-nucleus-latest.zip

Install with manual provisioning 231

https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 2

Windows Command Prompt (CMD)

The file name might look different depending on the JDK version you install. Replace
jdk17.0.6_10 with the JDK version you installed.

"C:\\Program Files\\Amazon Corretto\\jdk17.0.6_10\\bin\\jarsigner.exe" -
verify -certs -verbose greengrass-nucleus-latest.zip

PowerShell

The file name might look different depending on the JDK version you install. Replace
jdk17.0.6_10 with the JDK version you installed.

'C:\\Program Files\\Amazon Corretto\\jdk17.0.6_10\\bin\\jarsigner.exe' -
verify -certs -verbose greengrass-nucleus-latest.zip

b. The jarsigner invocation yields output that indicates the results of the verification.

i. If the Greengrass nucleus zip file is signed, the output contains the following
statement:

jar verified.

ii. If the Greengrass nucleus zip file isn't signed, the output contains the following
statement:

jar is unsigned.

c. If you provided the Jarsigner -certs option along with -verify and -verbose options,
the output also includes detailed signer certificate information.

3. Unzip the AWS IoT Greengrass Core software to a folder on your device. Replace
GreengrassInstaller with the folder that you want to use.

Linux or Unix

unzip greengrass-nucleus-latest.zip -d GreengrassInstaller && rm greengrass-
nucleus-latest.zip

Install with manual provisioning 232

AWS IoT Greengrass Developer Guide, Version 2

Windows Command Prompt (CMD)

mkdir GreengrassInstaller && tar -xf greengrass-nucleus-latest.zip -
C GreengrassInstaller && del greengrass-nucleus-latest.zip

PowerShell

Expand-Archive -Path greengrass-nucleus-latest.zip -DestinationPath .\
\GreengrassInstaller
rm greengrass-nucleus-latest.zip

4. (Optional) Run the following command to see the version of the AWS IoT Greengrass Core
software.

java -jar ./GreengrassInstaller/lib/Greengrass.jar --version

Important

If you install a version of the Greengrass nucleus earlier than v2.4.0, don't remove this
folder after you install the AWS IoT Greengrass Core software. The AWS IoT Greengrass
Core software uses the files in this folder to run.
If you downloaded the latest version of the software, you install v2.4.0 or later, and you can
remove this folder after you install the AWS IoT Greengrass Core software.

Install the AWS IoT Greengrass Core software

Run the installer with arguments that specify the following actions:

• Install from a partial configuration file that specifies to use the AWS resources and certificates
that you created earlier. The AWS IoT Greengrass Core software uses a configuration file that
specifies the configuration of every Greengrass component on the device. The installer creates a
complete configuration file from the partial configuration file that you provide.

• Specify to use the ggc_user system user to run software components on the core device. On
Linux devices, this command also specifies to use the ggc_group system group, and the installer
creates the system user and group for you.

Install with manual provisioning 233

AWS IoT Greengrass Developer Guide, Version 2

• Set up the AWS IoT Greengrass Core software as a system service that runs at boot. On Linux
devices, this requires the Systemd init system.

Important

On Windows core devices, you must set up the AWS IoT Greengrass Core software as a
system service.

For more information about the arguments that you can specify, see Installer arguments.

Note

If you are running AWS IoT Greengrass on a device with limited memory, you can control
the amount of memory that AWS IoT Greengrass Core software uses. To control memory
allocation, you can set JVM heap size options in the jvmOptions configuration parameter
in your nucleus component. For more information, see Control memory allocation with JVM
options.

• If you created the thing certificate and private key in the AWS IoT service earlier, follow the steps
to install the AWS IoT Greengrass Core software with private key and certificate files.

• If you created the thing certificate from a private key in a hardware security module (HSM)
earlier, follow the steps to install the AWS IoT Greengrass Core software with the private key and
certificate in an HSM.

Install the AWS IoT Greengrass Core software with private key and certificate files

To install the AWS IoT Greengrass Core software

1. Check the version of the AWS IoT Greengrass Core software.

• Replace GreengrassInstaller with the path to the folder that contains the software.

java -jar ./GreengrassInstaller/lib/Greengrass.jar --version

2. Use a text editor to create a configuration file named config.yaml to provide to the installer.

Install with manual provisioning 234

https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 2

For example, on a Linux-based system, you can run the following command to use GNU nano
to create the file.

nano GreengrassInstaller/config.yaml

Copy the following YAML content into the file. This partial configuration file specifies system
parameters and Greengrass nucleus parameters.

system:
 certificateFilePath: "/greengrass/v2/device.pem.crt"
 privateKeyPath: "/greengrass/v2/private.pem.key"
 rootCaPath: "/greengrass/v2/AmazonRootCA1.pem"
 rootpath: "/greengrass/v2"
 thingName: "MyGreengrassCore"
services:
 aws.greengrass.Nucleus:
 componentType: "NUCLEUS"
 version: "2.14.0"
 configuration:
 awsRegion: "us-west-2"
 iotRoleAlias: "GreengrassCoreTokenExchangeRoleAlias"
 iotDataEndpoint: "device-data-prefix-ats.iot.us-west-2.amazonaws.com"
 iotCredEndpoint: "device-credentials-prefix.credentials.iot.us-
west-2.amazonaws.com"

Then, do the following:

• Replace each instance of /greengrass/v2 with the Greengrass root folder.

• Replace MyGreengrassCore with the name of the AWS IoT thing.

• Replace 2.14.0 with the version of the AWS IoT Greengrass Core software.

• Replace us-west-2 with the AWS Region where you created the resources.

• Replace GreengrassCoreTokenExchangeRoleAlias with the name of the token
exchange role alias.

• Replace the iotDataEndpoint with your AWS IoT data endpoint.

• Replace the iotCredEndpoint with your AWS IoT credentials endpoint.

Install with manual provisioning 235

AWS IoT Greengrass Developer Guide, Version 2

Note

In this configuration file, you can customize other nucleus configuration options such
as the ports and network proxy to use, as shown in the following example. For more
information, see Greengrass nucleus configuration.

system:
 certificateFilePath: "/greengrass/v2/device.pem.crt"
 privateKeyPath: "/greengrass/v2/private.pem.key"
 rootCaPath: "/greengrass/v2/AmazonRootCA1.pem"
 rootpath: "/greengrass/v2"
 thingName: "MyGreengrassCore"
services:
 aws.greengrass.Nucleus:
 componentType: "NUCLEUS"
 version: "2.14.0"
 configuration:
 awsRegion: "us-west-2"
 iotRoleAlias: "GreengrassCoreTokenExchangeRoleAlias"
 iotCredEndpoint: "device-credentials-prefix.credentials.iot.us-
west-2.amazonaws.com"
 iotDataEndpoint: "device-data-prefix-ats.iot.us-west-2.amazonaws.com"
 mqtt:
 port: 443
 greengrassDataPlanePort: 443
 networkProxy:
 noProxyAddresses: "http://192.168.0.1,www.example.com"
 proxy:
 url: "https://my-proxy-server:1100"
 username: "Mary_Major"
 password: "pass@word1357"

3. Run the installer, and specify --init-config to provide the configuration file.

• Replace /greengrass/v2 or C:\greengrass\v2 with the Greengrass root folder.

• Replace each instance of GreengrassInstaller with the folder where you unpacked the
installer.

Install with manual provisioning 236

AWS IoT Greengrass Developer Guide, Version 2

Linux or Unix

sudo -E java -Droot="/greengrass/v2" -Dlog.store=FILE \
 -jar ./GreengrassInstaller/lib/Greengrass.jar \
 --init-config ./GreengrassInstaller/config.yaml \
 --component-default-user ggc_user:ggc_group \
 --setup-system-service true

Windows Command Prompt (CMD)

java -Droot="C:\greengrass\v2" "-Dlog.store=FILE" ^
 -jar ./GreengrassInstaller/lib/Greengrass.jar ^
 --init-config ./GreengrassInstaller/config.yaml ^
 --component-default-user ggc_user ^
 --setup-system-service true

PowerShell

java -Droot="C:\greengrass\v2" "-Dlog.store=FILE" `
 -jar ./GreengrassInstaller/lib/Greengrass.jar `
 --init-config ./GreengrassInstaller/config.yaml `
 --component-default-user ggc_user `
 --setup-system-service true

Important

On Windows core devices, you must specify --setup-system-service true to set
up the AWS IoT Greengrass Core software as a system service.

If you specify --setup-system-service true, the installer prints Successfully set
up Nucleus as a system service if it set up and ran the software as a system service.
Otherwise, the installer doesn't output any message if it installs the software successfully.

Install with manual provisioning 237

AWS IoT Greengrass Developer Guide, Version 2

Note

You can't use the deploy-dev-tools argument to deploy local development
tools when you run the installer without the --provision true argument.
For information about deploying the Greengrass CLI directly on your device, see
Greengrass Command Line Interface.

4. Verify the installation by viewing the files in the root folder.

Linux or Unix

ls /greengrass/v2

Windows Command Prompt (CMD)

dir C:\greengrass\v2

PowerShell

ls C:\greengrass\v2

If the installation succeeded, the root folder contains several folders, such as config,
packages, and logs.

Install the AWS IoT Greengrass Core software with the private key and certificate in an HSM

Note

This feature is available for v2.5.3 and later of the Greengrass nucleus component. AWS IoT
Greengrass doesn't currently support this feature on Windows core devices.

To install the AWS IoT Greengrass Core software

1. Check the version of the AWS IoT Greengrass Core software.

• Replace GreengrassInstaller with the path to the folder that contains the software.

Install with manual provisioning 238

AWS IoT Greengrass Developer Guide, Version 2

java -jar ./GreengrassInstaller/lib/Greengrass.jar --version

2. To enable the AWS IoT Greengrass Core software to use the private key and certificate in
the HSM, install the PKCS#11 provider component when you install the AWS IoT Greengrass
Core software. The PKCS#11 provider component is a plugin that you can configure during
installation. You can download the latest version of the PKCS#11 provider component from
the following location:

• https://d2s8p88vqu9w66.cloudfront.net/releases/Pkcs11Provider/
aws.greengrass.crypto.Pkcs11Provider-latest.jar

Download the PKCS#11 provider plugin to a file named
aws.greengrass.crypto.Pkcs11Provider.jar. Replace GreengrassInstaller with
the folder that you want to use.

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/Pkcs11Provider/
aws.greengrass.crypto.Pkcs11Provider-latest.jar > GreengrassInstaller/
aws.greengrass.crypto.Pkcs11Provider.jar

By downloading this software, you agree to the Greengrass Core Software License Agreement.

3. Use a text editor to create a configuration file named config.yaml to provide to the installer.

For example, on a Linux-based system, you can run the following command to use GNU nano
to create the file.

nano GreengrassInstaller/config.yaml

Copy the following YAML content into the file. This partial configuration file specifies system
parameters, Greengrass nucleus parameters, and PKCS#11 provider parameters.

system:
 certificateFilePath: "pkcs11:object=iotdevicekey;type=cert"
 privateKeyPath: "pkcs11:object=iotdevicekey;type=private"
 rootCaPath: "/greengrass/v2/AmazonRootCA1.pem"
 rootpath: "/greengrass/v2"
 thingName: "MyGreengrassCore"

Install with manual provisioning 239

https://d2s8p88vqu9w66.cloudfront.net/releases/Pkcs11Provider/aws.greengrass.crypto.Pkcs11Provider-latest.jar
https://d2s8p88vqu9w66.cloudfront.net/releases/Pkcs11Provider/aws.greengrass.crypto.Pkcs11Provider-latest.jar
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 2

services:
 aws.greengrass.Nucleus:
 componentType: "NUCLEUS"
 version: "2.14.0"
 configuration:
 awsRegion: "us-west-2"
 iotRoleAlias: "GreengrassCoreTokenExchangeRoleAlias"
 iotDataEndpoint: "device-data-prefix-ats.iot.us-west-2.amazonaws.com"
 iotCredEndpoint: "device-credentials-prefix.credentials.iot.us-
west-2.amazonaws.com"
 aws.greengrass.crypto.Pkcs11Provider:
 configuration:
 name: "softhsm_pkcs11"
 library: "/usr/local/Cellar/softhsm/2.6.1/lib/softhsm/libsofthsm2.so"
 slot: 1
 userPin: "1234"

Then, do the following:

• Replace each instance of iotdevicekey in the PKCS#11 URIs with the object label where
you created the private key and imported the certificate.

• Replace each instance of /greengrass/v2 with the Greengrass root folder.

• Replace MyGreengrassCore with the name of the AWS IoT thing.

• Replace 2.14.0 with the version of the AWS IoT Greengrass Core software.

• Replace us-west-2 with the AWS Region where you created the resources.

• Replace GreengrassCoreTokenExchangeRoleAlias with the name of the token
exchange role alias.

• Replace the iotDataEndpoint with your AWS IoT data endpoint.

• Replace the iotCredEndpoint with your AWS IoT credentials endpoint.

• Replace the configuration parameters for the
aws.greengrass.crypto.Pkcs11Provider component with the values for the HSM
configuration on the core device.

Install with manual provisioning 240

AWS IoT Greengrass Developer Guide, Version 2

Note

In this configuration file, you can customize other nucleus configuration options such
as the ports and network proxy to use, as shown in the following example. For more
information, see Greengrass nucleus configuration.

system:
 certificateFilePath: "pkcs11:object=iotdevicekey;type=cert"
 privateKeyPath: "pkcs11:object=iotdevicekey;type=private"
 rootCaPath: "/greengrass/v2/AmazonRootCA1.pem"
 rootpath: "/greengrass/v2"
 thingName: "MyGreengrassCore"
services:
 aws.greengrass.Nucleus:
 componentType: "NUCLEUS"
 version: "2.14.0"
 configuration:
 awsRegion: "us-west-2"
 iotRoleAlias: "GreengrassCoreTokenExchangeRoleAlias"
 iotDataEndpoint: "device-data-prefix-ats.iot.us-west-2.amazonaws.com"
 iotCredEndpoint: "device-credentials-prefix.credentials.iot.us-
west-2.amazonaws.com"
 mqtt:
 port: 443
 greengrassDataPlanePort: 443
 networkProxy:
 noProxyAddresses: "http://192.168.0.1,www.example.com"
 proxy:
 url: "https://my-proxy-server:1100"
 username: "Mary_Major"
 password: "pass@word1357"
 aws.greengrass.crypto.Pkcs11Provider:
 configuration:
 name: "softhsm_pkcs11"
 library: "/usr/local/Cellar/softhsm/2.6.1/lib/softhsm/libsofthsm2.so"
 slot: 1
 userPin: "1234"

4. Run the installer, and specify --init-config to provide the configuration file.

Install with manual provisioning 241

AWS IoT Greengrass Developer Guide, Version 2

• Replace /greengrass/v2 with the Greengrass root folder.

• Replace each instance of GreengrassInstaller with the folder where you unpacked the
installer.

sudo -E java -Droot="/greengrass/v2" -Dlog.store=FILE \
 -jar ./GreengrassInstaller/lib/Greengrass.jar \
 --trusted-plugin ./GreengrassInstaller/aws.greengrass.crypto.Pkcs11Provider.jar \
 --init-config ./GreengrassInstaller/config.yaml \
 --component-default-user ggc_user:ggc_group \
 --setup-system-service true

Important

On Windows core devices, you must specify --setup-system-service true to set
up the AWS IoT Greengrass Core software as a system service.

If you specify --setup-system-service true, the installer prints Successfully set
up Nucleus as a system service if it set up and ran the software as a system service.
Otherwise, the installer doesn't output any message if it installs the software successfully.

Note

You can't use the deploy-dev-tools argument to deploy local development
tools when you run the installer without the --provision true argument.
For information about deploying the Greengrass CLI directly on your device, see
Greengrass Command Line Interface.

5. Verify the installation by viewing the files in the root folder.

Linux or Unix

ls /greengrass/v2

Install with manual provisioning 242

AWS IoT Greengrass Developer Guide, Version 2

Windows Command Prompt (CMD)

dir C:\greengrass\v2

PowerShell

ls C:\greengrass\v2

If the installation succeeded, the root folder contains several folders, such as config,
packages, and logs.

If you installed the AWS IoT Greengrass Core software as a system service, the installer runs the
software for you. Otherwise, you must run the software manually. For more information, see Run
the AWS IoT Greengrass Core software.

For more information about how to configure and use the software and AWS IoT Greengrass, see
the following:

• Configure the AWS IoT Greengrass Core software

• Develop AWS IoT Greengrass components

• Deploy AWS IoT Greengrass components to devices

• Greengrass Command Line Interface

Install AWS IoT Greengrass Core software with AWS IoT fleet
provisioning

This feature is available for v2.4.0 and later of the Greengrass nucleus component.

With AWS IoT fleet provisioning, you can configure AWS IoT to generate and securely deliver X.509
device certificates and private keys to your devices when they connect to AWS IoT for the first
time. AWS IoT provides client certificates that are signed by the Amazon Root certificate authority
(CA). You can also configure AWS IoT to specify thing groups, thing types, and permissions for
Greengrass core devices that you provision with fleet provisioning. You define a provisioning
template to define how AWS IoT provisions each device. The provisioning template specifies

Install with fleet provisioning 243

AWS IoT Greengrass Developer Guide, Version 2

the thing, policy, and certificate resources to create for a device when provisioning. For more
information, see Provisioning templates in the AWS IoT Core Developer Guide.

AWS IoT Greengrass provides an AWS IoT fleet provisioning plugin that you can use to install the
AWS IoT Greengrass Core software using AWS resources created by AWS IoT fleet provisioning.
The fleet provisioning plugin uses provisioning by claim. Devices use a provisioning claim certificate
and private key to obtain a unique X.509 device certificate and private key that they can use for
regular operations. You can embed the claim certificate and private key in each device during
manufacturing, so your customers can activate devices later when each device comes online. You
can use the same claim certificate and private key for multiple devices. For more information, see
Provisioning by claim in the AWS IoT Core Developer Guide.

Note

The fleet provisioning plugin doesn't currently support storing private key and certificate
files in a hardware security module (HSM). To use an HSM, install the AWS IoT Greengrass
Core software with manual provisioning.

To install the AWS IoT Greengrass Core software with AWS IoT fleet provisioning, you must set
up resources in your AWS account that AWS IoT uses to provision Greengrass core devices. These
resources include a provisioning template, claim certificates, and a token exchange IAM role. After
you create these resources, you can reuse them to provision multiple core devices in a fleet. For
more information, see Set up AWS IoT fleet provisioning for Greengrass core devices.

Important

Before you download the AWS IoT Greengrass Core software, check that your core device
meets the requirements to install and run the AWS IoT Greengrass Core software v2.0.

Topics

• Prerequisites

• Retrieve AWS IoT endpoints

• Download certificates to the device

• Set up the device environment

Install with fleet provisioning 244

https://docs.aws.amazon.com/iot/latest/developerguide/provision-template.html
https://docs.aws.amazon.com/iot/latest/developerguide/provision-wo-cert.html#claim-based

AWS IoT Greengrass Developer Guide, Version 2

• Download the AWS IoT Greengrass Core software

• Download the AWS IoT fleet provisioning plugin

• Install the AWS IoT Greengrass Core software

• Set up AWS IoT fleet provisioning for Greengrass core devices

• Configure the AWS IoT fleet provisioning plugin

• AWS IoT fleet provisioning plugin changelog

Prerequisites

To install the AWS IoT Greengrass Core software with AWS IoT fleet provisioning, you must first set
up AWS IoT fleet provisioning for Greengrass core devices. After you complete these steps once,
you can use fleet provisioning to install the AWS IoT Greengrass Core software on any number of
devices.

Retrieve AWS IoT endpoints

Get the AWS IoT endpoints for your AWS account, and save them to use later. Your device uses
these endpoints to connect to AWS IoT. Do the following:

1. Get the AWS IoT data endpoint for your AWS account.

aws iot describe-endpoint --endpoint-type iot:Data-ATS

The response looks similar to the following example, if the request succeeds.

{
 "endpointAddress": "device-data-prefix-ats.iot.us-west-2.amazonaws.com"
}

2. Get the AWS IoT credentials endpoint for your AWS account.

aws iot describe-endpoint --endpoint-type iot:CredentialProvider

The response looks similar to the following example, if the request succeeds.

{
 "endpointAddress": "device-credentials-prefix.credentials.iot.us-
west-2.amazonaws.com"

Install with fleet provisioning 245

AWS IoT Greengrass Developer Guide, Version 2

}

Download certificates to the device

The device uses a claim certificate and private key to authenticate its request to provision AWS
resources and acquire an X.509 device certificate. You can embed the claim certificate and private
key into the device during manufacturing, or copy the certificate and key to the device during
installation. In this section, you copy the claim certificate and private key to the device. You also
download the Amazon Root certificate authority (CA) certificate to the device.

Important

Provisioning claim private keys should be secured at all times, including on Greengrass core
devices. We recommend that you use Amazon CloudWatch metrics and logs to monitor for
indications of misuse, such as unauthorized use of the claim certificate to provision devices.
If you detect misuse, disable the provisioning claim certificate so that it can't be used for
device provisioning. For more information, see Monitoring AWS IoT in the AWS IoT Core
Developer Guide.
To help you better manage the number of devices, and which devices, that register
themselves in your AWS account, you can specify a pre-provisioning hook when you create
a fleet provisioning template. A pre-provisioning hook is an AWS Lambda function that
validates template parameters that devices provide during registration. For example, you
might create a pre-provisioning hook that checks a device ID against a database to verify
that the device has permission to provision. For more information, see Pre-provisioning
hooks in the AWS IoT Core Developer Guide.

To download claim certificates to the device

1. Copy the claim certificate and private key to the device. If SSH and SCP are enabled on the
development computer and the device, you can use the scp command on your development
computer to transfer the claim certificate and private key. The following example command
transfers these files a folder named claim-certs on your development computer to the
device. Replace device-ip-address with the IP address of your device.

scp -r claim-certs/ device-ip-address:~

Install with fleet provisioning 246

https://docs.aws.amazon.com/iot/latest/developerguide/monitoring_overview.html
https://docs.aws.amazon.com/iot/latest/developerguide/pre-provisioning-hook.html
https://docs.aws.amazon.com/iot/latest/developerguide/pre-provisioning-hook.html

AWS IoT Greengrass Developer Guide, Version 2

2. Create the Greengrass root folder on the device. You'll later install the AWS IoT Greengrass
Core software to this folder.

Note

Windows has a path length limitation of 260 characters. If you are using Windows, use
a root folder like C:\greengrass\v2 or D:\greengrass\v2 to keep the Greengrass
components paths under the 260 character limit.

Linux or Unix

• Replace /greengrass/v2 with the folder to use.

sudo mkdir -p /greengrass/v2

Windows Command Prompt

• Replace C:\greengrass\v2 with the folder to use.

mkdir C:\greengrass\v2

PowerShell

• Replace C:\greengrass\v2 with the folder to use.

mkdir C:\greengrass\v2

3. (Linux only) Set the permissions of the parent of the Greengrass root folder.

• Replace /greengrass with the parent of the root folder.

sudo chmod 755 /greengrass

4. Move the claim certificates to the Greengrass root folder.

• Replace /greengrass/v2 or C:\greengrass\v2 with the Greengrass root folder.

Install with fleet provisioning 247

AWS IoT Greengrass Developer Guide, Version 2

Linux or Unix

sudo mv ~/claim-certs /greengrass/v2

Windows Command Prompt (CMD)

move %USERPROFILE%\claim-certs C:\greengrass\v2

PowerShell

mv -Path ~\claim-certs -Destination C:\greengrass\v2

5. Download the Amazon root certificate authority (CA) certificate. AWS IoT certificates are
associated with Amazon's root CA certificate by default.

Linux or Unix

sudo curl -o /greengrass/v2/AmazonRootCA1.pem https://www.amazontrust.com/
repository/AmazonRootCA1.pem

Windows Command Prompt (CMD)

curl -o C:\greengrass\v2\\AmazonRootCA1.pem https://www.amazontrust.com/
repository/AmazonRootCA1.pem

PowerShell

iwr -Uri https://www.amazontrust.com/repository/AmazonRootCA1.pem -OutFile C:
\greengrass\v2\\AmazonRootCA1.pem

Set up the device environment

Follow the steps in this section to set up a Linux or Windows device to use as your AWS IoT
Greengrass core device.

Install with fleet provisioning 248

AWS IoT Greengrass Developer Guide, Version 2

Set up a Linux device

To set up a Linux device for AWS IoT Greengrass V2

1. Install the Java runtime, which AWS IoT Greengrass Core software requires to run. We
recommend that you use Amazon Corretto or OpenJDK long-term support versions. Version
8 or higher is required. The following commands show you how to install OpenJDK on your
device.

• For Debian-based or Ubuntu-based distributions:

sudo apt install default-jdk

• For Red Hat-based distributions:

sudo yum install java-11-openjdk-devel

• For Amazon Linux 2:

sudo amazon-linux-extras install java-openjdk11

• For Amazon Linux 2023:

sudo dnf install java-11-amazon-corretto -y

When the installation completes, run the following command to verify that Java runs on your
Linux device.

java -version

The command prints the version of Java that runs on the device. For example, on a Debian-
based distribution, the output might look similar to the following sample.

openjdk version "11.0.9.1" 2020-11-04
OpenJDK Runtime Environment (build 11.0.9.1+1-post-Debian-1deb10u2)
OpenJDK 64-Bit Server VM (build 11.0.9.1+1-post-Debian-1deb10u2, mixed mode)

2. (Optional) Create the default system user and group that runs components on the device. You
can also choose to let the AWS IoT Greengrass Core software installer create this user and

Install with fleet provisioning 249

https://aws.amazon.com/corretto/
https://openjdk.java.net/

AWS IoT Greengrass Developer Guide, Version 2

group during installation with the --component-default-user installer argument. For
more information, see Installer arguments.

sudo useradd --system --create-home ggc_user
sudo groupadd --system ggc_group

3. Verify that the user that runs the AWS IoT Greengrass Core software (typically root), has
permission to run sudo with any user and any group.

a. Run the following command to open the /etc/sudoers file.

sudo visudo

b. Verify that the permission for the user looks like the following example.

root ALL=(ALL:ALL) ALL

4. (Optional) To run containerized Lambda functions, you must enable cgroups v1, and you must
enable and mount the memory and devices cgroups. If you don't plan to run containerized
Lambda functions, you can skip this step.

To enable these cgroups options, boot the device with the following Linux kernel parameters.

cgroup_enable=memory cgroup_memory=1 systemd.unified_cgroup_hierarchy=0

For information about viewing and setting kernel parameters for your device, see the
documentation for your operating system and boot loader. Follow the instructions to
permanently set the kernel parameters.

5. Install all other required dependencies on your device as indicated by the list of requirements
in Device requirements.

Set up a Windows device

Note

This feature is available for v2.5.0 and later of the Greengrass nucleus component.

Install with fleet provisioning 250

https://en.wikipedia.org/wiki/Cgroups

AWS IoT Greengrass Developer Guide, Version 2

To set up a Windows device for AWS IoT Greengrass V2

1. Install the Java runtime, which AWS IoT Greengrass Core software requires to run. We
recommend that you use Amazon Corretto or OpenJDK long-term support versions. Version 8
or higher is required.

2. Check whether Java is available on the PATH system variable, and add it if not. The
LocalSystem account runs the AWS IoT Greengrass Core software, so you must add Java to the
PATH system variable instead of the PATH user variable for your user. Do the following:

a. Press the Windows key to open the start menu.

b. Type environment variables to search for the system options from the start menu.

c. In the start menu search results, choose Edit the system environment variables to open
the System properties window.

d. Choose Environment variables... to open the Environment Variables window.

e. Under System variables, select Path, and then choose Edit. In the Edit environment
variable window, you can view each path on a separate line.

f. Check if the path to the Java installation's bin folder is present. The path might look
similar to the following example.

C:\\Program Files\\Amazon Corretto\\jdk11.0.13_8\\bin

g. If the Java installation's bin folder is missing from Path, choose New to add it, and then
choose OK.

3. Open the Windows Command Prompt (cmd.exe) as an administrator.

4. Create the default user in the LocalSystem account on the Windows device. Replace password
with a secure password.

net user /add ggc_user password

Tip

Depending on your Windows configuration, the user's password might be set to expire
at a date in the future. To ensure your Greengrass applications continue to operate,
track when the password expires, and update it before it expires. You can also set the
user's password to never expire.

Install with fleet provisioning 251

https://aws.amazon.com/corretto/
https://openjdk.java.net/
https://en.wikipedia.org/wiki/PATH_(variable)

AWS IoT Greengrass Developer Guide, Version 2

• To check when a user and its password expire, run the following command.

net user ggc_user | findstr /C:expires

• To set a user's password to never expire, run the following command.

wmic UserAccount where "Name='ggc_user'" set PasswordExpires=False

• If you’re using Windows 10 or later where the wmic command is deprecated, run the
following PowerShell command.

Get-CimInstance -Query "SELECT * from Win32_UserAccount WHERE name =
 'ggc_user'" | Set-CimInstance -Property @{PasswordExpires="False"}

5. Download and install the PsExec utility from Microsoft on the device.

6. Use the PsExec utility to store the user name and password for the default user in the
Credential Manager instance for the LocalSystem account. Replace password with the user's
password that you set earlier.

psexec -s cmd /c cmdkey /generic:ggc_user /user:ggc_user /pass:password

If the PsExec License Agreement opens, choose Accept to agree to the license and run the
command.

Note

On Windows devices, the LocalSystem account runs the Greengrass nucleus, and you
must use the PsExec utility to store the default user information in the LocalSystem
account. Using the Credential Manager application stores this information in the
Windows account of the currently logged on user, instead of the LocalSystem account.

Download the AWS IoT Greengrass Core software

You can download the latest version of the AWS IoT Greengrass Core software from the following
location:

Install with fleet provisioning 252

https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmic
https://docs.microsoft.com/en-us/sysinternals/downloads/psexec

AWS IoT Greengrass Developer Guide, Version 2

• https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-latest.zip

Note

You can download a specific version of the AWS IoT Greengrass Core software from the
following location. Replace version with the version to download.

https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-version.zip

To download the AWS IoT Greengrass Core software

1. On your core device, download the AWS IoT Greengrass Core software to a file named
greengrass-nucleus-latest.zip.

Linux or Unix

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip > greengrass-nucleus-latest.zip

Windows Command Prompt (CMD)

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip > greengrass-nucleus-latest.zip

PowerShell

iwr -Uri https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip -OutFile greengrass-nucleus-latest.zip

By downloading this software, you agree to the Greengrass Core Software License Agreement.

2. (Optional) To verify the Greengrass nucleus software signature

Note

This feature is available with Greengrass nucleus version 2.9.5 and later.

Install with fleet provisioning 253

https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-latest.zip
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 2

a. Use the following command to verify your Greengrass nucleus artifact's signature:

Linux or Unix

jarsigner -verify -certs -verbose greengrass-nucleus-latest.zip

Windows Command Prompt (CMD)

The file name might look different depending on the JDK version you install. Replace
jdk17.0.6_10 with the JDK version you installed.

"C:\\Program Files\\Amazon Corretto\\jdk17.0.6_10\\bin\\jarsigner.exe" -
verify -certs -verbose greengrass-nucleus-latest.zip

PowerShell

The file name might look different depending on the JDK version you install. Replace
jdk17.0.6_10 with the JDK version you installed.

'C:\\Program Files\\Amazon Corretto\\jdk17.0.6_10\\bin\\jarsigner.exe' -
verify -certs -verbose greengrass-nucleus-latest.zip

b. The jarsigner invocation yields output that indicates the results of the verification.

i. If the Greengrass nucleus zip file is signed, the output contains the following
statement:

jar verified.

ii. If the Greengrass nucleus zip file isn't signed, the output contains the following
statement:

jar is unsigned.

c. If you provided the Jarsigner -certs option along with -verify and -verbose options,
the output also includes detailed signer certificate information.

3. Unzip the AWS IoT Greengrass Core software to a folder on your device. Replace
GreengrassInstaller with the folder that you want to use.

Install with fleet provisioning 254

AWS IoT Greengrass Developer Guide, Version 2

Linux or Unix

unzip greengrass-nucleus-latest.zip -d GreengrassInstaller && rm greengrass-
nucleus-latest.zip

Windows Command Prompt (CMD)

mkdir GreengrassInstaller && tar -xf greengrass-nucleus-latest.zip -
C GreengrassInstaller && del greengrass-nucleus-latest.zip

PowerShell

Expand-Archive -Path greengrass-nucleus-latest.zip -DestinationPath .\
\GreengrassInstaller
rm greengrass-nucleus-latest.zip

4. (Optional) Run the following command to see the version of the AWS IoT Greengrass Core
software.

java -jar ./GreengrassInstaller/lib/Greengrass.jar --version

Important

If you install a version of the Greengrass nucleus earlier than v2.4.0, don't remove this
folder after you install the AWS IoT Greengrass Core software. The AWS IoT Greengrass
Core software uses the files in this folder to run.
If you downloaded the latest version of the software, you install v2.4.0 or later, and you can
remove this folder after you install the AWS IoT Greengrass Core software.

Download the AWS IoT fleet provisioning plugin

You can download the latest version of the AWS IoT fleet provisioning plugin from the following
location:

• https://d2s8p88vqu9w66.cloudfront.net/releases/aws-greengrass-FleetProvisioningByClaim/
fleetprovisioningbyclaim-latest.jar

Install with fleet provisioning 255

https://d2s8p88vqu9w66.cloudfront.net/releases/aws-greengrass-FleetProvisioningByClaim/fleetprovisioningbyclaim-latest.jar
https://d2s8p88vqu9w66.cloudfront.net/releases/aws-greengrass-FleetProvisioningByClaim/fleetprovisioningbyclaim-latest.jar

AWS IoT Greengrass Developer Guide, Version 2

Note

You can download a specific version of the AWS IoT fleet provisioning plugin from the
following location. Replace version with the version to download. For more information
about each version of the fleet provisioning plugin, see AWS IoT fleet provisioning plugin
changelog.

https://d2s8p88vqu9w66.cloudfront.net/releases/aws-greengrass-
FleetProvisioningByClaim/fleetprovisioningbyclaim-version.jar

The fleet provisioning plugin is open source. To view its source code, see the AWS IoT fleet
provisioning plugin on GitHub.

To download the AWS IoT fleet provisioning plugin

• On your device, download the AWS IoT fleet provisioning plugin to a file named
aws.greengrass.FleetProvisioningByClaim.jar. Replace GreengrassInstaller
with the folder that you want to use.

Linux or Unix

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/aws-greengrass-
FleetProvisioningByClaim/fleetprovisioningbyclaim-latest.jar
 > GreengrassInstaller/aws.greengrass.FleetProvisioningByClaim.jar

Windows Command Prompt (CMD)

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/aws-greengrass-
FleetProvisioningByClaim/fleetprovisioningbyclaim-latest.jar
 > GreengrassInstaller/aws.greengrass.FleetProvisioningByClaim.jar

PowerShell

iwr -Uri https://d2s8p88vqu9w66.cloudfront.net/releases/aws-greengrass-
FleetProvisioningByClaim/fleetprovisioningbyclaim-latest.jar -
OutFile GreengrassInstaller/aws.greengrass.FleetProvisioningByClaim.jar

Install with fleet provisioning 256

https://github.com/aws-greengrass/aws-greengrass-fleet-provisioning-by-claim
https://github.com/aws-greengrass/aws-greengrass-fleet-provisioning-by-claim

AWS IoT Greengrass Developer Guide, Version 2

By downloading this software, you agree to the Greengrass Core Software License Agreement.

Install the AWS IoT Greengrass Core software

Run the installer with arguments that specify the following actions:

• Install from a partial configuration file that specifies to use the fleet provisioning plugin to
provision AWS resources. The AWS IoT Greengrass Core software uses a configuration file that
specifies the configuration of every Greengrass component on the device. The installer creates
a complete configuration file from the partial configuration file that you provide and the AWS
resources that the fleet provisioning plugin creates.

• Specify to use the ggc_user system user to run software components on the core device. On
Linux devices, this command also specifies to use the ggc_group system group, and the installer
creates the system user and group for you.

• Set up the AWS IoT Greengrass Core software as a system service that runs at boot. On Linux
devices, this requires the Systemd init system.

Important

On Windows core devices, you must set up the AWS IoT Greengrass Core software as a
system service.

For more information about the arguments that you can specify, see Installer arguments.

Note

If you are running AWS IoT Greengrass on a device with limited memory, you can control
the amount of memory that AWS IoT Greengrass Core software uses. To control memory
allocation, you can set JVM heap size options in the jvmOptions configuration parameter
in your nucleus component. For more information, see Control memory allocation with JVM
options.

Install with fleet provisioning 257

https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf
https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 2

To install the AWS IoT Greengrass Core software

1. Check the version of the AWS IoT Greengrass Core software.

• Replace GreengrassInstaller with the path to the folder that contains the software.

java -jar ./GreengrassInstaller/lib/Greengrass.jar --version

2. Use a text editor to create a configuration file named config.yaml to provide to the installer.

For example, on a Linux-based system, you can run the following command to use GNU nano
to create the file.

nano GreengrassInstaller/config.yaml

Copy the following YAML content into the file. This partial configuration file specifies
parameters for the fleet provisioning plugin. For more information about the options that you
can specify, see Configure the AWS IoT fleet provisioning plugin.

Linux or Unix

services:
 aws.greengrass.Nucleus:
 version: "2.14.0"
 aws.greengrass.FleetProvisioningByClaim:
 configuration:
 rootPath: "/greengrass/v2"
 awsRegion: "us-west-2"
 iotDataEndpoint: "device-data-prefix-ats.iot.us-west-2.amazonaws.com"
 iotCredentialEndpoint: "device-credentials-prefix.credentials.iot.us-
west-2.amazonaws.com"
 iotRoleAlias: "GreengrassCoreTokenExchangeRoleAlias"
 provisioningTemplate: "GreengrassFleetProvisioningTemplate"
 claimCertificatePath: "/greengrass/v2/claim-certs/claim.pem.crt"
 claimCertificatePrivateKeyPath: "/greengrass/v2/claim-certs/
claim.private.pem.key"
 rootCaPath: "/greengrass/v2/AmazonRootCA1.pem"
 templateParameters:
 ThingName: "MyGreengrassCore"

Install with fleet provisioning 258

AWS IoT Greengrass Developer Guide, Version 2

 ThingGroupName: "MyGreengrassCoreGroup"

Windows

services:
 aws.greengrass.Nucleus:
 version: "2.14.0"
 aws.greengrass.FleetProvisioningByClaim:
 configuration:
 rootPath: "C:\\greengrass\\v2"
 awsRegion: "us-west-2"
 iotDataEndpoint: "device-data-prefix-ats.iot.us-west-2.amazonaws.com"
 iotCredentialEndpoint: "device-credentials-prefix.credentials.iot.us-
west-2.amazonaws.com"
 iotRoleAlias: "GreengrassCoreTokenExchangeRoleAlias"
 provisioningTemplate: "GreengrassFleetProvisioningTemplate"
 claimCertificatePath: "C:\\greengrass\\v2\\claim-certs\\claim.pem.crt"
 claimCertificatePrivateKeyPath: "C:\\greengrass\\v2\\claim-certs\
\claim.private.pem.key"
 rootCaPath: "C:\\greengrass\\v2\\AmazonRootCA1.pem"
 templateParameters:
 ThingName: "MyGreengrassCore"
 ThingGroupName: "MyGreengrassCoreGroup"

Then, do the following:

• Replace 2.14.0 with the version of the AWS IoT Greengrass Core software.

• Replace each instance of /greengrass/v2 or C:\greengrass\v2 with the Greengrass
root folder.

Note

On Windows devices, you must specify path separators as double backslashes (\\),
such as C:\\greengrass\\v2.

• Replace us-west-2 with the AWS Region where you created the provisioning template and
other resources.

• Replace the iotDataEndpoint with your AWS IoT data endpoint.

Install with fleet provisioning 259

AWS IoT Greengrass Developer Guide, Version 2

• Replace the iotCredentialEndpoint with your AWS IoT credentials endpoint.

• Replace GreengrassCoreTokenExchangeRoleAlias with the name of the token
exchange role alias.

• Replace GreengrassFleetProvisioningTemplate with the name of the fleet
provisioning template.

• Replace the claimCertificatePath with the path to the claim certificate on the device.

• Replace the claimCertificatePrivateKeyPath with the path to the claim certificate
private key on the device.

• Replace the template parameters (templateParameters) with the values to use to
provision the device. This example refers to the example template that defines ThingName
and ThingGroupName parameters.

Note

In this configuration file, you can customize other configuration options such as
the ports and network proxy to use, as shown in the following example. For more
information, see Greengrass nucleus configuration.

Linux or Unix

services:
 aws.greengrass.Nucleus:
 version: "2.14.0"
 configuration:
 mqtt:
 port: 443
 greengrassDataPlanePort: 443
 networkProxy:
 noProxyAddresses: "http://192.168.0.1,www.example.com"
 proxy:
 url: "http://my-proxy-server:1100"
 username: "Mary_Major"
 password: "pass@word1357"
 aws.greengrass.FleetProvisioningByClaim:
 configuration:
 rootPath: "/greengrass/v2"
 awsRegion: "us-west-2"

Install with fleet provisioning 260

AWS IoT Greengrass Developer Guide, Version 2

 iotDataEndpoint: "device-data-prefix-ats.iot.us-
west-2.amazonaws.com"
 iotCredentialEndpoint: "device-credentials-
prefix.credentials.iot.us-west-2.amazonaws.com"
 iotRoleAlias: "GreengrassCoreTokenExchangeRoleAlias"
 provisioningTemplate: "GreengrassFleetProvisioningTemplate"
 claimCertificatePath: "/greengrass/v2/claim-certs/claim.pem.crt"
 claimCertificatePrivateKeyPath: "/greengrass/v2/claim-certs/
claim.private.pem.key"
 rootCaPath: "/greengrass/v2/AmazonRootCA1.pem"
 templateParameters:
 ThingName: "MyGreengrassCore"
 ThingGroupName: "MyGreengrassCoreGroup"
 mqttPort: 443
 proxyUrl: "http://my-proxy-server:1100"
 proxyUserName: "Mary_Major"
 proxyPassword: "pass@word1357"

Windows

services:
 aws.greengrass.Nucleus:
 version: "2.14.0"
 configuration:
 mqtt:
 port: 443
 greengrassDataPlanePort: 443
 networkProxy:
 noProxyAddresses: "http://192.168.0.1,www.example.com"
 proxy:
 url: "http://my-proxy-server:1100"
 username: "Mary_Major"
 password: "pass@word1357"
 aws.greengrass.FleetProvisioningByClaim:
 configuration:
 rootPath: "C:\\greengrass\\v2"
 awsRegion: "us-west-2"
 iotDataEndpoint: "device-data-prefix-ats.iot.us-
west-2.amazonaws.com"
 iotCredentialEndpoint: "device-credentials-
prefix.credentials.iot.us-west-2.amazonaws.com"
 iotRoleAlias: "GreengrassCoreTokenExchangeRoleAlias"

Install with fleet provisioning 261

AWS IoT Greengrass Developer Guide, Version 2

 provisioningTemplate: "GreengrassFleetProvisioningTemplate"
 claimCertificatePath: "C:\\greengrass\\v2\\claim-certs\
\claim.pem.crt"
 claimCertificatePrivateKeyPath: "C:\\greengrass\\v2\\claim-certs\
\claim.private.pem.key"
 rootCaPath: "C:\\greengrass\\v2\\AmazonRootCA1.pem"
 templateParameters:
 ThingName: "MyGreengrassCore"
 ThingGroupName: "MyGreengrassCoreGroup"
 mqttPort: 443
 proxyUrl: "http://my-proxy-server:1100"
 proxyUserName: "Mary_Major"
 proxyPassword: "pass@word1357"

To use an HTTPS proxy, you must use version 1.1.0 or later of the fleet provisioning
plugin. You must additionally specify the rootCaPath under system, as shown in the
following example.

Linux or Unix

system:
 rootCaPath: "/greengrass/v2/AmazonRootCA1.pem"
services:
 ...

Windows

system:
 rootCaPath: "C:\\greengrass\\v2\\AmazonRootCA1.pem"
services:
 ...

3. Run the installer. Specify --trusted-plugin to provide the fleet provisioning plugin, and
specify --init-config to provide the configuration file.

• Replace /greengrass/v2 with the Greengrass root folder.

Install with fleet provisioning 262

AWS IoT Greengrass Developer Guide, Version 2

• Replace each instance of GreengrassInstaller with the folder where you unpacked the
installer.

Linux or Unix

sudo -E java -Droot="/greengrass/v2" -Dlog.store=FILE \
 -jar ./GreengrassInstaller/lib/Greengrass.jar \
 --trusted-plugin ./GreengrassInstaller/
aws.greengrass.FleetProvisioningByClaim.jar \
 --init-config ./GreengrassInstaller/config.yaml \
 --component-default-user ggc_user:ggc_group \
 --setup-system-service true

Windows Command Prompt (CMD)

java -Droot="C:\greengrass\v2" "-Dlog.store=FILE" ^
 -jar ./GreengrassInstaller/lib/Greengrass.jar ^
 --trusted-plugin ./GreengrassInstaller/
aws.greengrass.FleetProvisioningByClaim.jar ^
 --init-config ./GreengrassInstaller/config.yaml ^
 --component-default-user ggc_user ^
 --setup-system-service true

PowerShell

java -Droot="C:\greengrass\v2" "-Dlog.store=FILE" `
 -jar ./GreengrassInstaller/lib/Greengrass.jar `
 --trusted-plugin ./GreengrassInstaller/
aws.greengrass.FleetProvisioningByClaim.jar `
 --init-config ./GreengrassInstaller/config.yaml `
 --component-default-user ggc_user `
 --setup-system-service true

Important

On Windows core devices, you must specify --setup-system-service true to set
up the AWS IoT Greengrass Core software as a system service.

Install with fleet provisioning 263

AWS IoT Greengrass Developer Guide, Version 2

If you specify --setup-system-service true, the installer prints Successfully set
up Nucleus as a system service if it set up and ran the software as a system service.
Otherwise, the installer doesn't output any message if it installs the software successfully.

Note

You can't use the deploy-dev-tools argument to deploy local development
tools when you run the installer without the --provision true argument.
For information about deploying the Greengrass CLI directly on your device, see
Greengrass Command Line Interface.

4. Verify the installation by viewing the files in the root folder.

Linux or Unix

ls /greengrass/v2

Windows Command Prompt (CMD)

dir C:\greengrass\v2

PowerShell

ls C:\greengrass\v2

If the installation succeeded, the root folder contains several folders, such as config,
packages, and logs.

If you installed the AWS IoT Greengrass Core software as a system service, the installer runs the
software for you. Otherwise, you must run the software manually. For more information, see Run
the AWS IoT Greengrass Core software.

For more information about how to configure and use the software and AWS IoT Greengrass, see
the following:

• Configure the AWS IoT Greengrass Core software

Install with fleet provisioning 264

AWS IoT Greengrass Developer Guide, Version 2

• Develop AWS IoT Greengrass components

• Deploy AWS IoT Greengrass components to devices

• Greengrass Command Line Interface

Set up AWS IoT fleet provisioning for Greengrass core devices

To install the AWS IoT Greengrass Core software with fleet provisioning, you must first set up the
following resources in your AWS account. These resources enable devices to register themselves
with AWS IoT and operate as Greengrass core devices. Follow steps in this section once to create
and configure these resources in your AWS account.

• A token exchange IAM role, which core devices use to authorize calls to AWS services.

• An AWS IoT role alias that points to the token exchange role.

• (Optional) An AWS IoT policy, which core devices use to authorize calls to the
AWS IoT and AWS IoT Greengrass services. This AWS IoT policy must allow the
iot:AssumeRoleWithCertificate permission for the AWS IoT role alias that points to the
token exchange role.

You can use a single AWS IoT policy for all core devices in your fleet, or you can configure your
fleet provisioning template to create an AWS IoT policy for each core device.

• An AWS IoT fleet provisioning template. This template must specify the following:

• An AWS IoT thing resource. You can specify a list of existing thing groups to deploy
components to each device when it comes online.

• An AWS IoT policy resource. This resource can define one of the following properties:

• The name of an existing AWS IoT policy. If you choose this option, the core devices that
you create from this template use the same AWS IoT policy, and you can manage their
permissions as a fleet.

• An AWS IoT policy document. If you choose this option, each core device that you create
from this template uses a unique AWS IoT policy, and you can manage permissions for each
individual core device.

• An AWS IoT certificate resource. This certificate resource must use the
AWS::IoT::Certificate::Id parameter to attach the certificate to the core device. For
more information, see Just-in-time provisioning in the AWS IoT Developer Guide.

Install with fleet provisioning 265

https://docs.aws.amazon.com/iot/latest/developerguide/jit-provisioning.html

AWS IoT Greengrass Developer Guide, Version 2

• An AWS IoT provisioning claim certificate and private key for the fleet provisioning template. You
can embed this certificate and private key in devices during manufacturing, so the devices can
register and provision themselves when they come online.

Important

Provisioning claim private keys should be secured at all times, including on Greengrass
core devices. We recommend that you use Amazon CloudWatch metrics and logs to
monitor for indications of misuse, such as unauthorized use of the claim certificate to
provision devices. If you detect misuse, disable the provisioning claim certificate so that
it can't be used for device provisioning. For more information, see Monitoring AWS IoT in
the AWS IoT Core Developer Guide.
To help you better manage the number of devices, and which devices, that register
themselves in your AWS account, you can specify a pre-provisioning hook when you
create a fleet provisioning template. A pre-provisioning hook is an AWS Lambda function
that validates template parameters that devices provide during registration. For example,
you might create a pre-provisioning hook that checks a device ID against a database
to verify that the device has permission to provision. For more information, see Pre-
provisioning hooks in the AWS IoT Core Developer Guide.

• An AWS IoT policy that you attach to the provisioning claim certificate to allow devices to
register and use the fleet provisioning template.

Topics

• Create a token exchange role

• Create an AWS IoT policy

• Create a fleet provisioning template

• Create a provisioning claim certificate and private key

Create a token exchange role

Greengrass core devices use an IAM service role, called the token exchange role, to authorize calls to
AWS services. The device uses the AWS IoT credentials provider to get temporary AWS credentials
for this role, which allows the device to interact with AWS IoT, send logs to Amazon CloudWatch
Logs, and download custom component artifacts from Amazon S3. For more information, see
Authorize core devices to interact with AWS services.

Install with fleet provisioning 266

https://docs.aws.amazon.com/iot/latest/developerguide/monitoring_overview.html
https://docs.aws.amazon.com/iot/latest/developerguide/pre-provisioning-hook.html
https://docs.aws.amazon.com/iot/latest/developerguide/pre-provisioning-hook.html

AWS IoT Greengrass Developer Guide, Version 2

You use an AWS IoT role alias to configure the token exchange role for Greengrass core devices.
Role aliases enable you to change the token exchange role for a device but keep the device
configuration the same. For more information, see Authorizing direct calls to AWS services in the
AWS IoT Core Developer Guide.

In this section, you create a token exchange IAM role and an AWS IoT role alias that points to the
role. If you have already set up a Greengrass core device, you can use its token exchange role and
role alias instead of creating new ones.

To create a token exchange IAM role

1. Create an IAM role that your device can use as a token exchange role. Do the following:

a. Create a file that contains the trust policy document that the token exchange role
requires.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano device-role-trust-policy.json

Copy the following JSON into the file.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "credentials.iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

b. Create the token exchange role with the trust policy document.

• Replace GreengrassV2TokenExchangeRole with the name of the IAM role to create.

Install with fleet provisioning 267

https://docs.aws.amazon.com/iot/latest/developerguide/authorizing-direct-aws.html

AWS IoT Greengrass Developer Guide, Version 2

aws iam create-role --role-name GreengrassV2TokenExchangeRole --assume-role-
policy-document file://device-role-trust-policy.json

The response looks similar to the following example, if the request succeeds.

{
 "Role": {
 "Path": "/",
 "RoleName": "GreengrassV2TokenExchangeRole",
 "RoleId": "AROAZ2YMUHYHK5OKM77FB",
 "Arn": "arn:aws:iam::123456789012:role/GreengrassV2TokenExchangeRole",
 "CreateDate": "2021-02-06T00:13:29+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "credentials.iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
 }

c. Create a file that contains the access policy document that the token exchange role
requires.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano device-role-access-policy.json

Copy the following JSON into the file.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Install with fleet provisioning 268

AWS IoT Greengrass Developer Guide, Version 2

 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams",
 "s3:GetBucketLocation"
],
 "Resource": "*"
 }
]
}

Note

This access policy doesn't allow access to component artifacts in S3 buckets. To
deploy custom components that define artifacts in Amazon S3, you must add
permissions to the role to allow your core device to retrieve component artifacts.
For more information, see Allow access to S3 buckets for component artifacts.
If you don't yet have an S3 bucket for component artifacts, you can add these
permissions later after you create a bucket.

d. Create the IAM policy from the policy document.

• Replace GreengrassV2TokenExchangeRoleAccess with the name of the IAM policy
to create.

aws iam create-policy --policy-name GreengrassV2TokenExchangeRoleAccess --
policy-document file://device-role-access-policy.json

The response looks similar to the following example, if the request succeeds.

{
 "Policy": {
 "PolicyName": "GreengrassV2TokenExchangeRoleAccess",
 "PolicyId": "ANPAZ2YMUHYHACI7C5Z66",
 "Arn": "arn:aws:iam::123456789012:policy/
GreengrassV2TokenExchangeRoleAccess",
 "Path": "/",
 "DefaultVersionId": "v1",

Install with fleet provisioning 269

AWS IoT Greengrass Developer Guide, Version 2

 "AttachmentCount": 0,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "CreateDate": "2021-02-06T00:37:17+00:00",
 "UpdateDate": "2021-02-06T00:37:17+00:00"
 }
}

e. Attach the IAM policy to the token exchange role.

• Replace GreengrassV2TokenExchangeRole with the name of the IAM role.

• Replace the policy ARN with the ARN of the IAM policy that you created in the previous
step.

aws iam attach-role-policy --role-name GreengrassV2TokenExchangeRole --policy-
arn arn:aws:iam::123456789012:policy/GreengrassV2TokenExchangeRoleAccess

The command doesn't have any output if the request succeeds.

2. Create an AWS IoT role alias that points to the token exchange role.

• Replace GreengrassCoreTokenExchangeRoleAlias with the name of the role alias to
create.

• Replace the role ARN with the ARN of the IAM role that you created in the previous step.

aws iot create-role-alias --role-alias GreengrassCoreTokenExchangeRoleAlias --role-
arn arn:aws:iam::123456789012:role/GreengrassV2TokenExchangeRole

The response looks similar to the following example, if the request succeeds.

{
 "roleAlias": "GreengrassCoreTokenExchangeRoleAlias",
 "roleAliasArn": "arn:aws:iot:us-west-2:123456789012:rolealias/
GreengrassCoreTokenExchangeRoleAlias"
}

Install with fleet provisioning 270

AWS IoT Greengrass Developer Guide, Version 2

Note

To create a role alias, you must have permission to pass the token exchange IAM
role to AWS IoT. If you receive an error message when you try to create a role alias,
check that your AWS user has this permission. For more information, see Granting
a user permissions to pass a role to an AWS service in the AWS Identity and Access
Management User Guide.

Create an AWS IoT policy

After you register a device as an AWS IoT thing, that device can use a digital certificate to
authenticate with AWS. This certificate includes one or more AWS IoT policies that define
the permissions that a device can use with the certificate. These policies allow the device to
communicate with AWS IoT and AWS IoT Greengrass.

With AWS IoT fleet provisioning, devices connect to AWS IoT to create and download a device
certificate. In the fleet provisioning template that you create in the next section, you can specify
whether AWS IoT attaches the same AWS IoT policy to all devices' certificates, or creates a new
policy for each device.

In this section, you create an AWS IoT policy that AWS IoT attaches to all devices' certificates. With
this approach, you can manage permissions for all devices as a fleet. If you would rather create a
new AWS IoT policy for each device, you can skip this section, and refer to the policy in it when you
define your fleet template.

To create an AWS IoT policy

• Create an AWS IoT policy that defines the AWS IoT permissions for your fleet of Greengrass
core devices. The following policy allows access to all MQTT topics and Greengrass operations,
so your device works with custom applications and future changes that require new Greengrass
operations. This policy also allows the iot:AssumeRoleWithCertificate permission,
which allows your devices to use the token exchange role that you created in the previous
section. You can restrict this policy down based on your use case. For more information, see
Minimal AWS IoT policy for AWS IoT Greengrass V2 core devices.

Do the following:

Install with fleet provisioning 271

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html

AWS IoT Greengrass Developer Guide, Version 2

a. Create a file that contains the AWS IoT policy document that Greengrass core devices
require.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano greengrass-v2-iot-policy.json

Copy the following JSON into the file.

• Replace the iot:AssumeRoleWithCertificate resource with the ARN of the AWS
IoT role alias that you created in the previous section.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish",
 "iot:Subscribe",
 "iot:Receive",
 "iot:Connect",
 "greengrass:*"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": "iot:AssumeRoleWithCertificate",
 "Resource": "arn:aws:iot:us-west-2:123456789012:rolealias/
GreengrassCoreTokenExchangeRoleAlias"
 }
]
}

b. Create an AWS IoT policy from the policy document.

Install with fleet provisioning 272

AWS IoT Greengrass Developer Guide, Version 2

• Replace GreengrassV2IoTThingPolicy with the name of the policy to create.

aws iot create-policy --policy-name GreengrassV2IoTThingPolicy --policy-
document file://greengrass-v2-iot-policy.json

The response looks similar to the following example, if the request succeeds.

{
 "policyName": "GreengrassV2IoTThingPolicy",
 "policyArn": "arn:aws:iot:us-west-2:123456789012:policy/
GreengrassV2IoTThingPolicy",
 "policyDocument": "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [
 {
 \"Effect\": \"Allow\",
 \"Action\": [
 \"iot:Publish\",
 \"iot:Subscribe\",
 \"iot:Receive\",
 \"iot:Connect\",
 \"greengrass:*\"
],
 \"Resource\": [
 \"*\"
]
 },
 {
 \"Effect\": \"Allow\",
 \"Action\": \"iot:AssumeRoleWithCertificate\",
 \"Resource\": \"arn:aws:iot:us-west-2:123456789012:rolealias/
GreengrassCoreTokenExchangeRoleAlias\"
 }
]
 }",
 "policyVersionId": "1"
}

Install with fleet provisioning 273

AWS IoT Greengrass Developer Guide, Version 2

Create a fleet provisioning template

AWS IoT fleet provisioning templates define how to provision AWS IoT things, policies, and
certificates. To provision Greengrass core devices with the fleet provisioning plugin, you must
create a template that specifies the following:

• An AWS IoT thing resource. You can specify a list of existing thing groups to deploy components
to each device when it comes online.

• An AWS IoT policy resource. This resource can define one of the following properties:

• The name of an existing AWS IoT policy. If you choose this option, the core devices that you
create from this template use the same AWS IoT policy, and you can manage their permissions
as a fleet.

• An AWS IoT policy document. If you choose this option, each core device that you create
from this template uses a unique AWS IoT policy, and you can manage permissions for each
individual core device.

• An AWS IoT certificate resource. This certificate resource must use the
AWS::IoT::Certificate::Id parameter to attach the certificate to the core device. For more
information, see Just-in-time provisioning in the AWS IoT Developer Guide.

In the template, you can specify to add the AWS IoT thing to a list of existing thing groups.
When the core device connects to AWS IoT Greengrass for the first time, it receives Greengrass
deployments for each thing group where it's a member. You can use thing groups to deploy the
latest software to each device as soon as it comes online. For more information, see Deploy AWS
IoT Greengrass components to devices.

The AWS IoT service requires permissions to create and update AWS IoT resources in your
AWS account when provisioning devices. To give the AWS IoT service access, you create an
IAM role and provide it when you create the template. AWS IoT provides an managed policy,
AWSIoTThingsRegistration, that allows access to all permissions that AWS IoT might use when
provisioning devices. You can use this managed policy, or create a custom policy that scopes down
the permissions in the managed policy for your use case.

In this section, you create an IAM role that allows AWS IoT to provision resources for devices, and
you create a fleet provisioning template that uses that IAM role.

Install with fleet provisioning 274

https://docs.aws.amazon.com/iot/latest/developerguide/jit-provisioning.html
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSIoTThingsRegistration

AWS IoT Greengrass Developer Guide, Version 2

To create a fleet provisioning template

1. Create an IAM role that AWS IoT can assume to provision resources in your AWS account. Do
the following:

a. Create a file that contains the trust policy document that allows AWS IoT to assume the
role.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano aws-iot-trust-policy.json

Copy the following JSON into the file.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

b. Create an IAM role with the trust policy document.

• Replace GreengrassFleetProvisioningRole with the name of the IAM role to
create.

aws iam create-role --role-name GreengrassFleetProvisioningRole --assume-role-
policy-document file://aws-iot-trust-policy.json

The response looks similar to the following example, if the request succeeds.

{
 "Role": {

Install with fleet provisioning 275

AWS IoT Greengrass Developer Guide, Version 2

 "Path": "/",
 "RoleName": "GreengrassFleetProvisioningRole",
 "RoleId": "AROAZ2YMUHYHK5OKM77FB",
 "Arn": "arn:aws:iam::123456789012:role/GreengrassFleetProvisioningRole",
 "CreateDate": "2021-07-26T00:15:12+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
 }
}

c. Review the AWSIoTThingsRegistration policy, which allows access to all permissions that
AWS IoT might use when provisioning devices. You can use this managed policy, or create
a custom policy that defines scoped-down permissions for your use case. If you choose to
create a custom policy, do so now.

d. Attach the IAM policy to the fleet provisioning role.

• Replace GreengrassFleetProvisioningRole with the name of the IAM role.

• If you created a custom policy in the previous step, replace the policy ARN with the ARN
of the IAM policy to use.

aws iam attach-role-policy --role-name GreengrassFleetProvisioningRole --
policy-arn arn:aws:iam::aws:policy/service-role/AWSIoTThingsRegistration

The command doesn't have any output if the request succeeds.

2. (Optional) Create a pre-provisioning hook, which is an AWS Lambda function that validates
template parameters that devices provide during registration. You can use a pre-provisioning
hook to gain more control over which and how many devices onboard in your AWS account.
For more information, see Pre-provisioning hooks in the AWS IoT Core Developer Guide.

3. Create a fleet provisioning template. Do the following:

Install with fleet provisioning 276

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSIoTThingsRegistration
https://docs.aws.amazon.com/iot/latest/developerguide/pre-provisioning-hook.html

AWS IoT Greengrass Developer Guide, Version 2

a. Create a file to contain the provisioning template document.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano greengrass-fleet-provisioning-template.json

Write the provisioning template document. You can start from the following example
provisioning template, which specifies to create an AWS IoT thing with the following
properties:

• The thing's name is the value that you specify in the ThingName template parameter.

• The thing is a member of the thing group that you specify in the ThingGroupName
template parameter. The thing group must exist in your AWS account.

• The thing's certificate has the AWS IoT policy named GreengrassV2IoTThingPolicy
attached to it.

For more information, see Provisioning templates in the AWS IoT Core Developer Guide.

{
 "Parameters": {
 "ThingName": {
 "Type": "String"
 },
 "ThingGroupName": {
 "Type": "String"
 },
 "AWS::IoT::Certificate::Id": {
 "Type": "String"
 }
 },
 "Resources": {
 "MyThing": {
 "OverrideSettings": {
 "AttributePayload": "REPLACE",
 "ThingGroups": "REPLACE",
 "ThingTypeName": "REPLACE"
 },
 "Properties": {

Install with fleet provisioning 277

https://docs.aws.amazon.com/iot/latest/developerguide/provision-template.html

AWS IoT Greengrass Developer Guide, Version 2

 "AttributePayload": {},
 "ThingGroups": [
 {
 "Ref": "ThingGroupName"
 }
],
 "ThingName": {
 "Ref": "ThingName"
 }
 },
 "Type": "AWS::IoT::Thing"
 },
 "MyPolicy": {
 "Properties": {
 "PolicyName": "GreengrassV2IoTThingPolicy"
 },
 "Type": "AWS::IoT::Policy"
 },
 "MyCertificate": {
 "Properties": {
 "CertificateId": {
 "Ref": "AWS::IoT::Certificate::Id"
 },
 "Status": "Active"
 },
 "Type": "AWS::IoT::Certificate"
 }
 }
}

Note

MyThing, MyPolicy, and MyCertificate are arbitrary names that identify
each resource specification in the fleet provisioning template. AWS IoT doesn't
use these names in the resources that it creates from the template. You can use
these names or replace them with values that help you identify each resource in
the template.

b. Create the fleet provisioning template from the provisioning template document.

• Replace GreengrassFleetProvisioningTemplate with the name of the template
to create.

Install with fleet provisioning 278

AWS IoT Greengrass Developer Guide, Version 2

• Replace the template description with a description for your template.

• Replace the provisioning role ARN with the ARN of the role that you created earlier.

Linux or Unix

aws iot create-provisioning-template \
 --template-name GreengrassFleetProvisioningTemplate \
 --description "A provisioning template for Greengrass core devices." \
 --provisioning-role-arn "arn:aws:iam::123456789012:role/
GreengrassFleetProvisioningRole" \
 --template-body file://greengrass-fleet-provisioning-template.json \
 --enabled

Windows Command Prompt (CMD)

aws iot create-provisioning-template ^
 --template-name GreengrassFleetProvisioningTemplate ^
 --description "A provisioning template for Greengrass core devices." ^
 --provisioning-role-arn "arn:aws:iam::123456789012:role/
GreengrassFleetProvisioningRole" ^
 --template-body file://greengrass-fleet-provisioning-template.json ^
 --enabled

PowerShell

aws iot create-provisioning-template `
 --template-name GreengrassFleetProvisioningTemplate `
 --description "A provisioning template for Greengrass core devices." `
 --provisioning-role-arn "arn:aws:iam::123456789012:role/
GreengrassFleetProvisioningRole" `
 --template-body file://greengrass-fleet-provisioning-template.json `
 --enabled

Note

If you created a pre-provisioning hook, specify the ARN of the pre-provisioning
hook's Lambda function with the --pre-provisioning-hook argument.

Install with fleet provisioning 279

AWS IoT Greengrass Developer Guide, Version 2

--pre-provisioning-hook targetArn=arn:aws:lambda:us-
west-2:123456789012:function:GreengrassPreProvisioningHook

The response looks similar to the following example, if the request succeeds.

{
 "templateArn": "arn:aws:iot:us-west-2:123456789012:provisioningtemplate/
GreengrassFleetProvisioningTemplate",
 "templateName": "GreengrassFleetProvisioningTemplate",
 "defaultVersionId": 1
}

Create a provisioning claim certificate and private key

Claim certificates are X.509 certificates that allow devices to register as AWS IoT things and retrieve
a unique X.509 device certificate to use for regular operations. After you create a claim certificate,
you attach an AWS IoT policy that allows devices to use it to create unique device certificates and
provision with a fleet provisioning template. Devices with the claim certificate can provision using
only the provisioning template that you allow in the AWS IoT policy.

In this section, you create the claim certificate and configure it for devices to use with the fleet
provisioning template that you created in the previous section.

Important

Provisioning claim private keys should be secured at all times, including on Greengrass core
devices. We recommend that you use Amazon CloudWatch metrics and logs to monitor for
indications of misuse, such as unauthorized use of the claim certificate to provision devices.
If you detect misuse, disable the provisioning claim certificate so that it can't be used for
device provisioning. For more information, see Monitoring AWS IoT in the AWS IoT Core
Developer Guide.
To help you better manage the number of devices, and which devices, that register
themselves in your AWS account, you can specify a pre-provisioning hook when you create
a fleet provisioning template. A pre-provisioning hook is an AWS Lambda function that
validates template parameters that devices provide during registration. For example, you
might create a pre-provisioning hook that checks a device ID against a database to verify

Install with fleet provisioning 280

https://docs.aws.amazon.com/iot/latest/developerguide/monitoring_overview.html

AWS IoT Greengrass Developer Guide, Version 2

that the device has permission to provision. For more information, see Pre-provisioning
hooks in the AWS IoT Core Developer Guide.

To create a provisioning claim certificate and private key

1. Create a folder where you download the claim certificate and private key.

mkdir claim-certs

2. Create and save a certificate and private key to use for provisioning. AWS IoT provides client
certificates that are signed by the Amazon Root certificate authority (CA).

Linux or Unix

aws iot create-keys-and-certificate \
 --certificate-pem-outfile "claim-certs/claim.pem.crt" \
 --public-key-outfile "claim-certs/claim.public.pem.key" \
 --private-key-outfile "claim-certs/claim.private.pem.key" \
 --set-as-active

Windows Command Prompt (CMD)

aws iot create-keys-and-certificate ^
 --certificate-pem-outfile "claim-certs/claim.pem.crt" ^
 --public-key-outfile "claim-certs/claim.public.pem.key" ^
 --private-key-outfile "claim-certs/claim.private.pem.key" ^
 --set-as-active

PowerShell

aws iot create-keys-and-certificate `
 --certificate-pem-outfile "claim-certs/claim.pem.crt" `
 --public-key-outfile "claim-certs/claim.public.pem.key" `
 --private-key-outfile "claim-certs/claim.private.pem.key" `
 --set-as-active

The response contains information about the certificate, if the request succeeds. Save the
certificate's ARN to use later.

Install with fleet provisioning 281

https://docs.aws.amazon.com/iot/latest/developerguide/pre-provisioning-hook.html
https://docs.aws.amazon.com/iot/latest/developerguide/pre-provisioning-hook.html

AWS IoT Greengrass Developer Guide, Version 2

3. Create and attach an AWS IoT policy that allows devices to use the certificate to create
unique device certificates and provision with the fleet provisioning template. The following
policy allows access to the device provisioning MQTT API. For more information, see Device
provisioning MQTT API in the AWS IoT Core Developer Guide.

Do the following:

a. Create a file that contains the AWS IoT policy document that Greengrass core devices
require.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano greengrass-provisioning-claim-iot-policy.json

Copy the following JSON into the file.

• Replace each instance of region with the AWS Region where you set up fleet
provisioning.

• Replace each instance of account-id with your AWS account ID.

• Replace each instance of GreengrassFleetProvisioningTemplate with the name
of the fleet provisioning template that you created in the previous section.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iot:Connect",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish",
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:region:account-id:topic/$aws/certificates/create/*",

Install with fleet provisioning 282

https://docs.aws.amazon.com/iot/latest/developerguide/fleet-provision-api.html
https://docs.aws.amazon.com/iot/latest/developerguide/fleet-provision-api.html

AWS IoT Greengrass Developer Guide, Version 2

 "arn:aws:iot:region:account-id:topic/$aws/provisioning-
templates/GreengrassFleetProvisioningTemplate/provision/*"
]
 },
 {
 "Effect": "Allow",
 "Action": "iot:Subscribe",
 "Resource": [
 "arn:aws:iot:region:account-id:topicfilter/$aws/certificates/create/*",
 "arn:aws:iot:region:account-id:topicfilter/$aws/provisioning-
templates/GreengrassFleetProvisioningTemplate/provision/*"
]
 }
]
}

b. Create an AWS IoT policy from the policy document.

• Replace GreengrassProvisioningClaimPolicy with the name of the policy to
create.

aws iot create-policy --policy-name GreengrassProvisioningClaimPolicy --policy-
document file://greengrass-provisioning-claim-iot-policy.json

The response looks similar to the following example, if the request succeeds.

{
 "policyName": "GreengrassProvisioningClaimPolicy",
 "policyArn": "arn:aws:iot:us-west-2:123456789012:policy/
GreengrassProvisioningClaimPolicy",
 "policyDocument": "{
 \"Version\": \"2012-10-17\",
 \"Statement\": [
 {
 \"Effect\": \"Allow\",
 \"Action\": \"iot:Connect\",
 \"Resource\": \"*\"
 },
 {
 \"Effect\": \"Allow\",
 \"Action\": [
 \"iot:Publish\",

Install with fleet provisioning 283

AWS IoT Greengrass Developer Guide, Version 2

 \"iot:Receive\"
],
 \"Resource\": [
 \"arn:aws:iot:region:account-id:topic/$aws/certificates/create/*\",
 \"arn:aws:iot:region:account-id:topic/$aws/provisioning-
templates/GreengrassFleetProvisioningTemplate/provision/*\"
]
 },
 {
 \"Effect\": \"Allow\",
 \"Action\": \"iot:Subscribe\",
 \"Resource\": [
 \"arn:aws:iot:region:account-id:topicfilter/$aws/certificates/create/
*\",
 \"arn:aws:iot:region:account-id:topicfilter/$aws/provisioning-
templates/GreengrassFleetProvisioningTemplate/provision/*\"
]
 }
]
 }",
 "policyVersionId": "1"
}

4. Attach the AWS IoT policy to the provisioning claim certificate.

• Replace GreengrassProvisioningClaimPolicy with the name of the policy to attach.

• Replace the target ARN with the ARN of the provisioning claim certificate.

aws iot attach-policy --policy-name GreengrassProvisioningClaimPolicy --
target arn:aws:iot:us-west-2:123456789012:cert/
aa0b7958770878eabe251d8a7ddd547f4889c524c9b574ab9fbf65f32248b1d4

The command doesn't have any output if the request succeeds.

You now have a provisioning claim certificate and private key that devices can use to register with
AWS IoT and provision themselves as Greengrass core devices. You can embed the claim certificate
and private key in devices during manufacturing, or copy the certificate and key to devices before
you install the AWS IoT Greengrass Core software. For more information, see Install AWS IoT
Greengrass Core software with AWS IoT fleet provisioning.

Install with fleet provisioning 284

AWS IoT Greengrass Developer Guide, Version 2

Configure the AWS IoT fleet provisioning plugin

The AWS IoT fleet provisioning plugin provides the following configuration parameters that you
can customize when you install the AWS IoT Greengrass Core software with fleet provisioning.

rootPath

The path to the folder to use as the root for the AWS IoT Greengrass Core software.

awsRegion

The AWS Region that the fleet provisioning plugin uses to provision AWS resources.

iotDataEndpoint

The AWS IoT data endpoint for your AWS account.

iotCredentialEndpoint

The AWS IoT credentials endpoint for your AWS account.

iotRoleAlias

The AWS IoT role alias that points to a token exchange IAM role. The AWS IoT credentials
provider assumes this role to allow the Greengrass core device to interact with AWS services. For
more information, see Authorize core devices to interact with AWS services.

provisioningTemplate

The AWS IoT fleet provisioning template to use to provision AWS resources. This template must
specify the following:

• An AWS IoT thing resource. You can specify a list of existing thing groups to deploy
components to each device when it comes online.

• An AWS IoT policy resource. This resource can define one of the following properties:

• The name of an existing AWS IoT policy. If you choose this option, the core devices that
you create from this template use the same AWS IoT policy, and you can manage their
permissions as a fleet.

• An AWS IoT policy document. If you choose this option, each core device that you create
from this template uses a unique AWS IoT policy, and you can manage permissions for each
individual core device.

• An AWS IoT certificate resource. This certificate resource must use the
AWS::IoT::Certificate::Id parameter to attach the certificate to the core device. For
more information, see Just-in-time provisioning in the AWS IoT Developer Guide.

Install with fleet provisioning 285

https://docs.aws.amazon.com/iot/latest/developerguide/jit-provisioning.html

AWS IoT Greengrass Developer Guide, Version 2

For more information, see Provisioning templates in the AWS IoT Core Developer Guide.

claimCertificatePath

The path to the provisioning claim certificate for the provisioning template that you specify in
provisioningTemplate. For more information, see CreateProvisioningClaim in the AWS IoT
Core API Reference.

claimCertificatePrivateKeyPath

The path to the provisioning claim certificate private key for the provisioning template that you
specify in provisioningTemplate. For more information, see CreateProvisioningClaim in the
AWS IoT Core API Reference.

Important

Provisioning claim private keys should be secured at all times, including on Greengrass
core devices. We recommend that you use Amazon CloudWatch metrics and logs to
monitor for indications of misuse, such as unauthorized use of the claim certificate to
provision devices. If you detect misuse, disable the provisioning claim certificate so that
it can't be used for device provisioning. For more information, see Monitoring AWS IoT
in the AWS IoT Core Developer Guide.
To help you better manage the number of devices, and which devices, that register
themselves in your AWS account, you can specify a pre-provisioning hook when you
create a fleet provisioning template. A pre-provisioning hook is an AWS Lambda
function that validates template parameters that devices provide during registration.
For example, you might create a pre-provisioning hook that checks a device ID against
a database to verify that the device has permission to provision. For more information,
see Pre-provisioning hooks in the AWS IoT Core Developer Guide.

rootCaPath

The path to the Amazon root certificate authority (CA) certificate.

templateParameters

(Optional) The map of parameters to provide to the fleet provisioning template. For more
information, see Provisioning templates' parameters section in the AWS IoT Core Developer
Guide.

Install with fleet provisioning 286

https://docs.aws.amazon.com/iot/latest/developerguide/provision-template.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateProvisioningClaim.html
https://docs.aws.amazon.com/iot/latest/apireference/API_CreateProvisioningClaim.html
https://docs.aws.amazon.com/iot/latest/developerguide/monitoring_overview.html
https://docs.aws.amazon.com/iot/latest/developerguide/pre-provisioning-hook.html
https://docs.aws.amazon.com/iot/latest/developerguide/provision-template.html#parameters-section

AWS IoT Greengrass Developer Guide, Version 2

deviceId

(Optional) The device identifier to use as the client ID when the fleet provisioning plugin creates
an MQTT connection to AWS IoT.

Default: A random UUID.

mqttPort

(Optional) The port to use for MQTT connections.

Default: 8883

proxyUrl

(Optional) The URL of the proxy server in the format scheme://userinfo@host:port. To
use an HTTPS proxy, you must use version 1.1.0 or later of the fleet provisioning plugin.

• scheme – The scheme, which must be http or https.

Important

Greengrass core devices must run Greengrass nucleus v2.5.0 or later to use HTTPS
proxies.
If you configure an HTTPS proxy, you must add the proxy server CA certificate to the
core device's Amazon root CA certificate. For more information, see Enable the core
device to trust an HTTPS proxy.

• userinfo – (Optional) The user name and password information. If you specify this
information in the url, the Greengrass core device ignores the username and password
fields.

• host – The host name or IP address of the proxy server.

• port – (Optional) The port number. If you don't specify the port, then the Greengrass core
device uses the following default values:

• http – 80

• https – 443

proxyUserName

(Optional) The user name that authenticates the proxy server.

Install with fleet provisioning 287

AWS IoT Greengrass Developer Guide, Version 2

proxyPassword

(Optional) The user name that authenticates the proxy server.

csrPath

(Optional) The path to the certificate signing request (CSR) file to use to create the device
certificate from a CSR. For more information, see Provisioning by claim in the AWS IoT Core
developer guide.

csrPrivateKeyPath

(Optional, required if csrPath is declared) The path to the private key used to generate the
CSR. The private key must have been used to generate the CSR. For more information, see
Provisioning by claim in the AWS IoT Core developer guide.

AWS IoT fleet provisioning plugin changelog

The following table describes the changes in each version of the AWS IoT fleet provisioning by
claim plugin (aws.greengrass.FleetProvisioningByClaim).

Version Changes

1.2.1 Bug fixes and improvements

• Fixes an issue where the fleet provisioning plugin is offline during a
Greengrass nucleus startup. The fleet provisioning plugin now indefinit
ely retries MQTT connect calls.

1.2.0 Bug fixes and improvements

• Adds support for device provisioning via certificate signing request
with configurable private key path.

• Minor fixes and improvements.

1.1.0 Bug fixes and improvements

• Adds support for additional file path formats when you configure the
plugin on Windows devices.

• Adds support for HTTPS network proxy configurations. For more
information, see Connect on port 443 or through a network proxy and
Enable the core device to trust an HTTPS proxy.

Install with fleet provisioning 288

https://docs.aws.amazon.com/iot/latest/developerguide/provision-wo-cert.html#claim-based
https://docs.aws.amazon.com/iot/latest/developerguide/provision-wo-cert.html#claim-based

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

1.0.0 Initial version.

Install AWS IoT Greengrass Core software with custom resource
provisioning

This feature is available for v2.4.0 and later of the Greengrass nucleus component.

The AWS IoT Greengrass Core software installer provides a Java interface that you can implement
in a custom plugin that provisions required AWS resources. You can develop a provisioning plugin
to use custom X.509 client certificates or to run complex provisioning steps that other installation
processes don't support. For more information, see Create your own client certificates in the AWS
IoT Core Developer Guide.

To run a custom provisioning plugin when you install the AWS IoT Greengrass Core software, you
create a JAR file that you provide to the installer. The installer runs the plugin, and the plugin
returns a provisioning configuration that defines the AWS resources for the Greengrass core device.
The installer uses this information to configure the AWS IoT Greengrass Core software on the
device. For more information, see Develop custom provisioning plugins.

Important

Before you download the AWS IoT Greengrass Core software, check that your core device
meets the requirements to install and run the AWS IoT Greengrass Core software v2.0.

Topics

• Prerequisites

• Set up the device environment

• Download the AWS IoT Greengrass Core software

• Install the AWS IoT Greengrass Core software

• Develop custom provisioning plugins

Install with custom provisioning 289

https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html

AWS IoT Greengrass Developer Guide, Version 2

Prerequisites

To install the AWS IoT Greengrass Core software with custom provisioning, you must have the
following:

• A JAR file for a custom provisioning plugin that implements the DeviceIdentityInterface.
The custom provisioning plugin must return values for each system and nucleus configuration
parameter. Otherwise, you must provide those values in the configuration file during installation.
For more information, see Develop custom provisioning plugins.

Set up the device environment

Follow the steps in this section to set up a Linux or Windows device to use as your AWS IoT
Greengrass core device.

Set up a Linux device

To set up a Linux device for AWS IoT Greengrass V2

1. Install the Java runtime, which AWS IoT Greengrass Core software requires to run. We
recommend that you use Amazon Corretto or OpenJDK long-term support versions. Version
8 or higher is required. The following commands show you how to install OpenJDK on your
device.

• For Debian-based or Ubuntu-based distributions:

sudo apt install default-jdk

• For Red Hat-based distributions:

sudo yum install java-11-openjdk-devel

• For Amazon Linux 2:

sudo amazon-linux-extras install java-openjdk11

• For Amazon Linux 2023:

sudo dnf install java-11-amazon-corretto -y

Install with custom provisioning 290

https://aws.amazon.com/corretto/
https://openjdk.java.net/

AWS IoT Greengrass Developer Guide, Version 2

When the installation completes, run the following command to verify that Java runs on your
Linux device.

java -version

The command prints the version of Java that runs on the device. For example, on a Debian-
based distribution, the output might look similar to the following sample.

openjdk version "11.0.9.1" 2020-11-04
OpenJDK Runtime Environment (build 11.0.9.1+1-post-Debian-1deb10u2)
OpenJDK 64-Bit Server VM (build 11.0.9.1+1-post-Debian-1deb10u2, mixed mode)

2. (Optional) Create the default system user and group that runs components on the device. You
can also choose to let the AWS IoT Greengrass Core software installer create this user and
group during installation with the --component-default-user installer argument. For
more information, see Installer arguments.

sudo useradd --system --create-home ggc_user
sudo groupadd --system ggc_group

3. Verify that the user that runs the AWS IoT Greengrass Core software (typically root), has
permission to run sudo with any user and any group.

a. Run the following command to open the /etc/sudoers file.

sudo visudo

b. Verify that the permission for the user looks like the following example.

root ALL=(ALL:ALL) ALL

4. (Optional) To run containerized Lambda functions, you must enable cgroups v1, and you must
enable and mount the memory and devices cgroups. If you don't plan to run containerized
Lambda functions, you can skip this step.

To enable these cgroups options, boot the device with the following Linux kernel parameters.

cgroup_enable=memory cgroup_memory=1 systemd.unified_cgroup_hierarchy=0

Install with custom provisioning 291

https://en.wikipedia.org/wiki/Cgroups

AWS IoT Greengrass Developer Guide, Version 2

For information about viewing and setting kernel parameters for your device, see the
documentation for your operating system and boot loader. Follow the instructions to
permanently set the kernel parameters.

5. Install all other required dependencies on your device as indicated by the list of requirements
in Device requirements.

Set up a Windows device

Note

This feature is available for v2.5.0 and later of the Greengrass nucleus component.

To set up a Windows device for AWS IoT Greengrass V2

1. Install the Java runtime, which AWS IoT Greengrass Core software requires to run. We
recommend that you use Amazon Corretto or OpenJDK long-term support versions. Version 8
or higher is required.

2. Check whether Java is available on the PATH system variable, and add it if not. The
LocalSystem account runs the AWS IoT Greengrass Core software, so you must add Java to the
PATH system variable instead of the PATH user variable for your user. Do the following:

a. Press the Windows key to open the start menu.

b. Type environment variables to search for the system options from the start menu.

c. In the start menu search results, choose Edit the system environment variables to open
the System properties window.

d. Choose Environment variables... to open the Environment Variables window.

e. Under System variables, select Path, and then choose Edit. In the Edit environment
variable window, you can view each path on a separate line.

f. Check if the path to the Java installation's bin folder is present. The path might look
similar to the following example.

C:\\Program Files\\Amazon Corretto\\jdk11.0.13_8\\bin

g. If the Java installation's bin folder is missing from Path, choose New to add it, and then
choose OK.

Install with custom provisioning 292

https://aws.amazon.com/corretto/
https://openjdk.java.net/
https://en.wikipedia.org/wiki/PATH_(variable)

AWS IoT Greengrass Developer Guide, Version 2

3. Open the Windows Command Prompt (cmd.exe) as an administrator.

4. Create the default user in the LocalSystem account on the Windows device. Replace password
with a secure password.

net user /add ggc_user password

Tip

Depending on your Windows configuration, the user's password might be set to expire
at a date in the future. To ensure your Greengrass applications continue to operate,
track when the password expires, and update it before it expires. You can also set the
user's password to never expire.

• To check when a user and its password expire, run the following command.

net user ggc_user | findstr /C:expires

• To set a user's password to never expire, run the following command.

wmic UserAccount where "Name='ggc_user'" set PasswordExpires=False

• If you’re using Windows 10 or later where the wmic command is deprecated, run the
following PowerShell command.

Get-CimInstance -Query "SELECT * from Win32_UserAccount WHERE name =
 'ggc_user'" | Set-CimInstance -Property @{PasswordExpires="False"}

5. Download and install the PsExec utility from Microsoft on the device.

6. Use the PsExec utility to store the user name and password for the default user in the
Credential Manager instance for the LocalSystem account. Replace password with the user's
password that you set earlier.

psexec -s cmd /c cmdkey /generic:ggc_user /user:ggc_user /pass:password

If the PsExec License Agreement opens, choose Accept to agree to the license and run the
command.

Install with custom provisioning 293

https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmic
https://docs.microsoft.com/en-us/sysinternals/downloads/psexec

AWS IoT Greengrass Developer Guide, Version 2

Note

On Windows devices, the LocalSystem account runs the Greengrass nucleus, and you
must use the PsExec utility to store the default user information in the LocalSystem
account. Using the Credential Manager application stores this information in the
Windows account of the currently logged on user, instead of the LocalSystem account.

Download the AWS IoT Greengrass Core software

You can download the latest version of the AWS IoT Greengrass Core software from the following
location:

• https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-latest.zip

Note

You can download a specific version of the AWS IoT Greengrass Core software from the
following location. Replace version with the version to download.

https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-version.zip

To download the AWS IoT Greengrass Core software

1. On your core device, download the AWS IoT Greengrass Core software to a file named
greengrass-nucleus-latest.zip.

Linux or Unix

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip > greengrass-nucleus-latest.zip

Windows Command Prompt (CMD)

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip > greengrass-nucleus-latest.zip

Install with custom provisioning 294

https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-latest.zip

AWS IoT Greengrass Developer Guide, Version 2

PowerShell

iwr -Uri https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip -OutFile greengrass-nucleus-latest.zip

By downloading this software, you agree to the Greengrass Core Software License Agreement.

2. (Optional) To verify the Greengrass nucleus software signature

Note

This feature is available with Greengrass nucleus version 2.9.5 and later.

a. Use the following command to verify your Greengrass nucleus artifact's signature:

Linux or Unix

jarsigner -verify -certs -verbose greengrass-nucleus-latest.zip

Windows Command Prompt (CMD)

The file name might look different depending on the JDK version you install. Replace
jdk17.0.6_10 with the JDK version you installed.

"C:\\Program Files\\Amazon Corretto\\jdk17.0.6_10\\bin\\jarsigner.exe" -
verify -certs -verbose greengrass-nucleus-latest.zip

PowerShell

The file name might look different depending on the JDK version you install. Replace
jdk17.0.6_10 with the JDK version you installed.

'C:\\Program Files\\Amazon Corretto\\jdk17.0.6_10\\bin\\jarsigner.exe' -
verify -certs -verbose greengrass-nucleus-latest.zip

b. The jarsigner invocation yields output that indicates the results of the verification.

Install with custom provisioning 295

https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 2

i. If the Greengrass nucleus zip file is signed, the output contains the following
statement:

jar verified.

ii. If the Greengrass nucleus zip file isn't signed, the output contains the following
statement:

jar is unsigned.

c. If you provided the Jarsigner -certs option along with -verify and -verbose options,
the output also includes detailed signer certificate information.

3. Unzip the AWS IoT Greengrass Core software to a folder on your device. Replace
GreengrassInstaller with the folder that you want to use.

Linux or Unix

unzip greengrass-nucleus-latest.zip -d GreengrassInstaller && rm greengrass-
nucleus-latest.zip

Windows Command Prompt (CMD)

mkdir GreengrassInstaller && tar -xf greengrass-nucleus-latest.zip -
C GreengrassInstaller && del greengrass-nucleus-latest.zip

PowerShell

Expand-Archive -Path greengrass-nucleus-latest.zip -DestinationPath .\
\GreengrassInstaller
rm greengrass-nucleus-latest.zip

4. (Optional) Run the following command to see the version of the AWS IoT Greengrass Core
software.

java -jar ./GreengrassInstaller/lib/Greengrass.jar --version

Install with custom provisioning 296

AWS IoT Greengrass Developer Guide, Version 2

Important

If you install a version of the Greengrass nucleus earlier than v2.4.0, don't remove this
folder after you install the AWS IoT Greengrass Core software. The AWS IoT Greengrass
Core software uses the files in this folder to run.
If you downloaded the latest version of the software, you install v2.4.0 or later, and you can
remove this folder after you install the AWS IoT Greengrass Core software.

Install the AWS IoT Greengrass Core software

Run the installer with arguments that specify the following actions:

• Install from a partial configuration file that specifies to use your custom provisioning plugin to
provision AWS resources. The AWS IoT Greengrass Core software uses a configuration file that
specifies the configuration of every Greengrass component on the device. The installer creates
a complete configuration file from the partial configuration file that you provide and the AWS
resources that the custom provisioning plugin creates.

• Specify to use the ggc_user system user to run software components on the core device. On
Linux devices, this command also specifies to use the ggc_group system group, and the installer
creates the system user and group for you.

• Set up the AWS IoT Greengrass Core software as a system service that runs at boot. On Linux
devices, this requires the Systemd init system.

Important

On Windows core devices, you must set up the AWS IoT Greengrass Core software as a
system service.

For more information about the arguments that you can specify, see Installer arguments.

Note

If you are running AWS IoT Greengrass on a device with limited memory, you can control
the amount of memory that AWS IoT Greengrass Core software uses. To control memory
allocation, you can set JVM heap size options in the jvmOptions configuration parameter

Install with custom provisioning 297

https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 2

in your nucleus component. For more information, see Control memory allocation with JVM
options.

To install the AWS IoT Greengrass Core software (Linux)

1. Check the version of the AWS IoT Greengrass Core software.

• Replace GreengrassInstaller with the path to the folder that contains the software.

java -jar ./GreengrassInstaller/lib/Greengrass.jar --version

2. Use a text editor to create a configuration file named config.yaml to provide to the installer.

For example, on a Linux-based system, you can run the following command to use GNU nano
to create the file.

nano GreengrassInstaller/config.yaml

Copy the following YAML content into the file.

system:
 rootpath: "/greengrass/v2"
 # The following values are optional. Return them from the provisioning plugin or
 set them here.
 # certificateFilePath: ""
 # privateKeyPath: ""
 # rootCaPath: ""
 # thingName: ""
services:
 aws.greengrass.Nucleus:
 version: "2.14.0"
 configuration:
 # The following values are optional. Return them from the provisioning plugin
 or set them here.
 # awsRegion: ""
 # iotRoleAlias: ""
 # iotDataEndpoint: ""
 # iotCredEndpoint: ""
 com.example.CustomProvisioning:

Install with custom provisioning 298

AWS IoT Greengrass Developer Guide, Version 2

 configuration:
 # You can specify configuration parameters to provide to your plugin.
 # pluginParameter: ""

Then, do the following:

• Replace 2.14.0 with the version of the AWS IoT Greengrass Core software.

• Replace each instance of /greengrass/v2 with the Greengrass root folder.

• (Optional) Specify system and nucleus configuration values. You must set these values if
your provisioning plugin doesn't provide them.

• (Optional) Specify configuration parameters to provide to your provisioning plugin.

Note

In this configuration file, you can customize other configuration options, such as
the ports and network proxy to use, as shown in the following example. For more
information, see Greengrass nucleus configuration.

system:
 rootpath: "/greengrass/v2"
 # The following values are optional. Return them from the provisioning
 plugin or set them here.
 # certificateFilePath: ""
 # privateKeyPath: ""
 # rootCaPath: ""
 # thingName: ""
services:
 aws.greengrass.Nucleus:
 version: "2.14.0"
 configuration:
 mqtt:
 port: 443
 greengrassDataPlanePort: 443
 networkProxy:
 noProxyAddresses: "http://192.168.0.1,www.example.com"
 proxy:
 url: "http://my-proxy-server:1100"
 username: "Mary_Major"
 password: "pass@word1357"

Install with custom provisioning 299

AWS IoT Greengrass Developer Guide, Version 2

 # The following values are optional. Return them from the provisioning
 plugin or set them here.
 # awsRegion: ""
 # iotRoleAlias: ""
 # iotDataEndpoint: ""
 # iotCredEndpoint: ""
 com.example.CustomProvisioning:
 configuration:
 # You can specify configuration parameters to provide to your plugin.
 # pluginParameter: ""

3. Run the installer. Specify --trusted-plugin to provide your custom provisioning plugin,
and specify --init-config to provide the configuration file.

Note

Windows has a path length limitation of 260 characters. If you are using Windows, use
a root folder like C:\greengrass\v2 or D:\greengrass\v2 to keep the Greengrass
components paths under the 260 character limit.

• Replace /greengrass/v2 or C:\greengrass\v2 with the Greengrass root folder.

• Replace each instance of GreengrassInstaller with the folder where you unpacked the
installer.

• Replace the path to the custom provisioning plugin JAR file with the path to your plugin's
JAR file.

Linux or Unix

sudo -E java -Droot="/greengrass/v2" -Dlog.store=FILE \
 -jar ./GreengrassInstaller/lib/Greengrass.jar \
 --trusted-plugin /path/to/com.example.CustomProvisioning.jar \
 --init-config ./GreengrassInstaller/config.yaml \
 --component-default-user ggc_user:ggc_group \
 --setup-system-service true

Install with custom provisioning 300

AWS IoT Greengrass Developer Guide, Version 2

Windows Command Prompt (CMD)

java -Droot="C:\greengrass\v2" "-Dlog.store=FILE" ^
 -jar ./GreengrassInstaller/lib/Greengrass.jar ^
 --trusted-plugin /path/to/com.example.CustomProvisioning.jar ^
 --init-config ./GreengrassInstaller/config.yaml ^
 --component-default-user ggc_user ^
 --setup-system-service true

PowerShell

java -Droot="C:\greengrass\v2" "-Dlog.store=FILE" `
 -jar ./GreengrassInstaller/lib/Greengrass.jar `
 --trusted-plugin /path/to/com.example.CustomProvisioning.jar `
 --init-config ./GreengrassInstaller/config.yaml `
 --component-default-user ggc_user `
 --setup-system-service true

Important

On Windows core devices, you must specify --setup-system-service true to set
up the AWS IoT Greengrass Core software as a system service.

If you specify --setup-system-service true, the installer prints Successfully set
up Nucleus as a system service if it set up and ran the software as a system service.
Otherwise, the installer doesn't output any message if it installs the software successfully.

Note

You can't use the deploy-dev-tools argument to deploy local development
tools when you run the installer without the --provision true argument.
For information about deploying the Greengrass CLI directly on your device, see
Greengrass Command Line Interface.

4. Verify the installation by viewing the files in the root folder.

Install with custom provisioning 301

AWS IoT Greengrass Developer Guide, Version 2

Linux or Unix

ls /greengrass/v2

Windows Command Prompt (CMD)

dir C:\greengrass\v2

PowerShell

ls C:\greengrass\v2

If the installation succeeded, the root folder contains several folders, such as config,
packages, and logs.

If you installed the AWS IoT Greengrass Core software as a system service, the installer runs the
software for you. Otherwise, you must run the software manually. For more information, see Run
the AWS IoT Greengrass Core software.

For more information about how to configure and use the software and AWS IoT Greengrass, see
the following:

• Configure the AWS IoT Greengrass Core software

• Develop AWS IoT Greengrass components

• Deploy AWS IoT Greengrass components to devices

• Greengrass Command Line Interface

Develop custom provisioning plugins

To develop a custom provisioning plugin, create a Java class that implements the
com.aws.greengrass.provisioning.DeviceIdentityInterface interface. You can include
the Greengrass nucleus JAR file in your project to access this interface and its classes. This interface
defines a method that inputs a plugin configuration and outputs a provisioning configuration.
The provisioning configuration defines configurations for the system and the Greengrass nucleus

Install with custom provisioning 302

AWS IoT Greengrass Developer Guide, Version 2

component. The AWS IoT Greengrass Core software installer uses this provisioning configuration to
configure the AWS IoT Greengrass Core software on a device.

After you develop a custom provisioning plugin, build it as a JAR file that you can provide to the
AWS IoT Greengrass Core software installer to run your plugin during installation. The installer runs
your custom provisioning plugin in the same JVM that the installer uses, so you can create a JAR
that contains only your plugin code.

Note

The AWS IoT fleet provisioning plugin implements the DeviceIdentityInterface to
use fleet provisioning during installation. The fleet provisioning plugin is open source, so
you can explore its source code to see an example of how to use the provisioning plugin
interface. For more information, see the AWS IoT fleet provisioning plugin on GitHub.

Topics

• Requirements

• Implement the DeviceIdentityInterface interface

Requirements

To develop a custom provisioning plugin, you must create a Java class that meets the following
requirements:

• Uses the com.aws.greengrass package, or a package within the com.aws.greengrass
package.

• Has a constructor without any arguments.

• Implements the DeviceIdentityInterface interface. For more information, see Implement
the DeviceIdentityInterface interface.

Implement the DeviceIdentityInterface interface

To use the com.aws.greengrass.provisioning.DeviceIdentityInterface interface in
your custom plugin, add the Greengrass nucleus as a dependency to your project.

Install with custom provisioning 303

https://github.com/aws-greengrass/aws-greengrass-fleet-provisioning-by-claim

AWS IoT Greengrass Developer Guide, Version 2

To use the DeviceIdentityInterface in a custom provisioning plugin project

• You can add the Greengrass nucleus JAR file as a library, or add the Greengrass nucleus as a
Maven dependency. Do one of the following:

• To add the Greengrass nucleus JAR file as a library, download the AWS IoT Greengrass
Core software, which contains the Greengrass nucleus JAR. You can download the latest
version of the AWS IoT Greengrass Core software from the following location:

• https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-latest.zip

You can find the Greengrass nucleus JAR file (Greengrass.jar) in the lib folder in the
ZIP file. Add this JAR file to your project.

• To consume the Greengrass nucleus in a Maven project, add a dependency the on
the nucleus artifact in the com.aws.greengrass group. You must also add the
greengrass-common repository, because the Greengrass nucleus isn't available in the
Maven Central Repository.

<project ...>
 ...
 <repositories>
 <repository>
 <id>greengrass-common</id>
 <name>greengrass common</name>
 <url>https://d2jrmugq4soldf.cloudfront.net/snapshots</url>
 </repository>
 </repositories>
 ...
 <dependencies>
 <dependency>
 <groupId>com.aws.greengrass</groupId>
 <artifactId>nucleus</artifactId>
 <version>2.5.0-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

Install with custom provisioning 304

https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-latest.zip

AWS IoT Greengrass Developer Guide, Version 2

The DeviceIdentityInterface interface

The com.aws.greengrass.provisioning.DeviceIdentityInterface interface has the
following shape.

Note

You can also explore these classes in the com.aws.greengrass.provisioning package of the
Greengrass nucleus source code on GitHub.

public interface com.aws.greengrass.provisioning.DeviceIdentityInterface {
 ProvisionConfiguration updateIdentityConfiguration(ProvisionContext context)
 throws RetryableProvisioningException, InterruptedException;

 // Return the name of the plugin.
 String name();
}

com.aws.greengrass.provisioning.ProvisionConfiguration {
 SystemConfiguration systemConfiguration;
 NucleusConfiguration nucleusConfiguration
}

com.aws.greengrass.provisioning.ProvisionConfiguration.SystemConfiguration {
 String certificateFilePath;
 String privateKeyPath;
 String rootCAPath;
 String thingName;
}

com.aws.greengrass.provisioning.ProvisionConfiguration.NucleusConfiguration {
 String awsRegion;
 String iotCredentialsEndpoint;
 String iotDataEndpoint;
 String iotRoleAlias;
}

com.aws.greengrass.provisioning.ProvisioningContext {
 Map<String, Object> parameterMap;
 String provisioningPolicy; // The policy is always "PROVISION_IF_NOT_PROVISIONED".
}

Install with custom provisioning 305

https://github.com/aws-greengrass/aws-greengrass-nucleus/tree/main/src/main/java/com/aws/greengrass/provisioning
https://github.com/aws-greengrass/aws-greengrass-nucleus

AWS IoT Greengrass Developer Guide, Version 2

com.aws.greengrass.provisioning.exceptions.RetryableProvisioningException {}

Each configuration value in the SystemConfiguration and NucleusConfiguration is
required to install the AWS IoT Greengrass Core software, but you can return null. If your custom
provisioning plugin returns null for any configuration value, you must provide that value in the
system or nucleus configuration when you create the config.yaml file to provide to the AWS
IoT Greengrass Core software installer. If your custom provisioning plugin returns a non-null
value for an option that you also define in config.yaml, then the installer replaces the value in
config.yaml with the value returned by the plugin.

Installer arguments

The AWS IoT Greengrass Core software includes an installer that sets up the software and
provisions the required AWS resources for the Greengrass core device to run. The installer includes
the following arguments that you can specify to configure the installation:

-h, --help

(Optional) Show the installer's help information.

--version

(Optional) Show the version of the AWS IoT Greengrass Core software.

-Droot

(Optional) The path to the folder to use as the root for the AWS IoT Greengrass Core software.

Note

This argument sets a JVM property, so you must specify it before -jar when you run
the installer. For example, specify java -Droot="/greengrass/v2" -jar /path/
to/Greengrass.jar.

Default:

• Linux: ~/.greengrass

• Windows: %USERPROFILE%/.greengrass

Installer arguments 306

AWS IoT Greengrass Developer Guide, Version 2

-ar, --aws-region

The AWS Region that the AWS IoT Greengrass Core software uses to retrieve or create its
required AWS resources.

-p, --provision

(Optional) You can register this device as an AWS IoT thing and provision the AWS resources
that the core device requires. If you specify true, the AWS IoT Greengrass Core software
provisions an AWS IoT thing, (optional) an AWS IoT thing group, an IAM role, and an AWS IoT
role alias.

Default: false

-tn, --thing-name

(Optional) The name of the AWS IoT thing that you register as this core device. If the thing with
the name doesn't exist in your AWS account, the AWS IoT Greengrass Core software creates it.

Note

The thing name can't contain colon (:) characters.

You must specify --provision true to apply this argument.

Default: GreengrassV2IotThing_ plus a random UUID.

-tgn, --thing-group-name

(Optional) The name of the AWS IoT thing group where you add this core device's AWS IoT
thing. If a deployment targets this thing group, this core device receives that deployment when
it connects to AWS IoT Greengrass. If the thing group with this name doesn't exist in your AWS
account, the AWS IoT Greengrass Core software creates it.

Note

The thing group name can't contain colon (:) characters.

You must specify --provision true to apply this argument.

Installer arguments 307

AWS IoT Greengrass Developer Guide, Version 2

-tpn, --thing-policy-name

This feature is available for v2.4.0 and later of the Greengrass nucleus component.

(Optional) The name of the AWS IoT policy to attach to this core device's AWS IoT thing
certificate. If the AWS IoT policy with this name doesn't exist in your AWS account, the AWS IoT
Greengrass Core software creates it.

The AWS IoT Greengrass Core software creates a permissive AWS IoT policy by default. You
can scope down this policy, or create a custom policy where you restrict permissions for your
use case. For more information, see Minimal AWS IoT policy for AWS IoT Greengrass V2 core
devices.

You must specify --provision true to apply this argument.

Default: GreengrassV2IoTThingPolicy

-trn, --tes-role-name

(Optional) The name of the IAM role to use to acquire AWS credentials that let
the core device interact with AWS services. If the role with this name doesn't exist
in your AWS account, the AWS IoT Greengrass Core software creates it with the
GreengrassV2TokenExchangeRoleAccess policy. This role doesn't have access to your S3
buckets where you host component artifacts. So, you must add permissions to your artifacts' S3
buckets and objects when you create a component. For more information, see Authorize core
devices to interact with AWS services.

You must specify --provision true to apply this argument.

Default: GreengrassV2TokenExchangeRole

-tra, --tes-role-alias-name

(Optional) The name of the AWS IoT role alias that points to the IAM role that provides AWS
credentials for this core device. If the role alias with this name doesn't exist in your AWS
account, the AWS IoT Greengrass Core software creates it and points it to the IAM role that you
specify.

You must specify --provision true to apply this argument.

Default: GreengrassV2TokenExchangeRoleAlias

Installer arguments 308

AWS IoT Greengrass Developer Guide, Version 2

-ss, --setup-system-service

(Optional) You can set up the AWS IoT Greengrass Core software as a system service that runs
when this device boots. The system service name is greengrass. For more information, see
Configure the Greengrass nucleus as a system service.

On Linux operating systems, this argument requires that the systemd init system is available on
the device.

Important

On Windows core devices, you must set up the AWS IoT Greengrass Core software as a
system service.

Default: false

-u, --component-default-user

The name or ID of the user that the AWS IoT Greengrass Core software uses to run components.
For example, you can specify ggc_user. This value is required when you run the installer on
Windows operating systems.

On Linux operating systems, you can also optionally specify the group. Specify the user and
group separated by a colon. For example, ggc_user:ggc_group.

The following additional considerations apply for Linux operating systems:

• If you run as root, the default component user is the user that is defined in the configuration
file. If the configuration file doesn't define a user, this defaults to ggc_user:ggc_group. If
ggc_user or ggc_group don't exist, the software creates them.

• If you run as a non-root user, the AWS IoT Greengrass Core software uses that user to run
components.

• If you don't specify a group, the AWS IoT Greengrass Core software uses the primary group of
the system user.

For more information, see Configure the user that runs components.

-d, --deploy-dev-tools

(Optional) You can download and deploy the Greengrass CLI component to this core device. You
can use this tool to develop and debug components on this core device.

Installer arguments 309

AWS IoT Greengrass Developer Guide, Version 2

Important

We recommend that you use this component in only development environments,
not production environments. This component provides access to information and
operations that you typically won't need in a production environment. Follow the
principle of least privilege by deploying this component to only core devices where you
need it.

You must specify --provision true to apply this argument.

Default: false

-init, --init-config

(Optional) The path to the configuration file to use to install the AWS IoT Greengrass
Core software. You can use this option to set up new core devices with a specific nucleus
configuration, for example.

Important

The configuration file that you specify merges with the existing configuration file on the
core device. This includes the components and component configurations on the core
device. We recommend the configuration file only lists the configurations that you are
trying to change.

-tp, --trusted-plugin

(Optional) The path to a JAR file to load as a trusted plugin. Use this option to provide
provisioning plugin JAR files, such as to install with fleet provisioning or custom provisioning, or
to install with the private key and certificate in a hardware security module.

-s, --start

(Optional) You can start the AWS IoT Greengrass Core software after it installs and, optionally,
provisions resources.

Default: true

Installer arguments 310

AWS IoT Greengrass Developer Guide, Version 2

Run the AWS IoT Greengrass Core software

After you install the AWS IoT Greengrass Core software, run it to connect your device to AWS IoT
Greengrass.

When you install the AWS IoT Greengrass Core software, you can specify whether to install it as a
system service with systemd. If you choose this option, the installer runs the software for you and
configures it to run when your device boots.

Important

On Windows core devices, you must set up the AWS IoT Greengrass Core software as a
system service.

Topics

• Check if the AWS IoT Greengrass Core software runs as a system service

• Run the AWS IoT Greengrass Core software as a system service

• Run the AWS IoT Greengrass Core software without a system service

Check if the AWS IoT Greengrass Core software runs as a system service

When you install the AWS IoT Greengrass Core software, you can specify the --setup-system-
service true argument to install the AWS IoT Greengrass Core software as a system service.
Linux devices require the systemd init system to set up the AWS IoT Greengrass Core software as
a system service. If you use this option, the installer runs the software for you and configures it to
run when your device boots. The installer outputs the following message if it successfully installs
the AWS IoT Greengrass Core software as a system service.

Successfully set up Nucleus as a system service

If you previously installed the AWS IoT Greengrass Core software and don't have the installer
output, you can check if the software installed as a system service.

To check if the AWS IoT Greengrass Core software is installed as a system service

• Run the following command to check the status of the Greengrass system service.

Run the AWS IoT Greengrass Core software 311

https://en.wikipedia.org/wiki/Systemd
https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 2

Linux or Unix (systemd)

sudo systemctl status greengrass.service

The response looks similar to the following example if the AWS IoT Greengrass Core
software is installed as a system service and active.

greengrass.service - Greengrass Core
 Loaded: loaded (/etc/systemd/system/greengrass.service; enabled; vendor
 preset: disabled)
 Active: active (running) since Thu 2021-02-11 01:33:44 UTC; 4 days ago
 Main PID: 16107 (sh)
 CGroup: /system.slice/greengrass.service
 ##16107 /bin/sh /greengrass/v2/alts/current/distro/bin/loader
 ##16111 java -Dlog.store=FILE -Droot=/greengrass/v2 -jar /greengrass/
v2/alts/current/distro/lib/Greengrass...

If systemctl or greengrass.service isn't found, the AWS IoT Greengrass Core
software isn't installed as a system service. To run the software, see Run the AWS IoT
Greengrass Core software without a system service.

Windows Command Prompt (CMD)

sc query greengrass

The response looks similar to the following example if the AWS IoT Greengrass Core
software is installed as a Windows service and active.

SERVICE_NAME: greengrass
 TYPE : 10 WIN32_OWN_PROCESS
 STATE : 4 RUNNING
 (STOPPABLE, NOT_PAUSABLE, ACCEPTS_SHUTDOWN)
 WIN32_EXIT_CODE : 0 (0x0)
 SERVICE_EXIT_CODE : 0 (0x0)
 CHECKPOINT : 0x0
 WAIT_HINT : 0x0

Check if the AWS IoT Greengrass Core software runs as a system service 312

AWS IoT Greengrass Developer Guide, Version 2

PowerShell

Get-Service greengrass

The response looks similar to the following example if the AWS IoT Greengrass Core
software is installed as a Windows service and active.

Status Name DisplayName
------ ---- -----------
Running greengrass greengrass

Run the AWS IoT Greengrass Core software as a system service

If the AWS IoT Greengrass Core software is installed as a system service, you can use the system
service manager to start, stop, and manage the software. For more information, see Configure the
Greengrass nucleus as a system service.

To run the AWS IoT Greengrass Core software

• Run the following command to start the AWS IoT Greengrass Core software.

Linux or Unix (systemd)

sudo systemctl start greengrass.service

Windows Command Prompt (CMD)

sc start greengrass

PowerShell

Start-Service greengrass

Run the AWS IoT Greengrass Core software without a system service

On Linux core devices, if the AWS IoT Greengrass Core software isn't installed as a system service,
you can run the software's loader script to run the software.

Run the AWS IoT Greengrass Core software as a system service 313

AWS IoT Greengrass Developer Guide, Version 2

To run the AWS IoT Greengrass Core software without a system service

• Run the following command to start the AWS IoT Greengrass Core software. If you run
this command in a terminal, you must keep the terminal session open to keep the AWS IoT
Greengrass Core software running.

• Replace /greengrass/v2 or C:\greengrass\v2 with the Greengrass root folder that you
use.

sudo /greengrass/v2/alts/current/distro/bin/loader

The software prints the following message if it launches successfully.

Launched Nucleus successfully.

Run AWS IoT Greengrass Core software in a Docker container

AWS IoT Greengrass can be configured to run in a Docker container. Docker is a platform that
provides the tools for you to build, run, test, and deploy applications that are based on Linux
containers. When you run an AWS IoT Greengrass Docker image, you can choose whether to
provide your AWS credentials to the Docker container and allow the AWS IoT Greengrass Core
software installer to automatically provision the AWS resources that a Greengrass core device
requires to operate. If you don't want to provide AWS credentials, then you can manually provision
AWS resources and run AWS IoT Greengrass Core software in the Docker container.

Topics

• Supported platforms and requirements

• AWS IoT Greengrass Docker software downloads

• Choose how to provision AWS resources

• Build the AWS IoT Greengrass container image from a Dockerfile

• Run AWS IoT Greengrass in a Docker container with automatic resource provisioning

• Run AWS IoT Greengrass in a Docker container with manual resource provisioning

• Troubleshooting AWS IoT Greengrass in a Docker container

Run AWS IoT Greengrass in Docker 314

AWS IoT Greengrass Developer Guide, Version 2

Supported platforms and requirements

Host computers must meet the following minimum requirements to install and run the AWS IoT
Greengrass Core software in a Docker container:

• A Linux-based operating system with an internet connection.

• Docker Engine version 18.09 or later.

• (Optional) Docker Compose version 1.22 or later. Docker Compose is required only if you want to
use the Docker Compose CLI to run your Docker images.

To run Lambda function components inside of the Docker container, you must configure
the container to meet additional requirements. For more information, see Lambda function
requirements.

Run components in process mode

AWS IoT Greengrass doesn't support running Lambda functions or AWS-provided components in
an isolated runtime environment inside the AWS IoT Greengrass Docker container. You must run
these components in process mode without any isolation.

When you configure a Lambda function component, set the isolation mode to No container. For
more information, see Run AWS Lambda functions.

When you deploy any of the following AWS-provided components, update the configuration for
each component to set the containerMode parameter to NoContainer. For more information
about configuration updates, see Update component configurations.

• CloudWatch metrics

• Device Defender

• Firehose

• Modbus-RTU protocol adapter

• Amazon SNS

AWS IoT Greengrass Docker software downloads

AWS IoT Greengrass provides a Dockerfile to build a container image that has AWS IoT Greengrass
Core software and dependencies installed on an Amazon Linux 2 (x86_64) base image. You can

Supported platforms and requirements 315

https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/

AWS IoT Greengrass Developer Guide, Version 2

modify the base image in the Dockerfile to run AWS IoT Greengrass on a different platform
architecture.

Download the Dockerfile package from GitHub.

The Dockerfile uses an older version of Greengrass. You should update the file to use the version of
Greengrass that you want. For information about building the AWS IoT Greengrass container image
from the Dockerfile, see Build the AWS IoT Greengrass container image from a Dockerfile.

Choose how to provision AWS resources

When you install the AWS IoT Greengrass Core software in a Docker container, you can choose
whether to automatically provision the AWS resources that a Greengrass core device requires to
operate, or to use resources that you manually provision.

• Automatic resource provisioning—The installer provisions the AWS IoT thing, AWS IoT thing
group, IAM role, and AWS IoT role alias when you run the AWS IoT Greengrass container image
for the first time. The installer can also deploy the local development tools to the core device,
so you can use the device to develop and test custom software components. To automatically
provision these resources, you must provide AWS credentials as environment variables to the
Docker image.

To use automatic provisioning, you must set the Docker environment variable PROVISION=true
and mount a credential file to provide your AWS credentials to the container.

• Manual resource provisioning—If you don't want to provide AWS credentials to the container,
then you can manually provision the AWS resources before you run the AWS IoT Greengrass
container image. You must create a configuration file to provide information about these
resources to the AWS IoT Greengrass Core software installer within the Docker container.

To use manual provisioning, you must set the Docker environment variable PROVISION=false.
Manual provisioning is the default option.

For more information, see Build the AWS IoT Greengrass container image from a Dockerfile.

Build the AWS IoT Greengrass container image from a Dockerfile

AWS provides a Dockerfile that you can download and use to run AWS IoT Greengrass Core
software in a Docker container. Dockerfiles contain source code for building AWS IoT Greengrass
container images.

Choose how to provision AWS resources 316

https://github.com/aws-greengrass/aws-greengrass-docker

AWS IoT Greengrass Developer Guide, Version 2

Before you build an AWS IoT Greengrass container image, you must configure your Dockerfile
to select the version of AWS IoT Greengrass Core software that you want to install. You can also
configure environment variables to choose how to provision resources during installation, and
customize other installation options. This section describes how to configure and build an AWS IoT
Greengrass Docker image from a Dockerfile.

Download the Dockerfile package

You can download the AWS IoT Greengrass Dockerfile package from GitHub:

AWS Greengrass Docker Repository

After you download the package, extract the contents to the download-directory/aws-
greengrass-docker-nucleus-version folder on your computer. The Dockerfile uses an older
version of Greengrass. You should update the file to use the version of Greengrass that you want.

Specify the AWS IoT Greengrass Core software version

Use the following build argument in the Dockerfile to specify the version of the AWS IoT
Greengrass Core software that you want to use in the AWS IoT Greengrass Docker image. By
default, the Dockerfile uses the latest version of the AWS IoT Greengrass Core software.

GREENGRASS_RELEASE_VERSION

The version of the AWS IoT Greengrass Core software. By default, the Dockerfile downloads the
latest available version of the Greengrass nucleus. Set the value to the version of the nucleus
that you want to download.

Set environment variables

Environment variables enable you to customize how AWS IoT Greengrass Core software is installed
in the Docker container. You can set environment variables for your AWS IoT Greengrass Docker
image in various ways.

• To use the same environment variables to create multiple images, set environment variables
directly in the Dockerfile.

• If you use docker run to start your container, pass environment variables as arguments in the
command, or set environment variables in an environment variables file and then pass the file

Build the AWS IoT Greengrass image from a Dockerfile 317

https://github.com/aws-greengrass/aws-greengrass-docker

AWS IoT Greengrass Developer Guide, Version 2

as an argument. For more information about setting environment variables in Docker, see the
environment variables in the Docker documentation.

• If you use docker-compose up to start your container, set environment variables in an
environment variables file and then pass the file as an argument. For more information about
setting environment variables in Compose, see the Docker documentation.

You can configure the following environment variables for the AWS IoT Greengrass Docker image.

Note

Don't modify the TINI_KILL_PROCESS_GROUP variable in the Dockerfile. This variable
allows forwarding SIGTERM to all PIDs in the PID group so that AWS IoT Greengrass Core
software can shut down correctly when the Docker container is stopped.

GGC_ROOT_PATH

(Optional) The path to the folder within the container to use as the root for AWS IoT Greengrass
Core software.

Default: /greengrass/v2

PROVISION

(Optional) Determines whether the AWS IoT Greengrass Core provisions AWS resources.

• If you specify true, AWS IoT Greengrass Core software registers the container image as an
AWS IoT thing and provisions the AWS resources that the Greengrass core device requires.
The AWS IoT Greengrass Core software provisions an AWS IoT thing, (optional) an AWS IoT
thing group, an IAM role, and an AWS IoT role alias. For more information, see Run AWS IoT
Greengrass in a Docker container with automatic resource provisioning.

• If you specify false, then you must create a configuration file to provide to the AWS IoT
Greengrass Core installer that specifies to use the AWS resources and certificates that you
manually created. For more information, see Run AWS IoT Greengrass in a Docker container
with manual resource provisioning.

Default: false

Build the AWS IoT Greengrass image from a Dockerfile 318

https://docs.docker.com/engine/reference/commandline/run/#env
https://docs.docker.com/compose/environment-variables/

AWS IoT Greengrass Developer Guide, Version 2

AWS_REGION

(Optional) The AWS Region that the AWS IoT Greengrass Core software uses to retrieve or
create required AWS resources.

Default: us-east-1.

THING_NAME

(Optional) The name of the AWS IoT thing that you register as this core device. If the thing with
this name doesn't exist in your AWS account, the AWS IoT Greengrass Core software creates it.

You must specify PROVISION=true to apply this argument.

Default: GreengrassV2IotThing_ plus a random UUID.

THING_GROUP_NAME

(Optional) The name of the AWS IoT thing group where you add this core device's AWS IoT If
a deployment targets this thing group, this and other core devices in that group receive that
deployment when it connects to AWS IoT Greengrass. If the thing group with this name doesn't
exist in your AWS account, the AWS IoT Greengrass Core software creates it.

You must specify PROVISION=true to apply this argument.

TES_ROLE_NAME

(Optional) The name of the IAM role to use to acquire AWS credentials that let the
Greengrass core device interact with AWS services. If the role with this name doesn't
exist in your AWS account, the AWS IoT Greengrass Core software creates it with the
GreengrassV2TokenExchangeRoleAccess policy. This role doesn't have access to your S3
buckets where you host component artifacts. So, you must add permissions to your artifacts' S3
buckets and objects when you create a component. For more information, see Authorize core
devices to interact with AWS services.

Default: GreengrassV2TokenExchangeRole

TES_ROLE_ALIAS_NAME

(Optional) The name of the AWS IoT role alias that points to the IAM role that provides AWS
credentials for the Greengrass core device. If the role alias with this name doesn't exist in your
AWS account, the AWS IoT Greengrass Core software creates it and points it to the IAM role that
you specify.

Default: GreengrassV2TokenExchangeRoleAlias

Build the AWS IoT Greengrass image from a Dockerfile 319

AWS IoT Greengrass Developer Guide, Version 2

COMPONENT_DEFAULT_USER

(Optional) The name or ID of the system user and group that the AWS IoT Greengrass Core
software uses to run components. Specify the user and group, separated by a colon. The group
is optional. For example, you can specify ggc_user:ggc_group or ggc_user.

• If you run as root, this defaults to the user and group that the configuration file defines. If the
configuration file doesn't define a user and group, this defaults to ggc_user:ggc_group. If
ggc_user or ggc_group don't exist, the software creates them.

• If you run as a non-root user, the AWS IoT Greengrass Core software uses that user to run
components.

• If you don't specify a group, the AWS IoT Greengrass Core software uses the primary group of
the system user.

For more information, see Configure the user that runs components.

DEPLOY_DEV_TOOLS

Defines whether to download and deploy the Greengrass CLI component in the container
image. You can use the Greengrass CLI to develop and debug components locally.

Important

We recommend that you use this component in only development environments,
not production environments. This component provides access to information and
operations that you typically won't need in a production environment. Follow the
principle of least privilege by deploying this component to only core devices where you
need it.

Default: false

INIT_CONFIG

(Optional) The path to the configuration file to use to install the AWS IoT Greengrass Core
software. You can use this option to set up new Greengrass core devices with a specific nucleus
configuration, or to specify manually provisioned resources, for example. You must mount your
configuration file to the path that you specify in this argument.

TRUSTED_PLUGIN

This feature is available for v2.4.0 and later of the Greengrass nucleus component.

Build the AWS IoT Greengrass image from a Dockerfile 320

AWS IoT Greengrass Developer Guide, Version 2

(Optional) The path to a JAR file to load as a trusted plugin. Use this option to provide
provisioning plugin JAR files, such as to install with fleet provisioning or custom provisioning.

THING_POLICY_NAME

This feature is available for v2.4.0 and later of the Greengrass nucleus component.

(Optional) The name of the AWS IoT policy to attach to this core device's AWS IoT thing
certificate. If the AWS IoT policy with this name doesn't exist in your AWS account the AWS IoT
Greengrass Core software creates it.

You must specify PROVISION=true to apply this argument.

Note

The AWS IoT Greengrass Core software creates a permissive AWS IoT policy by default.
You can scope down this policy, or create a custom policy where you restrict permissions
for your use case. For more information, see Minimal AWS IoT policy for AWS IoT
Greengrass V2 core devices.

Specify the dependencies to install

The RUN instruction in the AWS IoT Greengrass Dockerfile prepares up the container environment
to run the AWS IoT Greengrass Core software installer. You can customize the dependencies that
are installed before the AWS IoT Greengrass Core software installer runs in the Docker container.

Build the AWS IoT Greengrass image

Use the AWS IoT Greengrass Dockerfile to build an AWS IoT Greengrass container image. You can
use the Docker CLI or the Docker Compose CLI to build the image and start the container. You can
also use the Docker CLI to build the image and then use Docker Compose to start your container
from that image.

Docker

1. On the host machine, run the following command to switch to the directory that contains
the configured Dockerfile.

cd download-directory/aws-greengrass-docker-nucleus-version

Build the AWS IoT Greengrass image from a Dockerfile 321

AWS IoT Greengrass Developer Guide, Version 2

2. Run the following command to build the AWS IoT Greengrass container image from the
Dockerfile.

sudo docker build -t "platform/aws-iot-greengrass:nucleus-version" ./

Docker Compose

1. On the host machine, run the following command to switch to the directory that contains
the Dockerfile and the Compose file.

cd download-directory/aws-greengrass-docker-nucleus-version

2. Run the following command to use the Compose file to build the AWS IoT Greengrass
container image.

docker-compose -f docker-compose.yml build

You have successfully created the AWS IoT Greengrass container image. The Docker image has
the AWS IoT Greengrass Core software installed. You can now run the AWS IoT Greengrass Core
software in a Docker container.

Run AWS IoT Greengrass in a Docker container with automatic resource
provisioning

This tutorial shows you how to install and run AWS IoT Greengrass Core software in a Docker
container with automatically provisioned AWS resources and local development tools. You can use
this development environment to explore AWS IoT Greengrass features in a Docker container. The
software requires AWS credentials to provision these resources and deploy the local development
tools.

If you can't provide AWS credentials to the container, you can provision the AWS resources that the
core device requires to operate. You can also deploy the development tools to a core device to use
as a development device. This enables you to provide fewer permissions to the device when you
run the container. For more information, see Run AWS IoT Greengrass in a Docker container with
manual resource provisioning.

Run AWS IoT Greengrass in Docker with automatic provisioning 322

AWS IoT Greengrass Developer Guide, Version 2

Prerequisites

To complete this tutorial, you need the following.

• An AWS account. If you don't have one, see Set up an AWS account.

• An AWS IAM user with permissions to provision the AWS IoT and IAM resources for a Greengrass
core device. The AWS IoT Greengrass Core software installer uses your AWS credentials to
automatically provision these resources. For information about the minimal IAM policy to
automatically provision resources, see Minimal IAM policy for installer to provision resources.

• An AWS IoT Greengrass Docker image. You can build an image from the AWS IoT Greengrass
Dockerfile.

• The host computer where you run the Docker container must meet the following requirements:

• A Linux-based operating system with an internet connection.

• Docker Engine version 18.09 or later.

• (Optional) Docker Compose version 1.22 or later. Docker Compose is required only if you want
to use the Docker Compose CLI to run your Docker images.

Configure your AWS credentials

In this step, you create a credential file on the host computer that contains your AWS security
credentials. When you run the AWS IoT Greengrass Docker image, you must mount the folder that
contains this credential file to /root/.aws/ in the Docker container. The AWS IoT Greengrass
installer uses these credentials to provision resources in your AWS account. For information about
the minimal IAM policy that the installer requires to automatically provision resources, see Minimal
IAM policy for installer to provision resources.

1. Retrieve one of the following.

• Long-term credentials for an IAM user. For information about how to retrieve long-term
credentials, see Managing access keys for IAM users in the IAM User Guide.

• (Recommended) Temporary credentials for an IAM role. For information about how to
retrieve temporary credentials, see Using temporary security credentials with the AWS CLI in
the IAM User Guide.

2. Create a folder where you place your credential file.

mkdir ./greengrass-v2-credentials

Run AWS IoT Greengrass in Docker with automatic provisioning 323

https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html#using-temp-creds-sdk-cli

AWS IoT Greengrass Developer Guide, Version 2

3. Use a text editor to create a configuration file named credentials in the ./greengrass-
v2-credentials folder.

For example, you can run the following command to use GNU nano to create the
credentials file.

nano ./greengrass-v2-credentials/credentials

4. Add your AWS credentials to the credentials file in the following format.

[default]
aws_access_key_id = AKIAIOSFODNN7EXAMPLE
aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
aws_session_token
 = AQoEXAMPLEH4aoAH0gNCAPy...truncated...zrkuWJOgQs8IZZaIv2BXIa2R4Olgk

Include aws_session_token for temporary credentials only.

Important

Remove the credential file from the host computer after you start the AWS IoT Greengrass
container. If you don't remove the credential file, then your AWS credentials will remain
mounted inside the container. For more information, see Run the AWS IoT Greengrass Core
software in a container.

Create an environment file

This tutorial uses an environment file to set the environment variables that will be passed to the
AWS IoT Greengrass Core software installer inside the Docker container. You can also use the -e
or --env argument in your docker run command to set environment variables in the Docker
container or you can set the variables in an environment block in the docker-compose.yml file.

1. Use a text editor to create an environment file named .env.

For example, on a Linux-based system, you can run the following command to use GNU nano
to create the .env in the current directory.

Run AWS IoT Greengrass in Docker with automatic provisioning 324

https://docs.docker.com/engine/reference/commandline/run/#env
https://docs.docker.com/engine/reference/commandline/run/#env
https://docs.docker.com/compose/compose-file/compose-file-v3/#environment

AWS IoT Greengrass Developer Guide, Version 2

nano .env

2. Copy the following content into the file.

GGC_ROOT_PATH=/greengrass/v2
AWS_REGION=region
PROVISION=true
THING_NAME=MyGreengrassCore
THING_GROUP_NAME=MyGreengrassCoreGroup
TES_ROLE_NAME=GreengrassV2TokenExchangeRole
TES_ROLE_ALIAS_NAME=GreengrassCoreTokenExchangeRoleAlias
COMPONENT_DEFAULT_USER=ggc_user:ggc_group

Then, replace the following values.

• /greengrass/v2. The Greengrass root folder that you want to use for installation. You use
the GGC_ROOT environment variable to set this value.

• region. The AWS Region where you created the resources.

• MyGreengrassCore. The name of the AWS IoT thing. If the thing doesn't exist, the installer
creates it. The installer downloads the certificates to authenticate as the AWS IoT thing.

• MyGreengrassCoreGroup. The name of the AWS IoT thing group. If the thing group
doesn't exist, the installer creates it and adds the thing to it. If the thing group exists and
has an active deployment, the core device downloads and runs the software that the
deployment specifies.

• GreengrassV2TokenExchangeRole. Replace with the name of the IAM token exchange
role that allows the Greengrass core device to get temporary AWS credentials. If the
role doesn't exist, the installer creates it and creates and attaches a policy named
GreengrassV2TokenExchangeRoleAccess. For more information, see Authorize core
devices to interact with AWS services.

• GreengrassCoreTokenExchangeRoleAlias. The token exchange role alias. If the role
alias doesn't exist, the installer creates it and points it to the IAM token exchange role that
you specify. For more information, see

Run AWS IoT Greengrass in Docker with automatic provisioning 325

AWS IoT Greengrass Developer Guide, Version 2

Note

You can set the DEPLOY_DEV_TOOLS environment variable to true to deploy the
Greengrass CLI component, which enables you to develop custom components
inside of the Docker container. We recommend that you use this component in only
development environments, not production environments. This component provides
access to information and operations that you typically won't need in a production
environment. Follow the principle of least privilege by deploying this component to
only core devices where you need it.

Run the AWS IoT Greengrass Core software in a container

This tutorial shows you how to start the Docker image that you built in a the Docker container. You
can use the Docker CLI or the Docker Compose CLI to run the AWS IoT Greengrass Core software
image in a Docker container.

Docker

1. Run the following command to start the Docker container.

docker run --rm --init -it --name docker-image \
 -v path/to/greengrass-v2-credentials:/root/.aws/:ro \
 --env-file .env \
 -p 8883 \
 your-container-image:version

This example command uses the following arguments for docker run:

• --rm. Cleans up the container when it exits.

• --init. Uses an init process in the container.

Note

The --init argument is required to shut down AWS IoT Greengrass Core
software when you stop the Docker container.

Run AWS IoT Greengrass in Docker with automatic provisioning 326

https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/run/#clean-up---rm
https://docs.docker.com/engine/reference/run/#specify-an-init-process

AWS IoT Greengrass Developer Guide, Version 2

• -it. (Optional) Runs the Docker container in the foreground as an interactive process.
You can replace this with the -d argument to run the Docker container in detached mode
instead. For more information, see Detached vs foreground in the Docker documentation.

• --name. Runs a container named aws-iot-greengrass

• -v. Mounts a volume into the Docker container to make the configuration file and the
certificate files available to AWS IoT Greengrass running inside the container.

• --env-file. (Optional) Specifies the environment file to set the environment variables
that will be passed to the AWS IoT Greengrass Core software installer inside the Docker
container. This argument is required only if you created an environment file to set
environment variables. If you didn't create an environment file, you can use --env
arguments to set environment variables directly in your Docker run command.

• -p. (Optional) Publishes the 8883 container port to the host machine. This argument
is required if you want to connect and communicate over MQTT because AWS IoT
Greengrass uses port 8883 for MQTT traffic. To open other ports, use additional -p
arguments.

Note

To run your Docker container with increased security, you can use the --cap-
drop and --cap-add arguments to selectively enable Linux capabilities for your
container. For more information, see Runtime privilege and Linux capabilities in the
Docker documentation.

2. Remove the credentials from ./greengrass-v2-credentials on the host device.

rm -rf ./greengrass-v2-credentials

Important

You're removing these credentials, because they provide broad permissions that
the core device needs only during setup. If you don't remove these credentials,
Greengrass components and other processes running in the container can access
them. If you need to provide AWS credentials to a Greengrass component, use the
token exchange service. For more information, see Interact with AWS services.

Run AWS IoT Greengrass in Docker with automatic provisioning 327

https://docs.docker.com/engine/reference/run/#foreground
https://docs.docker.com/engine/reference/run/#detached-vs-foreground
https://docs.docker.com/engine/reference/run/#name---name
https://docs.docker.com/storage/volumes/
https://docs.docker.com/engine/reference/commandline/run/#env
https://docs.docker.com/engine/reference/commandline/run/#publish
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities

AWS IoT Greengrass Developer Guide, Version 2

Docker Compose

1. Use a text editor to create a Docker Compose file named docker-compose.yml.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the docker-compose.yml in the current directory.

nano docker-compose.yml

Note

You can also download and use the latest version of the AWS-provided Compose
file from GitHub.

2. Add the following content to the Compose file. Your file should look similar to the
following example. Replace docker-image with the name of your Docker image.

version: '3.7'

services:
 greengrass:
 init: true
 container_name: aws-iot-greengrass
 image: docker-image
 volumes:
 - ./greengrass-v2-credentials:/root/.aws/:ro
 env_file: .env
 ports:
 - "8883:8883"

The following parameters in this example Compose file are optional:

• ports—Publishes the 8883 container ports to the host machine. This parameter
is required if you want to connect and communicate over MQTT because AWS IoT
Greengrass uses port 8883 for MQTT traffic.

• env_file—Specifies the environment file to set the environment variables that will be
passed to the AWS IoT Greengrass Core software installer inside the Docker container.
This parameter is required only if you created an environment file to set environment

Run AWS IoT Greengrass in Docker with automatic provisioning 328

https://github.com/aws-greengrass/aws-greengrass-docker/releases/

AWS IoT Greengrass Developer Guide, Version 2

variables. If you didn't create an environment file, you can use the environment
parameter to set the variables directly in your Compose file.

Note

To run your Docker container with increased security, you can use cap_drop and
cap_add in your Compose file to selectively enable Linux capabilities for your
container. For more information, see Runtime privilege and Linux capabilities in the
Docker documentation.

3. Run the following command to start the Docker container.

docker-compose -f docker-compose.yml up

4. Remove the credentials from ./greengrass-v2-credentials on the host device.

rm -rf ./greengrass-v2-credentials

Important

You're removing these credentials, because they provide broad permissions that
the core device needs only during setup. If you don't remove these credentials,
Greengrass components and other processes running in the container can access
them. If you need to provide AWS credentials to a Greengrass component, use the
token exchange service. For more information, see Interact with AWS services.

Next steps

AWS IoT Greengrass Core software is now running in a Docker container. Run the following
command to retrieve the container ID for the currently running container.

docker ps

You can then run the following command to access the container and explore AWS IoT Greengrass
Core software running inside the container.

Run AWS IoT Greengrass in Docker with automatic provisioning 329

https://docs.docker.com/compose/compose-file/compose-file-v3/#environment
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities

AWS IoT Greengrass Developer Guide, Version 2

docker exec -it container-id /bin/bash

For information about creating a simple component, see Step 4: Develop and test a component on
your device in Tutorial: Getting started with AWS IoT Greengrass V2

Note

When you use docker exec to run commands inside the Docker container, those
commands are not logged in the Docker logs. To log your commands in the Docker logs,
attach an interactive shell to the Docker container. For more information, see Attach an
interactive shell to the Docker container.

The AWS IoT Greengrass Core log file is called greengrass.log and is located in /greengrass/
v2/logs. Component log files are also located in the same directory. To copy Greengrass logs to a
temporary directory on the host, run the following command:

docker cp container-id:/greengrass/v2/logs /tmp/logs

If you want to persist logs after a container exits or has been removed, we recommend that you
bind-mount only the /greengrass/v2/logs directory to the temporary logs directory on
the host instead of mounting the entire Greengrass directory. For more information, see Persist
Greengrass logs outside of the Docker container.

To stop a running AWS IoT Greengrass Docker container, run docker stop or docker-compose
-f docker-compose.yml stop. This action sends SIGTERM to the Greengrass process and shuts
down all associated processes that were started in the container. The Docker container is initialized
with the docker-init executable as process PID 1, which helps in removing any leftover zombie
processes. For more information, see the Specify an init process in the Docker documentation.

For information about troubleshooting issues with running AWS IoT Greengrass in a Docker
container, see Troubleshooting AWS IoT Greengrass in a Docker container.

Run AWS IoT Greengrass in a Docker container with manual resource
provisioning

This tutorial shows you how to install and run AWS IoT Greengrass Core software in Docker
container with manually provisioned AWS resources.

Run AWS IoT Greengrass in Docker with manual provisioning 330

https://docs.docker.com/engine/reference/run/#specify-an-init-process

AWS IoT Greengrass Developer Guide, Version 2

Topics

• Prerequisites

• Retrieve AWS IoT endpoints

• Create an AWS IoT thing

• Create the thing certificate

• Configure the thing certificate

• Create a token exchange role

• Download certificates to the device

• Create a configuration file

• Create an environment file

• Run the AWS IoT Greengrass Core software in a container

• Next steps

Prerequisites

To complete this tutorial, you need the following:

• An AWS account. If you don't have one, see Set up an AWS account.

• An AWS IoT Greengrass Docker image. You can build an image from the AWS IoT Greengrass
Dockerfile.

• The host computer where you run the Docker container must meet the following requirements:

• A Linux-based operating system with an internet connection.

• Docker Engine version 18.09 or later.

• (Optional) Docker Compose version 1.22 or later. Docker Compose is required only if you want
to use the Docker Compose CLI to run your Docker images.

Retrieve AWS IoT endpoints

Get the AWS IoT endpoints for your AWS account, and save them to use later. Your device uses
these endpoints to connect to AWS IoT. Do the following:

1. Get the AWS IoT data endpoint for your AWS account.

aws iot describe-endpoint --endpoint-type iot:Data-ATS

Run AWS IoT Greengrass in Docker with manual provisioning 331

https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/

AWS IoT Greengrass Developer Guide, Version 2

The response looks similar to the following example, if the request succeeds.

{
 "endpointAddress": "device-data-prefix-ats.iot.us-west-2.amazonaws.com"
}

2. Get the AWS IoT credentials endpoint for your AWS account.

aws iot describe-endpoint --endpoint-type iot:CredentialProvider

The response looks similar to the following example, if the request succeeds.

{
 "endpointAddress": "device-credentials-prefix.credentials.iot.us-
west-2.amazonaws.com"
}

Create an AWS IoT thing

AWS IoT things represent devices and logical entities that connect to AWS IoT. Greengrass core
devices are AWS IoT things. When you register a device as an AWS IoT thing, that device can use a
digital certificate to authenticate with AWS.

In this section, you create an AWS IoT thing that represents your device.

To create an AWS IoT thing

1. Create an AWS IoT thing for your device. On your development computer, run the following
command.

• Replace MyGreengrassCore with the thing name to use. This name is also the name of
your Greengrass core device.

Note

The thing name can't contain colon (:) characters.

Run AWS IoT Greengrass in Docker with manual provisioning 332

AWS IoT Greengrass Developer Guide, Version 2

aws iot create-thing --thing-name MyGreengrassCore

The response looks similar to the following example, if the request succeeds.

{
 "thingName": "MyGreengrassCore",
 "thingArn": "arn:aws:iot:us-west-2:123456789012:thing/MyGreengrassCore",
 "thingId": "8cb4b6cd-268e-495d-b5b9-1713d71dbf42"
}

2. (Optional) Add the AWS IoT thing to a new or existing thing group. You use thing groups to
manage fleets of Greengrass core devices. When you deploy software components to your
devices, you can target individual devices or groups of devices. You can add a device to a
thing group with an active Greengrass deployment to deploy that thing group's software
components to the device. Do the following:

a. (Optional) Create an AWS IoT thing group.

• Replace MyGreengrassCoreGroup with the name of the thing group to create.

Note

The thing group name can't contain colon (:) characters.

aws iot create-thing-group --thing-group-name MyGreengrassCoreGroup

The response looks similar to the following example, if the request succeeds.

{
 "thingGroupName": "MyGreengrassCoreGroup",
 "thingGroupArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/
MyGreengrassCoreGroup",
 "thingGroupId": "4df721e1-ff9f-4f97-92dd-02db4e3f03aa"
}

b. Add the AWS IoT thing to a thing group.

Run AWS IoT Greengrass in Docker with manual provisioning 333

AWS IoT Greengrass Developer Guide, Version 2

• Replace MyGreengrassCore with the name of your AWS IoT thing.

• Replace MyGreengrassCoreGroup with the name of the thing group.

aws iot add-thing-to-thing-group --thing-name MyGreengrassCore --thing-group-
name MyGreengrassCoreGroup

The command doesn't have any output if the request succeeds.

Create the thing certificate

When you register a device as an AWS IoT thing, that device can use a digital certificate to
authenticate with AWS. This certificate allows the device to communicate with AWS IoT and AWS
IoT Greengrass.

In this section, you create and download certificates that your device can use to connect to AWS.

To create the thing certificate

1. Create a folder where you download the certificates for the AWS IoT thing.

mkdir greengrass-v2-certs

2. Create and download the certificates for the AWS IoT thing.

aws iot create-keys-and-certificate --set-as-active --certificate-pem-outfile
 greengrass-v2-certs/device.pem.crt --public-key-outfile greengrass-v2-certs/
public.pem.key --private-key-outfile greengrass-v2-certs/private.pem.key

The response looks similar to the following example, if the request succeeds.

{
 "certificateArn": "arn:aws:iot:us-west-2:123456789012:cert/
aa0b7958770878eabe251d8a7ddd547f4889c524c9b574ab9fbf65f32248b1d4",
 "certificateId":
 "aa0b7958770878eabe251d8a7ddd547f4889c524c9b574ab9fbf65f32248b1d4",
 "certificatePem": "-----BEGIN CERTIFICATE-----
MIICiTCCAfICCQD6m7oRw0uXOjANBgkqhkiG9w
 0BAQUFADCBiDELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAldBMRAwDgYDVQQHEwdTZ

Run AWS IoT Greengrass in Docker with manual provisioning 334

AWS IoT Greengrass Developer Guide, Version 2

 WF0dGxlMQ8wDQYDVQQKEwZBbWF6b24xFDASBgNVBAsTC0lBTSBDb25zb2xlMRIw
 EAYDVQQDEwlUZXN0Q2lsYWMxHzAdBgkqhkiG9w0BCQEWEG5vb25lQGFtYXpvbi5
 jb20wHhcNMTEwNDI1MjA0NTIxWhcNMTIwNDI0MjA0NTIxWjCBiDELMAkGA1UEBh
 MCVVMxCzAJBgNVBAgTAldBMRAwDgYDVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBb
 WF6b24xFDASBgNVBAsTC0lBTSBDb25zb2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMx
 HzAdBgkqhkiG9w0BCQEWEG5vb25lQGFtYXpvbi5jb20wgZ8wDQYJKoZIhvcNAQE
 BBQADgY0AMIGJAoGBAMaK0dn+a4GmWIWJ21uUSfwfEvySWtC2XADZ4nB+BLYgVI
 k60CpiwsZ3G93vUEIO3IyNoH/f0wYK8m9TrDHudUZg3qX4waLG5M43q7Wgc/MbQ
 ITxOUSQv7c7ugFFDzQGBzZswY6786m86gpEIbb3OhjZnzcvQAaRHhdlQWIMm2nr
 AgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAtCu4nUhVVxYUntneD9+h8Mg9q6q+auN
 KyExzyLwaxlAoo7TJHidbtS4J5iNmZgXL0FkbFFBjvSfpJIlJ00zbhNYS5f6Guo
 EDmFJl0ZxBHjJnyp378OD8uTs7fLvjx79LjSTbNYiytVbZPQUQ5Yaxu2jXnimvw
 3rrszlaEXAMPLE=
-----END CERTIFICATE-----",
 "keyPair": {
 "PublicKey": "-----BEGIN PUBLIC KEY-----\
MIIBIjANBgkqhkEXAMPLEQEFAAOCAQ8AMIIBCgKCAQEAEXAMPLE1nnyJwKSMHw4h\
MMEXAMPLEuuN/dMAS3fyce8DW/4+EXAMPLEyjmoF/YVF/gHr99VEEXAMPLE5VF13\
59VK7cEXAMPLE67GK+y+jikqXOgHh/xJTwo
+sGpWEXAMPLEDz18xOd2ka4tCzuWEXAMPLEahJbYkCPUBSU8opVkR7qkEXAMPLE1DR6sx2HocliOOLtu6Fkw91swQWEXAMPLE
\\GB3ZPrNh0PzQYvjUStZeccyNCx2EXAMPLEvp9mQOUXP6plfgxwKRX2fEXAMPLEDa\
hJLXkX3rHU2xbxJSq7D+XEXAMPLEcw+LyFhI5mgFRl88eGdsAEXAMPLElnI9EesG\
FQIDAQAB\
-----END PUBLIC KEY-----\
",
 "PrivateKey": "-----BEGIN RSA PRIVATE KEY-----\
key omitted for security reasons\
-----END RSA PRIVATE KEY-----\
"
 }
}

Save the certificate's Amazon Resource Name (ARN) to use to configure the certificate later.

Configure the thing certificate

Attach the thing certificate to the AWS IoT thing that you created earlier, and add an AWS IoT
policy to the certificate to define the AWS IoT permissions for the core device.

To configure the thing's certificate

1. Attach the certificate to the AWS IoT thing.

Run AWS IoT Greengrass in Docker with manual provisioning 335

AWS IoT Greengrass Developer Guide, Version 2

• Replace MyGreengrassCore with the name of your AWS IoT thing.

• Replace the certificate Amazon Resource Name (ARN) with the ARN of the certificate that
you created in the previous step.

aws iot attach-thing-principal --thing-name MyGreengrassCore
 --principal arn:aws:iot:us-west-2:123456789012:cert/
aa0b7958770878eabe251d8a7ddd547f4889c524c9b574ab9fbf65f32248b1d4

The command doesn't have any output if the request succeeds.

2. Create and attach an AWS IoT policy that defines the AWS IoT permissions for your Greengrass
core device. The following policy allows access to all MQTT topics and Greengrass operations,
so your device works with custom applications and future changes that require new Greengrass
operations. You can restrict this policy down based on your use case. For more information, see
Minimal AWS IoT policy for AWS IoT Greengrass V2 core devices.

If you have set up a Greengrass core device before, you can attach its AWS IoT policy instead of
creating a new one.

Do the following:

a. Create a file that contains the AWS IoT policy document that Greengrass core devices
require.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano greengrass-v2-iot-policy.json

Copy the following JSON into the file.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish",
 "iot:Subscribe",

Run AWS IoT Greengrass in Docker with manual provisioning 336

AWS IoT Greengrass Developer Guide, Version 2

 "iot:Receive",
 "iot:Connect",
 "greengrass:*"
],
 "Resource": [
 "*"
]
 }
]
}

b. Create an AWS IoT policy from the policy document.

• Replace GreengrassV2IoTThingPolicy with the name of the policy to create.

aws iot create-policy --policy-name GreengrassV2IoTThingPolicy --policy-
document file://greengrass-v2-iot-policy.json

The response looks similar to the following example, if the request succeeds.

{
 "policyName": "GreengrassV2IoTThingPolicy",
 "policyArn": "arn:aws:iot:us-west-2:123456789012:policy/
GreengrassV2IoTThingPolicy",
 "policyDocument": "{
 \\"Version\\": \\"2012-10-17\\",
 \\"Statement\\": [
 {
 \\"Effect\\": \\"Allow\\",
 \\"Action\\": [
 \\"iot:Publish\\",
 \\"iot:Subscribe\\",
 \\"iot:Receive\\",
 \\"iot:Connect\\",
 \\"greengrass:*\\"
],
 \\"Resource\\": [
 \\"*\\"
]
 }
]
 }",

Run AWS IoT Greengrass in Docker with manual provisioning 337

AWS IoT Greengrass Developer Guide, Version 2

 "policyVersionId": "1"
}

c. Attach the AWS IoT policy to the AWS IoT thing's certificate.

• Replace GreengrassV2IoTThingPolicy with the name of the policy to attach.

• Replace the target ARN with the ARN of the certificate for your AWS IoT thing.

aws iot attach-policy --policy-name GreengrassV2IoTThingPolicy
 --target arn:aws:iot:us-west-2:123456789012:cert/
aa0b7958770878eabe251d8a7ddd547f4889c524c9b574ab9fbf65f32248b1d4

The command doesn't have any output if the request succeeds.

Create a token exchange role

Greengrass core devices use an IAM service role, called the token exchange role, to authorize calls to
AWS services. The device uses the AWS IoT credentials provider to get temporary AWS credentials
for this role, which allows the device to interact with AWS IoT, send logs to Amazon CloudWatch
Logs, and download custom component artifacts from Amazon S3. For more information, see
Authorize core devices to interact with AWS services.

You use an AWS IoT role alias to configure the token exchange role for Greengrass core devices.
Role aliases enable you to change the token exchange role for a device but keep the device
configuration the same. For more information, see Authorizing direct calls to AWS services in the
AWS IoT Core Developer Guide.

In this section, you create a token exchange IAM role and an AWS IoT role alias that points to the
role. If you have already set up a Greengrass core device, you can use its token exchange role and
role alias instead of creating new ones. Then, you configure your device's AWS IoT thing to use that
role and alias.

To create a token exchange IAM role

1. Create an IAM role that your device can use as a token exchange role. Do the following:

a. Create a file that contains the trust policy document that the token exchange role
requires.

Run AWS IoT Greengrass in Docker with manual provisioning 338

https://docs.aws.amazon.com/iot/latest/developerguide/authorizing-direct-aws.html

AWS IoT Greengrass Developer Guide, Version 2

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano device-role-trust-policy.json

Copy the following JSON into the file.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "credentials.iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

b. Create the token exchange role with the trust policy document.

• Replace GreengrassV2TokenExchangeRole with the name of the IAM role to create.

aws iam create-role --role-name GreengrassV2TokenExchangeRole --assume-role-
policy-document file://device-role-trust-policy.json

The response looks similar to the following example, if the request succeeds.

{
 "Role": {
 "Path": "/",
 "RoleName": "GreengrassV2TokenExchangeRole",
 "RoleId": "AROAZ2YMUHYHK5OKM77FB",
 "Arn": "arn:aws:iam::123456789012:role/GreengrassV2TokenExchangeRole",
 "CreateDate": "2021-02-06T00:13:29+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {

Run AWS IoT Greengrass in Docker with manual provisioning 339

AWS IoT Greengrass Developer Guide, Version 2

 "Effect": "Allow",
 "Principal": {
 "Service": "credentials.iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
 }

c. Create a file that contains the access policy document that the token exchange role
requires.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano device-role-access-policy.json

Copy the following JSON into the file.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams",
 "s3:GetBucketLocation"
],
 "Resource": "*"
 }
]
}

Note

This access policy doesn't allow access to component artifacts in S3 buckets. To
deploy custom components that define artifacts in Amazon S3, you must add

Run AWS IoT Greengrass in Docker with manual provisioning 340

AWS IoT Greengrass Developer Guide, Version 2

permissions to the role to allow your core device to retrieve component artifacts.
For more information, see Allow access to S3 buckets for component artifacts.
If you don't yet have an S3 bucket for component artifacts, you can add these
permissions later after you create a bucket.

d. Create the IAM policy from the policy document.

• Replace GreengrassV2TokenExchangeRoleAccess with the name of the IAM policy
to create.

aws iam create-policy --policy-name GreengrassV2TokenExchangeRoleAccess --
policy-document file://device-role-access-policy.json

The response looks similar to the following example, if the request succeeds.

{
 "Policy": {
 "PolicyName": "GreengrassV2TokenExchangeRoleAccess",
 "PolicyId": "ANPAZ2YMUHYHACI7C5Z66",
 "Arn": "arn:aws:iam::123456789012:policy/
GreengrassV2TokenExchangeRoleAccess",
 "Path": "/",
 "DefaultVersionId": "v1",
 "AttachmentCount": 0,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "CreateDate": "2021-02-06T00:37:17+00:00",
 "UpdateDate": "2021-02-06T00:37:17+00:00"
 }
}

e. Attach the IAM policy to the token exchange role.

• Replace GreengrassV2TokenExchangeRole with the name of the IAM role.

• Replace the policy ARN with the ARN of the IAM policy that you created in the previous
step.

Run AWS IoT Greengrass in Docker with manual provisioning 341

AWS IoT Greengrass Developer Guide, Version 2

aws iam attach-role-policy --role-name GreengrassV2TokenExchangeRole --policy-
arn arn:aws:iam::123456789012:policy/GreengrassV2TokenExchangeRoleAccess

The command doesn't have any output if the request succeeds.

2. Create an AWS IoT role alias that points to the token exchange role.

• Replace GreengrassCoreTokenExchangeRoleAlias with the name of the role alias to
create.

• Replace the role ARN with the ARN of the IAM role that you created in the previous step.

aws iot create-role-alias --role-alias GreengrassCoreTokenExchangeRoleAlias --role-
arn arn:aws:iam::123456789012:role/GreengrassV2TokenExchangeRole

The response looks similar to the following example, if the request succeeds.

{
 "roleAlias": "GreengrassCoreTokenExchangeRoleAlias",
 "roleAliasArn": "arn:aws:iot:us-west-2:123456789012:rolealias/
GreengrassCoreTokenExchangeRoleAlias"
}

Note

To create a role alias, you must have permission to pass the token exchange IAM
role to AWS IoT. If you receive an error message when you try to create a role alias,
check that your AWS user has this permission. For more information, see Granting
a user permissions to pass a role to an AWS service in the AWS Identity and Access
Management User Guide.

3. Create and attach an AWS IoT policy that allows your Greengrass core device to use the role
alias to assume the token exchange role. If you have set up a Greengrass core device before,
you can attach its role alias AWS IoT policy instead of creating a new one. Do the following:

a. (Optional) Create a file that contains the AWS IoT policy document that the role alias
requires.

Run AWS IoT Greengrass in Docker with manual provisioning 342

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html

AWS IoT Greengrass Developer Guide, Version 2

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano greengrass-v2-iot-role-alias-policy.json

Copy the following JSON into the file.

• Replace the resource ARN with the ARN of your role alias.

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iot:AssumeRoleWithCertificate",
 "Resource": "arn:aws:iot:us-west-2:123456789012:rolealias/
GreengrassCoreTokenExchangeRoleAlias"
 }
]
}

b. Create an AWS IoT policy from the policy document.

• Replace GreengrassCoreTokenExchangeRoleAliasPolicy with the name of the
AWS IoT policy to create.

aws iot create-policy --policy-name GreengrassCoreTokenExchangeRoleAliasPolicy
 --policy-document file://greengrass-v2-iot-role-alias-policy.json

The response looks similar to the following example, if the request succeeds.

{
 "policyName": "GreengrassCoreTokenExchangeRoleAliasPolicy",
 "policyArn": "arn:aws:iot:us-west-2:123456789012:policy/
GreengrassCoreTokenExchangeRoleAliasPolicy",
 "policyDocument": "{
 \\"Version\\":\\"2012-10-17\\",
 \\"Statement\\": [
 {

Run AWS IoT Greengrass in Docker with manual provisioning 343

AWS IoT Greengrass Developer Guide, Version 2

 \\"Effect\\": \\"Allow\\",
 \\"Action\\": \\"iot:AssumeRoleWithCertificate\\",
 \\"Resource\\": \\"arn:aws:iot:us-west-2:123456789012:rolealias/
GreengrassCoreTokenExchangeRoleAlias\\"
 }
]
 }",
 "policyVersionId": "1"
}

c. Attach the AWS IoT policy to the AWS IoT thing's certificate.

• Replace GreengrassCoreTokenExchangeRoleAliasPolicy with the name of the
role alias AWS IoT policy.

• Replace the target ARN with the ARN of the certificate for your AWS IoT thing.

aws iot attach-policy --policy-name GreengrassCoreTokenExchangeRoleAliasPolicy
 --target arn:aws:iot:us-west-2:123456789012:cert/
aa0b7958770878eabe251d8a7ddd547f4889c524c9b574ab9fbf65f32248b1d4

The command doesn't have any output if the request succeeds.

Download certificates to the device

Earlier, you downloaded your device's certificate to your development computer. In this section,
you download the Amazon root certificate authority (CA) certificate. Then, if you plan to run the
AWS IoT Greengrass Core software in Docker on a different computer than your development
computer, you copy the certificates to that host computer. The AWS IoT Greengrass Core software
uses these certificates to connect to the AWS IoT cloud service.

To download certificates to the device

1. On your development computer, download the Amazon root certificate authority (CA)
certificate. AWS IoT certificates are associated with Amazon's root CA certificate by default.

Linux or Unix

sudo curl -o ./greengrass-v2-certs/AmazonRootCA1.pem https://
www.amazontrust.com/repository/AmazonRootCA1.pem

Run AWS IoT Greengrass in Docker with manual provisioning 344

AWS IoT Greengrass Developer Guide, Version 2

Windows Command Prompt (CMD)

curl -o .\greengrass-v2-certs\AmazonRootCA1.pem https://www.amazontrust.com/
repository/AmazonRootCA1.pem

PowerShell

iwr -Uri https://www.amazontrust.com/repository/AmazonRootCA1.pem -OutFile .
\greengrass-v2-certs\AmazonRootCA1.pem

2. If you plan to run the AWS IoT Greengrass Core software in Docker on a different device than
your development computer, copy the certificates to the host computer. If SSH and SCP are
enabled on the development computer and the host computer, you can use the scp command
on your development computer to transfer the certificates. Replace device-ip-address
with the IP address of your host computer.

scp -r greengrass-v2-certs/ device-ip-address:~

Create a configuration file

1. On the host computer, create a folder where you place your configuration file.

mkdir ./greengrass-v2-config

2. Use a text editor to create a configuration file named config.yaml in the ./greengrass-
v2-config folder.

For example, you can run the following command to use GNU nano to create the
config.yaml.

nano ./greengrass-v2-config/config.yaml

3. Copy the following YAML content into the file. This partial configuration file specifies system
parameters and Greengrass nucleus parameters.

system:
 certificateFilePath: "/tmp/certs/device.pem.crt"

Run AWS IoT Greengrass in Docker with manual provisioning 345

AWS IoT Greengrass Developer Guide, Version 2

 privateKeyPath: "/tmp/certs/private.pem.key"
 rootCaPath: "/tmp/certs/AmazonRootCA1.pem"
 rootpath: "/greengrass/v2"
 thingName: "MyGreengrassCore"
services:
 aws.greengrass.Nucleus:
 componentType: "NUCLEUS"
 version: "nucleus-version"
 configuration:
 awsRegion: "region"
 iotRoleAlias: "GreengrassCoreTokenExchangeRoleAlias"
 iotDataEndpoint: "device-data-prefix-ats.iot.region.amazonaws.com"
 iotCredEndpoint: "device-credentials-prefix.credentials.region.amazonaws.com"

Then, replace the following values:

• /tmp/certs. The directory in the Docker container to which you mount the downloaded
certificates when you start the container.

• /greengrass/v2. The Greengrass root folder that you want to use for installation. You use
the GGC_ROOT environment variable to set this value.

• MyGreengrassCore. The name of the AWS IoT thing.

• nucleus-version. The version of the AWS IoT Greengrass Core software to install. This
value must match the version of the Docker image or Dockerfile that you downloaded. If
you downloaded the Greengrass Docker image with the latest tag, use docker inspect
image-id to see the image version.

• region. The AWS Region where you created your AWS IoT resources. You must also specify
the same value for the AWS_REGION environment variable in your environment file.

• GreengrassCoreTokenExchangeRoleAlias. The token exchange role alias.

• device-data-prefix. The prefix for your AWS IoT data endpoint.

• device-credentials-prefix. The prefix for your AWS IoT credentials endpoint.

Create an environment file

This tutorial uses an environment file to set the environment variables that will be passed to the
AWS IoT Greengrass Core software installer inside the Docker container. You can also use the -e
or --env argument in your docker run command to set environment variables in the Docker
container or you can set the variables in an environment block in the docker-compose.yml file.

Run AWS IoT Greengrass in Docker with manual provisioning 346

https://docs.docker.com/engine/reference/commandline/run/#env
https://docs.docker.com/engine/reference/commandline/run/#env
https://docs.docker.com/compose/compose-file/compose-file-v3/#environment

AWS IoT Greengrass Developer Guide, Version 2

1. Use a text editor to create an environment file named .env.

For example, on a Linux-based system, you can run the following command to use GNU nano
to create the .env in the current directory.

nano .env

2. Copy the following content into the file.

GGC_ROOT_PATH=/greengrass/v2
AWS_REGION=region
PROVISION=false
COMPONENT_DEFAULT_USER=ggc_user:ggc_group
INIT_CONFIG=/tmp/config/config.yaml

Then, replace the following values.

• /greengrass/v2. The path to the root folder to use to install the AWS IoT Greengrass Core
software.

• region. The AWS Region where you created your AWS IoT resources. You must specify the
same value for the awsRegion configuration parameter in your configuration file.

• /tmp/config/. The folder where you mount the configuration file when you start the
Docker container.

Note

You can set the DEPLOY_DEV_TOOLS environment variable to true to deploy the
Greengrass CLI component, which enables you to develop custom components
inside of the Docker container. We recommend that you use this component in only
development environments, not production environments. This component provides
access to information and operations that you typically won't need in a production
environment. Follow the principle of least privilege by deploying this component to
only core devices where you need it.

Run AWS IoT Greengrass in Docker with manual provisioning 347

AWS IoT Greengrass Developer Guide, Version 2

Run the AWS IoT Greengrass Core software in a container

This tutorial shows you how to start the Docker image that you built in a Docker container. You can
use the Docker CLI or the Docker Compose CLI to run the AWS IoT Greengrass Core software image
in a Docker container.

Docker

• This tutorial shows you how to start the Docker image that you built in a the Docker
container.

docker run --rm --init -it --name docker-image \
 -v path/to/greengrass-v2-config:/tmp/config/:ro \
 -v path/to/greengrass-v2-certs:/tmp/certs:ro \
 --env-file .env \
 -p 8883 \
 your-container-image:version

This example command uses the following arguments for docker run:

• --rm. Cleans up the container when it exits.

• --init. Uses an init process in the container.

Note

The --init argument is required to shut down AWS IoT Greengrass Core
software when you stop the Docker container.

• -it. (Optional) Runs the Docker container in the foreground as an interactive process.
You can replace this with the -d argument to run the Docker container in detached mode
instead. For more information, see Detached vs foreground in the Docker documentation.

• --name. Runs a container named aws-iot-greengrass

• -v. Mounts a volume into the Docker container to make the configuration file and the
certificate files available to AWS IoT Greengrass running inside the container.

• --env-file. (Optional) Specifies the environment file to set the environment variables
that will be passed to the AWS IoT Greengrass Core software installer inside the Docker
container. This argument is required only if you created an environment file to set

Run AWS IoT Greengrass in Docker with manual provisioning 348

https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/run/#clean-up---rm
https://docs.docker.com/engine/reference/run/#specify-an-init-process
https://docs.docker.com/engine/reference/run/#foreground
https://docs.docker.com/engine/reference/run/#detached-vs-foreground
https://docs.docker.com/engine/reference/run/#name---name
https://docs.docker.com/storage/volumes/
https://docs.docker.com/engine/reference/commandline/run/#env

AWS IoT Greengrass Developer Guide, Version 2

environment variables. If you didn't create an environment file, you can use --env
arguments to set environment variables directly in your Docker run command.

• -p. (Optional) Publishes the 8883 container port to the host machine. This argument
is required if you want to connect and communicate over MQTT because AWS IoT
Greengrass uses port 8883 for MQTT traffic. To open other ports, use additional -p
arguments.

Note

To run your Docker container with increased security, you can use the --cap-
drop and --cap-add arguments to selectively enable Linux capabilities for your
container. For more information, see Runtime privilege and Linux capabilities in the
Docker documentation.

Docker Compose

1. Use a text editor to create a Docker Compose file named docker-compose.yml.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the docker-compose.yml in the current directory.

nano docker-compose.yml

Note

You can also download and use the latest version of the AWS-provided Compose
file from GitHub.

2. Add the following content to the Compose file. Your file should look similar to the
following example. Replace your-container-name:version with the name of your
Docker image.

version: '3.7'

services:
 greengrass:

Run AWS IoT Greengrass in Docker with manual provisioning 349

https://docs.docker.com/engine/reference/commandline/run/#publish
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities
https://github.com/aws-greengrass/aws-greengrass-docker/releases/

AWS IoT Greengrass Developer Guide, Version 2

 init: true
 build:
 context: .
 container_name: aws-iot-greengrass
 image: your-container-name:version
 volumes:
 - /path/to/greengrass-v2-config:/tmp/config/:ro
 - /path/to/greengrass-v2-certs:/tmp/certs:ro
 env_file: .env
 ports:
 - "8883:8883"

The following parameters in this example Compose file are optional:

• ports—Publishes the 8883 container ports to the host machine. This parameter
is required if you want to connect and communicate over MQTT because AWS IoT
Greengrass uses port 8883 for MQTT traffic.

• env_file—Specifies the environment file to set the environment variables that will be
passed to the AWS IoT Greengrass Core software installer inside the Docker container.
This parameter is required only if you created an environment file to set environment
variables. If you didn't create an environment file, you can use the environment
parameter to set the variables directly in your Compose file.

Note

To run your Docker container with increased security, you can use cap_drop and
cap_add in your Compose file to selectively enable Linux capabilities for your
container. For more information, see Runtime privilege and Linux capabilities in the
Docker documentation.

3. Run the following command to start the container.

docker-compose -f docker-compose.yml up

Next steps

AWS IoT Greengrass Core software is now running in a Docker container. Run the following
command to retrieve the container ID for the currently running container.

Run AWS IoT Greengrass in Docker with manual provisioning 350

https://docs.docker.com/compose/compose-file/compose-file-v3/#environment
https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities

AWS IoT Greengrass Developer Guide, Version 2

docker ps

You can then run the following command to access the container and explore AWS IoT Greengrass
Core software running inside the container.

docker exec -it container-id /bin/bash

For information about creating a simple component, see Step 4: Develop and test a component on
your device in Tutorial: Getting started with AWS IoT Greengrass V2

Note

When you use docker exec to run commands inside the Docker container, those
commands are not logged in the Docker logs. To log your commands in the Docker logs,
attach an interactive shell to the Docker container. For more information, see Attach an
interactive shell to the Docker container.

The AWS IoT Greengrass Core log file is called greengrass.log and is located in /greengrass/
v2/logs. Component log files are also located in the same directory. To copy Greengrass logs to a
temporary directory on the host, run the following command:

docker cp container-id:/greengrass/v2/logs /tmp/logs

If you want to persist logs after a container exits or has been removed, we recommend that you
bind-mount only the /greengrass/v2/logs directory to the temporary logs directory on
the host instead of mounting the entire Greengrass directory. For more information, see Persist
Greengrass logs outside of the Docker container.

To stop a running AWS IoT Greengrass Docker container, run docker stop or docker-compose
-f docker-compose.yml stop. This action sends SIGTERM to the Greengrass process and shuts
down all associated processes that were started in the container. The Docker container is initialized
with the docker-init executable as process PID 1, which helps in removing any leftover zombie
processes. For more information, see the Specify an init process in the Docker documentation.

For information about troubleshooting issues with running AWS IoT Greengrass in a Docker
container, see Troubleshooting AWS IoT Greengrass in a Docker container.

Run AWS IoT Greengrass in Docker with manual provisioning 351

https://docs.docker.com/engine/reference/run/#specify-an-init-process

AWS IoT Greengrass Developer Guide, Version 2

Troubleshooting AWS IoT Greengrass in a Docker container

Use the following information to help you troubleshoot issues with running AWS IoT Greengrass in
a Docker container and to debug issues with AWS IoT Greengrass in the Docker container.

Topics

• Troubleshooting issues with running the Docker container

• Debugging AWS IoT Greengrass in a Docker container

Troubleshooting issues with running the Docker container

Use the following information to help troubleshoot issues with running AWS IoT Greengrass in a
Docker container.

Topics

• Error: Cannot perform an interactive login from a non TTY device

• Error: Unknown options: -no-include-email

• Error: A firewall is blocking file Sharing between windows and the containers.

• Error: An error occurred (AccessDeniedException) when calling the GetAuthorizationToken
operation: User: arn:aws:iam::account-id:user/<user-name> is not authorized to perform:
ecr:GetAuthorizationToken on resource: *

• Error: You have reached your pull rate limit

Error: Cannot perform an interactive login from a non TTY device

This error can occur when you run the aws ecr get-login-password command. Make sure that
you installed the latest AWS CLI version 2 or version 1. We recommend that you use the AWS CLI
version 2. For more information, see Installing the AWS CLI in the AWS Command Line Interface
User Guide.

Error: Unknown options: -no-include-email

This error can occur when you run the aws ecr get-login command. Make sure that you have
the latest AWS CLI version installed (for example, Run: pip install awscli --upgrade
--user). For more information, see Installing the AWS Command Line Interface on Microsoft
Windows in the AWS Command Line Interface User Guide.

Troubleshooting AWS IoT Greengrass in a Docker container 352

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html

AWS IoT Greengrass Developer Guide, Version 2

Error: A firewall is blocking file Sharing between windows and the containers.

You might receive this error or a Firewall Detected message when running Docker on a
Windows computer. This can also occur if you are signed in on a virtual private network (VPN) and
your network settings are preventing the shared drive from being mounted. In that situation, turn
off VPN and re-run the Docker container.

Error: An error occurred (AccessDeniedException) when calling the GetAuthorizationToken
operation: User: arn:aws:iam::account-id:user/<user-name> is not authorized to perform:
ecr:GetAuthorizationToken on resource: *

You might receive this error when running the aws ecr get-login-password command if you
don't have sufficient permissions to access an Amazon ECR repository. For more information, see
Amazon ECR Repository Policy Examples and Accessing One Amazon ECR Repository in the Amazon
ECR User Guide.

Error: You have reached your pull rate limit

Docker Hub limits the number of pull requests that anonymous and Free Docker Hub users can
make. If you exceed the rate limits for anonymous or free user pull requests, then you receive one
of the following errors:

ERROR: toomanyrequests: Too Many Requests.

You have reached your pull rate limit.

To resolve these errors, you can wait for a few hours before you try another pull request. If you
plan on consistently submitting a large number of pull requests, see the Docker Hub website for
information about rate limits, and options for authenticating and upgrading your Docker account.

Debugging AWS IoT Greengrass in a Docker container

To debug issues with a Docker container, you can persist the Greengrass runtime logs or attach an
interactive shell to the Docker container.

Persist Greengrass logs outside of the Docker container

After you stop a AWS IoT Greengrass container, you can use the following docker cp command
to copy the Greengrass logs from the Docker container to a temporary logs directory.

Troubleshooting AWS IoT Greengrass in a Docker container 353

https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-policy-examples.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/security_iam_id-based-policy-examples.html
https://www.docker.com/increase-rate-limits

AWS IoT Greengrass Developer Guide, Version 2

docker cp container-id:/greengrass/v2/logs /tmp/logs

To persist logs even after a container exits or is removed, you must run the AWS IoT Greengrass
Docker container after bind-mounting the /greengrass/v2/logs directory.

To bind-mount the /greengrass/v2/logs directory, do one of the following when you run a
new AWS IoT Greengrass Docker container.

• Include -v /tmp/logs:/greengrass/v2/logs:ro in your docker run command.

Modify the volumes block in the Compose file to include the following line before you run your
docker-compose up command.

volumes:
 - /tmp/logs:/greengrass/v2/logs:ro

You can then check your logs at /tmp/logs on your host to see Greengrass logs while AWS IoT
Greengrass is running inside the Docker container.

For information about running Greengrass Docker containers, see Run AWS IoT Greengrass
in Docker with manual provisioning and Run AWS IoT Greengrass in Docker with automatic
provisioning

Attach an interactive shell to the Docker container

When you use docker exec to run commands inside the Docker container, those commands
are not captured in the Docker logs. Logging your commands in the Docker logs can help you
investigate the state of the Greengrass Docker container. Do one of the following:

• Run the following command in a separate terminal to attach your terminal's standard input,
output, and error to the running container. This enables you to view and control the Docker
container from your current terminal.

docker attach container-id

• Run the following command in a separate terminal. This enables you to run your commands in
interactive mode, even if the container is not attached.

docker exec -it container-id sh -c "command > /proc/1/fd/1"

Troubleshooting AWS IoT Greengrass in a Docker container 354

AWS IoT Greengrass Developer Guide, Version 2

For general AWS IoT Greengrass troubleshooting, see Troubleshooting.

Configure the AWS IoT Greengrass Core software

The AWS IoT Greengrass Core software provides options that you can use to configure the
software. You can create deployments to configure the AWS IoT Greengrass Core software on each
core device.

Topics

• Deploy the Greengrass nucleus component

• Configure the Greengrass nucleus as a system service

• Control memory allocation with JVM options

• Configure the user that runs components

• Configure system resource limits for components

• Connect on port 443 or through a network proxy

• Use a device certificate signed by a private CA

• Configure MQTT timeouts and cache settings

• Configure Greengrass Nucleus on IPv6 network

Deploy the Greengrass nucleus component

AWS IoT Greengrass provides the AWS IoT Greengrass Core software as a component that you
can deploy to your Greengrass core devices. You can create a deployment to apply the same
configuration to multiple Greengrass core devices. For more information, see Greengrass nucleus
and Update the AWS IoT Greengrass Core software (OTA).

Configure the Greengrass nucleus as a system service

You must configure the AWS IoT Greengrass Core software as a system service in your device's init
system to do the following:

• Start the AWS IoT Greengrass Core software when the device boots. This is a good practice if you
manage large fleets of devices.

• Install and run plugin components. Several AWS-provided components are plugin components,
which enables them to interface directly with the Greengrass nucleus. For more information
about component types, see Component types.

Configure the AWS IoT Greengrass Core software 355

AWS IoT Greengrass Developer Guide, Version 2

• Apply over-the-air (OTA) updates to the core device's AWS IoT Greengrass Core software. For
more information, see Update the AWS IoT Greengrass Core software (OTA).

• Enable components to restart the AWS IoT Greengrass Core software or the core device when
a deployment updates the component to a new version or updates certain configuration
parameters. For more information, see the bootstrap lifecycle step.

Important

On Windows core devices, you must set up the AWS IoT Greengrass Core software as a
system service.

Topics

• Configure the nucleus as a system service (Linux)

• Configure the nucleus as a system service (Windows)

Configure the nucleus as a system service (Linux)

Linux devices support different init systems, such as initd, systemd, and SystemV. You use the
--setup-system-service true argument when you install the AWS IoT Greengrass Core
software to start the nucleus as a system service and configure it to launch when the device boots.
The installer configures the AWS IoT Greengrass Core software as a system service with systemd.

You can also manually configure the nucleus to run as a system service. The following example is a
service file for systemd.

[Unit]
Description=Greengrass Core

[Service]
Type=simple
PIDFile=/greengrass/v2/alts/loader.pid
RemainAfterExit=no
Restart=on-failure
RestartSec=10
ExecStart=/bin/sh /greengrass/v2/alts/current/distro/bin/loader

[Install]

Configure the Greengrass nucleus as a system service 356

AWS IoT Greengrass Developer Guide, Version 2

WantedBy=multi-user.target

After you configure the system service, you can run the following commands to configure starting
the device on boot and to start or stop the AWS IoT Greengrass Core software.

• To check the status of the service (systemd)

sudo systemctl status greengrass.service

• To enable the nucleus to start when the device boots.

sudo systemctl enable greengrass.service

• To stop the nucleus from starting when the device boots.

sudo systemctl disable greengrass.service

• To start the AWS IoT Greengrass Core software.

sudo systemctl start greengrass.service

• To stop the AWS IoT Greengrass Core software.

sudo systemctl stop greengrass.service

Configure the nucleus as a system service (Windows)

You use the --setup-system-service true argument when you install the AWS IoT
Greengrass Core software to start the nucleus as a Windows service and configure it to launch
when the device boots.

After you configure the service, you can run the following commands to configure starting the
device on boot and to start or stop the AWS IoT Greengrass Core software. You must run Command
Prompt or PowerShell as an administrator to run these commands.

Windows Command Prompt (CMD)

• To check the status of the service

Configure the Greengrass nucleus as a system service 357

AWS IoT Greengrass Developer Guide, Version 2

sc query "greengrass"

• To enable the nucleus to start when the device boots.

sc config "greengrass" start=auto

• To stop the nucleus from starting when the device boots.

sc config "greengrass" start=disabled

• To start the AWS IoT Greengrass Core software.

sc start "greengrass"

• To stop the AWS IoT Greengrass Core software.

sc stop "greengrass"

Note

On Windows devices, the AWS IoT Greengrass Core software ignores this shutdown
signal while it shuts down Greengrass component processes. If the AWS IoT
Greengrass Core software ignores the shutdown signal when you run this command,
wait a few seconds, and try again.

PowerShell

• To check the status of the service

Get-Service -Name "greengrass"

• To enable the nucleus to start when the device boots.

Set-Service -Name "greengrass" -Status stopped -StartupType automatic

• To stop the nucleus from starting when the device boots.

Configure the Greengrass nucleus as a system service 358

AWS IoT Greengrass Developer Guide, Version 2

Set-Service -Name "greengrass" -Status stopped -StartupType disabled

• To start the AWS IoT Greengrass Core software.

Start-Service -Name "greengrass"

• To stop the AWS IoT Greengrass Core software.

Stop-Service -Name "greengrass"

Note

On Windows devices, the AWS IoT Greengrass Core software ignores this shutdown
signal while it shuts down Greengrass component processes. If the AWS IoT
Greengrass Core software ignores the shutdown signal when you run this command,
wait a few seconds, and try again.

Control memory allocation with JVM options

If you're running AWS IoT Greengrass on a device with limited memory, you can use Java virtual
machine (JVM) options to control the maximum heap size, garbage collection modes, and compiler
options, which control the amount of memory that AWS IoT Greengrass Core software uses.
The heap size in the JVM determines how much memory an application can use before garbage
collection occurs, or before the application runs out of memory. The maximum heap size specifies
the maximum amount of memory the JVM can allocate when expanding the heap during heavy
activity.

To control memory allocation, create a new deployment or revise an existing deployment that
includes the nucleus component, and specify your JVM options in the jvmOptions configuration
parameter in the nucleus component configuration.

Depending on your requirements, you can run AWS IoT Greengrass Core software with reduced
memory allocation or with minimum memory allocation.

Reduced memory allocation

Control memory allocation with JVM options 359

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/introduction.html
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/introduction.html

AWS IoT Greengrass Developer Guide, Version 2

To run AWS IoT Greengrass Core software with reduced memory allocation, we recommend that
you use the following example configuration merge update to set JVM options in your nucleus
configuration:

{
 "jvmOptions": "-XX:+UseSerialGC -XX:TieredStopAtLevel=1"
}

Minimum memory allocation

To run AWS IoT Greengrass Core software with minimum memory allocation, we recommend that
you use the following example configuration merge update to set JVM options in your nucleus
configuration:

{
 "jvmOptions": "-Xmx32m -XX:+UseSerialGC -Xint"
}

Important

Running AWS IoT Greengrass Core software with minimum memory allocation can have
a significant performance impact on low spec systems because the JVM will do more
processing when using less memory. We recommend tuning the options to balance your
memory and performance needs.

These example configuration merge updates use the following JVM options:

-XX:+UseSerialGC

Specifies to use serial garbage collection for JVM heap space. The serial garbage collector is
slower, but uses less memory than other JVM garbage collection implementations.

-XX:TieredStopAtLevel=1

Instructs the JVM to use the Java just-in-time (JIT) compiler once. Because JIT compiled code
uses space in the device memory, using the JIT compiler more than once consumes more
memory than a single compilation.

-XmxNNm

Sets the maximum JVM heap size.

Control memory allocation with JVM options 360

AWS IoT Greengrass Developer Guide, Version 2

Important

Setting the maximum heap size too low can cause slower performance or out-
of-memory errors. We recommend measuring your current heap usage before
setting a maximum size with the -XmxNNm option. Configure your JVM with the -
XX:NativeMemoryTracking=detail JVM option. Then, measure your current heap
usage by using the VM.native_memory command request within the jcmd Utility.

If measurement of the heap is not an option, use -Xmx64m as a starting value to limit the heap
size to 64 MB. You can then incrementally decrease the max heap size from there. For minimum
memory allocation, use -Xmx32m as a starting value to limit the heap size to 32 MB.

You can increase or decrease the -Xmx value depending on your actual requirements; however,
we strongly recommend that you don't set the maximum heap size below 16 MB. The amount
of JVM heap size needed can also vary over time based on the plugin components deployed to
the core device. If the maximum heap size is too low for your environment, then the AWS IoT
Greengrass Core software might encounter unexpected errors because of insufficient memory. If
you experience a slower performance or encounter errors because of insufficient memory, revert
to a known good setting. For example, if your normal committed heap size is 41428KB, use -
Xmx40m to slightly limit heap usage.

-Xint

Instructs the JVM not to use the just-in-time (JIT) compiler. Instead, the JVM runs in
interpreted-only mode. This mode is slower (potentially 20 times slower for deployments on
low-end systems) than running JIT compiled code; however, the compiled code doesn't use any
space in memory.

For information about creating configuration merge updates, see Update component
configurations.

Configure the user that runs components

The AWS IoT Greengrass Core software can run component processes as a system user and group
different from the one that runs the software. This increases security, because you can run the AWS
IoT Greengrass Core software as root, or as an administrator user, without giving those permissions
to components that run on the core device.

Configure the user that runs components 361

https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/tooldescr006.html

AWS IoT Greengrass Developer Guide, Version 2

The following table indicates which types of components the AWS IoT Greengrass Core software
can run as a user that you specify. For more information, see Component types.

Component type Configure component user

Nucleus

No

Plugin

No

Generic

Yes

Lambda (non-containerized)

Yes

Lambda (containerized)

Yes

You must create the component user before you can specify it in a deployment configuration.
On Windows-based devices, you must also store the user name and password for the user in the
credential manager instance of the LocalSystem account. For more information, see Set up a
component user on Windows devices.

When you configure the component user on a Linux-based device, you can optionally also
specify a group. You specify the user and group separated by a colon (:) in the following format:

Configure the user that runs components 362

AWS IoT Greengrass Developer Guide, Version 2

user:group. If you don't specify a group, the AWS IoT Greengrass Core software defaults to the
primary group of the user. You can use either the name or the ID to identify the user and group.

On Linux-based devices, you can also run components as a system user that doesn't exist, also
called an unknown user, to increase security. A Linux process can signal any other process that is
run by the same user. An unknown user doesn't run other processes, so you can run components
as an unknown user to prevent components from signaling other components on the core device.
To run components as an unknown user, specify a user ID that doesn't exist on the core device. You
can also specify a group ID that doesn't exist to run as an unknown group.

You can configure the user for each component and for each core device.

• Configure for a component

You can configure each component to run with a user specific to that component. When you
create a deployment, you can specify the user for each component in the runWith configuration
for that component. The AWS IoT Greengrass Core software runs components as the specified
user if you configure them. Otherwise, it defaults to run components as the default user that you
configure for the core device. For more information about specifying the component user in the
deployment configuration, see the runWith configuration parameter in Create deployments.

• Configure default user for a core device

You can configure a default user that the AWS IoT Greengrass Core software uses to run
components. When the AWS IoT Greengrass Core software runs a component, it checks if you
specified a user for that component, and uses it to run the component. If the component doesn't
specify a user, then the AWS IoT Greengrass Core software runs the component as the default
user that you configured for the core device. For more information, see Configure the default
component user.

Note

On Windows-based devices, you must specify at least a default user to run components.

On Linux-based devices, the following considerations apply if you don't configure a user to
run components:

• If you run the AWS IoT Greengrass Core software as root, then the software won't run
components. You must specify a default user to run components if you run as root.

Configure the user that runs components 363

AWS IoT Greengrass Developer Guide, Version 2

• If you run the AWS IoT Greengrass Core software as a non-root user, then the software
runs components as that user.

Topics

• Set up a component user on Windows devices

• Configure the default component user

Set up a component user on Windows devices

To set up a component user on a Windows-based device

1. Create the component user in the LocalSystem account on the device.

net user /add component-user password

2. Use Microsoft's PsExec utility to store the user name and password for the component user in
the Credential Manager instance for the LocalSystem account.

psexec -s cmd /c cmdkey /generic:component-user /user:component-user /pass:password

Note

On Windows-based devices, the LocalSystem account runs the Greengrass nucleus,
and you must use the PsExec utility to store the component user information in the
LocalSystem account. Using the Credential Manager application stores this information
in the Windows account of the currently logged on user, instead of the LocalSystem
account.

Configure the default component user

You can use a deployment to configure the default user on a core device. In this deployment, you
update the nucleus component configuration.

Configure the user that runs components 364

https://docs.microsoft.com/en-us/sysinternals/downloads/psexec

AWS IoT Greengrass Developer Guide, Version 2

Note

You can also set the default user when you install the AWS IoT Greengrass Core software
with the --component-default-user option. For more information, see Install the AWS
IoT Greengrass Core software.

Create a deployment that specifies the following configuration update for the
aws.greengrass.Nucleus component.

Linux

{
 "runWithDefault": {
 "posixUser": "ggc_user:ggc_group"
 }
}

Windows

{
 "runWithDefault": {
 "windowsUser": "ggc_user"
 }
}

Note

The user that you specify must exist, and the user name and password for this user
must be stored in the credential manager instance of the LocalSystem account on your
Windows device. For more information, see Set up a component user on Windows
devices.

The following example defines a deployment for a Linux-based device that configures ggc_user
as the default user and ggc_group as the default group. The merge configuration update requires
a serialized JSON object.

{

Configure the user that runs components 365

AWS IoT Greengrass Developer Guide, Version 2

 "components": {
 "aws.greengrass.Nucleus": {
 "version": "2.14.0",
 "configurationUpdate": {
 "merge": "{\"runWithDefault\":{\"posixUser\":\"ggc_user:ggc_group\"}}"
 }
 }
 }
}

Configure system resource limits for components

Note

This feature is available for v2.4.0 and later of the Greengrass nucleus component. AWS IoT
Greengrass doesn't currently support this feature on Windows core devices.

You can configure the maximum amount of CPU and RAM usage that each component's processes
can use on the core device.

The following table shows the types of components that support system resource limits. For more
information, see Component types.

Component type Configure system resource limits

Nucleus

No

Plugin

No

Configure system resource limits 366

AWS IoT Greengrass Developer Guide, Version 2

Component type Configure system resource limits

Generic

Yes

Lambda (non-containerized)

Yes

Lambda (containerized)

No

Important

System resource limits aren't supported when you run AWS IoT Greengrass Core software in
a Docker container.

You can configure system resource limits for each component and for each core device.

• Configure for a component

You can configure each component with system resource limits specific to that component.
When you create a deployment, you can specify the system resource limits for each component
in the deployment. If the component supports system resource limits, the AWS IoT Greengrass
Core software applies the limits to the component's processes. If you don't specify system
resource limits for a component, the AWS IoT Greengrass Core software uses any defaults that
you have configured for the core device. For more information, see Create deployments.

• Configure defaults for a core device

You can configure the default system resource limits that the AWS IoT Greengrass Core software
applies to components that support these limits. When the AWS IoT Greengrass Core software

Configure system resource limits 367

AWS IoT Greengrass Developer Guide, Version 2

runs a component, it applies the system resource limits that you specify for that component.
If that component doesn't specify system resource limits, the the AWS IoT Greengrass Core
software applies the default system resource limits that you configure for the core device. If
you don't specify default system resource limits, the AWS IoT Greengrass Core software doesn't
apply any system resource limits by default. For more information, see Configure default system
resource limits.

Configure default system resource limits

You can deploy the Greengrass nucleus component to configure the default system resource
limits for a core device. To configure the default system resource limits, create a deployment that
specifies the following configuration update for the aws.greengrass.Nucleus component.

{
 "runWithDefault": {
 "systemResourceLimits": {
 "cpu": cpuTimeLimit,
 "memory": memoryLimitInKb
 }
 }
}

The following example defines a deployment that configures the CPU time limit to 2, which is
equivalent to 50% usage on a device with 4 CPU cores. This example also configures the memory
usage to 100 MB.

{
 "components": {
 "aws.greengrass.Nucleus": {
 "version": "2.14.0",
 "configurationUpdate": {
 "merge": "{\"runWithDefault\":{\"systemResourceLimits\":\"cpus\":2,\"memory
\":102400}}}"
 }
 }
 }
}

Configure system resource limits 368

AWS IoT Greengrass Developer Guide, Version 2

Connect on port 443 or through a network proxy

AWS IoT Greengrass core devices communicate with AWS IoT Core using the MQTT messaging
protocol with TLS client authentication. By convention, MQTT over TLS uses port 8883. However,
as a security measure, restrictive environments might limit inbound and outbound traffic to a small
range of TCP ports. For example, a corporate firewall might open port 443 for HTTPS traffic, but
close other ports that are used for less common protocols, such as port 8883 for MQTT traffic.
Other restrictive environments might require all traffic to go through a proxy before connecting to
the internet.

Note

Greengrass core devices that run Greengrass nucleus component v2.0.3 and earlier use
port 8443 to connect to the AWS IoT Greengrass data plane endpoint. These devices must
be able to connect to this endpoint on port 8443. For more information, see Allow device
traffic through a proxy or firewall.

To enable communication in these scenarios, AWS IoT Greengrass provides the following
configuration options:

• MQTT communication over port 443. If your network allows connections to port 443, you can
configure the Greengrass core device to use port 443 for MQTT traffic instead of the default
port 8883. This can be a direct connection to port 443 or a connection through a network proxy
server. Unlike the default configuration, which uses certificate-based client authentication, MQTT
on port 443 uses the device service role for authentication.

For more information, see Configure MQTT over port 443.

• HTTPS communication over port 443. The AWS IoT Greengrass Core software sends HTTPS
traffic over port 8443 by default, but you can configure it to use port 443. AWS IoT Greengrass
uses the Application Layer Protocol Network (ALPN) TLS extension to enable this connection. As
with the default configuration, HTTPS on port 443 uses certificate-based client authentication.

Important

To use ALPN and enable HTTPS communication over port 443, your core device must run
Java 8 update 252 or later. All updates of Java version 9 and later also support ALPN.

Connect on port 443 or through a network proxy 369

https://tools.ietf.org/html/rfc7301

AWS IoT Greengrass Developer Guide, Version 2

For more information, see Configure HTTPS over port 443.

• Connection through a network proxy. You can configure a network proxy server to act as an
intermediary for connecting to the Greengrass core device. AWS IoT Greengrass supports basic
authentication for HTTP and HTTPS proxies.

Greengrass core devices must run Greengrass nucleus v2.5.0 or later to use HTTPS proxies.

The AWS IoT Greengrass Core software passes the proxy configuration to components
through the ALL_PROXY, HTTP_PROXY, HTTPS_PROXY, and NO_PROXY environment variables.
Components must use these settings to connect through the proxy. Components use common
libraries (such as boto3, cURL, and the python requests package) that typically use these
environment variables by default to make connections. If a component also specifies these
environment variables, AWS IoT Greengrass doesn't override them.

For more information, see Configure a network proxy.

Configure MQTT over port 443

You can configure MQTT over port 443 on existing core devices or when you install the AWS IoT
Greengrass Core software on a new core device.

Topics

• Configure MQTT over port 443 on existing core devices

• Configure MQTT over port 443 during installation

Configure MQTT over port 443 on existing core devices

You can use a deployment to configure MQTT over port 443 on a single core device or a group of
core devices. In this deployment, you update the nucleus component configuration. The nucleus
restarts when you update its mqtt configuration.

To configure MQTT over port 443, create a deployment that specifies the following configuration
update for the aws.greengrass.Nucleus component.

{
 "mqtt": {
 "port": 443

Connect on port 443 or through a network proxy 370

AWS IoT Greengrass Developer Guide, Version 2

 }
}

The following example defines a deployment that configures MQTT over port 443. The merge
configuration update requires a serialized JSON object.

{
 "components": {
 "aws.greengrass.Nucleus": {
 "version": "2.14.0",
 "configurationUpdate": {
 "merge": "{\"mqtt\":{\"port\":443}}"
 }
 }
 }
}

Configure MQTT over port 443 during installation

You can configure MQTT over port 443 when you install the AWS IoT Greengrass Core software on
a core device. Use the --init-config installer argument to configure MQTT over port 443. You
can specify this argument when you install with manual provisioning, fleet provisioning, or custom
provisioning.

Configure HTTPS over port 443

This feature requires Greengrass nucleus v2.0.4 or later.

You can configure HTTPS over port 443 on existing core devices or when you install the AWS IoT
Greengrass Core software on a new core device.

Topics

• Configure HTTPS over port 443 on existing core devices

• Configure HTTPS over port 443 during installation

Configure HTTPS over port 443 on existing core devices

You can use a deployment to configure HTTPS over port 443 on a single core device or a group of
core devices. In this deployment, you update the nucleus component configuration.

Connect on port 443 or through a network proxy 371

AWS IoT Greengrass Developer Guide, Version 2

To configure HTTPS over port 443, create a deployment that specifies the following configuration
update for the aws.greengrass.Nucleus component.

{
 "greengrassDataPlanePort": 443
}

The following example defines a deployment that configures HTTPS over port 443. The merge
configuration update requires a serialized JSON object.

{
 "components": {
 "aws.greengrass.Nucleus": {
 "version": "2.14.0",
 "configurationUpdate": {
 "merge": "{\"greengrassDataPlanePort\":443}"
 }
 }
 }
}

Configure HTTPS over port 443 during installation

You can configure HTTPS over port 443 when you install the AWS IoT Greengrass Core software on
a core device. Use the --init-config installer argument to configure HTTPS over port 443. You
can specify this argument when you install with manual provisioning, fleet provisioning, or custom
provisioning.

Configure a network proxy

Follow a procedure in this section to configure Greengrass core devices to connect to the internet
through an HTTP or HTTPS network proxy. For more information about the endpoints and ports
that core devices use, see Allow device traffic through a proxy or firewall.

Important

If your core device runs a version of the Greengrass nucleus earlier than v2.4.0, your
device's role must allow the following permissions to use a network proxy:

• iot:Connect

Connect on port 443 or through a network proxy 372

AWS IoT Greengrass Developer Guide, Version 2

• iot:Publish

• iot:Receive

• iot:Subscribe

This is necessary because the device uses AWS credentials from the token exchange service
to authenticate MQTT connections to AWS IoT. The device uses MQTT to receive and install
deployments from the AWS Cloud, so your device won't work unless you define these
permissions on its role. Devices typically use X.509 certificates to authenticate MQTT
connections, but devices can't do this to authenticate when they use a proxy.
For more information about how to configure the device role, see Authorize core devices to
interact with AWS services.

Topics

• Configure a network proxy on existing core devices

• Configure a network proxy during installation

• Enable the core device to trust an HTTPS proxy

• The networkProxy object

Configure a network proxy on existing core devices

You can use a deployment to configure a network proxy on a single core device or a group of core
devices. In this deployment, you update the nucleus component configuration. The nucleus restarts
when you update its networkProxy configuration.

To configure a network proxy, create a deployment for the aws.greengrass.Nucleus
component that merges the following configuration update. This configuration update contains
the networkProxy object.

{
 "networkProxy": {
 "noProxyAddresses": "http://192.168.0.1,www.example.com",
 "proxy": {
 "url": "https://my-proxy-server:1100"
 }
 }

Connect on port 443 or through a network proxy 373

AWS IoT Greengrass Developer Guide, Version 2

}

The following example defines a deployment that configures a network proxy. The merge
configuration update requires a serialized JSON object.

{
 "components": {
 "aws.greengrass.Nucleus": {
 "version": "2.14.0",
 "configurationUpdate": {
 "merge": "{\"networkProxy\":{\"noProxyAddresses\":
\"http://192.168.0.1,www.example.com\",\"proxy\":{\"url\":\"https://my-proxy-
server:1100\",\"username\":\"Mary_Major\",\"password\":\"pass@word1357\"}}}"
 }
 }
 }
}

Configure a network proxy during installation

You can configure a network proxy when you install the AWS IoT Greengrass Core software on a
core device. Use the --init-config installer argument to configure the network proxy. You can
specify this argument when you install with manual provisioning, fleet provisioning, or custom
provisioning.

Enable the core device to trust an HTTPS proxy

When you configure a core device to use an HTTPS proxy, you must add the proxy server certificate
chain to the core device's to enable it to trust the HTTPS proxy. Otherwise, the core device might
encounter errors when it tries to route traffic through the proxy. Add the proxy server CA certificate
to the core device's Amazon root CA certificate file.

To enable the core device to trust the HTTPS proxy

1. Find the Amazon root CA certificate file on the core device.

• If you installed the AWS IoT Greengrass Core software with automatic provisioning, the
Amazon root CA certificate file exists at /greengrass/v2/rootCA.pem.

• If you installed the AWS IoT Greengrass Core software with manual or fleet provisioning, the
Amazon root CA certificate file might exist at /greengrass/v2/AmazonRootCA1.pem.

Connect on port 443 or through a network proxy 374

AWS IoT Greengrass Developer Guide, Version 2

If the Amazon root CA certificate doesn't exist at these locations, check the
system.rootCaPath property in /greengrass/v2/config/effectiveConfig.yaml to
find its location.

2. Add the contents of the proxy server CA certificate file to the Amazon root CA certificate file.

The following example shows a proxy server CA certificate added to the Amazon root CA
certificate file.

-----BEGIN CERTIFICATE-----
MIIEFTCCAv2gAwIQWgIVAMHSAzWG/5YVRYtRQOxXUTEpHuEmApzGCSqGSIb3DQEK
\nCwUAhuL9MQswCQwJVUzEPMAVUzEYMBYGA1UECgwP1hem9uLmNvbSBJbmMuMRww
... content of proxy CA certificate ...
+vHIRlt0e5JAm5\noTIZGoFbK82A0/nO7f/t5PSIDAim9V3Gc3pSXxCCAQoFYnui
GaPUlGk1gCE84a0X\n7Rp/lND/PuMZ/s8YjlkY2NmYmNjMCAXDTE5MTEyN2cM216
gJMIADggEPADf2/m45hzEXAMPLE=
-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----
MIIDQTCCAimgF6AwIBAgITBmyfz/5mjAo54vB4ikPmljZKyjANJmApzyMZFo6qBg
ADA5MQswCQYDVQQGEwJVUzEPMA0tMVT8QtPHRh8jrdkGA1UEChMGDV3QQDExBBKW
... content of root CA certificate ...
o/ufQJQWUCyziar1hem9uMRkwFwYVPSHCb2XV4cdFyQzR1KldZwgJcIQ6XUDgHaa
5MsI+yMRQ+hDaXJiobldXgjUka642M4UwtBV8oK2xJNDd2ZhwLnoQdeXeGADKkpy
rqXRfKoQnoZsG4q5WTP46EXAMPLE
-----END CERTIFICATE-----

The networkProxy object

Use the networkProxy object to specify information about the network proxy. This object
contains the following information:

noProxyAddresses

(Optional) A comma-separated list of IP addresses or host names that are exempt from the
proxy.

proxy

The proxy to which to connect. This object contains the following information:

Connect on port 443 or through a network proxy 375

AWS IoT Greengrass Developer Guide, Version 2

url

The URL of the proxy server in the format scheme://userinfo@host:port.

• scheme – The scheme, which must be http or https.

Important

Greengrass core devices must run Greengrass nucleus v2.5.0 or later to use HTTPS
proxies.
If you configure an HTTPS proxy, you must add the proxy server CA certificate to
the core device's Amazon root CA certificate. For more information, see Enable the
core device to trust an HTTPS proxy.

• userinfo – (Optional) The user name and password information. If you specify this
information in the url, the Greengrass core device ignores the username and password
fields.

• host – The host name or IP address of the proxy server.

• port – (Optional) The port number. If you don't specify the port, then the Greengrass core
device uses the following default values:

• http – 80

• https – 443

username

(Optional) The user name that authenticates the proxy server.

password

(Optional) The password that authenticates the proxy server.

Use a device certificate signed by a private CA

If you are using a custom private certificate authority (CA), you must set the Greengrass nucleus'
greengrassDataPlaneEndpoint to iotdata. You can set this option during deployment or
installation using the --init-config installer argument.

You can customize the Greengrass data plane endpoint where the device connects. You can set this
configuration option to iotdata to set the Greengrass data plane endpoint to the same endpoint
as the IoT data endpoint, which you can specify with the iotDataEndpoint.

Use a device certificate signed by a private CA 376

AWS IoT Greengrass Developer Guide, Version 2

Configure MQTT timeouts and cache settings

In the AWS IoT Greengrass environment, components can use MQTT to communicate with AWS IoT
Core. The AWS IoT Greengrass Core software manages MQTT messages for components. When the
core device loses connection to the AWS Cloud, the software caches MQTT messages to retry later
when the connection restores. You can configure settings such as message timeouts and the size
of the cache. For more information, see the mqtt and mqtt.spooler configuration parameters of
the Greengrass nucleus component.

AWS IoT Core imposes service quotas on its MQTT message broker. These quotas might apply to
messages that you send between core devices and AWS IoT Core. For more information, see AWS
IoT Core message broker service quotas in the AWS General Reference.

Configure Greengrass Nucleus on IPv6 network

Greengrass Nucleus talks to AWS IoT Core through Greengrass APIs. Greengrass APIs support IPv6
under dualstack environment.

To enable dualstack endpoints for IPv6:

• Add system properties aws.useDualstackEndpoint=true, and
java.net.preferIPv6Addresses=true to jvmOptions

• Set s3EndpointType to DUALSTACK

Set this option during deployment, or manually provision it with the --init-config installer
argument. See Using Amazon S3 dual-stack endpoints for more details.

Example code for deployment:

{
 "jvmOptions": "-Daws.useDualstackEndpoint=true",
 "s3EndpointType":"DUALSTACK"
}

Example config.yaml through manual provisioning:

system:
 ...
services:

Configure MQTT timeouts and cache settings 377

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#message-broker-limits
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#message-broker-limits
https://docs.aws.amazon.com/general/latest/gr/greengrassv2.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/create-deployments.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/configure-installer.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/configure-installer.html
https://docs.aws.amazon.com/AmazonS3/latest/API/dual-stack-endpoints.html

AWS IoT Greengrass Developer Guide, Version 2

 aws.greengrass.Nucleus:
 ...
 configuration:
 ...
 jvmOptions: "-Daws.useDualstackEndpoint=true -Djava.net.preferIPv6Addresses=true"
 s3EndpointType: "DUALSTACK"

Update the AWS IoT Greengrass Core software (OTA)

The AWS IoT Greengrass Core software comprises the Greengrass nucleus component and other
optional components that you can deploy to your devices to perform over-the-air (OTA) updates of
the software. This feature is built in to the AWS IoT Greengrass Core software.

OTA updates make it more efficient to:

• Fix security vulnerabilities.

• Address software stability issues.

• Deploy new or improved features.

Topics

• Requirements

• Considerations for core devices

• Greengrass nucleus update behavior

• Perform an OTA update

Requirements

The following requirements apply to deploy OTA updates of the AWS IoT Greengrass Core
software:

• The Greengrass core device must have a connection to the AWS Cloud to receive the deployment.

• The Greengrass core device must be correctly configured and provisioned with certificates and
keys for authentication with AWS IoT Core and AWS IoT Greengrass.

• The AWS IoT Greengrass Core software must be set up and running as a system service. OTA
updates don't work if you run the nucleus from the JAR file, Greengrass.jar. For more
information, see Configure the Greengrass nucleus as a system service.

Update the AWS IoT Greengrass Core software (OTA) 378

AWS IoT Greengrass Developer Guide, Version 2

Considerations for core devices

Before you perform an OTA update, be aware of the impact on the core devices that you update
and their connected client devices:

• The Greengrass nucleus shuts down.

• All components running on the core device also shut down. If those components write to local
resources, they might leave those resources in an incorrect state unless shut down properly.
Components can use interprocess communication to tell the nucleus component to defer the
update until they clean up the resources that they use.

• While the nucleus component is shut down, the core device loses its connections with the AWS
Cloud and local devices. The core device won't route messages from client devices while shut
down.

• Long-lived Lambda functions that run as components lose their dynamic state information and
drop all pending work.

Greengrass nucleus update behavior

When you deploy a component, AWS IoT Greengrass installs the latest supported versions of all
of that component's dependencies. Because of this, new patch versions of AWS-provided public
components might be automatically deployed to your core devices if you add new devices to a
thing group, or you update the deployment that targets those devices. Some automatic updates,
such as a nucleus update, can cause your devices to restart unexpectedly.

When the version of the Greengrass nucleus component changes, the AWS IoT Greengrass Core
software—which includes the nucleus and all other components on your device—restarts to apply
the changes. Because of the impact on core devices when the nucleus component is updated, you
might want to control when a new nucleus patch version is deployed to your devices. To do so, you
must directly include the Greengrass nucleus component in your deployment. Directly including
a component means that you include a specific version of that component in your deployment
configuration and do not rely on component dependencies to deploy that component to your
devices. For more information about defining dependencies in your component recipes, see Recipe
format.

Review the following table to understand the update behavior for the Greengrass nucleus
component based on your actions and deployment configurations.

Considerations for core devices 379

AWS IoT Greengrass Developer Guide, Version 2

Action Deployment configuration Nucleus update behavior

Add new devices to a thing
group targeted by an existing
deployment without revising
the deployment.

The deployment does not
directly include Greengrass
nucleus.

The deployment directly
includes at least one AWS-
provided component, or
includes a custom component
that depends on an AWS-
provided component or on
the Greengrass nucleus.

On new devices, installs
the latest patch version
of nucleus that meets all
component dependency
requirements.

On existing devices, does not
update the installed version
of the nucleus.

Add new devices to a thing
group targeted by an existing
deployment without revising
the deployment.

The deployment directly
includes a specific version of
the Greengrass nucleus.

On new devices, installs the
specified nucleus version.

On existing devices, does not
update the installed version
of the nucleus.

Create a new deployment or
revise an existing deploymen
t.

The deployment does not
directly include Greengrass
nucleus.

The deployment directly
includes at least one AWS-
provided component, or
includes a custom component
that depends on an AWS-
provided component or on
the Greengrass nucleus.

On all targeted devices,
installs the latest patch
version of the nucleus
that meets all component
dependency requirements,
including on any new devices
that you add to the targeted
thing group.

Create a new deployment or
revise an existing deploymen
t.

The deployment directly
includes a specific version of
the Greengrass nucleus.

On all targeted devices,
installs the specified nucleus
version, including any new

Greengrass nucleus update behavior 380

AWS IoT Greengrass Developer Guide, Version 2

Action Deployment configuration Nucleus update behavior

devices that you add to the
targeted thing group.

Perform an OTA update

To perform an OTA update, create a deployment that includes the nucleus component and the
version to install.

Uninstall the AWS IoT Greengrass Core software

You can uninstall the AWS IoT Greengrass Core software to remove it from a device that you don't
want to use as a Greengrass core device. You can also use these steps to clean up an installation
that fails.

To uninstall the AWS IoT Greengrass Core software

1. If you run the software as a system service, you must stop, disable, and remove the service.
Run the following commands as appropriate for your operating system.

Linux

1. Stop the service.

sudo systemctl stop greengrass.service

2. Disable the service.

sudo systemctl disable greengrass.service

3. Remove the service.

sudo rm /etc/systemd/system/greengrass.service

4. Verify that the service is deleted.

sudo systemctl daemon-reload && sudo systemctl reset-failed

Perform an OTA update 381

AWS IoT Greengrass Developer Guide, Version 2

Windows (Command Prompt)

Note

You must run Command Prompt as an administrator to run these commands.

1. Stop the service.

sc stop "greengrass"

2. Disable the service.

sc config "greengrass" start=disabled

3. Remove the service.

sc delete "greengrass"

4. Restart the device.

Windows (PowerShell)

Note

You must run PowerShell as an administrator to run these commands.

1. Stop the service.

Stop-Service -Name "greengrass"

2. Disable the service.

Set-Service -Name "greengrass" -Status stopped -StartupType disabled

3. Remove the service.

Uninstall the AWS IoT Greengrass Core software 382

AWS IoT Greengrass Developer Guide, Version 2

• For PowerShell 6.0 and later:

Remove-Service -Name "greengrass" -Confirm:$false -Verbose

• For PowerShell versions earlier than 6.0 :

Get-Item HKLM:\SYSTEM\CurrentControlSet\Services\greengrass | Remove-Item
 -Force -Verbose

4. Restart the device.

2. Remove the root folder from the device. Replace /greengrass/v2 or C:\greengrass\v2
with the path to the root folder.

Linux

sudo rm -rf /greengrass/v2

Windows (Command Prompt)

rmdir /s /q C:\greengrass\v2

Windows (PowerShell)

cmd.exe /c "rmdir /s /q C:\greengrass\v2"

3. Delete the core device from the AWS IoT Greengrass service. This step removes the core
device's status information from the AWS Cloud. Be sure to complete this step if you plan to
reinstall the AWS IoT Greengrass Core software to a core device with the same name.

• To delete a core device from the AWS IoT Greengrass console, do the following:

a. Navigate to the AWS IoT Greengrass console.

b. Choose Core devices.

c. Choose the core device to delete.

d. Choose Delete.

e. In the confirmation modal, choose Delete.

Uninstall the AWS IoT Greengrass Core software 383

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

• To delete a core device with the AWS Command Line Interface, use the DeleteCoreDevice
operation. Run the following command, and replace MyGreengrassCore with the name
of the core device.

aws greengrassv2 delete-core-device --core-device-thing-name MyGreengrassCore

Uninstall the AWS IoT Greengrass Core software 384

https://docs.aws.amazon.com/greengrass/v2/APIReference/API_DeleteCoreDevice.html

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass V2 tutorials

AWS IoT Greengrass is a service that enables you to run AWS Lambda functions, machine learning
models, and other code on edge devices. This allows you to process data locally, reducing latency
and bandwidth costs while maintaining secure communication with the cloud.

You can complete the following tutorials to learn about AWS IoT Greengrass V2 and its features.

Topics

• Tutorial: Develop a Greengrass component that defers component updates

• Tutorial: Interact with local IoT devices over MQTT

• Tutorial: Get started with SageMaker AI Edge Manager

• Tutorial: Perform sample image classification inference using TensorFlow Lite

• Tutorial: Perform sample image classification inference on images from a camera using
TensorFlow Lite

Tutorial: Develop a Greengrass component that defers
component updates

You can complete this tutorial to develop a component that defers over-the-air deployment
updates. When you deploy updates to your devices, you might want to delay updates based on
conditions, such as the following:

• The device has a low battery level.

• The device is running a process or job that can't be interrupted.

• The device has a limited or expensive internet connection.

Note

A component is a software module that runs on AWS IoT Greengrass core devices.
Components enable you to create and manage complex applications as discrete building
blocks that you can reuse from one Greengrass core device to another.

Develop a component that defers component updates 385

AWS IoT Greengrass Developer Guide, Version 2

In this tutorial, you do the following:

1. Install the Greengrass Development Kit CLI (GDK CLI) on your development computer. The GDK
CLI provides features that help you develop custom Greengrass components.

2. Develop a Hello World component that defers component updates when the core device's
battery level is below a threshold. This component subscribes to update notifications using
the SubscribeToComponentUpdates IPC operation. When it receives the notification, it checks
if the battery level is lower than a customizable threshold. If the battery level is below the
threshold, it defers the update for 30 seconds using the DeferComponentUpdate IPC operation.
You develop this component on your development computer using the GDK CLI.

Note

This component reads battery level from a file that you create on the core device to
imitate a real battery, so you can complete this tutorial on a core device without a
battery.

3. Publish that component to the AWS IoT Greengrass service.

4. Deploy that component from the AWS Cloud to a Greengrass core device to test it. Then, you
modify the virtual battery level on the core device, and create additional deployments to see
how the core device defers updates when the battery level is low.

You can expect to spend 20–30 minutes on this tutorial.

Prerequisites

To complete this tutorial, you need the following:

• An AWS account. If you don't have one, see Set up an AWS account.

• An AWS Identity and Access Management (IAM) user with administrator permissions.

• A Greengrass core device with an internet connection. For more information about how to set up
a core device, see Setting up AWS IoT Greengrass core devices.

• Python 3.6 or later installed for all users on the core device and added to the PATH
environment variable. On Windows, you must also have the Python Launcher for Windows
installed for all users.

Prerequisites 386

https://www.python.org/downloads/

AWS IoT Greengrass Developer Guide, Version 2

Important

In Windows, Python doesn't install for all users by default. When you install Python,
you must customize the installation to configure it for the AWS IoT Greengrass Core
software to run Python scripts. For example, if you use the graphical Python installer,
do the following:

1. Select Install launcher for all users (recommended).

2. Choose Customize installation.

3. Choose Next.

4. Select Install for all users.

5. Select Add Python to environment variables.

6. Choose Install.

For more information, see Using Python on Windows in the Python 3 documentation.

• A Windows, macOS, or Unix-like development computer with an internet connection.

• Python 3.6 or later installed on your development computer.

• Git installed on your development computer.

• AWS Command Line Interface (AWS CLI) installed and configured with credentials on your
development computer. For more information, see Installing, updating, and uninstalling the
AWS CLI and Configuring the AWS CLI in the AWS Command Line Interface User Guide.

Note

If you use a Raspberry Pi or another 32-bit ARM device, install AWS CLI V1. AWS CLI V2
isn't available for 32-bit ARM devices. For more information, see Installing, updating,
and uninstalling the AWS CLI version 1.

Step 1: Install the Greengrass Development Kit CLI

The Greengrass Development Kit CLI (GDK CLI) provides features that help you develop
custom Greengrass components. You can use the GDK CLI to create, build, and publish custom
components.

Step 1: Install the Greengrass Development Kit CLI 387

https://docs.python.org/3/using/windows.html
https://www.python.org/downloads/
https://git-scm.com/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv1.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv1.html

AWS IoT Greengrass Developer Guide, Version 2

If you haven't installed the GDK CLI on your development computer, complete the following steps
to install it.

To install the latest version of the GDK CLI

1. On your development computer, run the following command to install the latest version of the
GDK CLI from its GitHub repository.

python3 -m pip install -U git+https://github.com/aws-greengrass/aws-greengrass-gdk-
cli.git@v1.6.2

2. Run the following command to verify that the GDK CLI installed successfully.

gdk --help

If the gdk command isn't found, add its folder to PATH.

• On Linux devices, add /home/MyUser/.local/bin to PATH, and replace MyUser with the
name of your user.

• On Windows devices, add PythonPath\\Scripts to PATH, and replace PythonPath with
the path to the Python folder on your device.

Step 2: Develop a component that defers updates

In this section, you develop a Hello World component in Python that defers component updates
when the core device's battery level is below a threshold that you configure when you deploy
the component. In this component, you use the interprocess communication (IPC) interface
in the AWS IoT Device SDK v2 for Python. You use the SubscribeToComponentUpdates IPC
operation to receive notifications when the core device receives a deployment. Then, you use the
DeferComponentUpdate IPC operation to defer or acknowledge the update based on the device's
battery level.

To develop a Hello World component that defers updates

1. On your development computer, create a folder for the component source code.

mkdir com.example.BatteryAwareHelloWorld
cd com.example.BatteryAwareHelloWorld

Step 2: Develop a component that defers updates 388

https://github.com/aws-greengrass/aws-greengrass-gdk-cli

AWS IoT Greengrass Developer Guide, Version 2

2. Use a text editor to create a file named gdk-config.json. The GDK CLI reads from the GDK
CLI configuration file, named gdk-config.json, to build and publish components. This
configuration file exists in the root of the component folder.

For example, on a Linux-based system, you can run the following command to use GNU nano
to create the file.

nano gdk-config.json

Copy the following JSON into the file.

• Replace Amazon with your name.

• Replace us-west-2 with the AWS Region where your core device operates. The GDK CLI
publishes the component in this AWS Region.

• Replace greengrass-component-artifacts with the S3 bucket prefix to use. When you
use the GDK CLI to publish the component, the GDK CLI uploads the component's artifacts
to the S3 bucket whose name is formed from this value, the AWS Region, and your AWS
account ID using the following format: bucketPrefix-region-accountId.

For example, if you specify greengrass-component-artifacts and us-west-2,
and your AWS account ID is 123456789012, the GDK CLI uses the S3 bucket named
greengrass-component-artifacts-us-west-2-123456789012.

{
 "component": {
 "com.example.BatteryAwareHelloWorld": {
 "author": "Amazon",
 "version": "NEXT_PATCH",
 "build": {
 "build_system" : "zip"
 },
 "publish": {
 "region": "us-west-2",
 "bucket": "greengrass-component-artifacts"
 }
 }
 },
 "gdk_version": "1.0.0"

Step 2: Develop a component that defers updates 389

AWS IoT Greengrass Developer Guide, Version 2

}

The configuration file specifies the following:

• The version to use when the GDK CLI publishes the Greengrass component to the AWS IoT
Greengrass cloud service. NEXT_PATCH specifies to choose the next patch version after the
latest version available in the AWS IoT Greengrass cloud service. If the component doesn't
have a version in the AWS IoT Greengrass cloud service yet, the GDK CLI uses 1.0.0.

• The build system for the component. When you use the zip build system, the GDK CLI
packages the component's source into a ZIP file that becomes the component's single
artifact.

• The AWS Region where the GDK CLI publishes the Greengrass component.

• The prefix for the S3 bucket where the GDK CLI uploads the component's artifacts.

3. Use a text editor to create the component source code in a file named main.py.

For example, on a Linux-based system, you can run the following command to use GNU nano
to create the file.

nano main.py

Copy the following Python code into the file.

import json
import os
import sys
import time
import traceback

from pathlib import Path

from awsiot.greengrasscoreipc.clientv2 import GreengrassCoreIPCClientV2

HELLO_WORLD_PRINT_INTERVAL = 15 # Seconds
DEFER_COMPONENT_UPDATE_INTERVAL = 30 * 1000 # Milliseconds

class BatteryAwareHelloWorldPrinter():
 def __init__(self, ipc_client: GreengrassCoreIPCClientV2, battery_file_path:
 Path, battery_threshold: float):

Step 2: Develop a component that defers updates 390

AWS IoT Greengrass Developer Guide, Version 2

 self.battery_file_path = battery_file_path
 self.battery_threshold = battery_threshold
 self.ipc_client = ipc_client
 self.subscription_operation = None

 def on_component_update_event(self, event):
 try:
 if event.pre_update_event is not None:
 if self.is_battery_below_threshold():
 self.defer_update(event.pre_update_event.deployment_id)
 print('Deferred update for deployment %s' %
 event.pre_update_event.deployment_id)
 else:
 self.acknowledge_update(
 event.pre_update_event.deployment_id)
 print('Acknowledged update for deployment %s' %
 event.pre_update_event.deployment_id)
 elif event.post_update_event is not None:
 print('Applied update for deployment')
 except:
 traceback.print_exc()

 def subscribe_to_component_updates(self):
 if self.subscription_operation == None:
 # SubscribeToComponentUpdates returns a tuple with the response and the
 operation.
 _, self.subscription_operation =
 self.ipc_client.subscribe_to_component_updates(
 on_stream_event=self.on_component_update_event)

 def close_subscription(self):
 if self.subscription_operation is not None:
 self.subscription_operation.close()
 self.subscription_operation = None

 def defer_update(self, deployment_id):
 self.ipc_client.defer_component_update(
 deployment_id=deployment_id,
 recheck_after_ms=DEFER_COMPONENT_UPDATE_INTERVAL)

 def acknowledge_update(self, deployment_id):
 # Specify recheck_after_ms=0 to acknowledge a component update.
 self.ipc_client.defer_component_update(
 deployment_id=deployment_id, recheck_after_ms=0)

Step 2: Develop a component that defers updates 391

AWS IoT Greengrass Developer Guide, Version 2

 def is_battery_below_threshold(self):
 return self.get_battery_level() < self.battery_threshold

 def get_battery_level(self):
 # Read the battery level from the virtual battery level file.
 with self.battery_file_path.open('r') as f:
 data = json.load(f)
 return float(data['battery_level'])

 def print_message(self):
 message = 'Hello, World!'
 if self.is_battery_below_threshold():
 message += ' Battery level (%d) is below threshold (%d), so the
 component will defer updates' % (
 self.get_battery_level(), self.battery_threshold)
 else:
 message += ' Battery level (%d) is above threshold (%d), so the
 component will acknowledge updates' % (
 self.get_battery_level(), self.battery_threshold)
 print(message)

def main():
 # Read the battery threshold and virtual battery file path from command-line
 args.
 args = sys.argv[1:]
 battery_threshold = float(args[0])
 battery_file_path = Path(args[1])
 print('Reading battery level from %s and deferring updates when below %d' % (
 str(battery_file_path), battery_threshold))

 try:
 # Create an IPC client and a Hello World printer that defers component
 updates.
 ipc_client = GreengrassCoreIPCClientV2()
 hello_world_printer = BatteryAwareHelloWorldPrinter(
 ipc_client, battery_file_path, battery_threshold)
 hello_world_printer.subscribe_to_component_updates()
 try:
 # Keep the main thread alive, or the process will exit.
 while True:
 hello_world_printer.print_message()
 time.sleep(HELLO_WORLD_PRINT_INTERVAL)

Step 2: Develop a component that defers updates 392

AWS IoT Greengrass Developer Guide, Version 2

 except InterruptedError:
 print('Subscription interrupted')
 hello_world_printer.close_subscription()
 except Exception:
 print('Exception occurred', file=sys.stderr)
 traceback.print_exc()
 exit(1)

if __name__ == '__main__':
 main()

This Python application does the following:

• Reads the core device's battery level from a virtual battery level file that you'll create on the
core device later. This virtual battery level file imitates a real battery, so you can complete
this tutorial on core devices that don't have a battery.

• Reads command-line arguments for the battery threshold and the path to the virtual
battery level file. The component recipe sets these command-line arguments based
on configuration parameters, so you can customize these values when you deploy the
component.

• Uses the IPC client V2 in the AWS IoT Device SDK v2 for Python to communicate with the
AWS IoT Greengrass Core software. Compared to the original IPC client, the IPC client V2
reduces the amount of code that you need to write to use IPC in custom components.

• Subscribes to update notifications using the SubscribeToComponentUpdates IPC
operation. The AWS IoT Greengrass Core software sends notifications before and after each
deployment. The component calls the following function each time it receives a notification.
If the notification is for an upcoming deployment, the component checks if the battery level
is lower than a threshold. If the battery level is below the threshold, the component defers
the update for 30 seconds using the DeferComponentUpdate IPC operation. Otherwise, if
the battery level isn't below the threshold, the component acknowledges the update, so the
update can proceed.

def on_component_update_event(self, event):
 try:
 if event.pre_update_event is not None:
 if self.is_battery_below_threshold():
 self.defer_update(event.pre_update_event.deployment_id)
 print('Deferred update for deployment %s' %

Step 2: Develop a component that defers updates 393

https://github.com/aws/aws-iot-device-sdk-python-v2

AWS IoT Greengrass Developer Guide, Version 2

 event.pre_update_event.deployment_id)
 else:
 self.acknowledge_update(
 event.pre_update_event.deployment_id)
 print('Acknowledged update for deployment %s' %
 event.pre_update_event.deployment_id)
 elif event.post_update_event is not None:
 print('Applied update for deployment')
 except:
 traceback.print_exc()

Note

The AWS IoT Greengrass Core software doesn't send update notifications for local
deployments, so you deploy this component using the AWS IoT Greengrass cloud
service to test it.

4. Use a text editor to create the component recipe in a file named recipe.json or
recipe.yaml. The component recipe defines the component's metadata, default
configuration parameters, and platform-specific lifecycle scripts.

JSON

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano recipe.json

Copy the following JSON into the file.

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "COMPONENT_NAME",
 "ComponentVersion": "COMPONENT_VERSION",
 "ComponentDescription": "This Hello World component defers updates when the
 battery level is below a threshold.",
 "ComponentPublisher": "COMPONENT_AUTHOR",
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "BatteryThreshold": 50,
 "LinuxBatteryFilePath": "/home/ggc_user/virtual_battery.json",

Step 2: Develop a component that defers updates 394

AWS IoT Greengrass Developer Guide, Version 2

 "WindowsBatteryFilePath": "C:\\Users\\ggc_user\\virtual_battery.json"
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "linux"
 },
 "Lifecycle": {
 "install": "python3 -m pip install --user awsiotsdk --upgrade",
 "Run": "python3 -u {artifacts:decompressedPath}/
com.example.BatteryAwareHelloWorld/main.py \"{configuration:/BatteryThreshold}\"
 \"{configuration:/LinuxBatteryFilePath}\""
 },
 "Artifacts": [
 {
 "Uri": "s3://BUCKET_NAME/COMPONENT_NAME/COMPONENT_VERSION/
com.example.BatteryAwareHelloWorld.zip",
 "Unarchive": "ZIP"
 }
]
 },
 {
 "Platform": {
 "os": "windows"
 },
 "Lifecycle": {
 "install": "py -3 -m pip install --user awsiotsdk --upgrade",
 "Run": "py -3 -u {artifacts:decompressedPath}/
com.example.BatteryAwareHelloWorld/main.py \"{configuration:/BatteryThreshold}\"
 \"{configuration:/WindowsBatteryFilePath}\""
 },
 "Artifacts": [
 {
 "Uri": "s3://BUCKET_NAME/COMPONENT_NAME/COMPONENT_VERSION/
com.example.BatteryAwareHelloWorld.zip",
 "Unarchive": "ZIP"
 }
]
 }
]
}

Step 2: Develop a component that defers updates 395

AWS IoT Greengrass Developer Guide, Version 2

YAML

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano recipe.yaml

Copy the following YAML into the file.

RecipeFormatVersion: "2020-01-25"
ComponentName: "COMPONENT_NAME"
ComponentVersion: "COMPONENT_VERSION"
ComponentDescription: "This Hello World component defers updates when the
 battery level is below a threshold."
ComponentPublisher: "COMPONENT_AUTHOR"
ComponentConfiguration:
 DefaultConfiguration:
 BatteryThreshold: 50
 LinuxBatteryFilePath: "/home/ggc_user/virtual_battery.json"
 WindowsBatteryFilePath: "C:\\Users\\ggc_user\\virtual_battery.json"
Manifests:
 - Platform:
 os: linux
 Lifecycle:
 install: python3 -m pip install --user awsiotsdk --upgrade
 Run: python3 -u {artifacts:decompressedPath}/
com.example.BatteryAwareHelloWorld/main.py "{configuration:/BatteryThreshold}"
 "{configuration:/LinuxBatteryFilePath}"
 Artifacts:
 - Uri: "s3://BUCKET_NAME/COMPONENT_NAME/COMPONENT_VERSION/
com.example.BatteryAwareHelloWorld.zip"
 Unarchive: ZIP
 - Platform:
 os: windows
 Lifecycle:
 install: py -3 -m pip install --user awsiotsdk --upgrade
 Run: py -3 -u {artifacts:decompressedPath}/
com.example.BatteryAwareHelloWorld/main.py "{configuration:/BatteryThreshold}"
 "{configuration:/WindowsBatteryFilePath}"
 Artifacts:

Step 2: Develop a component that defers updates 396

AWS IoT Greengrass Developer Guide, Version 2

 - Uri: "s3://BUCKET_NAME/COMPONENT_NAME/COMPONENT_VERSION/
com.example.BatteryAwareHelloWorld.zip"
 Unarchive: ZIP

This recipe specifies the following:

• Default configuration parameters for the battery threshold, the virtual battery file path on
Linux core devices, and the virtual battery file path on Windows core devices.

• An install lifecycle that installs the latest version of the AWS IoT Device SDK v2 for
Python.

• A run lifecycle that runs the Python application in main.py.

• Placeholders, such as COMPONENT_NAME and COMPONENT_VERSION, where the GDK CLI
replaces information when it builds the component recipe.

For more information about component recipes, see AWS IoT Greengrass component recipe
reference.

Step 3: Publish the component to the AWS IoT Greengrass service

In this section, you publish the Hello World component to the AWS IoT Greengrass cloud service.
After a component is available in the AWS IoT Greengrass cloud service, you can deploy it to core
devices. You use the GDK CLI to publish the component from your development computer to the
AWS IoT Greengrass cloud service. The GDK CLI uploads the component's recipe and artifacts for
you.

To publish the Hello World component to the AWS IoT Greengrass service

1. Run the following command to build the component using the GDK CLI. The component
build command creates a recipe and artifacts based on the GDK CLI configuration file. In this
process, the GDK CLI creates a ZIP file that contains the component's source code.

gdk component build

You should see messages similar to the following example.

[2022-04-28 11:20:16] INFO - Getting project configuration from gdk-config.json

Step 3: Publish the component to the AWS IoT Greengrass service 397

AWS IoT Greengrass Developer Guide, Version 2

[2022-04-28 11:20:16] INFO - Found component recipe file 'recipe.yaml' in the
 project directory.
[2022-04-28 11:20:16] INFO - Building the component
 'com.example.BatteryAwareHelloWorld' with the given project configuration.
[2022-04-28 11:20:16] INFO - Using 'zip' build system to build the component.
[2022-04-28 11:20:16] WARNING - This component is identified as using 'zip' build
 system. If this is incorrect, please exit and specify custom build command in the
 'gdk-config.json'.
[2022-04-28 11:20:16] INFO - Zipping source code files of the component.
[2022-04-28 11:20:16] INFO - Copying over the build artifacts to the greengrass
 component artifacts build folder.
[2022-04-28 11:20:16] INFO - Updating artifact URIs in the recipe.
[2022-04-28 11:20:16] INFO - Creating component recipe in 'C:\Users\finthomp
\greengrassv2\com.example.BatteryAwareHelloWorld\greengrass-build\recipes'.

2. Run the following command to publish the component to the AWS IoT Greengrass cloud
service. The component publish command uploads the component's ZIP file artifact to an S3
bucket. Then, it updates the ZIP file's S3 URI in the component recipe and uploads the recipe
to the AWS IoT Greengrass service. In this process, the GDK CLI checks what version of the
Hello World component is already available in the AWS IoT Greengrass cloud service, so it can
choose the next patch version after that version. If the component doesn't exist yet, the GDK
CLI uses version 1.0.0.

gdk component publish

You should see messages similar to the following example. The output tells you the version of
the component that the GDK CLI created.

[2022-04-28 11:20:29] INFO - Getting project configuration from gdk-config.json
[2022-04-28 11:20:29] INFO - Found component recipe file 'recipe.yaml' in the
 project directory.
[2022-04-28 11:20:29] INFO - Found credentials in shared credentials file: ~/.aws/
credentials
[2022-04-28 11:20:30] INFO - No private version of the component
 'com.example.BatteryAwareHelloWorld' exist in the account. Using '1.0.0' as the
 next version to create.
[2022-04-28 11:20:30] INFO - Publishing the component
 'com.example.BatteryAwareHelloWorld' with the given project configuration.
[2022-04-28 11:20:30] INFO - Uploading the component built artifacts to s3 bucket.
[2022-04-28 11:20:30] INFO - Uploading component artifacts to S3
 bucket: greengrass-component-artifacts-us-west-2-123456789012. If this is your

Step 3: Publish the component to the AWS IoT Greengrass service 398

AWS IoT Greengrass Developer Guide, Version 2

 first time using this bucket, add the 's3:GetObject' permission to each core
 device's token exchange role to allow it to download the component artifacts. For
 more information, see https://docs.aws.amazon.com/greengrass/v2/developerguide/
device-service-role.html.
[2022-04-28 11:20:30] INFO - Not creating an artifacts bucket as it already exists.
[2022-04-28 11:20:30] INFO - Updating the component recipe
 com.example.BatteryAwareHelloWorld-1.0.0.
[2022-04-28 11:20:31] INFO - Creating a new greengrass component
 com.example.BatteryAwareHelloWorld-1.0.0
[2022-04-28 11:20:31] INFO - Created private version '1.0.0' of the component in
 the account.'com.example.BatteryAwareHelloWorld'.

3. Copy the S3 bucket name from the output. You use the bucket name later to allow the core
device to download component artifacts from this bucket.

4. (Optional) View the component in the AWS IoT Greengrass console to verify that it uploaded
successfully. Do the following:

a. In the AWS IoT Greengrass console navigation menu, choose Components.

b. On the Components page, choose the My components tab, and then choose
com.example.BatteryAwareHelloWorld.

On this page, you can see the component's recipe and other information about the
component.

5. Allow the core device to access component artifacts in the S3 bucket.

Each core device has a core device IAM role that allows it to interact with AWS IoT and send
logs to the AWS Cloud. This device role doesn't allow access to S3 buckets by default, so you
must create and attach a policy that allows the core device to retrieve component artifacts
from the S3 bucket.

If your device's role already allows access to the S3 bucket, you can skip this step. Otherwise,
create an IAM policy that allows access and attach it to the role, as follows:

a. In the IAM console navigation menu, choose Policies, and then choose Create policy.

b. On the JSON tab, replace the placeholder content with the following policy. Replace
greengrass-component-artifacts-us-west-2-123456789012 with the name of
the S3 bucket where the GDK CLI uploaded the component's artifacts.

For example, if you specified greengrass-component-artifacts and us-west-2
in the GDK CLI configuration file, and your AWS account ID is 123456789012, the

Step 3: Publish the component to the AWS IoT Greengrass service 399

https://console.aws.amazon.com/greengrass
https://console.aws.amazon.com/iam

AWS IoT Greengrass Developer Guide, Version 2

GDK CLI uses the S3 bucket named greengrass-component-artifacts-us-
west-2-123456789012.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::greengrass-component-artifacts-us-
west-2-123456789012/*"
 }
]
}

c. Choose Next.

d. In the Policy details section, for Name, enter
MyGreengrassV2ComponentArtifactPolicy.

e. Choose Create policy.

f. In the IAM console navigation menu, choose Role, and then choose the name of
the role for the core device. You specified this role name when you installed the
AWS IoT Greengrass Core software. If you did not specify a name, the default is
GreengrassV2TokenExchangeRole.

g. Under Permissions, choose Add permissions, then choose Attach policies.

h. On the Add permissions page, select the check box next to the
MyGreengrassV2ComponentArtifactPolicy policy that you created, and then choose
Add permissions.

Step 4: Deploy and test the component on a core device

In this section, you deploy the component to the core device to test its functionality. On the core
device, you create the virtual battery level file to imitate a real battery. Then, you create additional
deployments and observe the component log files on the core device to see the component defer
and acknowledge updates.

Step 4: Deploy and test the component on a core device 400

https://console.aws.amazon.com/iam

AWS IoT Greengrass Developer Guide, Version 2

To deploy and test the Hello World component that defers updates

1. Use a text editor to create a virtual battery level file. This file imitates a real battery.

• On Linux core devices, create a file named /home/ggc_user/virtual_battery.json.
Run the text editor with sudo permissions.

• On Windows core devices, create a file named C:\Users\ggc_user
\virtual_battery.json. Run the text editor as an administrator.

For example, on a Linux-based system, you can run the following command to use GNU nano
to create the file.

sudo nano /home/ggc_user/virtual_battery.json

Copy the following JSON into the file.

{
 "battery_level": 50
}

2. Deploy the Hello World component to the core device. Do the following:

a. In the AWS IoT Greengrass console navigation menu, choose Components.

b. On the Components page, choose the My components tab, and then choose
com.example.BatteryAwareHelloWorld.

c. On the com.example.BatteryAwareHelloWorld page, choose Deploy.

d. From Add to deployment, choose an existing deployment to revise, or choose to create a
new deployment, and then choose Next.

e. If you chose to create a new deployment, choose the target core device or thing group for
the deployment. On the Specify target page, under Deployment target, choose a core
device or thing group, and then choose Next.

f. On the Select components page, verify that the com.example.BatteryAwareHelloWorld
component is selected, choose Next.

g. On the Configure components page, select com.example.BatteryAwareHelloWorld, and
then do the following:

i. Choose Configure component.
Step 4: Deploy and test the component on a core device 401

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

ii. In the Configure com.example.BatteryAwareHelloWorld modal, under
Configuration update, in Configuration to merge, enter the following configuration
update.

{
 "BatteryThreshold": 70
}

iii. Choose Confirm to close the modal, and then choose Next.

h. On the Confirm advanced settings page, in the Deployment policies section, under
Component update policy, confirm that Notify components is selected. Notify
components is selected by default when you create a new deployment.

i. On the Review page, choose Deploy.

The deployment can take up to a minute to complete.

3. The AWS IoT Greengrass Core software saves stdout from component processes to log files in
the logs folder. Run the following command to verify that the Hello World component runs
and prints status messages.

Linux or Unix

sudo tail -f /greengrass/v2/logs/com.example.BatteryAwareHelloWorld.log

Windows Command Prompt (CMD)

type C:\greengrass\v2\logs\com.example.BatteryAwareHelloWorld.log

PowerShell

gc C:\greengrass\v2\logs\com.example.BatteryAwareHelloWorld.log -Tail 10 -Wait

You should see messages similar to the following example.

Hello, World! Battery level (50) is below threshold (70), so the component will
 defer updates.

Step 4: Deploy and test the component on a core device 402

AWS IoT Greengrass Developer Guide, Version 2

Note

If the file doesn't exist, the deployment may not be complete yet. If the file doesn't
exist within 30 seconds, the deployment likely failed. This can occur if the core device
doesn't have permission to download the component's artifacts from the S3 bucket, for
example. Run the following command to view the AWS IoT Greengrass Core software
log file. This file includes logs from the Greengrass core device's deployment service.

Linux or Unix

sudo tail -f /greengrass/v2/logs/greengrass.log

Windows Command Prompt (CMD)

type C:\greengrass\v2\logs\greengrass.log

The type command writes the file's contents to the terminal. Run this command
multiple times to observe changes in the file.

PowerShell

gc C:\greengrass\v2\logs\greengrass.log -Tail 10 -Wait

4. Create a new deployment to the core device to verify that the component defers the update.
Do the following:

a. In the AWS IoT Greengrass console navigation menu, choose Deployments.

b. Choose the deployment that you created or revised earlier.

c. On the deployment page, choose Revise.

d. In the Revise deployment modal, choose Revise deployment.

e. Choose Next at each step, and then choose Deploy.

5. Run the following command to view the component's logs again, and verify that it defers the
update.

Step 4: Deploy and test the component on a core device 403

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Linux or Unix

sudo tail -f /greengrass/v2/logs/com.example.BatteryAwareHelloWorld.log

Windows Command Prompt (CMD)

type C:\greengrass\v2\logs\com.example.BatteryAwareHelloWorld.log

PowerShell

gc C:\greengrass\v2\logs\com.example.BatteryAwareHelloWorld.log -Tail 10 -Wait

You should see messages similar to the following example. The component defers the update
for 30 seconds, so the component prints this message repeatedly.

Deferred update for deployment 50722a95-a05f-4e2a-9414-da80103269aa.

6. Use a text editor to edit the virtual battery level file and change the battery level to a value
above the threshold, so the deployment can proceed.

• On Linux core devices, edit the file named /home/ggc_user/virtual_battery.json.
Run the text editor with sudo permissions.

• On Windows core devices, edit the file named C:\Users\ggc_user
\virtual_battery.json. Run the text editor as an administrator.

For example, on a Linux-based system, you can run the following command to use GNU nano
to create the file.

sudo nano /home/ggc_user/virtual_battery.json

Change the battery level to 80.

{
 "battery_level": 80
}

Step 4: Deploy and test the component on a core device 404

AWS IoT Greengrass Developer Guide, Version 2

7. Run the following command to view the component's logs again, and verify that it
acknowledges the update.

Linux or Unix

sudo tail -f /greengrass/v2/logs/com.example.BatteryAwareHelloWorld.log

Windows Command Prompt (CMD)

type C:\greengrass\v2\logs\com.example.BatteryAwareHelloWorld.log

PowerShell

gc C:\greengrass\v2\logs\com.example.BatteryAwareHelloWorld.log -Tail 10 -Wait

You should see messages similar to the following examples.

Hello, World! Battery level (80) is above threshold (70), so the component will
 acknowledge updates.
Acknowledged update for deployment f9499eb2-4a40-40a7-86c1-c89887d859f1.

You've completed this tutorial. The Hello World component defers or acknowledges updates based
on the core device's battery level. For more information about the topics that this tutorial explores,
see the following:

• Develop AWS IoT Greengrass components

• Deploy AWS IoT Greengrass components to devices

• Use the AWS IoT Device SDK to communicate with the Greengrass nucleus, other components,
and AWS IoT Core

• AWS IoT Greengrass Development Kit Command-Line Interface

Tutorial: Interact with local IoT devices over MQTT

You can complete this tutorial to configure a core device to interact with local IoT devices, called
client devices, that connect to the core device over MQTT. In this tutorial, you configure AWS IoT
things to use cloud discovery to connect to the core device as client devices. When you configure

Interact with local IoT devices over MQTT 405

AWS IoT Greengrass Developer Guide, Version 2

cloud discovery, a client device can send a request to the AWS IoT Greengrass cloud service to
discover core devices. The response from AWS IoT Greengrass includes connectivity information
and certificates for the core devices that you configure the client device to discover. Then, the client
device can use this information to connect to an available core device where it can communicate
over MQTT.

In this tutorial, you do the following:

1. Review and update the core device's permissions, if needed.

2. Associate client devices to the core device, so they can discover the core device using cloud
discovery.

3. Deploy Greengrass components to the core device to enable client device support.

4. Connect client devices to the core device and test communication with the AWS IoT Core cloud
service.

5. Develop a custom Greengrass component that communicates with the client devices.

6. Develop a custom component that interacts with the client devices' AWS IoT device shadows.

This tutorial uses a single core device and a single client device. You can also follow the tutorial to
connect and test multiple client devices.

You can expect to spend 30–60 minutes on this tutorial.

Prerequisites

To complete this tutorial, you need the following:

• An AWS account. If you don't have one, see Set up an AWS account.

• An AWS Identity and Access Management (IAM) user with administrator permissions.

• A Greengrass core device. For more information about how to set up a core device, see Setting up
AWS IoT Greengrass core devices.

• The core device must run Greengrass nucleus v2.6.0 or later. This version includes support for
wildcards in local publish/subscribe communication and support for client device shadows.

Note

Client device support requires Greengrass nucleus v2.2.0 or later. However, this tutorial
explores newer features, such as support for MQTT wildcards in local publish/subscribe

Prerequisites 406

https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html

AWS IoT Greengrass Developer Guide, Version 2

and support for client device shadows. These features require Greengrass nucleus
v2.6.0 or later.

• The core device must be on the same network as the client devices to connect.

• (Optional) To complete the modules where you develop custom Greengrass components, the
core device must run the Greengrass CLI. For more information, see Install the Greengrass CLI.

• An AWS IoT thing to connect as a client device in this tutorial. For more information, see Create
AWS IoT resources in the AWS IoT Core Developer Guide.

• The client device's AWS IoT policy must allow the greengrass:Discover permission. For
more information, see Minimal AWS IoT policy for client devices.

• The client device must be on the same network as the core device.

• The client device must run Python 3.

• The client device must run Git.

Step 1: Review and update the core device AWS IoT policy

To support client devices, a core device's AWS IoT policy must allow the following permissions:

• greengrass:PutCertificateAuthorities

• greengrass:VerifyClientDeviceIdentity

• greengrass:VerifyClientDeviceIoTCertificateAssociation

• greengrass:GetConnectivityInfo

• greengrass:UpdateConnectivityInfo – (Optional) This permission is required to use the
IP detector component, which reports the core device's network connectivity information to the
AWS IoT Greengrass cloud service.

For more information about these permissions and AWS IoT policies for core devices, see AWS IoT
policies for data plane operations and Minimal AWS IoT policy to support client devices.

In this section, you review the AWS IoT policies for your core device and add any required
permissions that are missing. If you used the AWS IoT Greengrass Core software installer to
provision resources, your core device has an AWS IoT policy that allows access to all AWS IoT
Greengrass actions (greengrass:*). In this case, you must update the AWS IoT policy only if you
plan to configure the shadow manager component to sync device shadows with AWS IoT Core.
Otherwise, you can skip this section.

Step 1: Review and update the core device AWS IoT policy 407

https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html
https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html
https://www.python.org/
https://git-scm.com/

AWS IoT Greengrass Developer Guide, Version 2

To review and update a core device's AWS IoT policy

1. In the AWS IoT Greengrass console navigation menu, choose Core devices.

2. On the Core devices page, choose the core device to update.

3. On the core device details page, choose the link to the core device's Thing. This link opens the
thing details page in the AWS IoT console.

4. On the thing details page, choose Certificates.

5. In the Certificates tab, choose the thing's active certificate.

6. On the certificate details page, choose Policies.

7. In the Policies tab, choose the AWS IoT policy to review and update. You can add the required
permissions to any policy that is attached to the core device's active certificate.

Note

If you used the AWS IoT Greengrass Core software installer to provision resources,
you have two AWS IoT policies. We recommend that you choose the policy named
GreengrassV2IoTThingPolicy, if it exists. Core devices that you create with the quick
installer use this policy name by default. If you add permissions to this policy, you are
also granting these permissions to other core devices that use this policy.

8. In the policy overview, choose Edit active version.

9. Review the policy for the required permissions, and add any required permissions that are
missing.

10. To set a new policy version as the active version, under Policy version status, select Set the
edited version as the active version for this policy.

11. Choose Save as new version.

Step 2: Enable client device support

For a client device to use cloud discovery to connect to a core device, you must associate the
devices. When you associate a client device to a core device, you enable that client device to
retrieve the core device's IP addresses and certificates to use to connect.

To enable client devices to securely connect to a core device and communicate with Greengrass
components and AWS IoT Core, you deploy the following Greengrass components to the core
device:

Step 2: Enable client device support 408

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

• Client device auth (aws.greengrass.clientdevices.Auth)

Deploy the client device auth component to authenticate client devices and authorize client
device actions. This component allows your AWS IoT things to connect to a core device.

This component requires some configuration to use it. You must specify groups of client
devices and the operations that each group is authorized to perform, such as to connect and
communicate over MQTT. For more information, see client device auth component configuration.

• MQTT 3.1.1 broker (Moquette) (aws.greengrass.clientdevices.mqtt.Moquette)

Deploy the Moquette MQTT broker component to run a lightweight MQTT broker. The Moquette
MQTT broker is compliant with MQTT 3.1.1 and includes local support for QoS 0, QoS 1, QoS 2,
retained messages, last will messages, and persistent subscriptions.

You aren't required to configure this component to use it. However, you can configure the port
where this component operates the MQTT broker. By default, it uses port 8883.

• MQTT bridge (aws.greengrass.clientdevices.mqtt.Bridge)

(Optional) Deploy the MQTT bridge component to relay messages between client devices (local
MQTT), local publish/subscribe, and AWS IoT Core MQTT. Configure this component to sync
client devices with AWS IoT Core and interact with client devices from Greengrass components.

This component requires configuration to use. You must specify the topic mappings where this
component relays messages. For more information, see MQTT bridge component configuration.

• IP detector (aws.greengrass.clientdevices.IPDetector)

(Optional) Deploy the IP detector component to automatically report the core device's MQTT
broker endpoints to the AWS IoT Greengrass cloud service. You cannot use this component if you
have a complex network setup, such as one where a router forwards the MQTT broker port to the
core device.

You aren't required to configure this component to use it.

In this section, you use the AWS IoT Greengrass console to associate client devices and deploy
client device components to a core device.

To enable client device support

1. Navigate to the AWS IoT Greengrass console.
Step 2: Enable client device support 409

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

2. In the left navigation menu, choose Core devices.

3. On the Core devices page, choose the core device where you want to enable client device
support.

4. On the core device details page, choose the Client devices tab.

5. On the Client devices tab, choose Configure cloud discovery.

The Configure core device discovery page opens. On this page, you can associate client
devices to a core device and deploy client device components. This page selects the core device
for you in Step 1: Select target core devices.

Note

You can also use this page to configure core device discovery for a thing group. If you
choose this option, you can deploy client device components to all core devices in a
thing group. However, if you choose this option, you must manually associate client
devices to each core device later after you create the deployment. In this tutorial, you
configure a single core device.

6. In Step 2: Associate client devices, associate the client device's AWS IoT thing to the core
device. This enables the client device to use cloud discovery to retrieve the core device's
connectivity information and certificates. Do the following:

a. Choose Associate client devices.

b. In the Associate client devices with core device modal, enter the name of the AWS IoT
thing to associate.

c. Choose Add.

d. Choose Associate.

7. In Step 3: Configure and deploy Greengrass components, deploy components to enable
client device support. If the target core device has a previous deployment, this page revises
that deployment. Otherwise, this page creates a new deployment for the core device. Do the
following to configure and deploy the client device components:

a. The core device must run Greengrass nucleus v2.6.0 or later to complete this tutorial. If
the core device runs an earlier version, do the following:

i. Select the box to deploy the aws.greengrass.Nucleus component.

ii. For the aws.greengrass.Nucleus component, choose Edit configuration.

Step 2: Enable client device support 410

AWS IoT Greengrass Developer Guide, Version 2

iii. For Component version, choose version 2.6.0 or later.

iv. Choose Confirm.

Note

If you upgrade the Greengrass nucleus from an earlier minor version, and the core
device runs AWS-provided components that depend on the nucleus, you must
also update the AWS-provided components to newer versions. You can configure
the version of these components when you review the deployment later in this
tutorial. For more information, see Update the AWS IoT Greengrass Core software
(OTA).

b. For the aws.greengrass.clientdevices.Auth component, choose Edit configuration.

c. In the Edit configuration modal for the client device auth component, configure an
authorization policy that allows client devices to publish and subscribe to the MQTT
broker on the core device. Do the following:

i. Under Configuration, in the Configuration to merge code block, enter the following
configuration, which contains a client device authorization policy. Each device group
authorization policy specifies a set of actions and the resources on which a client
device can perform those actions.

• This policy allows client devices whose names start with MyClientDevice to
connect and communicate on all MQTT topics. Replace MyClientDevice* with
the name of the AWS IoT thing to connect as a client device. You can also specify
a name with the * wildcard that matches the client device's name. The * wildcard
must be at the end of the name.

If you have a second client device to connect, replace MyOtherClientDevice*
with the name of that client device, or a wildcard pattern that matches that client
device's name. Otherwise, you can remove or keep this section of the selection rule
that allows client devices with names that match MyOtherClientDevice* to
connect and communicate.

• This policy uses an OR operator to also allow client devices whose names start with
MyOtherClientDevice to connect and communicate on all MQTT topics. You can

Step 2: Enable client device support 411

AWS IoT Greengrass Developer Guide, Version 2

remove this clause in the selection rule or modify it to match the client devices to
connect.

• This policy allows the client devices to publish and subscribe on all MQTT topics. To
follow best security practices, restrict the mqtt:publish and mqtt:subscribe
operations to the minimal set of topics that the client devices use to communicate.

{
 "deviceGroups": {
 "formatVersion": "2021-03-05",
 "definitions": {
 "MyDeviceGroup": {
 "selectionRule": "thingName: MyClientDevice* OR
 thingName: MyOtherClientDevice*",
 "policyName": "MyClientDevicePolicy"
 }
 },
 "policies": {
 "MyClientDevicePolicy": {
 "AllowConnect": {
 "statementDescription": "Allow client devices to connect.",
 "operations": [
 "mqtt:connect"
],
 "resources": [
 "*"
]
 },
 "AllowPublish": {
 "statementDescription": "Allow client devices to publish to all
 topics.",
 "operations": [
 "mqtt:publish"
],
 "resources": [
 "*"
]
 },
 "AllowSubscribe": {
 "statementDescription": "Allow client devices to subscribe to all
 topics.",
 "operations": [

Step 2: Enable client device support 412

AWS IoT Greengrass Developer Guide, Version 2

 "mqtt:subscribe"
],
 "resources": [
 "*"
]
 }
 }
 }
 }
}

For more information, see Client device auth component configuration.

ii. Choose Confirm.

d. For the aws.greengrass.clientdevices.mqtt.Bridge component, choose Edit
configuration.

e. In the Edit configuration modal for the MQTT bridge component, configure a topic
mapping that relays MQTT messages from client devices to AWS IoT Core. Do the
following:

i. Under Configuration, in the Configuration to merge code block, enter the following
configuration. This configuration specifies to relay MQTT messages on the clients/
+/hello/world topic filter from client devices to the AWS IoT Core cloud service.
For example, this topic filter matches the clients/MyClientDevice1/hello/
world topic.

{
 "mqttTopicMapping": {
 "HelloWorldIotCoreMapping": {
 "topic": "clients/+/hello/world",
 "source": "LocalMqtt",
 "target": "IotCore"
 }
 }
}

For more information, see MQTT bridge component configuration.

ii. Choose Confirm.

8. Choose Review and deploy to review the deployment that this page creates for you.

Step 2: Enable client device support 413

AWS IoT Greengrass Developer Guide, Version 2

9. If you haven't previously set up the Greengrass service role in this Region, the console opens
a modal to set up the service role for you. The client device auth component uses this service
role to verify the identity of client devices, and the IP detector component uses this service
role to manage core device connectivity information. Choose Grant permissions.

10. On the Review page, choose Deploy to start the deployment to the core device.

11. To verify that the deployment succeeds, check the status of the deployment, and check the
logs on the core device. To check the status of the deployment on the core device, you can
choose Target in the deployment Overview. For more information, see the following:

• Check deployment status

• Monitor AWS IoT Greengrass logs

Step 3: Connect client devices

Client devices can use the AWS IoT Device SDK to discover, connect, and communicate with a core
device. The client device must be an AWS IoT thing. For more information, see Create a thing object
in the AWS IoT Core Developer Guide.

In this section, you install the AWS IoT Device SDK v2 for Python and run the Greengrass discovery
sample application from the AWS IoT Device SDK.

Note

The AWS IoT Device SDK is also available in other programming languages. This tutorial
uses the AWS IoT Device SDK v2 for Python, but you can explore the other SDKs for your
use case. For more information, see AWS IoT Device SDKs in the AWS IoT Core Developer
Guide.

To connect a client device to a core device

1. Download and install the AWS IoT Device SDK v2 for Python to the AWS IoT thing to connect
as a client device.

On the client device, do the following:

a. Clone the AWS IoT Device SDK v2 for Python repository to download it.

Step 3: Connect client devices 414

https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html#create-aws-thing
https://github.com/aws/aws-iot-device-sdk-python-v2
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html
https://github.com/aws/aws-iot-device-sdk-python-v2

AWS IoT Greengrass Developer Guide, Version 2

git clone https://github.com/aws/aws-iot-device-sdk-python-v2.git

b. Install the AWS IoT Device SDK v2 for Python.

python3 -m pip install --user ./aws-iot-device-sdk-python-v2

2. Change to the samples folder in the AWS IoT Device SDK v2 for Python.

cd aws-iot-device-sdk-python-v2/samples

3. Run the sample Greengrass discovery application. This application expects arguments that
specify the client device thing name, the MQTT topic and message to use, and the certificates
that authenticate and secure the connection. The following example sends a Hello World
message to the clients/MyClientDevice1/hello/world topic.

Note

This topic matches the topic where you configured the MQTT bridge to relay messages
to AWS IoT Core earlier.

• Replace MyClientDevice1 with the client device's thing name.

• Replace ~/certs/AmazonRootCA1.pem with the path to the Amazon root CA certificate on
the client device.

• Replace ~/certs/device.pem.crt with the path to the device certificate on the client
device.

• Replace ~/certs/private.pem.key with the path to the private key file on the client
device.

• Replace us-east-1 with the AWS Region where your client device and core device operate.

python3 basic_discovery.py \\
 --thing_name MyClientDevice1 \\
 --topic 'clients/MyClientDevice1/hello/world' \\
 --message 'Hello World!' \\
 --ca_file ~/certs/AmazonRootCA1.pem \\
 --cert ~/certs/device.pem.crt \\
 --key ~/certs/private.pem.key \\

Step 3: Connect client devices 415

AWS IoT Greengrass Developer Guide, Version 2

 --region us-east-1 \\
 --verbosity Warn

The discovery sample application sends the message 10 times and disconnects. It also
subscribes to the same topic where it publishes messages. If the output indicates that
the application received MQTT messages on the topic, the client device can successfully
communicate with the core device.

Performing greengrass discovery...
awsiot.greengrass_discovery.DiscoverResponse(gg_groups=[awsiot.greengrass_discovery.GGGroup(gg_group_id='greengrassV2-
coreDevice-MyGreengrassCore',
 cores=[awsiot.greengrass_discovery.GGCore(thing_arn='arn:aws:iot:us-
east-1:123456789012:thing/MyGreengrassCore',
 connectivity=[awsiot.greengrass_discovery.ConnectivityInfo(id='203.0.113.0',
 host_address='203.0.113.0', metadata='', port=8883)])],
 certificate_authorities=['-----BEGIN CERTIFICATE-----\
MIICiT...EXAMPLE=\
-----END CERTIFICATE-----\
'])])
Trying core arn:aws:iot:us-east-1:123456789012:thing/MyGreengrassCore at host
 203.0.113.0 port 8883
Connected!
Published topic clients/MyClientDevice1/hello/world: {"message": "Hello World!",
 "sequence": 0}

Publish received on topic clients/MyClientDevice1/hello/world
b'{"message": "Hello World!", "sequence": 0}'
Published topic clients/MyClientDevice1/hello/world: {"message": "Hello World!",
 "sequence": 1}

Publish received on topic clients/MyClientDevice1/hello/world
b'{"message": "Hello World!", "sequence": 1}'

...

Published topic clients/MyClientDevice1/hello/world: {"message": "Hello World!",
 "sequence": 9}

Publish received on topic clients/MyClientDevice1/hello/world
b'{"message": "Hello World!", "sequence": 9}'

If the application outputs an error instead, see Troubleshooting Greengrass discovery issues.

Step 3: Connect client devices 416

AWS IoT Greengrass Developer Guide, Version 2

You can also view the Greengrass logs on the core device to verify if the client device
successfully connects and sends messages. For more information, see Monitor AWS IoT
Greengrass logs.

4. Verify that the MQTT bridge relays the messages from the client device to AWS IoT Core. You
can use the MQTT test client in the AWS IoT Core console to subscribe to an MQTT topic filter.
Do the following:

a. Navigate to the AWS IoT console.

b. In the left navigation menu, under Test, choose MQTT test client.

c. On the Subscribe to a topic tab, for Topic filter, enter clients/+/hello/world to
subscribe to client device messages from the core device.

d. Choose Subscribe.

e. Run the publish/subscribe application on the client device again.

The MQTT test client displays the messages that you send from the client device on topics
that match this topic filter.

Step 4: Develop a component that communicates with client devices

You can develop Greengrass components that communicate with client devices. Components
use interprocess communication (IPC) and the local publish/subscribe interface to communicate
on a core device. To interact with client devices, configure the MQTT bridge component to relay
messages between client devices and the local publish/subscribe interface.

In this section, you update the MQTT bridge component to relay messages from client devices to
the local publish/subscribe interface. Then, you develop a component that subscribes to these
messages and prints the messages when it receives them.

To develop a component that communicates with client devices

1. Revise the deployment to the core device and configure the MQTT bridge component to relay
messages from client devices to local publish/subscribe. Do the following:

a. Navigate to the AWS IoT Greengrass console.

b. In the left navigation menu, choose Core devices.

c. On the Core devices page, choose the core device that you are using for this tutorial.

Step 4: Develop a component that communicates with client devices 417

https://console.aws.amazon.com/iot
https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

d. On the core device details page, choose the Client devices tab.

e. On the Client devices tab, choose Configure cloud discovery.

The Configure core device discovery page opens. On this page, you can change or
configure which client device components deploy to the core device.

f. In Step 3, for the aws.greengrass.clientdevices.mqtt.Bridge component, choose Edit
configuration.

g. In the Edit configuration modal for the MQTT bridge component, configure a topic
mapping that relays MQTT messages from client devices to the local publish/subscribe
interface. Do the following:

i. Under Configuration, in the Configuration to merge code block, enter the following
configuration. This configuration specifies to relay MQTT messages on topics that
match the clients/+/hello/world topic filter from client devices to the AWS IoT
Core cloud service and the local Greengrass publish/subscribe broker.

{
 "mqttTopicMapping": {
 "HelloWorldIotCoreMapping": {
 "topic": "clients/+/hello/world",
 "source": "LocalMqtt",
 "target": "IotCore"
 },
 "HelloWorldPubsubMapping": {
 "topic": "clients/+/hello/world",
 "source": "LocalMqtt",
 "target": "Pubsub"
 }
 }
}

For more information, see MQTT bridge component configuration.

ii. Choose Confirm.

h. Choose Review and deploy to review the deployment that this page creates for you.

i. On the Review page, choose Deploy to start the deployment to the core device.

j. To verify that the deployment succeeds, check the status of the deployment, and check
the logs on the core device. To check the status of the deployment on the core device, you
can choose Target in the deployment Overview. For more information, see the following:

Step 4: Develop a component that communicates with client devices 418

AWS IoT Greengrass Developer Guide, Version 2

• Check deployment status

• Monitor AWS IoT Greengrass logs

2. Develop and deploy a Greengrass component that subscribes to Hello World messages from
client devices. Do the following:

a. Create folders for recipes and artifacts on the core device.

Linux or Unix

mkdir recipes
mkdir -p artifacts/com.example.clientdevices.MyHelloWorldSubscriber/1.0.0

Windows Command Prompt (CMD)

mkdir recipes
mkdir artifacts\com.example.clientdevices.MyHelloWorldSubscriber\1.0.0

PowerShell

mkdir recipes
mkdir artifacts\com.example.clientdevices.MyHelloWorldSubscriber\1.0.0

Important

You must use the following format for the artifact folder path. Include the
component name and version that you specify in the recipe.

artifacts/componentName/componentVersion/

b. Use a text editor to create a component recipe with the following contents. This recipe
specifies to install the AWS IoT Device SDK v2 for Python and run a script that subscribes
to the topic and prints messages.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

Step 4: Develop a component that communicates with client devices 419

AWS IoT Greengrass Developer Guide, Version 2

nano recipes/com.example.clientdevices.MyHelloWorldSubscriber-1.0.0.json

Copy the following recipe into the file.

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.clientdevices.MyHelloWorldSubscriber",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "A component that subscribes to Hello World messages
 from client devices.",
 "ComponentPublisher": "Amazon",
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "accessControl": {
 "aws.greengrass.ipc.pubsub": {
 "com.example.clientdevices.MyHelloWorldSubscriber:pubsub:1": {
 "policyDescription": "Allows access to subscribe to all topics.",
 "operations": [
 "aws.greengrass#SubscribeToTopic"
],
 "resources": [
 "*"
]
 }
 }
 }
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "linux"
 },
 "Lifecycle": {
 "install": "python3 -m pip install --user awsiotsdk",
 "Run": "python3 -u {artifacts:path}/hello_world_subscriber.py"
 }
 },
 {
 "Platform": {
 "os": "windows"
 },

Step 4: Develop a component that communicates with client devices 420

AWS IoT Greengrass Developer Guide, Version 2

 "Lifecycle": {
 "install": "py -3 -m pip install --user awsiotsdk",
 "Run": "py -3 -u {artifacts:path}/hello_world_subscriber.py"
 }
 }
]
}

c. Use a text editor to create a Python script artifact named
hello_world_subscriber.py with the following contents. This application uses the
publish/subscribe IPC service to subscribe to the clients/+/hello/world topic and
print messages that it receives.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano artifacts/com.example.clientdevices.MyHelloWorldSubscriber/1.0.0/
hello_world_subscriber.py

Copy the following Python code into the file.

import sys
import time
import traceback

from awsiot.greengrasscoreipc.clientv2 import GreengrassCoreIPCClientV2

CLIENT_DEVICE_HELLO_WORLD_TOPIC = 'clients/+/hello/world'
TIMEOUT = 10

def on_hello_world_message(event):
 try:
 message = str(event.binary_message.message, 'utf-8')
 print('Received new message: %s' % message)
 except:
 traceback.print_exc()

try:
 ipc_client = GreengrassCoreIPCClientV2()

Step 4: Develop a component that communicates with client devices 421

AWS IoT Greengrass Developer Guide, Version 2

 # SubscribeToTopic returns a tuple with the response and the operation.
 _, operation = ipc_client.subscribe_to_topic(
 topic=CLIENT_DEVICE_HELLO_WORLD_TOPIC,
 on_stream_event=on_hello_world_message)
 print('Successfully subscribed to topic: %s' %
 CLIENT_DEVICE_HELLO_WORLD_TOPIC)

 # Keep the main thread alive, or the process will exit.
 try:
 while True:
 time.sleep(10)
 except InterruptedError:
 print('Subscribe interrupted.')

 operation.close()
except Exception:
 print('Exception occurred when using IPC.', file=sys.stderr)
 traceback.print_exc()
 exit(1)

Note

This component uses the IPC client V2 in the AWS IoT Device SDK v2 for Python
to communicate with the AWS IoT Greengrass Core software. Compared to the
original IPC client, the IPC client V2 reduces the amount of code that you need to
write to use IPC in custom components.

d. Use the Greengrass CLI to deploy the component.

Linux or Unix

sudo /greengrass/v2/bin/greengrass-cli deployment create \
 --recipeDir recipes \
 --artifactDir artifacts \
 --merge "com.example.clientdevices.MyHelloWorldSubscriber=1.0.0"

Windows Command Prompt (CMD)

C:\greengrass\v2/bin/greengrass-cli deployment create ^
 --recipeDir recipes ^
 --artifactDir artifacts ^

Step 4: Develop a component that communicates with client devices 422

https://github.com/aws/aws-iot-device-sdk-python-v2

AWS IoT Greengrass Developer Guide, Version 2

 --merge "com.example.clientdevices.MyHelloWorldSubscriber=1.0.0"

PowerShell

C:\greengrass\v2/bin/greengrass-cli deployment create `
 --recipeDir recipes `
 --artifactDir artifacts `
 --merge "com.example.clientdevices.MyHelloWorldSubscriber=1.0.0"

3. View the component logs to verify that the component installs successfully and subscribes to
the topic.

Linux or Unix

sudo tail -f /greengrass/v2/logs/
com.example.clientdevices.MyHelloWorldSubscriber.log

PowerShell

gc C:\greengrass\v2/logs/com.example.clientdevices.MyHelloWorldSubscriber.log -
Tail 10 -Wait

You can keep the log feed open to verify that the core device receives messages.

4. On the client device, run the sample Greengrass discovery application again to send messages
to the core device.

python3 basic_discovery.py \\
 --thing_name MyClientDevice1 \\
 --topic 'clients/MyClientDevice1/hello/world' \\
 --message 'Hello World!' \\
 --ca_file ~/certs/AmazonRootCA1.pem \\
 --cert ~/certs/device.pem.crt \\
 --key ~/certs/private.pem.key \\
 --region us-east-1 \\
 --verbosity Warn

5. View the component logs again to verify that the component receives and prints the messages
from the client device.

Step 4: Develop a component that communicates with client devices 423

AWS IoT Greengrass Developer Guide, Version 2

Linux or Unix

sudo tail -f /greengrass/v2/logs/
com.example.clientdevices.MyHelloWorldSubscriber.log

PowerShell

gc C:\greengrass\v2/logs/com.example.clientdevices.MyHelloWorldSubscriber.log -
Tail 10 -Wait

Step 5: Develop a component that interacts with client device shadows

You can develop Greengrass components that interact with client device's AWS IoT device shadows.
A shadow is a JSON document that stores the current or desired state information for an AWS IoT
thing, such as a client device. Custom components can access client devices' shadows to manage
their state, even when the client device isn't connected to AWS IoT. Each AWS IoT thing has an
unnamed shadow, and you can also create multiple named shadows for each thing.

In this section, you deploy the shadow manager component to manage shadows on the core
device. You also update the MQTT bridge component to relay shadow messages between client
devices and the shadow manager component. Then, you develop a component that updates the
client devices' shadows, and you run a sample application on the client devices that responds to
shadow updates from the component. This component represents a smart light management
application, where the core device manages the color state of smart lights that connect to it as
client devices.

To develop a component that interacts with client device shadows

1. Revise the deployment to the core device to deploy the shadow manager component and
configure the MQTT bridge component to relay shadow messages between client devices and
local publish/subscribe, where shadow manager communicates. Do the following:

a. Navigate to the AWS IoT Greengrass console.

b. In the left navigation menu, choose Core devices.

c. On the Core devices page, choose the core device that you are using for this tutorial.

d. On the core device details page, choose the Client devices tab.

Step 5: Develop a component that interacts with client device shadows 424

https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

e. On the Client devices tab, choose Configure cloud discovery.

The Configure core device discovery page opens. On this page, you can change or
configure which client device components deploy to the core device.

f. In Step 3, for the aws.greengrass.clientdevices.mqtt.Bridge component, choose Edit
configuration.

g. In the Edit configuration modal for the MQTT bridge component, configure a topic
mapping that relays MQTT messages on device shadow topics between client devices and
the local publish/subscribe interface. You also confirm that the deployment specifies a
compatible MQTT bridge version. Client device shadow support requires MQTT bridge
v2.2.0 or later. Do the following:

i. For Component version, choose version 2.2.0 or later.

ii. Under Configuration, in the Configuration to merge code block, enter the following
configuration. This configuration specifies to relays MQTT messages on shadow
topics.

{
 "mqttTopicMapping": {
 "HelloWorldIotCoreMapping": {
 "topic": "clients/+/hello/world",
 "source": "LocalMqtt",
 "target": "IotCore"
 },
 "HelloWorldPubsubMapping": {
 "topic": "clients/+/hello/world",
 "source": "LocalMqtt",
 "target": "Pubsub"
 },
 "ShadowsLocalMqttToPubsub": {
 "topic": "$aws/things/+/shadow/#",
 "source": "LocalMqtt",
 "target": "Pubsub"
 },
 "ShadowsPubsubToLocalMqtt": {
 "topic": "$aws/things/+/shadow/#",
 "source": "Pubsub",
 "target": "LocalMqtt"
 }
 }

Step 5: Develop a component that interacts with client device shadows 425

https://docs.aws.amazon.com/iot/latest/developerguide/reserved-topics.html#reserved-topics-shadow

AWS IoT Greengrass Developer Guide, Version 2

}

For more information, see MQTT bridge component configuration.

iii. Choose Confirm.

h. In Step 3, select the aws.greengrass.ShadowManager component to deploy it.

i. Choose Review and deploy to review the deployment that this page creates for you.

j. On the Review page, choose Deploy to start the deployment to the core device.

k. To verify that the deployment succeeds, check the status of the deployment, and check
the logs on the core device. To check the status of the deployment on the core device, you
can choose Target in the deployment Overview. For more information, see the following:

• Check deployment status

• Monitor AWS IoT Greengrass logs

2. Develop and deploy a Greengrass component that manages smart light client devices. Do the
following:

a. Create a folder the component's artifacts on the core device.

Linux or Unix

mkdir -p artifacts/com.example.clientdevices.MySmartLightManager/1.0.0

Windows Command Prompt (CMD)

mkdir artifacts\com.example.clientdevices.MySmartLightManager\1.0.0

PowerShell

mkdir artifacts\com.example.clientdevices.MySmartLightManager\1.0.0

Important

You must use the following format for the artifact folder path. Include the
component name and version that you specify in the recipe.

Step 5: Develop a component that interacts with client device shadows 426

AWS IoT Greengrass Developer Guide, Version 2

artifacts/componentName/componentVersion/

b. Use a text editor to create a component recipe with the following contents. This recipe
specifies to install the AWS IoT Device SDK v2 for Python and run a script that interacts
with smart light client devices' shadows to manage their colors.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano recipes/com.example.clientdevices.MySmartLightManager-1.0.0.json

Copy the following recipe into the file.

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.clientdevices.MySmartLightManager",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "A component that interacts with smart light client
 devices.",
 "ComponentPublisher": "Amazon",
 "ComponentDependencies": {
 "aws.greengrass.Nucleus": {
 "VersionRequirement": "^2.6.0"
 },
 "aws.greengrass.ShadowManager": {
 "VersionRequirement": "^2.2.0"
 },
 "aws.greengrass.clientdevices.mqtt.Bridge": {
 "VersionRequirement": "^2.2.0"
 }
 },
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "smartLightDeviceNames": [],
 "accessControl": {
 "aws.greengrass.ShadowManager": {
 "com.example.clientdevices.MySmartLightManager:shadow:1": {
 "policyDescription": "Allows access to client devices' unnamed
 shadows",
 "operations": [

Step 5: Develop a component that interacts with client device shadows 427

AWS IoT Greengrass Developer Guide, Version 2

 "aws.greengrass#GetThingShadow",
 "aws.greengrass#UpdateThingShadow"
],
 "resources": [
 "$aws/things/MyClientDevice*/shadow"
]
 }
 },
 "aws.greengrass.ipc.pubsub": {
 "com.example.clientdevices.MySmartLightManager:pubsub:1": {
 "policyDescription": "Allows access to client devices' unnamed
 shadow updates",
 "operations": [
 "aws.greengrass#SubscribeToTopic"
],
 "resources": [
 "$aws/things/+/shadow/update/accepted"
]
 }
 }
 }
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "linux"
 },
 "Lifecycle": {
 "install": "python3 -m pip install --user awsiotsdk",
 "Run": "python3 -u {artifacts:path}/smart_light_manager.py"
 }
 },
 {
 "Platform": {
 "os": "windows"
 },
 "Lifecycle": {
 "install": "py -3 -m pip install --user awsiotsdk",
 "Run": "py -3 -u {artifacts:path}/smart_light_manager.py"
 }
 }
]

Step 5: Develop a component that interacts with client device shadows 428

AWS IoT Greengrass Developer Guide, Version 2

}

c. Use a text editor to create a Python script artifact named smart_light_manager.py
with the following contents. This application uses the shadow IPC service to get and
update client device shadows and the local publish/subscribe IPC service to receive
reported shadow updates.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano artifacts/com.example.clientdevices.MySmartLightManager/1.0.0/
smart_light_manager.py

Copy the following Python code into the file.

import json
import random
import sys
import time
import traceback
from uuid import uuid4

from awsiot.greengrasscoreipc.clientv2 import GreengrassCoreIPCClientV2
from awsiot.greengrasscoreipc.model import ResourceNotFoundError

SHADOW_COLOR_PROPERTY = 'color'
CONFIGURATION_CLIENT_DEVICE_NAMES = 'smartLightDeviceNames'
COLORS = ['red', 'orange', 'yellow', 'green', 'blue', 'purple']
SHADOW_UPDATE_TOPIC = '$aws/things/+/shadow/update/accepted'
SET_COLOR_INTERVAL = 15

class SmartLightDevice():
 def __init__(self, client_device_name: str, reported_color: str = None):
 self.name = client_device_name
 self.reported_color = reported_color
 self.desired_color = None

class SmartLightDeviceManager():
 def __init__(self, ipc_client: GreengrassCoreIPCClientV2):
 self.ipc_client = ipc_client

Step 5: Develop a component that interacts with client device shadows 429

AWS IoT Greengrass Developer Guide, Version 2

 self.devices = {}
 self.client_tokens = set()
 self.shadow_update_accepted_subscription_operation = None
 self.client_device_names_configuration_subscription_operation = None
 self.update_smart_light_device_list()

 def update_smart_light_device_list(self):
 # Update the device list from the component configuration.
 response = self.ipc_client.get_configuration(
 key_path=[CONFIGURATION_CLIENT_DEVICE_NAMES])
 # Identify the difference between the configuration and the currently
 tracked devices.
 current_device_names = self.devices.keys()
 updated_device_names =
 response.value[CONFIGURATION_CLIENT_DEVICE_NAMES]
 added_device_names = set(updated_device_names) -
 set(current_device_names)
 removed_device_names = set(current_device_names) -
 set(updated_device_names)
 # Stop tracking any smart light devices that are no longer in the
 configuration.
 for name in removed_device_names:
 print('Removing %s from smart light device manager' % name)
 self.devices.pop(name)
 # Start tracking any new smart light devices that are in the
 configuration.
 for name in added_device_names:
 print('Adding %s to smart light device manager' % name)
 device = SmartLightDevice(name)
 device.reported_color = self.get_device_reported_color(device)
 self.devices[name] = device
 print('Current color for %s is %s' % (name,
 device.reported_color))

 def get_device_reported_color(self, smart_light_device):
 try:
 response = self.ipc_client.get_thing_shadow(
 thing_name=smart_light_device.name, shadow_name='')
 shadow = json.loads(str(response.payload, 'utf-8'))
 if 'reported' in shadow['state']:
 return shadow['state']['reported'].get(SHADOW_COLOR_PROPERTY)
 return None
 except ResourceNotFoundError:
 return None

Step 5: Develop a component that interacts with client device shadows 430

AWS IoT Greengrass Developer Guide, Version 2

 def request_device_color_change(self, smart_light_device, color):
 # Generate and track a client token for the request.
 client_token = str(uuid4())
 self.client_tokens.add(client_token)
 # Create a shadow payload, which must be a blob.
 payload_json = {
 'state': {
 'desired': {
 SHADOW_COLOR_PROPERTY: color
 }
 },
 'clientToken': client_token
 }
 payload = bytes(json.dumps(payload_json), 'utf-8')
 self.ipc_client.update_thing_shadow(
 thing_name=smart_light_device.name, shadow_name='',
 payload=payload)
 smart_light_device.desired_color = color

 def subscribe_to_shadow_update_accepted_events(self):
 if self.shadow_update_accepted_subscription_operation == None:
 # SubscribeToTopic returns a tuple with the response and the
 operation.
 _, self.shadow_update_accepted_subscription_operation =
 self.ipc_client.subscribe_to_topic(
 topic=SHADOW_UPDATE_TOPIC,
 on_stream_event=self.on_shadow_update_accepted_event)
 print('Successfully subscribed to shadow update accepted topic')

 def close_shadow_update_accepted_subscription(self):
 if self.shadow_update_accepted_subscription_operation is not None:
 self.shadow_update_accepted_subscription_operation.close()

 def on_shadow_update_accepted_event(self, event):
 try:
 message = str(event.binary_message.message, 'utf-8')
 accepted_payload = json.loads(message)
 # Check for reported states from smart light devices and ignore
 desired states from components.
 if 'reported' in accepted_payload['state']:
 # Process this update only if it uses a client token created by
 this component.
 client_token = accepted_payload.get('clientToken')

Step 5: Develop a component that interacts with client device shadows 431

AWS IoT Greengrass Developer Guide, Version 2

 if client_token is not None and client_token in
 self.client_tokens:
 self.client_tokens.remove(client_token)
 shadow_state = accepted_payload['state']['reported']
 if SHADOW_COLOR_PROPERTY in shadow_state:
 reported_color = shadow_state[SHADOW_COLOR_PROPERTY]
 topic = event.binary_message.context.topic
 client_device_name = topic.split('/')[2]
 if client_device_name in self.devices:
 # Set the reported color for the smart light
 device.
 self.devices[client_device_name].reported_color =
 reported_color
 print(
 'Received shadow update confirmation from
 client device: %s' % client_device_name)
 else:
 print("Shadow update doesn't specify color")
 except:
 traceback.print_exc()

 def subscribe_to_client_device_name_configuration_updates(self):
 if self.client_device_names_configuration_subscription_operation ==
 None:
 # SubscribeToConfigurationUpdate returns a tuple with the response
 and the operation.
 _, self.client_device_names_configuration_subscription_operation =
 self.ipc_client.subscribe_to_configuration_update(
 key_path=[CONFIGURATION_CLIENT_DEVICE_NAMES],
 on_stream_event=self.on_client_device_names_configuration_update_event)
 print(
 'Successfully subscribed to configuration updates for smart
 light device names')

 def close_client_device_names_configuration_subscription(self):
 if self.client_device_names_configuration_subscription_operation is not
 None:

 self.client_device_names_configuration_subscription_operation.close()

 def on_client_device_names_configuration_update_event(self, event):
 try:
 if CONFIGURATION_CLIENT_DEVICE_NAMES in
 event.configuration_update_event.key_path:

Step 5: Develop a component that interacts with client device shadows 432

AWS IoT Greengrass Developer Guide, Version 2

 print('Received configuration update for list of client
 devices')
 self.update_smart_light_device_list()
 except:
 traceback.print_exc()

def choose_random_color():
 return random.choice(COLORS)

def main():
 try:
 # Create an IPC client and a smart light device manager.
 ipc_client = GreengrassCoreIPCClientV2()
 smart_light_manager = SmartLightDeviceManager(ipc_client)
 smart_light_manager.subscribe_to_shadow_update_accepted_events()

 smart_light_manager.subscribe_to_client_device_name_configuration_updates()
 try:
 # Keep the main thread alive, or the process will exit.
 while True:
 # Set each smart light device to a random color at a regular
 interval.
 for device_name in smart_light_manager.devices:
 device = smart_light_manager.devices[device_name]
 desired_color = choose_random_color()
 print('Chose random color (%s) for %s' %
 (desired_color, device_name))
 if desired_color == device.desired_color:
 print('Desired color for %s is already %s' %
 (device_name, desired_color))
 elif desired_color == device.reported_color:
 print('Reported color for %s is already %s' %
 (device_name, desired_color))
 else:
 smart_light_manager.request_device_color_change(
 device, desired_color)
 print('Requested color change for %s to %s' %
 (device_name, desired_color))
 time.sleep(SET_COLOR_INTERVAL)
 except InterruptedError:
 print('Application interrupted')
 smart_light_manager.close_shadow_update_accepted_subscription()

Step 5: Develop a component that interacts with client device shadows 433

AWS IoT Greengrass Developer Guide, Version 2

 smart_light_manager.close_client_device_names_configuration_subscription()
 except Exception:
 print('Exception occurred', file=sys.stderr)
 traceback.print_exc()
 exit(1)

if __name__ == '__main__':
 main()

This Python application does the following:

• Reads the component's configuration to get the list of smart light client devices to
manage.

• Subscribes to configuration update notifications using the
SubscribeToConfigurationUpdate IPC operation. The AWS IoT Greengrass Core software
sends notifications each time the component's configuration changes. When the
component receives a configuration update notification, it updates the list of smart light
client devices that it manages.

• Gets each smart light client device's shadow to get its initial color state.

• Sets each smart light client device's color to a random color every 15 seconds. The
component updates the client device's thing shadow to change its color. This operation
sends a shadow delta event to the client device over MQTT.

• Subscribes to shadow update accepted messages on the local publish/subscribe
interface using the SubscribeToTopic IPC operation. This component receives these
messages to track the color of each smart light client device. When a smart light client
device receives a shadow update, it sends an MQTT message to confirm that it received
the update. The MQTT bridge relays this message to the local publish/subscribe
interface.

d. Use the Greengrass CLI to deploy the component. When you deploy this component, you
specify the list of client devices, smartLightDeviceNames, whose shadows it manages.
Replace MyClientDevice1 with the client device's thing name.

Linux or Unix

sudo /greengrass/v2/bin/greengrass-cli deployment create \
 --recipeDir recipes \

Step 5: Develop a component that interacts with client device shadows 434

AWS IoT Greengrass Developer Guide, Version 2

 --artifactDir artifacts \
 --merge "com.example.clientdevices.MySmartLightManager=1.0.0" \
 --update-config '{
 "com.example.clientdevices.MySmartLightManager": {
 "MERGE": {
 "smartLightDeviceNames": [
 "MyClientDevice1"
]
 }
 }
 }'

Windows Command Prompt (CMD)

C:\greengrass\v2/bin/greengrass-cli deployment create ^
 --recipeDir recipes ^
 --artifactDir artifacts ^
 --merge "com.example.clientdevices.MySmartLightManager=1.0.0" ^
 --update-config '{"com.example.clientdevices.MySmartLightManager":
{"MERGE":{"smartLightDeviceNames":["MyClientDevice1"]}}}'

PowerShell

C:\greengrass\v2/bin/greengrass-cli deployment create `
 --recipeDir recipes `
 --artifactDir artifacts `
 --merge "com.example.clientdevices.MySmartLightManager=1.0.0" `
 --update-config '{
 "com.example.clientdevices.MySmartLightManager": {
 "MERGE": {
 "smartLightDeviceNames": [
 "MyClientDevice1"
]
 }
 }
 }'

3. View the component logs to verify that the component installs and runs successfully.

Step 5: Develop a component that interacts with client device shadows 435

AWS IoT Greengrass Developer Guide, Version 2

Linux or Unix

sudo tail -f /greengrass/v2/logs/
com.example.clientdevices.MySmartLightManager.log

PowerShell

gc C:\greengrass\v2/logs/com.example.clientdevices.MySmartLightManager.log -Tail
 10 -Wait

The component sends requests to change the color of the smart light client device. The
shadow manager receives the request and sets the shadow's desired state. However, the
smart light client device isn't running yet, so the shadow's reported state doesn't change.
The component's logs include the following messages.

2022-07-07T03:49:24.908Z [INFO] (Copier)
 com.example.clientdevices.MySmartLightManager: stdout. Chose random color (blue)
 for MyClientDevice1.
 {scriptName=services.com.example.clientdevices.MySmartLightManager.lifecycle.Run,
 serviceName=com.example.clientdevices.MySmartLightManager, currentState=RUNNING}
2022-07-07T03:49:24.912Z [INFO] (Copier)
 com.example.clientdevices.MySmartLightManager: stdout.
 Requested color change for MyClientDevice1 to blue.
 {scriptName=services.com.example.clientdevices.MySmartLightManager.lifecycle.Run,
 serviceName=com.example.clientdevices.MySmartLightManager, currentState=RUNNING}

You can keep the log feed open to see when the component prints messages.

4. Download and run a sample application that uses Greengrass discovery and subscribes to
device shadow updates. On the client device, do the following:

a. Change to the samples folder in the AWS IoT Device SDK v2 for Python. This sample
application uses a command line parsing module in the samples folder.

cd aws-iot-device-sdk-python-v2/samples

b. Use a text editor to create a Python script named basic_discovery_shadow.py with
the following contents. This application uses Greengrass discovery and shadows to keep a
property in sync between the client device and the core device.

Step 5: Develop a component that interacts with client device shadows 436

AWS IoT Greengrass Developer Guide, Version 2

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano basic_discovery_shadow.py

Copy the following Python code into the file.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0.

from awscrt import io
from awscrt import mqtt
from awsiot import iotshadow
from awsiot.greengrass_discovery import DiscoveryClient
from awsiot import mqtt_connection_builder
from concurrent.futures import Future
import sys
import threading
import traceback
from uuid import uuid4

Parse arguments
import utils.command_line_utils;
cmdUtils = utils.command_line_utils.CommandLineUtils("Basic Discovery -
 Greengrass discovery example with device shadows.")
cmdUtils.add_common_mqtt_commands()
cmdUtils.add_common_topic_message_commands()
cmdUtils.add_common_logging_commands()
cmdUtils.register_command("key", "<path>", "Path to your key in PEM format.",
 True, str)
cmdUtils.register_command("cert", "<path>", "Path to your client certificate in
 PEM format.", True, str)
cmdUtils.remove_command("endpoint")
cmdUtils.register_command("thing_name", "<str>", "The name assigned to your IoT
 Thing", required=True)
cmdUtils.register_command("region", "<str>", "The region to connect through.",
 required=True)
cmdUtils.register_command("shadow_property", "<str>", "The name of the shadow
 property you want to change (optional, default='color'", default="color")
Needs to be called so the command utils parse the commands
cmdUtils.get_args()

Step 5: Develop a component that interacts with client device shadows 437

AWS IoT Greengrass Developer Guide, Version 2

Using globals to simplify sample code
is_sample_done = threading.Event()
mqtt_connection = None
shadow_thing_name = cmdUtils.get_command_required("thing_name")
shadow_property = cmdUtils.get_command("shadow_property")

SHADOW_VALUE_DEFAULT = "off"

class LockedData:
 def __init__(self):
 self.lock = threading.Lock()
 self.shadow_value = None
 self.disconnect_called = False
 self.request_tokens = set()

locked_data = LockedData()

def on_connection_interupted(connection, error, **kwargs):
 print('connection interrupted with error {}'.format(error))

def on_connection_resumed(connection, return_code, session_present, **kwargs):
 print('connection resumed with return code {}, session present
 {}'.format(return_code, session_present))

Try IoT endpoints until we find one that works
def try_iot_endpoints():
 for gg_group in discover_response.gg_groups:
 for gg_core in gg_group.cores:
 for connectivity_info in gg_core.connectivity:
 try:
 print('Trying core {} at host {} port
 {}'.format(gg_core.thing_arn, connectivity_info.host_address,
 connectivity_info.port))
 mqtt_connection = mqtt_connection_builder.mtls_from_path(
 endpoint=connectivity_info.host_address,
 port=connectivity_info.port,
 cert_filepath=cmdUtils.get_command_required("cert"),
 pri_key_filepath=cmdUtils.get_command_required("key"),

 ca_bytes=gg_group.certificate_authorities[0].encode('utf-8'),
 on_connection_interrupted=on_connection_interupted,
 on_connection_resumed=on_connection_resumed,

Step 5: Develop a component that interacts with client device shadows 438

AWS IoT Greengrass Developer Guide, Version 2

 client_id=cmdUtils.get_command_required("thing_name"),
 clean_session=False,
 keep_alive_secs=30)

 connect_future = mqtt_connection.connect()
 connect_future.result()
 print('Connected!')
 return mqtt_connection

 except Exception as e:
 print('Connection failed with exception {}'.format(e))
 continue

 exit('All connection attempts failed')

Function for gracefully quitting this sample
def exit(msg_or_exception):
 if isinstance(msg_or_exception, Exception):
 print("Exiting sample due to exception.")
 traceback.print_exception(msg_or_exception.__class__, msg_or_exception,
 sys.exc_info()[2])
 else:
 print("Exiting sample:", msg_or_exception)

 with locked_data.lock:
 if not locked_data.disconnect_called:
 print("Disconnecting...")
 locked_data.disconnect_called = True
 future = mqtt_connection.disconnect()
 future.add_done_callback(on_disconnected)

def on_disconnected(disconnect_future):
 # type: (Future) -> None
 print("Disconnected.")

 # Signal that sample is finished
 is_sample_done.set()

def on_get_shadow_accepted(response):
 # type: (iotshadow.GetShadowResponse) -> None
 try:
 with locked_data.lock:
 # check that this is a response to a request from this session
 try:

Step 5: Develop a component that interacts with client device shadows 439

AWS IoT Greengrass Developer Guide, Version 2

 locked_data.request_tokens.remove(response.client_token)
 except KeyError:
 return

 print("Finished getting initial shadow state.")
 if locked_data.shadow_value is not None:
 print(" Ignoring initial query because a delta event has
 already been received.")
 return

 if response.state:
 if response.state.delta:
 value = response.state.delta.get(shadow_property)
 if value:
 print(" Shadow contains delta value '{}'.".format(value))
 change_shadow_value(value)
 return

 if response.state.reported:
 value = response.state.reported.get(shadow_property)
 if value:
 print(" Shadow contains reported value
 '{}'.".format(value))

 set_local_value_due_to_initial_query(response.state.reported[shadow_property])
 return

 print(" Shadow document lacks '{}' property. Setting
 defaults...".format(shadow_property))
 change_shadow_value(SHADOW_VALUE_DEFAULT)
 return

 except Exception as e:
 exit(e)

def on_get_shadow_rejected(error):
 # type: (iotshadow.ErrorResponse) -> None
 try:
 # check that this is a response to a request from this session
 with locked_data.lock:
 try:
 locked_data.request_tokens.remove(error.client_token)
 except KeyError:
 return

Step 5: Develop a component that interacts with client device shadows 440

AWS IoT Greengrass Developer Guide, Version 2

 if error.code == 404:
 print("Thing has no shadow document. Creating with defaults...")
 change_shadow_value(SHADOW_VALUE_DEFAULT)
 else:
 exit("Get request was rejected. code:{} message:'{}'".format(
 error.code, error.message))

 except Exception as e:
 exit(e)

def on_shadow_delta_updated(delta):
 # type: (iotshadow.ShadowDeltaUpdatedEvent) -> None
 try:
 print("Received shadow delta event.")
 if delta.state and (shadow_property in delta.state):
 value = delta.state[shadow_property]
 if value is None:
 print(" Delta reports that '{}' was deleted. Resetting
 defaults...".format(shadow_property))
 change_shadow_value(SHADOW_VALUE_DEFAULT)
 return
 else:
 print(" Delta reports that desired value is '{}'. Changing
 local value...".format(value))
 if (delta.client_token is not None):
 print (" ClientToken is: " + delta.client_token)
 change_shadow_value(value, delta.client_token)
 else:
 print(" Delta did not report a change in
 '{}'".format(shadow_property))

 except Exception as e:
 exit(e)

def on_publish_update_shadow(future):
 #type: (Future) -> None
 try:
 future.result()
 print("Update request published.")
 except Exception as e:
 print("Failed to publish update request.")
 exit(e)

Step 5: Develop a component that interacts with client device shadows 441

AWS IoT Greengrass Developer Guide, Version 2

def on_update_shadow_accepted(response):
 # type: (iotshadow.UpdateShadowResponse) -> None
 try:
 # check that this is a response to a request from this session
 with locked_data.lock:
 try:
 locked_data.request_tokens.remove(response.client_token)
 except KeyError:
 return

 try:
 if response.state.reported != None:
 if shadow_property in response.state.reported:
 print("Finished updating reported shadow value to
 '{}'.".format(response.state.reported[shadow_property])) # type: ignore
 else:
 print ("Could not find shadow property with name:
 '{}'.".format(shadow_property)) # type: ignore
 else:
 print("Shadow states cleared.") # when the shadow states are
 cleared, reported and desired are set to None
 except:
 exit("Updated shadow is missing the target property")

 except Exception as e:
 exit(e)

def on_update_shadow_rejected(error):
 # type: (iotshadow.ErrorResponse) -> None
 try:
 # check that this is a response to a request from this session
 with locked_data.lock:
 try:
 locked_data.request_tokens.remove(error.client_token)
 except KeyError:
 return

 exit("Update request was rejected. code:{} message:'{}'".format(
 error.code, error.message))

 except Exception as e:
 exit(e)

def set_local_value_due_to_initial_query(reported_value):

Step 5: Develop a component that interacts with client device shadows 442

AWS IoT Greengrass Developer Guide, Version 2

 with locked_data.lock:
 locked_data.shadow_value = reported_value

def change_shadow_value(value, token=None):
 with locked_data.lock:
 if locked_data.shadow_value == value:
 print("Local value is already '{}'.".format(value))
 return

 print("Changed local shadow value to '{}'.".format(value))
 locked_data.shadow_value = value

 print("Updating reported shadow value to '{}'...".format(value))

 reuse_token = token is not None
 # use a unique token so we can correlate this "request" message to
 # any "response" messages received on the /accepted and /rejected
 topics
 if not reuse_token:
 token = str(uuid4())

 # if the value is "clear shadow" then send a UpdateShadowRequest with
 None
 # for both reported and desired to clear the shadow document
 completely.
 if value == "clear_shadow":
 tmp_state = iotshadow.ShadowState(reported=None, desired=None,
 reported_is_nullable=True, desired_is_nullable=True)
 request = iotshadow.UpdateShadowRequest(
 thing_name=shadow_thing_name,
 state=tmp_state,
 client_token=token,
)
 # Otherwise, send a normal update request
 else:
 # if the value is "none" then set it to a Python none object to
 # clear the individual shadow property
 if value == "none":
 value = None

 request = iotshadow.UpdateShadowRequest(
 thing_name=shadow_thing_name,
 state=iotshadow.ShadowState(
 reported={ shadow_property: value }

Step 5: Develop a component that interacts with client device shadows 443

AWS IoT Greengrass Developer Guide, Version 2

),
 client_token=token,
)

 future = shadow_client.publish_update_shadow(request,
 mqtt.QoS.AT_LEAST_ONCE)

 if not reuse_token:
 locked_data.request_tokens.add(token)

 future.add_done_callback(on_publish_update_shadow)

if __name__ == '__main__':
 tls_options =
 io.TlsContextOptions.create_client_with_mtls_from_path(cmdUtils.get_command_required("cert"),
 cmdUtils.get_command_required("key"))
 if cmdUtils.get_command(cmdUtils.m_cmd_ca_file):
 tls_options.override_default_trust_store_from_path(None,
 cmdUtils.get_command(cmdUtils.m_cmd_ca_file))
 tls_context = io.ClientTlsContext(tls_options)

 socket_options = io.SocketOptions()

 print('Performing greengrass discovery...')
 discovery_client =
 DiscoveryClient(io.ClientBootstrap.get_or_create_static_default(),
 socket_options, tls_context, cmdUtils.get_command_required("region"))
 resp_future =
 discovery_client.discover(cmdUtils.get_command_required("thing_name"))
 discover_response = resp_future.result()

 print(discover_response)
 if cmdUtils.get_command("print_discover_resp_only"):
 exit(0)

 mqtt_connection = try_iot_endpoints()
 shadow_client = iotshadow.IotShadowClient(mqtt_connection)

 try:
 # Subscribe to necessary topics.
 # Note that is **is** important to wait for "accepted/rejected"
 subscriptions
 # to succeed before publishing the corresponding "request".

Step 5: Develop a component that interacts with client device shadows 444

AWS IoT Greengrass Developer Guide, Version 2

 print("Subscribing to Update responses...")
 update_accepted_subscribed_future, _ =
 shadow_client.subscribe_to_update_shadow_accepted(

 request=iotshadow.UpdateShadowSubscriptionRequest(thing_name=shadow_thing_name),
 qos=mqtt.QoS.AT_LEAST_ONCE,
 callback=on_update_shadow_accepted)

 update_rejected_subscribed_future, _ =
 shadow_client.subscribe_to_update_shadow_rejected(

 request=iotshadow.UpdateShadowSubscriptionRequest(thing_name=shadow_thing_name),
 qos=mqtt.QoS.AT_LEAST_ONCE,
 callback=on_update_shadow_rejected)

 # Wait for subscriptions to succeed
 update_accepted_subscribed_future.result()
 update_rejected_subscribed_future.result()

 print("Subscribing to Get responses...")
 get_accepted_subscribed_future, _ =
 shadow_client.subscribe_to_get_shadow_accepted(

 request=iotshadow.GetShadowSubscriptionRequest(thing_name=shadow_thing_name),
 qos=mqtt.QoS.AT_LEAST_ONCE,
 callback=on_get_shadow_accepted)

 get_rejected_subscribed_future, _ =
 shadow_client.subscribe_to_get_shadow_rejected(

 request=iotshadow.GetShadowSubscriptionRequest(thing_name=shadow_thing_name),
 qos=mqtt.QoS.AT_LEAST_ONCE,
 callback=on_get_shadow_rejected)

 # Wait for subscriptions to succeed
 get_accepted_subscribed_future.result()
 get_rejected_subscribed_future.result()

 print("Subscribing to Delta events...")
 delta_subscribed_future, _ =
 shadow_client.subscribe_to_shadow_delta_updated_events(

 request=iotshadow.ShadowDeltaUpdatedSubscriptionRequest(thing_name=shadow_thing_name),
 qos=mqtt.QoS.AT_LEAST_ONCE,

Step 5: Develop a component that interacts with client device shadows 445

AWS IoT Greengrass Developer Guide, Version 2

 callback=on_shadow_delta_updated)

 # Wait for subscription to succeed
 delta_subscribed_future.result()

 # The rest of the sample runs asynchronously.

 # Issue request for shadow's current state.
 # The response will be received by the on_get_accepted() callback
 print("Requesting current shadow state...")

 with locked_data.lock:
 # use a unique token so we can correlate this "request" message to
 # any "response" messages received on the /accepted and /rejected
 topics
 token = str(uuid4())

 publish_get_future = shadow_client.publish_get_shadow(

 request=iotshadow.GetShadowRequest(thing_name=shadow_thing_name,
 client_token=token),
 qos=mqtt.QoS.AT_LEAST_ONCE)

 locked_data.request_tokens.add(token)

 # Ensure that publish succeeds
 publish_get_future.result()

 except Exception as e:
 exit(e)

 # Wait for the sample to finish (user types 'quit', or an error occurs)
 is_sample_done.wait()

This Python application does the following:

• Uses Greengrass discovery to discover and connect to the core device.

• Requests the shadow document from the core device to get the property's initial state.

• Subscribes to shadow delta events, which the core device sends when the property's
desired value differs from its reported value. When the application receives a
shadow delta event, it changes the value of the property and sends an update to the
core device to set the new value as its reported value.

Step 5: Develop a component that interacts with client device shadows 446

AWS IoT Greengrass Developer Guide, Version 2

This application combines the Greengrass discovery and shadow samples from the AWS
IoT Device SDK v2.

c. Run the sample application. This application expects arguments that specify the client
device thing name, the shadow property to use, and the certificates that authenticate and
secure the connection.

• Replace MyClientDevice1 with the client device's thing name.

• Replace ~/certs/AmazonRootCA1.pem with the path to the Amazon root CA
certificate on the client device.

• Replace ~/certs/device.pem.crt with the path to the device certificate on the
client device.

• Replace ~/certs/private.pem.key with the path to the private key file on the client
device.

• Replace us-east-1 with the AWS Region where your client device and core device
operate.

python3 basic_discovery_shadow.py \
 --thing_name MyClientDevice1 \
 --shadow_property color \
 --ca_file ~/certs/AmazonRootCA1.pem \
 --cert ~/certs/device.pem.crt \
 --key ~/certs/private.pem.key \
 --region us-east-1 \
 --verbosity Warn

The sample application subscribes to the shadow topics and waits to receive shadow
delta events from the core device. If the output indicates that the application receives
and responds to shadow delta events, the client device can successfully interact with its
shadow on the core device.

Performing greengrass discovery...
awsiot.greengrass_discovery.DiscoverResponse(gg_groups=[awsiot.greengrass_discovery.GGGroup(gg_group_id='greengrassV2-
coreDevice-MyGreengrassCore',
 cores=[awsiot.greengrass_discovery.GGCore(thing_arn='arn:aws:iot:us-
east-1:123456789012:thing/MyGreengrassCore',
 connectivity=[awsiot.greengrass_discovery.ConnectivityInfo(id='203.0.113.0',

Step 5: Develop a component that interacts with client device shadows 447

AWS IoT Greengrass Developer Guide, Version 2

 host_address='203.0.113.0', metadata='', port=8883)])],
 certificate_authorities=['-----BEGIN CERTIFICATE-----
\nMIICiT...EXAMPLE=\n-----END CERTIFICATE-----\n'])])
Trying core arn:aws:iot:us-east-1:123456789012:thing/MyGreengrassCore at host
 203.0.113.0 port 8883
Connected!
Subscribing to Update responses...
Subscribing to Get responses...
Subscribing to Delta events...
Requesting current shadow state...
Received shadow delta event.
 Delta reports that desired value is 'purple'. Changing local value...
 ClientToken is: 3dce4d3f-e336-41ac-aa4f-7882725f0033
Changed local shadow value to 'purple'.
Updating reported shadow value to 'purple'...
Update request published.

If the application outputs an error instead, see Troubleshooting Greengrass discovery
issues.

You can also view the Greengrass logs on the core device to verify if the client device
successfully connects and sends messages. For more information, see Monitor AWS IoT
Greengrass logs.

5. View the component logs again to verify that the component receives shadow update
confirmations from the smart light client device.

Linux or Unix

sudo tail -f /greengrass/v2/logs/
com.example.clientdevices.MySmartLightManager.log

PowerShell

gc C:\greengrass\v2/logs/com.example.clientdevices.MySmartLightManager.log -Tail
 10 -Wait

The component logs messages to confirm that smart light client device changed its color.

2022-07-07T03:49:24.908Z [INFO] (Copier)
 com.example.clientdevices.MySmartLightManager: stdout. Chose random color (blue)

Step 5: Develop a component that interacts with client device shadows 448

AWS IoT Greengrass Developer Guide, Version 2

 for MyClientDevice1.
 {scriptName=services.com.example.clientdevices.MySmartLightManager.lifecycle.Run,
 serviceName=com.example.clientdevices.MySmartLightManager, currentState=RUNNING}
2022-07-07T03:49:24.912Z [INFO] (Copier)
 com.example.clientdevices.MySmartLightManager: stdout.
 Requested color change for MyClientDevice1 to blue.
 {scriptName=services.com.example.clientdevices.MySmartLightManager.lifecycle.Run,
 serviceName=com.example.clientdevices.MySmartLightManager, currentState=RUNNING}
2022-07-07T03:49:24.959Z [INFO] (Copier)
 com.example.clientdevices.MySmartLightManager: stdout. Received
 shadow update confirmation from client device: MyClientDevice1.
 {scriptName=services.com.example.clientdevices.MySmartLightManager.lifecycle.Run,
 serviceName=com.example.clientdevices.MySmartLightManager, currentState=RUNNING}

Note

The client device's shadow is in sync between the core device and the client device.
However, the core device doesn't sync the client device's shadow with AWS IoT Core. You
might sync a shadow with AWS IoT Core to view or modify the state of all devices in your
fleet, for example. For more information about how to configure the shadow manager
component to sync shadows with AWS IoT Core, see Sync local device shadows with AWS
IoT Core.

You've completed this tutorial. The client device connects to the core device, sends MQTT messages
to AWS IoT Core and Greengrass components, and receives shadow updates from the core device.
For more information about the topics covered in this tutorial, see the following:

• Associate client devices

• Manage core device endpoints

• Test client device communications

• Greengrass discovery RESTful API

• Relay MQTT messages between client devices and AWS IoT Core

• Interact with client devices in components

• Interact with device shadows

• Interact with and sync client device shadows

Step 5: Develop a component that interacts with client device shadows 449

AWS IoT Greengrass Developer Guide, Version 2

Tutorial: Get started with SageMaker AI Edge Manager

Important

SageMaker AI Edge Manager was discontinued on April 26th, 2024. For more information
about continuing to deploy your models to edge devices, see SageMaker AI Edge Manager
end of life.

Amazon SageMaker AI Edge Manager is a software agent that runs on edge devices. SageMaker
AI Edge Manager provides model management for edge devices so that you can package and
use Amazon SageMaker AI Neo-compiled models directly on Greengrass core devices. By using
SageMaker AI Edge Manager, you can also sample model input and output data from your core
devices, and send that data to the AWS Cloud for monitoring and analysis. For more information
about how SageMaker AI Edge Manager works on Greengrass core devices, see Use Amazon
SageMaker AI Edge Manager on Greengrass core devices.

This tutorial shows you how to get started using SageMaker AI Edge Manager with AWS-provided
sample components on an existing core device. These sample components use the SageMaker
AI Edge Manager component as a dependency to deploy the Edge Manager agent, and perform
inference using pre-trained models that were compiled using SageMaker AI Neo. For more
information about the SageMaker AI Edge Manager agent, see SageMaker AI Edge Manager in the
Amazon SageMaker AI Developer Guide.

To set up and use the SageMaker AI Edge Manager agent on an existing Greengrass core device,
AWS provides example code that you can use to create the following sample inference and model
components.

• Image classification

• com.greengrass.SageMakerEdgeManager.ImageClassification

• com.greengrass.SageMakerEdgeManager.ImageClassification.Model

• Object detection

• com.greengrass.SageMakerEdgeManager.ObjectDetection

• com.greengrass.SageMakerEdgeManager.ObjectDetection.Model

Get started with SageMaker AI Edge Manager 450

https://docs.aws.amazon.com/sagemaker/latest/dg/edge-eol.html
https://docs.aws.amazon.com/sagemaker/latest/dg/edge-eol.html
https://docs.aws.amazon.com/sagemaker/latest/dg/edge.html

AWS IoT Greengrass Developer Guide, Version 2

This tutorial shows you how to deploy the sample components and the SageMaker AI Edge
Manager agent.

Topics

• Prerequisites

• Set up your Greengrass core device in SageMaker AI Edge Manager

• Create the sample components

• Run sample image classification inference

Prerequisites

To complete this tutorial, you must meet the following prerequisites:

• A Greengrass core device running on Amazon Linux 2, a Debian-based Linux platform (x86_64 or
Armv8), or Windows (x86_64). If you don't have one, see Tutorial: Getting started with AWS IoT
Greengrass V2.

• Python 3.6 or later, including pip for your version of Python, installed on your core device.

• The OpenGL API GLX runtime (libgl1-mesa-glx) installed on your core device.

• An AWS Identity and Access Management (IAM) user with administrator permissions.

• An internet-enabled Windows, Mac, or Unix-like development computer that meets the following
requirements:

• Python 3.6 or later installed.

• AWS CLI installed and configured with your IAM administrator user credentials. For more
information, see Installing the AWS CLI and Configuring the AWS CLI.

• The following S3 buckets created in the same AWS account and AWS Region as your Greengrass
core device:

• An S3 bucket to store the artifacts that are included in the sample inference and model
components. This tutorial uses amzn-s3-demo-bucket1 to refer to this bucket.

• An S3 bucket that you associate with your SageMaker AI edge device fleet. SageMaker AI Edge
Manager requires an S3 bucket to create the edge device fleet, and to store sample data from
running inference on your device. This tutorial uses amzn-s3-demo-bucket2 to refer to this
bucket.

For information about creating S3 buckets, see Getting started with Amazon S3.

Prerequisites 451

https://www.python.org/downloads/
https://www.python.org/downloads/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html

AWS IoT Greengrass Developer Guide, Version 2

• The Greengrass device role configured with the following:

• A trust relationship that allows credentials.iot.amazonaws.com and
sagemaker.amazonaws.com to assume the role, as shown in the following IAM policy
example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "credentials.iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

• The AmazonSageMakerEdgeDeviceFleetPolicy IAM managed policy.

• The AmazonSageMakerFullAccess IAM managed policy.

• The s3:GetObject action for the S3 bucket that contains your component artifacts, as shown
in the following IAM policy example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket1/*"
],
 "Effect": "Allow"

Prerequisites 452

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AmazonSageMakerEdgeDeviceFleetPolicy
https://console.aws.amazon.com/iamv2/home?region=us-east-1#/policies/details/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2FAmazonSageMakerFullAccess?section=policy_permissions

AWS IoT Greengrass Developer Guide, Version 2

 }
]
}

Set up your Greengrass core device in SageMaker AI Edge Manager

Edge device fleets in SageMaker AI Edge Manager are collections of logically grouped devices.
To use SageMaker AI Edge Manager with AWS IoT Greengrass, you must create an edge device
fleet that uses the same AWS IoT role alias as the Greengrass core device to which you deploy the
SageMaker AI Edge Manager agent. Then, you must register the core device as part of that fleet.

Topics

• Create an edge device fleet

• Register your Greengrass core device

Create an edge device fleet

To create an edge device fleet (console)

1. In the Amazon SageMaker AI console, choose Edge Manager, and then choose Edge device
fleets.

2. On the Device fleets page, choose Create device fleet.

3. Under Device fleet properties, do the following:

• For Device fleet name, enter a name for your device fleet.

• For IAM role, enter the Amazon Resource Name (ARN) of the AWS IoT role alias that you
specified when setting up your Greengrass core device.

• Disable the Create IAM role alias toggle.

4. Choose Next.

5. Under Output configuration, for S3 bucket URI, enter the URI of the S3 bucket that you want
to associate with the device fleet.

6. Choose Submit.

Set up in SageMaker AI Edge Manager 453

https://console.aws.amazon.com/sagemaker

AWS IoT Greengrass Developer Guide, Version 2

Register your Greengrass core device

To register your Greengrass core device as an edge device (console)

1. In the Amazon SageMaker AI console, choose Edge Manager, and then choose Edge devices.

2. On the Devices page, choose Register devices.

3. Under Device properties, for Device fleet name, enter the name of the device fleet that you
created, and then choose Next.

4. Choose Next.

5. Under Device source, for Device name, enter the AWS IoT thing name of your Greengrass core
device.

6. Choose Submit.

Create the sample components

To help you get started using the SageMaker AI Edge Manager component, AWS provides a Python
script on GitHub that creates the sample inference and model components and uploads them to
the AWS Cloud for you. Complete the following steps on a development computer.

To create the sample components

1. Download the AWS IoT Greengrass component examples repository on GitHub to your
development computer.

2. Navigate to the downloaded /machine-learning/sagemaker-edge-manager folder.

cd download-directory/machine-learning/sagemaker-edge-manager

3. Run the following command to create and upload the sample components to the AWS Cloud.

python3 create_components.py -r region -b amzn-s3-demo-bucket

Replace region with the AWS Region where you created your Greengrass core device, and
replace amzn-s3-demo-bucket1 with the name of the S3 bucket to store your component
artifacts.

Create the sample components 454

https://console.aws.amazon.com/sagemaker
https://github.com/aws-greengrass/aws-greengrass-component-examples/

AWS IoT Greengrass Developer Guide, Version 2

Note

By default, the script creates sample components for both image classification and
object detection inference. To create components for only a specific type of inference,
specify the -i ImageClassification | ObjectDetection argument.

Sample inference and model components for use with SageMaker AI Edge Manager are now
created in your AWS account. To see the sample components in the AWS IoT Greengrass console,
choose Components, and then under My components, search for the following components:

• com.greengrass.SageMakerEdgeManager.ImageClassification

• com.greengrass.SageMakerEdgeManager.ImageClassification.Model

• com.greengrass.SageMakerEdgeManager.ObjectDetection

• com.greengrass.SageMakerEdgeManager.ObjectDetection.Model

Run sample image classification inference

To run image classification inference using the AWS-provided sample components and
the SageMaker AI Edge Manager agent, you must deploy these components to your core
device. Deploying these components downloads a SageMaker AI Neo-compiled pre-trained
Resnet-50 model and installs the SageMaker AI Edge Manager agent on your device. The
SageMaker AI Edge Manager agent loads the model and publishes inference results on the gg/
sageMakerEdgeManager/image-classification topic. To view these inference results, use
the AWS IoT MQTT client in the AWS IoT console to subscribe to this topic.

Topics

• Subscribe to the notifications topic

• Deploy the sample components

• View inference results

Subscribe to the notifications topic

In this step, you configure the AWS IoT MQTT client in the AWS IoT console to watch MQTT
messages published by the sample inference component. By default, the component publishes

Run sample image classification inference 455

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

inference results on the gg/sageMakerEdgeManager/image-classification topic. Subscribe
to this topic before you deploy the component to your Greengrass core device to see the inference
results when the component runs for the first time.

To subscribe to the default notifications topic

1. In the AWS IoT console navigation menu, choose Test, MQTT test client.

2. Under Subscribe to a topic, in the Topic name box, enter gg/sageMakerEdgeManager/
image-classification.

3. Choose Subscribe.

Deploy the sample components

In this step, you configure and deploy the following components to your core device:

• aws.greengrass.SageMakerEdgeManager

• com.greengrass.SageMakerEdgeManager.ImageClassification

• com.greengrass.SageMakerEdgeManager.ImageClassification.Model

To deploy your components (console)

1. In the AWS IoT Greengrass console navigation menu, choose Deployments, and then choose
the deployment for your target device that you want to revise.

2. On the deployment page, choose Revise, and then choose Revise deployment.

3. On the Specify target page, choose Next.

4. On the Select components page, do the following:

a. Under My components, select the following components:

• com.greengrass.SageMakerEdgeManager.ImageClassification

• com.greengrass.SageMakerEdgeManager.ImageClassification.Model

b. Under Public components, turn off the Show only selected components toggle, and then
select the aws.greengrass.SageMakerEdgeManager component.

c. Choose Next.

Run sample image classification inference 456

https://console.aws.amazon.com/iot/
https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

5. On the Configure components page, select the aws.greengrass.SageMakerEdgeManager
component and do the following.

a. Choose Configure component.

b. Under Configuration update, in Configuration to merge, enter the following
configuration.

{
 "DeviceFleetName": "device-fleet-name",
 "BucketName": "amzn-s3-demo-bucket"
}

Replace device-fleet-name with the name of the edge device fleet that you created,
and replace amzn-s3-demo-bucket with the name of the S3 bucket that is associated
with your device fleet.

c. Choose Confirm, and then choose Next.

6. On the Configure advanced settings page, keep the default configuration settings, and
choose Next.

7. On the Review page, choose Deploy

To deploy your components (AWS CLI)

1. On your development computer, create a deployment.json file to define the deployment
configuration for your SageMaker AI Edge Manager components. This file should look like the
following example.

{
 "targetArn":"targetArn",
 "components": {
 "aws.greengrass.SageMakerEdgeManager": {
 "componentVersion": "1.0.x",
 "configurationUpdate": {
 "merge": "{\"DeviceFleetName\":\"device-fleet-name\",\"BucketName\":\"amzn-
s3-demo-bucket2\"}"
 }
 },
 "com.greengrass.SageMakerEdgeManager.ImageClassification": {
 "componentVersion": "1.0.x",
 "configurationUpdate": {

Run sample image classification inference 457

AWS IoT Greengrass Developer Guide, Version 2

 }
 },
 "com.greengrass.SageMakerEdgeManager.ImageClassification.Model": {
 "componentVersion": "1.0.x",
 "configurationUpdate": {
 }
 },
 }
}

• In the targetArn field, replace targetArn with the Amazon Resource Name (ARN) of the
thing or thing group to target for the deployment, in the following format:

• Thing: arn:aws:iot:region:account-id:thing/thingName

• Thing group: arn:aws:iot:region:account-id:thinggroup/thingGroupName

• In the merge field, replace device-fleet-name with the name of the edge device fleet
that you created. Then, replace amzn-s3-demo-bucket2 with the name of the S3 bucket
that is associated with your device fleet.

• Replace the component versions for each component with the latest available version.

2. Run the following command to deploy the components on the device:

aws greengrassv2 create-deployment \
 --cli-input-json file://path/to/deployment.json

The deployment can take several minutes to complete. In the next step, check the component log
to verify that the deployment completed successfully and to view the inference results.

View inference results

After you deploy the components, you can view the inference results in the component log on your
Greengrass core device and in the AWS IoT MQTT client in the AWS IoT console. To subscribe to the
topic on which the component publishes inference results, see Subscribe to the notifications topic.

• AWS IoT MQTT client—To view the results that the inference component publishes on the
default notifications topic, complete the following steps:

1. In the AWS IoT console navigation menu, choose Test, MQTT test client.

2. Under Subscriptions, choose gg/sageMakerEdgeManager/image-classification.

Run sample image classification inference 458

https://console.aws.amazon.com/iot/

AWS IoT Greengrass Developer Guide, Version 2

• Component log—To view the inference results in the component log, run the following
command on your Greengrass core device.

sudo tail -f /greengrass/v2/logs/
com.greengrass.SageMakerEdgeManager.ImageClassification.log

If you can't see inference results in the component log or in the MQTT client, the deployment failed
or didn't reach the core device. This can occur if your core device isn't connected to the internet
or doesn't have the right permissions to run the component. Run the following command on your
core device to view the AWS IoT Greengrass Core software log file. This file includes logs from the
Greengrass core device's deployment service.

sudo tail -f /greengrass/v2/logs/greengrass.log

For more information, see Troubleshooting machine learning inference.

Tutorial: Perform sample image classification inference using
TensorFlow Lite

This tutorial shows you how to use the TensorFlow Lite image classification inference component
to perform sample image classification inference on a Greengrass core device. This component
includes the following component dependencies:

• TensorFlow Lite image classification model store component

• TensorFlow Lite runtime component

When you deploy this component, it downloads a pre-trained MobileNet v1 model and installs the
TensorFlow Lite runtime and its dependencies. This component publishes inference results on the
ml/tflite/image-classification topic. To view these inference results, use the AWS IoT
MQTT client in the AWS IoT console to subscribe to this topic.

In this tutorial you deploy the sample inference component to perform image classification on the
sample image that is provided by AWS IoT Greengrass. After you complete this tutorial, you can

Perform sample image classification inference 459

https://www.tensorflow.org/lite/guide/python

AWS IoT Greengrass Developer Guide, Version 2

complete Tutorial: Perform sample image classification inference on images from a camera using
TensorFlow Lite, which shows you how to modify the sample inference component to perform
image classification on images from a camera locally on a Greengrass core device.

For more information about machine learning on Greengrass devices, see Perform machine
learning inference.

Topics

• Prerequisites

• Step 1: Subscribe to the default notifications topic

• Step 2: Deploy the TensorFlow Lite image classification component

• Step 3: View inference results

• Next steps

Prerequisites

To complete this tutorial, you need the following:

• A Linux Greengrass core device. If you don't have one, see Tutorial: Getting started with AWS IoT
Greengrass V2. The core device must meet the following requirements:

• On Greengrass core devices running Amazon Linux 2 or Ubuntu 18.04, GNU C Library (glibc)
version 2.27 or later installed on the device.

• On Armv7l devices, such as Raspberry Pi, dependencies for OpenCV-Python installed on the
device. Run the following command to install the dependencies.

sudo apt-get install libopenjp2-7 libilmbase23 libopenexr-dev libavcodec-dev
 libavformat-dev libswscale-dev libv4l-dev libgtk-3-0 libwebp-dev

• Raspberry Pi devices that run Raspberry Pi OS Bullseye must meet the following requirements:

• NumPy 1.22.4 or later installed on the device. Raspberry Pi OS Bullseye includes an earlier
version of NumPy, so you can run the following command to upgrade NumPy on the device.

pip3 install --upgrade numpy

• The legacy camera stack enabled on the device. Raspberry Pi OS Bullseye includes a new
camera stack that is enabled by default and isn't compatible, so you must enable the legacy
camera stack.

Prerequisites 460

https://www.gnu.org/software/libc/

AWS IoT Greengrass Developer Guide, Version 2

To enable the legacy camera stack

1. Run the following command to open the Raspberry Pi configuration tool.

sudo raspi-config

2. Select Interface Options.

3. Select Legacy camera to enable the legacy camera stack.

4. Reboot the Raspberry Pi.

Step 1: Subscribe to the default notifications topic

In this step, you configure the AWS IoT MQTT client in the AWS IoT console to watch MQTT
messages published by the TensorFlow Lite image classification component. By default, the
component publishes inference results on the ml/tflite/image-classification topic.
Subscribe to this topic before you deploy the component to your Greengrass core device to see the
inference results when the component runs for the first time.

To subscribe to the default notifications topic

1. In the AWS IoT console navigation menu, choose Test, MQTT test client.

2. Under Subscribe to a topic, in the Topic name box, enter ml/tflite/image-
classification.

3. Choose Subscribe.

Step 2: Deploy the TensorFlow Lite image classification component

In this step, you deploy the TensorFlow Lite image classification component to your core device:

To deploy the TensorFlow Lite image classification component (console)

1. In the AWS IoT Greengrass console navigation menu, choose Components.

2. On the Components page, on the Public components tab, choose
aws.greengrass.TensorFlowLiteImageClassification.

3. On the aws.greengrass.TensorFlowLiteImageClassification page, choose Deploy.

Step 1: Subscribe to the default notifications topic 461

https://console.aws.amazon.com/iot/
https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

4. From Add to deployment, choose one of the following:

a. To merge this component to an existing deployment on your target device, choose Add to
existing deployment, and then select the deployment that you want to revise.

b. To create a new deployment on your target device, choose Create new deployment. If
you have an existing deployment on your device, choosing this step replaces the existing
deployment.

5. On the Specify target page, do the following:

a. Under Deployment information, enter or modify the friendly name for your deployment.

b. Under Deployment targets, select a target for your deployment, and choose Next. You
cannot change the deployment target if you are revising an existing deployment.

6. On the Select components page, under Public components, verify that the
aws.greengrass.TensorFlowLiteImageClassification component is selected, and
choose Next.

7. On the Configure components page, keep the default configuration settings, and choose
Next.

8. On the Configure advanced settings page, keep the default configuration settings, and
choose Next.

9. On the Review page, choose Deploy

To deploy the TensorFlow Lite image classification component (AWS CLI)

1. Create a deployment.json file to define the deployment configuration for the TensorFlow
Lite image classification component. This file should look like the following:

{
 "targetArn":"targetArn",
 "components": {
 "aws.greengrass.TensorFlowLiteImageClassification": {
 "componentVersion": 2.1.0,
 "configurationUpdate": {
 }
 }
 }
}

Step 2: Deploy the TensorFlow Lite image classification component 462

AWS IoT Greengrass Developer Guide, Version 2

• In the targetArn field, replace targetArn with the Amazon Resource Name (ARN) of the
thing or thing group to target for the deployment, in the following format:

• Thing: arn:aws:iot:region:account-id:thing/thingName

• Thing group: arn:aws:iot:region:account-id:thinggroup/thingGroupName

• This tutorial uses component version 2.1.0. In the
aws.greengrass.TensorFlowLiteObjectDetection component object, replace 2.1.0
to use a different version of the TensorFlow Lite object detection component.

2. Run the following command to deploy the TensorFlow Lite image classification component on
the device:

aws greengrassv2 create-deployment \
 --cli-input-json file://path/to/deployment.json

The deployment can take several minutes to complete. In the next step, check the component log
to verify that the deployment completed successfully and to view the inference results.

Step 3: View inference results

After you deploy the component, you can view the inference results in the component log on your
Greengrass core device and in the AWS IoT MQTT client in the AWS IoT console. To subscribe to
the topic on which the component publishes inference results, see Step 1: Subscribe to the default
notifications topic.

• AWS IoT MQTT client—To view the results that the inference component publishes on the
default notifications topic, complete the following steps:

1. In the AWS IoT console navigation menu, choose Test, MQTT test client.

2. Under Subscriptions, choose ml/tflite/image-classification.

You should see messages similar to the following example.

{
 "timestamp": "2021-01-01 00:00:00.000000",
 "inference-type": "image-classification",
 "inference-description": "Top 5 predictions with score 0.3 or above ",
 "inference-results": [
 {

Step 3: View inference results 463

https://console.aws.amazon.com/iot/

AWS IoT Greengrass Developer Guide, Version 2

 "Label": "cougar, puma, catamount, mountain lion, painter, panther, Felis
 concolor",
 "Score": "0.5882352941176471"
 },
 {
 "Label": "Persian cat",
 "Score": "0.5882352941176471"
 },
 {
 "Label": "tiger cat",
 "Score": "0.5882352941176471"
 },
 {
 "Label": "dalmatian, coach dog, carriage dog",
 "Score": "0.5607843137254902"
 },
 {
 "Label": "malamute, malemute, Alaskan malamute",
 "Score": "0.5450980392156862"
 }
]
}

• Component log—To view the inference results in the component log, run the following
command on your Greengrass core device.

sudo tail -f /greengrass/v2/logs/aws.greengrass.TensorFlowLiteImageClassification.log

You should see results similar to the following example.

2021-01-01 00:00:00.000000 [INFO] (Copier)
 aws.greengrass.TensorFlowLiteImageClassification: stdout. Publishing results to the
 IoT core....
 {scriptName=services.aws.greengrass.TensorFlowLiteImageClassification.lifecycle.Run.script,
 serviceName=aws.greengrass.TensorFlowLiteImageClassification, currentState=RUNNING}

2021-01-01 00:00:00.000000 [INFO] (Copier)
 aws.greengrass.TensorFlowLiteImageClassification: stdout. {"timestamp":
 "2021-01-01 00:00:00.000000", "inference-type": "image-classification", "inference-
description": "Top 5 predictions with score 0.3 or above ", "inference-results":
 [{"Label": "cougar, puma, catamount, mountain lion, painter, panther, Felis
 concolor", "Score": "0.5882352941176471"}, {"Label": "Persian cat", "Score":
 "0.5882352941176471"}, {"Label": "tiger cat", "Score": "0.5882352941176471"},

Step 3: View inference results 464

AWS IoT Greengrass Developer Guide, Version 2

 {"Label": "dalmatian, coach dog, carriage dog", "Score": "0.5607843137254902"},
 {"Label": "malamute, malemute, Alaskan malamute", "Score": "0.5450980392156862"}]}.
 {scriptName=services.aws.greengrass.TensorFlowLiteImageClassification.lifecycle.Run.script,
 serviceName=aws.greengrass.TensorFlowLiteImageClassification, currentState=RUNNING}

If you can't see inference results in the component log or in the MQTT client, the deployment failed
or didn't reach the core device. This can occur if your core device isn't connected to the internet
or doesn't have the right permissions to run the component. Run the following command on your
core device to view the AWS IoT Greengrass Core software log file. This file includes logs from the
Greengrass core device's deployment service.

sudo tail -f /greengrass/v2/logs/greengrass.log

For more information, see Troubleshooting machine learning inference.

Next steps

If you have a Greengrass core device with a supported camera interface, you can complete Tutorial:
Perform sample image classification inference on images from a camera using TensorFlow Lite,
which shows you how to modify the sample inference component to perform image classification
on images from a camera.

To further explore the configuration of the sample TensorFlow Lite image classification inference
component, try the following:

• Modify the InferenceInterval configuration parameter to change how often the inference
code runs.

• Modify the ImageName and ImageDirectory configuration parameters in the inference
component configuration to specify a custom image to use for inference.

For information about customizing the configuration of public components or creating custom
machine learning components, see Customize your machine learning components.

Next steps 465

AWS IoT Greengrass Developer Guide, Version 2

Tutorial: Perform sample image classification inference on
images from a camera using TensorFlow Lite

This tutorial shows you how to use the TensorFlow Lite image classification inference component
to perform sample image classification inference on images from a camera locally on a Greengrass
core device. This component includes the following component dependencies:

• TensorFlow Lite image classification model store component

• TensorFlow Lite runtime component

Note

This tutorial accesses the camera module for Raspberry Pi or NVIDIA Jetson Nano devices,
but AWS IoT Greengrass supports other devices on Armv7l, Armv8, or x86_64 platforms. To
set up a camera for a different device, consult the relevant documentation for your device.

For more information about machine learning on Greengrass devices, see Perform machine
learning inference.

Topics

• Prerequisites

• Step 1: Configure the camera module on your device

• Step 2: Verify your subscription to the default notifications topic

• Step 3: Modify the TensorFlow Lite image classification component configuration and deploy it

• Step 4: View inference results

• Next steps

Prerequisites

To complete this tutorial, you must first complete Tutorial: Perform sample image classification
inference using TensorFlow Lite.

You also need the following:

Perform sample image classification inference on images from a camera 466

https://www.raspberrypi.org/
https://developer.nvidia.com/embedded/jetson-nano

AWS IoT Greengrass Developer Guide, Version 2

• A Linux Greengrass core device with a camera interface. This tutorial accesses the camera module
on one the following supported devices:

• Raspberry Pi running Raspberry Pi OS (previously called Raspbian)

• NVIDIA Jetson Nano

For information about setting up a Greengrass core device, see Tutorial: Getting started with
AWS IoT Greengrass V2.

The core device must meet the following requirements:

• On Greengrass core devices running Amazon Linux 2 or Ubuntu 18.04, GNU C Library (glibc)
version 2.27 or later installed on the device.

• On Armv7l devices, such as Raspberry Pi, dependencies for OpenCV-Python installed on the
device. Run the following command to install the dependencies.

sudo apt-get install libopenjp2-7 libilmbase23 libopenexr-dev libavcodec-dev
 libavformat-dev libswscale-dev libv4l-dev libgtk-3-0 libwebp-dev

• Raspberry Pi devices that run Raspberry Pi OS Bullseye must meet the following requirements:

• NumPy 1.22.4 or later installed on the device. Raspberry Pi OS Bullseye includes an earlier
version of NumPy, so you can run the following command to upgrade NumPy on the device.

pip3 install --upgrade numpy

• The legacy camera stack enabled on the device. Raspberry Pi OS Bullseye includes a new
camera stack that is enabled by default and isn't compatible, so you must enable the legacy
camera stack.

To enable the legacy camera stack

1. Run the following command to open the Raspberry Pi configuration tool.

sudo raspi-config

2. Select Interface Options.

3. Select Legacy camera to enable the legacy camera stack.

4. Reboot the Raspberry Pi.

Prerequisites 467

https://www.raspberrypi.org/
https://www.raspberrypi.org/downloads/
https://developer.nvidia.com/embedded/jetson-nano
https://www.gnu.org/software/libc/

AWS IoT Greengrass Developer Guide, Version 2

• For Raspberry Pi or NVIDIA Jetson Nano devices, Raspberry Pi Camera Module V2 - 8 megapixel,
1080p. To learn how to set up the camera, see Connecting the camera in the Raspberry Pi
documentation.

Step 1: Configure the camera module on your device

In this step, you install and enable the camera module for your device. Run the following
commands on the device.

Raspberry Pi (Armv7l)

1. Install the picamera interface for the camera module. Run the following command to
install the camera module and the other Python libraries that are required for this tutorial.

sudo apt-get install -y python3-picamera

2. Verify that Picamera installed successfully.

sudo -u ggc_user bash -c 'python3 -c "import picamera"'

If the output doesn't contain errors, the validation is successful.

Note

If the Python executable file that is installed on your device is python3.7, use
python3.7 instead of python3 for the commands in this tutorial. Make sure that
your pip installation maps to the correct python3.7 or python3 version to avoid
dependency errors.

3. Reboot the device.

sudo reboot

4. Open the Raspberry Pi configuration tool.

sudo raspi-config

5. Use the arrow keys to open Interfacing Options and enable the camera interface. If
prompted, allow the device to reboot.

Step 1: Configure the camera module on your device 468

https://www.amazon.com/Raspberry-Pi-Camera-Module-Megapixel/dp/B01ER2SKFS
https://www.amazon.com/Raspberry-Pi-Camera-Module-Megapixel/dp/B01ER2SKFS
https://www.raspberrypi.org/documentation/usage/camera/

AWS IoT Greengrass Developer Guide, Version 2

6. Run the following command to test the camera setup.

raspistill -v -o test.jpg

This opens a preview window on the Raspberry Pi, saves a picture named test.jpg to your
current directory, and displays information about the camera in the Raspberry Pi terminal.

7. Run the following command to create a symlink to enable the inference component
to access your camera from the virtual environment that is created by the runtime
component.

sudo ln -s /usr/lib/python3/dist-packages/picamera "MLRootPath/
greengrass_ml_tflite_venv/lib/python3.7/site-packages"

The default value for MLRootPath for this tutorial is /greengrass/v2/work/
variant.TensorFlowLite/greengrass_ml. The greengrass_ml_tflite_venv
folder in this location is created when you deploy the inference component for the first
time in Tutorial: Perform sample image classification inference using TensorFlow Lite.

Jetson Nano (Armv8)

1. Run the following command to test the camera setup.

gst-launch-1.0 nvarguscamerasrc num-buffers=1 ! "video/x-raw(memory:NVMM),
 width=1920, height=1080, format=NV12, framerate=30/1" ! nvjpegenc ! filesink
 location=test.jpg

This captures and saves an image named test.jpg to your current directory.

2. (Optional) Reboot the device. If you encounter issues when you run the gst-launch
command in the previous step, rebooting your device might resolve those issues.

sudo reboot

Step 1: Configure the camera module on your device 469

AWS IoT Greengrass Developer Guide, Version 2

Note

For Armv8 (AArch64) devices, such as a Jetson Nano, you don't need to create a symlink
to enable the inference component to access the camera from the virtual environment
that is created by the runtime component.

Step 2: Verify your subscription to the default notifications topic

In Tutorial: Perform sample image classification inference using TensorFlow Lite, you configured
the AWS IoT MQTT client is configured in the AWS IoT console to watch MQTT messages
published by the TensorFlow Lite image classification component on the ml/tflite/image-
classification topic. In the AWS IoT console, verify that this subscription exists. If it doesn't,
follow the steps in Step 1: Subscribe to the default notifications topic to subscribe to this topic
before you deploy the component to your Greengrass core device.

Step 3: Modify the TensorFlow Lite image classification component
configuration and deploy it

In this step, you configure and deploy the TensorFlow Lite image classification component to your
core device:

To configure and deploy the TensorFlow Lite image classification component (console)

1. In the AWS IoT Greengrass console navigation menu, choose Components.

2. On the Components page, on the Public components tab, choose
aws.greengrass.TensorFlowLiteImageClassification.

3. On the aws.greengrass.TensorFlowLiteImageClassification page, choose Deploy.

4. From Add to deployment, choose one of the following:

a. To merge this component to an existing deployment on your target device, choose Add to
existing deployment, and then select the deployment that you want to revise.

b. To create a new deployment on your target device, choose Create new deployment. If
you have an existing deployment on your device, choosing this step replaces the existing
deployment.

5. On the Specify target page, do the following:

Step 2: Verify your subscription to the default notifications topic 470

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

a. Under Deployment information, enter or modify the friendly name for your deployment.

b. Under Deployment targets, select a target for your deployment, and choose Next. You
cannot change the deployment target if you are revising an existing deployment.

6. On the Select components page, under Public components, verify that the
aws.greengrass.TensorFlowLiteImageClassification component is selected, and
choose Next.

7. On the Configure components page, do the following:

a. Select the inference component, and choose Configure component.

b. Under Configuration update, enter the following configuration update in the
Configuration to merge box.

{
 "InferenceInterval": "60",
 "UseCamera": "true"
}

With this configuration update, the component accesses the camera module on your
device and performs inference on images taken by the camera. The inference code runs
every 60 seconds.

c. Choose Confirm, and then choose Next.

8. On the Configure advanced settings page, keep the default configuration settings, and
choose Next.

9. On the Review page, choose Deploy

To configure and deploy the TensorFlow Lite image classification component (AWS CLI)

1. Create a deployment.json file to define the deployment configuration for the TensorFlow
Lite image classification component. This file should look like the following:

{
 "targetArn":"targetArn",
 "components": {
 "aws.greengrass.TensorFlowLiteImageClassification": {
 "componentVersion": 2.1.0,
 "configurationUpdate": {

Step 3: Modify the TensorFlow Lite image classification component configuration and deploy it 471

AWS IoT Greengrass Developer Guide, Version 2

 "InferenceInterval": "60",
 "UseCamera": "true"
 }
 }
 }
}

• In the targetArn field, replace targetArn with the Amazon Resource Name (ARN) of the
thing or thing group to target for the deployment, in the following format:

• Thing: arn:aws:iot:region:account-id:thing/thingName

• Thing group: arn:aws:iot:region:account-id:thinggroup/thingGroupName

• This tutorial uses component version 2.1.0. In the
aws.greengrass.TensorFlowLiteImageClassification component object, replace
2.1.0 to use a different version of the TensorFlow Lite image classification component.

With this configuration update, the component accesses the camera module on your device
and performs inference on images taken by the camera. The inference code runs every 60
seconds. Replace the following values

2. Run the following command to deploy the TensorFlow Lite image classification component on
the device:

aws greengrassv2 create-deployment \
 --cli-input-json file://path/to/deployment.json

The deployment can take several minutes to complete. In the next step, check the component log
to verify that the deployment completed successfully and to view the inference results.

Step 4: View inference results

After you deploy the component, you can view the inference results in the component log on your
Greengrass core device and in the AWS IoT MQTT client in the AWS IoT console. To subscribe to the
topic on which the component publishes inference results, see Step 2: Verify your subscription to
the default notifications topic.

• AWS IoT MQTT client—To view the results that the inference component publishes on the
default notifications topic, complete the following steps:

Step 4: View inference results 472

AWS IoT Greengrass Developer Guide, Version 2

1. In the AWS IoT console navigation menu, choose Test, MQTT test client.

2. Under Subscriptions, choose ml/tflite/image-classification.

• Component log—To view the inference results in the component log, run the following
command on your Greengrass core device.

sudo tail -f /greengrass/v2/logs/aws.greengrass.TensorFlowLiteImageClassification.log

If you can't see inference results in the component log or in the MQTT client, the deployment failed
or didn't reach the core device. This can occur if your core device isn't connected to the internet or
doesn't have the required permissions to run the component. Run the following command on your
core device to view the AWS IoT Greengrass Core software log file. This file includes logs from the
Greengrass core device's deployment service.

sudo tail -f /greengrass/v2/logs/greengrass.log

For more information, see Troubleshooting machine learning inference.

Next steps

This tutorial shows you how to use the TensorFlow Lite image classification component, with
custom configuration options to perform sample image classification on images taken by a camera.

For more information about customizing the configuration of public components or creating
custom machine learning components, see Customize your machine learning components.

Next steps 473

https://console.aws.amazon.com/iot/

AWS IoT Greengrass Developer Guide, Version 2

Components

AWS IoT Greengrass components are software modules that you deploy to Greengrass core devices.
Components can represent applications, runtime installers, libraries, or any code that you would
run on a device. You can define components that depend on other components. For example, you
might define a component that installs Python, and then define that component as a dependency
of your components that run Python applications. When you deploy your components to your
fleets of devices, Greengrass deploys only the software modules that your devices require.

Topics

• AWS-provided components

• Publisher-supported components

• Community components

• AWS IoT Greengrass development tools

• Develop AWS IoT Greengrass components

• Deploy AWS IoT Greengrass components to devices

AWS-provided components

AWS IoT Greengrass provides and maintains prebuilt components that you can deploy to your
devices. These components include features (such as stream manager), AWS IoT Greengrass
V1 connectors (such as CloudWatch metrics), and local development tools (such as the AWS
IoT Greengrass CLI). You can deploy these components to your devices for their standalone
functionality, or you can use them as dependencies in your custom Greengrass components.

Note

Several AWS-provided components depend on specific minor versions of the Greengrass
nucleus. Because of this dependency, you need to update these components when
you update the Greengrass nucleus to a new minor version. For information about the
specific versions of the nucleus that each component depends on, see the corresponding
component topic. For more information about updating the nucleus, see Update the AWS
IoT Greengrass Core software (OTA).

AWS-provided components 474

AWS IoT Greengrass Developer Guide, Version 2

When a component has a component type of both generic and Lambda, the current version of the
component is the generic type and a previous version of the component is the Lambda type.

Component Description Component
type

Supported
OS

Open
source

Nucleus
lite
compatibl
e

Greengrass nucleus The nucleus
of the
AWS IoT
Greengras
s Core
software.
Use this
component
to configure
and
update the
software on
your core
devices.

Nucleus Linux,
Windows

Yes No

Greengrass nucleus lite A lightweig
ht nucleus
for
resource-
constrain
ed devices
optimized
for low-
cost, edge
devices and
high-volu
me applicati
ons

NucleusLi
te

Linux Yes No

AWS-provided components 475

https://github.com/aws-greengrass/aws-greengrass-nucleus

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

Nucleus
lite
compatibl
e

Client device auth Enables
local IoT
devices,
called client
devices, to
connect to
the core
device.

Plugin Linux,
Windows

Yes No

CloudWatch metrics Publishes
custom
metrics to
Amazon
CloudWatc
h.

Generic,
Lambda

Linux,
Windows

Yes Yes

AWS IoT Device Defender Notifies
administr
ators of
changes in
the state
of the
Greengrass
core device
to identify
unusual
behavior.

Generic,
Lambda

Linux,
Windows

Yes No

AWS-provided components 476

https://github.com/aws-greengrass/aws-greengrass-client-device-auth
https://github.com/aws-greengrass/aws-greengrass-cloudwatch-metrics
https://github.com/aws-greengrass/aws-greengrass-device-defender

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

Nucleus
lite
compatibl
e

Disk spooler Enables a
persisten
t storage
option for
messages
spooled
from
Greengrass
core devices
to AWS IoT
Core. This
component
will store
these
outbound
messages
on disk.

Plugin Linux,
Windows

Yes No

Docker application manager Enables
AWS IoT
Greengrass
to download
Docker
images from
Docker Hub
and Amazon
Elastic
Container
Registry
(Amazon
ECR).

Generic Linux,
Windows

No No

AWS-provided components 477

https://github.com/aws-greengrass/aws-greengrass-disk-spooler

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

Nucleus
lite
compatibl
e

Edge connector for Kinesis
Video Streams

Reads
video feeds
from local
cameras,
publishes
the streams
to Kinesis
Video
Streams,
and displays
the streams
in Grafana
dashboard
s with
AWS IoT
TwinMaker.

Generic Linux No No

AWS-provided components 478

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

Nucleus
lite
compatibl
e

Greengrass CLI Provides a
command-l
ine interface
that you
can use to
create local
deploymen
ts and
interact
with the
Greengrass
core device
and its
component
s.

Plugin Linux,
Windows

Yes No

IP detector Reports
MQTT
broker
connectivity
information
to AWS IoT
Greengras
s, so client
devices can
discover
how to
connect.

Plugin Linux,
Windows

Yes No

AWS-provided components 479

https://github.com/aws-greengrass/aws-greengrass-cli
https://github.com/aws-greengrass/aws-greengrass-ip-detector

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

Nucleus
lite
compatibl
e

Firehose Publishes
data
through
Amazon
Data
Firehose
delivery
streams to
destinations
in the AWS
Cloud.

Lambda Linux No No

Lambda launcher Handles
processes
and
environme
nt configura
tion for
Lambda
functions.

Generic Linux No No

Lambda manager Handles
interprocess
communica
tion and
scaling for
Lambda
functions.

Plugin Linux No No

AWS-provided components 480

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

Nucleus
lite
compatibl
e

Lambda runtimes Provides
artifacts
for each
Lambda
runtime.

Generic Linux No No

Legacy subscription router Manages
subscript
ions for
Lambda
functions
that run on
AWS IoT
Greengrass
V1.

Generic Linux No No

Local debug console Provides
a local
console
that you
can use to
debug and
manage the
Greengrass
core device
and its
component
s.

Plugin Linux,
Windows

Yes No

AWS-provided components 481

https://github.com/aws-greengrass/aws-greengrass-localdebugconsole

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

Nucleus
lite
compatibl
e

Log manager Collects and
uploads
logs on the
Greengrass
core device.

Plugin Linux,
Windows

Yes No

Machine learning components Provides
machine
learning
models
and sample
inference
code that
you can use
to perform
machine
learning
inference on
Greengrass
core devices.

See Machine learning component
s.

No

Modbus-RTU protocol adapter Polls
information
from local
Modbus
RTU devices.

Lambda Linux No No

AWS-provided components 482

https://github.com/aws-greengrass/aws-greengrass-log-manager

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

Nucleus
lite
compatibl
e

Nucleus telemetry emitter Publishes
system
health
telemetry
data
gathered
from the
nucleus
to a local
topic or to
an AWS IoT
Core MQTT
topic.

Plugin Linux,
Windows

Yes No

MQTT bridge Relays
MQTT
messages
between
client
devices,
local
AWS IoT
Greengras
s publish/
subscribe,
and AWS
IoT Core.

Plugin Linux,
Windows

Yes No

AWS-provided components 483

https://github.com/aws-greengrass/aws-greengrass-telemetry-nucleus-emitter
https://github.com/aws-greengrass/aws-greengrass-mqtt-bridge

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

Nucleus
lite
compatibl
e

MQTT 3.1.1 broker (Moquette) Runs an
MQTT 3.1.1
broker that
handles
messages
between
client
devices and
the core
device.

Plugin Linux,
Windows

Yes No

MQTT 5 broker (EMQX) Runs an
MQTT 5
broker that
handles
messages
between
client
devices and
the core
device.

Generic Linux,
Windows

No No

AWS-provided components 484

https://github.com/aws-greengrass/aws-greengrass-moquette-mqtt

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

Nucleus
lite
compatibl
e

PKCS#11 provider Enables
Greengrass
components
to to access
a private
key and
certificate
that you
securely
store in a
hardware
security
module
(HSM).

Plugin Linux Yes No

Secret manager Deploys
secrets from
AWS Secrets
Manager
secrets so
that you can
securely use
credentia
ls, such as
passwords
, in custom
component
s on the
Greengrass
core device.

Plugin Linux,
Windows

Yes No

AWS-provided components 485

https://github.com/aws-greengrass/aws-greengrass-pkcs11-provider
https://github.com/aws-greengrass/aws-greengrass-secret-manager

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

Nucleus
lite
compatibl
e

Secure tunneling Enables
AWS IoT
secure
tunneling
connectio
ns that you
can use to
establish
 bidrectional
communica
tions with
Greengrass
core devices
that are
behind
restricted
firewalls.

Generic Linux No Yes

AWS-provided components 486

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

Nucleus
lite
compatibl
e

Shadow manager Enables
interacti
on with
shadows
on the core
device. It
manages
shadow
document
storage and
also the
synchroni
zation
of local
shadow
states with
the AWS
IoT Device
Shadow
service.

Plugin Linux,
Windows

Yes No

Amazon SNS Publishes
messages
to Amazon
SNS topics.

Lambda Linux No No

AWS-provided components 487

https://github.com/aws-greengrass/aws-greengrass-shadow-manager

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

Nucleus
lite
compatibl
e

Stream manager Streams
high-volu
me data
from local
sources to
the AWS
Cloud.

Generic Linux,
Windows

No Yes

Systems Manager Agent Manage the
core device
with AWS
Systems
Manager,
which
enables you
to patch
devices, run
commands,
and more.

Generic Linux No No

Token exchange service Provides
AWS
credentia
ls that you
can use to
interact
with AWS
services.

Generic Linux,
Windows

No No

AWS-provided components 488

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

Nucleus
lite
compatibl
e

IoT SiteWise OPC UA collector Collects
data from
OPC-UA
servers.

Generic Linux,
Windows

No No

IoT SiteWise OPC UA data
source simulator

Runs a local
OPC-UA
server that
generates
sample
data.

Generic Linux,
Windows

No No

IoT SiteWise publisher Publishes
data to the
AWS Cloud.

Generic Linux,
Windows

No No

IoT SiteWise processor Processes
data on the
Greengrass
core devices.

Generic Linux,
Windows

No No

Greengrass nucleus

The Greengrass nucleus component (aws.greengrass.Nucleus) is a mandatory component
and the minimum requirement to run the AWS IoT Greengrass Core software on a device. You
can configure this component to customize and update your AWS IoT Greengrass Core software
remotely. Deploy this component to configure settings such as proxy, device role, and AWS IoT
thing configuration on your core devices.

Greengrass nucleus 489

AWS IoT Greengrass Developer Guide, Version 2

Note

As of Greengrass version 2.14, a memory footprint optimized version of the nucleus device
runtime is available for constrained edge devices. See Greengrass nucleus lite for more
information on its configuration and use.

Important

When the version of the nucleus component changes, or when you change certain
configuration parameters, the AWS IoT Greengrass Core software—which includes the
nucleus and all other components on your device—restarts to apply the changes.
When you deploy a component, AWS IoT Greengrass installs the latest supported versions
of all of that component's dependencies. Because of this, new patch versions of AWS-
provided public components might be automatically deployed to your core devices if
you add new devices to a thing group, or you update the deployment that targets those
devices. Some automatic updates, such as a nucleus update, can cause your devices to
restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when you
create a deployment. For more information about update behavior for AWS IoT Greengrass
Core software, see Update the AWS IoT Greengrass Core software (OTA).

Topics

• Versions

• Device requirements

• Supported platforms

• Operating system

• Requirements

• Dependencies

• Download and installation

• Configuration

• Local log file

• Changelog

Greengrass nucleus 490

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-nucleus-lite-component.html

AWS IoT Greengrass Developer Guide, Version 2

Versions

This component has the following versions:

• 2.14.x

• 2.13.x

• 2.12.x

• 2.11.x

• 2.10.x

• 2.9.x

• 2.8.x

• 2.7.x

• 2.6.x

• 2.5.x

• 2.4.x

• 2.3.x

• 2.2.x

• 2.1.x

• 2.0.x

Device requirements

Note

You can use AWS IoT Device Tester for AWS IoT Greengrass to verify that your device can
run the AWS IoT Greengrass Core software and communicate with the AWS Cloud. For more
information, see Using AWS IoT Device Tester for AWS IoT Greengrass V2.

Linux

• The use of an AWS Region that supports AWS IoT Greengrass V2. For the list of supported
Regions, see AWS IoT Greengrass V2 endpoints and quotas in the AWS General Reference.

• Minimum 256 MB disk space available for the AWS IoT Greengrass Core software. This
requirement doesn't include components deployed to the core device.

Greengrass nucleus 491

https://en.wikipedia.org/wiki/Amazon_Web_Services#Availability_and_topology
https://docs.aws.amazon.com/general/latest/gr/greengrassv2.html

AWS IoT Greengrass Developer Guide, Version 2

• Minimum 96 MB RAM allocated to the AWS IoT Greengrass Core software. This requirement
doesn't include components that run on the core device. For more information, see Control
memory allocation with JVM options.

• Java Runtime Environment (JRE) version 8 or greater. Java must be available on the PATH
environment variable on the device. To use Java to develop custom components, you must
install a Java Development Kit (JDK). We recommend that you use Amazon Corretto or
OpenJDK long-term support versions. Version 8 or higher is required.

• GNU C Library (glibc) version 2.25 or greater.

• You must run the AWS IoT Greengrass Core software as a root user. Use sudo, for example.

• The root user that runs the AWS IoT Greengrass Core software, such as root, must have
permission to run sudo with any user and any group. The /etc/sudoers file must give this
user permission to run sudo as other groups. The permission for the user in /etc/sudoers
should look like the following example.

root ALL=(ALL:ALL) ALL

• The core device must be able to perform outbound requests to a set of endpoints and ports.
For more information, see Allow device traffic through a proxy or firewall.

• The /tmp directory must be mounted with exec permissions.

• All of the following shell commands:

• ps -ax -o pid,ppid

• sudo

• sh

• kill

• cp

• chmod

• rm

• ln

• echo

• exit

• id

• uname

• grep
Greengrass nucleus 492

https://en.wikipedia.org/wiki/PATH_(variable)
https://aws.amazon.com/corretto/
https://openjdk.java.net/
https://www.gnu.org/software/libc/

AWS IoT Greengrass Developer Guide, Version 2

• Your device may also require the following optional shell commands:

• (Optional) systemctl. This command is used to set up the AWS IoT Greengrass Core
software as a system service.

• (Optional) useradd, groupadd, and usermod. These command are used to set up the
ggc_user system user and ggc_group system group.

• (Optional) mkfifo. This command is used to run Lambda functions as components.

• To configure system resource limits for component processes, your device must run Linux
kernel version 2.6.24 or later.

• To run Lambda functions, your device must meet additional requirements. For more
information, see Lambda function requirements.

Windows

• The use of an AWS Region that supports AWS IoT Greengrass V2. For the list of supported
Regions, see AWS IoT Greengrass V2 endpoints and quotas in the AWS General Reference.

• Minimum 256 MB disk space available for the AWS IoT Greengrass Core software. This
requirement doesn't include components deployed to the core device.

• Minimum 160 MB RAM allocated to the AWS IoT Greengrass Core software. This requirement
doesn't include components that run on the core device. For more information, see Control
memory allocation with JVM options.

• Java Runtime Environment (JRE) version 8 or greater. Java must be available on the PATH
system variable on the device. To use Java to develop custom components, you must install a
Java Development Kit (JDK). We recommend that you use Amazon Corretto or OpenJDK long-
term support versions. Version 8 or higher is required..

Note

To use version 2.5.0 of the Greengrass nucleus, you must use a 64-bit version of the
Java Runtime Environment (JRE). Greengrass nucleus version 2.5.1 supports 32-bit
and 64-bit JREs.

• The user who installs the AWS IoT Greengrass Core software must be an administrator.

• You must install the AWS IoT Greengrass Core software as a system service. Specify --
setup-system-service true when you install the software.

Greengrass nucleus 493

https://en.wikipedia.org/wiki/Amazon_Web_Services#Availability_and_topology
https://docs.aws.amazon.com/general/latest/gr/greengrassv2.html
https://en.wikipedia.org/wiki/PATH_(variable)
https://aws.amazon.com/corretto/
https://openjdk.java.net/

AWS IoT Greengrass Developer Guide, Version 2

• Each user that runs component processes must exist in the LocalSystem account, and the
user's name and password must be in the Credential Manager instance for the LocalSystem
account. You can set up this user when you follow instructions to install the AWS IoT
Greengrass Core software.

• The core device must be able to perform outbound requests to a set of endpoints and ports.
For more information, see Allow device traffic through a proxy or firewall.

Supported platforms

AWS IoT Greengrass officially supports devices running the following platforms. Devices with
platforms not included in this list might work, but AWS IoT Greengrass tests on only these specified
platforms.

Linux

Architectures:

• Armv7l

• Armv8 (AArch64)

• x86_64

Windows

Architectures:

• x86_64

Versions:

• Windows 10

• Windows 11

• Windows Server 2019

• Windows Server 2022

Greengrass nucleus 494

AWS IoT Greengrass Developer Guide, Version 2

Note

Some AWS IoT Greengrass features aren't currently supported on Windows devices.
For more information, see Greengrass feature compatibility by operating system and
Feature considerations for Windows devices.

Feature considerations for Windows devices

Some AWS IoT Greengrass features aren't currently supported on Windows devices. Review
the feature differences to confirm if a Windows device satisfies your requirements. For more
information, see Greengrass feature compatibility by operating system.

Linux platforms can also run AWS IoT Greengrass V2 in a Docker container. For more information,
see Run AWS IoT Greengrass Core software in a Docker container.

To build a custom Linux-based operating system, you can use the BitBake recipe for AWS IoT
Greengrass V2 in the meta-aws project. The meta-aws project provides recipes that you can
use to build AWS edge software capabilities in embedded Linux systems that are built with
OpenEmbedded and Yocto Project build frameworks. The Yocto Project is an open source
collaboration project that helps you build custom Linux-based systems for embedded applications
regardless of hardware architecture. The BitBake recipe for AWS IoT Greengrass V2 installs,
configures, and automatically runs the AWS IoT Greengrass Core software on your device.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

For more information, see Supported platforms.

Requirements

Devices must meet certain requirements to install and run the Greengrass nucleus and the AWS IoT
Greengrass Core software. For more information, see Device requirements.

The Greengrass nucleus component is supported to run in a VPC. To deploy this component in a
VPC, the following is required.

Greengrass nucleus 495

https://github.com/aws/meta-aws/tree/master/recipes-iot
https://elinux.org/
https://www.openembedded.org/wiki/Main_Page
https://www.yoctoproject.org/

AWS IoT Greengrass Developer Guide, Version 2

• The Greengrass nucleus component must have connectivity to AWS IoT data, AWS IoT
Credentials, and Amazon S3.

Dependencies

The Greengrass nucleus does not include any component dependencies. However, several AWS-
provided components include the nucleus as a dependency. For more information, see AWS-
provided components.

For more information about component dependencies, see the component recipe reference.

Download and installation

You can download an installer that sets up the Greengrass nucleus component on your device. This
installer sets up your device as a Greengrass core device. There are two types of installations that
you can perform: a quick installation that creates required AWS resources for you, or a manual
installation where you create the AWS resources yourself. For more information, see Install the AWS
IoT Greengrass Core software.

You can also follow a tutorial to install the Greengrass nucleus and explore Greengrass component
development. For more information, see Tutorial: Getting started with AWS IoT Greengrass V2.

Configuration

This component provides the following configuration parameters that you can customize when
you deploy the component. Some parameters require that the AWS IoT Greengrass Core software
restarts to take effect. For more information about why and how to configure this component, see
Configure the AWS IoT Greengrass Core software.

iotRoleAlias

The AWS IoT role alias that points to a token exchange IAM role. The AWS IoT credentials
provider assumes this role to allow the Greengrass core device to interact with AWS services. For
more information, see Authorize core devices to interact with AWS services.

When you run the AWS IoT Greengrass Core software with the --provision true option, the
software provisions a role alias and sets its value in the nucleus component.

Greengrass nucleus 496

AWS IoT Greengrass Developer Guide, Version 2

 interpolateComponentConfiguration

(Optional) You can enable the Greengrass nucleus to interpolate component recipe variables in
component configurations and merge configuration updates. We recommend that you set this
option to true so that the core device can run Greengrass components that use recipe variables
in their configurations.

This feature is available for v2.6.0 and later of this component.

Default: false

networkProxy

(Optional) The network proxy to use for all connections. For more information, see Connect on
port 443 or through a network proxy.

Important

When you deploy a change to this configuration parameter, the AWS IoT Greengrass
Core software restarts for the change to take effect.

This object contains the following information:

noProxyAddresses

(Optional) A comma-separated list of IP addresses or hostnames that are exempt from the
proxy.

proxy

The proxy to which to connect. This object contains the following information:

url

The URL of the proxy server in the format scheme://userinfo@host:port.

• scheme – The scheme, which must be http or https.

Important

Greengrass core devices must run Greengrass nucleus v2.5.0 or later to use
HTTPS proxies.

Greengrass nucleus 497

AWS IoT Greengrass Developer Guide, Version 2

If you configure an HTTPS proxy, you must add the proxy server CA certificate
to the core device's Amazon root CA certificate. For more information, see
Enable the core device to trust an HTTPS proxy.

• userinfo – (Optional) The user name and password information. If you specify
this information in the url, the Greengrass core device ignores the username and
password fields.

• host – The host name or IP address of the proxy server.

• port – (Optional) The port number. If you don't specify the port, then the Greengrass
core device uses the following default values:

• http – 80

• https – 443

username

(Optional) The user name that authenticates the proxy server.

password

(Optional) The password that authenticates the proxy server.

mqtt

(Optional) The MQTT configuration for the Greengrass core device. For more information, see
Connect on port 443 or through a network proxy.

Important

When you deploy a change to this configuration parameter, the AWS IoT Greengrass
Core software restarts for the change to take effect.

This object contains the following information:

port

(Optional) The port to use for MQTT connections.

Default: 8883

Greengrass nucleus 498

AWS IoT Greengrass Developer Guide, Version 2

keepAliveTimeoutMs

(Optional) The amount of time in milliseconds between each PING message that the client
sends to keep the MQTT connection alive. This value must be greater than pingTimeoutMs.

Default: 60000 (60 seconds)

pingTimeoutMs

(Optional) The amount of time in milliseconds that the client waits to receive a PINGACK
message from the server. If the wait exceeds the timeout, the core device closes and reopens
the MQTT connection. This value must be less than keepAliveTimeoutMs.

Default: 30000 (30 seconds)

operationTimeoutMs

(Optional) The amount of time in milliseconds that the client waits for MQTT operations
(such as CONNECT or PUBLISH) to complete. This option doesn't apply to MQTT PING or
keep alive messages.

Default: 30000 (30 seconds)

maxInFlightPublishes

(Optional) The maximum number of unacknowledged MQTT QoS 1 messages that can be in
flight at the same time.

This feature is available for v2.1.0 and later of this component.

Default: 5

Valid range: Maximum value of 100

maxMessageSizeInBytes

(Optional) The maximum size of an MQTT message. If a message exceeds this size, the
Greengrass nucleus rejects the message with an error.

This feature is available for v2.1.0 and later of this component.

Default: 131072 (128 KB)

Valid range: Maximum value of 2621440 (2.5 MB)

Greengrass nucleus 499

AWS IoT Greengrass Developer Guide, Version 2

maxPublishRetry

(Optional) The maximum number of times to retry a message that fails to publish. You can
specify -1 to retry unlimited times.

This feature is available for v2.1.0 and later of this component.

Default: 100

spooler

(Optional) The MQTT spooler configuration for the Greengrass core device. This object
contains the following information:

storageType

The storage type for storing messages. If storageType is set to Disk, the pluginName
can be configured. You can specify either Memory or Disk.

This feature is available for v2.11.0 and later of the Greengrass nucleus component.

Important

If the MQTT spooler storageType is set to Disk and you want to downgrade
Greengrass nucleus from version 2.11.x to an earlier version, you must change
the configuration back to Memory. The only configuration for storageType that
is supported in Greengrass nucleus versions 2.10.x and earlier is Memory. Not
following this guidance can result in the spooler breaking. This would cause your
Greengrass core device to not be able to send MQTT messages to the AWS Cloud.

Default: Memory

pluginName

(Optional) The plugin component name. This component will only be used if
storageType is set to Disk. This option defaults to aws.greengrass.DiskSpooler
and will use the Greengrass-provided Disk spooler.

This feature is available for v2.11.0 and later of the Greengrass nucleus component.

Default: "aws.greengrass.DiskSpooler"

Greengrass nucleus 500

AWS IoT Greengrass Developer Guide, Version 2

maxSizeInBytes

(Optional) The maximum size of the cache where the core device stores unprocessed
MQTT messages in memory. If the cache is full, new messages are rejected.

Default: 2621440 (2.5 MB)

keepQos0WhenOffline

(Optional) You can spool MQTT QoS 0 messages that the core device receives while its
offline. If you set this option to true, the core device spools QoS 0 messages that it
can't send while it's offline. If you set this option to false, the core device discards these
messages. The core device always spools QoS 1 messages unless the spool is full.

Default: false

version

(Optional) The version of MQTT. You can specify either mqtt3 or mqtt5.

This feature is available for v2.10.0 and later of the Greengrass nucleus component.

Default: mqtt5

receiveMaximum

(Optional) The maximum number of unacknowledged QoS1 packets the broker can send.

This feature is available for v2.10.0 and later of the Greengrass nucleus component.

Default: 100

sessionExpirySeconds

(Optional) The amount of time in seconds you can request for a session to last from IoT
Core. The default is the maximum time supported by AWS IoT Core.

This feature is available for v2.10.0 and later of the Greengrass nucleus component.

Default: 604800 (7 days)

minimumReconnectDelaySeconds

(Optional) An option for reconnection behavior. The minimum amount of time in seconds for
MQTT to reconnect.

Greengrass nucleus 501

AWS IoT Greengrass Developer Guide, Version 2

This feature is available for v2.10.0 and later of the Greengrass nucleus component.

Default: 1

maximumReconnectDelaySeconds

(Optional) An option for reconnection behavior. The maximum amount of time in seconds
for MQTT to reconnect.

This feature is available for v2.10.0 and later of the Greengrass nucleus component.

Default: 120

minimumConnectedTimeBeforeRetryResetSeconds

(Optional) An option for reconnection behavior. The amount of time in seconds a connection
must be active before the retry delay is reset back to the minimum.

This feature is available for v2.10.0 and later of the Greengrass nucleus component.

Default: 30

 jvmOptions

(Optional) The JVM options to use to run the AWS IoT Greengrass Core software. For
information about recommended JVM options for running AWS IoT Greengrass Core software,
see Control memory allocation with JVM options.

Important

When you deploy a change to this configuration parameter, the AWS IoT Greengrass
Core software restarts for the change to take effect.

iotDataEndpoint

The AWS IoT data endpoint for your AWS account.

When you run the AWS IoT Greengrass Core software with the --provision true option, the
software gets your data and credentials endpoints from AWS IoT and sets them in the nucleus
component.

iotCredEndpoint

The AWS IoT credentials endpoint for your AWS account.

Greengrass nucleus 502

AWS IoT Greengrass Developer Guide, Version 2

When you run the AWS IoT Greengrass Core software with the --provision true option, the
software gets your data and credentials endpoints from AWS IoT and sets them in the nucleus
component.

greengrassDataPlaneEndpoint

This feature is available in v2.7.0 and later of this component.

For more information, see Use a device certificate signed by a private CA.

greengrassDataPlanePort

This feature is available in v2.0.4 and later of this component.

(Optional) The port to use for data plane connections. For more information, see Connect on
port 443 or through a network proxy.

Important

You must specify a port where the device can make outbound connections. If you
specify a port that is blocked, the device won't be able to connect to AWS IoT
Greengrass to receive deployments.

Choose from the following options:

• 443

• 8443

Default: 8443

awsRegion

The AWS Region to use.

runWithDefault

The system user to use to run components.

Important

When you deploy a change to this configuration parameter, the AWS IoT Greengrass
Core software restarts for the change to take effect.

Greengrass nucleus 503

AWS IoT Greengrass Developer Guide, Version 2

This object contains the following information:

posixUser

The name or ID of the system user and, optionally, system group that the core device uses to
run generic and Lambda components. Specify the user and group separated by a colon (:) in
the following format: user:group. The group is optional. If you don't specify a group, the
AWS IoT Greengrass Core software uses the primary group for the user. For example, you can
specify ggc_user or ggc_user:ggc_group. For more information, see Configure the user
that runs components.

When you run the AWS IoT Greengrass Core software installer with the --component-
default-user ggc_user:ggc_group option, the software sets this parameter in the
nucleus component.

windowsUser

This feature is available in v2.5.0 and later of this component.

The name of the Windows user to use to run this component on Windows core devices. The
user must exist on each Windows core device, and its name and password must be stored
in the LocalSystem account's Credentials Manager instance. For more information, see
Configure the user that runs components.

When you run the AWS IoT Greengrass Core software installer with the --component-
default-user ggc_user option, the software sets this parameter in the nucleus
component.

systemResourceLimits

This feature is available in v2.4.0 and later of this component. AWS IoT Greengrass doesn't
currently support this feature on Windows core devices.

The system resource limits to apply to generic and non-containerized Lambda component
processes by default. You can override system resource limits for individual components
when you create a deployment. For more information, see Configure system resource limits
for components.

This object contains the following information:

cpus

The maximum amount of CPU time that each component's processes can use on the core
device. A core device's total CPU time is equivalent to the device's number of CPU cores.

Greengrass nucleus 504

AWS IoT Greengrass Developer Guide, Version 2

For example, on a core device with 4 CPU cores, you can set this value to 2 to limit each
component's processes to 50 percent usage of each CPU core. On a device with 1 CPU
core, you can set this value to 0.25 to limit each component's processes to 25 percent
usage of the CPU. If you set this value to a number greater than the number of CPU
cores, the AWS IoT Greengrass Core software doesn't limit the components' CPU usage.

memory

The maximum amount of RAM (in kilobytes) that each component's processes can use on
the core device.

s3EndpointType

(Optional) The S3 endpoint type. This parameter will only take effect for the US East (N.
Virginia) (us-east-1) Region. Setting this parameter from any other Region will be ignored.
Choose from the following options:

• REGIONAL – S3 client and presigned URL uses the regional endpoint.

• GLOBAL – S3 client and presigned URL uses the legacy endpoint.

• DUALSTACK – S3 presigned URL uses the dualstack endpoint.

Default: GLOBAL

fipsMode

(Optional) Causes Greengrass to use FIPS endpoints. For more information on how to enable
FIPS endpoints, see FIPS endpoints.

Choose from the following options:

• true When set to true the endpoints will use FIPS endpoint.

• false When false the endpoints will not use FIPS endpoint.

Default: false

logging

(Optional) The logging configuration for the core device. For more information about how to
configure and use Greengrass logs, see Monitor AWS IoT Greengrass logs.

This object contains the following information:

 level

(Optional) The minimum level of log messages to output.

Greengrass nucleus 505

FIPS.html

AWS IoT Greengrass Developer Guide, Version 2

Choose from the following log levels, listed here in level order:

• DEBUG

• INFO

• WARN

• ERROR

Default: INFO

 format

(Optional) The data format of the logs. Choose from the following options:

• TEXT – Choose this option if you want to view logs in text form.

• JSON – Choose this option if you want to view logs with the Greengrass CLI logs command
or interact with logs programmatically.

Default: TEXT

outputType

(Optional) The output type for logs. Choose from the following options:

• FILE – The AWS IoT Greengrass Core software outputs logs to files in the directory that
you specify in outputDirectory.

• CONSOLE – The AWS IoT Greengrass Core software prints logs to stdout. Choose this
option to view logs as the core device prints them.

Default: FILE

 fileSizeKB

(Optional) The maximum size of each log file (in kilobytes). After a log file exceeds this
maximum file size, the AWS IoT Greengrass Core software creates a new log file.

This parameter applies only when you specify FILE for outputType.

Default: 1024

 totalLogsSizeKB

(Optional) The maximum total size of log files (in kilobytes) for each component, including
the Greengrass nucleus. The Greengrass nucleus' log files also include logs from plugin

Greengrass nucleus 506

AWS IoT Greengrass Developer Guide, Version 2

components. After a component's total size of log files exceeds this maximum size, the AWS
IoT Greengrass Core software deletes that component's oldest log files.

This parameter is equivalent to the log manager component's disk space limit parameter
(diskSpaceLimit), which you can specify for the Greengrass nucleus (system) and each
component. The AWS IoT Greengrass Core software uses the minimum of the two values as
the maximum total log size for the Greengrass nucleus and each component.

This parameter applies only when you specify FILE for outputType.

Default: 10240

 outputDirectory

(Optional) The output directory for log files.

This parameter applies only when you specify FILE for outputType.

Default: /greengrass/v2/logs, where /greengrass/v2 is the AWS IoT Greengrass root
folder.

 fleetstatus

This parameter is available in v2.1.0 and later of this component.

(Optional) The fleet status configuration for the core device.

This object contains the following information:

periodicStatusPublishIntervalSeconds

(Optional) The amount of time (in seconds) between which the core device publishes device
status to the AWS Cloud.

Minimum: 86400 (24 hours)

Default: 86400 (24 hours)

 telemetry

(Optional) The system health telemetry configuration for the core device. For more information
about telemetry metrics and how to act on telemetry data, see Gather system health telemetry
data from AWS IoT Greengrass core devices.

This object contains the following information:

Greengrass nucleus 507

AWS IoT Greengrass Developer Guide, Version 2

enabled

(Optional) You can enable or disable telemetry.

Default: true

periodicAggregateMetricsIntervalSeconds

(Optional) The interval (in seconds) over which the core device aggregates metrics.

If you set this value lower than the minimum supported value, the nucleus uses the default
value instead.

Minimum: 3600

Default: 3600

periodicPublishMetricsIntervalSeconds

(Optional) The amount of time (in seconds) between which the core device publishes
telemetry metrics to the AWS Cloud.

If you set this value lower than the minimum supported value, the nucleus uses the default
value instead.

Minimum: 86400

Default: 86400

deploymentPollingFrequencySeconds

(Optional) The period in seconds at which to poll for deployment notifications.

Default: 15

componentStoreMaxSizeBytes

(Optional) The maximum size on disk of the component store, which comprises component
recipes and artifacts.

Default: 10000000000 (10 GB)

 platformOverride

(Optional) A dictionary of attributes that identify the core device's platform. Use this to define
custom platform attributes that component recipes can use to identify the correct lifecycle and
artifacts for the component. For example, you might define a hardware capability attribute to

Greengrass nucleus 508

AWS IoT Greengrass Developer Guide, Version 2

deploy only the minimal set of artifacts for a component to run. For more information, see the
manifest platform parameter in the component recipe.

You can also use this parameter to override the os and architecture platform attributes of
the core device.

 httpClient

This parameter is available in v2.5.0 and later of this component.

(Optional) The HTTP client configuration for the core device. These configuration options apply
to all HTTP requests made by this component. If a core device runs on a slower network, you
can increase these timeout durations to prevent HTTP requests from timing out.

This object contains the following information:

connectionTimeoutMs

(Optional) The amount of time (in milliseconds) to wait for a connection to open before the
connection request times out.

Default: 2000 (2 seconds)

socketTimeoutMs

(Optional) The amount of time (in milliseconds) to wait for data to transfer over an open
connection before the connection times out.

Default: 30000 (30 seconds)

Example Example: Configuration merge update

{
 "iotRoleAlias": "GreengrassCoreTokenExchangeRoleAlias",
 "networkProxy": {
 "noProxyAddresses": "http://192.168.0.1,www.example.com",
 "proxy": {
 "url": "http://my-proxy-server:1100",
 "username": "Mary_Major",
 "password": "pass@word1357"
 }
 },
 "mqtt": {
 "port": 443

Greengrass nucleus 509

AWS IoT Greengrass Developer Guide, Version 2

 },
 "greengrassDataPlanePort": 443,
 "jvmOptions": "-Xmx64m",
 "runWithDefault": {
 "posixUser": "ggc_user:ggc_group"
 }
}

Local log file

This component uses the following log file.

Linux

/greengrass/v2/logs/greengrass.log

Windows

C:\greengrass\v2\logs\greengrass.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/greengrass.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\greengrass.log -Tail 10 -Wait

Changelog

The following table describes the changes in each version of the component.

Greengrass nucleus 510

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.14.0 Bug fixes and improvements

• Fixed memory leaks in IPC PubSub subscription closures.

• Fixes run lifecycle of the component where it enters into ERRORED
state due to startup timeout when skipif condition is true.

• Fixes an issue where the core device fails to connect to AWS IoT Core
when the TLS policy is set to TLS13_1_3_2022_10.

New features

• New dual-stack endpoint support enables IPv6 network communica
tion.

• Enhanced resilience against nucleus restart failures and
Launchdirectory corruption.

2.13.0 Bug fixes and improvements

• Cancel deployment improvements: Deployments can now be cancelled
while a new configuration is being merged and while waiting for
services to start.

New features

• Support FIPS endpoint in Nucleus.

2.12.6 Bug fixes and improvements

• Fixes an issue that causes a crash at startup on certain ARMv8
processors, including the Jetson Nano.

2.12.5 Bug fixes and improvements

• Fixes an issue where deployment rollback occasionally gets stuck while
rolling back a previously broken component with hard dependencies.

• Fixes an issue where the nucleus doesn't publish status updates after
fleet provisioning.

• Adds retries for the GetDeploymentConfiguration API after
getting 404 errors.

Greengrass nucleus 511

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.12.4 Bug fixes and improvements

• Fixes an issue where the nucleus enters a deadlock condition during
startup on some Linux devices.

2.12.3
Warning

This version is no longer available. The improvements in this version
are available in later versions of this component.

Bug fixes and improvements

• Fixes an issue where the nucleus doesn't report the correct component
status after the nucleus relaunches and during component recovery.

• General bug fixes and improvements.

2.12.2 Bug fixes and improvements

• Fixes an issue where old logs weren't cleaned up properly.

• General bug fixes and improvements.

2.12.1 Bug fixes and improvements

• Fixes an issue where the nucleus may duplicate MQTT subscriptions to
deployment topics leading to additional logging and MQTT publishes.

2.12.0 New features

• Enables you to run the bootstrap lifecycle steps as part of a rollback
deployment.

2.11.3 Bug fixes and improvements

• Fixes an issue in the nucleus where it may improperly start a
component when its dependencies fail.

New features

• Adds configurable s3 endpoint type.

Greengrass nucleus 512

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.11.2 Bug fixes and improvements

• Fixes an issue in the nucleus MQTT 5 client where it may appear offline
when a large number (> 50) of subscriptions are in use.

• Adds a retry for the docker dial TCP failure.

2.11.1 Bug fixes and improvements

• Fixes an issue where the nucleus doesn't start if a bootstrap task fails
and the deployment metadata file is corrupted.

• Fixes an issue where on-demand Lambda components aren't reported
in deployment status updates.

• Adds support for duplicate authorization policy IDs.

2.11.0 New features

• Enables you to cancel a local deployment.

• Enables you to configure a failure handling policy for a local
deployment.

• Adds support for a disk spooler plugin.

2.10.3 Bug fixes and improvements

• Fixes an issue where Greengrass doesn't subscribe to deployment
notifications when using the PKCS#11 provider.

2.10.2 Bug fixes and improvements

• Allows case insensitive parsing of component lifecycles.

• Fixes an issue where the environment PATH variable was not recreated
 correctly.

• Fixes proxy URI encoding for components including stream manager
for usernames with special characters.

Greengrass nucleus 513

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.10.1 Bug fixes and improvements

• Fixes an issue that could cause a crash at startup on certain ARMv8
processors, including the Jetson Nano.

• Greengrass no longer closes a component's standard in, this reverts the
behavior to the pre-2.10.0 behavior

2.10.0 New features

• Adds interpolateComponentConfiguration support for the
empty regular expression. Greengrass now interpolates from the root
config object.

• Adds support for MQTT5.

• Adds a mechanism for loading plugin components quickly without
scanning.

• Enables Greengrass to save disk space by deleting unused Docker
images.

Bug fixes and improvements

• Fixes an issue where rollback leaves certain configuration values in
place from a deployment.

• Fixes an issue where the Greengrass nucleus validates for an AWS
domain sequence in custom non-AWS credentials and data endpoints.

• Updates multi-group dependency resolution to re-resolve all group
dependencies via AWS Cloud negotiation, instead of locking to the
active version. This update also removes the deployment error code
INSTALLED_COMPONENT_NOT_FOUND .

• Updates the Greengrass nucleus to skip downloading Docker images
when they already exist locally.

• Updates the Greengrass nucleus to restart a component install step
before timeout expires.

• Additional minor fixes and improvements.

Greengrass nucleus 514

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.9.6 Bug fixes and improvements

• Fixes an issue where a Greengrass deployment fails with the error
LAUNCH_DIRECTORY_CORRUPTED and a subsequent device reboot
fails to start Greengrass. This error may occur when you move the
Greengrass device between multiple thing groups with deployments
that require Greengrass to restart.

2.9.5 New features

• Adds support for Greengrass nucleus software signature verification.

Bug fixes and improvements

• Fixes an issue where a deployment fails when the local recipe
metadata region doesn't match the Greengrass nucleus launch region.
The Greengrass nucleus now renegotiates with the cloud when this
happens.

• Fixes an issue where the MQTT message spooler fills up and never
removes messages.

• Additional minor fixes and improvements.

2.9.4 Bug fixes and improvements

• Checks for a null message before it drops QOS 0 messages.

• Truncates job status detail values if they exceed the 1024 character
 limit.

• Updates the bootstrap script for Windows to correctly read the
Greengrass root path if that path includes spaces.

• Updates subscribing to AWS IoT Core so that it drops client messages if
the subscription response wasn't sent.

• Ensures that the nucleus loads its configuration from backup files
when the main configuration file is corrupt or missing.

Greengrass nucleus 515

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.9.3 Bug fixes and improvements

• Ensures MQTT client IDs aren't duplicated.

• Adds more robust file-reading and writing to avoid and recover from
corruption.

• Retries docker image pull on specific network-related errors.

• Adds the noProxyAddresses option for MQTT connection.

2.9.2 Bug fixes and improvements

• Fixes an issue where configuring interpolateCompone
ntConfiguration doesn't apply to an ongoing deployment.

• Uses OSHI to list all child processes.

2.9.1 Bug fixes and improvements

• Adds fix where Greengrass restarts if a deployment removes a plugin
component.

2.9.0 New features

• Adds the ability to create subdeployments that retry deployments with
a smaller subset of devices. This feature creates a more efficient way to
test and resolve unsuccessful deployments.

Bug fixes and improvements

• Improves support for systems that don't have useradd, groupadd,
and usermod.

• Additional minor fixes and improvements.

2.8.1 Bug fixes and improvements

• Fixes an issue where deployment error codes were not generated
 correctly from Greengrass API errors.

• Fixes an issue where fleet status updates send inaccurate information
when a component reaches an ERRORED state during a deployment.

• Fixes an issue where deployments couldn’t complete when Greengrass
had more than 50 existing subscriptions.

Greengrass nucleus 516

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.8.0 New features

• Updates the Greengrass nucleus to report a deployment health status
response that includes detailed error codes when there is a problem
deploying components to a core device. For more information, see
Detailed deployment error codes.

• Updates the Greengrass nucleus to report a component health status
response that includes detailed error codes when a component enters
the BROKEN or ERRORED state. For more information, see Detailed
component status codes.

• Expands status message fields to improve cloud availability informati
on for devices.

• Improves fleet status service robustness.

Bug fixes and improvements

• Allows a broken component to reinstall when its configuration
changes.

• Fixes an issue where a nucleus restart during bootstrap deployment
causes a deployment to fail.

• Fixes an issue in Windows where installation fails when a root path
contains spaces.

• Fixes an issue where a component shut down during a deployment
uses the shutdown script of the new version.

• Various shutdown improvements.

• Additional minor fixes and improvements.

Greengrass nucleus 517

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.7.0 New features

• Updates the Greengrass nucleus to send status updates to the AWS IoT
Greengrass cloud when the core device applies a local deployment.

• Adds support for client certificates signed by a custom certificate
authority (CA), where the CA isn't registered with AWS IoT. To use this
feature, you can set the new greengrassDataPlaneEndpoint

 configuration option to iotdata. For more information, see Use a
device certificate signed by a private CA.

Bug fixes and improvements

• Fixes an issue where the Greengrass nucleus rolls back a deployment in
certain scenarios when the nucleus is stopped or restarted. The nucleus
now resumes the deployment after the nucleus restarts.

• Updates the Greengrass installer to respect the --start argument
when you specify to set up the software as a system service.

• Updates the behavior of SubscribeToComponentUpdates to set the
deployment ID in events where the nucleus updated a component.

• Additional minor fixes and improvements.

Greengrass nucleus 518

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.6.0 New features

• Adds support for MQTT wildcards when you subscribe to local publish/
subscribe topics. For more information, see Publish/subscribe local
messages and SubscribeToTopic.

• Adds support for recipe variables in component configurations,
other than the component_dependency_name :configur
ation: json_pointer recipe variable. You can use these recipes
variables when you define a component's DefaultConfigurati
on in a recipe or when you configure a component in a deploymen
t. To enable this feature, set the interpolateComponentConfiguration
configuration option to true. For more information, see Recipe
variables and Use recipe variables in merge updates.

• Adds full support for the * wildcard in interprocess communication
(IPC) authorization policies. You can now specify the * character in
a resource string to match any combination of characters. For more
information, see Wildcards in authorization policies.

• Adds support for custom components to call IPC operations that the
Greengrass CLI uses. You can use these IPC operations to manage local
deployments, view component details, and generate a password that
you can use to sign in to the local debug console. For more informati
on, see IPC: Manage local deployments and components.

Bug fixes and improvements

• Fixes an issue where dependent components wouldn't react when their
hard dependencies restart or change states in certain scenarios.

• Improves error messages that the core device reports to the AWS IoT
Greengrass cloud service when a deployment fails.

• Fixes an issue where the Greengrass nucleus applied a thing
deployment twice in certain scenarios when the nucleus restarts.

• Additional minor fixes and improvements. For more information, see
the releases on GitHub.

Greengrass nucleus 519

https://github.com/aws-greengrass/aws-greengrass-nucleus/releases

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.5.6 New features

• Adds support for hardware security modules that use ECC keys.
You can use a hardware security module (HSM) to securely store
the device's private key and certificate. For more information, see
Hardware security integration.

Bug fixes and improvements

• Fixes an issue where the deployment never completes when you
deploy a component with a broken install script in certain scenarios.

• Improves performance during startup.

• Additional minor fixes and improvements.

2.5.5 New features

• Adds the GG_ROOT_CA_PATH environment variable for component
s, so you can access the root certificate authority (CA) certificate in
custom components.

Bug fixes and improvements

• Adds support for Windows devices that use a display language other
than English.

• Updates how the Greengrass nucleus parses Boolean installer
arguments, so you can specify a Boolean argument without a Boolean
value to specify a true value. For example, you can now specify
--provision instead of --provision true to install with
automatic resource provisioning.

• Fixes an issue where the core device didn't report its status to the AWS
IoT Greengrass cloud service after provisioning in certain scenarios.

• Additional minor fixes and improvements.

2.5.4 Bug fixes and improvements

• General bug fixes and improvements.

Greengrass nucleus 520

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.5.3 New features

• Adds support for hardware security integration. You can use a
hardware security module (HSM) to securely store the device's private
key and certificate. For more information, see Hardware security
integration.

Bug fixes and improvements

• Fixes an issue with runtime exceptions while the nucleus establishes
MQTT connections with AWS IoT Core.

2.5.2 Bug fixes and improvements

• Fixes an issue where after the Greengrass nucleus updates, the
Windows service fails to start again after you stop it or reboot the
device.

2.5.1
Warning

This version is no longer available. The improvements in this version
are available in later versions of this component.

Bug fixes and improvements

• Adds support for 32-bit versions of the Java Runtime Environment
(JRE) on Windows.

• Changes thing group removal behavior for core devices whose AWS
IoT policy doesn't grant the greengrass:ListThingGroupsF
orCoreDevice permission. With this version, the deployment
continues, logs a warning, and doesn't remove components when you
remove the core device from a thing group. For more information, see
Deploy AWS IoT Greengrass components to devices.

• Fixes an issue with system environment variables that the Greengrass
nucleus makes available to Greengrass component processes. You can
now restart a component for it to use the latest system environment
variables.

Greengrass nucleus 521

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.5.0 New features

• Adds support for core devices that run Windows.

• Change the behavior of thing group removal. With this version, you
can remove a core device from a thing group to uninstall that thing
group's components in the next deployment.

As a result of this change, a core device's AWS IoT policy must have the
greengrass:ListThingGroupsForCoreDevice permission. If
you used the AWS IoT Greengrass Core software installer to provision
resources, the default AWS IoT policy allows greengrass:* , which
includes this permission. For more information, see Device authentic
ation and authorization for AWS IoT Greengrass.

• Adds support for HTTPS proxy configurations. For more information,
see Connect on port 443 or through a network proxy.

• Adds the new windowsUser configuration parameter. You can use
this parameter to specify the default user to use to run components on
a Windows core device. For more information, see Configure the user
that runs components.

• Adds the new httpClient configuration options that you can use
to customize HTTP request timeouts to improve performance on slow
networks. For more information, see the httpClient configuration
parameter.

Bug fixes and improvements

• Fixes the bootstrap lifecycle option to restart the core device from a
component.

• Adds support for hyphens in recipe variables.

• Fixes IPC authorization for on-demand Lambda function components.

• Improves log messages and changes non-critical logs from INFO to
DEBUG level, so logs are more useful.

• Removes the iot:DescribeCertificate permission from the
default token exchange role that the Greengrass nucleus creates when

Greengrass nucleus 522

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

you install the AWS IoT Greengrass Core software with automatic
provisioning. This permission isn't used by the Greengrass nucleus.

• Fixes an issue so that the automatic provisioning script doesn't require
the iam:GetPolicy permission if iam:CreatePolicy is available
for the same policy.

• Additional minor fixes and improvements.

2.4.0 New features

• Adds support for system resource limits. You can configure the
maximum amount of CPU and RAM usage that each component
's processes can use on the core device. For more information, see
Configure system resource limits for components.

• Adds IPC operations to pause and resume components. For more
information, see PauseComponent and ResumeComponent.

• Adds support for provisioning plugins. You can specify a JAR file to
run during installation to provision required AWS resources for a
Greengrass core device. The Greengrass nucleus includes an interface
that you can implement to develop custom provisioning plugins. For
more information, see Install AWS IoT Greengrass Core software with
custom resource provisioning.

• Adds the optional thing-name-policy argument to the AWS IoT
Greengrass Core software installer. You can use this option to specify
an existing or custom AWS IoT policy when you install the AWS IoT
Greengrass Core software with automatic resource provisioning.

Bug fixes and improvements

• Updates logging configuration on startup. This fixes an issue where the
logging configuration wasn't applied on startup.

• Updates the nucleus loader symlink to point to the component store in
the Greengrass root folder during installation. This update enables you
to delete the JAR file and other nucleus artifacts that you download
when you install the AWS IoT Greengrass Core software.

• Additional minor fixes and improvements. For more information, see
the releases on GitHub.

Greengrass nucleus 523

https://github.com/aws-greengrass/aws-greengrass-nucleus/releases

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.3.0 New features

• Adds support for deployment configuration documents up to 10
MB, up from 7 KB (for deployments that target things) or 31 KB (for
deployments that target thing groups).

To use this feature, a core device's AWS IoT policy must allow the
greengrass:GetDeploymentConfiguration permission. If
you used the AWS IoT Greengrass Core software installer to provision
resources, your core device's AWS IoT policy allows greengrass:* ,
which includes this permission. For more information, see Device
authentication and authorization for AWS IoT Greengrass.

• Adds the iot:thingName recipe variable. You can use this recipe
variable to get the name of the core device's AWS IoT thing in a recipe.
For more information, see Recipe variables.

Bug fixes and improvements

• Additional minor fixes and improvements. For more information, see
the releases on GitHub.

2.2.0 New features

• Adds IPC operations for local shadow management.

Bug fixes and improvements

• Reduces the size of the JAR file.

• Reduces memory usage.

• Fixes issues where the log configuration wasn't updated in certain
cases.

• Additional minor fixes and improvements. For more information, see
the releases on GitHub.

Greengrass nucleus 524

https://github.com/aws-greengrass/aws-greengrass-nucleus/releases
https://github.com/aws-greengrass/aws-greengrass-nucleus/releases

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.1.0 New features

• Supports downloading Docker images from private repositories in
Amazon ECR.

• Adds the following parameters to customize the MQTT configuration
on core devices:

• maxInFlightPublishes – The maximum number of unacknowl
edged MQTT QoS 1 messages that can be in flight at the same time.

• maxPublishRetry – The maximum number of times to retry a
message that fails to publish.

• Adds the fleetstatusservice configuration parameter to
configure the interval at which the core device publishes device status
to the AWS Cloud.

• Additional minor fixes and improvements. For more information, see
the releases on GitHub.

Bug fixes and improvements

• Fixes an issue that caused shadow deployments to be duplicated when
the nucleus restarts.

• Fixes an issue that caused the nucleus to crash when it encountered a
service load exception.

• Improves component dependency resolution to fail a deployment that
includes a circular dependency.

• Fixes an issue that prevented a plugin component from being
redeployed if that component had been previously removed from the
core device.

• Fix an issue that caused the HOME environment variable to be set to the
/greengrass/v2 /work directory for Lambda components or for
components that run as root. The HOME variable is now correctly set to
the home directory for the user that runs the component.

• Additional minor fixes and improvements. For more information, see
the releases on GitHub.

Greengrass nucleus 525

https://github.com/aws-greengrass/aws-greengrass-nucleus/releases
https://github.com/aws-greengrass/aws-greengrass-nucleus/releases

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.0.5 Bug fixes and improvements

• Correctly routes traffic through a configured network proxy when
downloading AWS-provided components.

• Use the correct Greengrass data plane endpoint in AWS China Regions.

2.0.4 New features

• Enables HTTPS traffic over port 443. You can use the new greengras
sDataPlanePort configuration parameter for version 2.0.4 of the
nucleus component to configure HTTPS communication to travel over
port 443 instead of the default port 8443. For more information, see
Configure HTTPS over port 443.

• Adds the work path recipe variable. You can use this recipe variable to
get the path to components' work folders, which you can use to share
files between components and their dependencies. For more informati
on, see the work path recipe variable.

Bug fixes and improvements

• Prevents the creation of the token exchange AWS Identity and Access
Management (IAM) role policy if a role policy already exists.

As a result of this change, the installer now requires the iam:GetPo
licy and sts:GetCallerIdentity when run with --provisi
on true . For more information, see Minimal IAM policy for installer
to provision resources.

• Correctly handles the cancellation of a deployment that has not yet
been registered successfully.

• Updates the configuration to remove older entries with newer
timestamps when rolling back a deployment.

• Additional minor fixes and improvements. For more information, see
the releases on GitHub.

2.0.3 Initial version.

Greengrass nucleus 526

https://github.com/aws-greengrass/aws-greengrass-nucleus/releases

AWS IoT Greengrass Developer Guide, Version 2

Greengrass nucleus lite

The Greengrass nucleus lite (aws.greengrass.NucleusLite) is a device runtime for constrained
edge devices optimized for minimal memory footprint (uses less than 5MB RAM). It has been
introduced with AWS IoT Greengrass version 2.14 release and is backward compatible with AWS IoT
Greengrass generic components, Greengrass service v2 API and SDK.

The Greengrass nucleus lite is offered as an alternative to the common Greengrass nucleus
(aws.greengrass.Nucleus) and can be used in heterogeneous fleets of Greengrass devices.

Topics

• Versions

• Operating system

• Requirements

• Compatibility

• Download and installation

• Configuration

• Local log file

• Changelog

Versions

This component has the following versions:

• 2.0.0 - First release

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux (distributions with systemd)

For more information, see Greengrass nucleus.

Greengrass nucleus lite 527

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-nucleus-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-nucleus-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/operating-system-feature-support-matrix.html

AWS IoT Greengrass Developer Guide, Version 2

Requirements

Devices must meet certain requirements to install and run the AWS IoT Greengrass nucleus lite and
the AWS IoT Greengrass Core software. For more information, see Installation guide.

• 5MB of RAM space for the nucleus runtime.

• 5MB of storage (disk/FLASH).

Additional system dependencies are documented in the Installation Guide.

The Greengrass nucleus component is supported to run in a VPC. To deploy this component in a
VPC, the following is required:

• The Greengrass nucleus must have connectivity to AWS IoT data, AWS IoT Credentials, and
Amazon S3.

Compatibility

The AWS IoT Greengrass nucleus lite is compatible with the AWS IoT Greengrass v2 API (subset of)
and supported SDKs. It does not depend on any specific language runtimes/VMs but components
added to a deployment can require the presence of specific runtimes (e.g.: Java JVM, Python).

Download and installation

You can download an apt package, build from source, use a Yocto layer, or download a pre-built
Yocto image for compatible device (e.g., RaspberryPi). From the AWS IoT Core Console you will be
able to download a connection kit containing all the credentials and initial configuration for your
device. Instructions on how to install are included in each specific distribution method.

You can also follow a tutorial to install the AWS IoT Greengrass nucleus lite and explore Greengrass
component development. For more information, see Tutorial: Getting started with AWS IoT
Greengrass V2.

Configuration

The nucleus provides the following configuration parameters. Some parameters require that the
AWS IoT Greengrass Core software restarts to take effect.

Greengrass nucleus lite 528

https://github.com/aws-greengrass/aws-greengrass-lite/blob/main/docs/SETUP.md#setting-up-greengrass-nucleus-lite
https://github.com/aws-greengrass/aws-greengrass-lite/blob/main/docs/INSTALL.md#dependencies
https://console.aws.amazon.com/iot/home
https://github.com/aws-greengrass/aws-greengrass-lite/blob/main/docs/SETUP.md#configuring-greengrass

AWS IoT Greengrass Developer Guide, Version 2

iotRoleAlias

The AWS IoT role alias that points to a token exchange IAM role. The AWS IoT credentials
provider assumes this role to allow the Greengrass core device to interact with AWS services. For
more information, see Authorize core devices to interact with AWS services.

iotDataEndpoint

The AWS IoT data endpoint for your AWS account.

iotCredEndpoint

The AWS IoT credentials endpoint for your AWS account.

greengrassDataPlanePort

The port to use for data plane connections. For more information, see Connect on port 443 or
through a network proxy.

Important

You must specify a port where the device can make outbound connections. If you
specify a port that is blocked, the device won't be able to connect to AWS IoT
Greengrass to receive deployments. Choose from the following options:

• 443

• 8443

• Default: 8443

awsRegion

The AWS Region to use.

runWithDefault

The system user to use to run components.

Important

When you deploy a change to this configuration parameter, the AWS IoT Greengrass
Core software restarts for the change to take effect.

Greengrass nucleus lite 529

https://docs.aws.amazon.com/greengrass/v2/developerguide/device-service-role.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/configure-greengrass-core-v2.html#configure-alpn-network-proxy
https://docs.aws.amazon.com/greengrass/v2/developerguide/configure-greengrass-core-v2.html#configure-alpn-network-proxy

AWS IoT Greengrass Developer Guide, Version 2

This object contains the following information:

posixUser

The name or ID of the system user and, optionally, system group that the core device uses
to run generic components. Specify the user and group separated by a colon (:) in the
following format: user:group. The group is optional. If you don't specify a group, the AWS
IoT Greengrass Core software uses the primary group for the user. For example, you can
specify ggc_user or ggc_user:ggc_group. For more information, see Configure the user
that runs components.

Local log file

Messages are logged to stdout and log files are handled by systemd.

To view this component's logs

• Use journalctl to view logs.

Changelog

None.

Client device auth

The client device auth component (aws.greengrass.clientdevices.Auth) authenticates
client devices and authorizes client device actions.

Note

Client devices are local IoT devices that connect to a Greengrass core device to send MQTT
messages and data to process. For more information, see Interact with local IoT devices.

Topics

• Versions

• Type

• Operating system

Client device auth 530

AWS IoT Greengrass Developer Guide, Version 2

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

Versions

Note

Client device auth version 2.3.0 has been discontinued. We strongly recommend that you
upgrade to client device auth version 2.3.1 or later.

This component has the following versions:

• 2.5.x

• 2.4.x

• 2.3.x

• 2.2.x

• 2.1.x

• 2.0.x

Type

This component is a plugin component (aws.greengrass.plugin). The Greengrass nucleus runs
this component in the same Java Virtual Machine (JVM) as the nucleus. The nucleus restarts when
you change this component's version on the core device.

This component uses the same log file as the Greengrass nucleus. For more information, see
Monitor AWS IoT Greengrass logs.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

Client device auth 531

AWS IoT Greengrass Developer Guide, Version 2

• Linux

• Windows

Requirements

This component has the following requirements:

• The Greengrass service role must be associated to your AWS account and allow the
iot:DescribeCertificate permission.

• The core device's AWS IoT policy must allow the following permissions:

• greengrass:GetConnectivityInfo, where the resources include the ARN of the core
device that runs this component

• greengrass:VerifyClientDeviceIoTCertificateAssociation, where the resources
include the Amazon Resource Name (ARN) of each client device that connects to the core
device

• greengrass:VerifyClientDeviceIdentity

• greengrass:PutCertificateAuthorities

• iot:Publish, where the resources include the ARN of the following MQTT topic:

• $aws/things/coreDeviceThingName*-gci/shadow/get

• iot:Subscribe, where the resources include the ARNs of the following MQTT topic filters:

• $aws/things/coreDeviceThingName*-gci/shadow/update/delta

• $aws/things/coreDeviceThingName*-gci/shadow/get/accepted

• iot:Receive, where the resources include the ARNs of the following MQTT topics:

• $aws/things/coreDeviceThingName*-gci/shadow/update/delta

• $aws/things/coreDeviceThingName*-gci/shadow/get/accepted

For more information, see AWS IoT policies for data plane operations and Minimal AWS IoT
policy to support client devices.

• (Optional) To use offline authentication, the AWS Identity and Access Management (IAM) role
used by the AWS IoT Greengrass service must contain the following permission:

• greengrass:ListClientDevicesAssociatedWithCoreDevice to enable the core device
to list clients for offline authentication.

• The client device auth component is supported to run in a VPC. To deploy this component in a
VPC, the following is required.

Client device auth 532

AWS IoT Greengrass Developer Guide, Version 2

• The client device auth component must have connectivity to AWS IoT data, AWS IoT
Credentials, and Amazon S3.

Endpoints and ports

This component must be able to perform outbound requests to the following endpoints and ports,
in addition to endpoints and ports required for basic operation. For more information, see Allow
device traffic through a proxy or firewall.

Endpoint Port Required Descripti
on

iot.region.amazonaws.com 443 Yes Used
to get
informati
on about
AWS IoT
thing
certifica
tes.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.5.2

The following table lists the dependencies for version 2.5.2 of this component.

Client device auth 533

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.6.0 <2.15.0 Soft

2.5.1

The following table lists the dependencies for version 2.5.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.6.0 <2.14.0 Soft

2.4.4 - 2.5.0

The following table lists the dependencies for version 2.4.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.6.0 <2.13.0 Soft

2.4.3

The following table lists the dependencies for version 2.4.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.6.0 <2.12.0 Soft

2.4.1 and 2.4.2

The following table lists the dependencies for version 2.4.1 and 2.4.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.6.0 <2.11.0 Soft

Client device auth 534

AWS IoT Greengrass Developer Guide, Version 2

2.3.0 – 2.4.0

The following table lists the dependencies for versions 2.3.0 to 2.4.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.6.0 <2.10.0 Soft

2.3.0

The following table lists the dependencies for version 2.3.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.6.0 <2.10.0 Soft

2.2.3

The following table lists the dependencies for version 2.2.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.6.0 <=2.9.0 Soft

2.2.2

The following table lists the dependencies for version 2.2.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.6.0 <=2.8.0 Soft

2.2.1

The following table lists the dependencies for version 2.2.1 of this component.

Client device auth 535

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.6.0 <2.8.0 Soft

2.2.0

The following table lists the dependencies for version 2.2.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.6.0 <2.7.0 Soft

2.1.0

The following table lists the dependencies for version 2.1.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.7.0 Soft

2.0.4

The following table lists the dependencies for version 2.0.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.6.0 Soft

2.0.2 and 2.0.3

The following table lists the dependencies for versions 2.0.2 and 2.0.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.5.0 Soft

Client device auth 536

AWS IoT Greengrass Developer Guide, Version 2

2.0.1

The following table lists the dependencies for version 2.0.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.4.0 Soft

2.0.0

The following table lists the dependencies for version 2.0.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.3.0 Soft

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

Note

The subscribe permission is evaluated during a client subscribe request to the local MQTT
broker. If the client’s existing subscribe permission is revoked, the client will no longer
be able to subscribe to a topic. It will, however, continue to receive messages from any
previously subscribed topics. To prevent this behavior, the local MQTT broker should be
restarted after revoking subscribe permission to force reauthorization of clients.
For the MQTT 5 broker (EMQX) component, update the restartIdentifier
configuration to restart the MQTT 5 broker.
For the MQTT 3.1.1 broker (Moquette) component, it restarts weekly by default when the
server certificate changes forcing clients to reauthorize. You can force a restart either by
changing the connectivity information (IP addresses) of the core device or by making a
deployment to remove the broker component and then deploy it again later.

Client device auth 537

AWS IoT Greengrass Developer Guide, Version 2

v2.5.0

deviceGroups

Device groups are groups of client devices that have permissions to connect and
communicate with a core device. Use selection rules to identify groups of client devices, and
define client device authorization policies that specify the permissions for each device group.

This object contains the following information:

formatVersion

The format version for this configuration object.

Choose from the following options:

• 2021-03-05

definitions

The device groups for this core device. Each definition specifies a selection rule to
evaluate if a client device is a member of the group. Each definition also specifies the
permissions policy to apply to client devices that match the selection rule. If a client
device is a member of multiple device groups, the device's permissions are comprised of
each group's permissions policy.

This object contains the following information:

groupNameKey

The name of this device group. Replace groupNameKey with a name that helps you
identify this device group.

This object contains the following information:

selectionRule

The query that specifies which client devices are members of this device group.
When a client device connects, the core device evaluates this selection rule to
determine if the client device is a member of this device group. If the client device
is a member, the core device uses this device group's policy to authorize the client
device's actions.

Each selection rule comprises at least one selection rule clause, which is a single
expression query that can match client devices. Selection rules use the same

Client device auth 538

AWS IoT Greengrass Developer Guide, Version 2

query syntax as AWS IoT fleet indexing. For more information about selection rule
syntax, see AWS IoT fleet indexing query syntax in the AWS IoT Core Developer
Guide.

Use the * wildcard to match multiple client devices with one selection rule clause.
You can use this wildcard at the beginning and end of the thing name to match
client devices whose names start or end with the string that you specify. You can
also use this wildcard to match all client devices.

Note

To select a value that contains a colon character (:), escape the colon
with a backslash character (\). In formats such as JSON, you must
escape backslash characters, so you enter two backslash characters
before the colon character. For example, specify thingName:
MyTeam\\:ClientDevice1 to select a thing whose name is
MyTeam:ClientDevice1.

You can specify the following selector:

• thingName – The name of a client device's AWS IoT thing.

Example Example selection rule

The following selection rule matches client devices whose names are
MyClientDevice1 or MyClientDevice2.

thingName: MyClientDevice1 OR thingName: MyClientDevice2

Example Example selection rule (use wildcards)

The following selection rule matches client devices whose names start with
MyClientDevice.

thingName: MyClientDevice*

Example Example selection rule (use wildcards)

The following selection rule matches client devices whose names end with
MyClientDevice.

Client device auth 539

https://docs.aws.amazon.com/iot/latest/developerguide/query-syntax.html

AWS IoT Greengrass Developer Guide, Version 2

thingName: *MyClientDevice

Example Example selection rule (match all devices)

The following selection rule matches all client devices.

thingName: *

policyName

The permissions policy that applies to client devices in this device group. Specify
the name of a policy that you define in the policies object.

policies

The client device authorization policies for client devices that connect to the core device.
Each authorization policy specifies a set of actions and the resources where a client
device can perform those actions.

This object contains the following information:

policyNameKey

The name of this authorization policy. Replace policyNameKey with a name that
helps you identify this authorization policy. You use this policy name to define which
policy applies to a device group.

This object contains the following information:

statementNameKey

The name of this policy statement. Replace statementNameKey with a name that
helps you identify this policy statement.

This object contains the following information:

operations

The list of operations to allow for the resources in this policy.

You can include any of the following operations:

Client device auth 540

AWS IoT Greengrass Developer Guide, Version 2

• mqtt:connect – Grants permission to connect to the core device. Client
devices must have this permission to connect to a core device.

This operation supports the following resources:

• mqtt:clientId:deviceClientId – Restrict access based on the client
ID that a client device uses to connect to the core device's MQTT broker.
Replace deviceClientId with the client ID to use.

• mqtt:publish – Grants permission to publish MQTT messages to topics.

This operation supports the following resources:

• mqtt:topic:mqttTopic – Restrict access based on the MQTT topic
where a client device publishes a message. Replace mqttTopic with the
topic to use.

This resource doesn't support MQTT topic wildcards.

• mqtt:subscribe – Grants permission to subscribe to MQTT topic filters to
receive messages.

This operation supports the following resources:

• mqtt:topicfilter:mqttTopicFilter – Restrict access based on the
MQTT topics where a client device can subscribe to messages. Replace
mqttTopicFilter with the topic filter to use.

This resource supports the + and # MQTT topic wildcards. For more
information, see MQTT topics in the AWS IoT Core Developer Guide.

The client device can subscribe to the exact topic filters that you
allow. For example, if you allow the client device to subscribe to the
mqtt:topicfilter:client/+/status resource, the client device can
subscribe to client/+/status but not client/client1/status.

You can specify the * wildcard to allow access to all actions.

resources

The list of resources to allow for the operations in this policy. Specify resources
that correspond to the operations in this policy. For example, you might specify
a list of MQTT topic resources (mqtt:topic:mqttTopic) in a policy that
specifies the mqtt:publish operation.

Client device auth 541

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html

AWS IoT Greengrass Developer Guide, Version 2

You can specify the * wildcard anywhere within the resource variable to allow
access to all resources. For example, you can specify mqtt:topic:my* to
allow access to resources that match that input.

The following resource variable is supported:

• mqtt:topic:${iot:Connection.Thing.ThingName}

This resolves to the name of the thing in the AWS IoT Core registry for which
the policy is being evaluated. AWS IoT Core uses the certificate the device
presents when it authenticates to determine which thing to use to verify the
connection. This policy variable is only available when a device connects over
MQTT or MQTT over the WebSocket protocol.

statementDescription

(Optional) A description for this policy statement.

certificates

(Optional) The certificate configuration options for this core device. This object contains the
following information:

serverCertificateValiditySeconds

(Optional) The amount of time (in seconds) after which the local MQTT server certificate
expires. You can configure this option to customize how often client devices disconnect
and reconnect to the core device.

This component rotates the local MQTT server certificate 24 hours before it expires.
The MQTT broker, such as the Moquette MQTT broker component, generates a new
certificate and restarts. When this happens, all client devices connected to this core
device are disconnected. Client devices can reconnect to the core device after a short
period of time.

Default: 604800 (7 days)

Minimum value: 172800 (2 days)

Maximum value: 864000 (10 days)

performance

(Optional) The performance configuration options for this core device. This object contains
the following information:

Client device auth 542

AWS IoT Greengrass Developer Guide, Version 2

maxActiveAuthTokens

(Optional) The maximum number of active client device authorization tokens. You can
increase this number to enable a greater number of client devices to connect to a single
core device, without reauthenticating them.

Default: 2500

cloudRequestQueueSize

(Optional) The maximum number of AWS Cloud requests to queue before this
component rejects requests.

Default: 100

maxConcurrentCloudRequests

(Optional) The maximum number of concurrent requests to send to the AWS Cloud. You
can increase this number to improve authentication performance on core devices where
you connect large numbers of client devices.

Default: 1

certificateAuthority

(Optional) Certificate authority configuration options to replace the core device intermediate
authority with your own intermediate certificate authority.

Note

If you configure your Greengrass core device with a custom certificate authority
(CA) and use the same CA to issue client device certificates, Greengrass bypasses
authorization policy checks for client device MQTT operations. The client device auth
component fully trusts clients using certificates signed by the CA that it is configured
to use.
To restrict this behavior when using a custom CA, create and sign client devices
using a different CA or intermediate CA, then adjust the certificateUri and
certificateChainUri fields to point to the correct intermediate CA.

This object contains the following information.

Client device auth 543

AWS IoT Greengrass Developer Guide, Version 2

certificateUri

The location of the certificate. It can be a file system URI or a URI that points to a
certificate stored in a hardware security module.

certificateChainUri

The location of the certificate chain for the core device CA. This should be the complete
certificate chain back to your root CA. It can be a file system URI or a URI that points to a
certificate chain stored in a hardware security module.

privateKeyUri

The location of the core device's private key. This can be a file system URI or a URI that
points to a certificate private key stored in a hardware security module.

security

(Optional) Security configuration options for this core device. This object contains the
following information.

clientDeviceTrustDurationMinutes

The duration in minutes that the authentication information of a client device can be
trusted before it's required to reauthenticate with the core device. The default value is 1.

metrics

(Optional) The metrics options for this core device. Error metrics will only display if there is
an error with the client device auth. This object contains the following information:

disableMetrics

If the disableMetrics field is set as true, the client device auth won't collect metrics.

Default: false

aggregatePeriodSeconds

The aggregation period in seconds that determines how often the client device auth
aggregates metrics and sends them to the telemetry agent. This doesn't change how
often metrics are published because the telemetry agent still publishes them once a day.

Client device auth 544

AWS IoT Greengrass Developer Guide, Version 2

Default: 3600

startupTimeoutSeconds

(Optional) The maximum of time in seconds for the component to start. The component's
state changes to BROKEN if it exceeds this timeout.

Default: 120

Example Example: Configuration merge update (using a restrictive policy)

The following example configuration specifies to allow client devices whose names start with
MyClientDevice to connect and publish/subscribe on all topics.

{
 "deviceGroups": {
 "formatVersion": "2021-03-05",
 "definitions": {
 "MyDeviceGroup": {
 "selectionRule": "thingName: MyClientDevice*",
 "policyName": "MyRestrictivePolicy"
 }
 },
 "policies": {
 "MyRestrictivePolicy": {
 "AllowConnect": {
 "statementDescription": "Allow client devices to connect.",
 "operations": [
 "mqtt:connect"
],
 "resources": [
 "*"
]
 },
 "AllowPublish": {
 "statementDescription": "Allow client devices to publish on test/topic.",
 "operations": [
 "mqtt:publish"
],
 "resources": [
 "mqtt:topic:test/topic"
]
 },

Client device auth 545

AWS IoT Greengrass Developer Guide, Version 2

 "AllowSubscribe": {
 "statementDescription": "Allow client devices to subscribe to test/topic/
response.",
 "operations": [
 "mqtt:subscribe"
],
 "resources": [
 "mqtt:topicfilter:test/topic/response"
]
 }
 }
 }
 }
}

Example Example: Configuration merge update (using a permissive policy)

The following example configuration specifies to allow all client devices to connect and publish/
subscribe on all topics.

{
 "deviceGroups": {
 "formatVersion": "2021-03-05",
 "definitions": {
 "MyPermissiveDeviceGroup": {
 "selectionRule": "thingName: *",
 "policyName": "MyPermissivePolicy"
 }
 },
 "policies": {
 "MyPermissivePolicy": {
 "AllowAll": {
 "statementDescription": "Allow client devices to perform all actions.",
 "operations": [
 "*"
],
 "resources": [
 "*"
]
 }
 }
 }
 }

Client device auth 546

AWS IoT Greengrass Developer Guide, Version 2

}

Example Example: Configuration merge update (using a thing name policy)

The following example configuration enables client devices to publish on topics that begin with
the client device's thing name and end with the string topic.

{
 "deviceGroups": {
 "formatVersion": "2021-03-05",
 "definitions": {
 "myThing": {
 "selectionRule": "thingName: *",
 "policyName": "MyThingNamePolicy"
 }
 },
 "policies": {
 "MyThingNamePolicy": {
 "policyStatement": {
 "statementDescription": "mqtt publish",
 "operations": [
 "mqtt:publish"
],
 "resources": [
 "mqtt:topic:${iot:Connection.Thing.ThingName}/*/topic"
]
 }
 }
 }
 }
}

v2.4.5

deviceGroups

Device groups are groups of client devices that have permissions to connect and
communicate with a core device. Use selection rules to identify groups of client devices, and
define client device authorization policies that specify the permissions for each device group.

This object contains the following information:

Client device auth 547

AWS IoT Greengrass Developer Guide, Version 2

formatVersion

The format version for this configuration object.

Choose from the following options:

• 2021-03-05

definitions

The device groups for this core device. Each definition specifies a selection rule to
evaluate if a client device is a member of the group. Each definition also specifies the
permissions policy to apply to client devices that match the selection rule. If a client
device is a member of multiple device groups, the device's permissions are comprised of
each group's permissions policy.

This object contains the following information:

groupNameKey

The name of this device group. Replace groupNameKey with a name that helps you
identify this device group.

This object contains the following information:

selectionRule

The query that specifies which client devices are members of this device group.
When a client device connects, the core device evaluates this selection rule to
determine if the client device is a member of this device group. If the client device
is a member, the core device uses this device group's policy to authorize the client
device's actions.

Each selection rule comprises at least one selection rule clause, which is a single
expression query that can match client devices. Selection rules use the same
query syntax as AWS IoT fleet indexing. For more information about selection rule
syntax, see AWS IoT fleet indexing query syntax in the AWS IoT Core Developer
Guide.

Use the * wildcard to match multiple client devices with one selection rule clause.
You can use this wildcard at the beginning and end of the thing name to match
client devices whose names start or end with the string that you specify. You can
also use this wildcard to match all client devices.

Client device auth 548

https://docs.aws.amazon.com/iot/latest/developerguide/query-syntax.html

AWS IoT Greengrass Developer Guide, Version 2

Note

To select a value that contains a colon character (:), escape the colon
with a backslash character (\). In formats such as JSON, you must
escape backslash characters, so you enter two backslash characters
before the colon character. For example, specify thingName:
MyTeam\\:ClientDevice1 to select a thing whose name is
MyTeam:ClientDevice1.

You can specify the following selector:

• thingName – The name of a client device's AWS IoT thing.

Example Example selection rule

The following selection rule matches client devices whose names are
MyClientDevice1 or MyClientDevice2.

thingName: MyClientDevice1 OR thingName: MyClientDevice2

Example Example selection rule (use wildcards)

The following selection rule matches client devices whose names start with
MyClientDevice.

thingName: MyClientDevice*

Example Example selection rule (use wildcards)

The following selection rule matches client devices whose names end with
MyClientDevice.

thingName: *MyClientDevice

Example Example selection rule (match all devices)

The following selection rule matches all client devices.

Client device auth 549

AWS IoT Greengrass Developer Guide, Version 2

thingName: *

policyName

The permissions policy that applies to client devices in this device group. Specify
the name of a policy that you define in the policies object.

policies

The client device authorization policies for client devices that connect to the core device.
Each authorization policy specifies a set of actions and the resources where a client
device can perform those actions.

This object contains the following information:

policyNameKey

The name of this authorization policy. Replace policyNameKey with a name that
helps you identify this authorization policy. You use this policy name to define which
policy applies to a device group.

This object contains the following information:

statementNameKey

The name of this policy statement. Replace statementNameKey with a name that
helps you identify this policy statement.

This object contains the following information:

operations

The list of operations to allow for the resources in this policy.

You can include any of the following operations:

• mqtt:connect – Grants permission to connect to the core device. Client
devices must have this permission to connect to a core device.

This operation supports the following resources:

• mqtt:clientId:deviceClientId – Restrict access based on the client
ID that a client device uses to connect to the core device's MQTT broker.
Replace deviceClientId with the client ID to use.

Client device auth 550

AWS IoT Greengrass Developer Guide, Version 2

• mqtt:publish – Grants permission to publish MQTT messages to topics.

This operation supports the following resources:

• mqtt:topic:mqttTopic – Restrict access based on the MQTT topic
where a client device publishes a message. Replace mqttTopic with the
topic to use.

This resource doesn't support MQTT topic wildcards.

• mqtt:subscribe – Grants permission to subscribe to MQTT topic filters to
receive messages.

This operation supports the following resources:

• mqtt:topicfilter:mqttTopicFilter – Restrict access based on the
MQTT topics where a client device can subscribe to messages. Replace
mqttTopicFilter with the topic filter to use.

This resource supports the + and # MQTT topic wildcards. For more
information, see MQTT topics in the AWS IoT Core Developer Guide.

The client device can subscribe to the exact topic filters that you
allow. For example, if you allow the client device to subscribe to the
mqtt:topicfilter:client/+/status resource, the client device can
subscribe to client/+/status but not client/client1/status.

You can specify the * wildcard to allow access to all actions.

resources

The list of resources to allow for the operations in this policy. Specify resources
that correspond to the operations in this policy. For example, you might specify
a list of MQTT topic resources (mqtt:topic:mqttTopic) in a policy that
specifies the mqtt:publish operation.

You can specify the * wildcard to allow access to all resources. You can't
use the * wildcard to match partial resource identifiers. For example, you
can specify "resources": "*", but you can't specify "resources":
"mqtt:clientId:*".

statementDescription

(Optional) A description for this policy statement.

Client device auth 551

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html

AWS IoT Greengrass Developer Guide, Version 2

certificates

(Optional) The certificate configuration options for this core device. This object contains the
following information:

serverCertificateValiditySeconds

(Optional) The amount of time (in seconds) after which the local MQTT server certificate
expires. You can configure this option to customize how often client devices disconnect
and reconnect to the core device.

This component rotates the local MQTT server certificate 24 hours before it expires.
The MQTT broker, such as the Moquette MQTT broker component, generates a new
certificate and restarts. When this happens, all client devices connected to this core
device are disconnected. Client devices can reconnect to the core device after a short
period of time.

Default: 604800 (7 days)

Minimum value: 172800 (2 days)

Maximum value: 864000 (10 days)

performance

(Optional) The performance configuration options for this core device. This object contains
the following information:

maxActiveAuthTokens

(Optional) The maximum number of active client device authorization tokens. You can
increase this number to enable a greater number of client devices to connect to a single
core device, without reauthenticating them.

Default: 2500

cloudRequestQueueSize

(Optional) The maximum number of AWS Cloud requests to queue before this
component rejects requests.

Default: 100

Client device auth 552

AWS IoT Greengrass Developer Guide, Version 2

maxConcurrentCloudRequests

(Optional) The maximum number of concurrent requests to send to the AWS Cloud. You
can increase this number to improve authentication performance on core devices where
you connect large numbers of client devices.

Default: 1

certificateAuthority

(Optional) Certificate authority configuration options to replace the core device intermediate
authority with your own intermediate certificate authority.

Note

If you configure your Greengrass core device with a custom certificate authority
(CA) and use the same CA to issue client device certificates, Greengrass bypasses
authorization policy checks for client device MQTT operations. The client device auth
component fully trusts clients using certificates signed by the CA that it is configured
to use.
To restrict this behavior when using a custom CA, create and sign client devices
using a different CA or intermediate CA, then adjust the certificateUri and
certificateChainUri fields to point to the correct intermediate CA.

This object contains the following information.

certificateUri

The location of the certificate. It can be a file system URI or a URI that points to a
certificate stored in a hardware security module.

certificateChainUri

The location of the certificate chain for the core device CA. This should be the complete
certificate chain back to your root CA. It can be a file system URI or a URI that points to a
certificate chain stored in a hardware security module.

privateKeyUri

The location of the core device's private key. This can be a file system URI or a URI that
points to a certificate private key stored in a hardware security module.

Client device auth 553

AWS IoT Greengrass Developer Guide, Version 2

security

(Optional) Security configuration options for this core device. This object contains the
following information.

clientDeviceTrustDurationMinutes

The duration in minutes that the authentication information of a client device can be
trusted before it's required to reauthenticate with the core device. The default value is 1.

metrics

(Optional) The metrics options for this core device. Error metrics will only display if there is
an error with the client device auth. This object contains the following information:

disableMetrics

If the disableMetrics field is set as true, the client device auth won't collect metrics.

Default: false

aggregatePeriodSeconds

The aggregation period in seconds that determines how often the client device auth
aggregates metrics and sends them to the telemetry agent. This doesn't change how
often metrics are published because the telemetry agent still publishes them once a day.

Default: 3600

startupTimeoutSeconds

(Optional) The maximum of time in seconds for the component to start. The component's
state changes to BROKEN if it exceeds this timeout.

Default: 120

Example Example: Configuration merge update (using a restrictive policy)

The following example configuration specifies to allow client devices whose names start with
MyClientDevice to connect and publish/subscribe on all topics.

{
 "deviceGroups": {
 "formatVersion": "2021-03-05",

Client device auth 554

AWS IoT Greengrass Developer Guide, Version 2

 "definitions": {
 "MyDeviceGroup": {
 "selectionRule": "thingName: MyClientDevice*",
 "policyName": "MyRestrictivePolicy"
 }
 },
 "policies": {
 "MyRestrictivePolicy": {
 "AllowConnect": {
 "statementDescription": "Allow client devices to connect.",
 "operations": [
 "mqtt:connect"
],
 "resources": [
 "*"
]
 },
 "AllowPublish": {
 "statementDescription": "Allow client devices to publish on test/topic.",
 "operations": [
 "mqtt:publish"
],
 "resources": [
 "mqtt:topic:test/topic"
]
 },
 "AllowSubscribe": {
 "statementDescription": "Allow client devices to subscribe to test/topic/
response.",
 "operations": [
 "mqtt:subscribe"
],
 "resources": [
 "mqtt:topicfilter:test/topic/response"
]
 }
 }
 }
 }
}

Client device auth 555

AWS IoT Greengrass Developer Guide, Version 2

Example Example: Configuration merge update (using a permissive policy)

The following example configuration specifies to allow all client devices to connect and publish/
subscribe on all topics.

{
 "deviceGroups": {
 "formatVersion": "2021-03-05",
 "definitions": {
 "MyPermissiveDeviceGroup": {
 "selectionRule": "thingName: *",
 "policyName": "MyPermissivePolicy"
 }
 },
 "policies": {
 "MyPermissivePolicy": {
 "AllowAll": {
 "statementDescription": "Allow client devices to perform all actions.",
 "operations": [
 "*"
],
 "resources": [
 "*"
]
 }
 }
 }
 }
}

v2.4.2 - v2.4.4

deviceGroups

Device groups are groups of client devices that have permissions to connect and
communicate with a core device. Use selection rules to identify groups of client devices, and
define client device authorization policies that specify the permissions for each device group.

This object contains the following information:

formatVersion

The format version for this configuration object.

Client device auth 556

AWS IoT Greengrass Developer Guide, Version 2

Choose from the following options:

• 2021-03-05

definitions

The device groups for this core device. Each definition specifies a selection rule to
evaluate if a client device is a member of the group. Each definition also specifies the
permissions policy to apply to client devices that match the selection rule. If a client
device is a member of multiple device groups, the device's permissions are comprised of
each group's permissions policy.

This object contains the following information:

groupNameKey

The name of this device group. Replace groupNameKey with a name that helps you
identify this device group.

This object contains the following information:

selectionRule

The query that specifies which client devices are members of this device group.
When a client device connects, the core device evaluates this selection rule to
determine if the client device is a member of this device group. If the client device
is a member, the core device uses this device group's policy to authorize the client
device's actions.

Each selection rule comprises at least one selection rule clause, which is a single
expression query that can match client devices. Selection rules use the same
query syntax as AWS IoT fleet indexing. For more information about selection rule
syntax, see AWS IoT fleet indexing query syntax in the AWS IoT Core Developer
Guide.

Use the * wildcard to match multiple client devices with one selection rule clause.
You can use this wildcard at the end of the thing name to match client devices
whose names start with a string that you specify. You can also use this wildcard to
match all client devices.

Client device auth 557

https://docs.aws.amazon.com/iot/latest/developerguide/query-syntax.html

AWS IoT Greengrass Developer Guide, Version 2

Note

To select a value that contains a colon character (:), escape the colon
with a backslash character (\\). In formats such as JSON, you must
escape backslash characters, so you enter two backslash characters
before the colon character. For example, specify thingName:
MyTeam\\\\:ClientDevice1 to select a thing whose name is
MyTeam:ClientDevice1.

You can specify the following selector:

• thingName – The name of a client device's AWS IoT thing.

Example Example selection rule

The following selection rule matches client devices whose names are
MyClientDevice1 or MyClientDevice2.

thingName: MyClientDevice1 OR thingName: MyClientDevice2

Example Example selection rule (use wildcards)

The following selection rule matches client devices whose names start with
MyClientDevice.

thingName: MyClientDevice*

Example Example selection rule (match all devices)

The following selection rule matches all client devices.

thingName: *

policyName

The permissions policy that applies to client devices in this device group. Specify
the name of a policy that you define in the policies object.

Client device auth 558

AWS IoT Greengrass Developer Guide, Version 2

policies

The client device authorization policies for client devices that connect to the core device.
Each authorization policy specifies a set of actions and the resources where a client
device can perform those actions.

This object contains the following information:

policyNameKey

The name of this authorization policy. Replace policyNameKey with a name that
helps you identify this authorization policy. You use this policy name to define which
policy applies to a device group.

This object contains the following information:

statementNameKey

The name of this policy statement. Replace statementNameKey with a name that
helps you identify this policy statement.

This object contains the following information:

operations

The list of operations to allow for the resources in this policy.

You can include any of the following operations:

• mqtt:connect – Grants permission to connect to the core device. Client
devices must have this permission to connect to a core device.

This operation supports the following resources:

• mqtt:clientId:deviceClientId – Restrict access based on the client
ID that a client device uses to connect to the core device's MQTT broker.
Replace deviceClientId with the client ID to use.

• mqtt:publish – Grants permission to publish MQTT messages to topics.

This operation supports the following resources:

• mqtt:topic:mqttTopic – Restrict access based on the MQTT topic
where a client device publishes a message. Replace mqttTopic with the
topic to use.

Client device auth 559

AWS IoT Greengrass Developer Guide, Version 2

This resource doesn't support MQTT topic wildcards.

• mqtt:subscribe – Grants permission to subscribe to MQTT topic filters to
receive messages.

This operation supports the following resources:

• mqtt:topicfilter:mqttTopicFilter – Restrict access based on the
MQTT topics where a client device can subscribe to messages. Replace
mqttTopicFilter with the topic filter to use.

This resource supports the + and # MQTT topic wildcards. For more
information, see MQTT topics in the AWS IoT Core Developer Guide.

The client device can subscribe to the exact topic filters that you
allow. For example, if you allow the client device to subscribe to the
mqtt:topicfilter:client/+/status resource, the client device can
subscribe to client/+/status but not client/client1/status.

You can specify the * wildcard to allow access to all actions.

resources

The list of resources to allow for the operations in this policy. Specify resources
that correspond to the operations in this policy. For example, you might specify
a list of MQTT topic resources (mqtt:topic:mqttTopic) in a policy that
specifies the mqtt:publish operation.

You can specify the * wildcard to allow access to all resources. You can't
use the * wildcard to match partial resource identifiers. For example, you
can specify "resources": "*", but you can't specify "resources":
"mqtt:clientId:*".

statementDescription

(Optional) A description for this policy statement.

certificates

(Optional) The certificate configuration options for this core device. This object contains the
following information:

Client device auth 560

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html

AWS IoT Greengrass Developer Guide, Version 2

serverCertificateValiditySeconds

(Optional) The amount of time (in seconds) after which the local MQTT server certificate
expires. You can configure this option to customize how often client devices disconnect
and reconnect to the core device.

This component rotates the local MQTT server certificate 24 hours before it expires.
The MQTT broker, such as the Moquette MQTT broker component, generates a new
certificate and restarts. When this happens, all client devices connected to this core
device are disconnected. Client devices can reconnect to the core device after a short
period of time.

Default: 604800 (7 days)

Minimum value: 172800 (2 days)

Maximum value: 864000 (10 days)

performance

(Optional) The performance configuration options for this core device. This object contains
the following information:

maxActiveAuthTokens

(Optional) The maximum number of active client device authorization tokens. You can
increase this number to enable a greater number of client devices to connect to a single
core device, without reauthenticating them.

Default: 2500

cloudRequestQueueSize

(Optional) The maximum number of AWS Cloud requests to queue before this
component rejects requests.

Default: 100

maxConcurrentCloudRequests

(Optional) The maximum number of concurrent requests to send to the AWS Cloud. You
can increase this number to improve authentication performance on core devices where
you connect large numbers of client devices.

Client device auth 561

AWS IoT Greengrass Developer Guide, Version 2

Default: 1

certificateAuthority

(Optional) Certificate authority configuration options to replace the core device intermediate
authority with your own intermediate certificate authority.

Note

If you configure your Greengrass core device with a custom certificate authority
(CA) and use the same CA to issue client device certificates, Greengrass bypasses
authorization policy checks for client device MQTT operations. The client device auth
component fully trusts clients using certificates signed by the CA that it is configured
to use.
To restrict this behavior when using a custom CA, create and sign client devices
using a different CA or intermediate CA, then adjust the certificateUri and
certificateChainUri fields to point to the correct intermediate CA.

This object contains the following information.

certificateUri

The location of the certificate. It can be a file system URI or a URI that points to a
certificate stored in a hardware security module.

certificateChainUri

The location of the certificate chain for the core device CA. This should be the complete
certificate chain back to your root CA. It can be a file system URI or a URI that points to a
certificate chain stored in a hardware security module.

privateKeyUri

The location of the core device's private key. This can be a file system URI or a URI that
points to a certificate private key stored in a hardware security module.

security

(Optional) Security configuration options for this core device. This object contains the
following information.

Client device auth 562

AWS IoT Greengrass Developer Guide, Version 2

clientDeviceTrustDurationMinutes

The duration in minutes that the authentication information of a client device can be
trusted before it's required to reauthenticate with the core device. The default value is 1.

metrics

(Optional) The metrics options for this core device. Error metrics will only display if there is
an error with the client device auth. This object contains the following information:

disableMetrics

If the disableMetrics field is set as true, the client device auth won't collect metrics.

Default: false

aggregatePeriodSeconds

The aggregation period in seconds that determines how often the client device auth
aggregates metrics and sends them to the telemetry agent. This doesn't change how
often metrics are published because the telemetry agent still publishes them once a day.

Default: 3600

startupTimeoutSeconds

(Optional) The maximum of time in seconds for the component to start. The component's
state changes to BROKEN if it exceeds this timeout.

Default: 120

Example Example: Configuration merge update (using a restrictive policy)

The following example configuration specifies to allow client devices whose names start with
MyClientDevice to connect and publish/subscribe on all topics.

{
 "deviceGroups": {
 "formatVersion": "2021-03-05",
 "definitions": {
 "MyDeviceGroup": {
 "selectionRule": "thingName: MyClientDevice*",
 "policyName": "MyRestrictivePolicy"
 }

Client device auth 563

AWS IoT Greengrass Developer Guide, Version 2

 },
 "policies": {
 "MyRestrictivePolicy": {
 "AllowConnect": {
 "statementDescription": "Allow client devices to connect.",
 "operations": [
 "mqtt:connect"
],
 "resources": [
 "*"
]
 },
 "AllowPublish": {
 "statementDescription": "Allow client devices to publish on test/topic.",
 "operations": [
 "mqtt:publish"
],
 "resources": [
 "mqtt:topic:test/topic"
]
 },
 "AllowSubscribe": {
 "statementDescription": "Allow client devices to subscribe to test/topic/
response.",
 "operations": [
 "mqtt:subscribe"
],
 "resources": [
 "mqtt:topicfilter:test/topic/response"
]
 }
 }
 }
 }
}

Example Example: Configuration merge update (using a permissive policy)

The following example configuration specifies to allow all client devices to connect and publish/
subscribe on all topics.

{
 "deviceGroups": {

Client device auth 564

AWS IoT Greengrass Developer Guide, Version 2

 "formatVersion": "2021-03-05",
 "definitions": {
 "MyPermissiveDeviceGroup": {
 "selectionRule": "thingName: *",
 "policyName": "MyPermissivePolicy"
 }
 },
 "policies": {
 "MyPermissivePolicy": {
 "AllowAll": {
 "statementDescription": "Allow client devices to perform all actions.",
 "operations": [
 "*"
],
 "resources": [
 "*"
]
 }
 }
 }
 }
}

v2.4.0 - v2.4.1

deviceGroups

Device groups are groups of client devices that have permissions to connect and
communicate with a core device. Use selection rules to identify groups of client devices, and
define client device authorization policies that specify the permissions for each device group.

This object contains the following information:

formatVersion

The format version for this configuration object.

Choose from the following options:

• 2021-03-05

definitions

The device groups for this core device. Each definition specifies a selection rule to
evaluate if a client device is a member of the group. Each definition also specifies the

Client device auth 565

AWS IoT Greengrass Developer Guide, Version 2

permissions policy to apply to client devices that match the selection rule. If a client
device is a member of multiple device groups, the device's permissions are comprised of
each group's permissions policy.

This object contains the following information:

groupNameKey

The name of this device group. Replace groupNameKey with a name that helps you
identify this device group.

This object contains the following information:

selectionRule

The query that specifies which client devices are members of this device group.
When a client device connects, the core device evaluates this selection rule to
determine if the client device is a member of this device group. If the client device
is a member, the core device uses this device group's policy to authorize the client
device's actions.

Each selection rule comprises at least one selection rule clause, which is a single
expression query that can match client devices. Selection rules use the same
query syntax as AWS IoT fleet indexing. For more information about selection rule
syntax, see AWS IoT fleet indexing query syntax in the AWS IoT Core Developer
Guide.

Use the * wildcard to match multiple client devices with one selection rule clause.
You can use this wildcard at the end of the thing name to match client devices
whose names start with a string that you specify. You can also use this wildcard to
match all client devices.

Note

To select a value that contains a colon character (:), escape the colon
with a backslash character (\\). In formats such as JSON, you must
escape backslash characters, so you enter two backslash characters
before the colon character. For example, specify thingName:
MyTeam\\\\:ClientDevice1 to select a thing whose name is
MyTeam:ClientDevice1.

Client device auth 566

https://docs.aws.amazon.com/iot/latest/developerguide/query-syntax.html

AWS IoT Greengrass Developer Guide, Version 2

You can specify the following selector:

• thingName – The name of a client device's AWS IoT thing.

Example Example selection rule

The following selection rule matches client devices whose names are
MyClientDevice1 or MyClientDevice2.

thingName: MyClientDevice1 OR thingName: MyClientDevice2

Example Example selection rule (use wildcards)

The following selection rule matches client devices whose names start with
MyClientDevice.

thingName: MyClientDevice*

Example Example selection rule (match all devices)

The following selection rule matches all client devices.

thingName: *

policyName

The permissions policy that applies to client devices in this device group. Specify
the name of a policy that you define in the policies object.

policies

The client device authorization policies for client devices that connect to the core device.
Each authorization policy specifies a set of actions and the resources where a client
device can perform those actions.

This object contains the following information:

policyNameKey

The name of this authorization policy. Replace policyNameKey with a name that
helps you identify this authorization policy. You use this policy name to define which
policy applies to a device group.

This object contains the following information:

Client device auth 567

AWS IoT Greengrass Developer Guide, Version 2

statementNameKey

The name of this policy statement. Replace statementNameKey with a name that
helps you identify this policy statement.

This object contains the following information:

operations

The list of operations to allow for the resources in this policy.

You can include any of the following operations:

• mqtt:connect – Grants permission to connect to the core device. Client
devices must have this permission to connect to a core device.

This operation supports the following resources:

• mqtt:clientId:deviceClientId – Restrict access based on the client
ID that a client device uses to connect to the core device's MQTT broker.
Replace deviceClientId with the client ID to use.

• mqtt:publish – Grants permission to publish MQTT messages to topics.

This operation supports the following resources:

• mqtt:topic:mqttTopic – Restrict access based on the MQTT topic
where a client device publishes a message. Replace mqttTopic with the
topic to use.

This resource doesn't support MQTT topic wildcards.

• mqtt:subscribe – Grants permission to subscribe to MQTT topic filters to
receive messages.

This operation supports the following resources:

• mqtt:topicfilter:mqttTopicFilter – Restrict access based on the
MQTT topics where a client device can subscribe to messages. Replace
mqttTopicFilter with the topic filter to use.

This resource supports the + and # MQTT topic wildcards. For more
information, see MQTT topics in the AWS IoT Core Developer Guide.

The client device can subscribe to the exact topic filters that you
allow. For example, if you allow the client device to subscribe to the

Client device auth 568

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html

AWS IoT Greengrass Developer Guide, Version 2

mqtt:topicfilter:client/+/status resource, the client device can
subscribe to client/+/status but not client/client1/status.

You can specify the * wildcard to allow access to all actions.

resources

The list of resources to allow for the operations in this policy. Specify resources
that correspond to the operations in this policy. For example, you might specify
a list of MQTT topic resources (mqtt:topic:mqttTopic) in a policy that
specifies the mqtt:publish operation.

You can specify the * wildcard to allow access to all resources. You can't
use the * wildcard to match partial resource identifiers. For example, you
can specify "resources": "*", but you can't specify "resources":
"mqtt:clientId:*".

statementDescription

(Optional) A description for this policy statement.

certificates

(Optional) The certificate configuration options for this core device. This object contains the
following information:

serverCertificateValiditySeconds

(Optional) The amount of time (in seconds) after which the local MQTT server certificate
expires. You can configure this option to customize how often client devices disconnect
and reconnect to the core device.

This component rotates the local MQTT server certificate 24 hours before it expires.
The MQTT broker, such as the Moquette MQTT broker component, generates a new
certificate and restarts. When this happens, all client devices connected to this core
device are disconnected. Client devices can reconnect to the core device after a short
period of time.

Default: 604800 (7 days)

Minimum value: 172800 (2 days)

Maximum value: 864000 (10 days)

Client device auth 569

AWS IoT Greengrass Developer Guide, Version 2

performance

(Optional) The performance configuration options for this core device. This object contains
the following information:

maxActiveAuthTokens

(Optional) The maximum number of active client device authorization tokens. You can
increase this number to enable a greater number of client devices to connect to a single
core device, without reauthenticating them.

Default: 2500

cloudRequestQueueSize

(Optional) The maximum number of AWS Cloud requests to queue before this
component rejects requests.

Default: 100

maxConcurrentCloudRequests

(Optional) The maximum number of concurrent requests to send to the AWS Cloud. You
can increase this number to improve authentication performance on core devices where
you connect large numbers of client devices.

Default: 1

certificateAuthority

(Optional) Certificate authority configuration options to replace the core device intermediate
authority with your own intermediate certificate authority. This object contains the
following information.

This object contains the following information:

certificateUri

The location of the certificate. It can be a file system URI or a URI that points to a
certificate stored in a hardware security module.

certificateChainUri

The location of the certificate chain for the core device CA. This should be the complete
certificate chain back to your root CA. It can be a file system URI or a URI that points to a
certificate chain stored in a hardware security module.

Client device auth 570

AWS IoT Greengrass Developer Guide, Version 2

privateKeyUri

The location of the core device's private key. This can be a file system URI or a URI that
points to a certificate private key stored in a hardware security module.

security

(Optional) Security configuration options for this core device. This object contains the
following information.

clientDeviceTrustDurationMinutes

The duration in minutes that the authentication information of a client device can be
trusted before it's required to reauthenticate with the core device. The default value is 1.

metrics

(Optional) The metrics options for this core device. Error metrics will only display if there is
an error with the client device auth. This object contains the following information:

disableMetrics

If the disableMetrics field is set as true, the client device auth won't collect metrics.

Default: false

aggregatePeriodSeconds

The aggregation period in seconds that determines how often the client device auth
aggregates metrics and sends them to the telemetry agent. This doesn't change how
often metrics are published because the telemetry agent still publishes them once a day.

Default: 3600

Example Example: Configuration merge update (using a restrictive policy)

The following example configuration specifies to allow client devices whose names start with
MyClientDevice to connect and publish/subscribe on all topics.

{
 "deviceGroups": {
 "formatVersion": "2021-03-05",
 "definitions": {

Client device auth 571

AWS IoT Greengrass Developer Guide, Version 2

 "MyDeviceGroup": {
 "selectionRule": "thingName: MyClientDevice*",
 "policyName": "MyRestrictivePolicy"
 }
 },
 "policies": {
 "MyRestrictivePolicy": {
 "AllowConnect": {
 "statementDescription": "Allow client devices to connect.",
 "operations": [
 "mqtt:connect"
],
 "resources": [
 "*"
]
 },
 "AllowPublish": {
 "statementDescription": "Allow client devices to publish on test/topic.",
 "operations": [
 "mqtt:publish"
],
 "resources": [
 "mqtt:topic:test/topic"
]
 },
 "AllowSubscribe": {
 "statementDescription": "Allow client devices to subscribe to test/topic/
response.",
 "operations": [
 "mqtt:subscribe"
],
 "resources": [
 "mqtt:topicfilter:test/topic/response"
]
 }
 }
 }
 }
}

Client device auth 572

AWS IoT Greengrass Developer Guide, Version 2

Example Example: Configuration merge update (using a permissive policy)

The following example configuration specifies to allow all client devices to connect and publish/
subscribe on all topics.

{
 "deviceGroups": {
 "formatVersion": "2021-03-05",
 "definitions": {
 "MyPermissiveDeviceGroup": {
 "selectionRule": "thingName: *",
 "policyName": "MyPermissivePolicy"
 }
 },
 "policies": {
 "MyPermissivePolicy": {
 "AllowAll": {
 "statementDescription": "Allow client devices to perform all actions.",
 "operations": [
 "*"
],
 "resources": [
 "*"
]
 }
 }
 }
 }
}

v2.3.x

deviceGroups

Device groups are groups of client devices that have permissions to connect and
communicate with a core device. Use selection rules to identify groups of client devices, and
define client device authorization policies that specify the permissions for each device group.

This object contains the following information:

formatVersion

The format version for this configuration object.

Client device auth 573

AWS IoT Greengrass Developer Guide, Version 2

Choose from the following options:

• 2021-03-05

definitions

The device groups for this core device. Each definition specifies a selection rule to
evaluate if a client device is a member of the group. Each definition also specifies the
permissions policy to apply to client devices that match the selection rule. If a client
device is a member of multiple device groups, the device's permissions are comprised of
each group's permissions policy.

This object contains the following information:

groupNameKey

The name of this device group. Replace groupNameKey with a name that helps you
identify this device group.

This object contains the following information:

selectionRule

The query that specifies which client devices are members of this device group.
When a client device connects, the core device evaluates this selection rule to
determine if the client device is a member of this device group. If the client device
is a member, the core device uses this device group's policy to authorize the client
device's actions.

Each selection rule comprises at least one selection rule clause, which is a single
expression query that can match client devices. Selection rules use the same
query syntax as AWS IoT fleet indexing. For more information about selection rule
syntax, see AWS IoT fleet indexing query syntax in the AWS IoT Core Developer
Guide.

Use the * wildcard to match multiple client devices with one selection rule clause.
You can use this wildcard at the end of the thing name to match client devices
whose names start with a string that you specify. You can also use this wildcard to
match all client devices.

Client device auth 574

https://docs.aws.amazon.com/iot/latest/developerguide/query-syntax.html

AWS IoT Greengrass Developer Guide, Version 2

Note

To select a value that contains a colon character (:), escape the colon
with a backslash character (\\). In formats such as JSON, you must
escape backslash characters, so you enter two backslash characters
before the colon character. For example, specify thingName:
MyTeam\\\\:ClientDevice1 to select a thing whose name is
MyTeam:ClientDevice1.

You can specify the following selector:

• thingName – The name of a client device's AWS IoT thing.

Example Example selection rule

The following selection rule matches client devices whose names are
MyClientDevice1 or MyClientDevice2.

thingName: MyClientDevice1 OR thingName: MyClientDevice2

Example Example selection rule (use wildcards)

The following selection rule matches client devices whose names start with
MyClientDevice.

thingName: MyClientDevice*

Example Example selection rule (match all devices)

The following selection rule matches all client devices.

thingName: *

policyName

The permissions policy that applies to client devices in this device group. Specify
the name of a policy that you define in the policies object.

Client device auth 575

AWS IoT Greengrass Developer Guide, Version 2

policies

The client device authorization policies for client devices that connect to the core device.
Each authorization policy specifies a set of actions and the resources where a client
device can perform those actions.

This object contains the following information:

policyNameKey

The name of this authorization policy. Replace policyNameKey with a name that
helps you identify this authorization policy. You use this policy name to define which
policy applies to a device group.

This object contains the following information:

statementNameKey

The name of this policy statement. Replace statementNameKey with a name that
helps you identify this policy statement.

This object contains the following information:

operations

The list of operations to allow for the resources in this policy.

You can include any of the following operations:

• mqtt:connect – Grants permission to connect to the core device. Client
devices must have this permission to connect to a core device.

This operation supports the following resources:

• mqtt:clientId:deviceClientId – Restrict access based on the client
ID that a client device uses to connect to the core device's MQTT broker.
Replace deviceClientId with the client ID to use.

• mqtt:publish – Grants permission to publish MQTT messages to topics.

This operation supports the following resources:

• mqtt:topic:mqttTopic – Restrict access based on the MQTT topic
where a client device publishes a message. Replace mqttTopic with the
topic to use.

Client device auth 576

AWS IoT Greengrass Developer Guide, Version 2

This resource doesn't support MQTT topic wildcards.

• mqtt:subscribe – Grants permission to subscribe to MQTT topic filters to
receive messages.

This operation supports the following resources:

• mqtt:topicfilter:mqttTopicFilter – Restrict access based on the
MQTT topics where a client device can subscribe to messages. Replace
mqttTopicFilter with the topic filter to use.

This resource supports the + and # MQTT topic wildcards. For more
information, see MQTT topics in the AWS IoT Core Developer Guide.

The client device can subscribe to the exact topic filters that you
allow. For example, if you allow the client device to subscribe to the
mqtt:topicfilter:client/+/status resource, the client device can
subscribe to client/+/status but not client/client1/status.

You can specify the * wildcard to allow access to all actions.

resources

The list of resources to allow for the operations in this policy. Specify resources
that correspond to the operations in this policy. For example, you might specify
a list of MQTT topic resources (mqtt:topic:mqttTopic) in a policy that
specifies the mqtt:publish operation.

You can specify the * wildcard to allow access to all resources. You can't
use the * wildcard to match partial resource identifiers. For example, you
can specify "resources": "*", but you can't specify "resources":
"mqtt:clientId:*".

statementDescription

(Optional) A description for this policy statement.

certificates

(Optional) The certificate configuration options for this core device. This object contains the
following information:

Client device auth 577

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html

AWS IoT Greengrass Developer Guide, Version 2

serverCertificateValiditySeconds

(Optional) The amount of time (in seconds) after which the local MQTT server certificate
expires. You can configure this option to customize how often client devices disconnect
and reconnect to the core device.

This component rotates the local MQTT server certificate 24 hours before it expires.
The MQTT broker, such as the Moquette MQTT broker component, generates a new
certificate and restarts. When this happens, all client devices connected to this core
device are disconnected. Client devices can reconnect to the core device after a short
period of time.

Default: 604800 (7 days)

Minimum value: 172800 (2 days)

Maximum value: 864000 (10 days)

performance

(Optional) The performance configuration options for this core device. This object contains
the following information:

maxActiveAuthTokens

(Optional) The maximum number of active client device authorization tokens. You can
increase this number to enable a greater number of client devices to connect to a single
core device without reauthenticating them.

Default: 2500

cloudRequestQueueSize

(Optional) The maximum number of AWS Cloud requests to queue before this
component rejects requests.

Default: 100

maxConcurrentCloudRequests

(Optional) The maximum number of concurrent requests to send to the AWS Cloud. You
can increase this number to improve authentication performance on core devices where
you connect large numbers of client devices.

Client device auth 578

AWS IoT Greengrass Developer Guide, Version 2

Default: 1

certificateAuthority

(Optional) Certificate authority configuration options to replace the core device intermediate
authority with your own intermediate certificate authority. This object contains the
following information.

certificateUri

The location of the certificate. It can be a file system URI or a URI that points to a
certificate stored in a hardware security module.

certificateChainUri

The location of the certificate chain for the core device CA. This should be the complete
certificate chain back to your root CA. It can be a file system URI or a URI that points to a
certificate chain stored in a hardware security module.

privateKeyUri

The location of the core device's private key. This can be a file system URI or a URI that
points to a certificate private key stored in a hardware security module.

security

(Optional) Security configuration options for this core device. This object contains the
following information.

clientDeviceTrustDurationMinutes

The duration in minutes that the authentication information of a client device can be
trusted before it is required to reauthenticate with the core device. The default value is 1.

Example Example: Configuration merge update (using a restrictive policy)

The following example configuration specifies to allow client devices whose names start with
MyClientDevice to connect and publish/subscribe on all topics.

{
 "deviceGroups": {
 "formatVersion": "2021-03-05",
 "definitions": {
 "MyDeviceGroup": {

Client device auth 579

AWS IoT Greengrass Developer Guide, Version 2

 "selectionRule": "thingName: MyClientDevice*",
 "policyName": "MyRestrictivePolicy"
 }
 },
 "policies": {
 "MyRestrictivePolicy": {
 "AllowConnect": {
 "statementDescription": "Allow client devices to connect.",
 "operations": [
 "mqtt:connect"
],
 "resources": [
 "*"
]
 },
 "AllowPublish": {
 "statementDescription": "Allow client devices to publish on test/topic.",
 "operations": [
 "mqtt:publish"
],
 "resources": [
 "mqtt:topic:test/topic"
]
 },
 "AllowSubscribe": {
 "statementDescription": "Allow client devices to subscribe to test/topic/
response.",
 "operations": [
 "mqtt:subscribe"
],
 "resources": [
 "mqtt:topicfilter:test/topic/response"
]
 }
 }
 }
 }
}

Example Example: Configuration merge update (using a permissive policy)

The following example configuration specifies to allow all client devices to connect and publish/
subscribe on all topics.

Client device auth 580

AWS IoT Greengrass Developer Guide, Version 2

{
 "deviceGroups": {
 "formatVersion": "2021-03-05",
 "definitions": {
 "MyPermissiveDeviceGroup": {
 "selectionRule": "thingName: *",
 "policyName": "MyPermissivePolicy"
 }
 },
 "policies": {
 "MyPermissivePolicy": {
 "AllowAll": {
 "statementDescription": "Allow client devices to perform all actions.",
 "operations": [
 "*"
],
 "resources": [
 "*"
]
 }
 }
 }
 }
}

v2.2.x

deviceGroups

Device groups are groups of client devices that have permissions to connect and
communicate with a core device. Use selection rules to identify groups of client devices, and
define client device authorization policies that specify the permissions for each device group.

This object contains the following information:

formatVersion

The format version for this configuration object.

Choose from the following options:

• 2021-03-05

Client device auth 581

AWS IoT Greengrass Developer Guide, Version 2

definitions

The device groups for this core device. Each definition specifies a selection rule to
evaluate if a client device is a member of the group. Each definition also specifies the
permissions policy to apply to client devices that match the selection rule. If a client
device is a member of multiple device groups, the device's permissions are comprised of
each group's permissions policy.

This object contains the following information:

groupNameKey

The name of this device group. Replace groupNameKey with a name that helps you
identify this device group.

This object contains the following information:

selectionRule

The query that specifies which client devices are members of this device group.
When a client device connects, the core device evaluates this selection rule to
determine if the client device is a member of this device group. If the client device
is a member, the core device uses this device group's policy to authorize the client
device's actions.

Each selection rule comprises at least one selection rule clause, which is a single
expression query that can match client devices. Selection rules use the same
query syntax as AWS IoT fleet indexing. For more information about selection rule
syntax, see AWS IoT fleet indexing query syntax in the AWS IoT Core Developer
Guide.

Use the * wildcard to match multiple client devices with one selection rule clause.
You can use this wildcard at the end of the thing name to match client devices
whose names start with a string that you specify. You can also use this wildcard to
match all client devices.

Note

To select a value that contains a colon character (:), escape the colon
with a backslash character (\\). In formats such as JSON, you must
escape backslash characters, so you enter two backslash characters

Client device auth 582

https://docs.aws.amazon.com/iot/latest/developerguide/query-syntax.html

AWS IoT Greengrass Developer Guide, Version 2

before the colon character. For example, specify thingName:
MyTeam\\\\:ClientDevice1 to select a thing whose name is
MyTeam:ClientDevice1.

You can specify the following selector:

• thingName – The name of a client device's AWS IoT thing.

Example Example selection rule

The following selection rule matches client devices whose names are
MyClientDevice1 or MyClientDevice2.

thingName: MyClientDevice1 OR thingName: MyClientDevice2

Example Example selection rule (use wildcards)

The following selection rule matches client devices whose names start with
MyClientDevice.

thingName: MyClientDevice*

Example Example selection rule (match all devices)

The following selection rule matches all client devices.

thingName: *

policyName

The permissions policy that applies to client devices in this device group. Specify
the name of a policy that you define in the policies object.

policies

The client device authorization policies for client devices that connect to the core device.
Each authorization policy specifies a set of actions and the resources where a client
device can perform those actions.

Client device auth 583

AWS IoT Greengrass Developer Guide, Version 2

This object contains the following information:

policyNameKey

The name of this authorization policy. Replace policyNameKey with a name that
helps you identify this authorization policy. You use this policy name to define which
policy applies to a device group.

This object contains the following information:

statementNameKey

The name of this policy statement. Replace statementNameKey with a name that
helps you identify this policy statement.

This object contains the following information:

operations

The list of operations to allow for the resources in this policy.

You can include any of the following operations:

• mqtt:connect – Grants permission to connect to the core device. Client
devices must have this permission to connect to a core device.

This operation supports the following resources:

• mqtt:clientId:deviceClientId – Restrict access based on the client
ID that a client device uses to connect to the core device's MQTT broker.
Replace deviceClientId with the client ID to use.

• mqtt:publish – Grants permission to publish MQTT messages to topics.

This operation supports the following resources:

• mqtt:topic:mqttTopic – Restrict access based on the MQTT topic
where a client device publishes a message. Replace mqttTopic with the
topic to use.

This resource doesn't support MQTT topic wildcards.

• mqtt:subscribe – Grants permission to subscribe to MQTT topic filters to
receive messages.

This operation supports the following resources:

Client device auth 584

AWS IoT Greengrass Developer Guide, Version 2

• mqtt:topicfilter:mqttTopicFilter – Restrict access based on the
MQTT topics where a client device can subscribe to messages. Replace
mqttTopicFilter with the topic filter to use.

This resource supports the + and # MQTT topic wildcards. For more
information, see MQTT topics in the AWS IoT Core Developer Guide.

The client device can subscribe to the exact topic filters that you
allow. For example, if you allow the client device to subscribe to the
mqtt:topicfilter:client/+/status resource, the client device can
subscribe to client/+/status but not client/client1/status.

You can specify the * wildcard to allow access to all actions.

resources

The list of resources to allow for the operations in this policy. Specify resources
that correspond to the operations in this policy. For example, you might specify
a list of MQTT topic resources (mqtt:topic:mqttTopic) in a policy that
specifies the mqtt:publish operation.

You can specify the * wildcard to allow access to all resources. You can't
use the * wildcard to match partial resource identifiers. For example, you
can specify "resources": "*", but you can't specify "resources":
"mqtt:clientId:*".

statementDescription

(Optional) A description for this policy statement.

certificates

(Optional) The certificate configuration options for this core device. This object contains the
following information:

serverCertificateValiditySeconds

(Optional) The amount of time (in seconds) after which the local MQTT server certificate
expires. You can configure this option to customize how often client devices disconnect
and reconnect to the core device.

This component rotates the local MQTT server certificate 24 hours before it expires.
The MQTT broker, such as the Moquette MQTT broker component, generates a new

Client device auth 585

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html

AWS IoT Greengrass Developer Guide, Version 2

certificate and restarts. When this happens, all client devices connected to this core
device are disconnected. Client devices can reconnect to the core device after a short
period of time.

Default: 604800 (7 days)

Minimum value: 172800 (2 days)

Maximum value: 864000 (10 days)

performance

(Optional) The performance configuration options for this core device. This object contains
the following information:

maxActiveAuthTokens

(Optional) The maximum number of active client device authorization tokens. You can
increase this number to enable a greater number of client devices to connect to a single
core device without reauthenticating them.

Default: 2500

cloudRequestQueueSize

(Optional) The maximum number of AWS Cloud requests to queue before this
component rejects requests.

Default: 100

maxConcurrentCloudRequests

(Optional) The maximum number of concurrent requests to send to the AWS Cloud. You
can increase this number to improve authentication performance on core devices where
you connect large numbers of client devices.

Default: 1

Example Example: Configuration merge update (using a restrictive policy)

The following example configuration specifies to allow client devices whose names start with
MyClientDevice to connect and publish/subscribe on all topics.

{
 "deviceGroups": {

Client device auth 586

AWS IoT Greengrass Developer Guide, Version 2

 "formatVersion": "2021-03-05",
 "definitions": {
 "MyDeviceGroup": {
 "selectionRule": "thingName: MyClientDevice*",
 "policyName": "MyRestrictivePolicy"
 }
 },
 "policies": {
 "MyRestrictivePolicy": {
 "AllowConnect": {
 "statementDescription": "Allow client devices to connect.",
 "operations": [
 "mqtt:connect"
],
 "resources": [
 "*"
]
 },
 "AllowPublish": {
 "statementDescription": "Allow client devices to publish on test/topic.",
 "operations": [
 "mqtt:publish"
],
 "resources": [
 "mqtt:topic:test/topic"
]
 },
 "AllowSubscribe": {
 "statementDescription": "Allow client devices to subscribe to test/topic/
response.",
 "operations": [
 "mqtt:subscribe"
],
 "resources": [
 "mqtt:topicfilter:test/topic/response"
]
 }
 }
 }
 }
}

Client device auth 587

AWS IoT Greengrass Developer Guide, Version 2

Example Example: Configuration merge update (using a permissive policy)

The following example configuration specifies to allow all client devices to connect and publish/
subscribe on all topics.

{
 "deviceGroups": {
 "formatVersion": "2021-03-05",
 "definitions": {
 "MyPermissiveDeviceGroup": {
 "selectionRule": "thingName: *",
 "policyName": "MyPermissivePolicy"
 }
 },
 "policies": {
 "MyPermissivePolicy": {
 "AllowAll": {
 "statementDescription": "Allow client devices to perform all actions.",
 "operations": [
 "*"
],
 "resources": [
 "*"
]
 }
 }
 }
 }
}

v2.1.x

deviceGroups

Device groups are groups of client devices that have permissions to connect and
communicate with a core device. Use selection rules to identify groups of client devices, and
define client device authorization policies that specify the permissions for each device group.

This object contains the following information:

formatVersion

The format version for this configuration object.

Client device auth 588

AWS IoT Greengrass Developer Guide, Version 2

Choose from the following options:

• 2021-03-05

definitions

The device groups for this core device. Each definition specifies a selection rule to
evaluate if a client device is a member of the group. Each definition also specifies the
permissions policy to apply to client devices that match the selection rule. If a client
device is a member of multiple device groups, the device's permissions are comprised of
each group's permissions policy.

This object contains the following information:

groupNameKey

The name of this device group. Replace groupNameKey with a name that helps you
identify this device group.

This object contains the following information:

selectionRule

The query that specifies which client devices are members of this device group.
When a client device connects, the core device evaluates this selection rule to
determine if the client device is a member of this device group. If the client device
is a member, the core device uses this device group's policy to authorize the client
device's actions.

Each selection rule comprises at least one selection rule clause, which is a single
expression query that can match client devices. Selection rules use the same
query syntax as AWS IoT fleet indexing. For more information about selection rule
syntax, see AWS IoT fleet indexing query syntax in the AWS IoT Core Developer
Guide.

Use the * wildcard to match multiple client devices with one selection rule clause.
You can use this wildcard at the end of the thing name to match client devices
whose names start with a string that you specify. You can also use this wildcard to
match all client devices.

Client device auth 589

https://docs.aws.amazon.com/iot/latest/developerguide/query-syntax.html

AWS IoT Greengrass Developer Guide, Version 2

Note

To select a value that contains a colon character (:), escape the colon
with a backslash character (\\). In formats such as JSON, you must
escape backslash characters, so you enter two backslash characters
before the colon character. For example, specify thingName:
MyTeam\\\\:ClientDevice1 to select a thing whose name is
MyTeam:ClientDevice1.

You can specify the following selector:

• thingName – The name of a client device's AWS IoT thing.

Example Example selection rule

The following selection rule matches client devices whose names are
MyClientDevice1 or MyClientDevice2.

thingName: MyClientDevice1 OR thingName: MyClientDevice2

Example Example selection rule (use wildcards)

The following selection rule matches client devices whose names start with
MyClientDevice.

thingName: MyClientDevice*

Example Example selection rule (match all devices)

The following selection rule matches all client devices.

thingName: *

policyName

The permissions policy that applies to client devices in this device group. Specify
the name of a policy that you define in the policies object.

Client device auth 590

AWS IoT Greengrass Developer Guide, Version 2

policies

The client device authorization policies for client devices that connect to the core device.
Each authorization policy specifies a set of actions and the resources where a client
device can perform those actions.

This object contains the following information:

policyNameKey

The name of this authorization policy. Replace policyNameKey with a name that
helps you identify this authorization policy. You use this policy name to define which
policy applies to a device group.

This object contains the following information:

statementNameKey

The name of this policy statement. Replace statementNameKey with a name that
helps you identify this policy statement.

This object contains the following information:

operations

The list of operations to allow for the resources in this policy.

You can include any of the following operations:

• mqtt:connect – Grants permission to connect to the core device. Client
devices must have this permission to connect to a core device.

This operation supports the following resources:

• mqtt:clientId:deviceClientId – Restrict access based on the client
ID that a client device uses to connect to the core device's MQTT broker.
Replace deviceClientId with the client ID to use.

• mqtt:publish – Grants permission to publish MQTT messages to topics.

This operation supports the following resources:

• mqtt:topic:mqttTopic – Restrict access based on the MQTT topic
where a client device publishes a message. Replace mqttTopic with the
topic to use.

Client device auth 591

AWS IoT Greengrass Developer Guide, Version 2

This resource doesn't support MQTT topic wildcards.

• mqtt:subscribe – Grants permission to subscribe to MQTT topic filters to
receive messages.

This operation supports the following resources:

• mqtt:topicfilter:mqttTopicFilter – Restrict access based on the
MQTT topics where a client device can subscribe to messages. Replace
mqttTopicFilter with the topic filter to use.

This resource supports the + and # MQTT topic wildcards. For more
information, see MQTT topics in the AWS IoT Core Developer Guide.

The client device can subscribe to the exact topic filters that you
allow. For example, if you allow the client device to subscribe to the
mqtt:topicfilter:client/+/status resource, the client device can
subscribe to client/+/status but not client/client1/status.

You can specify the * wildcard to allow access to all actions.

resources

The list of resources to allow for the operations in this policy. Specify resources
that correspond to the operations in this policy. For example, you might specify
a list of MQTT topic resources (mqtt:topic:mqttTopic) in a policy that
specifies the mqtt:publish operation.

You can specify the * wildcard to allow access to all resources. You can't
use the * wildcard to match partial resource identifiers. For example, you
can specify "resources": "*", but you can't specify "resources":
"mqtt:clientId:*".

statementDescription

(Optional) A description for this policy statement.

certificates

(Optional) The certificate configuration options for this core device. This object contains the
following information:

Client device auth 592

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html

AWS IoT Greengrass Developer Guide, Version 2

serverCertificateValiditySeconds

(Optional) The amount of time (in seconds) after which the local MQTT server certificate
expires. You can configure this option to customize how often client devices disconnect
and reconnect to the core device.

This component rotates the local MQTT server certificate 24 hours before it expires.
The MQTT broker, such as the Moquette MQTT broker component, generates a new
certificate and restarts. When this happens, all client devices connected to this core
device are disconnected. Client devices can reconnect to the core device after a short
period of time.

Default: 604800 (7 days)

Minimum value: 172800 (2 days)

Maximum value: 864000 (10 days)

Example Example: Configuration merge update (using a restrictive policy)

The following example configuration specifies to allow client devices whose names start with
MyClientDevice to connect and publish/subscribe on all topics.

{
 "deviceGroups": {
 "formatVersion": "2021-03-05",
 "definitions": {
 "MyDeviceGroup": {
 "selectionRule": "thingName: MyClientDevice*",
 "policyName": "MyRestrictivePolicy"
 }
 },
 "policies": {
 "MyRestrictivePolicy": {
 "AllowConnect": {
 "statementDescription": "Allow client devices to connect.",
 "operations": [
 "mqtt:connect"
],
 "resources": [
 "*"
]

Client device auth 593

AWS IoT Greengrass Developer Guide, Version 2

 },
 "AllowPublish": {
 "statementDescription": "Allow client devices to publish on test/topic.",
 "operations": [
 "mqtt:publish"
],
 "resources": [
 "mqtt:topic:test/topic"
]
 },
 "AllowSubscribe": {
 "statementDescription": "Allow client devices to subscribe to test/topic/
response.",
 "operations": [
 "mqtt:subscribe"
],
 "resources": [
 "mqtt:topicfilter:test/topic/response"
]
 }
 }
 }
 }
}

Example Example: Configuration merge update (using a permissive policy)

The following example configuration specifies to allow all client devices to connect and publish/
subscribe on all topics.

{
 "deviceGroups": {
 "formatVersion": "2021-03-05",
 "definitions": {
 "MyPermissiveDeviceGroup": {
 "selectionRule": "thingName: *",
 "policyName": "MyPermissivePolicy"
 }
 },
 "policies": {
 "MyPermissivePolicy": {
 "AllowAll": {
 "statementDescription": "Allow client devices to perform all actions.",

Client device auth 594

AWS IoT Greengrass Developer Guide, Version 2

 "operations": [
 "*"
],
 "resources": [
 "*"
]
 }
 }
 }
 }
}

v2.0.x

deviceGroups

Device groups are groups of client devices that have permissions to connect and
communicate with a core device. Use selection rules to identify groups of client devices, and
define client device authorization policies that specify the permissions for each device group.

This object contains the following information:

formatVersion

The format version for this configuration object.

Choose from the following options:

• 2021-03-05

definitions

The device groups for this core device. Each definition specifies a selection rule to
evaluate if a client device is a member of the group. Each definition also specifies the
permissions policy to apply to client devices that match the selection rule. If a client
device is a member of multiple device groups, the device's permissions are comprised of
each group's permissions policy.

This object contains the following information:

groupNameKey

The name of this device group. Replace groupNameKey with a name that helps you
identify this device group.

Client device auth 595

AWS IoT Greengrass Developer Guide, Version 2

This object contains the following information:

selectionRule

The query that specifies which client devices are members of this device group.
When a client device connects, the core device evaluates this selection rule to
determine if the client device is a member of this device group. If the client device
is a member, the core device uses this device group's policy to authorize the client
device's actions.

Each selection rule comprises at least one selection rule clause, which is a single
expression query that can match client devices. Selection rules use the same
query syntax as AWS IoT fleet indexing. For more information about selection rule
syntax, see AWS IoT fleet indexing query syntax in the AWS IoT Core Developer
Guide.

Use the * wildcard to match multiple client devices with one selection rule clause.
You can use this wildcard at the end of the thing name to match client devices
whose names start with a string that you specify. You can also use this wildcard to
match all client devices.

Note

To select a value that contains a colon character (:), escape the colon
with a backslash character (\\). In formats such as JSON, you must
escape backslash characters, so you enter two backslash characters
before the colon character. For example, specify thingName:
MyTeam\\\\:ClientDevice1 to select a thing whose name is
MyTeam:ClientDevice1.

You can specify the following selector:

• thingName – The name of a client device's AWS IoT thing.

Example Example selection rule

The following selection rule matches client devices whose names are
MyClientDevice1 or MyClientDevice2.

thingName: MyClientDevice1 OR thingName: MyClientDevice2

Client device auth 596

https://docs.aws.amazon.com/iot/latest/developerguide/query-syntax.html

AWS IoT Greengrass Developer Guide, Version 2

Example Example selection rule (use wildcards)

The following selection rule matches client devices whose names start with
MyClientDevice.

thingName: MyClientDevice*

Example Example selection rule (match all devices)

The following selection rule matches all client devices.

thingName: *

policyName

The permissions policy that applies to client devices in this device group. Specify
the name of a policy that you define in the policies object.

policies

The client device authorization policies for client devices that connect to the core device.
Each authorization policy specifies a set of actions and the resources where a client
device can perform those actions.

This object contains the following information:

policyNameKey

The name of this authorization policy. Replace policyNameKey with a name that
helps you identify this authorization policy. You use this policy name to define which
policy applies to a device group.

This object contains the following information:

statementNameKey

The name of this policy statement. Replace statementNameKey with a name that
helps you identify this policy statement.

This object contains the following information:

operations

The list of operations to allow for the resources in this policy.

Client device auth 597

AWS IoT Greengrass Developer Guide, Version 2

You can include any of the following operations:

• mqtt:connect – Grants permission to connect to the core device. Client
devices must have this permission to connect to a core device.

This operation supports the following resources:

• mqtt:clientId:deviceClientId – Restrict access based on the client
ID that a client device uses to connect to the core device's MQTT broker.
Replace deviceClientId with the client ID to use.

• mqtt:publish – Grants permission to publish MQTT messages to topics.

This operation supports the following resources:

• mqtt:topic:mqttTopic – Restrict access based on the MQTT topic
where a client device publishes a message. Replace mqttTopic with the
topic to use.

This resource doesn't support MQTT topic wildcards.

• mqtt:subscribe – Grants permission to subscribe to MQTT topic filters to
receive messages.

This operation supports the following resources:

• mqtt:topicfilter:mqttTopicFilter – Restrict access based on the
MQTT topics where a client device can subscribe to messages. Replace
mqttTopicFilter with the topic filter to use.

This resource supports the + and # MQTT topic wildcards. For more
information, see MQTT topics in the AWS IoT Core Developer Guide.

The client device can subscribe to the exact topic filters that you
allow. For example, if you allow the client device to subscribe to the
mqtt:topicfilter:client/+/status resource, the client device can
subscribe to client/+/status but not client/client1/status.

You can specify the * wildcard to allow access to all actions.

resources

The list of resources to allow for the operations in this policy. Specify resources
that correspond to the operations in this policy. For example, you might specify

Client device auth 598

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html

AWS IoT Greengrass Developer Guide, Version 2

a list of MQTT topic resources (mqtt:topic:mqttTopic) in a policy that
specifies the mqtt:publish operation.

You can specify the * wildcard to allow access to all resources. You can't
use the * wildcard to match partial resource identifiers. For example, you
can specify "resources": "*", but you can't specify "resources":
"mqtt:clientId:*".

statementDescription

(Optional) A description for this policy statement.

Example Example: Configuration merge update (using a restrictive policy)

The following example configuration specifies to allow client devices whose names start with
MyClientDevice to connect and publish/subscribe on all topics.

{
 "deviceGroups": {
 "formatVersion": "2021-03-05",
 "definitions": {
 "MyDeviceGroup": {
 "selectionRule": "thingName: MyClientDevice*",
 "policyName": "MyRestrictivePolicy"
 }
 },
 "policies": {
 "MyRestrictivePolicy": {
 "AllowConnect": {
 "statementDescription": "Allow client devices to connect.",
 "operations": [
 "mqtt:connect"
],
 "resources": [
 "*"
]
 },
 "AllowPublish": {
 "statementDescription": "Allow client devices to publish on test/topic.",
 "operations": [
 "mqtt:publish"
],
 "resources": [

Client device auth 599

AWS IoT Greengrass Developer Guide, Version 2

 "mqtt:topic:test/topic"
]
 },
 "AllowSubscribe": {
 "statementDescription": "Allow client devices to subscribe to test/topic/
response.",
 "operations": [
 "mqtt:subscribe"
],
 "resources": [
 "mqtt:topicfilter:test/topic/response"
]
 }
 }
 }
 }
}

Example Example: Configuration merge update (using a permissive policy)

The following example configuration specifies to allow all client devices to connect and publish/
subscribe on all topics.

{
 "deviceGroups": {
 "formatVersion": "2021-03-05",
 "definitions": {
 "MyPermissiveDeviceGroup": {
 "selectionRule": "thingName: *",
 "policyName": "MyPermissivePolicy"
 }
 },
 "policies": {
 "MyPermissivePolicy": {
 "AllowAll": {
 "statementDescription": "Allow client devices to perform all actions.",
 "operations": [
 "*"
],
 "resources": [
 "*"
]
 }

Client device auth 600

AWS IoT Greengrass Developer Guide, Version 2

 }
 }
 }
}

Local log file

This component uses the same log file as the Greengrass nucleus component.

Linux

/greengrass/v2/logs/greengrass.log

Windows

C:\greengrass\v2\logs\greengrass.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/greengrass.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\greengrass.log -Tail 10 -Wait

Changelog

The following table describes the changes in each version of the component.

Client device auth 601

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.5.2 Version updated for Greengrass nucleus version 2.14.0 release.

2.5.1 Bug fixes and improvements

• Supports FIPS endpoint.

2.5.0 New features

• Allows ${iot:Connection.Thing.ThingName} variable
substitution for policy resources.

• Allows policy resources with wildcards such as mqtt:topic:my* .

2.4.5 New features

Adds support for wildcard prefixes for selecting thing names with the
selectionRule parameter.

Bug fixes and improvements

Fixes an issue where certificates aren't updated with new connectivity
information in certain cases.

2.4.4 Version updated for Greengrass nucleus version 2.12.0 release.

2.4.3 Version updated for Greengrass nucleus version 2.11.0 release.

2.4.2 New features

Adds a new startupTimeoutSeconds configuration option.

2.4.1 Version updated for Greengrass nucleus version 2.10.0 release.

2.4.0 New features

• Adds support for client device auth to emit operational metrics that
will be published by the telemetry agent.

Bug fixes and improvements

• Fixes an issue where the client device auth takes more than 10 seconds
to verify a client device's identity.

• Additional minor fixes and improvements.

Client device auth 602

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.3.2 Bug fixes and improvements

• Adds support for caching hostname information so that the
component correctly generates certificate subjects when restarted
when offline.

2.3.1 Bug fixes and improvements

• Fixes a memory leak.

2.3.0
Warning

This version is no longer available. The improvements in this version
are available in later versions of this component.

New features

• Adds support for offline authentication of client devices so that they
can continue to connect to the core device when the core device isn't
connected to the Internet.

• Adds support for customer-provided certificate authority that the core
device uses as the root certificate to generate MQTT broker certificates.

2.2.3 Version updated for Greengrass nucleus version 2.8.0 release.

2.2.2 Bug fixes and improvements

• Fixes an issue where the local MQTT server certificate rotates more
often than intended in certain scenarios.

2.2.1 Version updated for Greengrass nucleus version 2.7.0 release.

Client device auth 603

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.2.0 New features

• Adds support for custom components to call interprocess communica
tion (IPC) operations to authenticate and authorize client devices. You
can use these operations in a custom MQTT broker component, for
example. For more information, see IPC: Authenticate and authorize
client devices.

• Adds the maxActiveAuthTokens , cloudQueueSize , and
threadPoolSize options that you can configure to tune how this
component performs.

2.1.0 New features

• Adds the serverCertificateValiditySeconds option that
you can configure to customize when the MQTT broker server certifica
te expires. You can configure the server certificate to expire after 2 to
10 days.

Bug fixes and improvements

• Fixes issues with how this component handles configuration reset
updates.

• Fixes an issue where the local MQTT server certificate rotates more
often than intended in certain scenarios.

To apply this fix, you must also use v2.1.0 or later of the Moquette
MQTT broker component.

• Improves messages that this component logs when it rotates certifica
tes.

• Version updated for Greengrass nucleus version 2.6.0 release.

2.0.4 Version updated for Greengrass nucleus version 2.5.0 release.

2.0.3 Bug fixes and improvements

• Credentials now refresh if you rotate the core device's private key.

• Updates to make log messages more clear.

2.0.2 Version updated for Greengrass nucleus version 2.4.0 release.

Client device auth 604

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.0.1 Version updated for Greengrass nucleus version 2.3.0 release.

2.0.0 Initial version.

CloudWatch metrics

The Amazon CloudWatch metrics component (aws.greengrass.Cloudwatch) publishes
custom metrics from Greengrass core devices to Amazon CloudWatch. The component enables
components to publish CloudWatch metrics, which you can use to monitor and analyze the
Greengrass core device's environment. For more information, see Using Amazon CloudWatch
metrics in the Amazon CloudWatch User Guide.

To publish a CloudWatch metric with this component, publish a message to a topic where this
component subscribes. By default, this component subscribes to the cloudwatch/metric/put
local publish/subscribe topic. You can specify other topics, including AWS IoT Core MQTT topics,
when you deploy this component.

This component batches metrics that are in the same namespace and publishes them to
CloudWatch at regular intervals.

Note

This component provides similar functionality to the CloudWatch metrics connector in AWS
IoT Greengrass V1. For more information, see CloudWatch metrics connector in the AWS IoT
Greengrass V1 Developer Guide.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

CloudWatch metrics 605

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/cloudwatch-metrics-connector.html

AWS IoT Greengrass Developer Guide, Version 2

• Input data

• Output data

• Licenses

• Local log file

• Changelog

• See also

Versions

This component has the following versions:

• 3.2.x

• 3.1.x

• 3.0.x

• 2.1.x

• 2.0.x

For information about changes in each version of the component, see the changelog.

Type

v3.x

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

v2.x

This component is a Lambda component (aws.greengrass.lambda). The Greengrass nucleus
runs this component's Lambda function using the Lambda launcher component.

For more information, see Component types.

Operating system

v3.x

This component can be installed on core devices that run the following operating systems:

CloudWatch metrics 606

AWS IoT Greengrass Developer Guide, Version 2

• Linux

• Windows

v2.x

This component can be installed on Linux core devices only.

Requirements

This component has the following requirements:

3.x

• Python version 3.7 installed on the core device and added to the PATH environment variable.

• The Greengrass device role must allow the cloudwatch:PutMetricData action, as shown
in the following example IAM policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "cloudwatch:PutMetricData"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

For more information, see Amazon CloudWatch permissions reference in the Amazon
CloudWatch User Guide.

2.x

• Your core device must meet the requirements to run Lambda functions. If you want the core
device to run containerized Lambda functions, the device must meet the requirements to do
so. For more information, see Lambda function requirements.

CloudWatch metrics 607

https://www.python.org/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/permissions-reference-cw.html

AWS IoT Greengrass Developer Guide, Version 2

• Python version 3.7 installed on the core device and added to the PATH environment variable.

• The Greengrass device role must allow the cloudwatch:PutMetricData action, as shown
in the following example IAM policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "cloudwatch:PutMetricData"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

For more information, see Amazon CloudWatch permissions reference in the Amazon
CloudWatch User Guide.

• To receive output data from this component, you must merge the following
configuration update for the legacy subscription router component
(aws.greengrass.LegacySubscriptionRouter) when you deploy this component. This
configuration specifies the topic where this component publishes responses.

Legacy subscription router v2.1.x

{
 "subscriptions": {
 "aws-greengrass-cloudwatch": {
 "id": "aws-greengrass-cloudwatch",
 "source": "component:aws.greengrass.Cloudwatch",
 "subject": "cloudwatch/metric/put/status",
 "target": "cloud"
 }
 }
}

Legacy subscription router v2.0.x

{
 "subscriptions": {

CloudWatch metrics 608

https://www.python.org/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/permissions-reference-cw.html

AWS IoT Greengrass Developer Guide, Version 2

 "aws-greengrass-cloudwatch": {
 "id": "aws-greengrass-cloudwatch",
 "source": "arn:aws:lambda:region:aws:function:aws-greengrass-
cloudwatch:version",
 "subject": "cloudwatch/metric/put/status",
 "target": "cloud"
 }
 }
}

• Replace region with the AWS Region that you use.

• Replace version with the version of the Lambda function that this component runs.
To find the Lambda function version, you must view the recipe for the version of this
component that you want to deploy. Open this component's details page in the AWS IoT
Greengrass console, and look for the Lambda function key-value pair. This key-value
pair contains the name and version of the Lambda function.

Important

You must update the Lambda function version on the legacy subscription router
every time you deploy this component. This ensures that you use the correct
Lambda function version for the component version that you deploy.

For more information, see Create deployments.

Endpoints and ports

This component must be able to perform outbound requests to the following endpoints and ports,
in addition to endpoints and ports required for basic operation. For more information, see Allow
device traffic through a proxy or firewall.

Endpoint Port Required Descripti
on

monitoring. region.amazonaw
s.com

443 Yes Upload
CloudWatc
h metrics.

CloudWatch metrics 609

https://console.aws.amazon.com/greengrass
https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

3.2.0

The following table lists the dependencies for versions 3.2.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <3.0.0 Soft

Token exchange service >=0.0.0 Hard

3.0.0 - 3.1.0

The following table lists the dependencies for versions 3.0.0 to 3.1.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <3.0.0 Soft

Token exchange service >=0.0.0 Hard

2.1.4 - 2.1.9

The following table lists the dependencies for versions 2.1.4 to 2.1.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <3.0.0 Hard

CloudWatch metrics 610

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.4 - 2.1.8

The following table lists the dependencies for version 2.1.4 and 2.1.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <3.0.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.2 - 2.1.3

The following table lists the dependencies for version 2.1.2 and 2.1.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.8.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.1

The following table lists the dependencies for version 2.1.1 of this component.

CloudWatch metrics 611

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.7.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.8 - 2.1.0

The following table lists the dependencies for versions 2.0.8 to 2.1.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.6.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.7

The following table lists the dependencies for version 2.0.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

CloudWatch metrics 612

AWS IoT Greengrass Developer Guide, Version 2

2.0.6

The following table lists the dependencies for version 2.0.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.5

The following table lists the dependencies for version 2.0.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.4

The following table lists the dependencies for version 2.0.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.2.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

CloudWatch metrics 613

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Token exchange service ^2.0.0 Hard

2.0.3

The following table lists the dependencies for version 2.0.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.3 <2.1.0 Hard

Lambda launcher >=1.0.0 Hard

Lambda runtimes >=1.0.0 Soft

Token exchange service >=1.0.0 Hard

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

v3.x

PublishInterval

(Optional) The maximum number of seconds to wait before the component publishes
batched metrics for a given namespace. To configure the component to publish metrics as it
receives them, which means without batching, specify 0.

The component publishes to CloudWatch after it receives 20 metrics in the same namespace
or after the interval that you specify.

Note

The component doesn't specify the order in which events publish.

CloudWatch metrics 614

AWS IoT Greengrass Developer Guide, Version 2

This value can be a maximum of 900 seconds.

Default: 10 seconds

MaxMetricsToRetain

(Optional) The maximum number of metrics across all namespaces to save in memory before
the component replaces them with newer metrics.

This limit applies when the core device doesn't have a connection to the internet, so the
component buffers the metrics to publish later. When the buffer is full, the component
replaces the oldest metrics with newer ones. Metrics in a given namespace replace only
metrics in the same namespace.

Note

If the host process for the component is interrupted, the component doesn't save
metrics. This can happen during a deployment or when the core device restarts, for
example.

This value must be at least 2,000 metrics.

Default: 5,000 metrics

InputTopic

(Optional) The topic to which the component subscribes to receive messages. If you specify
true for PubSubToIoTCore, you can use MQTT wildcards (+ and #) in this topic.

Default: cloudwatch/metric/put

OutputTopic

(Optional) The topic to which the component publishes status responses.

Default: cloudwatch/metric/put/status

PubSubToIoTCore

(Optional) String value that defines whether to publish and subscribe to AWS IoT Core MQTT
topics. Supported values are true and false.

Default: false

CloudWatch metrics 615

AWS IoT Greengrass Developer Guide, Version 2

LogLevel

(Optional) The logging level for the component. Choose from the following log levels, listed
here in level order:

• DEBUG

• INFO

• WARNING

• ERROR

• CRITICAL

Default: INFO

UseInstaller

(Optional) Boolean value that defines whether to use the installer script in this component
to install this component's SDK dependencies.

Set this value to false if you want to use a custom script to install dependencies, or if you
want to include runtime dependencies in a pre-built Linux image. To use this component,
you must install the following libraries, including any dependencies, and make them
available to the default Greengrass system user.

• AWS IoT Device SDK v2 for Python

• AWS SDK for Python (Boto3)

Default: true

PublishRegion

(Optional) The AWS Region to which to publish CloudWatch metrics. This value overrides the
default Region for the core device. This parameter is required only for cross-Region metrics.

accessControl

(Optional) The object that contains the authorization policy that allows the component to
publish and subscribe to the specified topics. If you specify custom values for InputTopic
and OutputTopic, you must update the resource values in this object.

Default:

{
 "aws.greengrass.ipc.pubsub": {
 "aws.greengrass.Cloudwatch:pubsub:1": {

CloudWatch metrics 616

https://github.com/aws/aws-iot-device-sdk-python-v2
http://boto.readthedocs.org/en/latest/ref/

AWS IoT Greengrass Developer Guide, Version 2

 "policyDescription": "Allows access to subscribe to input topics.",
 "operations": [
 "aws.greengrass#SubscribeToTopic"
],
 "resources": [
 "cloudwatch/metric/put"
]
 },
 "aws.greengrass.Cloudwatch:pubsub:2": {
 "policyDescription": "Allows access to publish to output topics.",
 "operations": [
 "aws.greengrass#PublishToTopic"
],
 "resources": [
 "cloudwatch/metric/put/status"
]
 }
 },
 "aws.greengrass.ipc.mqttproxy": {
 "aws.greengrass.Cloudwatch:mqttproxy:1": {
 "policyDescription": "Allows access to subscribe to input topics.",
 "operations": [
 "aws.greengrass#SubscribeToIoTCore"
],
 "resources": [
 "cloudwatch/metric/put"
]
 },
 "aws.greengrass.Cloudwatch:mqttproxy:2": {
 "policyDescription": "Allows access to publish to output topics.",
 "operations": [
 "aws.greengrass#PublishToIoTCore"
],
 "resources": [
 "cloudwatch/metric/put/status"
]
 }
 }
}

CloudWatch metrics 617

AWS IoT Greengrass Developer Guide, Version 2

Example Example: Configuration merge update

{
 "PublishInterval": 0,
 "PubSubToIoTCore": true
}

v2.x

Note

This component's default configuration includes Lambda function parameters. We
recommend that you edit only the following parameters to configure this component
on your devices.

lambdaParams

An object that contains the parameters for this component's Lambda function. This object
contains the following information:

EnvironmentVariables

An object that contains the Lambda function's parameters. This object contains the
following information:

PUBLISH_INTERVAL

(Optional) The maximum number of seconds to wait before the component publishes
batched metrics for a given namespace. To configure the component to publish
metrics as it receives them, which means without batching, specify 0.

The component publishes to CloudWatch after it receives 20 metrics in the same
namespace or after the interval that you specify.

Note

The component doesn't guarantee the order in which events publish.

This value can be at most 900 seconds.

Default: 10 seconds

CloudWatch metrics 618

AWS IoT Greengrass Developer Guide, Version 2

MAX_METRICS_TO_RETAIN

(Optional) The maximum number of metrics across all namespaces to save in memory
before the component replaces them with newer metrics.

This limit applies when the core device doesn't have a connection to the internet,
so the component buffers the metrics to publish later. When the buffer is full, the
component replaces the oldest metrics with newer ones. Metrics in a given namespace
replace only metrics in the same namespace.

Note

If the host process for the component is interrupted, the component doesn't
save metrics. This can happen during a deployment or when the core device
restarts, for example.

This value must be at least 2,000 metrics.

Default: 5,000 metrics

PUBLISH_REGION

(Optional) The AWS Region to which to publish CloudWatch metrics. This value
overrides the default Region for the core device. This parameter is required only for
cross-Region metrics.

containerMode

(Optional) The containerization mode for this component. Choose from the following
options:

• NoContainer – The component doesn't run in an isolated runtime environment.

• GreengrassContainer – The component runs in an isolated runtime environment inside
the AWS IoT Greengrass container.

Default: GreengrassContainer

containerParams

(Optional) An object that contains the container parameters for this component.
The component uses these parameters if you specify GreengrassContainer for
containerMode.

CloudWatch metrics 619

AWS IoT Greengrass Developer Guide, Version 2

This object contains the following information:

memorySize

(Optional) The amount of memory (in kilobytes) to allocate to the component.

Defaults to 64 MB (65,535 KB).

pubsubTopics

(Optional) An object that contains the topics where the component subscribes to receive
messages. You can specify each topic and whether the component subscribes to MQTT
topics from AWS IoT Core or local publish/subscribe topics.

This object contains the following information:

0 – This is an array index as a string.

An object that contains the following information:

type

(Optional) The type of publish/subscribe messaging that this component uses to
subscribe to messages. Choose from the following options:

• PUB_SUB – Subscribe to local publish/subscribe messages. If you choose this
option, the topic can't contain MQTT wildcards. For more information about how to
send messages from custom component when you specify this option, see Publish/
subscribe local messages.

• IOT_CORE – Subscribe to AWS IoT Core MQTT messages. If you choose this option,
the topic can contain MQTT wildcards. For more information about how to send
messages from custom components when you specify this option, see Publish/
subscribe AWS IoT Core MQTT messages.

Default: PUB_SUB

topic

(Optional) The topic to which the component subscribes to receive messages. If you
specify IotCore for type, you can use MQTT wildcards (+ and #) in this topic.

Example Example: Configuration merge update (container mode)

{
 "containerMode": "GreengrassContainer"

CloudWatch metrics 620

AWS IoT Greengrass Developer Guide, Version 2

}

Example Example: Configuration merge update (no container mode)

{
 "containerMode": "NoContainer"
}

Input data

This component accepts metrics on the following topic and publishes the metrics to CloudWatch.
By default, this component subscribes to local publish/subscribe messages. For more information
about how to publish messages to this component from your custom components, see Publish/
subscribe local messages.

Beginning with component version v3.0.0, you can optionally configure this component to
subscribe to an MQTT topic by setting the PubSubToIoTCore configuration parameter to true.
For more information about publishing messages to an MQTT topic in your custom components,
see Publish/subscribe AWS IoT Core MQTT messages.

Default topic: cloudwatch/metric/put

The message accepts the following properties. Input messages must be in JSON format.

request

The metric in this message.

The request object contains the metric data to publish to CloudWatch. The metric values must
meet the specifications of the PutMetricData operation.

Type: object that contains the following information:

namespace

The user-defined namespace for the metric data in this request. CloudWatch uses
namespaces as containers for metric data points.

Note

You can't specify a namespace that begins with the reserved string AWS/.

CloudWatch metrics 621

https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricData.html

AWS IoT Greengrass Developer Guide, Version 2

Type: string

Valid pattern: [^:].*

metricData

The data for the metric.

Type: object that contains the following information:

metricName

The name of the metric.

Type: string

value

The value for the metric.

Note

CloudWatch rejects values that are too small or too large. The value must be
between 8.515920e-109 and 1.174271e+108 (Base 10) or 2e-360 and 2e360
(Base 2). CloudWatch doesn't support special values such as NaN, +Infinity,
and -Infinity.

Type: double

dimensions

(Optional) The dimensions for the metric. Dimensions provide additional information
about the metric and its data. A metric can define up to 10 dimensions.

This component automatically includes a dimension named coreName, where the value
is the name of the core device.

Type: array of objects that each contain the following information:

name

(Optional) The dimension name.

Type: string

CloudWatch metrics 622

AWS IoT Greengrass Developer Guide, Version 2

value

(Optional) The dimension value.

Type: string

timestamp

(Optional) The time at which the metric data was received, expressed in seconds in Unix
epoch time.

Defaults to the time at which the component receives the message.

Type: double

Note

If you use between versions 2.0.3 and 2.0.7 of this component, we recommend
that you retrieve the timestamp separately for each metric when you send
multiple metrics from a single source. Don't use a variable to store the
timestamp.

unit

(Optional) The unit of the metric.

Type: string

Valid values: Seconds, Microseconds, Milliseconds, Bytes, Kilobytes,
Megabytes, Gigabytes, Terabytes, Bits, Kilobits, Megabits, Gigabits,
Terabits, Percent, Count, Bytes/Second, Kilobytes/Second, Megabytes/
Second, Gigabytes/Second, Terabytes/Second, Bits/Second, Kilobits/
Second, Megabits/Second, Gigabits/Second, Terabits/Second, Count/Second,
None

Defaults to None.

Note

All quotas that apply to the CloudWatch PutMetricData API apply to metrics that you
publish with this component. The following quotas are especially important:

CloudWatch metrics 623

AWS IoT Greengrass Developer Guide, Version 2

• 40 KB limit on the API payload

• 20 metrics per API request

• 150 transactions per second (TPS) for the PutMetricData API

For more information, see CloudWatch service quotas in the CloudWatch User Guide.

Example Example input

{
 "request": {
 "namespace": "Greengrass",
 "metricData": {
 "metricName": "latency",
 "dimensions": [
 {
 "name": "hostname",
 "value": "test_hostname"
 }
],
 "timestamp": 1539027324,
 "value": 123.0,
 "unit": "Seconds"
 }
 }
}

Output data

This component publishes responses as output data on the following local publish/subscribe topic
by default. For more information about how to subscribe to messages on this topic in your custom
components, see Publish/subscribe local messages.

You can optionally configure this component to publish to an MQTT topic by setting the
PubSubToIoTCore configuration parameter to true. For more information about subscribing
to messages on an MQTT topic in your custom components, see Publish/subscribe AWS IoT Core
MQTT messages.

CloudWatch metrics 624

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_limits.html

AWS IoT Greengrass Developer Guide, Version 2

Note

Component versions 2.0.x publish responses as output data on an MQTT topic by default.
You must specify the topic as the subject in the configuration for the legacy subscription
router component.

Default topic: cloudwatch/metric/put/status

Example Example output: Success

The response includes the namespace of the metric data and the RequestId field from the
CloudWatch response.

{
 "response": {
 "cloudwatch_rid": "70573243-d723-11e8-b095-75ff2EXAMPLE",
 "namespace": "Greengrass",
 "status": "success"
 }
}

Example Example output: Failure

{
 "response" : {
 "namespace": "Greengrass",
 "error": "InvalidInputException",
 "error_message": "cw metric is invalid",
 "status": "fail"
 }
}

Note

If the component detects an error that can be retried, such as a connection error, it retries
the publish in the next batch.

CloudWatch metrics 625

AWS IoT Greengrass Developer Guide, Version 2

Licenses

This component includes the following third-party software/licensing:

• AWS SDK for Python (Boto3)/Apache License 2.0

• botocore/Apache License 2.0

• dateutil/PSF License

• docutils/BSD License, GNU General Public License (GPL), Python Software Foundation License,
Public Domain

• jmespath/MIT License

• s3transfer/Apache License 2.0

• urllib3/MIT License

This component is released under the Greengrass Core Software License Agreement.

Local log file

This component uses the following log file.

Linux

/greengrass/v2/logs/aws.greengrass.Cloudwatch.log

Windows

C:\greengrass\v2\logs\aws.greengrass.Cloudwatch.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/aws.greengrass.Cloudwatch.log

CloudWatch metrics 626

https://pypi.org/project/boto3/
https://pypi.org/project/botocore/
https://pypi.org/project/python-dateutil/1.4/
https://pypi.org/project/docutils/
https://pypi.org/project/jmespath/
https://pypi.org/project/s3transfer/
https://pypi.org/project/urllib3/
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 2

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\aws.greengrass.Cloudwatch.log -Tail 10 -Wait

Changelog

The following table describes the changes in each version of the component.

v3.x

Version Changes

3.2.0 New features

• Add recipe supports for Greengrass nucleus lite

3.1.0 Bug fixes and improvements

• Adds support for HTTPS network proxy configurations. For more
information, see Connect on port 443 or through a network proxy
and Enable the core device to trust an HTTPS proxy.

3.0.0 This version of the CloudWatch metrics component expects different
configuration parameters than version 2.x. If you use a non-default
configuration for version 2.x, and you want to upgrade from v2.x to v3.x,
you must update the component's configuration. For more information,
see CloudWatch metrics component configuration.

New features

• Adds support for core devices that run Windows.

• Changes the component type from Lambda component to generic
component. This component now no longer depends on the legacy
subscription router component to create subscriptions.

• Adds new InputTopic configuration parameter to specify the
topic to which the component subscribes to receive messages.

• Adds new OutputTopic configuration parameter to specify the
topic to which the component publishes status responses.

CloudWatch metrics 627

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

• Adds new PubSubToIoTCore configuration parameter to specify
whether to publish and subscribe to AWS IoT Core MQTT topics.

• Adds the new UseInstaller configuration parameter that lets
you optionally disable the installation script that installs component
dependencies.

Bug fixes and improvements

Adds support for duplicate timestamps in input data.

v2.x

Version Changes

2.1.8 Version updated for Greengrass nucleus version 2.13.0 release.

2.1.3 Version updated for Greengrass nucleus version 2.11.0 release.

2.1.2 Version updated for Greengrass nucleus version 2.7.0 release.

2.1.1 Version updated for Greengrass nucleus version 2.6.0 release.

2.1.0 New features

• Adds support for HTTPS network proxy configurations. For more
information, see Connect on port 443 or through a network proxy
and Enable the core device to trust an HTTPS proxy.

2.0.8 Bug fixes and improvements

• Adds support for duplicate timestamps in input data.

• Version updated for Greengrass nucleus version 2.5.0 release.

2.0.7 Version updated for Greengrass nucleus version 2.4.0 release.

2.0.6 Version updated for Greengrass nucleus version 2.3.0 release.

2.0.5 Version updated for Greengrass nucleus version 2.2.0 release.

CloudWatch metrics 628

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.0.4 Version updated for Greengrass nucleus version 2.1.0 release.

2.0.3 Initial version.

See also

• Using Amazon CloudWatch metrics in the Amazon CloudWatch User Guide

• PutMetricData in the Amazon CloudWatch API Reference

AWS IoT Device Defender

The AWS IoT Device Defender component (aws.greengrass.DeviceDefender) notifies
administrators about changes in the state of Greengrass core devices. This can help identify
unusual behavior that might indicate a compromised device. For more information, see AWS IoT
Device Defender in the AWS IoT Core Developer Guide.

This component reads system metrics on the core device. Then, it publishes the metrics to AWS
IoT Device Defender. For more information about how to read and interpret the metrics that this
component reports, see Device metrics document specification in the AWS IoT Core Developer
Guide.

Note

This component provides similar functionality to the Device Defender connector in AWS
IoT Greengrass V1. For more information, see Device Defender connector in the AWS IoT
Greengrass V1 Developer Guide.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

AWS IoT Device Defender 629

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_PutMetricData.html
https://docs.aws.amazon.com/iot/latest/developerguide/device-defender.html
https://docs.aws.amazon.com/iot/latest/developerguide/device-defender.html
https://docs.aws.amazon.com/iot/latest/developerguide/detect-device-side-metrics.html#DetectMetricsMessagesSpec
https://docs.aws.amazon.com/greengrass/latest/developerguide/device-defender-connector.html

AWS IoT Greengrass Developer Guide, Version 2

• Configuration

• Input data

• Output data

• Local log file

• Licenses

• Changelog

Versions

This component has the following versions:

• 3.1.x

• 3.0.x

• 2.0.x

For information about changes in each version of the component, see the changelog.

Type

v3.x

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

v2.x

This component is a Lambda component (aws.greengrass.lambda). The Greengrass nucleus
runs this component's Lambda function using the Lambda launcher component.

For more information, see Component types.

Operating system

v3.x

This component can be installed on core devices that run the following operating systems:

• Linux

AWS IoT Device Defender 630

AWS IoT Greengrass Developer Guide, Version 2

• Windows

v2.x

This component can be installed on Linux core devices only.

Requirements

This component has the following requirements:

v3.x

• Python version 3.7 installed on the core device and added to the PATH environment variable.

• AWS IoT Device Defender configured to use the Detect feature to monitor violations. For
more information, see Detect in the AWS IoT Core Developer Guide.

v2.x

• Your core device must meet the requirements to run Lambda functions. If you want the core
device to run containerized Lambda functions, the device must meet the requirements to do
so. For more information, see Lambda function requirements.

• Python version 3.7 installed on the core device and added to the PATH environment variable.

• AWS IoT Device Defender configured to use the Detect feature to monitor violations. For
more information, see Detect in the AWS IoT Core Developer Guide.

• The psutil library installed on the core device. Version 5.7.0 is the latest version that is verified
to work with the component.

• The cbor library installed on the core device. Version 1.0.0 is the latest version that is verified
to work with the component.

• To receive output data from this component, you must merge the following
configuration update for the legacy subscription router component
(aws.greengrass.LegacySubscriptionRouter) when you deploy this component. This
configuration specifies the topic where this component publishes responses.

Legacy subscription router v2.1.x

{
 "subscriptions": {

AWS IoT Device Defender 631

https://www.python.org/
https://docs.aws.amazon.com/iot/latest/developerguide/device-defender-detect.html
https://www.python.org/
https://docs.aws.amazon.com/iot/latest/developerguide/device-defender-detect.html
https://pypi.org/project/psutil/
https://pypi.org/project/cbor/

AWS IoT Greengrass Developer Guide, Version 2

 "aws-greengrass-device-defender": {
 "id": "aws-greengrass-device-defender",
 "source": "component:aws.greengrass.DeviceDefender",
 "subject": "$aws/things/+/defender/metrics/json",
 "target": "cloud"
 }
 }
}

Legacy subscription router v2.0.x

{
 "subscriptions": {
 "aws-greengrass-device-defender": {
 "id": "aws-greengrass-device-defender",
 "source": "arn:aws:lambda:region:aws:function:aws-greengrass-device-
defender:version",
 "subject": "$aws/things/+/defender/metrics/json",
 "target": "cloud"
 }
 }
}

• Replace region with the AWS Region that you use.

• Replace version with the version of the Lambda function that this component runs.
To find the Lambda function version, you must view the recipe for the version of this
component that you want to deploy. Open this component's details page in the AWS IoT
Greengrass console, and look for the Lambda function key-value pair. This key-value
pair contains the name and version of the Lambda function.

Important

You must update the Lambda function version on the legacy subscription router
every time you deploy this component. This ensures that you use the correct
Lambda function version for the component version that you deploy.

For more information, see Create deployments.

AWS IoT Device Defender 632

https://console.aws.amazon.com/greengrass
https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

3.1.1

The following table lists the dependencies for version 3.1.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <3.0.0 Soft

Token exchange service >=0.0.0 Hard

3.0.0 - 3.0.2

The following table lists the dependencies for versions 3.0.0 to 3.0.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <3.0.0 Soft

Token exchange service >=0.0.0 Hard

2.0.12 - 2.0.17

The following table lists the dependencies for version 2.0.12 to 2.0.17 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <3.0.0 Hard

AWS IoT Device Defender 633

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.12 - 2.0.16

The following table lists the dependencies for version 2.0.16 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <3.0.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.10 - 2.0.11

The following table lists the dependencies for version 2.0.10 and 2.0.11 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.8.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.9

The following table lists the dependencies for version 2.0.9 of this component.

AWS IoT Device Defender 634

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.7.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.8

The following table lists the dependencies for version 2.0.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.6.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.7

The following table lists the dependencies for version 2.0.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

AWS IoT Device Defender 635

AWS IoT Greengrass Developer Guide, Version 2

2.0.6

The following table lists the dependencies for version 2.0.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.5

The following table lists the dependencies for version 2.0.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.4

The following table lists the dependencies for version 2.0.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.2.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

AWS IoT Device Defender 636

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Token exchange service ^2.0.0 Hard

2.0.3

The following table lists the dependencies for version 2.0.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.3 <2.1.0 Hard

Lambda launcher >=1.0.0 Hard

Lambda runtimes >=1.0.0 Soft

Token exchange service >=1.0.0 Hard

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

v3.x

PublishRetryCount

The amount of times the publish will be retried. This feature is available in version 3.1.1.

The minimum is 0.

The maximum is 72.

Default: 5

SampleIntervalSeconds

(Optional) The amount of time in seconds between each cycle where the component gathers
and reports metrics.

AWS IoT Device Defender 637

AWS IoT Greengrass Developer Guide, Version 2

The minimum value is 300 seconds (5 minutes).

Default: 300 seconds

UseInstaller

(Optional) Boolean value that defines whether to use the installer script in this component
to install this component's dependencies.

Set this value to false if you want to use a custom script to install dependencies, or if you
want to include runtime dependencies in a pre-built Linux image. To use this component,
you must install the following libraries, including any dependencies, and make them
available to the default Greengrass system user.

• AWS IoT Device SDK v2 for Python

• cbor library. Version 1.0.0 is the latest version that is verified to work with the component.

• psutil library. Version 5.7.0 is the latest version that is verified to work with the
component.

Note

If you use version 3.0.0 or 3.0.1 of this component on core devices that you configure
to use an HTTPS proxy, you must set this value to false. The installer script doesn't
support operation behind an HTTPS proxy in these versions of this component.

Default: true

v2.x

Note

This component's default configuration includes Lambda function parameters. We
recommend that you edit only the following parameters to configure this component
on your devices.

AWS IoT Device Defender 638

https://github.com/aws/aws-iot-device-sdk-python-v2
https://pypi.org/project/cbor/
https://pypi.org/project/psutil/

AWS IoT Greengrass Developer Guide, Version 2

lambdaParams

An object that contains the parameters for this component's Lambda function. This object
contains the following information:

EnvironmentVariables

An object that contains the Lambda function's parameters. This object contains the
following information:

PROCFS_PATH

(Optional) The path to the /proc folder.

• To run this component in a container, use the default value, /host-proc. The
component runs in a container by default.

• To run this component in no container mode, specify /proc for this parameter.

Default: /host-proc. This is the default path where this component mounts the /
proc folder in the container.

Note

This component has read-only access to this folder.

SAMPLE_INTERVAL_SECONDS

(Optional) The amount of time in seconds between each cycle where the component
gathers and reports metrics.

The minimum value is 300 seconds (5 minutes).

Default: 300 seconds

containerMode

(Optional) The containerization mode for this component. Choose from the following
options:

• GreengrassContainer – The component runs in an isolated runtime environment inside
the AWS IoT Greengrass container.

• NoContainer – The component doesn't run in an isolated runtime environment.

AWS IoT Device Defender 639

AWS IoT Greengrass Developer Guide, Version 2

If you specify this option, you must specify /proc for the PROCFS_PATH environment
variable parameter.

Default: GreengrassContainer

containerParams

(Optional) An object that contains the container parameters for this component.
The component uses these parameters if you specify GreengrassContainer for
containerMode.

This object contains the following information:

memorySize

(Optional) The amount of memory (in kilobytes) to allocate to the component.

Defaults to 50,000 KB.

pubsubTopics

(Optional) An object that contains the topics where the component subscribes to receive
messages. You can specify each topic and whether the component subscribes to MQTT
topics from AWS IoT Core or local publish/subscribe topics.

This object contains the following information:

0 – This is an array index as a string.

An object that contains the following information:

type

(Optional) The type of publish/subscribe messaging that this component uses to
subscribe to messages. Choose from the following options:

• PUB_SUB – Subscribe to local publish/subscribe messages. If you choose this
option, the topic can't contain MQTT wildcards. For more information about how to
send messages from custom component when you specify this option, see Publish/
subscribe local messages.

• IOT_CORE – Subscribe to AWS IoT Core MQTT messages. If you choose this option,
the topic can contain MQTT wildcards. For more information about how to send
messages from custom components when you specify this option, see Publish/
subscribe AWS IoT Core MQTT messages.

AWS IoT Device Defender 640

AWS IoT Greengrass Developer Guide, Version 2

Default: PUB_SUB

topic

(Optional) The topic to which the component subscribes to receive messages. If you
specify IotCore for type, you can use MQTT wildcards (+ and #) in this topic.

Example Example: Configuration merge update (container mode)

{
 "lambdaExecutionParameters": {
 "EnvironmentVariables": {
 "PROCFS_PATH": "/host_proc"
 }
 },
 "containerMode": "GreengrassContainer"
}

Example Example: Configuration merge update (no container mode)

{
 "lambdaExecutionParameters": {
 "EnvironmentVariables": {
 "PROCFS_PATH": "/proc"
 }
 },
 "containerMode": "NoContainer"
}

Input data

This component doesn't accept messages as input data.

Output data

This component publishes security metrics to the following reserved topic for AWS IoT Device
Defender. This component replaces coreDeviceName with the name of the core device when it
publishes the metrics.

Topic (AWS IoT Core MQTT): $aws/things/coreDeviceName/defender/metrics/json

AWS IoT Device Defender 641

AWS IoT Greengrass Developer Guide, Version 2

Example Example output

{
 "header": {
 "report_id": 1529963534,
 "version": "1.0"
 },
 "metrics": {
 "listening_tcp_ports": {
 "ports": [
 {
 "interface": "eth0",
 "port": 24800
 },
 {
 "interface": "eth0",
 "port": 22
 },
 {
 "interface": "eth0",
 "port": 53
 }
],
 "total": 3
 },
 "listening_udp_ports": {
 "ports": [
 {
 "interface": "eth0",
 "port": 5353
 },
 {
 "interface": "eth0",
 "port": 67
 }
],
 "total": 2
 },
 "network_stats": {
 "bytes_in": 1157864729406,
 "bytes_out": 1170821865,
 "packets_in": 693092175031,
 "packets_out": 738917180
 },

AWS IoT Device Defender 642

AWS IoT Greengrass Developer Guide, Version 2

 "tcp_connections": {
 "established_connections":{
 "connections": [
 {
 "local_interface": "eth0",
 "local_port": 80,
 "remote_addr": "192.168.0.1:8000"
 },
 {
 "local_interface": "eth0",
 "local_port": 80,
 "remote_addr": "192.168.0.1:8000"
 }
],
 "total": 2
 }
 }
 }
}

For more information about the metrics that this component reports, see Device metrics document
specification in the AWS IoT Core Developer Guide.

Local log file

This component uses the following log file.

Linux

/greengrass/v2/logs/aws.greengrass.DeviceDefender.log

Windows

C:\greengrass\v2\logs\aws.greengrass.DeviceDefender.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

AWS IoT Device Defender 643

https://docs.aws.amazon.com/iot/latest/developerguide/detect-device-side-metrics.html#DetectMetricsMessagesSpec
https://docs.aws.amazon.com/iot/latest/developerguide/detect-device-side-metrics.html#DetectMetricsMessagesSpec

AWS IoT Greengrass Developer Guide, Version 2

Linux

sudo tail -f /greengrass/v2/logs/aws.greengrass.DeviceDefender.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\aws.greengrass.DeviceDefender.log -Tail 10 -
Wait

Licenses

This component is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the component.

v3.x

Version Changes

3.1.1 Bug fixes and improvements

• Adds retries for client connection when the connection fails to
recover after a network outage.

• Adds a configurable retry for publishing metrics.

3.1.0 Bug fixes and improvements

• Adds support for HTTPS network proxy configurations. For more
information, see Connect on port 443 or through a network proxy
and Enable the core device to trust an HTTPS proxy.

3.0.1 Fixes an issue with how the component calculates delta values for
metrics.

AWS IoT Device Defender 644

https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

3.0.0
Warning

This version is no longer available. The improvements in this
version are available in later versions of this component.

Initial version.

v2.x

Version Changes

2.0.17 Version updated for Greengrass nucleus version 2.14.0 release.

2.0.16 Version updated for Greengrass nucleus version 2.13.0 release.

2.0.11 Version updated for Greengrass nucleus version 2.11.0 release.

2.0.10 Version updated for Greengrass nucleus version 2.7.0 release.

2.0.9 Version updated for Greengrass nucleus version 2.6.0 release.

2.0.8 Version updated for Greengrass nucleus version 2.5.0 release.

2.0.7 Version updated for Greengrass nucleus version 2.4.0 release.

2.0.6 Version updated for Greengrass nucleus version 2.3.0 release.

2.0.5 Version updated for Greengrass nucleus version 2.2.0 release.

2.0.4 Version updated for Greengrass nucleus version 2.1.0 release.

2.0.3 Initial version.

AWS IoT Device Defender 645

AWS IoT Greengrass Developer Guide, Version 2

Disk spooler

The disk spooler component (aws.greengrass.DiskSpooler) offers a persistent storage option
for messages spooled from Greengrass core devices to AWS IoT Core. This component will store
these outbound messages on disk.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Usage

• Local log file

• Changelog

Versions

This component has the following versions:

• 1.0.x

Type

This component is a plugin component (aws.greengrass.plugin). The Greengrass nucleus runs
this component in the same Java Virtual Machine (JVM) as the nucleus. The nucleus restarts when
you change this component's version on the core device.

This component uses the same log file as the Greengrass nucleus. For more information, see
Monitor AWS IoT Greengrass logs.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

Disk spooler 646

AWS IoT Greengrass Developer Guide, Version 2

• Windows

Requirements

This component has the following requirements:

• storageType should be set to Disk to use this component. You can set this in the Greengrass
nucleus configuration.

• maxSizeInBytes must not be configured to be greater than the available space on the device.
You can set this in the Greengrass nucleus configuration.

• The disk spooler component is supported to run in a VPC.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

1.0.5

The following table lists the dependencies for version 1.0.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.11.0 <2.15.0 Hard

1.0.4

The following table lists the dependencies for version 1.0.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.11.0 <2.14.0 Hard

Disk spooler 647

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

1.0.1 – 1.0.3

The following table lists the dependencies for versions 1.0.1 to 1.0.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.11.0 <2.13.0 Hard

1.0.0

The following table lists the dependencies for version 1.0.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.11.0 <2.12.0 Hard

For more information about component dependencies, see the component recipe reference.

Usage

To use the disk spooler component, aws.greengrass.DiskSpooler must be deployed.

To configure and use this component, you must set the pluginName to
aws.greengrass.DiskSpooler.

Local log file

This component uses the same log file as the Greengrass nucleus component.

Linux

/greengrass/v2/logs/greengrass.log

Windows

C:\greengrass\v2\logs\greengrass.log

Disk spooler 648

AWS IoT Greengrass Developer Guide, Version 2

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/greengrass.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\greengrass.log -Tail 10 -Wait

Changelog

The following table describes the changes in each version of the component.

Version Changes

1.0.5 Version updated for Greengrass nucleus version 2.14.0 release.

1.0.4 Bug fixes and improvements

General bug fixes.

1.0.3 Bug fixes and improvements

Improves performance by reusing database connections.

1.0.2 Bug fixes and improvements

Fixes an issue where the MQTT message format field isn't persisted in
certain cases.

1.0.1 Version updated for Greengrass nucleus version 2.12.0 release.

1.0.0 Initial version.

Disk spooler 649

AWS IoT Greengrass Developer Guide, Version 2

Docker application manager

The Docker application manager component (aws.greengrass.DockerApplicationManager)
enables AWS IoT Greengrass to download Docker images from public image registries and private
registries hosted on Amazon Elastic Container Registry (Amazon ECR). It also enables AWS IoT
Greengrass to manage credentials automatically to securely download images from private
repositories in Amazon ECR.

When you develop a custom component that runs a Docker container, include the Docker
application manager as a dependency to download the Docker images that are specified as
artifacts in your component. For more information, see Run a Docker container.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

• See also

Versions

This component has the following versions:

• 2.0.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Docker application manager 650

AWS IoT Greengrass Developer Guide, Version 2

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Requirements

This component has the following requirements:

• Docker Engine 1.9.1 or later installed on the Greengrass core device. Version 20.10 is the latest
version that is verified to work with the AWS IoT Greengrass Core software. You must install
Docker directly on the core device before you deploy components that run Docker containers.

• The Docker daemon started and running on the core device before you deploy this component.

• Docker images stored in one of the following supported image sources:

• Public and private image repositories in Amazon Elastic Container Registry (Amazon ECR)

• Public Docker Hub repository

• Public Docker Trusted Registry

• Docker images included as artifacts in your custom Docker container components. Use the
following URI formats to specify your Docker images:

• Private Amazon ECR image: docker:account-
id.dkr.ecr.region.amazonaws.com/repository/image[:tag|@digest]

• Public Amazon ECR image: docker:public.ecr.aws/repository/image[:tag|
@digest]

• Public Docker Hub image: docker:name[:tag|@digest]

For more information, see Run a Docker container.

Note

If you don't specify the image tag or image digest in the artifact URI for an image, then
the Docker application manager pulls the latest available version of that image when
you deploy your custom Docker container component. To ensure that all of your core

Docker application manager 651

https://docs.docker.com/engine/

AWS IoT Greengrass Developer Guide, Version 2

devices run the same version of an image, we recommend that you include the image tag
or image digest in the artifact URI.

• The system user that runs a Docker container component must have root or administrator
permissions, or you must configure Docker to run it as a non-root or non-admistrator user.

• On Linux devices, you can add a user to the docker group to call docker commands without
sudo.

• On Windows devices, you can add a user to the docker-users group to call docker
commands without adminstrator privileges.

Linux or Unix

To add ggc_user, or the non-root user that you use to run Docker container components, to
the docker group, run the following command.

sudo usermod -aG docker ggc_user

For more information, see Manage Docker as a non-root user.

Windows Command Prompt (CMD)

To add ggc_user, or the user that you use to run Docker container components, to the
docker-users group, run the following command as an administrator.

net localgroup docker-users ggc_user /add

Windows PowerShell

To add ggc_user, or the user that you use to run Docker container components, to the
docker-users group, run the following command as an administrator.

Add-LocalGroupMember -Group docker-users -Member ggc_user

• If you configure the AWS IoT Greengrass Core software to use a network proxy, you must
configure Docker to use the same proxy server.

• If your Docker images are stored in an Amazon ECR private registry, then you must
include the token exchange service component as a dependency in the Docker container
component. Also, the Greengrass device role must allow the ecr:GetAuthorizationToken,

Docker application manager 652

https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user
https://docs.docker.com/network/proxy/

AWS IoT Greengrass Developer Guide, Version 2

ecr:BatchGetImage, and ecr:GetDownloadUrlForLayer actions, as shown in the following
example IAM policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ecr:GetAuthorizationToken",
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer"
],
 "Resource": [
 "*"
],
 "Effect": "Allow"
 }
]
}

• The docker application manager component is supported to run in a VPC. To deploy this
component in a VPC, the following is required.

• The docker application manager component must have connectivity to download images. For
example, if you use ECR, you must have connectivity to the following endpoints.

• *.dkr.ecr.region.amazonaws.com (VPC endpoint
com.amazonaws.region.ecr.dkr)

• api.ecr.region.amazonaws.com (VPC endpoint com.amazonaws.region.ecr.api)

Endpoints and ports

This component must be able to perform outbound requests to the following endpoints and ports,
in addition to endpoints and ports required for basic operation. For more information, see Allow
device traffic through a proxy or firewall.

Endpoint Port Required Descripti
on

ecr.region.amazonaws.com 443 No Required
if you

Docker application manager 653

AWS IoT Greengrass Developer Guide, Version 2

Endpoint Port Required Descripti
on

download
Docker
images
from
Amazon
ECR.

hub.docker.com

registry.hub.docker.com/v1

443 No Required
if you
download
Docker
images
from
Docker
Hub.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.0.13

The following table lists the dependencies for version 2.0.13 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.15.0 Soft

Docker application manager 654

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

2.0.12

The following table lists the dependencies for version 2.0.12 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.14.0 Soft

2.0.11

The following table lists the dependencies for version 2.0.11 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.13.0 Soft

2.0.10

The following table lists the dependencies for version 2.0.10 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.12.0 Soft

2.0.9

The following table lists the dependencies for version 2.0.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.11.0 Soft

2.0.8

The following table lists the dependencies for version 2.0.8 of this component.

Docker application manager 655

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.10.0 Soft

2.0.7

The following table lists the dependencies for version 2.0.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.9.0 Soft

2.0.6

The following table lists the dependencies for version 2.0.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.8.0 Soft

2.0.5

The following table lists the dependencies for version 2.0.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.7.0 Soft

2.0.4

The following table lists the dependencies for version 2.0.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.6.0 Soft

Docker application manager 656

AWS IoT Greengrass Developer Guide, Version 2

2.0.3

The following table lists the dependencies for version 2.0.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.5.0 Soft

2.0.2

The following table lists the dependencies for version 2.0.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.4.0 Soft

2.0.1

The following table lists the dependencies for version 2.0.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.3.0 Soft

2.0.0

The following table lists the dependencies for version 2.0.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.2.0 Soft

For more information about component dependencies, see the component recipe reference.

Configuration

This component doesn't have any configuration parameters.

Docker application manager 657

AWS IoT Greengrass Developer Guide, Version 2

Local log file

This component uses the same log file as the Greengrass nucleus component.

Linux

/greengrass/v2/logs/greengrass.log

Windows

C:\greengrass\v2\logs\greengrass.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/greengrass.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\greengrass.log -Tail 10 -Wait

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.0.13 Version updated for Greengrass nucleus version 2.14.0 release.

2.0.12 Version updated for Greengrass nucleus version 2.13.0 release.

2.0.11 Version updated for Greengrass nucleus version 2.12.0 release.

Docker application manager 658

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.0.10 Version updated for Greengrass nucleus version 2.11.0 release.

2.0.9 Version updated for Greengrass nucleus version 2.10.0 release.

2.0.8 Version updated for Greengrass nucleus version 2.9.0 release.

2.0.7 Version updated for Greengrass nucleus version 2.8.0 release.

2.0.6 Version updated for Greengrass nucleus version 2.7.0 release.

2.0.5 Version updated for Greengrass nucleus version 2.6.0 release.

2.0.4 Version updated for Greengrass nucleus version 2.5.0 release.

2.0.3 Version updated for Greengrass nucleus version 2.4.0 release.

2.0.2 Version updated for Greengrass nucleus version 2.3.0 release.

2.0.1 Version updated for Greengrass nucleus version 2.2.0 release.

2.0.0 Initial version.

See also

• Run a Docker container

Edge connector for Kinesis Video Streams

The edge connector for Kinesis Video Streams component (aws.iot.EdgeConnectorForKVS)
reads video feeds from local cameras and publishes the streams to Kinesis Video Streams. You can
configure this component to read video feeds from Internet Protocol (IP) cameras using Real Time
Streaming Protocol (RTSP). Then, you can set up dashboards in Amazon Managed Grafana or local
Grafana servers to monitor and interact with the video streams.

You can integrate this component with AWS IoT TwinMaker to display and control video streams in
Grafana dashboards. AWS IoT TwinMaker is an AWS service that enables you to build operational
digital twins of physical systems. You can use AWS IoT TwinMaker to visualize data from sensors,

Edge connector for Kinesis Video Streams 659

https://docs.aws.amazon.com/grafana/latest/userguide/what-is-Amazon-Managed-Service-Grafana.html

AWS IoT Greengrass Developer Guide, Version 2

cameras, and enterprise applications for you to track your physical factories, buildings, or industrial
plants. You can also use this data to monitor operations, diagnose errors, and repair errors. For
more information, see What is AWS IoT TwinMaker? in the AWS IoT TwinMaker User Guide.

This component stores its configuration in AWS IoT SiteWise, which is an AWS service that
models and stores industrial data. In AWS IoT SiteWise, assets represent objects such as devices,
equipment, or groups of other objects. To configure and use this component, you create an AWS
IoT SiteWise asset for each Greengrass core device and for each IP camera connected to each core
device. Each asset has properties that you configure to control features, such as live streaming,
on-demand upload, and local caching. To specify the URL for each camera, you create a secret in
AWS Secrets Manager that contains the URL of the camera. If the camera requires authentication,
you also specify a user name and password in the URL. Then, you specify that secret in an asset
property for the IP camera.

This component uploads each camera's video stream to a Kinesis video stream. You specify the
name of the destination Kinesis video stream in the AWS IoT SiteWise asset configuration for each
camera. If the Kinesis video stream doesn't exist, this component creates it for you.

AWS IoT TwinMaker provides a script that you can run to create these AWS IoT SiteWise assets and
Secrets Manager secrets. For more information about how to create these resources, and how to
install, configure, and use this component, see AWS IoT TwinMaker video integration in the AWS
IoT TwinMaker User Guide.

Note

The edge connector for Kinesis Video Streams component is available only in the following
AWS Regions:

• US East (N. Virginia)

• US West (Oregon)

• Europe (Frankfurt)

• Europe (Ireland)

• Asia Pacific (Singapore)

Topics

• Versions

Edge connector for Kinesis Video Streams 660

https://docs.aws.amazon.com/iot-twinmaker/latest/guide/what-is-twinmaker.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/video-integration.html

AWS IoT Greengrass Developer Guide, Version 2

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Licenses

• Usage

• Local log file

• Changelog

• See also

Versions

This component has the following versions:

• 1.0.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on Linux core devices only.

Requirements

This component has the following requirements:

• You can deploy this component to only single core devices, because the component
configuration must be unique for each core device. You can't deploy this component to groups of
core devices.

• GStreamer 1.18.4 or later installed on the core device. For more information, see Installing
GStreamer.

Edge connector for Kinesis Video Streams 661

https://gstreamer.freedesktop.org
https://gstreamer.freedesktop.org/documentation/installing/index.html?gi-language=c
https://gstreamer.freedesktop.org/documentation/installing/index.html?gi-language=c

AWS IoT Greengrass Developer Guide, Version 2

On a device with apt, you can run the following commands to install GStreamer.

sudo apt install -y libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev
 gstreamer1.0-plugins-base-apps
sudo apt install -y gstreamer1.0-libav
sudo apt install -y gstreamer1.0-plugins-bad gstreamer1.0-plugins-good gstreamer1.0-
plugins-ugly gstreamer1.0-tools

• An AWS IoT SiteWise asset for each core device. This AWS IoT SiteWise asset represents the
core device. For more information about how to create this asset, see AWS IoT TwinMaker video
integration in the AWS IoT TwinMaker User Guide.

• An AWS IoT SiteWise asset for each IP camera that you connect to each core device. These
AWS IoT SiteWise assets represent the cameras that stream video to each core device. Each
camera's asset must be associated to the asset for the core device that connects to the camera.
Camera assets have properties that you can configure to specify a Kinesis video stream, an
authentication secret, and video streaming parameters. For more information about how to
create and configure camera assets, see AWS IoT TwinMaker video integration in the AWS IoT
TwinMaker User Guide.

• An AWS Secrets Manager secret for each IP camera. This secret must define a key-value pair,
where the key is RTSPStreamUrl, and the value is the URL for the camera. If the camera
requires authentication, include the user name and password in this URL. You can use a script
to create a secret when you create the resources that this component requires. For more
information, see AWS IoT TwinMaker video integration in the AWS IoT TwinMaker User Guide.

You can also use the Secrets Manager console and API to create additional secrets. For more
information, see Create a secret in the AWS Secrets Manager User Guide.

• The Greengrass token exchange role must allow the following AWS Secrets Manager, AWS IoT
SiteWise, and Kinesis Video Streams actions, as shown in the following example IAM policy.

Note

This example policy allows the device to get the value of secrets named IPCamera1Url
and IPCamera2Url. When you configure each IP camera, you specify a secret that
contains the URL for that camera. If the camera requires authentication, you also specify
a user name and password in the URL. The core device's token exchange role must allow
access to the secret for each IP camera to connect.

Edge connector for Kinesis Video Streams 662

https://docs.aws.amazon.com/iot-twinmaker/latest/guide/video-integration.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/video-integration.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/video-integration.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/video-integration.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html

AWS IoT Greengrass Developer Guide, Version 2

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:secretsmanager:region:account-id:secret:IPCamera1Url",
 "arn:aws:secretsmanager:region:account-id:secret:IPCamera2Url"
]
 },
 {
 "Action": [
 "iotsitewise:BatchPutAssetPropertyValue",
 "iotsitewise:DescribeAsset",
 "iotsitewise:DescribeAssetModel",
 "iotsitewise:DescribeAssetProperty",
 "iotsitewise:GetAssetPropertyValue",
 "iotsitewise:ListAssetRelationships",
 "iotsitewise:ListAssets",
 "iotsitewise:ListAssociatedAssets",
 "kinesisvideo:CreateStream",
 "kinesisvideo:DescribeStream",
 "kinesisvideo:GetDataEndpoint",
 "kinesisvideo:PutMedia",
 "kinesisvideo:TagStream"
],
 "Effect": "Allow",
 "Resource": [
 "*"
]
 }
]
}

Edge connector for Kinesis Video Streams 663

AWS IoT Greengrass Developer Guide, Version 2

Note

If you use a customer managed AWS Key Management Service key to encrypt secrets, the
device role must also allow the kms:Decrypt action.

Endpoints and ports

This component must be able to perform outbound requests to the following endpoints and ports,
in addition to endpoints and ports required for basic operation. For more information, see Allow
device traffic through a proxy or firewall.

Endpoint Port Required Descripti
on

kinesisvideo. region.amazonaw
s.com

443 Yes Upload
data to
Kinesis
Video
Streams.

data.iots
itewise. region.amazonaw
s.com

443 Yes Publish
video
stream
metadata
to AWS IoT
SiteWise.

secretsma
nager. region.amazonaws.com

443 Yes Download
camera
URL
secrets to
the core
device.

Edge connector for Kinesis Video Streams 664

AWS IoT Greengrass Developer Guide, Version 2

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

The following table lists the dependencies for versions 1.0.0 to 1.0.5 of this component.

Dependency Compatible versions Dependency type

Token exchange service >=2.0.3 Hard

Stream manager >=2.0.9 Hard

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

SiteWiseAssetIdForHub

The ID of the AWS IoT SiteWise asset that represents this core device. For more information
about how to create this asset and use it to interact with this component, see AWS IoT
TwinMaker video integration in the AWS IoT TwinMaker User Guide.

Example Example: Configuration merge update

{
 "SiteWiseAssetIdForHub": "a1b2c3d4-5678-90ab-cdef-EXAMPLE11111"
}

Edge connector for Kinesis Video Streams 665

https://console.aws.amazon.com/greengrass
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/video-integration.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/video-integration.html

AWS IoT Greengrass Developer Guide, Version 2

Licenses

This component includes the following third-party software/licensing:

• Quartz Job Scheduler / Apache License 2.0

• Java bindings for GStreamer 1.x / GNU Lesser General Public License v3.0

Usage

To configure and interact with this component, you can set properties on the AWS IoT SiteWise
assets that represent the core device and the IP cameras where it connects. You can also visualize
and interact with video streams in Grafana dashboards through AWS IoT TwinMaker. For more
information, see AWS IoT TwinMaker video integration in the AWS IoT TwinMaker User Guide.

Local log file

This component uses the following log file.

/greengrass/v2/logs/aws.iot.EdgeConnectorForKVS.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 with the path to the AWS IoT Greengrass root folder.

sudo tail -f /greengrass/v2/logs/aws.iot.EdgeConnectorForKVS.log

Changelog

The following table describes the changes in each version of the component.

Version Changes

1.0.5 General bug fixes and improvements.

1.0.4 Bug fixes and improvements

• Fixes an issue that caused live uploading to stop.

Edge connector for Kinesis Video Streams 666

http://www.quartz-scheduler.org/
https://github.com/gstreamer-java/gst1-java-core
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/video-integration.html

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

1.0.3 General bug fixes and improvements.

1.0.1 General bug fixes and improvements.

1.0.0 Initial version.

See also

• What is AWS IoT TwinMaker? in the AWS IoT TwinMaker User Guide

• AWS IoT TwinMaker video integration in the AWS IoT TwinMaker User Guide

• What is AWS IoT SiteWise? in the AWS IoT SiteWise User Guide

• Updating attribute values in the AWS IoT SiteWise User Guide

• What is AWS Secrets Manager? in the AWS Secrets Manager User Guide

• Create and manage secrets in the AWS Secrets Manager User Guide

Greengrass CLI

The Greengrass CLI component (aws.greengrass.Cli) provides a local command-line interface
that you can use on core devices to develop and debug components locally. The Greengrass CLI lets
you create local deployments and restart components on the core device, for example.

You can install this component when you install the AWS IoT Greengrass Core software. For more
information, see Tutorial: Getting started with AWS IoT Greengrass V2.

Important

We recommend that you use this component in only development environments, not
production environments. This component provides access to information and operations
that you typically won't need in a production environment. Follow the principle of least
privilege by deploying this component to only core devices where you need it.

After you install this component, run the following command to view its help documentation.
When this component installs, it adds a symbolic link to greengrass-cli in the /greengrass/

Greengrass CLI 667

https://docs.aws.amazon.com/iot-twinmaker/latest/guide/what-is-twinmaker.html
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/video-integration.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/what-is-sitewise.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/update-attribute-values.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/managing-secrets.html

AWS IoT Greengrass Developer Guide, Version 2

v2/bin folder. You can run the Greengrass CLI from this path or add it to your PATH environment
variable to run greengrass-cli without its absolute path.

Linux or Unix

/greengrass/v2/bin/greengrass-cli help

Windows

C:\greengrass\v2\bin\greengrass-cli help

The following command restarts a component named com.example.HelloWorld, for example.

Linux or Unix

sudo /greengrass/v2/bin/greengrass-cli component restart --names
 "com.example.HelloWorld"

Windows

C:\greengrass\v2\bin\greengrass-cli component restart --names
 "com.example.HelloWorld"

For more information, see Greengrass Command Line Interface.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

Greengrass CLI 668

AWS IoT Greengrass Developer Guide, Version 2

Versions

This component has the following versions:

• 2.14.x

• 2.13.x

• 2.12.x

• 2.11.x

• 2.10.x

• 2.9.x

• 2.8.x

• 2.7.x

• 2.6.x

• 2.5.x

• 2.4.x

• 2.3.x

• 2.2.x

• 2.1.x

• 2.0.x

Type

This component is a plugin component (aws.greengrass.plugin). The Greengrass nucleus runs
this component in the same Java Virtual Machine (JVM) as the nucleus. The nucleus restarts when
you change this component's version on the core device.

This component uses the same log file as the Greengrass nucleus. For more information, see
Monitor AWS IoT Greengrass logs.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

Greengrass CLI 669

AWS IoT Greengrass Developer Guide, Version 2

• Windows

Requirements

This component has the following requirements:

• You must be authorized to use the Greengrass CLI to interact with the AWS IoT Greengrass Core
software. Do one of the following to use the Greengrass CLI:

• Use the system user that runs the AWS IoT Greengrass Core software.

• Use a user with root or adminstrative permissions. On Linux core devices, you can use sudo to
gain root permissions.

• Use a system user that's in a group that you specify in the AuthorizedPosixGroups or
AuthorizedWindowsGroups configuration parameters when you deploy the component. For
more information, see Greengrass CLI component configuration.

• The Greengrass CLI component is supported to run in a VPC.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.14.0

The following table lists the dependencies for version 2.14.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.12.0 <2.15.0 Soft

2.13.0

The following table lists the dependencies for version 2.12.0 through 2.14.0 of this component.

Greengrass CLI 670

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.12.0 <2.14.0 Soft

2.12.0 – 2.12.6

The following table lists the dependencies for version 2.12.0 through 2.12.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.12.0 <2.13.0 Soft

2.11.0 – 2.11.3

The following table lists the dependencies for versions 2.11.0 through 2.11.3 of this
component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.11.0 <2.12.0 Soft

2.10.0 – 2.10.3

The following table lists the dependencies for versions 2.10.0 through 2.10.3 of this
component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.11.0 Soft

2.9.0 – 2.9.6

The following table lists the dependencies for versions 2.9.0 through 2.9.6 of this component.

Greengrass CLI 671

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.10.0 Soft

2.8.0 – 2.8.1

The following table lists the dependencies for version 2.8.0 and 2.8.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.9.0 Soft

2.7.0

The following table lists the dependencies for version 2.7.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.8.0 Soft

2.6.0

The following table lists the dependencies for version 2.6.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.7.0 Soft

2.5.0 – 2.5.6

The following table lists the dependencies for versions 2.5.0 through 2.5.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.6.0 Soft

Greengrass CLI 672

AWS IoT Greengrass Developer Guide, Version 2

2.4.0

The following table lists the dependencies for version 2.4.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.5.0 Soft

2.3.0

The following table lists the dependencies for version 2.3.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.4.0 Soft

2.2.0

The following table lists the dependencies for version 2.2.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.3.0 Soft

2.1.0

The following table lists the dependencies for version 2.1.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.2.0 Soft

2.0.x

The following table lists the dependencies for version 2.0.x of this component.

Greengrass CLI 673

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.1.0 Soft

Note

The minimum compatible version of the Greengrass nucleus corresponds to the patch
version of the Greengrass CLI component.

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

2.5.x - 2.13.x

AuthorizedPosixGroups

(Optional) A string that contains a comma-separated list of system groups. You authorize
these system groups to use the Greengrass CLI to interact with the AWS IoT Greengrass Core
software. You can specify group names or group IDs. For example, group1,1002,group3
authorizes three system groups (group1, 1002, and group3) to use the Greengrass CLI.

If you don't specify any groups to authorize, you can use the Greengrass CLI as the root user
(sudo) or as the system user that runs the AWS IoT Greengrass Core software.

AuthorizedWindowsGroups

(Optional) A string that contains a comma-separated list of system groups. You authorize
these system groups to use the Greengrass CLI to interact with the AWS IoT Greengrass Core
software. You can specify group names or group IDs. For example, group1,1002,group3
authorizes three system groups (group1, 1002, and group3) to use the Greengrass CLI.

If you don't specify any groups to authorize, you can use the Greengrass CLI as an
administrator or as the system user that runs the AWS IoT Greengrass Core software.

Greengrass CLI 674

AWS IoT Greengrass Developer Guide, Version 2

Example Example: Configuration merge update

The following example configuration specifies to authorize three POSIX system groups
(group1, 1002, and group3) and two Windows user groups (Device Operators and QA
Engineers) to use the Greengrass CLI.

{
 "AuthorizedPosixGroups": "group1,1002,group3",
 "AuthorizedWindowsGroups": "Device Operators,QA Engineers"
}

2.4.x - 2.0.x

AuthorizedPosixGroups

(Optional) A string that contains a comma-separated list of system groups. You authorize
these system groups to use the Greengrass CLI to interact with the AWS IoT Greengrass Core
software. You can specify group names or group IDs. For example, group1,1002,group3
authorizes three system groups (group1, 1002, and group3) to use the Greengrass CLI.

If you don't specify any groups to authorize, you can use the Greengrass CLI as the root user
(sudo) or as the system user that runs the AWS IoT Greengrass Core software.

Example Example: Configuration merge update

The following example configuration specifies to authorize three system groups (group1, 1002,
and group3) to use the Greengrass CLI.

{
 "AuthorizedPosixGroups": "group1,1002,group3"
}

Local log file

This component uses the same log file as the Greengrass nucleus component.

Linux

/greengrass/v2/logs/greengrass.log

Greengrass CLI 675

AWS IoT Greengrass Developer Guide, Version 2

Windows

C:\greengrass\v2\logs\greengrass.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/greengrass.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\greengrass.log -Tail 10 -Wait

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.14.0 Bug fixes and improvements

• Validate deployment target parameter in the cli command.

2.13.0 Version updated for Greengrass nucleus version 2.13.0 release.

2.12.6 Version updated for Greengrass nucleus version 2.12.6 release.

2.12.5 Version updated for Greengrass nucleus version 2.12.5 release.

2.12.4 Version updated for Greengrass nucleus version 2.12.4 release.

Greengrass CLI 676

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.12.3
Warning

This version is no longer available. The improvements in this version
are available in later versions of this component.

Version updated for Greengrass nucleus version 2.12.3 release.

2.12.2 Version updated for Greengrass nucleus version 2.12.2 release.

2.12.1 Version updated for Greengrass nucleus version 2.12.1 release.

2.12.0 Version updated for Greengrass nucleus version 2.12.0 release.

2.11.3 Version updated for Greengrass nucleus version 2.11.3 release.

2.11.2 Version updated for Greengrass nucleus version 2.11.2 release.

2.11.1 Version updated for Greengrass nucleus version 2.11.1 release.

2.11.0 New features

• Enables you to cancel a local deployment.

• Enables you to configure a failure handling policy for a local
deployment.

• Improves detailed deployment status reporting.

2.10.3 Version updated for Greengrass nucleus version 2.10.3 release.

2.10.2 Version updated for Greengrass nucleus version 2.10.2 release.

2.10.1 Version updated for Greengrass nucleus version 2.10.1 release.

2.10.0 Version updated for Greengrass nucleus version 2.10.0 release.

2.9.6 Version updated for Greengrass nucleus version 2.9.6 release.

2.9.5 Version updated for Greengrass nucleus version 2.9.5 release.

Greengrass CLI 677

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.9.4 Version updated for Greengrass nucleus version 2.9.4 release.

2.9.3 Version updated for Greengrass nucleus version 2.9.3 release.

2.9.2 Version updated for Greengrass nucleus version 2.9.2 release.

2.9.1 Version updated for Greengrass nucleus version 2.9.1 release.

2.9.0 Version updated for Greengrass nucleus version 2.9.0 release.

2.8.1 Version updated for Greengrass nucleus version 2.8.1 release.

2.8.0 Version updated for Greengrass nucleus version 2.8.0 release.

2.7.0 Version updated for Greengrass nucleus version 2.7.0 release.

2.6.0 New features

• Adds support for custom components to call interprocess communica
tion (IPC) operations that the Greengrass CLI uses. You can use these
IPC operations to manage local deployments, view component details,
and generate a password that you can use to sign in to the local debug
console. For more information, see IPC: Manage local deployments and
components.

Bug fixes and improvements

• Additional minor fixes and improvements.

2.5.6 Version updated for Greengrass nucleus version 2.5.6 release.

2.5.5 Version updated for Greengrass nucleus version 2.5.5 release.

2.5.4 Version updated for Greengrass nucleus version 2.5.4 release.

2.5.3 Version updated for Greengrass nucleus version 2.5.3 release.

2.5.2 Version updated for Greengrass nucleus version 2.5.2 release.

2.5.1 Version updated for Greengrass nucleus version 2.5.1 release.

Greengrass CLI 678

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.5.0 New features

• Adds support for core devices that run Windows.

• Adds the new AuthorizedWindowsGroups configuration
parameter that you can specify to authorize system groups to use the
Greengrass CLI on Windows devices.

• Adds the windowsUser parameter for local deployments. You can
use this parameter specify the user to use to run components on a
Windows core device.

2.4.0 New features

• Adds support for system resource limits. When you create a local
deployment, you can configure the maximum amount of CPU and RAM
usage that each component's processes can use on the core device. For
more information, see Configure system resource limits for component
s and the deployment create command.

2.3.0 Version updated for Greengrass nucleus version 2.3.0 release.

2.2.0 Version updated for Greengrass nucleus version 2.2.0 release.

2.1.0 Version updated for Greengrass nucleus version 2.1.0 release.

2.0.5 Version updated for Greengrass nucleus version 2.0.5 release.

2.0.4 Version updated for Greengrass nucleus version 2.0.4 release.

2.0.3 Initial version.

IP detector

The IP detector component (aws.greengrass.clientdevices.IPDetector) does the
following:

• Monitors the Greengrass core device's network connectivity information. This information
includes the core device's network endpoints and the port where an MQTT broker operates.

IP detector 679

AWS IoT Greengrass Developer Guide, Version 2

• Updates the core device's connectivity information in the AWS IoT Greengrass cloud service.

Client devices can use Greengrass cloud discovery to retrieve associated core devices' connectivity
information. Then, client devices can try to connect to each core device until they successfully
connect.

Note

Client devices are local IoT devices that connect to a Greengrass core device to send MQTT
messages and data to process. For more information, see Interact with local IoT devices.

The IP detector component replaces a core device's existing connectivity information with the
information it detects. Because this component removes existing information, you can either use
the IP detector component, or manually manage connectivity information.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

Versions

This component has the following versions:

• 2.2.x

• 2.1.x

• 2.0.x

IP detector 680

AWS IoT Greengrass Developer Guide, Version 2

Type

This component is a plugin component (aws.greengrass.plugin). The Greengrass nucleus runs
this component in the same Java Virtual Machine (JVM) as the nucleus. The nucleus restarts when
you change this component's version on the core device.

This component uses the same log file as the Greengrass nucleus. For more information, see
Monitor AWS IoT Greengrass logs.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Requirements

This component has the following requirements:

• The Greengrass service role must be associated to your AWS account and allow the
iot:GetThingShadow and iot:UpdateThingShadow permissions.

• The core device's AWS IoT policy must allow the greengrass:UpdateConnectivityInfo
permission. For more information, see AWS IoT policies for data plane operations and Minimal
AWS IoT policy to support client devices.

• If you configure the core device's MQTT broker component to use a port other than the default
port 8883, you must use IP detector v2.1.0 or later. Configure it to report the port where the
broker operates.

• If you have a complex network setup, the IP detector component might not be able to identify
the endpoints where client devices can connect to the core device. If the IP detector component
can't manage the endpoints, you must manually manage the core device endpoints instead.
For example, if the core device is behind a router that forwards the MQTT broker port to it, you
must specify the router's IP address as an endpoint for the core device. For more information, see
Manage core device endpoints.

• The IP detector component is supported to run in a VPC.

IP detector 681

AWS IoT Greengrass Developer Guide, Version 2

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.2.1

The following table lists the dependencies for version 2.2.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.15.0 Soft

2.2.0

The following table lists the dependencies for version 2.2.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.14.0 Soft

2.1.8 – 2.1.9

The following table lists the dependencies for versions 2.1.8 and 2.1.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.13.0 Soft

2.1.7

The following table lists the dependencies for version 2.1.7 of this component.

IP detector 682

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.12.0 Soft

2.1.6

The following table lists the dependencies for version 2.1.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.11.0 Soft

2.1.5

The following table lists the dependencies for version 2.1.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.10.0 Soft

2.1.4

The following table lists the dependencies for version 2.1.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.9.0 Soft

2.1.3

The following table lists the dependencies for version 2.1.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.8.0 Soft

IP detector 683

AWS IoT Greengrass Developer Guide, Version 2

2.1.2

The following table lists the dependencies for version 2.1.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.7.0 Soft

2.1.1

The following table lists the dependencies for version 2.1.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.6.0 Soft

2.1.0 and 2.0.2

The following table lists the dependencies for versions 2.1.0 and 2.0.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.5.0 Soft

2.0.1

The following table lists the dependencies for version 2.0.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.4.0 Soft

2.0.0

The following table lists the dependencies for version 2.0.0 of this component.

IP detector 684

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.3.0 Soft

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

2.2.x

defaultPort

(Optional) The MQTT broker port to report when this component detects IP addresses. You
must specify this parameter if you configure the MQTT broker to use a different port than
the default port 8883.

Default: 8883

includeIPv4LoopbackAddrs

(Optional) You can enable this option to detect and report IPv4 loopback addresses. These
are IP addresses, such as localhost, where a device can communicate with itself. Use this
option in test environments where the core device and client device run on the same system.

Default: false

includeIPv4LinkLocalAddrs

(Optional) You can enable this option to detect and report IPv4 link-local addresses. Use
this option if the core device's network doesn't have Dynamic Host Configuration Protocol
(DHCP) or statically assigned IP addresses.

Default: false

includeIPv6LoopbackAddrs

(Optional) You can enable this option to detect and report IPv6 loopback addresses. These
are IP addresses, such as localhost, where a device can communicate with itself. Use this
option in test environments where the core device and client device run on the same system.

IP detector 685

https://en.wikipedia.org/wiki/Link-local_address

AWS IoT Greengrass Developer Guide, Version 2

You must set includeIPv4Addrs to false and includeIPv6Addrs to true to use this
option.

Default: false

includeIPv6LinkLocalAddrs

(Optional) You can enable this option to detect and report IPv6 link-local addresses. Use
this option if the core device's network doesn't have Dynamic Host Configuration Protocol
(DHCP) or statically assigned IP addresses. You must set includeIPv4Addrs to false and
includeIPv6Addrs to true to use this option.

Default: false

includeIPv4Addrs

(Optional) The default is set to true. You can enable this option to publish IPv4 addresses
found on the core device.

Default: true

includeIPv6Addrs

(Optional) You can enable this option to publish IPv6 addresses found on the core device.
Set includeIPv4Addrs to false to use this option.

Default: false

2.1.x

defaultPort

(Optional) The MQTT broker port to report when this component detects IP addresses. You
must specify this parameter if you configure the MQTT broker to use a different port than
the default port 8883.

Default: 8883

includeIPv4LoopbackAddrs

(Optional) You can enable this option to detect and report IPv4 loopback addresses. These
are IP addresses, such as localhost, where a device can communicate with itself. Use this
option in test environments where the core device and client device run on the same system.

IP detector 686

https://en.wikipedia.org/wiki/Link-local_address

AWS IoT Greengrass Developer Guide, Version 2

Default: false

includeIPv4LinkLocalAddrs

(Optional) You can enable this option to detect and report IPv4 link-local addresses. Use
this option if the core device's network doesn't have Dynamic Host Configuration Protocol
(DHCP) or statically assigned IP addresses.

Default: false

2.0.x

includeIPv4LoopbackAddrs

(Optional) You can enable this option to detect and report IPv4 loopback addresses. These
are IP addresses, such as localhost, where a device can communicate with itself. Use this
option in test environments where the core device and client device run on the same system.

Default: false

includeIPv4LinkLocalAddrs

(Optional) You can enable this option to detect and report IPv4 link-local addresses. Use
this option if the core device's network doesn't have Dynamic Host Configuration Protocol
(DHCP) or statically assigned IP addresses.

Default: false

Local log file

This component uses the same log file as the Greengrass nucleus component.

Linux

/greengrass/v2/logs/greengrass.log

Windows

C:\greengrass\v2\logs\greengrass.log

IP detector 687

https://en.wikipedia.org/wiki/Link-local_address
https://en.wikipedia.org/wiki/Link-local_address

AWS IoT Greengrass Developer Guide, Version 2

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/greengrass.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\greengrass.log -Tail 10 -Wait

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.2.1 Version updated for Greengrass nucleus version 2.14.0 release.

2.2.0 Version updated for Greengrass nucleus version 2.13.0 release.

New features

• Adds support for IPv6. You can now use IPv6 for local messaging.

2.1.9 Bug fixes and improvements

• Adjusts the IP acquired step to only send logs at the debug log level.

2.1.8 Version updated for Greengrass nucleus version 2.12.0 release.

2.1.7 Version updated for Greengrass nucleus version 2.11.0 release.

2.1.6 Version updated for Greengrass nucleus version 2.10.0 release.

2.1.5 Version updated for Greengrass nucleus version 2.9.0 release.

2.1.4 Version updated for Greengrass nucleus version 2.8.0 release.

IP detector 688

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.1.3 Version updated for Greengrass nucleus version 2.7.0 release.

2.1.2 Bug fixes and improvements

• Improves error messages that this component logs in certain scenarios.

• Version updated for Greengrass nucleus version 2.6.0 release.

2.1.1 Version updated for Greengrass nucleus version 2.5.0 release.

2.1.0 Improvements

• Adds the defaultPort parameter, which enables you to use a non-
default MQTT broker port.

• Updates to make log messages more clear.

2.0.2 Version updated for Greengrass nucleus version 2.4.0 release.

2.0.1 Version updated for Greengrass nucleus version 2.3.0 release.

2.0.0 Initial version.

Firehose

The Firehose component (aws.greengrass.KinesisFirehose) publishes data through Amazon
Data Firehose delivery streams to destinations, such as Amazon S3, Amazon Redshift, and Amazon
OpenSearch Service. For more information, see What is Amazon Data Firehose? in the Amazon Data
Firehose Developer Guide.

To publish to a Kinesis delivery stream with this component, publish a message to a topic where
this component subscribes. By default, this component subscribes to the kinesisfirehose/
message and kinesisfirehose/message/binary/# local publish/subscribe topics. You can
specify other topics, including AWS IoT Core MQTT topics, when you deploy this component.

Firehose 689

https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html

AWS IoT Greengrass Developer Guide, Version 2

Note

This component provides similar functionality to the Firehose connector in AWS IoT
Greengrass V1. For more information, see Firehose connector in the AWS IoT Greengrass V1
Developer Guide.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Input data

• Output data

• Local log file

• Licenses

• Changelog

• See also

Versions

This component has the following versions:

• 2.1.x

• 2.0.x

Type

This component is a Lambda component (aws.greengrass.lambda). The Greengrass nucleus
runs this component's Lambda function using the Lambda launcher component.

For more information, see Component types.

Firehose 690

https://docs.aws.amazon.com/greengrass/latest/developerguide/kinesis-firehose-connector.html

AWS IoT Greengrass Developer Guide, Version 2

Operating system

This component can be installed on Linux core devices only.

Requirements

This component has the following requirements:

• Your core device must meet the requirements to run Lambda functions. If you want the core
device to run containerized Lambda functions, the device must meet the requirements to do so.
For more information, see Lambda function requirements.

• Python version 3.7 installed on the core device and added to the PATH environment variable.

• The Greengrass device role must allow the firehose:PutRecord and
firehose:PutRecordBatch actions, as shown in the following example IAM policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "firehose:PutRecord",
 "firehose:PutRecordBatch"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:firehose:region:account-id:deliverystream/stream-name"
]
 }
]
}

You can dynamically override the default delivery stream in the input message payload for this
component. If your application uses this feature, the IAM policy must include all target streams
as resources. You can grant granular or conditional access to resources (for example, by using a
wildcard * naming scheme).

• To receive output data from this component, you must merge the following
configuration update for the legacy subscription router component
(aws.greengrass.LegacySubscriptionRouter) when you deploy this component. This
configuration specifies the topic where this component publishes responses.

Firehose 691

https://www.python.org/

AWS IoT Greengrass Developer Guide, Version 2

Legacy subscription router v2.1.x

{
 "subscriptions": {
 "aws-greengrass-kinesisfirehose": {
 "id": "aws-greengrass-kinesisfirehose",
 "source": "component:aws.greengrass.KinesisFirehose",
 "subject": "kinesisfirehose/message/status",
 "target": "cloud"
 }
 }
}

Legacy subscription router v2.0.x

{
 "subscriptions": {
 "aws-greengrass-kinesisfirehose": {
 "id": "aws-greengrass-kinesisfirehose",
 "source": "arn:aws:lambda:region:aws:function:aws-greengrass-
kinesisfirehose:version",
 "subject": "kinesisfirehose/message/status",
 "target": "cloud"
 }
 }
}

• Replace region with the AWS Region that you use.

• Replace version with the version of the Lambda function that this component runs.
To find the Lambda function version, you must view the recipe for the version of this
component that you want to deploy. Open this component's details page in the AWS IoT
Greengrass console, and look for the Lambda function key-value pair. This key-value pair
contains the name and version of the Lambda function.

Important

You must update the Lambda function version on the legacy subscription router
every time you deploy this component. This ensures that you use the correct Lambda
function version for the component version that you deploy.

Firehose 692

https://console.aws.amazon.com/greengrass
https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

For more information, see Create deployments.

• The Firehose component is supported to run in a VPC. To deploy this component in a VPC, the
following is required.

• The Firehose component must have connectivity to firehose.region.amazonaws.com
which has the VPC endpoint of com.amazonaws.region.kinesis-firehose.

Endpoints and ports

This component must be able to perform outbound requests to the following endpoints and ports,
in addition to endpoints and ports required for basic operation. For more information, see Allow
device traffic through a proxy or firewall.

Endpoint Port Required Descripti
on

firehose. region.amazonaw
s.com

443 Yes Upload
data to
Firehose.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.1.9

The following table lists the dependencies for version 2.1.9 of this component.

Firehose 693

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.15.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.8

The following table lists the dependencies for version 2.1.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.14.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.7

The following table lists the dependencies for version 2.1.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.13.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

Firehose 694

AWS IoT Greengrass Developer Guide, Version 2

2.1.6

The following table lists the dependencies for version 2.1.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.12.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.5

The following table lists the dependencies for version 2.1.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.11.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.4

The following table lists the dependencies for version 2.1.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.10.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Firehose 695

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Token exchange service ^2.0.0 Hard

2.1.3

The following table lists the dependencies for version 2.1.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.9.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.2

The following table lists the dependencies for version 2.1.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.8.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.1

The following table lists the dependencies for version 2.1.1 of this component.

Firehose 696

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.7.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.8 - 2.1.0

The following table lists the dependencies for versions 2.0.8 and 2.1.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.6.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.7

The following table lists the dependencies for version 2.0.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

Firehose 697

AWS IoT Greengrass Developer Guide, Version 2

2.0.6

The following table lists the dependencies for version 2.0.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.5

The following table lists the dependencies for version 2.0.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.4

The following table lists the dependencies for version 2.0.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.2.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Firehose 698

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Token exchange service ^2.0.0 Hard

2.0.3

The following table lists the dependencies for version 2.0.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.3 <2.1.0 Hard

Lambda launcher >=1.0.0 Hard

Lambda runtimes >=1.0.0 Soft

Token exchange service >=1.0.0 Hard

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

Note

This component's default configuration includes Lambda function parameters. We
recommend that you edit only the following parameters to configure this component on
your devices.

lambdaParams

An object that contains the parameters for this component's Lambda function. This object
contains the following information:

Firehose 699

AWS IoT Greengrass Developer Guide, Version 2

EnvironmentVariables

An object that contains the Lambda function's parameters. This object contains the
following information:

DEFAULT_DELIVERY_STREAM_ARN

The ARN of the default Firehose delivery stream where the component sends data. You
can override the destination stream with the delivery_stream_arn property in the
input message payload.

Note

The core device role must allow the required actions on all target delivery
streams. For more information, see Requirements.

PUBLISH_INTERVAL

(Optional) The maximum number of seconds to wait before the component publishes
batched data to Firehose. To configure the component to publish metrics as it receives
them, which means without batching, specify 0.

This value can be at most 900 seconds.

Default: 10 seconds

DELIVERY_STREAM_QUEUE_SIZE

(Optional) The maximum number of records to retain in memory before the component
rejects new records for the same delivery stream.

This value must be at least 2,000 records.

Default: 5,000 records

containerMode

(Optional) The containerization mode for this component. Choose from the following options:

• NoContainer – The component doesn't run in an isolated runtime environment.

• GreengrassContainer – The component runs in an isolated runtime environment inside
the AWS IoT Greengrass container.

Default: GreengrassContainer

Firehose 700

AWS IoT Greengrass Developer Guide, Version 2

containerParams

(Optional) An object that contains the container parameters for this component. The
component uses these parameters if you specify GreengrassContainer for containerMode.

This object contains the following information:

memorySize

(Optional) The amount of memory (in kilobytes) to allocate to the component.

Defaults to 64 MB (65,535 KB).

pubsubTopics

(Optional) An object that contains the topics where the component subscribes to receive
messages. You can specify each topic and whether the component subscribes to MQTT topics
from AWS IoT Core or local publish/subscribe topics.

This object contains the following information:

0 – This is an array index as a string.

An object that contains the following information:

type

(Optional) The type of publish/subscribe messaging that this component uses to
subscribe to messages. Choose from the following options:

• PUB_SUB – Subscribe to local publish/subscribe messages. If you choose this option,
the topic can't contain MQTT wildcards. For more information about how to send
messages from custom component when you specify this option, see Publish/subscribe
local messages.

• IOT_CORE – Subscribe to AWS IoT Core MQTT messages. If you choose this option, the
topic can contain MQTT wildcards. For more information about how to send messages
from custom components when you specify this option, see Publish/subscribe AWS IoT
Core MQTT messages.

Default: PUB_SUB

topic

(Optional) The topic to which the component subscribes to receive messages. If you
specify IotCore for type, you can use MQTT wildcards (+ and #) in this topic.

Firehose 701

AWS IoT Greengrass Developer Guide, Version 2

Example Example: Configuration merge update (container mode)

{
 "lambdaExecutionParameters": {
 "EnvironmentVariables": {
 "DEFAULT_DELIVERY_STREAM_ARN": "arn:aws:firehose:us-
west-2:123456789012:deliverystream/mystream"
 }
 },
 "containerMode": "GreengrassContainer"
}

Example Example: Configuration merge update (no container mode)

{
 "lambdaExecutionParameters": {
 "EnvironmentVariables": {
 "DEFAULT_DELIVERY_STREAM_ARN": "arn:aws:firehose:us-
west-2:123456789012:deliverystream/mystream"
 }
 },
 "containerMode": "NoContainer"
}

Input data

This component accepts stream content on the following topics and sends the content to the
target delivery stream. The component accepts two types of input data:

• JSON data on the kinesisfirehose/message topic.

• Binary data on the kinesisfirehose/message/binary/# topic.

Default topic for JSON data (local publish/subscribe): kinesisfirehose/message

The message accepts the following properties. Input messages must be in JSON format.

request

The data to send to the delivery stream and the target delivery stream, if different from the
default stream.

Type: object that contains the following information:

Firehose 702

AWS IoT Greengrass Developer Guide, Version 2

data

The data to send to the delivery stream.

Type: string

delivery_stream_arn

(Optional) The ARN of the target Firehose delivery stream. Specify this property to
override the default delivery stream.

Type: string

id

An arbitrary ID for the request. Use this property to map an input request to an output
response. When you specify this property, the component sets the id property in the
response object to this value.

Type: string

Example Example input

{
 "request": {
 "delivery_stream_arn": "arn:aws:firehose:region:account-id:deliverystream/
stream2-name",
 "data": "Data to send to the delivery stream."
 },
 "id": "request123"
}

Default topic for binary data (local publish/subscribe): kinesisfirehose/message/binary/
#

Use this topic to send a message that contains binary data. The component doesn't parse binary
data. The component streams the data as is.

To map the input request to an output response, replace the # wildcard in the message topic
with an arbitrary request ID. For example, if you publish a message to kinesisfirehose/
message/binary/request123, the id property in the response object is set to request123.

Firehose 703

AWS IoT Greengrass Developer Guide, Version 2

If you don't want to map a request to a response, you can publish your messages to
kinesisfirehose/message/binary/. Be sure to include the trailing slash (/).

Output data

This component publishes responses as output data on the following MQTT topic by default. You
must specify this topic as the subject in the configuration for the legacy subscription router
component. For more information about how to subscribe to messages on this topic in your custom
components, see Publish/subscribe AWS IoT Core MQTT messages.

Default topic (AWS IoT Core MQTT): kinesisfirehose/message/status

Example Example output

The response contains the status of each data record sent in the batch.

{
 "response": [
 {
 "ErrorCode": "error",
 "ErrorMessage": "test error",
 "id": "request123",
 "status": "fail"
 },
 {
 "firehose_record_id": "xyz2",
 "id": "request456",
 "status": "success"
 },
 {
 "firehose_record_id": "xyz3",
 "id": "request890",
 "status": "success"
 }
]
}

Note

If the component detects an error that can be retried, such as a connection error, it retries
the publish in the next batch.

Firehose 704

AWS IoT Greengrass Developer Guide, Version 2

Local log file

This component uses the following log file.

/greengrass/v2/logs/aws.greengrass.KinesisFirehose.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 with the path to the AWS IoT Greengrass root folder.

sudo tail -f /greengrass/v2/logs/aws.greengrass.KinesisFirehose.log

Licenses

This component includes the following third-party software/licensing:

• AWS SDK for Python (Boto3)/Apache License 2.0

• botocore/Apache License 2.0

• dateutil/PSF License

• docutils/BSD License, GNU General Public License (GPL), Python Software Foundation License,
Public Domain

• jmespath/MIT License

• s3transfer/Apache License 2.0

• urllib3/MIT License

This component is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.1.9 Version updated for Greengrass nucleus version 2.14.0 release.

2.1.8 Version updated for Greengrass nucleus version 2.13.0 release.

Firehose 705

https://pypi.org/project/boto3/
https://pypi.org/project/botocore/
https://pypi.org/project/python-dateutil/1.4/
https://pypi.org/project/docutils/
https://pypi.org/project/jmespath/
https://pypi.org/project/s3transfer/
https://pypi.org/project/urllib3/
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.1.7 Version updated for Greengrass nucleus version 2.12.0 release.

2.1.6 Version updated for Greengrass nucleus version 2.11.0 release.

2.1.5 Version updated for Greengrass nucleus version 2.10.0 release.

2.1.4 Version updated for Greengrass nucleus version 2.9.0 release.

2.1.3 Version updated for Greengrass nucleus version 2.8.0 release.

2.1.2 Version updated for Greengrass nucleus version 2.7.0 release.

2.1.1 Version updated for Greengrass nucleus version 2.6.0 release.

2.1.0 New features

• Adds support for HTTPS network proxy configurations. For more
information, see Connect on port 443 or through a network proxy and
Enable the core device to trust an HTTPS proxy.

2.0.8 Version updated for Greengrass nucleus version 2.5.0 release.

2.0.7 Version updated for Greengrass nucleus version 2.4.0 release.

2.0.6 Version updated for Greengrass nucleus version 2.3.0 release.

2.0.5 Version updated for Greengrass nucleus version 2.2.0 release.

2.0.4 Version updated for Greengrass nucleus version 2.1.0 release.

2.0.3 Initial version.

See also

• What is Amazon Data Firehose? in the Amazon Data Firehose Developer Guide

Firehose 706

https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html

AWS IoT Greengrass Developer Guide, Version 2

Lambda launcher

The Lambda launcher component (aws.greengrass.LambdaLauncher) starts and stops
AWS Lambda functions on AWS IoT Greengrass core devices. This component also sets up any
containerization and runs processes as the users that you specify.

Note

When you deploy a Lambda function component to a core device, the deployment also
includes this component. For more information, see Run AWS Lambda functions.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

Versions

This component has the following versions:

• 2.0.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Lambda launcher 707

AWS IoT Greengrass Developer Guide, Version 2

Operating system

This component can be installed on Linux core devices only.

Requirements

This component has the following requirements:

• Your core device must meet the requirements to run Lambda functions. If you want the core
device to run containerized Lambda functions, the device must meet the requirements to do so.
For more information, see Lambda function requirements.

• The Lambda launcher component is supported to run in a VPC.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.0.11 – 2.0.13

The following table lists the dependencies for versions 2.0.11 to 2.0.13 of this component.

Dependency Compatible versions Dependency type

Lambda manager >=2.0.0 <2.4.0 Hard

2.0.9 – 2.0.10

The following table lists the dependencies for versions 2.0.9 to 2.0.10 of this component.

Dependency Compatible versions Dependency type

Lambda manager >=2.0.0 <2.3.0 Hard

Lambda launcher 708

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

2.0.4 - 2.0.8

The following table lists the dependencies for versions 2.0.4 to 2.0.8 of this component.

Dependency Compatible versions Dependency type

Lambda manager >=2.0.0 <2.2.0 Hard

2.0.3

The following table lists the dependencies for version 2.0.3 of this component.

Dependency Compatible versions Dependency type

Lambda manager >=2.0.3 <2.1.0 Hard

For more information about component dependencies, see the component recipe reference.

Configuration

This component doesn't have any configuration parameters.

Local log file

This component uses the following log file.

/greengrass/v2/logs/lambdaFunctionComponentName.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 with the path to the AWS IoT Greengrass root folder, and replace
lambdaFunctionComponentName with the name of the Lambda function component that
this component launches.

sudo tail -f /greengrass/v2/logs/lambdaFunctionComponentName.log

Lambda launcher 709

AWS IoT Greengrass Developer Guide, Version 2

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.0.13 Bug fixes and improvements

General bug fixes and improvements.

2.0.12 Bug fixes and improvements

Fixes an issue where the Lambda launcher could throw an error if the
previous process was not stopped properly.

2.0.11 Support for Lambda manager 2.3.0.

2.0.10 Bug fixes and improvements

• General bug fixes and improvements.

2.0.9 Version updated for Greengrass nucleus version 2.5.0 release.

2.0.8 Version updated for Greengrass nucleus version 2.4.0 release.

2.0.7 Version updated for Greengrass nucleus version 2.3.0 release.

2.0.6 General performance improvements and bug fixes.

2.0.4 Bug fixes and improvements

• Fixes an issue where the component doesn't correctly pass AddGroupO
wner to the Lambda function container.

2.0.3 Initial version.

Lambda manager

The Lambda manager component (aws.greengrass.LambdaManager) manages work items and
interprocess communication for AWS Lambda functions that run on the Greengrass core device.

Lambda manager 710

AWS IoT Greengrass Developer Guide, Version 2

Note

When you deploy a Lambda function component to a core device, the deployment also
includes this component. For more information, see Run AWS Lambda functions.

Topics

• Versions

• Operating system

• Type

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

Versions

This component has the following versions:

• 2.3.x

• 2.2.x

• 2.1.x

• 2.0.x

Operating system

This component can be installed on Linux core devices only.

Type

This component is a plugin component (aws.greengrass.plugin). The Greengrass nucleus runs
this component in the same Java Virtual Machine (JVM) as the nucleus. The nucleus restarts when
you change this component's version on the core device.

Lambda manager 711

AWS IoT Greengrass Developer Guide, Version 2

This component uses the same log file as the Greengrass nucleus. For more information, see
Monitor AWS IoT Greengrass logs.

For more information, see Component types.

Requirements

This component has the following requirements:

• Your core device must meet the requirements to run Lambda functions. If you want the core
device to run containerized Lambda functions, the device must meet the requirements to do so.
For more information, see Lambda function requirements.

• The Lambda manager component is supported to run in a VPC.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.3.5

The following table lists the dependencies for version 2.3.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.15.0 Soft

2.3.4

The following table lists the dependencies for version 2.3.4 of this component.

Lambda manager 712

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.14.0 Soft

2.3.2 and 2.3.3

The following table lists the dependencies for version 2.3.2 and 2.3.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.13.0 Soft

2.2.10 and 2.3.1

The following table lists the dependencies for version 2.2.10 and 2.3.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.12.0 Soft

2.2.8 and 2.2.9

The following table lists the dependencies for version 2.2.8 and 2.2.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.11.0 Soft

2.2.7

The following table lists the dependencies for version 2.2.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.10.0 Soft

Lambda manager 713

AWS IoT Greengrass Developer Guide, Version 2

2.2.6

The following table lists the dependencies for version 2.2.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.9.0 Soft

2.2.5

The following table lists the dependencies for version 2.2.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.8.0 Soft

2.2.4

The following table lists the dependencies for version 2.2.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.7.0 Soft

2.2.1 - 2.2.3

The following table lists the dependencies for versions 2.2.1 to 2.2.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.6.0 Soft

2.2.0

The following table lists the dependencies for version 2.2.0 of this component.

Lambda manager 714

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.6.0 Soft

2.1.3 and 2.1.4

The following table lists the dependencies for versions 2.1.3 and 2.1.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Soft

2.1.2

The following table lists the dependencies for version 2.1.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Soft

2.1.1

The following table lists the dependencies for version 2.1.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Soft

2.1.0

The following table lists the dependencies for version 2.1.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.2.0 Soft

Lambda manager 715

AWS IoT Greengrass Developer Guide, Version 2

2.0.x

The following table lists the dependencies for version 2.0.x of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.3 <2.1.0 Soft

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

logHandlerMode

Note

Only for lambda manager versions 2.3.0+

Used to choose the implementation of the Lambda log manager to use. Set the value to
optimized to use fewer threads to read lambda logs.

getResultTimeoutInSecond

(Optional) The maximum amount of time in seconds that Lambda functions can run before they
time out.

Default: 60

Local log file

This component uses the same log file as the Greengrass nucleus component.

/greengrass/v2/logs/greengrass.log

Lambda manager 716

AWS IoT Greengrass Developer Guide, Version 2

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 with the path to the AWS IoT Greengrass root folder.

sudo tail -f /greengrass/v2/logs/greengrass.log

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.3.5 Bug fixes and improvements

• Improves performance by using epoll instead of nio when available.

2.3.4 Version updated for Greengrass nucleus version 2.13.0 release.

2.3.3 Bug fixes and improvements

• General bug fixes and improvements.

2.3.2 Version updated for Greengrass nucleus version 2.12.0 release.

2.3.1 Bug fixes and improvements

• Adjusts log levels for certain errors.

2.3.0 New features

• Log handler was optimized to reduce CPU load. Use this feature by
setting the configuration option logHandlerMode to optimized .

Bug fixes and improvements

• No longer logs the full stacktrace for WorkQueueFullException ,
improving logs and performance.

• Sets lambda shutdown timeout from 15 seconds to 300 seconds in
order to prevent shutdown timeouts.

• Fixes an issue where on-demand lambdas may fail to restart after
changing configuration.

Lambda manager 717

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.2.11 Bug fixes and improvements

• Fixes an issue where the LegacySubscriptionRouter configuration does
not update when the Lambda configuration changes.

2.2.10 Version updated for Greengrass nucleus version 2.11.0 release.

2.2.9 Bug fixes and improvements

Fixes an issue where the port number is corrupted due to a skewed clock.

2.2.8 Version updated for Greengrass nucleus version 2.10.0 release.

2.2.7 Version updated for Greengrass nucleus version 2.9.0 release.

2.2.6 Version updated for Greengrass nucleus version 2.8.0 release.

2.2.5 New features

• Adds support for MQTT topic wildcards in event sources where you
subscribe to local publish/subscribe messages.

This feature requires v2.6.0 or later of the Greengrass nucleus
component.

• Version updated for Greengrass nucleus version 2.7.0 release.

2.2.4 Version updated for Greengrass nucleus version 2.6.0 release.

2.2.3 Bug fixes and improvements

• Fixes an issue where multiple instances of a Lambda function share a
single cgroup. This component uses cgroups to manage resource usage
for Lambda functions.

2.2.2 Bug fixes and improvements

• Fixes an issue where pinned Lambda function components restart
unexpectedly in certain scenarios.

Lambda manager 718

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.2.1 Bug fixes and improvements

• Changes this component's Greengrass nucleus dependency version
constraints to fix a dependency resolution issue.

2.2.0 Bug fixes and improvements

• Fixes an issue where Lambda functions couldn't write logs after a
restart.

• Fixes an issue where the legacy subscription router sends duplicate
 messages when there are wildcards in the topic.

• Fixes an issue where non-pinned Lambda functions couldn't use the
Greengrass interprocess communication (IPC) library in the AWS IoT
Device SDK.

2.1.4 Bug fixes and improvements

• Fixes an issue that caused Lambda functions that use NodeJS runtimes
to process only one message.

• Version updated for Greengrass nucleus version 2.5.0 release.

2.1.3 Version updated for Greengrass nucleus version 2.4.0 release.

2.1.2 Version updated for Greengrass nucleus version 2.3.0 release.

2.1.1 Version updated for Greengrass nucleus version 2.2.0 release.

2.1.0 Version updated for Greengrass nucleus version 2.1.0 release.

2.0.3 Initial version.

Lambda runtimes

The Lambda runtimes component (aws.greengrass.LambdaRuntimes) provides the runtimes
that Greengrass core devices use to run AWS Lambda functions.

Lambda runtimes 719

AWS IoT Greengrass Developer Guide, Version 2

Note

When you deploy a Lambda function component to a core device, the deployment also
includes this component. For more information, see Run AWS Lambda functions.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

Versions

This component has the following versions:

• 2.0.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on Linux core devices only.

Requirements

This component has the following requirements:

Lambda runtimes 720

AWS IoT Greengrass Developer Guide, Version 2

• Your core device must meet the requirements to run Lambda functions. If you want the core
device to run containerized Lambda functions, the device must meet the requirements to do so.
For more information, see Lambda function requirements.

• The Lambda runtimes component is supported to run in a VPC.

Dependencies

This component doesn't have any dependencies.

Configuration

This component doesn't have any configuration parameters.

Local log file

This component doesn't output logs.

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.0.9 Bug fixes and improvements

Fixes an syntax warning with Python 3.12

2.0.8 Version updated for Greengrass nucleus version 2.5.0 release.

2.0.7 Version updated for Greengrass nucleus version 2.4.0 release.

2.0.6 Version updated for Greengrass nucleus version 2.3.0 release.

2.0.5 Version updated for Greengrass nucleus version 2.2.0 release.

2.0.4 Version updated for Greengrass nucleus version 2.1.0 release.

2.0.3 Initial version.

Lambda runtimes 721

AWS IoT Greengrass Developer Guide, Version 2

Legacy subscription router

The legacy subscription router (aws.greengrass.LegacySubscriptionRouter) manages
subscriptions on the Greengrass core device. Subscriptions are a feature of AWS IoT Greengrass V1
that define the topics that Lambda functions can use for MQTT messaging on a core device. For
more information, see Managed subscriptions in the MQTT messaging workflow in the AWS IoT
Greengrass V1 Developer Guide.

You can use this component to enable subscriptions for connector components and Lambda
function components that use the AWS IoT Greengrass Core SDK.

Note

The legacy subscription router component is required only if your Lambda function uses
the publish() function in the AWS IoT Greengrass Core SDK. If you update your Lambda
function code to use the interprocess communication (IPC) interface in the AWS IoT Device
SDK V2, you don't need to deploy the legacy subscription router component. For more
information, see the following interprocess communication services:

• Publish/subscribe local messages

• Publish/subscribe AWS IoT Core MQTT messages

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

Versions

This component has the following versions:

Legacy subscription router 722

https://docs.aws.amazon.com/greengrass/v1/developerguide/gg-sec.html#gg-msg-workflow

AWS IoT Greengrass Developer Guide, Version 2

• 2.1.x

• 2.0.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on Linux core devices only.

Requirements

This component has the following requirements:

• The legacy subscription router is supported to run in a VPC.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.1.13

The following table lists the dependencies for version 2.1.13 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.15.0 Soft

Legacy subscription router 723

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

2.1.12

The following table lists the dependencies for version 2.1.12 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.14.0 Soft

2.1.11

The following table lists the dependencies for version 2.1.11 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.13.0 Soft

2.1.10

The following table lists the dependencies for version 2.1.10 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.12.0 Soft

2.1.9

The following table lists the dependencies for version 2.1.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.11.0 Soft

2.1.8

The following table lists the dependencies for version 2.1.8 of this component.

Legacy subscription router 724

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.10.0 Soft

2.1.7

The following table lists the dependencies for version 2.1.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.9.0 Soft

2.1.6

The following table lists the dependencies for version 2.1.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.8.0 Soft

2.1.5

The following table lists the dependencies for version 2.1.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.7.0 Soft

2.1.4

The following table lists the dependencies for version 2.1.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.6.0 Soft

Legacy subscription router 725

AWS IoT Greengrass Developer Guide, Version 2

2.1.3

The following table lists the dependencies for version 2.1.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Soft

2.1.2

The following table lists the dependencies for version 2.1.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Soft

2.1.1

The following table lists the dependencies for version 2.1.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Soft

2.1.0

The following table lists the dependencies for version 2.1.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.2.0 Soft

2.0.3

The following table lists the dependencies for version 2.0.3 of this component.

Legacy subscription router 726

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.3 <2.1.0 Soft

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

v2.1.x

subscriptions

(Optional) The subscriptions to enable on the core device. This is an object, where each key
is a unique ID, and each value is an object that defines the subscription for that connector.
You must configure a subscription when you deploy a V1 connector component or a Lambda
function that uses the AWS IoT Greengrass Core SDK.

Each subscription object contains the following information:

id

The unique ID of this subscription. This ID must match the key for this subscription
object.

source

The Lambda function that uses the AWS IoT Greengrass Core SDK to publish MQTT
messages on the topics that you specify in subject. Specify one of the following:

• The name of a Lambda function component on the core device.
Specify the component name with the component: prefix, such as
component:com.example.HelloWorldLambda.

• The Amazon Resource Name (ARN) of a Lambda function on the core device.

Legacy subscription router 727

AWS IoT Greengrass Developer Guide, Version 2

Important

If the version of the Lambda function changes, you must configure the
subscription with the new version of the function. Otherwise, this component
won't route the messages until the version matches the subscription.
You must specify an Amazon Resource Name (ARN) that includes the version of
the function to import. You can't use version aliases like $LATEST.

To deploy a subscription for a V1 connector component, specify the name of the
component or the ARN of the connector component's Lambda function.

subject

The MQTT topic or topic filter on which the source and target can publish and receive
messages. This value supports the + and # topic wildcards.

target

The target that receives the MQTT messages on the topics that you specify in subject.
The subscription specifies that the source function publishes MQTT messages to AWS
IoT Core or to a Lambda function on the core device. Specify one of the following:

• cloud. The source function publishes MQTT messages to AWS IoT Core.

• The name of a Lambda function component on the core device.
Specify the component name with the component: prefix, such as
component:com.example.HelloWorldLambda.

• The Amazon Resource Name (ARN) of a Lambda function on the core device.

Important

If the version of the Lambda function changes, you must configure the
subscription with the new version of the function. Otherwise, this component
won't route the messages until the version matches the subscription.
You must specify an Amazon Resource Name (ARN) that includes the version of
the function to import. You can't use version aliases like $LATEST.

Default: No subscriptions

Legacy subscription router 728

AWS IoT Greengrass Developer Guide, Version 2

Example Example configuration update (defining a subscription to AWS IoT Core)

The following example specifies that the com.example.HelloWorldLambda Lambda function
component publishes MQTT message to AWS IoT Core on the hello/world topic.

{
 "subscriptions": {
 "Greengrass_HelloWorld_to_cloud": {
 "id": "Greengrass_HelloWorld_to_cloud",
 "source": "component:com.example.HelloWorldLambda",
 "subject": "hello/world",
 "target": "cloud"
 }
 }
}

Example Example configuration update (defining a subscription to another Lambda
function)

The following example specifies that the com.example.HelloWorldLambda Lambda function
component publishes MQTT messages to the com.example.MessageRelay Lambda function
component on the hello/world topic.

{
 "subscriptions": {
 "Greengrass_HelloWorld_to_MessageRelay": {
 "id": "Greengrass_HelloWorld_to_MessageRelay",
 "source": "component:com.example.HelloWorldLambda",
 "subject": "hello/world",
 "target": "component:com.example.MessageRelay"
 }
 }
}

v2.0.x

subscriptions

(Optional) The subscriptions to enable on the core device. This is an object, where each key
is a unique ID, and each value is an object that defines the subscription for that connector.

Legacy subscription router 729

AWS IoT Greengrass Developer Guide, Version 2

You must configure a subscription when you deploy a V1 connector component or a Lambda
function that uses the AWS IoT Greengrass Core SDK.

Each subscription object contains the following information:

id

The unique ID of this subscription. This ID must match the key for this subscription
object.

source

The Lambda function that uses the AWS IoT Greengrass Core SDK to publish MQTT
messages on the topics that you specify in subject. Specify the following:

• The Amazon Resource Name (ARN) of a Lambda function on the core device.

Important

If the version of the Lambda function changes, you must configure the
subscription with the new version of the function. Otherwise, this component
won't route the messages until the version matches the subscription.
You must specify an Amazon Resource Name (ARN) that includes the version of
the function to import. You can't use version aliases like $LATEST.

To deploy a subscription for a V1 connector component, specify the ARN of the
connector component's Lambda function.

subject

The MQTT topic or topic filter on which the source and target can publish and receive
messages. This value supports the + and # topic wildcards.

target

The target that receives the MQTT messages on the topics that you specify in subject.
The subscription specifies that the source function publishes MQTT messages to AWS
IoT Core or to a Lambda function on the core device. Specify one of the following:

• cloud. The source function publishes MQTT messages to AWS IoT Core.

• The Amazon Resource Name (ARN) of a Lambda function on the core device.

Legacy subscription router 730

AWS IoT Greengrass Developer Guide, Version 2

Important

If the version of the Lambda function changes, you must configure the
subscription with the new version of the function. Otherwise, this component
won't route the messages until the version matches the subscription.
You must specify an Amazon Resource Name (ARN) that includes the version of
the function to import. You can't use version aliases like $LATEST.

Default: No subscriptions

Example Example configuration update (defining a subscription to AWS IoT Core)

The following example specifies that the Greengrass_HelloWorld function publishes MQTT
message to AWS IoT Core on the hello/world topic.

"subscriptions": {
 "Greengrass_HelloWorld_to_cloud": {
 "id": "Greengrass_HelloWorld_to_cloud",
 "source": "arn:aws:lambda:us-
west-2:123456789012:function:Greengrass_HelloWorld:5",
 "subject": "hello/world",
 "target": "cloud"
 }
}

Example Example configuration update (defining a subscription to another Lambda
function)

The following example specifies that the Greengrass_HelloWorld function publishes MQTT
messages to the Greengrass_MessageRelay on the hello/world topic.

"subscriptions": {
 "Greengrass_HelloWorld_to_MessageRelay": {
 "id": "Greengrass_HelloWorld_to_MessageRelay",
 "source": "arn:aws:lambda:us-
west-2:123456789012:function:Greengrass_HelloWorld:5",
 "subject": "hello/world",
 "target": "arn:aws:lambda:us-
west-2:123456789012:function:Greengrass_MessageRelay:5"

Legacy subscription router 731

AWS IoT Greengrass Developer Guide, Version 2

 }
}

Local log file

This component doesn't output logs.

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.1.13 Version updated for Greengrass nucleus version 2.14.0 release.

2.1.12 Version updated for Greengrass nucleus version 2.13.0 release.

2.1.11 Version updated for Greengrass nucleus version 2.12.0 release.

2.1.10 Version updated for Greengrass nucleus version 2.11.0 release.

2.1.9 Version updated for Greengrass nucleus version 2.10.0 release.

2.1.8 Version updated for Greengrass nucleus version 2.9.0 release.

2.1.7 Version updated for Greengrass nucleus version 2.8.0 release.

2.1.6 Version updated for Greengrass nucleus version 2.7.0 release.

2.1.5 Version updated for Greengrass nucleus version 2.6.0 release.

2.1.4 Version updated for Greengrass nucleus version 2.5.0 release.

2.1.3 Version updated for Greengrass nucleus version 2.4.0 release.

2.1.2 Version updated for Greengrass nucleus version 2.3.0 release.

2.1.1 Version updated for Greengrass nucleus version 2.2.0 release.

Legacy subscription router 732

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.1.0 Bug fixes and improvements

• Adds support to specify component names instead of ARNs for
source and target. If you specify a component name for a subscript
ion, you don't need to reconfigure the subscription each time the
version of the Lambda function changes.

2.0.3 Initial version.

Local debug console

The local debug console component (aws.greengrass.LocalDebugConsole) provides a
local dashboard that displays information about your AWS IoT Greengrass core devices and its
components. You can use this dashboard to debug your core device and manage local components.

Important

We recommend that you use this component in only development environments, not
production environments. This component provides access to information and operations
that you typically won't need in a production environment. Follow the principle of least
privilege by deploying this component to only core devices where you need it.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Usage

• Local log file

• Changelog

Local debug console 733

AWS IoT Greengrass Developer Guide, Version 2

Versions

This component has the following versions:

• 2.4.x

• 2.3.x

• 2.2.x

• 2.1.x

• 2.0.x

Type

This component is a plugin component (aws.greengrass.plugin). The Greengrass nucleus runs
this component in the same Java Virtual Machine (JVM) as the nucleus. The nucleus restarts when
you change this component's version on the core device.

This component uses the same log file as the Greengrass nucleus. For more information, see
Monitor AWS IoT Greengrass logs.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Requirements

This component has the following requirements:

• You use a user name and password to sign in to the dashboard. The username, which is debug,
is provided for you. You must use the AWS IoT Greengrass CLI to create a temporary password
that authenticates you with the dashboard on a core device. You must be able to use the AWS
IoT Greengrass CLI to use the local debug console. For more information, see the Greengrass CLI
requirements. For more information about how to generate the password and sign in, see Local
debug console component usage.

Local debug console 734

AWS IoT Greengrass Developer Guide, Version 2

• The local debug console component is supported to run in a VPC.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.4.4

The following table lists the dependencies for version 2.4.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.10.0 <2.15.0 Hard

Greengrass CLI >=2.10.0 <2.15.0 Hard

2.4.3

The following table lists the dependencies for version 2.4.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.10.0 <2.14.0 Hard

Greengrass CLI >=2.10.0 <2.14.0 Hard

2.4.1 – 2.4.2

The following table lists the dependencies for versions 2.4.1 to 2.4.2 of this component.

Local debug console 735

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.10.0 <2.13.0 Hard

Greengrass CLI >=2.10.0 <2.13.0 Hard

2.4.0

The following table lists the dependencies for version 2.4.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.10.0 <2.12.0 Hard

Greengrass CLI >=2.10.0 <2.12.0 Hard

2.3.0 and 2.3.1

The following table lists the dependencies for version 2.3.0 and 2.3.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.10.0 <2.12.0 Hard

Greengrass CLI >=2.10.0 <2.12.0 Hard

2.2.9

The following table lists the dependencies for version 2.2.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.12.0 Hard

Greengrass CLI >=2.1.0 <2.12.0 Hard

Local debug console 736

AWS IoT Greengrass Developer Guide, Version 2

2.2.8

The following table lists the dependencies for version 2.2.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.11.0 Hard

Greengrass CLI >=2.1.0 <2.11.0 Hard

2.2.7

The following table lists the dependencies for version 2.2.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.10.0 Hard

Greengrass CLI >=2.1.0 <2.10.0 Hard

2.2.6

The following table lists the dependencies for version 2.2.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.9.0 Hard

Greengrass CLI >=2.1.0 <2.9.0 Hard

2.2.5

The following table lists the dependencies for version 2.2.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.8.0 Hard

Local debug console 737

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass CLI >=2.1.0 <2.8.0 Hard

2.2.4

The following table lists the dependencies for version 2.2.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.7.0 Hard

Greengrass CLI >=2.1.0 <2.7.0 Hard

2.2.3

The following table lists the dependencies for version 2.2.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.6.0 Hard

Greengrass CLI >=2.1.0 <2.6.0 Hard

2.2.2

The following table lists the dependencies for version 2.2.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.5.0 Hard

Greengrass CLI >=2.1.0 <2.5.0 Hard

2.2.1

The following table lists the dependencies for version 2.2.1 of this component.

Local debug console 738

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.4.0 Hard

Greengrass CLI >=2.1.0 <2.4.0 Hard

2.2.0

The following table lists the dependencies for version 2.2.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.3.0 Hard

Greengrass CLI >=2.1.0 <2.3.0 Hard

2.1.0

The following table lists the dependencies for version 2.1.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.2.0 Hard

Greengrass CLI >=2.1.0 <2.2.0 Hard

2.0.x

The following table lists the dependencies for version 2.0.x of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.3 <2.1.0 Soft

Greengrass CLI >=2.0.3 <2.1.0 Soft

For more information about component dependencies, see the component recipe reference.

Local debug console 739

AWS IoT Greengrass Developer Guide, Version 2

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

v2.1.x - v2.4.x

httpsEnabled

(Optional) You can enable HTTPS communication for the local debug console. If you enable
HTTPS communication, the local debug console creates a self-signed certificate. Web
browsers show security warnings for websites that use self-signed certificates, so you must
manually verify the certificate. Then, you can bypass the warning. For more information, see
Usage.

Default: true

port

(Optional) The port at which to provide the local debug console.

Default: 1441

websocketPort

(Optional) The websocket port to use for the local debug console.

Default: 1442

bindHostname

(Optional) The hostname to use for the local debug console.

If you run the AWS IoT Greengrass Core software in a Docker container, set this parameter to
0.0.0.0, so you can open the local debug console outside the Docker container.

Default: localhost

Example Example: Configuration merge update

The following example configuration specifies to open the local debug console on non-default
ports and disable HTTPS.

{

Local debug console 740

AWS IoT Greengrass Developer Guide, Version 2

 "httpsEnabled": false,
 "port": "10441",
 "websocketPort": "10442"
}

v2.0.x

port

(Optional) The port at which to provide the local debug console.

Default: 1441

websocketPort

(Optional) The websocket port to use for the local debug console.

Default: 1442

bindHostname

(Optional) The hostname to use for the local debug console.

If you run the AWS IoT Greengrass Core software in a Docker container, set this parameter to
0.0.0.0, so you can open the local debug console outside the Docker container.

Default: localhost

Example Example: Configuration merge update

The following example configuration specifies to open the local debug console on non-default
ports.

{
 "port": "10441",
 "websocketPort": "10442"
}

Usage

To use the local debug console, create a session from the Greengrass CLI. When you create a
session, the Greengrass CLI provides a user name and temporary password that you can use to sign
in to the local debug console.

Local debug console 741

AWS IoT Greengrass Developer Guide, Version 2

Follow these instructions to open the local debug console on your core device or on your
development computer.

v2.1.x - v2.4.x

In versions 2.1.0 and later, the local debug console uses HTTPS by default. When HTTPS is
enabled, the local debug console creates a self-signed certificate to secure the connection.
Your web browser shows a security warning when you open the local debug console because
of this self-signed certificate. When you create a session with the Greengrass CLI, the output
includes the certificate's fingerprints, so you can verify that the certificate is legitimate and the
connection is secure.

You can disable HTTPS. For more information, see Local debug console configuration.

To open the local debug console

1. (Optional) To view the local debug console on your development computer, you
can forward the console's port over SSH. However, you must first enable the
AllowTcpForwarding option in your core device's SSH configuration file. This option is
enabled by default. Run the following command on your development computer to view
the dashboard at localhost:1441 on your development computer.

ssh -L 1441:localhost:1441 -L 1442:localhost:1442 username@core-device-ip-
address

Note

You can change the default ports from 1441 and 1442. For more information, see
Local debug console configuration.

2. Create a session to use the local debug console. When you create a session, you generate
a password that you use to authenticate. The local debug console requires a password to
increase security, because you can use this component to view important information and
perform operations on the core device. The local debug console also creates a certificate
to secure the connection if you enable HTTPS in the component configuration. HTTPS is
enabled by default.

Local debug console 742

AWS IoT Greengrass Developer Guide, Version 2

Use the AWS IoT Greengrass CLI to create the session. This command generates a random
43-character password that expires after 8 hours. Replace /greengrass/v2 or C:
\greengrass\v2 with the path to the AWS IoT Greengrass V2 root folder.

Linux or Unix

sudo /greengrass/v2/bin/greengrass-cli get-debug-password

Windows

C:\greengrass\v2\bin\greengrass-cli get-debug-password

The command output looks like the following example if you have configured the local
debug console to use HTTPS. You use the certificate fingerprints to verify that the
connection is secure when you open the local debug console.

Username: debug
Password: bEDp3MOHdj8ou2w5de_sCBI2XAaguy3a8XxREXAMPLE
Password expires at: 2021-04-01T17:01:43.921999931-07:00
The local debug console is configured to use TLS security. The certificate is
 self-signed so you will need to bypass your web browser's security warnings to
 open the console.
Before you bypass the security warning, verify that the certificate fingerprint
 matches the following fingerprints.
SHA-256: 15 0B 2C E2 54 8B 22 DE 08 46 54 8A B1 2B 25 DE FB 02 7D 01 4E 4A 56 67
 96 DA A6 CC B1 D2 C4 1B
SHA-1: BC 3E 16 04 D3 80 70 DA E0 47 25 F9 90 FA D6 02 80 3E B5 C1

The debug view component creates a session that lasts for 8 hours. After that, you must
generate a new password to view the local debug console again.

3. Open and sign in to the dashboard. View the dashboard on your Greengrass core device, or
on your development computer if you forward the port over SSH. Do one of the following:

• If you enabled HTTPS in the local debug console, which is the default setting, do the
following:

a. Open https://localhost:1441 on your core device, or on your development
computer if you forwarded the port over SSH.

Local debug console 743

AWS IoT Greengrass Developer Guide, Version 2

Your browser might show a security warning about an invalid security certificate.

b. If your browser shows a security warning, verify the certificate is legitimate and
bypass the security warning. Do the following:

i. Find the SHA-256 or SHA-1 fingerprint for the certificate, and verify that it
matches the SHA-256 or SHA-1 fingerprint that the get-debug-password
command previously printed. Your browser might provide one or both
fingerprints. Consult your browser's documentation to view the certificate
and its fingerprints. In some browsers, the certificate fingerprint is called a
thumbprint.

Note

If the certificate fingerprint doesn't match, go to Step 2 to create
a new session. If the certificate fingerprint still doesn't match, your
connection might be insecure.

ii. If the certificate fingerprint matches, bypass your browser's security warning
to open the local debug console. Consult your browser's documentation to
bypass the browser security warning.

c. Sign in to the website using the user name and password that the get-debug-
password command printed earlier.

The local debug console opens.

d. If the local debug console shows an error that says it can't connect to the
WebSocket due to a failed TLS handshake, you must bypass the self-signed
security warning for the WebSocket URL.

Do the following:

i. Open https://localhost:1442 in the same browser where you opened
the local debug console.

ii. Verify the certificate and bypass the security warning.

Local debug console 744

AWS IoT Greengrass Developer Guide, Version 2

Your browser might show an HTTP 404 page after you bypass the warning.

iii. Open https://localhost:1441 again.

The local debug console shows information about the core device.

• If you disabled HTTPS in the local debug console, do the following:

a. Open http://localhost:1441 on your core device, or open it on your
development computer if you forwarded the port over SSH.

b. Sign in to the website using the user name and password that the get-debug-
password command previously printed.

The local debug console opens.

v2.0.x

To open the local debug console

1. (Optional) To view the local debug console on your development computer, you
can forward the console's port over SSH. However, you must first enable the
AllowTcpForwarding option in your core device's SSH configuration file. This option is
enabled by default. Run the following command on your development computer to view
the dashboard at localhost:1441 on your development computer.

ssh -L 1441:localhost:1441 -L 1442:localhost:1442 username@core-device-ip-
address

Note

You can change the default ports from 1441 and 1442. For more information, see
Local debug console configuration.

2. Create a session to use the local debug console. When you create a session, you generate
a password that you use to authenticate. The local debug console requires a password to
increase security, because you can use this component to view important information and
perform operations on the core device.

Local debug console 745

AWS IoT Greengrass Developer Guide, Version 2

Use the AWS IoT Greengrass CLI to create the session. This command generates a random
43-character password that expires after 8 hours. Replace /greengrass/v2 or C:
\greengrass\v2 with the path to the AWS IoT Greengrass V2 root folder.

Linux or Unix

sudo /greengrass/v2/bin/greengrass-cli get-debug-password

Windows

C:\greengrass\v2\bin\greengrass-cli get-debug-password

The command output looks like the following example.

Username: debug
Password: bEDp3MOHdj8ou2w5de_sCBI2XAaguy3a8XxREXAMPLE
Password will expire at: 2021-04-01T17:01:43.921999931-07:00

The debug view component creates a session lasts for 4 hours, and then you must generate
a new password to view the local debug console again.

3. Open http://localhost:1441 on your core device, or open it on your development
computer if you forwarded the port over SSH.

4. Sign in to the website using the user name and password that the get-debug-password
command previously printed.

The local debug console opens.

Local log file

This component uses the same log file as the Greengrass nucleus component.

Linux

/greengrass/v2/logs/greengrass.log

Local debug console 746

AWS IoT Greengrass Developer Guide, Version 2

Windows

C:\greengrass\v2\logs\greengrass.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/greengrass.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\greengrass.log -Tail 10 -Wait

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.4.4 Version updated for Greengrass nucleus version 2.14.0 release.

2.4.3 Version updated for Greengrass nucleus version 2.13.0 release.

Bug fixes and improvements

• Fixes an issue that incorrectly displays STREAM_MANAGER_EXP
ORTER_MAX_BANDWIDTH in megabits per second (Mbps) instead of
bytes per second (Bps).

2.4.2 Bug fixes and improvements

• General bug fixes and improvements.

2.4.1 Version updated for Greengrass nucleus version 2.12.0 release.

Local debug console 747

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.4.0 New features

• Adds stream manager debugging console.

2.3.1 Version updated for Greengrass nucleus version 2.11.0 release.

2.3.0 Version updated for Greengrass nucleus version 2.10.0 release.

New features

• Includes PubSub and AWS IoT Core MQTT debug client.

2.2.7 Version updated for Greengrass nucleus version 2.9.0 release.

2.2.6 Version updated for Greengrass nucleus version 2.8.0 release.

2.2.5 Version updated for Greengrass nucleus version 2.7.0 release.

2.2.4 Version updated for Greengrass nucleus version 2.6.0 release.

2.2.3 Bug fixes and improvements

• Fixes an issue that prevented startup when the component couldn't
decrypt the keystore that holds the SSL private key.

• Version updated for Greengrass nucleus version 2.5.0 release.

2.2.2 Version updated for Greengrass nucleus version 2.4.0 release.

2.2.1 Version updated for Greengrass nucleus version 2.3.0 release.

2.2.0 Version updated for Greengrass nucleus version 2.2.0 release.

2.1.0 New features

• Uses HTTPS to secure your connection to the local debug console.
HTTPS is enabled by default.

Bug fixes and improvements

• You can dismiss flashbar messages in the configuration editor.

2.0.3 Initial version.

Local debug console 748

AWS IoT Greengrass Developer Guide, Version 2

Log manager

Warning

We recommend upgrading to Log Manager v2.3.5 or later. Version 2.3.5 optimizes Log
Manager configuration writes, reducing IO operations and improving log upload speed,
overall device performance and possibly extending device life.

The log manager component (aws.greengrass.LogManager) uploads logs from AWS IoT
Greengrass core devices to Amazon CloudWatch Logs. You can upload logs from the Greengrass
nucleus, other Greengrass components, and other applications and services that aren't Greengrass
components. For more information about how to monitor logs in CloudWatch Logs and on the
local file system, see Monitor AWS IoT Greengrass logs.

The following considerations apply when you use the log manager component to write to
CloudWatch Logs:

• Log delays

The log manager component version 2.2.8 (and earlier) processes and uploads logs from only
rotated log files. By default, the AWS IoT Greengrass Core software rotates log files every hour or
after they are 1,024 KB. As a result, the log manager component uploads logs only after the AWS
IoT Greengrass Core software or a Greengrass component writes over 1,024 KB worth of logs.
You can configure a lower log file size limit to cause log files to rotate more often. This causes
the log manager component to upload logs to CloudWatch Logs more frequently.

The log manager component version 2.3.0 (and later) processes and uploads all logs. When you
write a new log, log manager version 2.3.0 (and later) processes and directly uploads that active
log file instead of waiting for it to be rotated. This means that you can view the new log in 5
minutes or less.

The log manager component uploads new logs periodically. By default, the log manager
component uploads new logs every 5 minutes. You can configure a lower upload interval, so the
log manager component uploads logs to CloudWatch Logs more frequently by configuring the
periodicUploadIntervalSec. For more information about how to configure this periodic
interval, see Configuration.

Log manager 749

https://docs.aws.amazon.com/greengrass/v2/developerguide/log-manager-component.html#log-manager-component-configuration

AWS IoT Greengrass Developer Guide, Version 2

Logs can be uploaded in near real-time from the same Greengrass file system. If you need to
observe logs in real time, consider using file system logs.

Note

If you're using different file systems to write logs to, log manager reverts back to the
behavior in log manager component versions 2.2.8 and earlier. For information about
accessing file system logs, see Access file system logs.

• Clock skew

The log manager component uses the standard Signature Version 4 signing process to create API
requests to CloudWatch Logs. If the system time on a core device is out of sync by more than 15
minutes, then CloudWatch Logs rejects the requests. For more information, see Signature Version
4 signing process in the AWS General Reference.

For information about the log groups and log streams to which this component uploads logs, see
Usage.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Usage

• Local log file

• Changelog

Versions

This component has the following versions:

• 2.3.x

Log manager 750

https://docs.aws.amazon.com/greengrass/v2/developerguide/monitor-logs.html#access-local-logs
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

AWS IoT Greengrass Developer Guide, Version 2

• 2.2.x

• 2.1.x

• 2.0.x

Type

This component is a plugin component (aws.greengrass.plugin). The Greengrass nucleus runs
this component in the same Java Virtual Machine (JVM) as the nucleus. The nucleus restarts when
you change this component's version on the core device.

This component uses the same log file as the Greengrass nucleus. For more information, see
Monitor AWS IoT Greengrass logs.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Requirements

This component has the following requirements:

• The Greengrass device role must allow the logs:CreateLogGroup, logs:CreateLogStream,
logs:PutLogEvents, and logs:DescribeLogStreams actions, as shown in the following
example IAM policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",

Log manager 751

AWS IoT Greengrass Developer Guide, Version 2

 "logs:DescribeLogStreams"
],
 "Effect": "Allow",
 "Resource": "arn:aws:logs:*:*:*"
 }
]
}

Note

The Greengrass device role that you create when you install the AWS IoT Greengrass Core
software includes the permissions in this example policy by default.

For more information, see Using identity-based policies (IAM policies) for CloudWatch Logs in the
Amazon CloudWatch Logs User Guide.

• The log manager component is supported to run in a VPC. To deploy this component in a VPC,
the following is required.

• The log manager component must have connectivity to logs.region.amazonaws.com
which has the VPC endpoint of com.amazonaws.us-east-1.logs.

Endpoints and ports

This component must be able to perform outbound requests to the following endpoints and ports,
in addition to endpoints and ports required for basic operation. For more information, see Allow
device traffic through a proxy or firewall.

Endpoint Port Required Descripti
on

logs.region.amazonaws.com 443 No Required if
you write
logs to
CloudWatc
h Logs.

Log manager 752

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/iam-identity-based-access-control-cwl.html

AWS IoT Greengrass Developer Guide, Version 2

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.3.9

The following table lists the dependencies for version 2.3.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.15.0 Soft

2.3.8

The following table lists the dependencies for version 2.3.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.14.0 Soft

2.3.7

The following table lists the dependencies for version 2.3.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.13.0 Soft

2.3.5 and 2.3.6

The following table lists the dependencies for versions 2.3.5 and 2.3.6 of this component.

Log manager 753

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.12.0 Soft

2.3.3 – 2.3.4

The following table lists the dependencies for versions 2.3.3 to 2.3.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.11.0 Soft

2.2.8 – 2.3.2

The following table lists the dependencies for versions 2.2.8 to 2.3.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.10.0 Soft

2.2.7

The following table lists the dependencies for version 2.2.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.9.0 Soft

2.2.6

The following table lists the dependencies for version 2.2.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.8.0 Soft

Log manager 754

AWS IoT Greengrass Developer Guide, Version 2

2.2.5

The following table lists the dependencies for version 2.2.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.7.0 Soft

2.2.1 - 2.2.4

The following table lists the dependencies for versions 2.2.1 - 2.2.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.6.0 Soft

2.1.3 and 2.2.0

The following table lists the dependencies for versions 2.1.3 and 2.2.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.5.0 Soft

2.1.2

The following table lists the dependencies for version 2.1.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.4.0 Soft

2.1.1

The following table lists the dependencies for version 2.1.1 of this component.

Log manager 755

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.3.0 Soft

2.1.0

The following table lists the dependencies for version 2.1.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.1.0 <2.2.0 Soft

2.0.x

The following table lists the dependencies for version 2.0.x of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.3 <2.1.0 Soft

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

v2.3.6 – v2.3.7

logsUploaderConfiguration

(Optional) The configuration for logs that the log manager component uploads. This object
contains the following information:

 systemLogsConfiguration

(Optional) The configuration for AWS IoT Greengrass Core software system logs,
which include logs from the Greengrass nucleus and plugin components. Specify this

Log manager 756

AWS IoT Greengrass Developer Guide, Version 2

configuration to enable the log manager component to manage system logs. This object
contains the following information:

uploadToCloudWatch

(Optional) You can upload system logs to CloudWatch Logs.

Default: false

minimumLogLevel

(Optional) The minimum level of log messages to upload. This minimum level applies
only if you configure the Greengrass nucleus component to output JSON format
logs. To enable JSON format logs, specify JSON for the logging format parameter
(logging.format).

Choose from the following log levels, listed here in level order:

• DEBUG

• INFO

• WARN

• ERROR

Default: INFO

diskSpaceLimit

(Optional) The maximum total size of Greengrass system log files, in the unit you
specify in diskSpaceLimitUnit. After the total size of Greengrass system log files
exceeds this maximum total size, the AWS IoT Greengrass Core software deletes the
oldest Greengrass system log files.

This parameter is equivalent to the log size limit parameter (totalLogsSizeKB) of
the Greengrass nucleus component. The AWS IoT Greengrass Core software uses the
minimum of the two values as the maximum total Greengrass system log size.

diskSpaceLimitUnit

(Optional) The unit for the diskSpaceLimit. Choose from the following options:

• KB – kilobytes

• MB – megabytes

• GB – gigabytes

Log manager 757

AWS IoT Greengrass Developer Guide, Version 2

Default: KB

deleteLogFileAfterCloudUpload

(Optional) You can delete a log file after the log manager component uploads the
logs to CloudWatch Logs.

Default: false

 componentLogsConfigurationMap

(Optional) A map of log configurations for components on the core device. Each
componentName object in this map defines the log configuration for the component or
application. The log manager component uploads these component logs to CloudWatch
Logs.

Important

We strongly recommend using a single configuration key per component. You
should only target a group of files that have only one log file that's actively being
written to when using the logFileRegex. Not following this recommendation
may lead to duplicate logs getting uploaded to CloudWatch. If you are targeting
multiple active log files with a single regex, we recommend you upgrade to log
manager v2.3.1 or later and consider changing your configuration using the
example configuration.

Note

If you're upgrading from a version of log manager earlier than v2.2.0, you
can continue to use the componentLogsConfiguration list instead of
componentLogsConfigurationMap. However, we strongly recommend
that you use the map format so that you can use merge and reset updates
to modify configurations for specific components. For information about the
componentLogsConfiguration parameter, see the configuration parameters
for v2.1.x of this component.

Log manager 758

AWS IoT Greengrass Developer Guide, Version 2

componentName

The log configuration for the componentName component or application for this log
configuration. You can specify the name of a Greengrass component or another value
to identify this log group.

Each object contains the following information:

minimumLogLevel

(Optional) The minimum level of log messages to upload. This minimum level
applies only if this component's logs use a specific JSON format, which you can
find in the AWS IoT Greengrass logging module repository on GitHub.

Choose from the following log levels, listed here in level order:

• DEBUG

• INFO

• WARN

• ERROR

Default: INFO

diskSpaceLimit

(Optional) The maximum total size of all log files for this component, in the unit
you specify in diskSpaceLimitUnit. After the total size of this component's
log files exceeds this maximum total size, the AWS IoT Greengrass Core software
deletes this component's oldest log files.

This parameter is related to the log size limit parameter (totalLogsSizeKB) of
the Greengrass nucleus component. The AWS IoT Greengrass Core software uses
the minimum of the two values as the maximum total log size for this component.

diskSpaceLimitUnit

(Optional) The unit for the diskSpaceLimit. Choose from the following options:

• KB – kilobytes

• MB – megabytes

• GB – gigabytes

Default: KB

Log manager 759

https://github.com/aws-greengrass/aws-greengrass-logging-java

AWS IoT Greengrass Developer Guide, Version 2

logFileDirectoryPath

(Optional) The path to the folder that contains this component's log files.

You don't need to specify this parameter for Greengrass components that print to
standard output (stdout) and standard error (stderr).

Default: /greengrass/v2/logs.

logFileRegex

(Optional) A regular expression that specifies the log file name format that the
component or application uses. The log manager component uses this regular
expression to identify log files in the folder at logFileDirectoryPath.

You don't need to specify this parameter for Greengrass components that print to
standard output (stdout) and standard error (stderr).

If your component or application rotates log files, specify a regex that matches the
rotated log file names. For example, you might specify hello_world\\\\w*.log
to upload logs for a Hello World application. The \\\\w* pattern matches zero or
more word characters, which includes alphanumeric characters and underscores.
This regex matches log files with and without timestamps in their name. In this
example, the log manager uploads the following log files:

• hello_world.log – The most recent log file for the Hello World application.

• hello_world_2020_12_15_17_0.log – An older log file for the Hello World
application.

Default: componentName\\\\w*.log, where componentName is the name of
the component for this log configuration.

deleteLogFileAfterCloudUpload

(Optional) You can delete a log file after the log manager component uploads the
logs to CloudWatch Logs.

Default: false

multiLineStartPattern

(Optional) A regular expression that identifies when a log message on a new line
is a new log message. If the regular expression doesn't match the new line, the log

Log manager 760

AWS IoT Greengrass Developer Guide, Version 2

manager component appends the new line to the log message for the previous
line.

By default, the log manager component checks if the line starts with a whitespace
character, such as a tab or space. If it doesn't, the log manager handles that line
as a new log message. Otherwise, it appends that line to the current log message.
This behavior ensures that the log manager component doesn't split messages
that span multiple lines, such as stack traces.

 periodicUploadIntervalSec

(Optional) The period in seconds at which the log manager component checks for new log
files to upload.

Default: 300 (5 minutes)

Minimum: 0.000001 (1 microsecond)

deprecatedVersionSupport

Indicates whether the log manager should use logging speed improvements introduced in
log manager v2.3.5. Set the value to false to use the improvements.

If you set this value to false when you upgrade from log manager v2.3.1 or earlier
duplicate log entries may be uploaded.

The default is true.

Example Example: Configuration merge update

The following example configuration specifies to upload system logs and
com.example.HelloWorld component logs to CloudWatch Logs.

{
 "logsUploaderConfiguration": {
 "systemLogsConfiguration": {
 "uploadToCloudWatch": "true",
 "minimumLogLevel": "INFO",
 "diskSpaceLimit": "10",
 "diskSpaceLimitUnit": "MB",
 "deleteLogFileAfterCloudUpload": "false"

Log manager 761

AWS IoT Greengrass Developer Guide, Version 2

 },
 "componentLogsConfigurationMap": {
 "com.example.HelloWorld": {
 "minimumLogLevel": "INFO",
 "diskSpaceLimit": "20",
 "diskSpaceLimitUnit": "MB",
 "deleteLogFileAfterCloudUpload": "false"
 }
 }
 },
 "periodicUploadIntervalSec": "300",
 "deprecatedVersionSupport": "false"
}

Example Example: Configuration to upload multiple active log files using log manager
v2.3.1

The following example configuration is the recommended example if you want to target
multiple active log files. This example configuration specifies what active log files you want
to upload to CloudWatch. Using this configuration example configuration will also upload any
rotated files that match the logFileRegex. This example configuration is supported on log
manager v2.3.1.

{
 "logsUploaderConfiguration": {
 "componentLogsConfigurationMap": {
 "com.example.A": {
 "logFileRegex": "com.example.A\\w*.log",
 "deleteLogFileAfterCloudUpload": "false"
 }
 "com.example.B": {
 "logFileRegex": "com.example.B\\w*.log",
 "deleteLogFileAfterCloudUpload": "false"
 }
 }
 },
 "periodicUploadIntervalSec": "10"
}

Log manager 762

AWS IoT Greengrass Developer Guide, Version 2

v2.3.x

logsUploaderConfiguration

(Optional) The configuration for logs that the log manager component uploads. This object
contains the following information:

 systemLogsConfiguration

(Optional) The configuration for AWS IoT Greengrass Core software system logs,
which include logs from the Greengrass nucleus and plugin components. Specify this
configuration to enable the log manager component to manage system logs. This object
contains the following information:

uploadToCloudWatch

(Optional) You can upload system logs to CloudWatch Logs.

Default: false

minimumLogLevel

(Optional) The minimum level of log messages to upload. This minimum level applies
only if you configure the Greengrass nucleus component to output JSON format
logs. To enable JSON format logs, specify JSON for the logging format parameter
(logging.format).

Choose from the following log levels, listed here in level order:

• DEBUG

• INFO

• WARN

• ERROR

Default: INFO

diskSpaceLimit

(Optional) The maximum total size of Greengrass system log files, in the unit you
specify in diskSpaceLimitUnit. After the total size of Greengrass system log files
exceeds this maximum total size, the AWS IoT Greengrass Core software deletes the
oldest Greengrass system log files.

Log manager 763

AWS IoT Greengrass Developer Guide, Version 2

This parameter is equivalent to the log size limit parameter (totalLogsSizeKB) of
the Greengrass nucleus component. The AWS IoT Greengrass Core software uses the
minimum of the two values as the maximum total Greengrass system log size.

diskSpaceLimitUnit

(Optional) The unit for the diskSpaceLimit. Choose from the following options:

• KB – kilobytes

• MB – megabytes

• GB – gigabytes

Default: KB

deleteLogFileAfterCloudUpload

(Optional) You can delete a log file after the log manager component uploads the
logs to CloudWatch Logs.

Default: false

 componentLogsConfigurationMap

(Optional) A map of log configurations for components on the core device. Each
componentName object in this map defines the log configuration for the component or
application. The log manager component uploads these component logs to CloudWatch
Logs.

Important

We strongly recommend using a single configuration key per component. You
should only target a group of files that have only one log file that's actively being
written to when using the logFileRegex. Not following this recommendation
may lead to duplicate logs getting uploaded to CloudWatch. If you are targeting
multiple active log files with a single regex, we recommend you upgrade to log
manager v2.3.1 and consider changing your configuration using the example
configuration.

Log manager 764

AWS IoT Greengrass Developer Guide, Version 2

Note

If you're upgrading from a version of log manager earlier than v2.2.0, you
can continue to use the componentLogsConfiguration list instead of
componentLogsConfigurationMap. However, we strongly recommend
that you use the map format so that you can use merge and reset updates
to modify configurations for specific components. For information about the
componentLogsConfiguration parameter, see the configuration parameters
for v2.1.x of this component.

componentName

The log configuration for the componentName component or application for this log
configuration. You can specify the name of a Greengrass component or another value
to identify this log group.

Each object contains the following information:

minimumLogLevel

(Optional) The minimum level of log messages to upload. This minimum level
applies only if this component's logs use a specific JSON format, which you can
find in the AWS IoT Greengrass logging module repository on GitHub.

Choose from the following log levels, listed here in level order:

• DEBUG

• INFO

• WARN

• ERROR

Default: INFO

diskSpaceLimit

(Optional) The maximum total size of all log files for this component, in the unit
you specify in diskSpaceLimitUnit. After the total size of this component's
log files exceeds this maximum total size, the AWS IoT Greengrass Core software
deletes this component's oldest log files.

Log manager 765

https://github.com/aws-greengrass/aws-greengrass-logging-java

AWS IoT Greengrass Developer Guide, Version 2

This parameter is related to the log size limit parameter (totalLogsSizeKB) of
the Greengrass nucleus component. The AWS IoT Greengrass Core software uses
the minimum of the two values as the maximum total log size for this component.

diskSpaceLimitUnit

(Optional) The unit for the diskSpaceLimit. Choose from the following options:

• KB – kilobytes

• MB – megabytes

• GB – gigabytes

Default: KB

logFileDirectoryPath

(Optional) The path to the folder that contains this component's log files.

You don't need to specify this parameter for Greengrass components that print to
standard output (stdout) and standard error (stderr).

Default: /greengrass/v2/logs.

logFileRegex

(Optional) A regular expression that specifies the log file name format that the
component or application uses. The log manager component uses this regular
expression to identify log files in the folder at logFileDirectoryPath.

You don't need to specify this parameter for Greengrass components that print to
standard output (stdout) and standard error (stderr).

If your component or application rotates log files, specify a regex that matches the
rotated log file names. For example, you might specify hello_world\\\\w*.log
to upload logs for a Hello World application. The \\\\w* pattern matches zero or
more word characters, which includes alphanumeric characters and underscores.
This regex matches log files with and without timestamps in their name. In this
example, the log manager uploads the following log files:

• hello_world.log – The most recent log file for the Hello World application.

• hello_world_2020_12_15_17_0.log – An older log file for the Hello World
application.

Log manager 766

AWS IoT Greengrass Developer Guide, Version 2

Default: componentName\\\\w*.log, where componentName is the name of
the component for this log configuration.

deleteLogFileAfterCloudUpload

(Optional) You can delete a log file after the log manager component uploads the
logs to CloudWatch Logs.

Default: false

multiLineStartPattern

(Optional) A regular expression that identifies when a log message on a new line
is a new log message. If the regular expression doesn't match the new line, the log
manager component appends the new line to the log message for the previous
line.

By default, the log manager component checks if the line starts with a whitespace
character, such as a tab or space. If it doesn't, the log manager handles that line
as a new log message. Otherwise, it appends that line to the current log message.
This behavior ensures that the log manager component doesn't split messages
that span multiple lines, such as stack traces.

 periodicUploadIntervalSec

(Optional) The period in seconds at which the log manager component checks for new log
files to upload.

Default: 300 (5 minutes)

Minimum: 0.000001 (1 microsecond)

Example Example: Configuration merge update

The following example configuration specifies to upload system logs and
com.example.HelloWorld component logs to CloudWatch Logs.

{
 "logsUploaderConfiguration": {
 "systemLogsConfiguration": {
 "uploadToCloudWatch": "true",

Log manager 767

AWS IoT Greengrass Developer Guide, Version 2

 "minimumLogLevel": "INFO",
 "diskSpaceLimit": "10",
 "diskSpaceLimitUnit": "MB",
 "deleteLogFileAfterCloudUpload": "false"
 },
 "componentLogsConfigurationMap": {
 "com.example.HelloWorld": {
 "minimumLogLevel": "INFO",
 "diskSpaceLimit": "20",
 "diskSpaceLimitUnit": "MB",
 "deleteLogFileAfterCloudUpload": "false"
 }
 }
 },
 "periodicUploadIntervalSec": "300"
}

Example Example: Configuration to upload multiple active log files using log manager
v2.3.1

The following example configuration is the recommended example if you want to target
multiple active log files. This example configuration specifies what active log files you want
to upload to CloudWatch. Using this configuration example configuration will also upload any
rotated files that match the logFileRegex. This example configuration is supported on log
manager v2.3.1.

{
 "logsUploaderConfiguration": {
 "componentLogsConfigurationMap": {
 "com.example.A": {
 "logFileRegex": "com.example.A\\w*.log",
 "deleteLogFileAfterCloudUpload": "false"
 }
 "com.example.B": {
 "logFileRegex": "com.example.B\\w*.log",
 "deleteLogFileAfterCloudUpload": "false"
 }
 }
 },
 "periodicUploadIntervalSec": "10"
}

Log manager 768

AWS IoT Greengrass Developer Guide, Version 2

v2.2.x

logsUploaderConfiguration

(Optional) The configuration for logs that the log manager component uploads. This object
contains the following information:

 systemLogsConfiguration

(Optional) The configuration for AWS IoT Greengrass Core software system logs,
which include logs from the Greengrass nucleus and plugin components. Specify this
configuration to enable the log manager component to manage system logs. This object
contains the following information:

uploadToCloudWatch

(Optional) You can upload system logs to CloudWatch Logs.

Default: false

minimumLogLevel

(Optional) The minimum level of log messages to upload. This minimum level applies
only if you configure the Greengrass nucleus component to output JSON format
logs. To enable JSON format logs, specify JSON for the logging format parameter
(logging.format).

Choose from the following log levels, listed here in level order:

• DEBUG

• INFO

• WARN

• ERROR

Default: INFO

diskSpaceLimit

(Optional) The maximum total size of Greengrass system log files, in the unit you
specify in diskSpaceLimitUnit. After the total size of Greengrass system log files
exceeds this maximum total size, the AWS IoT Greengrass Core software deletes the
oldest Greengrass system log files.

Log manager 769

AWS IoT Greengrass Developer Guide, Version 2

This parameter is equivalent to the log size limit parameter (totalLogsSizeKB) of
the Greengrass nucleus component. The AWS IoT Greengrass Core software uses the
minimum of the two values as the maximum total Greengrass system log size.

diskSpaceLimitUnit

(Optional) The unit for the diskSpaceLimit. Choose from the following options:

• KB – kilobytes

• MB – megabytes

• GB – gigabytes

Default: KB

deleteLogFileAfterCloudUpload

(Optional) You can delete a log file after the log manager component uploads the
logs to CloudWatch Logs.

Default: false

 componentLogsConfigurationMap

(Optional) A map of log configurations for components on the core device. Each
componentName object in this map defines the log configuration for the component or
application. The log manager component uploads these component logs to CloudWatch
Logs.

Note

If you're upgrading from a version of log manager earlier than v2.2.0, you
can continue to use the componentLogsConfiguration list instead of
componentLogsConfigurationMap. However, we strongly recommend
that you use the map format so that you can use merge and reset updates
to modify configurations for specific components. For information about the
componentLogsConfiguration parameter, see the configuration parameters
for v2.1.x of this component.

Log manager 770

AWS IoT Greengrass Developer Guide, Version 2

componentName

The log configuration for the componentName component or application for this log
configuration. You can specify the name of a Greengrass component or another value
to identify this log group.

Each object contains the following information:

minimumLogLevel

(Optional) The minimum level of log messages to upload. This minimum level
applies only if this component's logs use a specific JSON format, which you can
find in the AWS IoT Greengrass logging module repository on GitHub.

Choose from the following log levels, listed here in level order:

• DEBUG

• INFO

• WARN

• ERROR

Default: INFO

diskSpaceLimit

(Optional) The maximum total size of all log files for this component, in the unit
you specify in diskSpaceLimitUnit. After the total size of this component's
log files exceeds this maximum total size, the AWS IoT Greengrass Core software
deletes this component's oldest log files.

This parameter is related to the log size limit parameter (totalLogsSizeKB) of
the Greengrass nucleus component. The AWS IoT Greengrass Core software uses
the minimum of the two values as the maximum total log size for this component.

diskSpaceLimitUnit

(Optional) The unit for the diskSpaceLimit. Choose from the following options:

• KB – kilobytes

• MB – megabytes

• GB – gigabytes

Default: KB

Log manager 771

https://github.com/aws-greengrass/aws-greengrass-logging-java

AWS IoT Greengrass Developer Guide, Version 2

logFileDirectoryPath

(Optional) The path to the folder that contains this component's log files.

You don't need to specify this parameter for Greengrass components that print to
standard output (stdout) and standard error (stderr).

Default: /greengrass/v2/logs.

logFileRegex

(Optional) A regular expression that specifies the log file name format that the
component or application uses. The log manager component uses this regular
expression to identify log files in the folder at logFileDirectoryPath.

You don't need to specify this parameter for Greengrass components that print to
standard output (stdout) and standard error (stderr).

If your component or application rotates log files, specify a regex that matches the
rotated log file names. For example, you might specify hello_world\\\\w*.log
to upload logs for a Hello World application. The \\\\w* pattern matches zero or
more word characters, which includes alphanumeric characters and underscores.
This regex matches log files with and without timestamps in their name. In this
example, the log manager uploads the following log files:

• hello_world.log – The most recent log file for the Hello World application.

• hello_world_2020_12_15_17_0.log – An older log file for the Hello World
application.

Default: componentName\\\\w*.log, where componentName is the name of
the component for this log configuration.

deleteLogFileAfterCloudUpload

(Optional) You can delete a log file after the log manager component uploads the
logs to CloudWatch Logs.

Default: false

multiLineStartPattern

(Optional) A regular expression that identifies when a log message on a new line
is a new log message. If the regular expression doesn't match the new line, the log

Log manager 772

AWS IoT Greengrass Developer Guide, Version 2

manager component appends the new line to the log message for the previous
line.

By default, the log manager component checks if the line starts with a whitespace
character, such as a tab or space. If it doesn't, the log manager handles that line
as a new log message. Otherwise, it appends that line to the current log message.
This behavior ensures that the log manager component doesn't split messages
that span multiple lines, such as stack traces.

 periodicUploadIntervalSec

(Optional) The period in seconds at which the log manager component checks for new log
files to upload.

Default: 300 (5 minutes)

Minimum: 0.000001 (1 microsecond)

Example Example: Configuration merge update

The following example configuration specifies to upload system logs and
com.example.HelloWorld component logs to CloudWatch Logs.

{
 "logsUploaderConfiguration": {
 "systemLogsConfiguration": {
 "uploadToCloudWatch": "true",
 "minimumLogLevel": "INFO",
 "diskSpaceLimit": "10",
 "diskSpaceLimitUnit": "MB",
 "deleteLogFileAfterCloudUpload": "false"
 },
 "componentLogsConfigurationMap": {
 "com.example.HelloWorld": {
 "minimumLogLevel": "INFO",
 "diskSpaceLimit": "20",
 "diskSpaceLimitUnit": "MB",
 "deleteLogFileAfterCloudUpload": "false"
 }
 }
 },
 "periodicUploadIntervalSec": "300"

Log manager 773

AWS IoT Greengrass Developer Guide, Version 2

}

v2.1.x

logsUploaderConfiguration

(Optional) The configuration for logs that the log manager component uploads. This object
contains the following information:

systemLogsConfiguration

(Optional) The configuration for AWS IoT Greengrass Core software system logs,
which include logs from the Greengrass nucleus and plugin components. Specify this
configuration to enable the log manager component to manage system logs. This object
contains the following information:

uploadToCloudWatch

(Optional) You can upload system logs to CloudWatch Logs.

Default: false

minimumLogLevel

(Optional) The minimum level of log messages to upload. This minimum level applies
only if you configure the Greengrass nucleus component to output JSON format
logs. To enable JSON format logs, specify JSON for the logging format parameter
(logging.format).

Choose from the following log levels, listed here in level order:

• DEBUG

• INFO

• WARN

• ERROR

Default: INFO

diskSpaceLimit

(Optional) The maximum total size of Greengrass system log files, in the unit you
specify in diskSpaceLimitUnit. After the total size of Greengrass system log files

Log manager 774

AWS IoT Greengrass Developer Guide, Version 2

exceeds this maximum total size, the AWS IoT Greengrass Core software deletes the
oldest Greengrass system log files.

This parameter is equivalent to the log size limit parameter (totalLogsSizeKB) of
the Greengrass nucleus component. The AWS IoT Greengrass Core software uses the
minimum of the two values as the maximum total Greengrass system log size.

diskSpaceLimitUnit

(Optional) The unit for the diskSpaceLimit. Choose from the following options:

• KB – kilobytes

• MB – megabytes

• GB – gigabytes

Default: KB

deleteLogFileAfterCloudUpload

(Optional) You can delete a log file after the log manager component uploads the
logs to CloudWatch Logs.

Default: false

 componentLogsConfiguration

(Optional) A list of log configurations for components on the core device. Each
configuration in this list defines the log configuration for a component or application.
The log manager component uploads these component logs to CloudWatch Logs

Each object contains the following information:

componentName

The name of the component or application for this log configuration. You can specify
the name of a Greengrass component or another value to identify this log group.

minimumLogLevel

(Optional) The minimum level of log messages to upload. This minimum level applies
only if this component's logs use a specific JSON format, which you can find in the
AWS IoT Greengrass logging module repository on GitHub.

Choose from the following log levels, listed here in level order:

Log manager 775

https://github.com/aws-greengrass/aws-greengrass-logging-java

AWS IoT Greengrass Developer Guide, Version 2

• DEBUG

• INFO

• WARN

• ERROR

Default: INFO

diskSpaceLimit

(Optional) The maximum total size of all log files for this component, in the unit you
specify in diskSpaceLimitUnit. After the total size of this component's log files
exceeds this maximum total size, the AWS IoT Greengrass Core software deletes this
component's oldest log files.

This parameter is related to the log size limit parameter (totalLogsSizeKB) of the
Greengrass nucleus component. The AWS IoT Greengrass Core software uses the
minimum of the two values as the maximum total log size for this component.

diskSpaceLimitUnit

(Optional) The unit for the diskSpaceLimit. Choose from the following options:

• KB – kilobytes

• MB – megabytes

• GB – gigabytes

Default: KB

logFileDirectoryPath

(Optional) The path to the folder that contains this component's log files.

You don't need to specify this parameter for Greengrass components that print to
standard output (stdout) and standard error (stderr).

Default: /greengrass/v2/logs.

logFileRegex

(Optional) A regular expression that specifies the log file name format that the
component or application uses. The log manager component uses this regular
expression to identify log files in the folder at logFileDirectoryPath.

Log manager 776

AWS IoT Greengrass Developer Guide, Version 2

You don't need to specify this parameter for Greengrass components that print to
standard output (stdout) and standard error (stderr).

If your component or application rotates log files, specify a regex that matches the
rotated log file names. For example, you might specify hello_world\\\\w*.log to
upload logs for a Hello World application. The \\\\w* pattern matches zero or more
word characters, which includes alphanumeric characters and underscores. This regex
matches log files with and without timestamps in their name. In this example, the log
manager uploads the following log files:

• hello_world.log – The most recent log file for the Hello World application.

• hello_world_2020_12_15_17_0.log – An older log file for the Hello World
application.

Default: componentName\\\\w*.log, where componentName is the name of the
component for this log configuration.

deleteLogFileAfterCloudUpload

(Optional) You can delete a log file after the log manager component uploads the
logs to CloudWatch Logs.

Default: false

multiLineStartPattern

(Optional) A regular expression that identifies when a log message on a new line
is a new log message. If the regular expression doesn't match the new line, the log
manager component appends the new line to the log message for the previous line.

By default, the log manager component checks if the line starts with a whitespace
character, such as a tab or space. If it doesn't, the log manager handles that line as
a new log message. Otherwise, it appends that line to the current log message. This
behavior ensures that the log manager component doesn't split messages that span
multiple lines, such as stack traces.

periodicUploadIntervalSec

(Optional) The period in seconds at which the log manager component checks for new log
files to upload.

Default: 300 (5 minutes)

Log manager 777

AWS IoT Greengrass Developer Guide, Version 2

Minimum: 0.000001 (1 microsecond)

Example Example: Configuration merge update

The following example configuration specifies to upload system logs and
com.example.HelloWorld component logs to CloudWatch Logs.

{
 "logsUploaderConfiguration": {
 "systemLogsConfiguration": {
 "uploadToCloudWatch": "true",
 "minimumLogLevel": "INFO",
 "diskSpaceLimit": "10",
 "diskSpaceLimitUnit": "MB",
 "deleteLogFileAfterCloudUpload": "false"
 },
 "componentLogsConfiguration": [
 {
 "componentName": "com.example.HelloWorld",
 "minimumLogLevel": "INFO",
 "diskSpaceLimit": "20",
 "diskSpaceLimitUnit": "MB",
 "deleteLogFileAfterCloudUpload": "false"
 }
]
 },
 "periodicUploadIntervalSec": "300"
}

v2.0.x

logsUploaderConfiguration

(Optional) The configuration for logs that the log manager component uploads. This object
contains the following information:

systemLogsConfiguration

(Optional) The configuration for AWS IoT Greengrass Core software system logs. Specify
this configuration to enable the log manager component to manage system logs. This
object contains the following information:

Log manager 778

AWS IoT Greengrass Developer Guide, Version 2

uploadToCloudWatch

(Optional) You can upload system logs to CloudWatch Logs.

Default: false

minimumLogLevel

(Optional) The minimum level of log messages to upload. This minimum level applies
only if you configure the Greengrass nucleus component to output JSON format
logs. To enable JSON format logs, specify JSON for the logging format parameter
(logging.format).

Choose from the following log levels, listed here in level order:

• DEBUG

• INFO

• WARN

• ERROR

Default: INFO

diskSpaceLimit

(Optional) The maximum total size of Greengrass system log files, in the unit you
specify in diskSpaceLimitUnit. After the total size of Greengrass system log files
exceeds this maximum total size, the AWS IoT Greengrass Core software deletes the
oldest Greengrass system log files.

This parameter is equivalent to the log size limit parameter (totalLogsSizeKB) of
the Greengrass nucleus component. The AWS IoT Greengrass Core software uses the
minimum of the two values as the maximum total Greengrass system log size.

diskSpaceLimitUnit

(Optional) The unit for the diskSpaceLimit. Choose from the following options:

• KB – kilobytes

• MB – megabytes

• GB – gigabytes

Default: KB

Log manager 779

AWS IoT Greengrass Developer Guide, Version 2

deleteLogFileAfterCloudUpload

(Optional) You can delete a log file after the log manager component uploads the
logs to CloudWatch Logs.

Default: false

componentLogsConfiguration

(Optional) A list of log configurations for components on the core device. Each
configuration in this list defines the log configuration for a component or application.
The log manager component uploads these component logs to CloudWatch Logs

Each object contains the following information:

componentName

The name of the component or application for this log configuration. You can specify
the name of a Greengrass component or another value to identify this log group.

minimumLogLevel

(Optional) The minimum level of log messages to upload. This minimum level applies
only if this component's logs use a specific JSON format, which you can find in the
AWS IoT Greengrass logging module repository on GitHub.

Choose from the following log levels, listed here in level order:

• DEBUG

• INFO

• WARN

• ERROR

Default: INFO

diskSpaceLimit

(Optional) The maximum total size of all log files for this component, in the unit you
specify in diskSpaceLimitUnit. After the total size of this component's log files
exceeds this maximum total size, the AWS IoT Greengrass Core software deletes this
component's oldest log files.

Log manager 780

https://github.com/aws-greengrass/aws-greengrass-logging-java

AWS IoT Greengrass Developer Guide, Version 2

This parameter is related to the log size limit parameter (totalLogsSizeKB) of the
Greengrass nucleus component. The AWS IoT Greengrass Core software uses the
minimum of the two values as the maximum total log size for this component.

diskSpaceLimitUnit

(Optional) The unit for the diskSpaceLimit. Choose from the following options:

• KB – kilobytes

• MB – megabytes

• GB – gigabytes

Default: KB

logFileDirectoryPath

The path to the folder that contains this component's log files.

To upload a Greengrass component's logs, specify /greengrass/v2/logs, and
replace /greengrass/v2 with your Greengrass root folder.

logFileRegex

A regular expression that specifies the log file name format that the component or
application uses. The log manager component uses this regular expression to identify
log files in the folder at logFileDirectoryPath.

To upload a Greengrass component's logs, specify a regex that matches the rotated
log file names. For example, you might specify com.example.HelloWorld\
\w*.log to upload logs for a Hello World component. The \\w* pattern matches
zero or more word characters, which includes alphanumeric characters and
underscores. This regex matches log files with and without timestamps in their name.
In this example, the log manager uploads the following log files:

• com.example.HelloWorld.log – The most recent log file for the Hello World
component.

• com.example.HelloWorld_2020_12_15_17_0.log – An older log file for the
Hello World component. The Greengrass nucleus adds a rotating timestamp to the
log files.

deleteLogFileAfterCloudUpload

(Optional) You can delete a log file after the log manager component uploads the
logs to CloudWatch Logs.

Log manager 781

AWS IoT Greengrass Developer Guide, Version 2

Default: false

multiLineStartPattern

(Optional) A regular expression that identifies when a log message on a new line
is a new log message. If the regular expression doesn't match the new line, the log
manager component appends the new line to the log message for the previous line.

By default, the log manager component checks if the line starts with a whitespace
character, such as a tab or space. If it doesn't, the log manager handles that line as
a new log message. Otherwise, it appends that line to the current log message. This
behavior ensures that the log manager component doesn't split messages that span
multiple lines, such as stack traces.

periodicUploadIntervalSec

(Optional) The period in seconds at which the log manager component checks for new log
files to upload.

Default: 300 (5 minutes)

Minimum: 0.000001 (1 microsecond)

Example Example: Configuration merge update

The following example configuration specifies to upload system logs and
com.example.HelloWorld component logs to CloudWatch Logs.

{
 "logsUploaderConfiguration": {
 "systemLogsConfiguration": {
 "uploadToCloudWatch": "true",
 "minimumLogLevel": "INFO",
 "diskSpaceLimit": "10",
 "diskSpaceLimitUnit": "MB",
 "deleteLogFileAfterCloudUpload": "false"
 },
 "componentLogsConfiguration": [
 {
 "componentName": "com.example.HelloWorld",
 "minimumLogLevel": "INFO",
 "logFileDirectoryPath": "/greengrass/v2/logs",

Log manager 782

AWS IoT Greengrass Developer Guide, Version 2

 "logFileRegex": "com.example.HelloWorld\\w*.log",
 "diskSpaceLimit": "20",
 "diskSpaceLimitUnit": "MB",
 "deleteLogFileAfterCloudUpload": "false"
 }
]
 },
 "periodicUploadIntervalSec": "300"
}

Usage

The log manager component uploads to the following log groups and log streams.

2.1.0 and later

Log group name

/aws/greengrass/componentType/region/componentName

The log group name uses the following variables:

• componentType – The type of the component, which can be one of the following:

• GreengrassSystemComponent – This log group includes logs for the nucleus
and plugin components, which run in the same JVM as the Greengrass nucleus. The
component is part of the Greengrass nucleus.

• UserComponent – This log group includes logs for generic components, Lambda
components, and other applications on the device. The component isn't part of the
Greengrass nucleus.

For more information, see Component types.

• region – The AWS Region that the core device uses.

• componentName – The name of the component. For system logs, this value is System.

Log stream name

/date/thing/thingName

The log stream name uses the following variables:

Log manager 783

AWS IoT Greengrass Developer Guide, Version 2

• date – The date of the log, such as 2020/12/15. The log manager component uses the
yyyy/MM/dd format.

• thingName – The name of the core device.

Note

If a thing name contains a colon (:), the log manager replaces the colon with a plus
(+).

2.0.x

Log group name

/aws/greengrass/componentType/region/componentName

The log group name uses the following variables:

• componentType – The type of the component, which can be one of the following:

• GreengrassSystemComponent – The component is part of the Greengrass nucleus.

• UserComponent – The component isn't part of the Greengrass nucleus. The log
manager uses this type for Greengrass components and other applications on the
device.

• region – The AWS Region that the core device uses.

• componentName – The name of the component. For system logs, this value is System.

Log stream name

/date/deploymentTargets/thingName

The log stream name uses the following variables:

• date – The date of the log, such as 2020/12/15. The log manager component uses the
yyyy/MM/dd format.

• deploymentTargets – The things whose deployments include the component. The log
manager component separates each target by a slash. If the component runs on the core
device as the result of a local deployment, this value is LOCAL_DEPLOYMENT.

Log manager 784

AWS IoT Greengrass Developer Guide, Version 2

Consider an example where you have a core device named MyGreengrassCore, and the
core device has two deployments:

• A deployment that targets the core device, MyGreengrassCore.

• A deployment that targets a thing group named MyGreengrassCoreGroup, which
contains the core device.

The deploymentTargets for this core device are thing/MyGreengrassCore/
thinggroup/MyGreengrassCoreGroup.

• thingName – The name of the core device.

Formats for log entries.

The Greengrass nucleus writes log files in either string or JSON format. For system logs, you
control the format by setting the format field of the logging entry. You can find the logging
entry in the Greengrass nucleus component's configuration file. For more information, see
Greengrass nucleus configuration.

The text format is free-form and accepts any string. The following fleet status service message is
an example of string formatted logging:

2023-03-26T18:18:27.271Z [INFO] (pool-1-thread-2)
com.aws.greengrass.status.FleetStatusService: fss-status-update-published.
Status update published to FSS. {trigger=CADENCE, serviceName=FleetStatusService,
currentState=RUNNING}

You should use the JSON format if you want to view logs with the Greengrass CLI logs command or
interact with logs programmatically. The following example outlines the JSON shape:

{
 "loggerName": <string>,
 "level": <"DEBUG" | "INFO" | "ERROR" | "TRACE" | "WARN">,
 "eventType": <string, optional>,
 "cause": <string, optional>,
 "contexts": {},
 "thread": <string>,
 "message": <string>,
 "timestamp": <epoch time> # Needs to be epoch time
}

Log manager 785

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-nucleus-component.html#greengrass-nucleus-component-configuration
https://docs.aws.amazon.com/greengrass/v2/developerguide/gg-cli-logs.html

AWS IoT Greengrass Developer Guide, Version 2

To control the output of your component's logs, you can use the minimumLogLevel configuration
option. To use this option, your component must write its log entries in JSON format. You should
use the same format as the system log file.

Local log file

This component uses the same log file as the Greengrass nucleus component.

Linux

/greengrass/v2/logs/greengrass.log

Windows

C:\greengrass\v2\logs\greengrass.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/greengrass.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\greengrass.log -Tail 10 -Wait

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.3.9 Version updated for Greengrass nucleus version 2.14.0 release.

Log manager 786

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.3.8 Version updated for Greengrass nucleus version 2.13.0 release.

2.3.7 Version updated for Greengrass nucleus version 2.12.0 release.

2.3.6 Bug fixes and improvements

• Adjusts log levels for certain errors.

2.3.5 Improvements

Improves log upload speed.

Version updated for Greengrass nucleus version 2.11.0 release.

2.3.4 Bug fixes and improvements

• Adds support for setting the periodicUploadIntervalSec
parameter to fractional values. The minimum is 1 microsecond.

• Fixes an issue where log manager doesn't respect the CloudWatch
putLogEvents limits.

2.3.3 Version updated for Greengrass nucleus version 2.10.0 release.

2.3.2 Bug fixes and improvements

• Improves space management so that log files are not deleted before
they are uploaded.

• Fixes issues with cache management.

• Additional minor bug fixes and improvements.

2.3.1 Bug fixes and improvements

• Fixes an issue where s that target file groups with multiples active log
files upload duplicate entries to CloudWatch.

• Additional minor bug fixes and improvements.

Log manager 787

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.3.0
Note

We recommend that you upgrade to Greengrass nucleus 2.9.1 when
you upgrade to log manager 2.3.0.

New features

Reduces log delays by processing and directly uploading active log files
instead of waiting for new files to be rotated.

Bug fixes and improvements

• Improves support of log rotation when rotating files with a unique
name.

• Additional minor bug fixes and improvements.

2.2.8 Version updated for Greengrass nucleus version 2.9.0 release.

2.2.7 Version updated for Greengrass nucleus version 2.8.0 release.

2.2.6 Version updated for Greengrass nucleus version 2.7.0 release.

2.2.5 Version updated for Greengrass nucleus version 2.6.0 release.

2.2.4 Bug fixes and improvements

• Improves stability when handling invalid configurations.

• Additional minor fixes and improvements.

Log manager 788

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.2.3 Bug fixes and improvements

• Improves stability in certain scenarios where the component restarts or
encounters errors.

• Fixes issues where large log messages and large log files fail to upload
in certain scenarios.

• Fixes issues with how this component handles configuration reset
updates.

• Fixes an issue where a null diskSpaceLimit configuration value
prevented the component from deploying.

2.2.2 Bug fixes and improvements

• Adds support for log messages that are larger than 256 kilobytes. The
log manager component splits these large log messages into multiple
messages with the same log event timestamp.

2.2.1 Version updated for Greengrass nucleus version 2.5.0 release.

2.2.0 New feature

• Adds the componentLogsConfigurationMap configuration
parameter to support a map format for component log configurations.
Each componentName object in the map defines the log configura
tion for a component or application.

2.1.3 Version updated for Greengrass nucleus version 2.4.0 release.

2.1.2 Version updated for Greengrass nucleus version 2.3.0 release.

2.1.1 Bug fixes and improvements

• Fixes an issue where the system log configuration wasn't updated in
certain cases.

Log manager 789

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.1.0 Bug fixes and improvements

• Use defaults for logFileDirectoryPath and logFileRegex
that work for Greengrass components that print to standard output
(stdout) and standard error (stderr).

• Correctly route traffic through a configured network proxy when
uploading logs to CloudWatch Logs.

• Correctly handle colon characters (:) in log stream names. CloudWatch
Logs log stream names don't support colons.

• Simplify log stream names by removing thing group names from the
log stream.

• Remove an error log message that prints during normal behavior.

2.0.x Initial version.

Machine learning components

AWS IoT Greengrass provides the following machine learning components that you can deploy
to supported devices to perform machine learning inference using models trained in Amazon
SageMaker AI or with your own pre-trained models that are stored in Amazon S3.

AWS provides the following categories of machine learning components:

• Model component—Contains machine learning models as Greengrass artifacts.

• Runtime component—Contains the script that installs the machine learning framework and its
dependencies on the Greengrass core device.

• Inference component—Contains the inference code and includes component dependencies to
install the machine learning framework and download pre-trained machine learning models.

You can use the sample inference code and pre-trained models in the AWS-provided machine
learning components to perform image classification and object detection using DLR and
TensorFlow Lite. To perform custom machine learning inference with your own models that are
stored in Amazon S3, or to use a different machine learning framework, you can use the recipes of

Machine learning components 790

AWS IoT Greengrass Developer Guide, Version 2

these public components as templates to create custom machine learning components. For more
information, see Customize your machine learning components.

AWS IoT Greengrass also includes an AWS-provided component to manage the installation and
lifecycle of the SageMaker AI Edge Manager agent on Greengrass core devices. With SageMaker
AI Edge Manager, you can use Amazon SageMaker AI Neo-compiled models directly on your core
device. For more information, see Use Amazon SageMaker AI Edge Manager on Greengrass core
devices.

The following table lists the machine learning components that are available in AWS IoT
Greengrass.

Note

Several AWS-provided components depend on specific minor versions of the Greengrass
nucleus. Because of this dependency, you need to update these components when
you update the Greengrass nucleus to a new minor version. For information about the
specific versions of the nucleus that each component depends on, see the corresponding
component topic. For more information about updating the nucleus, see Update the AWS
IoT Greengrass Core software (OTA).

When a component has a component type of both generic and Lambda, the current version of the
component is the generic type and a previous version of the component is the Lambda type.

Component Description Component
type

Supported
OS

Open
source

Lookout for Vision Edge Agent Deploys the
Amazon
Lookout
for Vision
runtime on
the Greengras
s core device,
so you can
use computer
vision to find

Generic Linux No

Machine learning components 791

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

defects in
industrial
products.

SageMaker AI Edge Manager Deploys the
Amazon
SageMaker AI
Edge Manager
agent on the
Greengrass
core device.

Generic Linux,
Windows

No

DLR image classification Inference
component
that uses the
DLR image
classification
model store
and the DLR
runtime
component as
dependencies
to install DLR,
download
sample image
classification
models, and
perform
image
classification
inference on
supported
devices.

Generic Linux,
Windows

No

Machine learning components 792

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

DLR object detection Inference
component
that uses the
DLR object
detection
model store
and the DLR
runtime
component as
dependencies
to install DLR,
download
sample object
detection
models, and
perform
object
detection
inference on
supported
devices.

Generic Linux,
Windows

No

DLR image classification model
store

Model
component
that contains
sample
ResNet-50
image classific
ation models
as Greengrass
artifacts.

Generic Linux,
Windows

No

Machine learning components 793

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

DLR object detection model store Model
component
that contains
sample
YOLOv3
object
detection
models as
Greengrass
artifacts.

Generic Linux,
Windows

No

DLR runtime Runtime
component
that contains
an installation
script that is
used to install
DLR and its
dependenc
ies on the
Greengrass
core device.

Generic Linux,
Windows

No

Machine learning components 794

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

TensorFlow Lite image classification Inference
component
that uses the
TensorFlow
Lite image
classific
ation model
store and the
TensorFlow
Lite runtime
component
as dependenc
ies to install
TensorFlow
Lite, download
sample image
classification
models, and
perform
image
classification
inference on
supported
devices.

Generic Linux,
Windows

No

Machine learning components 795

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

TensorFlow Lite object detection Inference
component
that uses the
TensorFlow
Lite object
detection
model store
and the
TensorFlow
Lite runtime
component
as dependenc
ies to install
TensorFlow
Lite, download
sample object
detection
models, and
perform
object
detection
inference on
supported
devices.

Generic Linux,
Windows

No

TensorFlow Lite image classification
model store

Model
component
that contains
a sample
MobileNet v1
model as a
Greengrass
artifact.

Generic Linux,
Windows

No

Machine learning components 796

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

TensorFlow Lite object detection
model store

Model
component
that contains
a sample
Single Shot
Detection
(SSD)
MobileNet
model as a
Greengrass
artifact.

Generic Linux,
Windows

No

TensorFlow Lite runtime Runtime
component
that contains
an installation
script that is
used to install
TensorFlow
Lite and its
dependenc
ies on the
Greengrass
core device.

Generic Linux,
Windows

No

Lookout for Vision Edge Agent

The Lookout for Vision Edge Agent component (aws.iot.lookoutvision.EdgeAgent) installs a
local Amazon Lookout for Vision runtime server, which uses computer vision to find visual defects
in industrial products.

To use this component, create and deploy Lookout for Vision machine learning model components.
These machine learning models predict the presence of anomalies in images by finding patterns
in images that you use to train the model. Then, you can develop and deploy custom Greengrass

Machine learning components 797

AWS IoT Greengrass Developer Guide, Version 2

components, called client application components, that provide images and video streams to this
runtime component to detect anomalies using the machine learning models.

You can use the Lookout for Vision Edge Agent API to interact with this component from other
Greengrass components. This API is implemented using gRPC, which is a protocol for making
remote procedure calls. For more information, see Writing a client application component and
Lookout for Vision Edge Agent API reference in the Amazon Lookout for Vision Developer Guide.

For more information about how to use this component, see the following:

• Use Amazon Lookout for Vision on Greengrass core devices

• What is Amazon Lookout for Vision? in the Amazon Lookout for Vision Developer Guide

• Creating a Lookout for Vision model in the Amazon Lookout for Vision Developer Guide.

• Using a Lookout for Vision model on an edge device in the Amazon Lookout for Vision Developer
Guide.

Note

The Lookout for Vision Edge Agent component is available only in the following AWS
Regions:

• US East (Ohio)

• US East (N. Virginia)

• US West (Oregon)

• Europe (Frankfurt)

• Europe (Ireland)

• Asia Pacific (Tokyo)

• Asia Pacific (Seoul)

Topics

• Versions

• Type

• Operating system

• Requirements

Machine learning components 798

https://grpc.io/
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/client-application-overview.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/edge-agent-reference.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/what-is.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/model.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/models-devices.html

AWS IoT Greengrass Developer Guide, Version 2

• Dependencies

• Configuration

• Local log file

• Changelog

Versions

This component has the following versions:

• 1.2.x

• 1.1.x

• 1.0.x

• 0.1.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on Linux core devices only.

Requirements

This component has the following requirements:

• The Greengrass core device must use an Armv8 (AArch64) or x86_64 architecture.

• If you use version 1.0.0 or later of this component, Python 3.8 or Python 3.9, including pip,
installed on the Greengrass core device.

If you use version 0.1.x of this component, Python 3.7, including pip, installed on the Greengrass
core device.

Machine learning components 799

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/

AWS IoT Greengrass Developer Guide, Version 2

Important

The device must have one of these exact versions of Python. This component doesn't
support later versions of Python.

• To use graphics processing unit (GPU) inference, the core device must meet the following
requirements. GPU inference is optional in version 1.1.0 and later of this component.

• A graphics processing unit (GPU) that supports CUDA. For more information, see Verify You
Have a CUDA-Capable GPU in the CUDA Toolkit Documentation.

• cuDNN, CUDA, and TensorRT installed on the Greengrass core device.

• On NVIDIA Jetson devices, such as the Jetson Nano or Jetson Xavier, cuDNN, CUDA, and
TensorRT come installed with NVIDIA JetPack. You don't need to make any changes. This
component supports JetPack 4.4, JetPack 4.5, JetPack 4.5.1, and JetPack 4.6.1.

Important

You must install one of these versions of JetPack and not another version. The
Lookout for Vision service compiles computer vision models for these JetPack
platforms.

• On x86 devices with a GPU that has the NVIDIA Ampere microarchitecture (or the GPU's
compute capacity is 8.0), do the following:

• Install cuDNN by following instructions in the NVIDIA cuDNN Installation Guide.

• Install CUDA version 11.2 by following instructions in the NVIDIA CUDA Installation Guide
for Linux.

• Install TensorRT version 8.2.0 by following instructions in the NVIDIA TensorRT
Documentation.

• On x86 devices with a GPU that has an NVIDIA architecture prior to Ampere (or the GPU's
compute capacity is less than 8.0), do the following:

• Install cuDNN by following instructions in the NVIDIA cuDNN Installation Guide.

• Install CUDA version 10.2 by following instructions in the NVIDIA CUDA Installation Guide
for Linux.

• Install TensorRT version 7.1.3 or later, but earlier than version 8.0.0, by following
instructions in the NVIDIA TensorRT Documentation.

Machine learning components 800

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#verify-you-have-a-cuda-capable-gpu
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#verify-you-have-a-cuda-capable-gpu
https://developer.nvidia.com/jetpack-sdk-44-archive
https://developer.nvidia.com/jetpack-sdk-45-archive
https://developer.nvidia.com/jetpack-sdk-451-archive
https://developer.nvidia.com/embedded/jetpack-sdk-461
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html
https://docs.nvidia.com/cuda/archive/11.2.0/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/archive/11.2.0/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html
https://docs.nvidia.com/cuda/archive/10.2/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/archive/10.2/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html

AWS IoT Greengrass Developer Guide, Version 2

• The system user that runs this component must be a member of the system group that has
access to the GPU on the device. The name of this group differs by operating system. Consult
the documentation for your operating system and GPU to determine the name of this system
group.

For example, on NVIDIA Jetson devices, the name of this group is video, and you can run the
following command to add a system user to this group. Replace ggc_user with the name of
the user to add.

sudo usermod -aG video ggc_user

Dependencies

This component doesn't have any dependencies.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

Socket

(Optional) The file socket where the Edge Agent operates. Lookout for Vision model
components use this file socket to communicate with the Edge Agent. If you change this
parameter, you must specify the same value when you deploy Lookout for Vision model
components.

Default: unix:///tmp/aws.iot.lookoutvision.EdgeAgent.sock

Local log file

This component uses the following log file.

/greengrass/v2/logs/aws.iot.lookoutvision.EdgeAgent.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 with the path to the AWS IoT Greengrass root folder.

Machine learning components 801

AWS IoT Greengrass Developer Guide, Version 2

sudo tail -f /greengrass/v2/logs/aws.iot.lookoutvision.EdgeAgent.log

Changelog

The following table describes the changes in each version of the component.

Version Changes

1.2.0 General bug fixes and improvements.

1.1.9 General bug fixes and improvements.

1.1.8 General bug fixes and improvements.

1.1.7 New features

• Installs the opencv-python-headless package in the Lookout for
Vision Edge Agent virtual environment.

Bug fixes and improvements

• Improves confidence score calculation.

• Resizes the heatmap model mask to the original file size.

• General bug fixes and improvements.

1.1.6 New features

Added new values to the DetectAnomalies result.

• anomaly_score – The number between 0.0 and 1.0 that indicates
how anomalous an image is.

• anomaly_threshold – Threshold set during model training that
determine the boundary between an anomalous image and a normal
image.

General bug fixes and improvements.

Machine learning components 802

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

1.1.4 New features

Added support for OpenCV for image resizing when available. Edge
agent uses Pillow when OpenCV is unavailable.

Bug fixes and improvements

General bug fixes and improvements.

1.1.3 General bug fixes and improvements.

1.1.1 General bug fixes and improvements.

1.1.0 New features

• Adds support for image segmentation models, which identify
anomalies in images.

• Adds support for CPU inference, so you can use Lookout for Vision
models on core devices without a GPU.

Bug fixes and improvements

• General bug fixes and improvements.

1.0.0 This version of the Lookout for Vision Edge Agent component requires a
different version of Python than version 0.1.x. If you want to upgrade from
v0.1.x to v1.x, you must upgrade the Python installation on the core device.

Bug fixes and improvements

• General bug fixes and improvements.

0.1.37 General bug fixes and improvements.

0.1.36 Initial version.

Machine learning components 803

AWS IoT Greengrass Developer Guide, Version 2

SageMaker AI Edge Manager

Important

SageMaker AI Edge Manager was discontinued on April 26th, 2024. For more information
about continuing to deploy your models to edge devices, see SageMaker AI Edge Manager
end of life.

The Amazon SageMaker AI Edge Manager component
(aws.greengrass.SageMakerEdgeManager) installs the SageMaker AI Edge Manager agent
binary.

SageMaker AI Edge Manager provides model management for edge devices so you can optimize,
secure, monitor, and maintain machine learning models on fleets of edge devices. The SageMaker
AI Edge Manager component installs and manages the lifecycle of the SageMaker AI Edge Manager
agent on your core device. You can also use SageMaker AI Edge Manager to package and use
SageMaker AI Neo-compiled models as model components on Greengrass core devices. For more
information about using SageMaker AI Edge Manager agent on your core device, see Use Amazon
SageMaker AI Edge Manager on Greengrass core devices.

SageMaker AI Edge Manager component v1.3.x installs Edge Manager agent binary
v1.20220822.836f3023. For more information about Edge Manager agent binary versions, see
Edge Manager Agent.

Note

The SageMaker AI Edge Manager component is available only in the following AWS
Regions:

• US East (Ohio)

• US East (N. Virginia)

• US West (Oregon)

• EU (Frankfurt)

• EU (Ireland)

• Asia Pacific (Tokyo)

Machine learning components 804

https://docs.aws.amazon.com/sagemaker/latest/dg/edge-eol.html
https://docs.aws.amazon.com/sagemaker/latest/dg/edge-eol.html
https://docs.aws.amazon.com/sagemaker/latest/dg/edge-device-fleet-about

AWS IoT Greengrass Developer Guide, Version 2

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

Versions

This component has the following versions:

• 1.3.x

• 1.2.x

• 1.1.x

• 1.0.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Requirements

This component has the following requirements:

Machine learning components 805

AWS IoT Greengrass Developer Guide, Version 2

• A Greengrass core device running on Amazon Linux 2, a Debian-based Linux platform (x86_64 or
Armv8), or Windows (x86_64). If you don't have one, see Tutorial: Getting started with AWS IoT
Greengrass V2.

• Python 3.6 or later, including pip for your version of Python, installed on your core device.

• The Greengrass device role configured with the following:

• A trust relationship that allows credentials.iot.amazonaws.com and
sagemaker.amazonaws.com to assume the role, as shown in the following IAM policy
example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "credentials.iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

• The AmazonSageMakerEdgeDeviceFleetPolicy IAM managed policy.

• The s3:PutObject action, as shown in the following IAM policy example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "*"

Machine learning components 806

https://www.python.org/downloads/
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AmazonSageMakerEdgeDeviceFleetPolicy

AWS IoT Greengrass Developer Guide, Version 2

],
 "Effect": "Allow"
 }
]
}

• An Amazon S3 bucket created in the same AWS account and AWS Region as your Greengrass core
device. SageMaker AI Edge Manager requires an S3 bucket to create an edge device fleet, and
to store sample data from running inference on your device. For information about creating S3
buckets, see Getting started with Amazon S3.

• A SageMaker AI edge device fleet that uses the same AWS IoT role alias as your Greengrass core
device. For more information, see Create an edge device fleet.

• Your Greengrass core device registered as an edge device in your SageMaker AI Edge device
fleet. The edge device name must match the AWS IoT thing name for your core device. For more
information, see Register your Greengrass core device.

Endpoints and ports

This component must be able to perform outbound requests to the following endpoints and ports,
in addition to endpoints and ports required for basic operation. For more information, see Allow
device traffic through a proxy or firewall.

Endpoint Port Required Descripti
on

edge.sage
maker. region.amazonaws.com

443 Yes Check
device
registrat
ion status
and send
metrics to
SageMaker
AI.

*.s3.amazonaws.com 443 Yes Upload
capture
data to the
S3 bucket

Machine learning components 807

https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html

AWS IoT Greengrass Developer Guide, Version 2

Endpoint Port Required Descripti
on

that you
specify.

You can
replace
* with
the name
of each
bucket
where you
upload
data.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

1.3.5 and 1.3.6

The following table lists the dependencies for version 1.3.5 and 1.3.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.13.0 Soft

Token exchange service >=0.0.0 Hard

Machine learning components 808

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

1.3.4

The following table lists the dependencies for version 1.3.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.12.0 Soft

Token exchange service >=0.0.0 Hard

1.3.3

The following table lists the dependencies for version 1.3.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.11.0 Soft

Token exchange service >=0.0.0 Hard

1.3.2

The following table lists the dependencies for version 1.3.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.10.0 Soft

Token exchange service >=0.0.0 Hard

1.3.1

The following table lists the dependencies for version 1.3.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.9.0 Soft

Machine learning components 809

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Token exchange service >=0.0.0 Hard

1.1.1 - 1.3.0

The following table lists the dependencies for versions 1.1.1 - 1.3.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.8.0 Soft

Token exchange service >=0.0.0 Hard

1.1.0

The following table lists the dependencies for version 1.1.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.6.0 Soft

Token exchange service >=0.0.0 Hard

1.0.3

The following table lists the dependencies for version 1.0.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Soft

Token exchange service >=0.0.0 Hard

1.0.1 and 1.0.2

The following table lists the dependencies for versions 1.0.1 and 1.0.2 of this component.

Machine learning components 810

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Soft

Token exchange service >=0.0.0 Hard

1.0.0

The following table lists the dependencies for version 1.0.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Soft

Token exchange service >=0.0.0 Hard

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

Note

This section describes the configuration parameters that you set in the component. For
more information about the corresponding SageMaker AI Edge Manager configuration, see
Edge Manager Agent in the Amazon SageMaker AI Developer Guide.

DeviceFleetName

The name of the SageMaker AI Edge Manager device fleet that contains your Greengrass core
device.

You must specify a value for this parameter in the configuration update when you deploy this
component.

Machine learning components 811

https://docs.aws.amazon.com/sagemaker/latest/dg/edge-device-fleet-about.html#edge-device-fleet-running-agent

AWS IoT Greengrass Developer Guide, Version 2

BucketName

The name of the S3 bucket to which you upload captured inference data. The bucket name
must contain the string sagemaker.

If you set CaptureDataDestination to Cloud, or if you set CaptureDataPeriodicUpload
to true, then you must specify a value for this parameter in the configuration update when you
deploy this component.

Note

Capture data is an SageMaker AI feature that you use to upload inference input,
inference results, and additional inference data to an S3 bucket or a local directory for
future analysis. For more information about using capture data with SageMaker AI Edge
Manager, see Manage Model in the Amazon SageMaker AI Developer Guide.

CaptureDataBatchSize

(Optional) The size of a batch of capture data requests that the agent handles. This value must
be less than the buffer size that you specify in CaptureDataBufferSize. We recommend that
you don't exceed half the buffer size.

The agent handles a request batch when the number of requests in the buffer meets the
CaptureDataBatchSize number, or when the CaptureDataPushPeriodSeconds interval
elapses, whichever occurs first.

Default: 10

CaptureDataBufferSize

(Optional) The maximum number of capture data requests stored in the buffer.

Default: 30

CaptureDataDestination

(Optional) The destination where you store captured data. This parameter can have the
following values:

• Cloud—Uploads captured data to the S3 bucket that you specify in BucketName.

Machine learning components 812

https://docs.aws.amazon.com/sagemaker/latest/dg/edge-manage-model.html#edge-manage-model-capturedata

AWS IoT Greengrass Developer Guide, Version 2

• Disk—Writes captured data to the component's work directory.

If you specify Disk, you can also choose to periodically upload the captured data to your S3
bucket by setting CaptureDataPeriodicUpload to true.

Default: Cloud

CaptureDataPeriodicUpload

(Optional) String value that specifies whether to periodically upload captured data. Supported
values are true and false.

Set this parameter to true if you set CaptureDataDestination to Disk, and you also want
the agent to periodically upload the captured data your S3 bucket.

Default: false

CaptureDataPeriodicUploadPeriodSeconds

(Optional) The interval in seconds at which SageMaker AI Edge Manager agent uploads
captured data to the S3 bucket. Use this parameter if you set CaptureDataPeriodicUpload
to true.

Default: 8

CaptureDataPushPeriodSeconds

(Optional) The interval in seconds at which SageMaker AI Edge Manager agent handles a batch
of capture data requests from the buffer.

The agent handles a request batch when the number of requests in the buffer meets the
CaptureDataBatchSize number, or when the CaptureDataPushPeriodSeconds interval
elapses, whichever occurs first.

Default: 4

CaptureDataBase64EmbedLimit

(Optional) The maximum size in bytes of captured data that SageMaker AI Edge Manager agent
uploads.

Default: 3072

Machine learning components 813

AWS IoT Greengrass Developer Guide, Version 2

FolderPrefix

(Optional) The name of the folder to which the agent writes the captured data. If you set
CaptureDataDestination to Disk, the agent creates the folder in the directory that is
specified by CaptureDataDiskPath. If you set CaptureDataDestination to Cloud, or
if you set CaptureDataPeriodicUpload to true, the agent creates the folder in your S3
bucket.

Default: sme-capture

CaptureDataDiskPath

This feature is available in v1.1.0 and later versions of the SageMaker AI Edge Manager
component.

(Optional) The path to the folder to which the agent creates the captured data folder. If you
set CaptureDataDestination to Disk, the agent creates the captured data folder in this
directory. If you don't specify this value, the agent creates the captured data folder in the
component's work directory. Use the FolderPrefix parameter to specify the name of the
captured data folder.

Default: /greengrass/v2/work/aws.greengrass.SageMakerEdgeManager/capture

LocalDataRootPath

This feature is available in v1.2.0 and later versions of the SageMaker AI Edge Manager
component.

(Optional) The path where this component stores the following data on the core device:

• The local database for runtime data when you set DbEnable to true.

• SageMaker AI Neo-compiled models that this component automatically downloads when you
set DeploymentEnable to true.

Default: /greengrass/v2/work/aws.greengrass.SageMakerEdgeManager

DbEnable

(Optional) You can enable this component to store runtime data in a local database to preserve
the data, in case the component fails or the device loses power.

This database requires 5 MB of storage on the core device's file system.

Machine learning components 814

AWS IoT Greengrass Developer Guide, Version 2

Default: false

DeploymentEnable

This feature is available in v1.2.0 and later versions of the SageMaker AI Edge Manager
component.

(Optional) You can enable this component to automatically retrieve SageMaker AI Neo-
compiled models from that you upload to Amazon S3. After you upload a new model to
Amazon S3, use SageMaker AI Studio or the SageMaker AI API to deploy the new model to this
core device. When you enable this feature, you can deploy new models to core devices without
needing to create a AWS IoT Greengrass deployment.

Important

To use this feature, you must set DbEnable to true. This feature uses the local
database to track models that it retrieves from the AWS Cloud.

Default: false

DeploymentPollInterval

This feature is available in v1.2.0 and later versions of the SageMaker AI Edge Manager
component.

(Optional) The amount of time (in minutes) between which this component checks for new
models to download. This option applies when you set DeploymentEnable to true.

Default: 1440 (1 day)

DLRBackendOptions

This feature is available in v1.2.0 and later versions of the SageMaker AI Edge Manager
component.

(Optional) The DLR runtime flags to set in the DLR runtime that this component uses. You can
set the following flag:

• TVM_TENSORRT_CACHE_DIR – Enable TensorRT model caching. Specify an absolute path to
an existing folder that has read/write permissions.

Machine learning components 815

AWS IoT Greengrass Developer Guide, Version 2

• TVM_TENSORRT_CACHE_DISK_SIZE_MB – Assigns the upper limit of the TensorRT model
cache folder. When the directory size grows beyond this limit the cached engines that are
used the least are deleted. The default value is 512 MB.

For example, you can set this parameter to the following value to enable TensorRT model
caching and limit the cache size to 800 MB.

TVM_TENSORRT_CACHE_DIR=/data/secured_folder/trt/cache;
 TVM_TENSORRT_CACHE_DISK_SIZE_MB=800

SagemakerEdgeLogVerbose

(Optional) String value that specifies whether to enable debug logging. Supported values are
true and false.

Default: false

UnixSocketName

(Optional) The location of the SageMaker AI Edge Manager socket file descriptor on the core
device.

Default: /tmp/aws.greengrass.SageMakerEdgeManager.sock

Example Example: Configuration merge update

The following example configuration specifies that the core device is part of the
MyEdgeDeviceFleet and that the agent writes capture data both to the device and to an S3
bucket. This configuration also enables debug logging.

{
 "DeviceFleetName": "MyEdgeDeviceFleet",
 "BucketName": "amzn-s3-demo-bucket",
 "CaptureDataDestination": "Disk",
 "CaptureDataPeriodicUpload": "true",
 "SagemakerEdgeLogVerbose": "true"
}

Local log file

This component uses the following log file.

Machine learning components 816

AWS IoT Greengrass Developer Guide, Version 2

Linux

/greengrass/v2/logs/aws.greengrass.SageMakerEdgeManager.log

Windows

C:\greengrass\v2\logs\aws.greengrass.SageMakerEdgeManager.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/aws.greengrass.SageMakerEdgeManager.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\aws.greengrass.SageMakerEdgeManager.log -Tail
 10 -Wait

Changelog

The following table describes the changes in each version of the component.

Version Changes

1.3.6 Version updated for Greengrass nucleus 2.12.5 release.

1.3.5 Version updated for Greengrass nucleus version 2.12.0 release.

1.3.4 Version updated for Greengrass nucleus version 2.11.0 release.

1.3.3 Version updated for Greengrass nucleus version 2.10.0 release.

1.3.2 Version updated for Greengrass nucleus version 2.9.0 release.

Machine learning components 817

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

1.3.1 Version updated for Greengrass nucleus version 2.8.0 release.

1.3.0 New features

• Adds support for TensorRT cache disk size management.

• Adds the optional TVM_TENSORRT_CACHE_DISK_SIZE_MB flag
to the DLRBackendOptions parameter to set the size limit for cached
models on disk.

Improvements

• Provides improved prediction concurrency. This helps to get better
usage of device accelerator engines, such as GPUs.

1.2.0 New features

• Adds support for this component to automatically retrieve SageMaker
AI Neo-compiled models that you upload to Amazon S3. When you
enable this feature, you can deploy new models to core devices
without needing to create a AWS IoT Greengrass deployment.

• Adds support for a backup database that this component uses to
preserve runtime data, in case the component fails or the device loses
power.

• Adds support for you to configure DLR runtime flags when you
configure this component.

1.1.1 Version updated for Greengrass nucleus version 2.7.0 release.

1.1.0 New features

• Adds support for Greengrass core devices running Amazon Linux 2.

• Adds the new CaptureDataDiskPath configuration parameter.
You can use this parameter to specify the path of the captured data
folder on your device.

Bug fixes and improvements

• Version updated for Greengrass nucleus version 2.5.0 release.

1.0.3 Version updated for Greengrass nucleus version 2.4.0 release.

Machine learning components 818

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

1.0.2 Bug fixes and improvements

Updates the installation script in the component lifecycle. Your core
devices must now have Python 3.6 or later, including pip for your
version of Python, installed on the device before you deploy this
component.

1.0.1 Version updated for Greengrass nucleus version 2.3.0 release.

1.0.0 Initial version.

DLR image classification

The DLR image classification component (aws.greengrass.DLRImageClassification)
contains sample inference code to perform image classification inference using Deep Learning
Runtime and resnet-50 models. This component uses the variant DLR image classification model
store and the DLR runtime components as dependencies to download DLR and the sample models.

To use this inference component with a custom-trained DLR model, create a custom version of the
dependent model store component. To use your own custom inference code, you can use the recipe
of this component as a template to create a custom inference component.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

Machine learning components 819

https://github.com/neo-ai/neo-ai-dlr
https://github.com/neo-ai/neo-ai-dlr

AWS IoT Greengrass Developer Guide, Version 2

Versions

This component has the following versions:

• 2.1.x

• 2.0.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Requirements

This component has the following requirements:

• On Greengrass core devices running Amazon Linux 2 or Ubuntu 18.04, GNU C Library (glibc)
version 2.27 or later installed on the device.

• On Armv7l devices, such as Raspberry Pi, dependencies for OpenCV-Python installed on the
device. Run the following command to install the dependencies.

sudo apt-get install libopenjp2-7 libilmbase23 libopenexr-dev libavcodec-dev
 libavformat-dev libswscale-dev libv4l-dev libgtk-3-0 libwebp-dev

• Raspberry Pi devices that run Raspberry Pi OS Bullseye must meet the following requirements:

• NumPy 1.22.4 or later installed on the device. Raspberry Pi OS Bullseye includes an earlier
version of NumPy, so you can run the following command to upgrade NumPy on the device.

pip3 install --upgrade numpy

Machine learning components 820

https://www.gnu.org/software/libc/

AWS IoT Greengrass Developer Guide, Version 2

• The legacy camera stack enabled on the device. Raspberry Pi OS Bullseye includes a new
camera stack that is enabled by default and isn't compatible, so you must enable the legacy
camera stack.

To enable the legacy camera stack

1. Run the following command to open the Raspberry Pi configuration tool.

sudo raspi-config

2. Select Interface Options.

3. Select Legacy camera to enable the legacy camera stack.

4. Reboot the Raspberry Pi.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.1.13 and 2.1.14

The following table lists the dependencies for version 2.1.13 and 2.1.14 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.13.0 Soft

DLR image classification
model store

~2.1.0 Hard

DLR ~1.6.0 Hard

Machine learning components 821

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

2.1.12

The following table lists the dependencies for version 2.1.12 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.12.0 Soft

DLR image classification
model store

~2.1.0 Hard

DLR ~1.6.0 Hard

2.1.11

The following table lists the dependencies for version 2.1.11 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.11.0 Soft

DLR image classification
model store

~2.1.0 Hard

DLR ~1.6.0 Hard

2.1.10

The following table lists the dependencies for version 2.1.10 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.10.0 Soft

DLR image classification
model store

~2.1.0 Hard

DLR ~1.6.0 Hard

Machine learning components 822

AWS IoT Greengrass Developer Guide, Version 2

2.1.9

The following table lists the dependencies for version 2.1.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.9.0 Soft

DLR image classification
model store

~2.1.0 Hard

DLR ~1.6.0 Hard

2.1.8

The following table lists the dependencies for version 2.1.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.8.0 Soft

DLR image classification
model store

~2.1.0 Hard

DLR ~1.6.0 Hard

2.1.7

The following table lists the dependencies for version 2.1.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.7.0 Soft

DLR image classification
model store

~2.1.0 Hard

DLR ~1.6.0 Hard

Machine learning components 823

AWS IoT Greengrass Developer Guide, Version 2

2.1.6

The following table lists the dependencies for version 2.1.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.6.0 Soft

DLR image classification
model store

~2.1.0 Hard

DLR ~1.6.0 Hard

2.1.4 - 2.1.5

The following table lists the dependencies for versions 2.1.4 to 2.1.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Soft

DLR image classification
model store

~2.1.0 Hard

DLR ~1.6.0 Hard

2.1.3

The following table lists the dependencies for version 2.1.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Soft

DLR image classification
model store

~2.1.0 Hard

DLR ~1.6.0 Hard

Machine learning components 824

AWS IoT Greengrass Developer Guide, Version 2

2.1.2

The following table lists the dependencies for version 2.1.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Soft

DLR image classification
model store

~2.1.0 Hard

DLR ~1.6.0 Hard

2.1.1

The following table lists the dependencies for version 2.1.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.2.0 Soft

DLR image classification
model store

~2.1.0 Hard

DLR ~1.6.0 Hard

2.0.x

The following table lists the dependencies for version 2.0.x of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus ~2.0.0 Soft

DLR image classification
model store

~2.0.0 Hard

DLR ~1.3.0 Soft

Machine learning components 825

AWS IoT Greengrass Developer Guide, Version 2

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

2.1.x

accessControl

(Optional) The object that contains the authorization policy that allows the component to
publish messages to the default notifications topic.

Default:

{
 "aws.greengrass.ipc.mqttproxy": {
 "aws.greengrass.DLRImageClassification:mqttproxy:1": {
 "policyDescription": "Allows access to publish via topic ml/dlr/image-
classification.",
 "operations": [
 "aws.greengrass#PublishToIoTCore"
],
 "resources": [
 "ml/dlr/image-classification"
]
 }
 }
}

PublishResultsOnTopic

(Optional) The topic on which you want to publish the inference results. If you modify
this value, then you must also modify the value of resources in the accessControl
parameter to match your custom topic name.

Default: ml/dlr/image-classification

Accelerator

The accelerator that you want to use. Supported values are cpu and gpu.

The sample models in the dependent model component support only CPU acceleration. To
use GPU acceleration with a different custom model, create a custom model component to
override the public model component.

Machine learning components 826

AWS IoT Greengrass Developer Guide, Version 2

Default: cpu

ImageDirectory

(Optional) The path of the folder on the device where inference components read images.
You can modify this value to any location on your device to which you have read/write
access.

Default: /greengrass/v2/packages/artifacts-unarchived/component-name/
image_classification/sample_images/

Note

If you set the value of UseCamera to true, then this configuration parameter is
ignored.

ImageName

(Optional) The name of the image that the inference component uses as an input to a make
prediction. The component looks for the image in the folder specified in ImageDirectory.
By default, the component uses the sample image in the default image directory. AWS IoT
Greengrass supports the following image formats: jpeg, jpg, png, and npy.

Default: cat.jpeg

Note

If you set the value of UseCamera to true, then this configuration parameter is
ignored.

InferenceInterval

(Optional) The time in seconds between each prediction made by the inference code. The
sample inference code runs indefinitely and repeats its predictions at the specified time
interval. For example, you can change this to a shorter interval if you want to use images
taken by a camera for real-time prediction.

Default: 3600

Machine learning components 827

AWS IoT Greengrass Developer Guide, Version 2

ModelResourceKey

(Optional) The models that are used in the dependent public model component. Modify this
parameter only if you override the public model component with a custom component.

Default:

{
 "armv7l": "DLR-resnet50-armv7l-cpu-ImageClassification",
 "aarch64": "DLR-resnet50-aarch64-cpu-ImageClassification",
 "x86_64": "DLR-resnet50-x86_64-cpu-ImageClassification",
 "windows": "DLR-resnet50-win-cpu-ImageClassification"
}

UseCamera

(Optional) String value that defines whether to use images from a camera connected to the
Greengrass core device. Supported values are true and false.

When you set this value to true, the sample inference code accesses the camera on your
device and runs inference locally on the captured image. The values of the ImageName and
ImageDirectory parameters are ignored. Make sure that the user running this component
has read/write access to the location where the camera stores captured images.

Default: false

Note

When you view the recipe of this component, the UseCamera configuration
parameter doesn't appear in the default configuration. However, you can modify
the value of this parameter in a configuration merge update when you deploy the
component.
When you set UseCamera to true, you must also create a symlink to enable the
inference component to access your camera from the virtual environment that is
created by the runtime component. For more information about using a camera with
the sample inference components, see Update component configurations.

Machine learning components 828

AWS IoT Greengrass Developer Guide, Version 2

2.0.x

MLRootPath

(Optional) The path of the folder on Linux core devices where inference components read
images and write inference results. You can modify this value to any location on your device
to which the user running this component has read/write access.

Default: /greengrass/v2/work/variant.DLR/greengrass_ml

Default: /greengrass/v2/work/variant.TensorFlowLite/greengrass_ml

Accelerator

The accelerator that you want to use. Supported values are cpu and gpu.

The sample models in the dependent model component support only CPU acceleration. To
use GPU acceleration with a different custom model, create a custom model component to
override the public model component.

Default: cpu

ImageName

(Optional) The name of the image that the inference component uses as an input to a make
prediction. The component looks for the image in the folder specified in ImageDirectory.
The default location is MLRootPath/images. AWS IoT Greengrass supports the following
image formats: jpeg, jpg, png, and npy.

Default: cat.jpeg

InferenceInterval

(Optional) The time in seconds between each prediction made by the inference code. The
sample inference code runs indefinitely and repeats its predictions at the specified time
interval. For example, you can change this to a shorter interval if you want to use images
taken by a camera for real-time prediction.

Default: 3600

ModelResourceKey

(Optional) The models that are used in the dependent public model component. Modify this
parameter only if you override the public model component with a custom component.

Machine learning components 829

AWS IoT Greengrass Developer Guide, Version 2

Default:

armv7l: "DLR-resnet50-armv7l-cpu-ImageClassification"
x86_64: "DLR-resnet50-x86_64-cpu-ImageClassification"

Local log file

This component uses the following log file.

Linux

/greengrass/v2/logs/aws.greengrass.DLRImageClassification.log

Windows

C:\greengrass\v2\logs\aws.greengrass.DLRImageClassification.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/aws.greengrass.DLRImageClassification.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\aws.greengrass.DLRImageClassification.log -
Tail 10 -Wait

Changelog

The following table describes the changes in each version of the component.

Machine learning components 830

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.1.14 Version updated for Greengrass nucleus 2.12.5 release.

2.1.13 Version updated for Greengrass nucleus version 2.12.0 release.

2.1.12 Version updated for Greengrass nucleus version 2.11.0 release.

2.1.11 Version updated for Greengrass nucleus version 2.10.0 release.

2.1.10 Version updated for Greengrass nucleus version 2.9.0 release.

2.1.9 Version updated for Greengrass nucleus version 2.8.0 release.

2.1.8 Version updated for Greengrass nucleus version 2.7.0 release.

2.1.7 Version updated for Greengrass nucleus version 2.6.0 release.

2.1.6 Version updated for Greengrass nucleus version 2.5.0 release.

2.1.5 Component released in all AWS Regions.

2.1.4 Version updated for Greengrass nucleus version 2.4.0 release.

This version isn't available in Europe (London) (eu-west-2).

2.1.3 Version updated for Greengrass nucleus version 2.3.0 release.

2.1.2 Version updated for Greengrass nucleus version 2.2.0 release.

2.1.1 New features

• Use Deep Learning Runtime v1.6.0.

• Add support for sample image classification on Armv8 (AArch64)
 platforms. This extends machine learning support for Greengrass core
devices running NVIDIA Jetson, such as the Jetson Nano.

• Enable camera integration for sample inference. Use the new
UseCamera configuration parameter to enable the sample inference
code to access the camera on your Greengrass core device and run
inference locally on the captured image.

Machine learning components 831

https://github.com/neo-ai/neo-ai-dlr

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

• Add support for publishing inference results to the AWS Cloud. Use the
new PublishResultsOnTopic configuration parameter to specify
the topic on which you want to publish results.

• Add the new ImageDirectory configuration parameter that
enables you to specify a custom directory for the image on which you
want to perform inference.

Bug fixes and improvements

• Write inference results to the component log file instead of a separate
inference file.

• Use the AWS IoT Greengrass Core software logging module to log
component output.

• Use the AWS IoT Device SDK to read the component configuration and
apply configuration changes.

2.0.4 Initial version.

DLR object detection

The DLR object detection component (aws.greengrass.DLRObjectDetection) contains
sample inference code to perform object detection inference using Deep Learning Runtime and
sample pre-trained models. This component uses the variant DLR object detection model store and
the DLR runtime components as dependencies to download DLR and the sample models.

To use this inference component with a custom-trained DLR model, create a custom version of the
dependent model store component. To use your own custom inference code, you can use the recipe
of this component as a template to create a custom inference component.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

Machine learning components 832

https://github.com/neo-ai/neo-ai-dlr

AWS IoT Greengrass Developer Guide, Version 2

• Configuration

• Local log file

• Changelog

Versions

This component has the following versions:

• 2.1.x

• 2.0.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Requirements

This component has the following requirements:

• On Greengrass core devices running Amazon Linux 2 or Ubuntu 18.04, GNU C Library (glibc)
version 2.27 or later installed on the device.

• On Armv7l devices, such as Raspberry Pi, dependencies for OpenCV-Python installed on the
device. Run the following command to install the dependencies.

sudo apt-get install libopenjp2-7 libilmbase23 libopenexr-dev libavcodec-dev
 libavformat-dev libswscale-dev libv4l-dev libgtk-3-0 libwebp-dev

• Raspberry Pi devices that run Raspberry Pi OS Bullseye must meet the following requirements:

Machine learning components 833

https://www.gnu.org/software/libc/

AWS IoT Greengrass Developer Guide, Version 2

• NumPy 1.22.4 or later installed on the device. Raspberry Pi OS Bullseye includes an earlier
version of NumPy, so you can run the following command to upgrade NumPy on the device.

pip3 install --upgrade numpy

• The legacy camera stack enabled on the device. Raspberry Pi OS Bullseye includes a new
camera stack that is enabled by default and isn't compatible, so you must enable the legacy
camera stack.

To enable the legacy camera stack

1. Run the following command to open the Raspberry Pi configuration tool.

sudo raspi-config

2. Select Interface Options.

3. Select Legacy camera to enable the legacy camera stack.

4. Reboot the Raspberry Pi.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.1.13 and 2.1.14

The following table lists the dependencies for version 2.1.13 and 2.1.14 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.13.0 Soft

DLR object detection model
store

~2.1.0 Hard

Machine learning components 834

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

DLR ~1.6.0 Hard

2.1.12

The following table lists the dependencies for version 2.1.12 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.12.0 Soft

DLR object detection model
store

~2.1.0 Hard

DLR ~1.6.0 Hard

2.1.11

The following table lists the dependencies for version 2.1.11 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.11.0 Soft

DLR object detection model
store

~2.1.0 Hard

DLR ~1.6.0 Hard

2.1.10

The following table lists the dependencies for version 2.1.10 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.10.0 Soft

Machine learning components 835

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

DLR object detection model
store

~2.1.0 Hard

DLR ~1.6.0 Hard

2.1.9

The following table lists the dependencies for version 2.1.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.9.0 Soft

DLR object detection model
store

~2.1.0 Hard

DLR ~1.6.0 Hard

2.1.8

The following table lists the dependencies for version 2.1.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.8.0 Soft

DLR object detection model
store

~2.1.0 Hard

DLR ~1.6.0 Hard

2.1.7

The following table lists the dependencies for version 2.1.7 of this component.

Machine learning components 836

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.7.0 Soft

DLR object detection model
store

~2.1.0 Hard

DLR ~1.6.0 Hard

2.1.6

The following table lists the dependencies for version 2.1.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.6.0 Soft

DLR object detection model
store

~2.1.0 Hard

DLR ~1.6.0 Hard

2.1.4 - 2.1.5

The following table lists the dependencies for versions 2.1.4 to 2.1.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Soft

DLR object detection model
store

~2.1.0 Hard

DLR ~1.6.0 Hard

2.1.3

The following table lists the dependencies for version 2.1.3 of this component.

Machine learning components 837

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Soft

DLR object detection model
store

~2.1.0 Hard

DLR ~1.6.0 Hard

2.1.2

The following table lists the dependencies for version 2.1.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Soft

DLR object detection model
store

~2.1.0 Hard

DLR ~1.6.0 Hard

2.1.1

The following table lists the dependencies for version 2.1.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.2.0 Soft

DLR object detection model
store

~2.1.0 Hard

DLR ~1.6.0 Hard

2.0.x

The following table lists the dependencies for version 2.0.x of this component.

Machine learning components 838

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus ~2.0.0 Soft

DLR object detection model
store

~2.0.0 Hard

DLR ~1.3.0 Soft

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

2.1.x

accessControl

(Optional) The object that contains the authorization policy that allows the component to
publish messages to the default notifications topic.

Default:

{
 "aws.greengrass.ipc.mqttproxy": {
 "aws.greengrass.DLRObjectDetection:mqttproxy:1": {
 "policyDescription": "Allows access to publish via topic ml/dlr/object-
detection.",
 "operations": [
 "aws.greengrass#PublishToIoTCore"
],
 "resources": [
 "ml/dlr/object-detection"
]
 }
 }
}

Machine learning components 839

AWS IoT Greengrass Developer Guide, Version 2

PublishResultsOnTopic

(Optional) The topic on which you want to publish the inference results. If you modify
this value, then you must also modify the value of resources in the accessControl
parameter to match your custom topic name.

Default: ml/dlr/object-detection

Accelerator

The accelerator that you want to use. Supported values are cpu and gpu.

The sample models in the dependent model component support only CPU acceleration. To
use GPU acceleration with a different custom model, create a custom model component to
override the public model component.

Default: cpu

ImageDirectory

(Optional) The path of the folder on the device where inference components read images.
You can modify this value to any location on your device to which you have read/write
access.

Default: /greengrass/v2/packages/artifacts-unarchived/component-name/
object_detection/sample_images/

Note

If you set the value of UseCamera to true, then this configuration parameter is
ignored.

ImageName

(Optional) The name of the image that the inference component uses as an input to a make
prediction. The component looks for the image in the folder specified in ImageDirectory.
By default, the component uses the sample image in the default image directory. AWS IoT
Greengrass supports the following image formats: jpeg, jpg, png, and npy.

Default: objects.jpg

Machine learning components 840

AWS IoT Greengrass Developer Guide, Version 2

Note

If you set the value of UseCamera to true, then this configuration parameter is
ignored.

InferenceInterval

(Optional) The time in seconds between each prediction made by the inference code. The
sample inference code runs indefinitely and repeats its predictions at the specified time
interval. For example, you can change this to a shorter interval if you want to use images
taken by a camera for real-time prediction.

Default: 3600

ModelResourceKey

(Optional) The models that are used in the dependent public model component. Modify this
parameter only if you override the public model component with a custom component.

Default:

{
 "armv7l": "DLR-yolo3-armv7l-cpu-ObjectDetection",
 "aarch64": "DLR-yolo3-aarch64-gpu-ObjectDetection",
 "x86_64": "DLR-yolo3-x86_64-cpu-ObjectDetection",
 "windows": "DLR-resnet50-win-cpu-ObjectDetection"
}

UseCamera

(Optional) String value that defines whether to use images from a camera connected to the
Greengrass core device. Supported values are true and false.

When you set this value to true, the sample inference code accesses the camera on your
device and runs inference locally on the captured image. The values of the ImageName and
ImageDirectory parameters are ignored. Make sure that the user running this component
has read/write access to the location where the camera stores captured images.

Default: false

Machine learning components 841

AWS IoT Greengrass Developer Guide, Version 2

Note

When you view the recipe of this component, the UseCamera configuration
parameter doesn't appear in the default configuration. However, you can modify
the value of this parameter in a configuration merge update when you deploy the
component.
When you set UseCamera to true, you must also create a symlink to enable the
inference component to access your camera from the virtual environment that is
created by the runtime component. For more information about using a camera with
the sample inference components, see Update component configurations.

2.0.x

MLRootPath

(Optional) The path of the folder on Linux core devices where inference components read
images and write inference results. You can modify this value to any location on your device
to which the user running this component has read/write access.

Default: /greengrass/v2/work/variant.DLR/greengrass_ml

Default: /greengrass/v2/work/variant.TensorFlowLite/greengrass_ml

Accelerator

Do not modify. Currently, the only supported value for the accelerator is cpu, because the
models in the dependent model components are compiled only for the CPU accelerator.

ImageName

(Optional) The name of the image that the inference component uses as an input to a make
prediction. The component looks for the image in the folder specified in ImageDirectory.
The default location is MLRootPath/images. AWS IoT Greengrass supports the following
image formats: jpeg, jpg, png, and npy.

Default: objects.jpg

InferenceInterval

(Optional) The time in seconds between each prediction made by the inference code. The
sample inference code runs indefinitely and repeats its predictions at the specified time

Machine learning components 842

AWS IoT Greengrass Developer Guide, Version 2

interval. For example, you can change this to a shorter interval if you want to use images
taken by a camera for real-time prediction.

Default: 3600

ModelResourceKey

(Optional) The models that are used in the dependent public model component. Modify this
parameter only if you override the public model component with a custom component.

Default:

{
 armv7l: "DLR-yolo3-armv7l-cpu-ObjectDetection",
 x86_64: "DLR-yolo3-x86_64-cpu-ObjectDetection"
}

Local log file

This component uses the following log file.

Linux

/greengrass/v2/logs/aws.greengrass.DLRObjectDetection.log

Windows

C:\greengrass\v2\logs\aws.greengrass.DLRObjectDetection.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/aws.greengrass.DLRObjectDetection.log

Machine learning components 843

AWS IoT Greengrass Developer Guide, Version 2

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\aws.greengrass.DLRObjectDetection.log -Tail 10
 -Wait

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.1.14 Version updated for Greengrass nucleus 2.12.5 release.

2.1.13 Version updated for Greengrass nucleus version 2.12.0 release.

2.1.12 Version updated for Greengrass nucleus version 2.11.0 release.

2.1.11 Version updated for Greengrass nucleus version 2.10.0 release.

2.1.10 Version updated for Greengrass nucleus version 2.9.0 release.

2.1.9 Version updated for Greengrass nucleus version 2.8.0 release.

2.1.8 Version updated for Greengrass nucleus version 2.7.0 release.

2.1.7 Version updated for Greengrass nucleus version 2.6.0 release.

2.1.6 Version updated for Greengrass nucleus version 2.5.0 release.

2.1.5 Component released in all AWS Regions.

2.1.4 Version updated for Greengrass nucleus version 2.4.0 release.

This version isn't available in Europe (London) (eu-west-2).

2.1.3 Version updated for Greengrass nucleus version 2.3.0 release.

2.1.2 Bug fixes and improvements

• Fixes an image scaling issue that resulted in inaccurate bounding boxes
in the sample DLR object detection inference results.

Machine learning components 844

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.1.1 New features

• Use Deep Learning Runtime v1.6.0.

• Add support for sample object detection on Armv8 (AArch64)
platforms. This extends machine learning support for Greengrass core
devices running NVIDIA Jetson, such as the Jetson Nano.

• Enable camera integration for sample inference. Use the new
UseCamera configuration parameter to enable the sample inference
code to access the camera on your Greengrass core device and run
inference locally on the captured image.

• Add support for publishing inference results to the AWS Cloud. Use the
new PublishResultsOnTopic configuration parameter to specify
the topic on which you want to publish results.

• Add the new ImageDirectory configuration parameter that
enables you to specify a custom directory for the image on which you
want to perform inference.

Bug fixes and improvements

• Write inference results to the component log file instead of a separate
inference file.

• Use the AWS IoT Greengrass Core software logging module to log
component output.

• Use the AWS IoT Device SDK to read the component configuration and
apply configuration changes.

2.0.4 Initial version.

DLR image classification model store

The DLR image classification model store is a machine learning model component that contains
pre-trained ResNet-50 models as Greengrass artifacts. The pre-trained models used in this
component are fetched from the GluonCV Model Zoo and are compiled using SageMaker AI Neo
Deep Learning Runtime.

Machine learning components 845

https://github.com/neo-ai/neo-ai-dlr
https://cv.gluon.ai/model_zoo/index.html
https://github.com/neo-ai/neo-ai-dlr

AWS IoT Greengrass Developer Guide, Version 2

The DLR image classification inference component uses this component as a dependency for
the model source. To use a custom-trained DLR model, create a custom version of this model
component, and include your custom model as a component artifact. You can use the recipe of this
component as a template to create custom model components.

Note

The name of the DLR image classification model store component varies depending
on its version. The component name for version 2.1.x and later versions is
variant.DLR.ImageClassification.ModelStore. The component name for version
2.0.x is variant.ImageClassification.ModelStore.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

Versions

This component has the following versions:

• 2.1.x (variant.DLR.ImageClassification.ModelStore)

• 2.0.x (variant.ImageClassification.ModelStore)

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Machine learning components 846

AWS IoT Greengrass Developer Guide, Version 2

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Requirements

This component has the following requirements:

• On Greengrass core devices running Amazon Linux 2 or Ubuntu 18.04, GNU C Library (glibc)
version 2.27 or later installed on the device.

• On Armv7l devices, such as Raspberry Pi, dependencies for OpenCV-Python installed on the
device. Run the following command to install the dependencies.

sudo apt-get install libopenjp2-7 libilmbase23 libopenexr-dev libavcodec-dev
 libavformat-dev libswscale-dev libv4l-dev libgtk-3-0 libwebp-dev

• Raspberry Pi devices that run Raspberry Pi OS Bullseye must meet the following requirements:

• NumPy 1.22.4 or later installed on the device. Raspberry Pi OS Bullseye includes an earlier
version of NumPy, so you can run the following command to upgrade NumPy on the device.

pip3 install --upgrade numpy

• The legacy camera stack enabled on the device. Raspberry Pi OS Bullseye includes a new
camera stack that is enabled by default and isn't compatible, so you must enable the legacy
camera stack.

To enable the legacy camera stack

1. Run the following command to open the Raspberry Pi configuration tool.

sudo raspi-config

2. Select Interface Options.

3. Select Legacy camera to enable the legacy camera stack.

4. Reboot the Raspberry Pi.

Machine learning components 847

https://www.gnu.org/software/libc/

AWS IoT Greengrass Developer Guide, Version 2

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.1.12 - 2.1.14

The following table lists the dependencies for version 2.1.12 and 2.1.13 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.13.0 Soft

2.1.11

The following table lists the dependencies for version 2.1.11 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.12.0 Soft

2.1.10

The following table lists the dependencies for version 2.1.10 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.11.0 Soft

2.1.9

The following table lists the dependencies for version 2.1.9 of this component.

Machine learning components 848

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.10.0 Soft

2.1.8

The following table lists the dependencies for version 2.1.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.9.0 Soft

2.1.7

The following table lists the dependencies for version 2.1.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.8.0 Soft

2.1.6

The following table lists the dependencies for version 2.1.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.7.0 Soft

2.1.5

The following table lists the dependencies for version 2.1.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.6.0 Soft

Machine learning components 849

AWS IoT Greengrass Developer Guide, Version 2

2.1.4

The following table lists the dependencies for version 2.1.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Soft

2.1.3

The following table lists the dependencies for version 2.1.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Soft

2.1.2

The following table lists the dependencies for version 2.1.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Soft

2.1.1

The following table lists the dependencies for version 2.1.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.2.0 Soft

2.0.x

The following table lists the dependencies for version 2.0.x of this component.

Machine learning components 850

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus ~2.0.0 Soft

Configuration

This component doesn't have any configuration parameters.

Local log file

This component doesn't output logs.

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.1.13 Version updated for Greengrass nucleus 2.12.5 release.

2.1.12 Version updated for Greengrass nucleus version 2.12.0 release.

2.1.11 Version updated for Greengrass nucleus version 2.11.0 release.

2.1.10 Version updated for Greengrass nucleus version 2.10.0 release.

2.1.9 Version updated for Greengrass nucleus version 2.9.0 release.

2.1.8 Version updated for Greengrass nucleus version 2.8.0 release.

2.1.7 Version updated for Greengrass nucleus version 2.7.0 release.

2.1.6 Version updated for Greengrass nucleus version 2.6.0 release.

2.1.5 New features

• Adds sample image classification models for Windows core devices.

• Version updated for Greengrass nucleus version 2.5.0 release.

2.1.4 Version updated for Greengrass nucleus version 2.4.0 release.

Machine learning components 851

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.1.3 Version updated for Greengrass nucleus version 2.3.0 release.

2.1.2 Version updated for Greengrass nucleus version 2.2.0 release.

2.1.1 New features

• Add a sample ResNet-50 image classification model for Armv8
(AArch64) platforms. This extends machine learning support for
Greengrass core devices running NVIDIA Jetson, such as the Jetson
Nano.

2.0.4 Initial version.

DLR object detection model store

The DLR object detection model store is a machine learning model component that contains
pre-trained YOLOv3 models as Greengrass artifacts. The sample models used in this component
are fetched from the GluonCV Model Zoo and compiled using SageMaker AI Neo Deep Learning
Runtime.

The DLR object detection inference component uses this component as a dependency for
the model source. To use a custom-trained DLR model, create a custom version of this model
component, and include your custom model as a component artifact. You can use the recipe of this
component as a template to create custom model components.

Note

The name of the DLR object detection model store component varies depending
on its version. The component name for version 2.1.x and later versions is
variant.DLR.ObjectDetection.ModelStore. The component name for version 2.0.x
is variant.ObjectDetection.ModelStore.

Topics

• Versions

• Type

Machine learning components 852

https://cv.gluon.ai/model_zoo/index.html
https://github.com/neo-ai/neo-ai-dlr
https://github.com/neo-ai/neo-ai-dlr

AWS IoT Greengrass Developer Guide, Version 2

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

Versions

This component has the following versions:

• 2.1.x

• 2.0.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Requirements

This component has the following requirements:

• On Greengrass core devices running Amazon Linux 2 or Ubuntu 18.04, GNU C Library (glibc)
version 2.27 or later installed on the device.

• On Armv7l devices, such as Raspberry Pi, dependencies for OpenCV-Python installed on the
device. Run the following command to install the dependencies.

Machine learning components 853

https://www.gnu.org/software/libc/

AWS IoT Greengrass Developer Guide, Version 2

sudo apt-get install libopenjp2-7 libilmbase23 libopenexr-dev libavcodec-dev
 libavformat-dev libswscale-dev libv4l-dev libgtk-3-0 libwebp-dev

• Raspberry Pi devices that run Raspberry Pi OS Bullseye must meet the following requirements:

• NumPy 1.22.4 or later installed on the device. Raspberry Pi OS Bullseye includes an earlier
version of NumPy, so you can run the following command to upgrade NumPy on the device.

pip3 install --upgrade numpy

• The legacy camera stack enabled on the device. Raspberry Pi OS Bullseye includes a new
camera stack that is enabled by default and isn't compatible, so you must enable the legacy
camera stack.

To enable the legacy camera stack

1. Run the following command to open the Raspberry Pi configuration tool.

sudo raspi-config

2. Select Interface Options.

3. Select Legacy camera to enable the legacy camera stack.

4. Reboot the Raspberry Pi.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.1.13 and 2.1.14

The following table lists the dependencies for version 2.1.13 and 2.1.14 of this component.

Machine learning components 854

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.13.0 Soft

2.1.12

The following table lists the dependencies for version 2.1.12 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.12.0 Soft

2.1.11

The following table lists the dependencies for version 2.1.11 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.11.0 Soft

2.1.10

The following table lists the dependencies for version 2.1.10 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.10.0 Soft

2.1.9

The following table lists the dependencies for version 2.1.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.9.0 Soft

Machine learning components 855

AWS IoT Greengrass Developer Guide, Version 2

2.1.8

The following table lists the dependencies for version 2.1.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.8.0 Soft

2.1.7

The following table lists the dependencies for version 2.1.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.7.0 Soft

2.1.5 and 2.1.6

The following table lists the dependencies for versions 2.1.5 and 2.1.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.6.0 Soft

2.1.4

The following table lists the dependencies for version 2.1.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Soft

2.1.3

The following table lists the dependencies for version 2.1.3 of this component.

Machine learning components 856

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Soft

2.1.2

The following table lists the dependencies for version 2.1.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Soft

2.1.1

The following table lists the dependencies for version 2.1.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.2.0 Soft

2.0.x

The following table lists the dependencies for version 2.0.x of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus ~2.0.0 Soft

Configuration

This component doesn't have any configuration parameters.

Local log file

This component doesn't output logs.

Machine learning components 857

AWS IoT Greengrass Developer Guide, Version 2

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.1.14 Version updated for Greengrass nucleus 2.12.5 release.

2.1.13 Version updated for Greengrass nucleus version 2.12.0 release.

2.1.12 Version updated for Greengrass nucleus version 2.11.0 release.

2.1.11 Version updated for Greengrass nucleus version 2.10.0 release.

2.1.10 Version updated for Greengrass nucleus version 2.9.0 release.

2.1.9 Version updated for Greengrass nucleus version 2.8.0 release.

2.1.8 Version updated for Greengrass nucleus version 2.7.0 release.

2.1.7 Version updated for Greengrass nucleus version 2.6.0 release.

2.1.6 Adds a CPU model to fix an issue on Armv8 (AArch64) devices.

2.1.5 New features

• Adds sample object detection models for Windows core devices.

Bug fixes and improvements

• Version updated for Greengrass nucleus version 2.5.0 release.

2.1.4 Version updated for Greengrass nucleus version 2.4.0 release.

2.1.3 Version updated for Greengrass nucleus version 2.3.0 release.

2.1.2 Version updated for Greengrass nucleus version 2.2.0 release.

2.1.1 New features

• Add a sample YOLOv3 object detection model for Armv8 (AArch64)
 platforms. This extends machine learning support for Greengrass core
devices running NVIDIA Jetson, such as the Jetson Nano.

Machine learning components 858

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.0.4 Initial version.

DLR runtime

The DLR runtime component (variant.DLR) contains a script that installs Deep Learning Runtime
(DLR) and its dependencies in a virtual environment on your device. The DLR image classification
and DLR object detection components use this component as a dependency for installing DLR.
Component version 1.6.x installs DLR v1.6.0 and component version 1.3.x installs DLR v1.3.0.

To use a different runtime, you can use the recipe of this component as a template to create a
custom machine learning component.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Usage

• Local log file

• Changelog

Versions

This component has the following versions:

• 1.6.x

• 1.3.x

Machine learning components 859

https://github.com/neo-ai/neo-ai-dlr

AWS IoT Greengrass Developer Guide, Version 2

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Requirements

This component has the following requirements:

• On Greengrass core devices running Amazon Linux 2 or Ubuntu 18.04, GNU C Library (glibc)
version 2.27 or later installed on the device.

• On Armv7l devices, such as Raspberry Pi, dependencies for OpenCV-Python installed on the
device. Run the following command to install the dependencies.

sudo apt-get install libopenjp2-7 libilmbase23 libopenexr-dev libavcodec-dev
 libavformat-dev libswscale-dev libv4l-dev libgtk-3-0 libwebp-dev

• Raspberry Pi devices that run Raspberry Pi OS Bullseye must meet the following requirements:

• NumPy 1.22.4 or later installed on the device. Raspberry Pi OS Bullseye includes an earlier
version of NumPy, so you can run the following command to upgrade NumPy on the device.

pip3 install --upgrade numpy

• The legacy camera stack enabled on the device. Raspberry Pi OS Bullseye includes a new
camera stack that is enabled by default and isn't compatible, so you must enable the legacy
camera stack.

To enable the legacy camera stack

1. Run the following command to open the Raspberry Pi configuration tool.

Machine learning components 860

https://www.gnu.org/software/libc/

AWS IoT Greengrass Developer Guide, Version 2

sudo raspi-config

2. Select Interface Options.

3. Select Legacy camera to enable the legacy camera stack.

4. Reboot the Raspberry Pi.

Endpoints and ports

By default, this component uses an installer script to install packages using the apt, yum, brew,
and pip commands, depending on what platform the core device uses. This component must be
able to perform outbound requests to various package indexes and repositories to run the installer
script. To allow this component's outbound traffic through a proxy or firewall, you must identify
the endpoints for the package indexes and repositories where your core device connects to install.

Consider the following when you identify endpoints required for this component's install script:

• The endpoints depend on the core device's platform. For example, a core device that runs
Ubuntu uses apt rather than yum or brew. Additionally, devices that use the same package index
might have different source lists, so they might retrieve packages from different repositories.

• The endpoints might differ between multiple devices that use the same package index, because
each device has its own source lists that define where to retrieve packages.

• The endpoints might change over time. Each package index provides the URLs of the repositories
where you download packages, and the owner of a package can change what URLs the package
index provides.

For more information about the dependencies that this component installs, and how to disable the
installer script, see the UseInstaller configuration parameter.

For more information about endpoints and ports required for basic operation, see Allow device
traffic through a proxy or firewall.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the

Machine learning components 861

AWS IoT Greengrass Developer Guide, Version 2

component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

1.6.11 - 1.6.16

The following table lists the dependencies for versions 1.6.11 to 1.6.16 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <3.0.0 Soft

1.6.10

The following table lists the dependencies for version 1.6.10 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.9.0 Soft

1.6.9

The following table lists the dependencies for version 1.6.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.8.0 Soft

1.6.8

The following table lists the dependencies for version 1.6.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.7.0 Soft

Machine learning components 862

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

1.6.6 and 1.6.7

The following table lists the dependencies for versions 1.6.6 and 1.6.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.6.0 Soft

1.6.4 and 1.6.5

The following table lists the dependencies for versions 1.6.4 and 1.6.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Soft

1.6.3

The following table lists the dependencies for version 1.6.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Soft

1.6.2

The following table lists the dependencies for version 1.6.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Soft

1.6.1

The following table lists the dependencies for version 1.6.1 of this component.

Machine learning components 863

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.2.0 Soft

1.3.x

The following table lists the dependencies for version 1.3.x of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus ~2.0.0 Soft

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

MLRootPath

(Optional) The path of the folder on Linux core devices where inference components read
images and write inference results. You can modify this value to any location on your device to
which the user running this component has read/write access.

Default: /greengrass/v2/work/variant.DLR/greengrass_ml

WindowsMLRootPath

This feature is available in v1.6.6 and later of this component.

(Optional) The path of the folder on Windows core device where inference components read
images and write inference results. You can modify this value to any location on your device to
which the user running this component has read/write access.

Default: C:\greengrass\v2\\work\\variant.DLR\\greengrass_ml

 UseInstaller

(Optional) String value that defines whether to use the installer script in this component to
install DLR and its dependencies. Supported values are true and false.

Machine learning components 864

AWS IoT Greengrass Developer Guide, Version 2

Set this value to false if you want to use a custom script for DLR installation, or if you want to
include runtime dependencies in a pre-built Linux image. To use this component with the AWS-
provided DLR inference components, install the following libraries, including any dependencies,
and make them available to the system user, such as ggc_user, that runs the ML components.

• Python 3.7 or later, including pip for your version of Python.

• Deep Learning Runtime v1.6.0

• NumPy.

• OpenCV-Python.

• AWS IoT Device SDK v2 for Python.

• AWS Common Runtime (CRT) Python.

• Picamera (for Raspberry Pi devices only).

• awscam module (for AWS DeepLens devices).

• libGL (for Linux devices)

Default: true

Usage

Use this component with the UseInstaller configuration parameter set to true to install DLR
and its dependencies on your device. The component sets up a virtual environment on your device
that includes the OpenCV and NumPy libraries that are required for DLR.

Note

The installer script in this component also installs the latest versions of additional system
libraries that are required to configure the virtual environment on your device and to use
the installed machine learning framework. This might upgrade the existing system libraries
on your device. Review the following table for the list of libraries that this component
installs for each supported operating system. If you want to customize this installation
process, set the UseInstaller configuration parameter to false, and develop your own
installer script.

Machine learning components 865

https://www.python.org/downloads/
https://github.com/neo-ai/neo-ai-dlr
https://numpy.org/install/
https://pypi.org/project/opencv-python/
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/awslabs/aws-crt-python
https://picamera.readthedocs.io/en/release-1.13/
https://docs.aws.amazon.com/deeplens/latest/dg/deeplens-library-awscam-module.html

AWS IoT Greengrass Developer Guide, Version 2

Platform Libraries installed on the
device system

Libraries installed in the
virtual environment

Armv7l build-essential , cmake,
ca-certificates , git

setuptools , wheel

Amazon Linux 2 mesa-libGL None

Ubuntu wget None

When you deploy your inference component, this runtime component first verifies if your device
already has DLR and its dependencies installed, and if not, then it installs them for you.

Local log file

This component uses the following log file.

Linux

/greengrass/v2/logs/variant.DLR.log

Windows

C:\greengrass\v2\logs\variant.DLR.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/variant.DLR.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\variant.DLR.log -Tail 10 -Wait

Machine learning components 866

AWS IoT Greengrass Developer Guide, Version 2

Changelog

The following table describes the changes in each version of the component.

Version Changes

1.6.16 Version updated for Greengrass nucleus version 2.12.5.

1.6.12 Bug fixes and improvements

• Fixes the installation script for Windows OS users.

1.6.11 Version updated for Greengrass nucleus version 2.9.0 release.

1.6.10 Version updated for Greengrass nucleus version 2.8.0 release.

1.6.9 Version updated for Greengrass nucleus version 2.7.0 release.

1.6.8 Version updated for Greengrass nucleus version 2.6.0 release.

1.6.7 Bug fixes and improvements

• Updates the UseInstaller installation script to install libGL, which
isn't available by default on certain Linux platforms.

• Updates the UseInstaller installation script to always use Python
3.9 in this component's virtual environment. This change helps ensure
compatibility with other libraries.

1.6.6 New features

• Adds support for core devices that run Windows.

• Adds the new WindowsMLRootPath configuration parameter that
you can use to configure the inference results folder on Windows core
devices.

1.6.5 New features

• Adds the new UseInstaller configuration parameter that you can
use to disable the installation script in this component.

1.6.4 Version updated for Greengrass nucleus version 2.4.0 release.

1.6.3 Version updated for Greengrass nucleus version 2.3.0 release.

Machine learning components 867

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

1.6.2 Version updated for Greengrass nucleus version 2.2.0 release.

1.6.1 New features

• Install Deep Learning Runtime v1.6.0 and its dependencies.

• Add support for installing DLR on Armv8 (AArch64) platforms. This
extends machine learning support for Greengrass core devices running
NVIDIA Jetson, such as the Jetson Nano.

Bug fixes and improvements

• Install the AWS IoT Device SDK in the virtual environment to read the
component configuration and apply configuration changes.

• Additional minor bug fixes and improvements.

1.3.2 Initial version. Installs DLR v1.3.0.

TensorFlow Lite image classification

The TensorFlow Lite image classification component
(aws.greengrass.TensorFlowLiteImageClassification) contains sample inference
code to perform image classification inference using the TensorFlow Lite runtime and a sample
pre-trained MobileNet 1.0 quantized model. This component uses the variant TensorFlow Lite
image classification model store and the TensorFlow Lite runtime components as dependencies to
download the TensorFlow Lite runtime and the sample model.

To use this inference component with a custom-trained TensorFlow Lite model, create a custom
version of the dependent model store component. To use your own custom inference code, you can
use the recipe of this component as a template to create a custom inference component.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

Machine learning components 868

https://github.com/neo-ai/neo-ai-dlr
https://www.tensorflow.org/lite/guide/python

AWS IoT Greengrass Developer Guide, Version 2

• Configuration

• Local log file

• Changelog

Versions

This component has the following versions:

• 2.1.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Requirements

This component has the following requirements:

• On Greengrass core devices running Amazon Linux 2 or Ubuntu 18.04, GNU C Library (glibc)
version 2.27 or later installed on the device.

• On Armv7l devices, such as Raspberry Pi, dependencies for OpenCV-Python installed on the
device. Run the following command to install the dependencies.

sudo apt-get install libopenjp2-7 libilmbase23 libopenexr-dev libavcodec-dev
 libavformat-dev libswscale-dev libv4l-dev libgtk-3-0 libwebp-dev

• Raspberry Pi devices that run Raspberry Pi OS Bullseye must meet the following requirements:

• NumPy 1.22.4 or later installed on the device. Raspberry Pi OS Bullseye includes an earlier
version of NumPy, so you can run the following command to upgrade NumPy on the device.

Machine learning components 869

https://www.gnu.org/software/libc/

AWS IoT Greengrass Developer Guide, Version 2

pip3 install --upgrade numpy

• The legacy camera stack enabled on the device. Raspberry Pi OS Bullseye includes a new
camera stack that is enabled by default and isn't compatible, so you must enable the legacy
camera stack.

To enable the legacy camera stack

1. Run the following command to open the Raspberry Pi configuration tool.

sudo raspi-config

2. Select Interface Options.

3. Select Legacy camera to enable the legacy camera stack.

4. Reboot the Raspberry Pi.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.1.11 and 2.1.12

The following table lists the dependencies for version 2.1.11 and 2.1.12 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.13.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

Machine learning components 870

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

2.1.10

The following table lists the dependencies for version 2.1.10 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.12.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

2.1.9

The following table lists the dependencies for version 2.1.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.11.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

2.1.8

The following table lists the dependencies for version 2.1.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.10.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

Machine learning components 871

AWS IoT Greengrass Developer Guide, Version 2

2.1.7

The following table lists the dependencies for version 2.1.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.9.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

2.1.6

The following table lists the dependencies for version 2.1.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.8.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

2.1.5

The following table lists the dependencies for version 2.1.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.7.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

Machine learning components 872

AWS IoT Greengrass Developer Guide, Version 2

2.1.4

The following table lists the dependencies for version 2.1.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.6.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

2.1.3

The following table lists the dependencies for version 2.1.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

2.1.2

The following table lists the dependencies for version 2.1.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

Machine learning components 873

AWS IoT Greengrass Developer Guide, Version 2

2.1.1

The following table lists the dependencies for version 2.1.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

2.1.0

The following table lists the dependencies for version 2.1.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.2.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

accessControl

(Optional) The object that contains the authorization policy that allows the component to
publish messages to the default notifications topic.

Default:

{
 "aws.greengrass.ipc.mqttproxy": {

Machine learning components 874

AWS IoT Greengrass Developer Guide, Version 2

 "aws.greengrass.TensorFlowLiteImageClassification:mqttproxy:1": {
 "policyDescription": "Allows access to publish via topic ml/tflite/image-
classification.",
 "operations": [
 "aws.greengrass#PublishToIoTCore"
],
 "resources": [
 "ml/tflite/image-classification"
]
 }
 }
}

PublishResultsOnTopic

(Optional) The topic on which you want to publish the inference results. If you modify this
value, then you must also modify the value of resources in the accessControl parameter
to match your custom topic name.

Default: ml/tflite/image-classification

Accelerator

The accelerator that you want to use. Supported values are cpu and gpu.

The sample models in the dependent model component support only CPU acceleration. To use
GPU acceleration with a different custom model, create a custom model component to override
the public model component.

Default: cpu

ImageDirectory

(Optional) The path of the folder on the device where inference components read images. You
can modify this value to any location on your device to which you have read/write access.

Default: /greengrass/v2/packages/artifacts-unarchived/component-name/
image_classification/sample_images/

Note

If you set the value of UseCamera to true, then this configuration parameter is
ignored.

Machine learning components 875

AWS IoT Greengrass Developer Guide, Version 2

ImageName

(Optional) The name of the image that the inference component uses as an input to a make
prediction. The component looks for the image in the folder specified in ImageDirectory.
By default, the component uses the sample image in the default image directory. AWS IoT
Greengrass supports the following image formats: jpeg, jpg, png, and npy.

Default: cat.jpeg

Note

If you set the value of UseCamera to true, then this configuration parameter is
ignored.

InferenceInterval

(Optional) The time in seconds between each prediction made by the inference code. The
sample inference code runs indefinitely and repeats its predictions at the specified time interval.
For example, you can change this to a shorter interval if you want to use images taken by a
camera for real-time prediction.

Default: 3600

ModelResourceKey

(Optional) The models that are used in the dependent public model component. Modify this
parameter only if you override the public model component with a custom component.

Default:

{
 "model": "TensorFlowLite-Mobilenet"
}

UseCamera

(Optional) String value that defines whether to use images from a camera connected to the
Greengrass core device. Supported values are true and false.

When you set this value to true, the sample inference code accesses the camera on your
device and runs inference locally on the captured image. The values of the ImageName and

Machine learning components 876

AWS IoT Greengrass Developer Guide, Version 2

ImageDirectory parameters are ignored. Make sure that the user running this component has
read/write access to the location where the camera stores captured images.

Default: false

Note

When you view the recipe of this component, the UseCamera configuration parameter
doesn't appear in the default configuration. However, you can modify the value of this
parameter in a configuration merge update when you deploy the component.
When you set UseCamera to true, you must also create a symlink to enable the
inference component to access your camera from the virtual environment that is
created by the runtime component. For more information about using a camera with
the sample inference components, see Update component configurations.

Local log file

This component uses the following log file.

Linux

/greengrass/v2/logs/aws.greengrass.TensorFlowLiteImageClassification.log

Windows

C:\greengrass\v2\logs\aws.greengrass.TensorFlowLiteImageClassification.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/
aws.greengrass.TensorFlowLiteImageClassification.log

Machine learning components 877

AWS IoT Greengrass Developer Guide, Version 2

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs
\aws.greengrass.TensorFlowLiteImageClassification.log -Tail 10 -Wait

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.1.12 Version updated for Greengrass nucleus 2.12.5 release.

2.1.11 Version updated for Greengrass nucleus version 2.12.0 release.

2.1.10 Version updated for Greengrass nucleus version 2.11.0 release.

2.1.9 Version updated for Greengrass nucleus version 2.10.0 release.

2.1.8 Version updated for Greengrass nucleus version 2.9.0 release.

2.1.7 Version updated for Greengrass nucleus version 2.8.0 release.

2.1.6 Version updated for Greengrass nucleus version 2.7.0 release.

2.1.5 Version updated for Greengrass nucleus version 2.6.0 release.

2.1.4 Version updated for Greengrass nucleus version 2.5.0 release.

2.1.3 Version updated for Greengrass nucleus version 2.4.0 release.

2.1.2 Version updated for Greengrass nucleus version 2.3.0 release.

2.1.1 Version updated for Greengrass nucleus version 2.2.0 release.

2.1.0 Initial version.

Machine learning components 878

AWS IoT Greengrass Developer Guide, Version 2

TensorFlow Lite object detection

The TensorFlow Lite object detection component
(aws.greengrass.TensorFlowLiteObjectDetection) contains sample inference code to
perform object detection inference using TensorFlow Lite and a sample pre-trained Single Shot
Detection (SSD) MobileNet 1.0 model. This component uses the variant TensorFlow Lite object
detection model store and the TensorFlow Lite runtime components as dependencies to download
TensorFlow Lite and the sample model.

To use this inference component with a custom-trained TensorFlow Lite model, you can create a
custom version of the dependent model store component. To use your own custom inference code,
use the recipe of this component as a template to create a custom inference component.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

Versions

This component has the following versions:

• 2.1.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Machine learning components 879

https://www.tensorflow.org/lite/guide/python

AWS IoT Greengrass Developer Guide, Version 2

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Requirements

This component has the following requirements:

• On Greengrass core devices running Amazon Linux 2 or Ubuntu 18.04, GNU C Library (glibc)
version 2.27 or later installed on the device.

• On Armv7l devices, such as Raspberry Pi, dependencies for OpenCV-Python installed on the
device. Run the following command to install the dependencies.

sudo apt-get install libopenjp2-7 libilmbase23 libopenexr-dev libavcodec-dev
 libavformat-dev libswscale-dev libv4l-dev libgtk-3-0 libwebp-dev

• Raspberry Pi devices that run Raspberry Pi OS Bullseye must meet the following requirements:

• NumPy 1.22.4 or later installed on the device. Raspberry Pi OS Bullseye includes an earlier
version of NumPy, so you can run the following command to upgrade NumPy on the device.

pip3 install --upgrade numpy

• The legacy camera stack enabled on the device. Raspberry Pi OS Bullseye includes a new
camera stack that is enabled by default and isn't compatible, so you must enable the legacy
camera stack.

To enable the legacy camera stack

1. Run the following command to open the Raspberry Pi configuration tool.

sudo raspi-config

2. Select Interface Options.

3. Select Legacy camera to enable the legacy camera stack.

4. Reboot the Raspberry Pi.

Machine learning components 880

https://www.gnu.org/software/libc/

AWS IoT Greengrass Developer Guide, Version 2

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.1.11 and 2.1.12

The following table lists the dependencies for version 2.1.11 and 2.1.12 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.13.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

2.1.10

The following table lists the dependencies for version 2.1.10 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.12.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

2.1.9

The following table lists the dependencies for version 2.1.9 of this component.

Machine learning components 881

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.11.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

2.1.8

The following table lists the dependencies for version 2.1.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.10.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

2.1.7

The following table lists the dependencies for version 2.1.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.9.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

2.1.6

The following table lists the dependencies for version 2.1.6 of this component.

Machine learning components 882

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.8.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

2.1.5

The following table lists the dependencies for version 2.1.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.7.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

2.1.4

The following table lists the dependencies for version 2.1.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.6.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

2.1.3

The following table lists the dependencies for version 2.1.3 of this component.

Machine learning components 883

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

2.1.2

The following table lists the dependencies for version 2.1.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

2.1.1

The following table lists the dependencies for version 2.1.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

2.1.0

The following table lists the dependencies for version 2.1.0 of this component.

Machine learning components 884

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.2.0 Soft

TensorFlow Lite image
classification model store

>=2.1.0 <2.2.0 Hard

TensorFlow Lite >=2.5.0 <2.6.0 Hard

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

accessControl

(Optional) The object that contains the authorization policy that allows the component to
publish messages to the default notifications topic.

Default:

{
 "aws.greengrass.ipc.mqttproxy": {
 "aws.greengrass.TensorFlowLiteObjectDetection:mqttproxy:1": {
 "policyDescription": "Allows access to publish via topic ml/tflite/object-
detection.",
 "operations": [
 "aws.greengrass#PublishToIoTCore"
],
 "resources": [
 "ml/tflite/object-detection"
]
 }
 }
}

PublishResultsOnTopic

(Optional) The topic on which you want to publish the inference results. If you modify this
value, then you must also modify the value of resources in the accessControl parameter
to match your custom topic name.

Machine learning components 885

AWS IoT Greengrass Developer Guide, Version 2

Default: ml/tflite/object-detection

Accelerator

The accelerator that you want to use. Supported values are cpu and gpu.

The sample models in the dependent model component support only CPU acceleration. To use
GPU acceleration with a different custom model, create a custom model component to override
the public model component.

Default: cpu

ImageDirectory

(Optional) The path of the folder on the device where inference components read images. You
can modify this value to any location on your device to which you have read/write access.

Default: /greengrass/v2/packages/artifacts-unarchived/component-name/
object_detection/sample_images/

Note

If you set the value of UseCamera to true, then this configuration parameter is
ignored.

ImageName

(Optional) The name of the image that the inference component uses as an input to a make
prediction. The component looks for the image in the folder specified in ImageDirectory.
By default, the component uses the sample image in the default image directory. AWS IoT
Greengrass supports the following image formats: jpeg, jpg, png, and npy.

Default: objects.jpg

Note

If you set the value of UseCamera to true, then this configuration parameter is
ignored.

Machine learning components 886

AWS IoT Greengrass Developer Guide, Version 2

InferenceInterval

(Optional) The time in seconds between each prediction made by the inference code. The
sample inference code runs indefinitely and repeats its predictions at the specified time interval.
For example, you can change this to a shorter interval if you want to use images taken by a
camera for real-time prediction.

Default: 3600

ModelResourceKey

(Optional) The models that are used in the dependent public model component. Modify this
parameter only if you override the public model component with a custom component.

Default:

{
 "model": "TensorFlowLite-SSD"
}

UseCamera

(Optional) String value that defines whether to use images from a camera connected to the
Greengrass core device. Supported values are true and false.

When you set this value to true, the sample inference code accesses the camera on your
device and runs inference locally on the captured image. The values of the ImageName and
ImageDirectory parameters are ignored. Make sure that the user running this component has
read/write access to the location where the camera stores captured images.

Default: false

Note

When you view the recipe of this component, the UseCamera configuration parameter
doesn't appear in the default configuration. However, you can modify the value of this
parameter in a configuration merge update when you deploy the component.
When you set UseCamera to true, you must also create a symlink to enable the
inference component to access your camera from the virtual environment that is
created by the runtime component. For more information about using a camera with
the sample inference components, see Update component configurations.

Machine learning components 887

AWS IoT Greengrass Developer Guide, Version 2

Note

When you view the recipe of this component, the UseCamera configuration parameter
doesn't appear in the default configuration. However, you can modify the value of this
parameter in a configuration merge update when you deploy the component.
When you set UseCamera to true, you must also create a symlink to enable the inference
component to access your camera from the virtual environment that is created by the
runtime component. For more information about using a camera with the sample inference
components, see Update component configurations.

Local log file

This component uses the following log file.

Linux

/greengrass/v2/logs/aws.greengrass.TensorFlowLiteObjectDetection.log

Windows

C:\greengrass\v2\logs\aws.greengrass.TensorFlowLiteObjectDetection.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/
aws.greengrass.TensorFlowLiteObjectDetection.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs
\aws.greengrass.TensorFlowLiteObjectDetection.log -Tail 10 -Wait

Machine learning components 888

AWS IoT Greengrass Developer Guide, Version 2

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.1.12 Version updated for Greengrass nucleus 2.12.5 release.

2.1.11 Version updated for Greengrass nucleus version 2.12.0 release.

2.1.10 Version updated for Greengrass nucleus version 2.11.0 release.

2.1.9 Version updated for Greengrass nucleus version 2.10.0 release.

2.1.8 Version updated for Greengrass nucleus version 2.9.0 release.

2.1.7 Version updated for Greengrass nucleus version 2.8.0 release.

2.1.6 Version updated for Greengrass nucleus version 2.7.0 release.

2.1.5 Version updated for Greengrass nucleus version 2.6.0 release.

2.1.4 Version updated for Greengrass nucleus version 2.5.0 release.

2.1.3 Version updated for Greengrass nucleus version 2.4.0 release.

2.1.2 Version updated for Greengrass nucleus version 2.3.0 release.

2.1.1 Bug fixes and improvements

• Fixes an image scaling issue that resulted in inaccurate bounding boxes
in the sample TensorFlow Lite object detection inference results.

2.1.0 Initial version.

TensorFlow Lite image classification model store

The TensorFlow Lite image classification model store
(variant.TensorFlowLite.ImageClassification.ModelStore) is a machine learning
model component that contains a pre-trained MobileNet v1 model as a Greengrass artifact. The

Machine learning components 889

AWS IoT Greengrass Developer Guide, Version 2

sample model used in this component is fetched from the TensorFlow Hub and implemented using
TensorFlow Lite.

The TensorFlow Lite image classification inference component uses this component as a
dependency for the model source. To use a custom-trained TensorFlow Lite model, create a custom
version of this model component, and include your custom model as a component artifact. You can
use the recipe of this component as a template to create custom model components.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

Versions

This component has the following versions:

• 2.1.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

Machine learning components 890

https://tfhub.dev/
https://www.tensorflow.org/lite/guide/python

AWS IoT Greengrass Developer Guide, Version 2

• Windows

Requirements

This component has the following requirements:

• On Greengrass core devices running Amazon Linux 2 or Ubuntu 18.04, GNU C Library (glibc)
version 2.27 or later installed on the device.

• On Armv7l devices, such as Raspberry Pi, dependencies for OpenCV-Python installed on the
device. Run the following command to install the dependencies.

sudo apt-get install libopenjp2-7 libilmbase23 libopenexr-dev libavcodec-dev
 libavformat-dev libswscale-dev libv4l-dev libgtk-3-0 libwebp-dev

• Raspberry Pi devices that run Raspberry Pi OS Bullseye must meet the following requirements:

• NumPy 1.22.4 or later installed on the device. Raspberry Pi OS Bullseye includes an earlier
version of NumPy, so you can run the following command to upgrade NumPy on the device.

pip3 install --upgrade numpy

• The legacy camera stack enabled on the device. Raspberry Pi OS Bullseye includes a new
camera stack that is enabled by default and isn't compatible, so you must enable the legacy
camera stack.

To enable the legacy camera stack

1. Run the following command to open the Raspberry Pi configuration tool.

sudo raspi-config

2. Select Interface Options.

3. Select Legacy camera to enable the legacy camera stack.

4. Reboot the Raspberry Pi.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for

Machine learning components 891

https://www.gnu.org/software/libc/

AWS IoT Greengrass Developer Guide, Version 2

the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.1.11 and 2.1.12

The following table lists the dependencies for version 2.1.11 and 2.1.12 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.13.0 Soft

2.1.10

The following table lists the dependencies for version 2.1.10 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.12.0 Soft

2.1.9

The following table lists the dependencies for version 2.1.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.11.0 Soft

2.1.8

The following table lists the dependencies for version 2.1.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.10.0 Soft

Machine learning components 892

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

2.1.7

The following table lists the dependencies for version 2.1.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.9.0 Soft

2.1.6

The following table lists the dependencies for version 2.1.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.8.0 Soft

2.1.5

The following table lists the dependencies for version 2.1.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.7.0 Soft

2.1.4

The following table lists the dependencies for version 2.1.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.6.0 Soft

2.1.3

The following table lists the dependencies for version 2.1.3 of this component.

Machine learning components 893

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Soft

2.1.2

The following table lists the dependencies for version 2.1.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Soft

2.1.1

The following table lists the dependencies for version 2.1.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Soft

2.1.0

The following table lists the dependencies for version 2.1.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.2.0 Soft

Configuration

This component doesn't have any configuration parameters.

Local log file

This component doesn't output logs.

Machine learning components 894

AWS IoT Greengrass Developer Guide, Version 2

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.1.12 Version updated for Greengrass nucleus 2.12.5 release.

2.1.11 Version updated for Greengrass nucleus version 2.12.0 release.

2.1.10 Version updated for Greengrass nucleus version 2.11.0 release.

2.1.9 Version updated for Greengrass nucleus version 2.10.0 release.

2.1.8 Version updated for Greengrass nucleus version 2.9.0 release.

2.1.7 Version updated for Greengrass nucleus version 2.8.0 release.

2.1.6 Version updated for Greengrass nucleus version 2.7.0 release.

2.1.5 Version updated for Greengrass nucleus version 2.6.0 release.

2.1.4 Version updated for Greengrass nucleus version 2.5.0 release.

2.1.3 Version updated for Greengrass nucleus version 2.4.0 release.

2.1.2 Version updated for Greengrass nucleus version 2.3.0 release.

2.1.1 Version updated for Greengrass nucleus version 2.2.0 release.

2.1.0 Initial version.

TensorFlow Lite object detection model store

The TensorFlow Lite object detection model store
(variant.TensorFlowLite.ObjectDetection.ModelStore) is a machine learning model
component that contains a pre-trained Single Shot Detection (SSD) MobileNet model as a
Greengrass artifact. The sample model used in this component is fetched from the TensorFlow Hub
and implemented using TensorFlow Lite.

Machine learning components 895

https://tfhub.dev/
https://www.tensorflow.org/lite/guide/python

AWS IoT Greengrass Developer Guide, Version 2

The TensorFlow Lite object detection inference component uses this component as a dependency
for the model source. To use a custom-trained TensorFlow Lite model, create a custom version of
this model component, and include your custom model as a component artifact. You can use the
recipe of this component as a template to create custom model components.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

Versions

This component has the following versions:

• 2.1.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Machine learning components 896

AWS IoT Greengrass Developer Guide, Version 2

Requirements

This component has the following requirements:

• On Greengrass core devices running Amazon Linux 2 or Ubuntu 18.04, GNU C Library (glibc)
version 2.27 or later installed on the device.

• On Armv7l devices, such as Raspberry Pi, dependencies for OpenCV-Python installed on the
device. Run the following command to install the dependencies.

sudo apt-get install libopenjp2-7 libilmbase23 libopenexr-dev libavcodec-dev
 libavformat-dev libswscale-dev libv4l-dev libgtk-3-0 libwebp-dev

• Raspberry Pi devices that run Raspberry Pi OS Bullseye must meet the following requirements:

• NumPy 1.22.4 or later installed on the device. Raspberry Pi OS Bullseye includes an earlier
version of NumPy, so you can run the following command to upgrade NumPy on the device.

pip3 install --upgrade numpy

• The legacy camera stack enabled on the device. Raspberry Pi OS Bullseye includes a new
camera stack that is enabled by default and isn't compatible, so you must enable the legacy
camera stack.

To enable the legacy camera stack

1. Run the following command to open the Raspberry Pi configuration tool.

sudo raspi-config

2. Select Interface Options.

3. Select Legacy camera to enable the legacy camera stack.

4. Reboot the Raspberry Pi.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of

Machine learning components 897

https://www.gnu.org/software/libc/

AWS IoT Greengrass Developer Guide, Version 2

the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.1.11 and 2.1.12

The following table lists the dependencies for version 2.1.11 and 2.1.12 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.13.0 Soft

2.1.10

The following table lists the dependencies for version 2.1.10 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.12.0 Soft

2.1.9

The following table lists the dependencies for version 2.1.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.11.0 Soft

2.1.8

The following table lists the dependencies for version 2.1.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.10.0 Soft

Machine learning components 898

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

2.1.7

The following table lists the dependencies for version 2.1.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.9.0 Soft

2.1.6

The following table lists the dependencies for version 2.1.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.8.0 Soft

2.1.5

The following table lists the dependencies for version 2.1.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.7.0 Soft

2.1.4

The following table lists the dependencies for version 2.1.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.6.0 Soft

2.1.3

The following table lists the dependencies for version 2.1.3 of this component.

Machine learning components 899

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Soft

2.1.2

The following table lists the dependencies for version 2.1.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Soft

2.1.1

The following table lists the dependencies for version 2.1.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Soft

2.1.0

The following table lists the dependencies for version 2.1.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.2.0 Soft

Configuration

This component doesn't have any configuration parameters.

Local log file

This component doesn't output logs.

Machine learning components 900

AWS IoT Greengrass Developer Guide, Version 2

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.1.12 Version updated for Greengrass nucleus 2.12.5 release.

2.1.11 Version updated for Greengrass nucleus version 2.12.0 release.

2.1.10 Version updated for Greengrass nucleus version 2.11.0 release.

2.1.9 Version updated for Greengrass nucleus version 2.10.0 release.

2.1.8 Version updated for Greengrass nucleus version 2.9.0 release.

2.1.7 Version updated for Greengrass nucleus version 2.8.0 release.

2.1.6 Version updated for Greengrass nucleus version 2.7.0 release.

2.1.5 Version updated for Greengrass nucleus version 2.6.0 release.

2.1.4 Version updated for Greengrass nucleus version 2.5.0 release.

2.1.3 Version updated for Greengrass nucleus version 2.4.0 release.

2.1.2 Version updated for Greengrass nucleus version 2.3.0 release.

2.1.1 Version updated for Greengrass nucleus version 2.2.0 release.

2.1.0 Initial version.

TensorFlow Lite runtime

The TensorFlow Lite runtime component (variant.TensorFlowLite) contains a script that
installs TensorFlow Lite version 2.5.0 and its dependencies in a virtual environment on your device.
The TensorFlow Lite image classification and TensorFlow Lite object detection component use this
runtime component as a dependency for installing TensorFlow Lite.

Machine learning components 901

https://www.tensorflow.org/lite/guide/python

AWS IoT Greengrass Developer Guide, Version 2

Note

TensorFlow Lite runtime component v2.5.6 and later reinstalls existing installations of the
TensorFlow Lite runtime and its dependencies. This reinstallation helps to ensure that the
core device runs compatible versions of TensorFlow Lite and its dependencies.

To use a different runtime, you can use the recipe of this component as a template to create a
custom machine learning component.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Usage

• Local log file

• Changelog

Versions

This component has the following versions:

• 2.5.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

Machine learning components 902

AWS IoT Greengrass Developer Guide, Version 2

• Linux

• Windows

Requirements

This component has the following requirements:

• On Greengrass core devices running Amazon Linux 2 or Ubuntu 18.04, GNU C Library (glibc)
version 2.27 or later installed on the device.

• On Armv7l devices, such as Raspberry Pi, dependencies for OpenCV-Python installed on the
device. Run the following command to install the dependencies.

sudo apt-get install libopenjp2-7 libilmbase23 libopenexr-dev libavcodec-dev
 libavformat-dev libswscale-dev libv4l-dev libgtk-3-0 libwebp-dev

• Raspberry Pi devices that run Raspberry Pi OS Bullseye must meet the following requirements:

• NumPy 1.22.4 or later installed on the device. Raspberry Pi OS Bullseye includes an earlier
version of NumPy, so you can run the following command to upgrade NumPy on the device.

pip3 install --upgrade numpy

• The legacy camera stack enabled on the device. Raspberry Pi OS Bullseye includes a new
camera stack that is enabled by default and isn't compatible, so you must enable the legacy
camera stack.

To enable the legacy camera stack

1. Run the following command to open the Raspberry Pi configuration tool.

sudo raspi-config

2. Select Interface Options.

3. Select Legacy camera to enable the legacy camera stack.

4. Reboot the Raspberry Pi.

Machine learning components 903

https://www.gnu.org/software/libc/

AWS IoT Greengrass Developer Guide, Version 2

Endpoints and ports

By default, this component uses an installer script to install packages using the apt, yum, brew,
and pip commands, depending on what platform the core device uses. This component must be
able to perform outbound requests to various package indexes and repositories to run the installer
script. To allow this component's outbound traffic through a proxy or firewall, you must identify
the endpoints for the package indexes and repositories where your core device connects to install.

Consider the following when you identify endpoints required for this component's install script:

• The endpoints depend on the core device's platform. For example, a core device that runs
Ubuntu uses apt rather than yum or brew. Additionally, devices that use the same package index
might have different source lists, so they might retrieve packages from different repositories.

• The endpoints might differ between multiple devices that use the same package index, because
each device has its own source lists that define where to retrieve packages.

• The endpoints might change over time. Each package index provides the URLs of the repositories
where you download packages, and the owner of a package can change what URLs the package
index provides.

For more information about the dependencies that this component installs, and how to disable the
installer script, see the UseInstaller configuration parameter.

For more information about endpoints and ports required for basic operation, see Allow device
traffic through a proxy or firewall.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.5.14 and 2.5.15

The following table lists the dependencies for version 2.5.14 and 2.5.15 of this component.

Machine learning components 904

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.13.0 Soft

2.5.13

The following table lists the dependencies for version 2.5.13 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.12.0 Soft

2.5.12

The following table lists the dependencies for version 2.5.12 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.11.0 Soft

2.5.11

The following table lists the dependencies for version 2.5.11 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.10.0 Soft

2.5.10

The following table lists the dependencies for version 2.5.10 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.9.0 Soft

Machine learning components 905

AWS IoT Greengrass Developer Guide, Version 2

2.5.9

The following table lists the dependencies for version 2.5.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.8.0 Soft

2.5.8

The following table lists the dependencies for version 2.5.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.7.0 Soft

2.5.5 - 2.5.7

The following table lists the dependencies for versions 2.5.5 through 2.5.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.6.0 Soft

2.5.3 and 2.5.4

The following table lists the dependencies for versions 2.5.3 and 2.5.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Soft

2.5.2

The following table lists the dependencies for version 2.5.2 of this component.

Machine learning components 906

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Soft

2.5.1

The following table lists the dependencies for version 2.5.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Soft

2.5.0

The following table lists the dependencies for version 2.5.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.2.0 Soft

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

MLRootPath

(Optional) The path of the folder on Linux core devices where inference components read
images and write inference results. You can modify this value to any location on your device to
which the user running this component has read/write access.

Default: /greengrass/v2/work/variant.TensorFlowLite/greengrass_ml

WindowsMLRootPath

This feature is available in v1.6.6 and later of this component.

Machine learning components 907

AWS IoT Greengrass Developer Guide, Version 2

(Optional) The path of the folder on Windows core device where inference components read
images and write inference results. You can modify this value to any location on your device to
which the user running this component has read/write access.

Default: C:\greengrass\v2\\work\\variant.DLR\\greengrass_ml

 UseInstaller

(Optional) String value that defines whether to use the installer script in this component to
install TensorFlow Lite and its dependencies. Supported values are true and false.

Set this value to false if you want to use a custom script for TensorFlow Lite installation, or if
you want to include runtime dependencies in a pre-built Linux image. To use this component
with the AWS-provided TensorFlow Lite inference components, install the following libraries,
including any dependencies, and make them available to the system user, such as ggc_user,
that runs the ML components.

• Python 3.8 or later, including pip for your version of Python

• TensorFlow Lite v2.5.0

• NumPy

• OpenCV-Python

• AWS IoT Device SDK v2 for Python

• AWS Common Runtime (CRT) Python

• Picamera (for Raspberry Pi devices)

• awscam module (for AWS DeepLens devices)

• libGL (for Linux devices)

Default: true

Usage

Use this component with the UseInstaller configuration parameter set to true to install
TensorFlow Lite and its dependencies on your device. The component sets up a virtual environment
on your device that includes the OpenCV and NumPy libraries that are required for TensorFlow Lite.

Note

The installer script in this component also installs the latest versions of additional system
libraries that are required to configure the virtual environment on your device and to use

Machine learning components 908

https://www.python.org/downloads/
https://www.tensorflow.org/lite/guide/python
https://numpy.org/install/
https://pypi.org/project/opencv-python/
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/awslabs/aws-crt-python
https://picamera.readthedocs.io/en/release-1.13/
https://docs.aws.amazon.com/deeplens/latest/dg/deeplens-library-awscam-module.html

AWS IoT Greengrass Developer Guide, Version 2

the installed machine learning framework. This might upgrade the existing system libraries
on your device. Review the following table for the list of libraries that this component
installs for each supported operating system. If you want to customize this installation
process, set the UseInstaller configuration parameter to false, and develop your own
installer script.

Platform Libraries installed on the
device system

Libraries installed in the
virtual environment

Armv7l build-essential , cmake,
ca-certificates , git

setuptools , wheel

Amazon Linux 2 mesa-libGL None

Ubuntu wget None

When you deploy your inference component, this runtime component first verifies if your device
already has TensorFlow Lite and its dependencies installed. If not, then the runtime component
installs them for you.

Local log file

This component uses the following log file.

Linux

/greengrass/v2/logs/variant.TensorFlowLite.log

Windows

C:\greengrass\v2\logs\variant.TensorFlowLite.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Machine learning components 909

AWS IoT Greengrass Developer Guide, Version 2

Linux

sudo tail -f /greengrass/v2/logs/variant.TensorFlowLite.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\variant.TensorFlowLite.log -Tail 10 -Wait

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.5.15 Version updated for Greengrass nucleus 2.12.5 release.

2.5.14 Version updated for Greengrass nucleus version 2.12.0 release.

2.5.13 Version updated for Greengrass nucleus version 2.11.0 release.

2.5.12 Version updated for Greengrass nucleus version 2.10.0 release.

2.5.11 Version updated for Greengrass nucleus version 2.9.0 release.

2.5.10 Version updated for Greengrass nucleus version 2.8.0 release.

2.5.9 Version updated for Greengrass nucleus version 2.7.0 release.

2.5.8 Version updated for Greengrass nucleus version 2.6.0 release.

2.5.7 Bug fixes and improvements

• Updates the UseInstaller installation script to install libGL, which
isn't available by default on certain Linux platforms.

• Updates the UseInstaller installation script to always use Python
3.9 in this component's virtual environment. This change helps ensure
compatibility with other libraries.

Machine learning components 910

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.5.6 Bug fixes and improvements

• Updates this component to install the latest patch of TensorFlow
Lite 2.5.0 (tflite-runtime-2.5.0.post1), so you can use this
component with Python 3.9. If this component fails to install that
patch, it installs tflite-runtime-2.5.0 instead.

• Updates this component to reinstall existing installations of TensorFlo
w Lite and its dependencies. This change helps ensure that the core
device runs compatible versions of TensorFlow Lite and its dependenc
ies.

2.5.5 New features

• Adds support for core devices that run Windows.

• Adds the new WindowsMLRootPath configuration parameter that
you can use to configure the inference results folder on Windows core
devices.

2.5.4 New features

• Adds the new UseInstaller configuration parameter that lets you
disable the installation script in this component.

2.5.3 Version updated for Greengrass nucleus version 2.4.0 release.

2.5.2 Version updated for Greengrass nucleus version 2.3.0 release.

2.5.1 Version updated for Greengrass nucleus version 2.2.0 release.

2.5.0 Initial version.

Modbus-RTU protocol adapter

The Modbus-RTU protocol adapter component (aws.greengrass.Modbus) polls information
from local Modbus RTU devices.

To request information from a local Modbus RTU device with this component, publish a message
to the topic where this component subscribes. In the message, specify the Modbus RTU request to

Modbus-RTU protocol adapter 911

AWS IoT Greengrass Developer Guide, Version 2

send to a device. Then, this component publishes a response that contains the result of the Modbus
RTU request.

Note

This component provides similar functionality to the Modbus RTU protocol adapter
connector in AWS IoT Greengrass V1. For more information, see Modbus RTU protocol
adapter connector in the AWS IoT Greengrass V1 Developer Guide.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Input data

• Output data

• Modbus RTU requests and responses

• Local log file

• Licenses

• Changelog

Versions

This component has the following versions:

• 2.1.x

• 2.0.x

Type

This component is a Lambda component (aws.greengrass.lambda). The Greengrass nucleus
runs this component's Lambda function using the Lambda launcher component.

Modbus-RTU protocol adapter 912

https://docs.aws.amazon.com/greengrass/latest/developerguide/modbus-protocol-adapter-connector.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/modbus-protocol-adapter-connector.html

AWS IoT Greengrass Developer Guide, Version 2

For more information, see Component types.

Operating system

This component can be installed on Linux core devices only.

Requirements

This component has the following requirements:

• Your core device must meet the requirements to run Lambda functions. If you want the core
device to run containerized Lambda functions, the device must meet the requirements to do so.
For more information, see Lambda function requirements.

• Python version 3.7 installed on the core device and added to the PATH environment variable.

• A physical connection between the AWS IoT Greengrass core device and the Modbus devices. The
core device must be physically connected to the Modbus RTU network through a serial port, such
as a USB port.

• To receive output data from this component, you must merge the following
configuration update for the legacy subscription router component
(aws.greengrass.LegacySubscriptionRouter) when you deploy this component. This
configuration specifies the topic where this component publishes responses.

Legacy subscription router v2.1.x

{
 "subscriptions": {
 "aws-greengrass-modbus": {
 "id": "aws-greengrass-modbus",
 "source": "component:aws.greengrass.Modbus",
 "subject": "modbus/adapter/response",
 "target": "cloud"
 }
 }
}

Legacy subscription router v2.0.x

{
 "subscriptions": {
 "aws-greengrass-modbus": {
 "id": "aws-greengrass-modbus",

Modbus-RTU protocol adapter 913

https://www.python.org/

AWS IoT Greengrass Developer Guide, Version 2

 "source": "arn:aws:lambda:region:aws:function:aws-greengrass-
modbus:version",
 "subject": "modbus/adapter/response",
 "target": "cloud"
 }
 }
}

• Replace region with the AWS Region that you use.

• Replace version with the version of the Lambda function that this component runs.
To find the Lambda function version, you must view the recipe for the version of this
component that you want to deploy. Open this component's details page in the AWS IoT
Greengrass console, and look for the Lambda function key-value pair. This key-value pair
contains the name and version of the Lambda function.

Important

You must update the Lambda function version on the legacy subscription router
every time you deploy this component. This ensures that you use the correct Lambda
function version for the component version that you deploy.

For more information, see Create deployments.

• The Modbus-RTU protocol adapter is supported to run in a VPC.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.1.10

The following table lists the dependencies for version 2.1.9 of this component.

Modbus-RTU protocol adapter 914

https://console.aws.amazon.com/greengrass
https://console.aws.amazon.com/greengrass
https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.15.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.9

The following table lists the dependencies for version 2.1.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.14.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.8

The following table lists the dependencies for version 2.1.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.13.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

Modbus-RTU protocol adapter 915

AWS IoT Greengrass Developer Guide, Version 2

2.1.7

The following table lists the dependencies for version 2.1.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.12.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.6

The following table lists the dependencies for version 2.1.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.11.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.4 and 2.1.5

The following table lists the dependencies for versions 2.1.4 and 2.1.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.10.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Modbus-RTU protocol adapter 916

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Token exchange service ^2.0.0 Hard

2.1.3

The following table lists the dependencies for version 2.1.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.9.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.2

The following table lists the dependencies for version 2.1.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.8.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.1

The following table lists the dependencies for version 2.1.1 of this component.

Modbus-RTU protocol adapter 917

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.7.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.8 and 2.1.0

The following table lists the dependencies for versions 2.0.8 and 2.1.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.6.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.7

The following table lists the dependencies for version 2.0.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

Modbus-RTU protocol adapter 918

AWS IoT Greengrass Developer Guide, Version 2

2.0.6

The following table lists the dependencies for version 2.0.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.5

The following table lists the dependencies for version 2.0.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.4

The following table lists the dependencies for version 2.0.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.2.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Modbus-RTU protocol adapter 919

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Token exchange service ^2.0.0 Hard

2.0.3

The following table lists the dependencies for version 2.0.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.3 <2.1.0 Hard

Lambda launcher >=1.0.0 Hard

Lambda runtimes >=1.0.0 Soft

Token exchange service >=1.0.0 Hard

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

Note

This component's default configuration includes Lambda function parameters. We
recommend that you edit only the following parameters to configure this component on
your devices.

v2.1.x

lambdaParams

An object that contains the parameters for this component's Lambda function. This object
contains the following information:

Modbus-RTU protocol adapter 920

AWS IoT Greengrass Developer Guide, Version 2

EnvironmentVariables

An object that contains the Lambda function's parameters. This object contains the
following information:

ModbusLocalPort

The absolute path to the physical Modbus serial port on the core device, such as /
dev/ttyS2.

To run this component in a container, you must define this path as a system device (in
containerParams.devices) that the component can access. This component runs
in a container by default.

Note

This component must have read/write access to the device.

ModbusBaudRate

(Optional) A string value that specifies the baud rate for serial communication with
local Modbus TCP devices.

Default: 9600

ModbusByteSize

(Optional) A string value that specifies the size of a byte in serial communication with
local Modbus TCP devices. Choose 5, 6, 7, or 8 bits.

Default: 8

ModbusParity

(Optional) The parity mode to use to verify data integrity in serial communication
with local Modbus TCP devices.

• E – Verify data integrity with even parity.

• O – Verify data integrity with odd parity.

• N – Don't verify data integrity.

Default: N

Modbus-RTU protocol adapter 921

AWS IoT Greengrass Developer Guide, Version 2

ModbusStopBits

(Optional) A string value that specifies the number of bits that indicate the end of a
byte in serial communication with local Modbus TCP devices.

Default: 1

containerMode

(Optional) The containerization mode for this component. Choose from the following
options:

• GreengrassContainer – The component runs in an isolated runtime environment inside
the AWS IoT Greengrass container.

If you specify this option, you must specify a system device (in
containerParams.devices) to give the container access to the Modbus device.

• NoContainer – The component doesn't run in an isolated runtime environment.

Default: GreengrassContainer

containerParams

(Optional) An object that contains the container parameters for this component.
The component uses these parameters if you specify GreengrassContainer for
containerMode.

This object contains the following information:

memorySize

(Optional) The amount of memory (in kilobytes) to allocate to the component.

Defaults to 512 MB (525,312 KB).

devices

(Optional) An object that specifies the system devices that the component can access in a
container.

Important

To run this component in a container, you must specify the system device that
you configure in the ModbusLocalPort environment variable.

Modbus-RTU protocol adapter 922

AWS IoT Greengrass Developer Guide, Version 2

This object contains the following information:

0 – This is an array index as a string.

An object that contains the following information:

path

The path to the system device on the core device. This must have the same value
as the value that you configure for ModbusLocalPort.

permission

(Optional) The permission to access the system device from the container. This
value must be rw, which specifies that the component has read/write access to the
system device.

Default: rw

addGroupOwner

(Optional) Whether or not to add the system group that runs the component as an
owner of the system device.

Default: true

pubsubTopics

(Optional) An object that contains the topics where the component subscribes to receive
messages. You can specify each topic and whether the component subscribes to MQTT
topics from AWS IoT Core or local publish/subscribe topics.

This object contains the following information:

0 – This is an array index as a string.

An object that contains the following information:

type

(Optional) The type of publish/subscribe messaging that this component uses to
subscribe to messages. Choose from the following options:

• PUB_SUB – Subscribe to local publish/subscribe messages. If you choose this
option, the topic can't contain MQTT wildcards. For more information about how to

Modbus-RTU protocol adapter 923

AWS IoT Greengrass Developer Guide, Version 2

send messages from custom component when you specify this option, see Publish/
subscribe local messages.

• IOT_CORE – Subscribe to AWS IoT Core MQTT messages. If you choose this option,
the topic can contain MQTT wildcards. For more information about how to send
messages from custom components when you specify this option, see Publish/
subscribe AWS IoT Core MQTT messages.

Default: PUB_SUB

topic

(Optional) The topic to which the component subscribes to receive messages. If you
specify IotCore for type, you can use MQTT wildcards (+ and #) in this topic.

Example Example: Configuration merge update (container mode)

{
 "lambdaExecutionParameters": {
 "EnvironmentVariables": {
 "ModbusLocalPort": "/dev/ttyS2"
 }
 },
 "containerMode": "GreengrassContainer",
 "containerParams": {
 "devices": {
 "0": {
 "path": "/dev/ttyS2",
 "permission": "rw",
 "addGroupOwner": true
 }
 }
 }
}

Example Example: Configuration merge update (no container mode)

{
 "lambdaExecutionParameters": {
 "EnvironmentVariables": {
 "ModbusLocalPort": "/dev/ttyS2"
 }

Modbus-RTU protocol adapter 924

AWS IoT Greengrass Developer Guide, Version 2

 },
 "containerMode": "NoContainer"
}

v2.0.x

lambdaParams

An object that contains the parameters for this component's Lambda function. This object
contains the following information:

EnvironmentVariables

An object that contains the Lambda function's parameters. This object contains the
following information:

ModbusLocalPort

The absolute path to the physical Modbus serial port on the core device, such as /
dev/ttyS2.

To run this component in a container, you must define this path as a system device (in
containerParams.devices) that the component can access. This component runs
in a container by default.

Note

This component must have read/write access to the device.

containerMode

(Optional) The containerization mode for this component. Choose from the following
options:

• GreengrassContainer – The component runs in an isolated runtime environment inside
the AWS IoT Greengrass container.

If you specify this option, you must specify a system device (in
containerParams.devices) to give the container access to the Modbus device.

• NoContainer – The component doesn't run in an isolated runtime environment.

Modbus-RTU protocol adapter 925

AWS IoT Greengrass Developer Guide, Version 2

Default: GreengrassContainer

containerParams

(Optional) An object that contains the container parameters for this component.
The component uses these parameters if you specify GreengrassContainer for
containerMode.

This object contains the following information:

memorySize

(Optional) The amount of memory (in kilobytes) to allocate to the component.

Defaults to 512 MB (525,312 KB).

devices

(Optional) An object that specifies the system devices that the component can access in a
container.

Important

To run this component in a container, you must specify the system device that
you configure in the ModbusLocalPort environment variable.

This object contains the following information:

0 – This is an array index as a string.

An object that contains the following information:

path

The path to the system device on the core device. This must have the same value
as the value that you configure for ModbusLocalPort.

permission

(Optional) The permission to access the system device from the container. This
value must be rw, which specifies that the component has read/write access to the
system device.

Default: rw

Modbus-RTU protocol adapter 926

AWS IoT Greengrass Developer Guide, Version 2

addGroupOwner

(Optional) Whether or not to add the system group that runs the component as an
owner of the system device.

Default: true

pubsubTopics

(Optional) An object that contains the topics where the component subscribes to receive
messages. You can specify each topic and whether the component subscribes to MQTT
topics from AWS IoT Core or local publish/subscribe topics.

This object contains the following information:

0 – This is an array index as a string.

An object that contains the following information:

type

(Optional) The type of publish/subscribe messaging that this component uses to
subscribe to messages. Choose from the following options:

• PUB_SUB – Subscribe to local publish/subscribe messages. If you choose this
option, the topic can't contain MQTT wildcards. For more information about how to
send messages from custom component when you specify this option, see Publish/
subscribe local messages.

• IOT_CORE – Subscribe to AWS IoT Core MQTT messages. If you choose this option,
the topic can contain MQTT wildcards. For more information about how to send
messages from custom components when you specify this option, see Publish/
subscribe AWS IoT Core MQTT messages.

Default: PUB_SUB

topic

(Optional) The topic to which the component subscribes to receive messages. If you
specify IotCore for type, you can use MQTT wildcards (+ and #) in this topic.

Example Example: Configuration merge update (container mode)

{
 "lambdaExecutionParameters": {

Modbus-RTU protocol adapter 927

AWS IoT Greengrass Developer Guide, Version 2

 "EnvironmentVariables": {
 "ModbusLocalPort": "/dev/ttyS2"
 }
 },
 "containerMode": "GreengrassContainer",
 "containerParams": {
 "devices": {
 "0": {
 "path": "/dev/ttyS2",
 "permission": "rw",
 "addGroupOwner": true
 }
 }
 }
}

Example Example: Configuration merge update (no container mode)

{
 "lambdaExecutionParameters": {
 "EnvironmentVariables": {
 "ModbusLocalPort": "/dev/ttyS2"
 }
 },
 "containerMode": "NoContainer"
}

Input data

This component accepts Modbus RTU request parameters on the following topic and sends
the Modbus RTU request to the device. By default, this component subscribes to local publish/
subscribe messages. For more information about how to publish messages to this component from
your custom components, see Publish/subscribe local messages.

Default topic (local publish/subscribe): modbus/adapter/request

The message accepts the following properties. Input messages must be in JSON format.

request

The parameters for the Modbus RTU request to send.

Modbus-RTU protocol adapter 928

AWS IoT Greengrass Developer Guide, Version 2

The shape of the request message depends on the type of Modbus RTU request that it
represents. The following properties are required for all requests.

Type: object that contains the following information:

operation

The name of the operation to run. For example, specify ReadCoilsRequest to read coils on
a Modbus RTU device. For more information about supported operations, see Modbus RTU
requests and responses.

Type: string

device

The target device of the request.

This value must be an integer between 0 and 247.

Type: integer

The other parameters to include in the request depend on the operation. This component
handles the cyclic redundancy check (CRC) to verify data requests for you.

Note

If you request includes an address property, you must specify its value as an integer.
For example, "address": 1.

id

An arbitrary ID for the request. Use this property to map an input request to an output
response. When you specify this property, the component sets the id property in the response
object to this value.

Type: string

Example Example input: Read coils request

{
 "request": {
 "operation": "ReadCoilsRequest",

Modbus-RTU protocol adapter 929

https://en.wikipedia.org/wiki/Cyclic_redundancy_check

AWS IoT Greengrass Developer Guide, Version 2

 "device": 1,
 "address": 1,
 "count": 1
 },
 "id": "MyRequest"
}

Output data

This component publishes responses as output data on the following MQTT topic by default. You
must specify this topic as the subject in the configuration for the legacy subscription router
component. For more information about how to subscribe to messages on this topic in your custom
components, see Publish/subscribe AWS IoT Core MQTT messages.

Default topic (AWS IoT Core MQTT): modbus/adapter/response

The shape of the response message depends on the request operation and the response status. For
examples, see Example requests and responses.

Every response includes the following properties:

response

The response from the Modbus RTU device.

Type: object that contains the following information:

status

The status of the request. The status can be one of the following values:

• Success – The request was valid, the component sent the request to the Modbus RTU
network, and the Modbus RTU network returned a response.

• Exception – The request was valid, the component sent the request to the Modbus RTU
network, and the Modbus RTU network returned an exception. For more information, see
Response status: Exception.

• No Response – The request was invalid, and the component caught the error before it
sent the request to the Modbus RTU network. For more information, see Response status:
No response.

operation

The operation that the component requested.

Modbus-RTU protocol adapter 930

AWS IoT Greengrass Developer Guide, Version 2

device

The device where the component sent the request.

payload

The response from the Modbus RTU device. If the status is No Response, this object
contains only an error property with the description of the error (for example, [Input/
Output] No Response received from the remote unit).

id

The ID of the request, which you can use to identify which response corresponds to which
request.

Note

A response for a write operation is simply an echo of the request. Although write responses
don't include meaningful information, it's a good practice to check the status of the
response to see if the request succeeds or fails.

Example Example output: Success

{
 "response" : {
 "status" : "success",
 "device": 1,
 "operation": "ReadCoilsRequest",
 "payload": {
 "function_code": 1,
 "bits": [1]
 }
 },
 "id" : "MyRequest"
}

Example Example output: Failure

{
 "response" : {
 "status" : "fail",

Modbus-RTU protocol adapter 931

AWS IoT Greengrass Developer Guide, Version 2

 "error_message": "Internal Error",
 "error": "Exception",
 "device": 1,
 "operation": "ReadCoilsRequest",
 "payload": {
 "function_code": 129,
 "exception_code": 2
 }
 },
 "id" : "MyRequest"
}

For more examples, see Example requests and responses.

Modbus RTU requests and responses

This connector accepts Modbus RTU request parameters as input data and publishes responses as
output data.

The following common operations are supported.

Operation name in request Function code in response

ReadCoilsRequest 01

ReadDiscreteInputsRequest 02

ReadHoldingRegistersRequest 03

ReadInputRegistersRequest 04

WriteSingleCoilRequest 05

WriteSingleRegisterRequest 06

WriteMultipleCoilsRequest 15

WriteMultipleRegistersRequest 16

MaskWriteRegisterRequest 22

ReadWriteMultipleRegistersRequest 23

Modbus-RTU protocol adapter 932

AWS IoT Greengrass Developer Guide, Version 2

Example requests and responses

The following are example requests and responses for supported operations.

Read coils

Request example:

{
 "request": {
 "operation": "ReadCoilsRequest",
 "device": 1,
 "address": 1,
 "count": 1
 },
 "id": "TestRequest"
}

Response example:

{
 "response": {
 "status": "success",
 "device": 1,
 "operation": "ReadCoilsRequest",
 "payload": {
 "function_code": 1,
 "bits": [1]
 }
 },
 "id" : "TestRequest"
}

Read discrete inputs

Request example:

{
 "request": {
 "operation": "ReadDiscreteInputsRequest",
 "device": 1,
 "address": 1,
 "count": 1

Modbus-RTU protocol adapter 933

AWS IoT Greengrass Developer Guide, Version 2

 },
 "id": "TestRequest"
}

Response example:

{
 "response": {
 "status": "success",
 "device": 1,
 "operation": "ReadDiscreteInputsRequest",
 "payload": {
 "function_code": 2,
 "bits": [1]
 }
 },
 "id" : "TestRequest"
}

Read holding registers

Request example:

{
 "request": {
 "operation": "ReadHoldingRegistersRequest",
 "device": 1,
 "address": 1,
 "count": 1
 },
 "id": "TestRequest"
}

Response example:

{
 "response": {
 "status": "success",
 "device": 1,
 "operation": "ReadHoldingRegistersRequest",
 "payload": {
 "function_code": 3,

Modbus-RTU protocol adapter 934

AWS IoT Greengrass Developer Guide, Version 2

 "registers": [20,30]
 }
 },
 "id" : "TestRequest"
}

Read input registers

Request example:

{
 "request": {
 "operation": "ReadInputRegistersRequest",
 "device": 1,
 "address": 1,
 "count": 1
 },
 "id": "TestRequest"
}

Write single coil

Request example:

{
 "request": {
 "operation": "WriteSingleCoilRequest",
 "device": 1,
 "address": 1,
 "value": 1
 },
 "id": "TestRequest"
}

Response example:

{
 "response": {
 "status": "success",
 "device": 1,
 "operation": "WriteSingleCoilRequest",
 "payload": {
 "function_code": 5,

Modbus-RTU protocol adapter 935

AWS IoT Greengrass Developer Guide, Version 2

 "address": 1,
 "value": true
 }
 },
 "id" : "TestRequest"
}

Write single register

Request example:

{
 "request": {
 "operation": "WriteSingleRegisterRequest",
 "device": 1,
 "address": 1,
 "value": 1
 },
 "id": "TestRequest"
}

Write multiple coils

Request example:

{
 "request": {
 "operation": "WriteMultipleCoilsRequest",
 "device": 1,
 "address": 1,
 "values": [1,0,0,1]
 },
 "id": "TestRequest"
}

Response example:

{
 "response": {
 "status": "success",
 "device": 1,
 "operation": "WriteMultipleCoilsRequest",
 "payload": {

Modbus-RTU protocol adapter 936

AWS IoT Greengrass Developer Guide, Version 2

 "function_code": 15,
 "address": 1,
 "count": 4
 }
 },
 "id" : "TestRequest"
}

Write multiple registers

Request example:

{
 "request": {
 "operation": "WriteMultipleRegistersRequest",
 "device": 1,
 "address": 1,
 "values": [20,30,10]
 },
 "id": "TestRequest"
}

Response example:

{
 "response": {
 "status": "success",
 "device": 1,
 "operation": "WriteMultipleRegistersRequest",
 "payload": {
 "function_code": 23,
 "address": 1,
 "count": 3
 }
 },
 "id" : "TestRequest"
}

Mask write register

Request example:

{

Modbus-RTU protocol adapter 937

AWS IoT Greengrass Developer Guide, Version 2

 "request": {
 "operation": "MaskWriteRegisterRequest",
 "device": 1,
 "address": 1,
 "and_mask": 175,
 "or_mask": 1
 },
 "id": "TestRequest"
}

Response example:

{
 "response": {
 "status": "success",
 "device": 1,
 "operation": "MaskWriteRegisterRequest",
 "payload": {
 "function_code": 22,
 "and_mask": 0,
 "or_mask": 8
 }
 },
 "id" : "TestRequest"
}

Read write multiple registers

Request example:

{
 "request": {
 "operation": "ReadWriteMultipleRegistersRequest",
 "device": 1,
 "read_address": 1,
 "read_count": 2,
 "write_address": 3,
 "write_registers": [20,30,40]
 },
 "id": "TestRequest"
}

Response example:

Modbus-RTU protocol adapter 938

AWS IoT Greengrass Developer Guide, Version 2

{
 "response": {
 "status": "success",
 "device": 1,
 "operation": "ReadWriteMultipleRegistersRequest",
 "payload": {
 "function_code": 23,
 "registers": [10,20,10,20]
 }
 },
 "id" : "TestRequest"
}

Note

The response includes the registers that the component reads.

Response status: Exception

Exceptions can occur when the request format is valid, but the request is not completed
successfully. In this case, the response contains the following information:

• The status is set to Exception.

• The function_code equals the function code of the request + 128.

• The exception_code contains the exception code. For more information, see Modbus exception
codes.

Example:

{
 "response": {
 "status": "fail",
 "error_message": "Internal Error",
 "error": "Exception",
 "device": 1,
 "operation": "ReadCoilsRequest",
 "payload": {
 "function_code": 129,
 "exception_code": 2

Modbus-RTU protocol adapter 939

AWS IoT Greengrass Developer Guide, Version 2

 }
 },
 "id": "TestRequest"
}

Response status: No response

This connector performs validation checks on the Modbus request. For example, it checks for
invalid formats and missing fields. If the validation fails, the connector doesn't send the request.
Instead, it returns a response that contains the following information:

• The status is set to No Response.

• The error contains the error reason.

• The error_message contains the error message.

Examples:

{
 "response": {
 "status": "fail",
 "error_message": "Invalid address field. Expected <type 'int'>, got <type 'str'>",
 "error": "No Response",
 "device": 1,
 "operation": "ReadCoilsRequest",
 "payload": {
 "error": "Invalid address field. Expected Expected <type 'int'>, got <type
 'str'>"
 }
 },
 "id": "TestRequest"
}

If the request targets a nonexistent device or if the Modbus RTU network is not working, you might
get a ModbusIOException, which uses the No Response format.

{
 "response": {
 "status": "fail",
 "error_message": "[Input/Output] No Response received from the remote unit",
 "error": "No Response",
 "device": 1,

Modbus-RTU protocol adapter 940

AWS IoT Greengrass Developer Guide, Version 2

 "operation": "ReadCoilsRequest",
 "payload": {
 "error": "[Input/Output] No Response received from the remote unit"
 }
 },
 "id": "TestRequest"
}

Local log file

This component uses the following log file.

/greengrass/v2/logs/aws.greengrass.Modbus.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 with the path to the AWS IoT Greengrass root folder.

sudo tail -f /greengrass/v2/logs/aws.greengrass.Modbus.log

Licenses

This component includes the following third-party software/licensing:

• pymodbus/BSD License

• pyserial/BSD License

This component is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.1.10 Version updated for Greengrass nucleus version 2.14.0 release.

2.1.9 Version updated for Greengrass nucleus version 2.13.0 release.

Modbus-RTU protocol adapter 941

https://github.com/riptideio/pymodbus/blob/master/README.rst
https://github.com/pyserial/pyserial
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.1.8 Version updated for Greengrass nucleus version 2.12.0 release.

2.1.7 Version updated for Greengrass nucleus version 2.11.0 release.

2.1.6 Version updated for Greengrass nucleus version 2.10.0 release.

2.1.5 Bug fixes and improvements

• Fixes an issue with the ReadDiscreteInput operation.

2.1.4 Version updated for Greengrass nucleus version 2.9.0 release.

2.1.3 Version updated for Greengrass nucleus version 2.8.0 release.

2.1.2 Version updated for Greengrass nucleus version 2.7.0 release.

2.1.1 Version updated for Greengrass nucleus version 2.6.0 release.

2.1.0 New features

• Adds the ModbusBaudRate , ModbusByteSize , ModbusParity ,
and ModbusStopBits options that you can specify to configure
serial communication with Modbus RTU devices.

2.0.8 Version updated for Greengrass nucleus version 2.5.0 release.

2.0.7 Version updated for Greengrass nucleus version 2.4.0 release.

2.0.6 Version updated for Greengrass nucleus version 2.3.0 release.

2.0.5 Version updated for Greengrass nucleus version 2.2.0 release.

2.0.4 Version updated for Greengrass nucleus version 2.1.0 release.

2.0.3 Initial version.

MQTT bridge

The MQTT bridge component (aws.greengrass.clientdevices.mqtt.Bridge) relays MQTT
messages between client devices, local Greengrass publish/subscribe, and AWS IoT Core. You can

MQTT bridge 942

AWS IoT Greengrass Developer Guide, Version 2

use this component to act on MQTT messages from client devices in custom components and sync
client devices with the AWS Cloud.

Note

Client devices are local IoT devices that connect to a Greengrass core device to send MQTT
messages and data to process. For more information, see Interact with local IoT devices.

You can use this component to relay messages between the following message brokers:

• Local MQTT – The local MQTT broker handles messages between client devices and a core device.

• Local publish/subscribe – The local Greengrass message broker handles messages between
components on a core device. For more information about how to interact with these messages
in Greengrass components, see Publish/subscribe local messages.

• AWS IoT Core – The AWS IoT Core MQTT broker handles messages between IoT devices and
AWS Cloud destinations. For more information about how to interact with these messages in
Greengrass components, see Publish/subscribe AWS IoT Core MQTT messages.

Note

The MQTT bridge uses QoS 1 to publish and subscribe to AWS IoT Core, even when a
client device uses QoS 0 to publish and subscribe to the local MQTT broker. As a result,
you might observe additional latency when you relay MQTT messages from client
devices on the local MQTT broker to AWS IoT Core. For more information about MQTT
configuration on core devices, see Configure MQTT timeouts and cache settings.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

MQTT bridge 943

AWS IoT Greengrass Developer Guide, Version 2

• Changelog

Versions

This component has the following versions:

• 2.3.x

• 2.2.x

• 2.1.x

• 2.0.x

Type

This component is a plugin component (aws.greengrass.plugin). The Greengrass nucleus runs
this component in the same Java Virtual Machine (JVM) as the nucleus. The nucleus restarts when
you change this component's version on the core device.

This component uses the same log file as the Greengrass nucleus. For more information, see
Monitor AWS IoT Greengrass logs.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Requirements

This component has the following requirements:

• If you configure the core device's MQTT broker component to use a port other than the default
port 8883, you must use MQTT bridge v2.1.0 or later. Configure it to connect on the port where
the broker operates.

• The MQTT bridge component is supported to run in a VPC.

MQTT bridge 944

AWS IoT Greengrass Developer Guide, Version 2

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.3.2

The following table lists the dependencies for version 2.3.2 of this component.

Dependency Compatible versions Dependency type

Client device auth >=2.2.0 <2.6.0 Hard

2.3.0 and 2.3.1

The following table lists the dependencies for version 2.3.0 and 2.3.1 of this component.

Dependency Compatible versions Dependency type

Client device auth >=2.2.0 <2.5.0 Hard

2.2.5 and 2.2.6

The following table lists the dependencies for version 2.2.5 and 2.2.6 of this component.

Dependency Compatible versions Dependency type

Client device auth >=2.2.0 <2.5.0 Hard

2.2.3 and 2.2.4

The following table lists the dependencies for versions 2.2.3 and 2.2.4 of this component.

MQTT bridge 945

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Client device auth >=2.2.0 <2.4.0 Hard

2.2.0 – 2.2.2

The following table lists the dependencies for versions 2.2.0 to 2.2.2 of this component.

Dependency Compatible versions Dependency type

Client device auth >=2.2.0 <2.3.0 Hard

2.1.1

The following table lists the dependencies for version 2.1.1 of this component.

Dependency Compatible versions Dependency type

Client device auth >=2.0.0 <2.2.0 Hard

2.0.0 to 2.1.0

The following table lists the dependencies for versions 2.0.0 through 2.1.0 of this component.

Dependency Compatible versions Dependency type

Client device auth >=2.0.0 <2.1.0 Hard

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

MQTT bridge 946

AWS IoT Greengrass Developer Guide, Version 2

2.3.0 – 2.3.2

mqttTopicMapping

The topic mappings that you want to bridge. This component subscribes to messages on the
source topic and publishes the messages that it receives to the destination topic. Each topic
mapping defines the topic, source type, and destination type.

This object contains the following information:

topicMappingNameKey

The name of this topic mapping. Replace topicMappingNameKey with a name that
helps you identify this topic mapping.

This object contains the following information:

topic

The topic or topic filter to bridge between the source and target brokers.

You can use the + and # MQTT topic wildcards to relay messages on all topics that
match a topic filter. For more information, see MQTT topics in the AWS IoT Core
Developer Guide.

Note

To use MQTT topic wildcards with the Pubsub source broker, you must use
v2.6.0 or later of the Greengrass nucleus component.

targetTopicPrefix

The prefix to add to the target topic when this component relays the message.

source

The source message broker. Choose from the following options:

• LocalMqtt – The local MQTT broker where client devices communicate.

• Pubsub – The local Greengrass publish/subscribe message broker.

• IotCore – The AWS IoT Core MQTT message broker.

MQTT bridge 947

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html

AWS IoT Greengrass Developer Guide, Version 2

Note

The MQTT bridge uses QoS 1 to publish and subscribe to AWS IoT Core,
even when a client device uses QoS 0 to publish and subscribe to the local
MQTT broker. As a result, you might observe additional latency when you
relay MQTT messages from client devices on the local MQTT broker to AWS
IoT Core. For more information about MQTT configuration on core devices,
see Configure MQTT timeouts and cache settings.

source and target must be different.

target

The target message broker. Choose from the following options:

• LocalMqtt – The local MQTT broker where client devices communicate.

• Pubsub – The local Greengrass publish/subscribe message broker.

• IotCore – The AWS IoT Core MQTT message broker.

Note

The MQTT bridge uses QoS 1 to publish and subscribe to AWS IoT Core,
even when a client device uses QoS 0 to publish and subscribe to the local
MQTT broker. As a result, you might observe additional latency when you
relay MQTT messages from client devices on the local MQTT broker to AWS
IoT Core. For more information about MQTT configuration on core devices,
see Configure MQTT timeouts and cache settings.

source and target must be different.

mqtt5RouteOptions

(Optional) Provides options for configuring topic mappings for bridging messages from the
source topic to the destination topic.

This object contains the following information:

MQTT bridge 948

AWS IoT Greengrass Developer Guide, Version 2

mqtt5RouteOptionsNameKey

The name of the route options for a topic mapping. Replace
mqtt5RouteOptionsNameKey with the matching topicMappingNameKey defined in
the mqttTopicMapping field.

This object contains the following information:

noLocal

(Optional) When enabled, the bridge doesn't forward messages on a topic that the
bridge itself published. Use this to prevent loops, as follows:

{
 "mqtt5RouteOptions": {
 "toIoTCore": {
 "noLocal": true
 }
 },
 "mqttTopicMapping": {
 "toIoTCore": {
 "topic": "device",
 "source": "LocalMqtt",
 "target": "IotCore"
 },
 "toLocal": {
 "topic": "device",
 "source": "IotCore",
 "target": "LocalMqtt"
 }
 }
}

noLocal is only supported for routes where the source is LocalMqtt.

Default: false

retainAsPublished

(Optional) When enabled, messages forwarded by the bridge have the same retain
flag as messages published to the broker for that route.

retainAsPublished is only supported for routes where the source is LocalMqtt.

MQTT bridge 949

AWS IoT Greengrass Developer Guide, Version 2

Default: false

mqtt

(Optional) MQTT protocol settings for communicating with the local broker.

version

(Optional) The MQTT protocol version used by the bridge to communicate with the local
broker. Must be the same as the MQTT version selected in the nucleus configuration.

Choose from the following:

• mqtt3

• mqtt5

You must deploy an MQTT broker when the source or target field of the
mqttTopicMapping object is set to LocalMqtt. If you choose the mqtt5 option you
must use the MQTT 5 broker (EMQX).

Default: mqtt3

ackTimeoutSeconds

(Optional) Time interval to wait for PUBACK, SUBACK, or UNSUBACK packets before
failing the operation.

Default: 60

connAckTimeoutMs

(Optional) Time interval to wait for a CONNACK packet before shutting down the
connection.

Default: 20000 (20 seconds)

pingTimeoutMs

(Optional) The amount of time in milliseconds that the bridge waits to receive
a PINGACK message from the local broker. If the wait exceeds the timeout, the
bridge closes then reopens the MQTT connection. This value must be less than
keepAliveTimeoutSeconds.

Default: 30000 (30 seconds)

MQTT bridge 950

AWS IoT Greengrass Developer Guide, Version 2

keepAliveTimeoutSeconds

(Optional) The amount of time in seconds between each PING message that the
bridge sends to keep the MQTT connection alive. This value must be greater than
pingTimeoutMs.

Default: 60

maxReconnectDelayMs

(Optional) The maximum amount of time in seconds for MQTT to reconnect.

Default: 30000 (30 seconds)

minReconnectDelayMs

(Optional) The minimum amount of time in seconds for MQTT to reconnect.

receiveMaximum

(Optional) The maximum number of unacknowledged QoS1 packets the bridge can send.

Default: 100

maximumPacketSize

The maximum number of bytes the client will accept for an MQTT packet.

Default: null (No limit)

sessionExpiryInterval

(Optional) The amount of time in seconds you can request for a session to last between
the bridge and the local broker.

Default: 4294967295 (session never expires)

brokerUri

(Optional) The URI of the local MQTT broker. You must specify this parameter if you
configure the MQTT broker to use a different port than the default port 8883. Use the
following format, and replace port with the port where the MQTT broker operates: ssl://
localhost:port.

Default: ssl://localhost:8883

MQTT bridge 951

AWS IoT Greengrass Developer Guide, Version 2

startupTimeoutSeconds

(Optional) The maximum of time in seconds for the component to start. The component's
state changes to BROKEN if it exceeds this timeout.

Default: 120

Example Example: Configuration merge update

The following example configuration update specifies the following:

• Relay messages from client devices to AWS IoT Core on topics that match the clients/+/
hello/world topic filter.

• Relay messages from client devices to local publish/subscribe on topics that match the
clients/+/detections topic filter, and add the events/input/ prefix to the target
topic. The resulting target topic matches the events/input/clients/+/detections
topic filter.

• Relay messages from client devices to AWS IoT Core on topics that match the clients/
+/status topic filter, and add the $aws/rules/StatusUpdateRule/ prefix to the
target topic. This example relays these messages directly to an AWS IoT rule named
StatusUpdateRule to reduce costs using Basic Ingest.

{
 "mqttTopicMapping": {
 "ClientDeviceHelloWorld": {
 "topic": "clients/+/hello/world",
 "source": "LocalMqtt",
 "target": "IotCore"
 },
 "ClientDeviceEvents": {
 "topic": "clients/+/detections",
 "targetTopicPrefix": "events/input/",
 "source": "LocalMqtt",
 "target": "Pubsub"
 },
 "ClientDeviceCloudStatusUpdate": {
 "topic": "clients/+/status",
 "targetTopicPrefix": "$aws/rules/StatusUpdateRule/",
 "source": "LocalMqtt",

MQTT bridge 952

https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-basic-ingest.html

AWS IoT Greengrass Developer Guide, Version 2

 "target": "IotCore"
 }
 }
}

Example Example: Configuring MQTT 5

The following example configuration updates the following:

• Enables the bridge to use the MQTT 5 protocol with the local broker.

• Configures MQTT retain as published setting for the ClientDeviceHelloWorld topic
mapping.

{
 "mqttTopicMapping": {
 "ClientDeviceHelloWorld": {
 "topic": "clients/+/hello/world",
 "source": "LocalMqtt",
 "target": "IotCore"
 }
 },
 "mqtt5RouteOptions": {
 "ClientDeviceHelloWorld": {
 "retainAsPublished": true
 }
 },
 "mqtt": {
 "version": "mqtt5"
 }
}

2.2.6

mqttTopicMapping

The topic mappings that you want to bridge. This component subscribes to messages on the
source topic and publishes the messages that it receives to the destination topic. Each topic
mapping defines the topic, source type, and destination type.

This object contains the following information:

MQTT bridge 953

AWS IoT Greengrass Developer Guide, Version 2

topicMappingNameKey

The name of this topic mapping. Replace topicMappingNameKey with a name that
helps you identify this topic mapping.

This object contains the following information:

topic

The topic or topic filter to bridge between the source and target brokers.

You can use the + and # MQTT topic wildcards to relay messages on all topics that
match a topic filter. For more information, see MQTT topics in the AWS IoT Core
Developer Guide.

Note

To use MQTT topic wildcards with the Pubsub source broker, you must use
v2.6.0 or later of the Greengrass nucleus component.

targetTopicPrefix

The prefix to add to the target topic when this component relays the message.

source

The source message broker. Choose from the following options:

• LocalMqtt – The local MQTT broker where client devices communicate.

• Pubsub – The local Greengrass publish/subscribe message broker.

• IotCore – The AWS IoT Core MQTT message broker.

Note

The MQTT bridge uses QoS 1 to publish and subscribe to AWS IoT Core,
even when a client device uses QoS 0 to publish and subscribe to the local
MQTT broker. As a result, you might observe additional latency when you
relay MQTT messages from client devices on the local MQTT broker to AWS
IoT Core. For more information about MQTT configuration on core devices,
see Configure MQTT timeouts and cache settings.

MQTT bridge 954

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html

AWS IoT Greengrass Developer Guide, Version 2

source and target must be different.

target

The target message broker. Choose from the following options:

• LocalMqtt – The local MQTT broker where client devices communicate.

• Pubsub – The local Greengrass publish/subscribe message broker.

• IotCore – The AWS IoT Core MQTT message broker.

Note

The MQTT bridge uses QoS 1 to publish and subscribe to AWS IoT Core,
even when a client device uses QoS 0 to publish and subscribe to the local
MQTT broker. As a result, you might observe additional latency when you
relay MQTT messages from client devices on the local MQTT broker to AWS
IoT Core. For more information about MQTT configuration on core devices,
see Configure MQTT timeouts and cache settings.

source and target must be different.

brokerUri

(Optional) The URI of the local MQTT broker. You must specify this parameter if you
configure the MQTT broker to use a different port than the default port 8883. Use the
following format, and replace port with the port where the MQTT broker operates: ssl://
localhost:port.

Default: ssl://localhost:8883

startupTimeoutSeconds

(Optional) The maximum of time in seconds for the component to start. The component's
state changes to BROKEN if it exceeds this timeout.

Default: 120

Example Example: Configuration merge update

The following example configuration update specifies the following:

MQTT bridge 955

AWS IoT Greengrass Developer Guide, Version 2

• Relay messages from client devices to AWS IoT Core on topics that match the clients/+/
hello/world topic filter.

• Relay messages from client devices to local publish/subscribe on topics that match the
clients/+/detections topic filter, and add the events/input/ prefix to the target
topic. The resulting target topic matches the events/input/clients/+/detections
topic filter.

• Relay messages from client devices to AWS IoT Core on topics that match the clients/
+/status topic filter, and add the $aws/rules/StatusUpdateRule/ prefix to the
target topic. This example relays these messages directly to an AWS IoT rule named
StatusUpdateRule to reduce costs using Basic Ingest.

{
 "mqttTopicMapping": {
 "ClientDeviceHelloWorld": {
 "topic": "clients/+/hello/world",
 "source": "LocalMqtt",
 "target": "IotCore"
 },
 "ClientDeviceEvents": {
 "topic": "clients/+/detections",
 "targetTopicPrefix": "events/input/",
 "source": "LocalMqtt",
 "target": "Pubsub"
 },
 "ClientDeviceCloudStatusUpdate": {
 "topic": "clients/+/status",
 "targetTopicPrefix": "$aws/rules/StatusUpdateRule/",
 "source": "LocalMqtt",
 "target": "IotCore"
 }
 }
}

2.2.0 - 2.2.5

mqttTopicMapping

The topic mappings that you want to bridge. This component subscribes to messages on the
source topic and publishes the messages that it receives to the destination topic. Each topic
mapping defines the topic, source type, and destination type.

MQTT bridge 956

https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-basic-ingest.html

AWS IoT Greengrass Developer Guide, Version 2

This object contains the following information:

topicMappingNameKey

The name of this topic mapping. Replace topicMappingNameKey with a name that
helps you identify this topic mapping.

This object contains the following information:

topic

The topic or topic filter to bridge between the source and target brokers.

You can use the + and # MQTT topic wildcards to relay messages on all topics that
match a topic filter. For more information, see MQTT topics in the AWS IoT Core
Developer Guide.

Note

To use MQTT topic wildcards with the Pubsub source broker, you must use
v2.6.0 or later of the Greengrass nucleus component.

targetTopicPrefix

The prefix to add to the target topic when this component relays the message.

source

The source message broker. Choose from the following options:

• LocalMqtt – The local MQTT broker where client devices communicate.

• Pubsub – The local Greengrass publish/subscribe message broker.

• IotCore – The AWS IoT Core MQTT message broker.

Note

The MQTT bridge uses QoS 1 to publish and subscribe to AWS IoT Core,
even when a client device uses QoS 0 to publish and subscribe to the local
MQTT broker. As a result, you might observe additional latency when you
relay MQTT messages from client devices on the local MQTT broker to AWS

MQTT bridge 957

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html

AWS IoT Greengrass Developer Guide, Version 2

IoT Core. For more information about MQTT configuration on core devices,
see Configure MQTT timeouts and cache settings.

source and target must be different.

target

The target message broker. Choose from the following options:

• LocalMqtt – The local MQTT broker where client devices communicate.

• Pubsub – The local Greengrass publish/subscribe message broker.

• IotCore – The AWS IoT Core MQTT message broker.

Note

The MQTT bridge uses QoS 1 to publish and subscribe to AWS IoT Core,
even when a client device uses QoS 0 to publish and subscribe to the local
MQTT broker. As a result, you might observe additional latency when you
relay MQTT messages from client devices on the local MQTT broker to AWS
IoT Core. For more information about MQTT configuration on core devices,
see Configure MQTT timeouts and cache settings.

source and target must be different.

brokerUri

(Optional) The URI of the local MQTT broker. You must specify this parameter if you
configure the MQTT broker to use a different port than the default port 8883. Use the
following format, and replace port with the port where the MQTT broker operates: ssl://
localhost:port.

Default: ssl://localhost:8883

Example Example: Configuration merge update

The following example configuration update specifies the following:

• Relay messages from client devices to AWS IoT Core on topics that match the clients/+/
hello/world topic filter.

MQTT bridge 958

AWS IoT Greengrass Developer Guide, Version 2

• Relay messages from client devices to local publish/subscribe on topics that match the
clients/+/detections topic filter, and add the events/input/ prefix to the target
topic. The resulting target topic matches the events/input/clients/+/detections
topic filter.

• Relay messages from client devices to AWS IoT Core on topics that match the clients/
+/status topic filter, and add the $aws/rules/StatusUpdateRule/ prefix to the
target topic. This example relays these messages directly to an AWS IoT rule named
StatusUpdateRule to reduce costs using Basic Ingest.

{
 "mqttTopicMapping": {
 "ClientDeviceHelloWorld": {
 "topic": "clients/+/hello/world",
 "source": "LocalMqtt",
 "target": "IotCore"
 },
 "ClientDeviceEvents": {
 "topic": "clients/+/detections",
 "targetTopicPrefix": "events/input/",
 "source": "LocalMqtt",
 "target": "Pubsub"
 },
 "ClientDeviceCloudStatusUpdate": {
 "topic": "clients/+/status",
 "targetTopicPrefix": "$aws/rules/StatusUpdateRule/",
 "source": "LocalMqtt",
 "target": "IotCore"
 }
 }
}

2.1.x

mqttTopicMapping

The topic mappings that you want to bridge. This component subscribes to messages on the
source topic and publishes the messages that it receives to the destination topic. Each topic
mapping defines the topic, source type, and destination type.

This object contains the following information:

MQTT bridge 959

https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-basic-ingest.html

AWS IoT Greengrass Developer Guide, Version 2

topicMappingNameKey

The name of this topic mapping. Replace topicMappingNameKey with a name that
helps you identify this topic mapping.

This object contains the following information:

topic

The topic or topic filter to bridge between the source and target brokers.

If you specify the LocalMqtt or IotCore source broker, you can use the + and #
MQTT topic wildcards to relay messages on all topics that match a topic filter. For
more information, see MQTT topics in the AWS IoT Core Developer Guide.

source

The source message broker. Choose from the following options:

• LocalMqtt – The local MQTT broker where client devices communicate.

• Pubsub – The local Greengrass publish/subscribe message broker.

• IotCore – The AWS IoT Core MQTT message broker.

Note

The MQTT bridge uses QoS 1 to publish and subscribe to AWS IoT Core,
even when a client device uses QoS 0 to publish and subscribe to the local
MQTT broker. As a result, you might observe additional latency when you
relay MQTT messages from client devices on the local MQTT broker to AWS
IoT Core. For more information about MQTT configuration on core devices,
see Configure MQTT timeouts and cache settings.

source and target must be different.

target

The target message broker. Choose from the following options:

• LocalMqtt – The local MQTT broker where client devices communicate.

• Pubsub – The local Greengrass publish/subscribe message broker.

• IotCore – The AWS IoT Core MQTT message broker.

MQTT bridge 960

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html

AWS IoT Greengrass Developer Guide, Version 2

Note

The MQTT bridge uses QoS 1 to publish and subscribe to AWS IoT Core,
even when a client device uses QoS 0 to publish and subscribe to the local
MQTT broker. As a result, you might observe additional latency when you
relay MQTT messages from client devices on the local MQTT broker to AWS
IoT Core. For more information about MQTT configuration on core devices,
see Configure MQTT timeouts and cache settings.

source and target must be different.

brokerUri

(Optional) The URI of the local MQTT broker. You must specify this parameter if you
configure the MQTT broker to use a different port than the default port 8883. Use the
following format, and replace port with the port where the MQTT broker operates: ssl://
localhost:port.

Default: ssl://localhost:8883

Example Example: Configuration merge update

The following example configuration update specifies to relay messages from client devices
to AWS IoT Core on the clients/MyClientDevice1/hello/world and clients/
MyClientDevice2/hello/world topics.

{
 "mqttTopicMapping": {
 "ClientDevice1HelloWorld": {
 "topic": "clients/MyClientDevice1/hello/world",
 "source": "LocalMqtt",
 "target": "IotCore"
 },
 "ClientDevice2HelloWorld": {
 "topic": "clients/MyClientDevice2/hello/world",
 "source": "LocalMqtt",
 "target": "IotCore"
 }
 }

MQTT bridge 961

AWS IoT Greengrass Developer Guide, Version 2

}

2.0.x

mqttTopicMapping

The topic mappings that you want to bridge. This component subscribes to messages on the
source topic and publishes the messages that it receives to the destination topic. Each topic
mapping defines the topic, source type, and destination type.

This object contains the following information:

topicMappingNameKey

The name of this topic mapping. Replace topicMappingNameKey with a name that
helps you identify this topic mapping.

This object contains the following information:

topic

The topic or topic filter to bridge between the source and target brokers.

If you specify the LocalMqtt or IotCore source broker, you can use the + and #
MQTT topic wildcards to relay messages on all topics that match a topic filter. For
more information, see MQTT topics in the AWS IoT Core Developer Guide.

source

The source message broker. Choose from the following options:

• LocalMqtt – The local MQTT broker where client devices communicate.

• Pubsub – The local Greengrass publish/subscribe message broker.

• IotCore – The AWS IoT Core MQTT message broker.

Note

The MQTT bridge uses QoS 1 to publish and subscribe to AWS IoT Core,
even when a client device uses QoS 0 to publish and subscribe to the local
MQTT broker. As a result, you might observe additional latency when you
relay MQTT messages from client devices on the local MQTT broker to AWS
IoT Core. For more information about MQTT configuration on core devices,
see Configure MQTT timeouts and cache settings.

MQTT bridge 962

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html

AWS IoT Greengrass Developer Guide, Version 2

source and target must be different.

target

The target message broker. Choose from the following options:

• LocalMqtt – The local MQTT broker where client devices communicate.

• Pubsub – The local Greengrass publish/subscribe message broker.

• IotCore – The AWS IoT Core MQTT message broker.

Note

The MQTT bridge uses QoS 1 to publish and subscribe to AWS IoT Core,
even when a client device uses QoS 0 to publish and subscribe to the local
MQTT broker. As a result, you might observe additional latency when you
relay MQTT messages from client devices on the local MQTT broker to AWS
IoT Core. For more information about MQTT configuration on core devices,
see Configure MQTT timeouts and cache settings.

source and target must be different.

Example Example: Configuration merge update

The following example configuration update specifies to relay messages from client devices
to AWS IoT Core on the clients/MyClientDevice1/hello/world and clients/
MyClientDevice2/hello/world topics.

{
 "mqttTopicMapping": {
 "ClientDevice1HelloWorld": {
 "topic": "clients/MyClientDevice1/hello/world",
 "source": "LocalMqtt",
 "target": "IotCore"
 },
 "ClientDevice2HelloWorld": {
 "topic": "clients/MyClientDevice2/hello/world",
 "source": "LocalMqtt",
 "target": "IotCore"
 }
 }

MQTT bridge 963

AWS IoT Greengrass Developer Guide, Version 2

}

Local log file

This component uses the same log file as the Greengrass nucleus component.

Linux

/greengrass/v2/logs/greengrass.log

Windows

C:\greengrass\v2\logs\greengrass.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/greengrass.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\greengrass.log -Tail 10 -Wait

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.3.2 Version updated for client device auth version 2.5.0 release.

MQTT bridge 964

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.3.1 Bug fixes and improvements

Fixes an issue where the local MQTT client gets into a disconnect loop.

2.3.0 New features

Adds MQTT5 support for bridging between AWS IoT Core and local
MQTT sources.

2.2.6 New features

Adds a new startupTimeoutSeconds configuration option.

2.2.5 Version updated for client device auth version 2.4.0 release.

2.2.4 Version updated for Greengrass client device auth version 2.3.0 release.

2.2.3 This version contains bug fixes and improvements.

2.2.2 Bug fixes and improvements

• Logging adjustments.

2.2.1 Bug fixes and improvements

Fixes issues that can result in the MQTT bridge failing to subscribe to
MQTT topics.

2.2.0 New features

• Adds support for MQTT topic wildcards (# and +) when you specify
local publish/subscribe as the source message broker.

This feature requires v2.6.0 or later of the Greengrass nucleus
component.

• Adds the targetTopicPrefix option, which you can specify to
configure the MQTT bridge to add a prefix to the target topic when it
relays a message.

MQTT bridge 965

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.1.1 Bug fixes and improvements

• Fixes issues with how this component handles configuration reset
updates.

• Reduces the frequency of MQTT client disconnects when certificates
rotate.

2.1.0 New features

• Adds the brokerUri parameter, which enables you to use a non-
default MQTT broker port.

2.0.1 This version includes bug fixes and improvements.

2.0.0 Initial version.

MQTT 3.1.1 broker (Moquette)

The Moquette MQTT broker component (aws.greengrass.clientdevices.mqtt.Moquette)
handles MQTT messages between client devices and a Greengrass core device. This component
provides a modified version of the Moquette MQTT broker. Deploy this MQTT broker to run a
lightweight MQTT broker. For more information about how to choose an MQTT broker, see Choose
an MQTT broker.

This broker implements the MQTT 3.1.1 protocol. It includes support for QoS 0, QoS 1, QoS 2
retained messages, last will messages, and persistent sessions.

Note

Client devices are local IoT devices that connect to a Greengrass core device to send MQTT
messages and data to process. For more information, see Interact with local IoT devices.

Topics

• Versions

• Type

• Operating system

MQTT 3.1.1 broker (Moquette) 966

https://github.com/moquette-io/moquette

AWS IoT Greengrass Developer Guide, Version 2

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

Versions

This component has the following versions:

• 2.3.x

• 2.2.x

• 2.1.x

• 2.0.x

Type

This component is a plugin component (aws.greengrass.plugin). The Greengrass nucleus runs
this component in the same Java Virtual Machine (JVM) as the nucleus. The nucleus restarts when
you change this component's version on the core device.

This component uses the same log file as the Greengrass nucleus. For more information, see
Monitor AWS IoT Greengrass logs.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Requirements

This component has the following requirements:

MQTT 3.1.1 broker (Moquette) 967

AWS IoT Greengrass Developer Guide, Version 2

• The core device must be able to accept connections on the port where the MQTT broker
operates. This component runs the MQTT broker on port 8883 by default. You can specify a
different port when you configure this component.

If you specify a different port, and you use the MQTT bridge component to relay MQTT messages
to other brokers, you must use MQTT bridge v2.1.0 or later. Configure it to use the port where
the MQTT broker operates.

If you specify a different port, and you use the IP detector component to manage MQTT broker
endpoints, you must use IP detector v2.1.0 or later. Configure it to report the port where the
MQTT broker operates.

• The Moquette MQTT broker component is supported to run in a VPC.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.3.7

The following table lists the dependencies for version 2.3.7 of this component.

Dependency Compatible versions Dependency type

Client device auth >=2.2.0 <2.6.0 Hard

2.3.2 – 2.3.6

The following table lists the dependencies for versions 2.3.2 through 2.3.6 of this component.

MQTT 3.1.1 broker (Moquette) 968

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Client device auth >=2.2.0 <2.5.0 Hard

2.3.0 and 2.3.1

The following table lists the dependencies for versions 2.3.0 and 2.3.1 of this component.

Dependency Compatible versions Dependency type

Client device auth >=2.2.0 <2.4.0 Hard

2.2.0

The following table lists the dependencies for version 2.2.0 of this component.

Dependency Compatible versions Dependency type

Client device auth >=2.2.0 <2.3.0 Hard

2.1.0

The following table lists the dependencies for version 2.1.0 of this component.

Dependency Compatible versions Dependency type

Client device auth >=2.0.0 <2.2.0 Hard

2.0.0 - 2.0.2

The following table lists the dependencies for versions 2.0.0 through 2.0.2 of this component.

Dependency Compatible versions Dependency type

Client device auth >=2.0.0 <2.1.0 Hard

MQTT 3.1.1 broker (Moquette) 969

AWS IoT Greengrass Developer Guide, Version 2

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

moquette

(Optional) The Moquette MQTT broker configuration to use. You can configure a subset of
Moqeutte configuration options in this component. For more information, see the inline
comments in the Moquette configuration file.

This object contains the following information:

ssl_port

(Optional) The port where the MQTT broker operates.

Note

If you specify a different port, and you use the MQTT bridge component to relay
MQTT messages to other brokers, you must use MQTT bridge v2.1.0 or later.
Configure it to use the port where the MQTT broker operates.
If you specify a different port, and you use the IP detector component to manage
MQTT broker endpoints, you must use IP detector v2.1.0 or later. Configure it to
report the port where the MQTT broker operates.

Default: 8883

host

(Optional) The interface where the MQTT broker binds. For example, you might change this
parameter so that the MQTT broker binds only to a specific local network.

Default: 0.0.0.0 (binds to all network interfaces)

startupTimeoutSeconds

(Optional) The maximum of time in seconds for the component to start. The component's state
changes to BROKEN if it exceeds this timeout.

Default: 120

MQTT 3.1.1 broker (Moquette) 970

https://github.com/moquette-io/moquette
https://github.com/moquette-io/moquette/blob/main/distribution/src/main/resources/moquette.conf

AWS IoT Greengrass Developer Guide, Version 2

Example Example: Configuration merge update

The following example configuration specifies to operate the MQTT broker on port 443.

{
 "moquette": {
 "ssl_port": "443"
 }
}

Local log file

This component uses the same log file as the Greengrass nucleus component.

Linux

/greengrass/v2/logs/greengrass.log

Windows

C:\greengrass\v2\logs\greengrass.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/greengrass.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\greengrass.log -Tail 10 -Wait

Changelog

The following table describes the changes in each version of the component.

MQTT 3.1.1 broker (Moquette) 971

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.3.7 Version updated for client device auth version 2.5.0 release.

2.3.6 Bug fixes and improvements

• General bug fixes and improvements.

2.3.5 Bug fixes and improvements

• Updated Moquette to version 0.17.

2.3.4 Bug fixes and improvements

• Fixes an issue where clients may experience invalid session errors when
sending or receiving messages, due to duplicate client IDs. This issue
caused the client's session to close.

2.3.3 New features

Adds a new startupTimeoutSeconds configuration option.

2.3.2 Version updated for client device auth version 2.4.0 release.

2.3.1 Bug fixes and improvements

• Fixes a race condition where clients may be disconnected after
attempting to reconnect, due to an invalid session.

2.3.0 Adds support for certificate chains.

2.2.0 Version updated for client device auth version 2.2.0 release.

2.1.0 Bug fixes and improvements

• Updates this component to use Moquette version 0.16, which improves
performance and includes several other improvements.

• Fixes an issue where the local MQTT server certificate rotates more
often than intended in certain scenarios.

To apply this fix, you must also use v2.1.0 or later of the client device
auth component.

MQTT 3.1.1 broker (Moquette) 972

https://github.com/moquette-io/moquette

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.0.2 Bug fixes and improvements

• Increases the maximum MQTT message size from 8,092 bytes to 128
kilobytes. The effective MQTT message payload limit is slightly less,
because the message size limit includes message headers.

• Adds support for integer values in the ssl_port parameter.

2.0.1 Version updated for Greengrass nucleus version 2.4.0 release.

2.0.0 Initial version.

MQTT 5 broker (EMQX)

The EMQX MQTT broker component (aws.greengrass.clientdevices.mqtt.EMQX) handles
MQTT messages between client devices and a Greengrass core device. This component provides a
modified version of the EMQX MQTT 5.0 broker. Deploy this MQTT broker to use MQTT 5 features
in communication between client devices and a core device. For more information about how to
choose an MQTT broker, see Choose an MQTT broker.

This broker implements the MQTT 5.0 protocol. It includes support for session and message
expiration intervals, user properties, shared subscriptions, topic aliases, and more. MQTT 5 is
backwards compatible with MQTT 3.1.1, so if you run the Moquette MQTT 3.1.1 broker, you can
replace it with the EMQX MQTT 5 broker, and client devices can continue to connect and operate as
usual.

Note

Client devices are local IoT devices that connect to a Greengrass core device to send MQTT
messages and data to process. For more information, see Interact with local IoT devices.

Topics

• Versions

• Type

• Operating system

MQTT 5 broker (EMQX) 973

https://www.emqx.com/en/mqtt/mqtt5

AWS IoT Greengrass Developer Guide, Version 2

• Requirements

• Dependencies

• Configuration

• Local log file

• Licenses

• Changelog

Versions

This component has the following versions:

• 2.0.x

• 1.2.x

• 1.1.x

• 1.0.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Requirements

This component has the following requirements:

• The core device must be able to accept connections on the port where the MQTT broker
operates. This component runs the MQTT broker on port 8883 by default. You can specify a
different port when you configure this component.

MQTT 5 broker (EMQX) 974

AWS IoT Greengrass Developer Guide, Version 2

If you specify a different port, and you use the MQTT bridge component to relay MQTT messages
to other brokers, you must use MQTT bridge v2.1.0 or later. Configure it to use the port where
the MQTT broker operates.

If you specify a different port, and you use the IP detector component to manage MQTT broker
endpoints, you must use IP detector v2.1.0 or later. Configure it to report the port where the
MQTT broker operates.

• On Linux core devices, Docker installed and configured on the core device:

• Docker Engine 1.9.1 or later installed on the Greengrass core device. Version 20.10 is the latest
version that is verified to work with the AWS IoT Greengrass Core software. You must install
Docker directly on the core device before you deploy components that run Docker containers.

• The Docker daemon started and running on the core device before you deploy this component.

• The system user that runs this component must have root or administrator permissions.
Alternatively, you can run this component as a system user in the docker group and configure
this component's requiresPrivileges option to false to run the EQMX MQTT broker
without privileges.

• The EMQX MQTT broker component is supported to run in a VPC.

• The EMQX MQTT broker component is not supported on the armv7 platform.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.0.2

The following table lists the dependencies for version 2.0.2 of this component.

MQTT 5 broker (EMQX) 975

https://docs.docker.com/engine/
https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Client device auth >=2.2.0 <2.6.0 Soft

2.0.1

The following table lists the dependencies for version 2.0.1 of this component.

Dependency Compatible versions Dependency type

Client device auth >=2.2.0 <2.6.0 Hard

2.0.0

The following table lists the dependencies for version 2.0.0 of this component.

Dependency Compatible versions Dependency type

Client device auth >=2.2.0 <2.5.0 Hard

1.2.2 – 1.2.3

The following table lists the dependencies for versions 1.2.2 to 1.2.3 of this component.

Dependency Compatible versions Dependency type

Client device auth >=2.2.0 <2.5.0 Hard

1.2.0 and 1.2.1

The following table lists the dependencies for versions 1.2.0 and 1.2.1 of this component.

Dependency Compatible versions Dependency type

Client device auth >=2.2.0 <2.4.0 Hard

MQTT 5 broker (EMQX) 976

AWS IoT Greengrass Developer Guide, Version 2

1.0.0 and 1.1.0

The following table lists the dependencies for versions 1.0.0 and 1.1.0 of this component.

Dependency Compatible versions Dependency type

Client device auth >=2.2.0 <2.3.0 Hard

For more information about component dependencies, see the component recipe reference.

Configuration

2.0.0 - 2.0.1

This component provides the following configuration parameters that you can customize when
you deploy the component.

Important

If you use version 2 of the MQTT 5 broker (EMQX) component, you must update your
configuration file. Version 1 configuration files do not work with version 2.

emqxConfig

(Optional) The EMQX MQTT broker configuration to use. You can set EMQX configuration
options in this component.

When you use the EMQX broker, Greengrass uses a default configuration. This configuration
is used unless you modify it using this field.

Modifying the following configuration settings causes the EMQX broker component to
restart. Other configuration changes apply without restarting the component.

• emqxConfig/cluster

• emqxConfig/node

• emqxConfig/rpc

MQTT 5 broker (EMQX) 977

https://www.emqx.io/docs/en/v5.1/configuration/configuration.html

AWS IoT Greengrass Developer Guide, Version 2

Note

aws.greengrass.clientdevices.mqtt.EMQX allows you to configure security-
sensitive options. These include TLS settings, authentication, and authorization
providers. We recommended the default configuration that uses mutual TLS
authentication and the Greengrass client device auth provider.

Example Example: Default configuration

The following example shows the defaults set for the MQTT 5 (EMQX) broker. You can
override these settings using the emqxConfig configuration setting.

{
 "authorization": {
 "no_match": "deny",
 "sources": []
 },
 "node": {
 "cookie": "<placeholder>"
 },
 "listeners": {
 "ssl": {
 "default": {
 "ssl_options": {
 "keyfile": "{work:path}\\data\\key.pem",
 "certfile": "{work:path}\\data\\cert.pem",
 "cacertfile": null,
 "verify": "verify_peer",
 "versions": ["tlsv1.3", "tlsv1.2"],
 "fail_if_no_peer_cert": true
 }
 }
 },
 "tcp": {
 "default": {
 "enabled": false
 }
 },
 "ws": {
 "default": {
 "enabled": false

MQTT 5 broker (EMQX) 978

AWS IoT Greengrass Developer Guide, Version 2

 }
 },
 "wss": {
 "default": {
 "enabled": false
 }
 }
 },
 "plugins": {
 "states": [{"name_vsn": "gg-1.0.0", "enable": true}],
 "install_dir": "plugins"
 }
}

authMode

(Optional) Sets the authorization provider for the broker. Can be one of the following values:

• enabled – (Default) Use the Greengrass authentication and authorization provider.

• bypass_on_failure – Use the Greengrass authentication provider, then use any
remaining authentication providers in the EMQX provider chain if Greengrass denies either
authentication or authorization.

• bypass – The Greengrass provider is disabled. Authentication and authorization is
handled by the EMQX provider chain.

requiresPrivilege

(Optional) On Linux core devices, you can specify to run the EMQX MQTT broker without
root or administrator privileges. If you set this option to false, the system user that runs
this component must be a member of the docker group.

Default: true

startupTimeoutSeconds

(Optional) The maximum of time in seconds for the EMQX MQTT broker to start. The
component's state changes to BROKEN if it exceeds this timeout.

Default: 90

MQTT 5 broker (EMQX) 979

AWS IoT Greengrass Developer Guide, Version 2

ipcTimeoutSeconds

(Optional) The maximum of time in seconds for the component to wait for the Greengrass
nucleus to respond to interprocess communication (IPC) requests. Increase this number if
this component reports timeout errors when it checks if a client device is authorized.

Default: 5

crtLogLevel

(Optional) The log level for the AWS Common Runtime (CRT) library.

Defaults to the EMQX MQTT broker log level (log.level in emqx).

restartIdentifier

(Optional) Configure this option to restart the EMQX MQTT broker. When this configuration
value changes, this component restarts the MQTT broker. You can use this option to force
client devices to disconnect.

dockerOptions

(Optional) Configure this option only on Linux operating systems to add parameters to the
Docker command line. For example, to map additional ports, use the -p Docker parameter:

"-p 1883:1883"

Example Example: Updating a v1.x configuration file to v2.x

The following example shows the changes necessary to update a v1.x configuration file to
version 2.x.

The version 1.x configuration file:

{
 "emqx": {
 "listener.ssl.external": "443",
 "listener.ssl.external.max_connections": "1024000",
 "listener.ssl.external.max_conn_rate": "500",
 "listener.ssl.external.rate_limit": "50KB,5s",
 "listener.ssl.external.handshake_timeout": "15s",
 "log.level": "warning"
 },

MQTT 5 broker (EMQX) 980

AWS IoT Greengrass Developer Guide, Version 2

 "mergeConfigurationFiles": {
 "etc/plugins/aws_greengrass_emqx_auth.conf": "auth_mode=enabled\n
 use_greengrass_managed_certificates=true\n"
 }
}

The equivalent configuration file for v2:

{
 "emqxConfig": {
 "listeners": {
 "ssl": {
 "default": {
 "bind": "8883",
 "max_connections": "1024000",
 "max_conn_rate": "500",
 "handshake_timeout": "15s"
 }
 }
 },
 "log": {
 "console": {
 "enable": true,
 "level": "warning"
 }
 }
 },
 "authMode": "enabled"
}

There is no equivalent to the listener.ssl.external.rate_limit configuration entry.
The use_greengrass_managed_certificates configuration option has been removed.

Example Example: Set a new port for the broker

The following example changes the port where the MQTT broker operates from the default
8883 to port 1234. If you are using Linux, include the dockerOptions field.

{
 "emqxConfig": {
 "listeners": {
 "ssl": {

MQTT 5 broker (EMQX) 981

AWS IoT Greengrass Developer Guide, Version 2

 "default": {
 "bind": 1234
 }
 }
 }
 },
 "dockerOptions": "-p 1234:1234"
}

Example Example: Adjust the MQTT broker's log level

The following example changes the MQTT broker's log level to debug. You can choose from the
following log levels:

• debug

• info

• notice

• warning

• error

• critical

• alert

• emergency

The default log level is warning.

{
 "emqxConfig": {
 "log": {
 "console": {
 "level": "debug"
 }
 }
 }
}

Example Example: Enable the EMQX dashboard

The following example enables the EMQX dashboard so that you can monitor and manage your
broker. If you are using Linux, include the dockerOptions field.

MQTT 5 broker (EMQX) 982

AWS IoT Greengrass Developer Guide, Version 2

{
 "emqxConfig": {
 "dashboard": {
 "listeners": {
 "http": {
 "bind": 18083
 }
 }
 }
 },
 "dockerOptions": "-p 18083:18083"
}

1.0.0 - 1.2.2

This component provides the following configuration parameters that you can customize when
you deploy the component.

emqx

(Optional) The EMQX MQTT broker configuration to use. You can configure a subset of EMQX
configuration options in this component.

This object contains the following information:

listener.ssl.external

(Optional) The port where the MQTT broker operates.

Note

If you specify a different port, and you use the MQTT bridge component to relay
MQTT messages to other brokers, you must use MQTT bridge v2.1.0 or later.
Configure it to use the port where the MQTT broker operates.
If you specify a different port, and you use the IP detector component to manage
MQTT broker endpoints, you must use IP detector v2.1.0 or later. Configure it to
report the port where the MQTT broker operates.

Default: 8883

MQTT 5 broker (EMQX) 983

https://www.emqx.io/docs/en/v4.4/configuration/configuration.html

AWS IoT Greengrass Developer Guide, Version 2

listener.ssl.external.max_connections

(Optional) The maximum number of concurrent connections that the MQTT broker
supports.

Default: 1024000

listener.ssl.external.max_conn_rate

(Optional) The maximum number of new connections per second the MQTT broker can
receive.

Default: 500

listener.ssl.external.rate_limit

(Optional) The bandwidth limit for all connections to the MQTT broker. Specify the
bandwidth and duration for that bandwidth separated by a comma (,) in the following
format: bandwidth,duration. For example, you can specify 50KB,5s to limit the
MQTT broker to 50 kilobytes (KB) of data every 5 seconds.

listener.ssl.external.handshake_timeout

(Optional) The amount of time that the MQTT broker waits to finish authenticating a new
connection.

Default: 15s

mqtt.max_packet_size

(Optional) The maximum size of an MQTT message.

Default: 268435455 (256 MB minus 1)

log.level

(Optional) The log level for the MQTT broker. Choose from the following options:

• debug

• info

• notice

• warning

• error

MQTT 5 broker (EMQX) 984

AWS IoT Greengrass Developer Guide, Version 2

• critical

• alert

• emergency

The default log level is warning.

requiresPrivilege

(Optional) On Linux core devices, you can specify to run the EMQX MQTT broker without
root or administrator privileges. If you set this option to false, the system user that runs
this component must be a member of the docker group.

Default: true

startupTimeoutSeconds

(Optional) The maximum of time in seconds for the EMQX MQTT broker to start. The
component's state changes to BROKEN if it exceeds this timeout.

Default: 90

ipcTimeoutSeconds

(Optional) The maximum of time in seconds for the component to wait for the Greengrass
nucleus to respond to interprocess communication (IPC) requests. Increase this number if
this component reports timeout errors when it checks if a client device is authorized.

Default: 5

crtLogLevel

(Optional) The log level for the AWS Common Runtime (CRT) library.

Defaults to the EMQX MQTT broker log level (log.level in emqx).

restartIdentifier

(Optional) Configure this option to restart the EMQX MQTT broker. When this configuration
value changes, this component restarts the MQTT broker. You can use this option to force
client devices to disconnect.

dockerOptions

(Optional) Configure this option only on Linux operating systems to add parameters to the
Docker command line. For example, to map additional ports, use the -p Docker parameter:

MQTT 5 broker (EMQX) 985

AWS IoT Greengrass Developer Guide, Version 2

"-p 1883:1883"

mergeConfigurationFiles

(Optional) Configure this option to add to or override the defaults in the specified EMQX
configuration files. For information about the configuration files and their formats, see
Configuration in the EMQX 4.0 Documentation. The values that you specify are appended to
the configuration file.

The following example updates the etc/emqx.conf file.

"mergeConfigurationFiles": {
 "etc/emqx.conf": "broker.sys_interval=30s\nbroker.sys_heartbeat=10s"
},

In addition to the configuration files supported by EMQX, Greengrass supports a
file that configures the Greengrass auth plugin for EMQX called etc/plugins/
aws_greengrass_emqx_auth.conf. There are two supported options, auth_mode
and use_greengrass_managed_certificates. To use another auth provider, set the
auth_mode option to one of the following:

• enabled – (Default) Use the Greengrass authentication and authorization provider.

• bypass_on_failure – Use the Greengrass authentication provider, then use any
remaining authentication providers in the EMQX provider chain if Greengrass denies either
authentication or authorization.

• bypass – The Greengrass provider is disabled. Authentication and authorization is then
handled by the EMQX provider chain.

If the use_greengrass_managed_certificates is true, this option indicates that
Greengrass manages the broker TLS certificates. If false, it indicates that you provide the
certificates through another source.

The following example updates the defaults in the etc/plugins/
aws_greengrass_emqx_auth.conf configuration file.

"mergeConfigurationFiles": {
 "etc/plugins/aws_greengrass_emqx_auth.conf": "auth_mode=enabled\n
 use_greengrass_managed_certificates=true\n"

MQTT 5 broker (EMQX) 986

https://www.emqx.io/docs/en/v4.4/configuration/configuration.html

AWS IoT Greengrass Developer Guide, Version 2

 },

Note

aws.greengrass.clientdevices.mqtt.EMQX allows you to configure security-
sensitive options. These include TLS settings, authentication, and authorization
providers. The recommended configuration is the default configuration that uses
mutual TLS authentication and the Greengrass Client Device Auth provider.

replaceConfigurationFiles

(Optional) Configure this option to replace the specified EMQX configuration files. The
values that you specify replace the entire existing configuration file. You can't specify the
etc/emqx.conf file in this section. You must use mergeConfigurationFile to modify
etc/emqx.conf.

Example Example: Configuration merge update

The following example configuration specifies to operate the MQTT broker on port 443.

{
 "emqx": {
 "listener.ssl.external": "443",
 "listener.ssl.external.max_connections": "1024000",
 "listener.ssl.external.max_conn_rate": "500",
 "listener.ssl.external.rate_limit": "50KB,5s",
 "listener.ssl.external.handshake_timeout": "15s",
 "log.level": "warning"
 },
 "requiresPrivilege": "true",
 "startupTimeoutSeconds": "90",
 "ipcTimeoutSeconds": "5"
}

Local log file

This component uses the following log file.

MQTT 5 broker (EMQX) 987

AWS IoT Greengrass Developer Guide, Version 2

Linux

/greengrass/v2/logs/aws.greengrass.clientdevices.mqtt.EMQX.log

Windows

C:\greengrass\v2\logs\aws.greengrass.clientdevices.mqtt.EMQX.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/aws.greengrass.clientdevices.mqtt.EMQX.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\aws.greengrass.clientdevices.mqtt.EMQX.log -
Tail 10 -Wait

Licenses

On Windows operating systems, this software includes code distributed under the Microsoft
Software License Terms - Microsoft Visual Studio Community 2022. By downloading this software,
you agree to that code's license terms.

This component is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the component.

MQTT 5 broker (EMQX) 988

https://visualstudio.microsoft.com/license-terms/vs2022-ga-community
https://visualstudio.microsoft.com/license-terms/vs2022-ga-community
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 2

v2.x

Version Changes

2.0.2 Bug fixes and improvements

• Fixes an issue where EMQX starts up before the Client device auth
component is ready.

2.0.1 Version updated for client device auth version 2.5.0 release.

2.0.0 This version of the MQTT 5 broker (EMQX) expects different configuration
parameters than version 1.x. If you use a non-default configuration for
version 1.x, you must update the component's configuration for 2.x. For
more information, see Configuration.

New features

• Upgrades the MQTT broker to EMQX 5.1.1.

• Enables broker configuration changes without restarting the
component.

Updates

• Adds a new emqxConfig configuration field that replaces
the emqx, mergeConfigurationFiles , and replaceCo
nfigurationFiles configuration fields.

v1.x

Version Changes

1.2.3 Bug fixes and improvements

• Fixes an issue where clients couldn't interact with EMQX after
previously authenticating by disconnecting and reauthenticating the
client.

1.2.2 Version updated for client device auth version 2.4.0 release.

MQTT 5 broker (EMQX) 989

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

1.2.1 Bug fixes and improvements

• Fixes an issue where the component won't startup on Windows if
Visual C++ Redistributable is not already present.

• Updates EMQX to version 4.4.14.

1.2.0 Adds support for certificate chains.

1.1.0 New features

• Adds support for EMQX configurations including broker options and
plug-ins.

Bug fixes and improvements

• Updates EMQX to version 4.4.9.

1.0.1 Fixes an issue during the TLS handshake which results in some MQTT
clients failing to connect.

1.0.0 Initial version.

Nucleus telemetry emitter

The nucleus telemetry emitter component (aws.greengrass.telemetry.NucleusEmitter)
gathers system health telemetry data and publishes it continually to a local topic and an AWS
IoT Core MQTT topic. This component enables you to gather real-time system telemetry on your
Greengrass core devices. For information about the Greengrass telemetry agent that publishes
system telemetry data to Amazon EventBridge, see Gather system health telemetry data from AWS
IoT Greengrass core devices.

By default, the nucleus telemetry emitter component publishes telemetry data every 60 seconds to
the following local publish/subscribe topic.

$local/greengrass/telemetry

The nucleus telemetry emitter component doesn't publish to an AWS IoT Core MQTT topic by
default. You can configure this component to publish to an AWS IoT Core MQTT topic when you

Nucleus telemetry emitter 990

AWS IoT Greengrass Developer Guide, Version 2

deploy it. The use of an MQTT topic to publish data to the AWS Cloud is subject to AWS IoT Core
pricing.

AWS IoT Greengrass provides several community components to help you analyze and visualize
telemetry data locally on your core device using InfluxDB and Grafana. These components use
telemetry data from the nucleus emitter component. For more information, see the README for
the InfluxDB publisher component.

Topics

• Versions

• Type

• Operating system

• Dependencies

• Configuration

• Output data

• Usage

• Local log file

• Changelog

Versions

This component has the following versions:

• 1.0.x

Type

This component is a plugin component (aws.greengrass.plugin). The Greengrass nucleus runs
this component in the same Java Virtual Machine (JVM) as the nucleus. The nucleus restarts when
you change this component's version on the core device.

This component uses the same log file as the Greengrass nucleus. For more information, see
Monitor AWS IoT Greengrass logs.

For more information, see Component types.

Nucleus telemetry emitter 991

https://aws.amazon.com/iot-core/pricing/
https://aws.amazon.com/iot-core/pricing/
https://github.com/awslabs/aws-greengrass-labs-telemetry-influxdbpublisher

AWS IoT Greengrass Developer Guide, Version 2

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

1.0.10

The following table lists the dependencies for version 1.0.10 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.4.0 <2.15.0 Hard

1.0.9

The following table lists the dependencies for version 1.0.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.4.0 <2.14.0 Hard

1.0.8

The following table lists the dependencies for version 1.0.8 of this component.

Nucleus telemetry emitter 992

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.4.0 <2.13.0 Hard

1.0.7

The following table lists the dependencies for version 1.0.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.4.0 <2.12.0 Hard

1.0.6

The following table lists the dependencies for version 1.0.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.4.0 <2.11.0 Hard

1.0.5

The following table lists the dependencies for version 1.0.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.4.0 <2.10.0 Hard

1.0.4

The following table lists the dependencies for version 1.0.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.4.0 <2.9.0 Hard

Nucleus telemetry emitter 993

AWS IoT Greengrass Developer Guide, Version 2

1.0.3

The following table lists the dependencies for version 1.0.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.4.0 <2.8.0 Hard

1.0.2

The following table lists the dependencies for version 1.0.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.4.0 <2.7.0 Hard

1.0.1

The following table lists the dependencies for version 1.0.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.4.0 <2.6.0 Hard

1.0.0

The following table lists the dependencies for version 1.0.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.4.0 <2.5.0 Hard

For more information about component dependencies, see the component recipe reference.

Nucleus telemetry emitter 994

AWS IoT Greengrass Developer Guide, Version 2

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

pubSubPublish

(Optional) Defines whether to publish telemetry data to the $local/greengrass/
telemetry topic. Supported values are true and false.

Default: true

mqttTopic

(Optional) The AWS IoT Core MQTT topic to which this component publishes telemetry data.

Set this value to the AWS IoT Core MQTT topic to which you want to publish telemetry data.
When this value is empty, the nucleus emitter doesn't publish telemetry data to the AWS Cloud.

Note

The use of an MQTT topic to publish data to the AWS Cloud is subject to AWS IoT Core
pricing.

Default: ""

telemetryPublishIntervalMs

(Optional) The amount of time (in milliseconds) between which the component publishes
telemetry data. If you set this value lower than the minimum supported value, the component
uses the minimum value instead.

Note

Lower publish intervals result in higher CPU usage on your core device. We recommend
that you start with the default publish interval and adjust it based on your device's CPU
usage.

Minimum: 500

Default: 60000

Nucleus telemetry emitter 995

https://aws.amazon.com/iot-core/pricing/
https://aws.amazon.com/iot-core/pricing/

AWS IoT Greengrass Developer Guide, Version 2

Example Example: Configuration merge update

The following example shows a sample configuration merge update that enables publishing
telemetry data every 5 seconds to the $local/greengrass/telemetry topic and the
greengrass/myTelemetry AWS IoT Core MQTT topic.

{
 "pubSubPublish": "true",
 "mqttTopic": "greengrass/myTelemetry",
 "telemetryPublishIntervalMs": 5000
}

Output data

This component publishes telemetry metrics as a JSON array on the following topic.

Local topic: $local/greengrass/telemetry

You can optionally choose to also publish telemetry metrics to an AWS IoT Core MQTT topic. For
more information about topics, see MQTT topics in the AWS IoT Core Developer Guide.

Example Example data

[
 {
 "A": "Average",
 "N": "CpuUsage",
 "NS": "SystemMetrics",
 "TS": 1627597331445,
 "U": "Percent",
 "V": 26.21981271562346
 },
 {
 "A": "Count",
 "N": "TotalNumberOfFDs",
 "NS": "SystemMetrics",
 "TS": 1627597331445,
 "U": "Count",
 "V": 7316
 },
 {
 "A": "Count",
 "N": "SystemMemUsage",

Nucleus telemetry emitter 996

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html

AWS IoT Greengrass Developer Guide, Version 2

 "NS": "SystemMetrics",
 "TS": 1627597331445,
 "U": "Megabytes",
 "V": 10098
 },
 {
 "A": "Count",
 "N": "NumberOfComponentsStarting",
 "NS": "GreengrassComponents",
 "TS": 1627597331446,
 "U": "Count",
 "V": 0
 },
 {
 "A": "Count",
 "N": "NumberOfComponentsInstalled",
 "NS": "GreengrassComponents",
 "TS": 1627597331446,
 "U": "Count",
 "V": 0
 },
 {
 "A": "Count",
 "N": "NumberOfComponentsStateless",
 "NS": "GreengrassComponents",
 "TS": 1627597331446,
 "U": "Count",
 "V": 0
 },
 {
 "A": "Count",
 "N": "NumberOfComponentsStopping",
 "NS": "GreengrassComponents",
 "TS": 1627597331446,
 "U": "Count",
 "V": 0
 },
 {
 "A": "Count",
 "N": "NumberOfComponentsBroken",
 "NS": "GreengrassComponents",
 "TS": 1627597331446,
 "U": "Count",
 "V": 0

Nucleus telemetry emitter 997

AWS IoT Greengrass Developer Guide, Version 2

 },
 {
 "A": "Count",
 "N": "NumberOfComponentsRunning",
 "NS": "GreengrassComponents",
 "TS": 1627597331446,
 "U": "Count",
 "V": 7
 },
 {
 "A": "Count",
 "N": "NumberOfComponentsErrored",
 "NS": "GreengrassComponents",
 "TS": 1627597331446,
 "U": "Count",
 "V": 0
 },
 {
 "A": "Count",
 "N": "NumberOfComponentsNew",
 "NS": "GreengrassComponents",
 "TS": 1627597331446,
 "U": "Count",
 "V": 0
 },
 {
 "A": "Count",
 "N": "NumberOfComponentsFinished",
 "NS": "GreengrassComponents",
 "TS": 1627597331446,
 "U": "Count",
 "V": 2
 }
]

The output array contains a list of metrics that have the following properties:

A

The aggregation type for the metric.

For the CpuUsage metric, this property is set to Average because the published value of the
metric is the average CPU usage amount since the last publish event.

Nucleus telemetry emitter 998

AWS IoT Greengrass Developer Guide, Version 2

For all other metrics, the nucleus emitter doesn't aggregate the metric value, and this property
is set to Count.

N

The name of the metric.

NS

The metric namespace.

TS

The timestamp of when the data was gathered.

U

The unit of the metric value.

V

The metric value.

The nucleus emitter publishes the following metrics:

Name Description

System

SystemMemUsage The amount of memory
currently in use by all
applications on the Greengras
s core device, including the
operating system.

CpuUsage The amount of CPU currently
in use by all applications on
the Greengrass core device,
including the operating
system.

TotalNumberOfFDs The number of file descripto
rs stored by the operating

Nucleus telemetry emitter 999

AWS IoT Greengrass Developer Guide, Version 2

Name Description

system of the Greengrass core
device. One file descriptor
uniquely identifies one open
file.

Greengrass nucleus

NumberOfComponents
Running

The number of component
s that are running on the
Greengrass core device.

NumberOfComponents
Errored

The number of components
that are in error state on the
Greengrass core device.

NumberOfComponents
Installed

The number of component
s that are installed on the
Greengrass core device.

NumberOfComponents
Starting

The number of component
s that are starting on the
Greengrass core device.

NumberOfComponents
New

The number of component
s that are new on the
Greengrass core device.

NumberOfComponents
Stopping

The number of component
s that are stopping on the
Greengrass core device.

NumberOfComponents
Finished

The number of component
s that are finished on the
Greengrass core device.

Nucleus telemetry emitter 1000

AWS IoT Greengrass Developer Guide, Version 2

Name Description

NumberOfComponents
Broken

The number of component
s that are broken on the
Greengrass core device.

NumberOfComponents
Stateless

The number of component
s that are stateless on the
Greengrass core device.

Usage

To use system health telemetry data, you can create custom components that subscribe to the
topics to which the nucleus emitter publishes the telemetry data, and react to that data as needed.
Because the nucleus emitter component provides the option to publish telemetry data to a local
topic, you can subscribe to that topic, and use the published data to act locally on your core device.
The core device can then react to telemetry data even when it has limited connectivity to the
cloud.

For example, you can configure a component that listens on the $local/greengrass/
telemetry topic for telemetry data and send the data to the stream manager component to
stream your data to the AWS Cloud. For more information about creating such a component, see
Publish/subscribe local messages and Create custom components that use stream manager.

Local log file

This component uses the same log file as the Greengrass nucleus component.

Linux

/greengrass/v2/logs/greengrass.log

Windows

C:\greengrass\v2\logs\greengrass.log

Nucleus telemetry emitter 1001

AWS IoT Greengrass Developer Guide, Version 2

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/greengrass.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\greengrass.log -Tail 10 -Wait

Changelog

The following table describes the changes in each version of the component.

Version Changes

1.0.10 Version updated for Greengrass nucleus version 2.14.0 release.

1.0.9 Version updated for Greengrass nucleus version 2.13.0 release.

1.0.8 Version updated for Greengrass nucleus version 2.12.0 release.

1.0.7 Version updated for Greengrass nucleus version 2.11.0 release.

1.0.6 Version updated for Greengrass nucleus version 2.10.0 release.

1.0.5 Version updated for Greengrass nucleus version 2.9.0 release.

1.0.4 Version updated for Greengrass nucleus version 2.8.0 release.

1.0.3 Version updated for Greengrass nucleus version 2.7.0 release.

1.0.2 Version updated for Greengrass nucleus version 2.6.0 release.

1.0.1 Version updated for Greengrass nucleus version 2.5.0 release.

Nucleus telemetry emitter 1002

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

1.0.0 Initial version.

PKCS#11 provider

The PKCS#11 provider component (aws.greengrass.crypto.Pkcs11Provider) enables you to
configure the AWS IoT Greengrass Core software to use a hardware security module (HSM) through
the PKCS#11 interface. This component enables you to securely store certificate and private key
files so that they aren't exposed or duplicated in software. For more information, see Hardware
security integration.

To provision a Greengrass core device that stores its certificate and private key in an HSM, you
must specify this component as a provisioning plugin when you install the AWS IoT Greengrass
Core software. For more information, see Install AWS IoT Greengrass Core software with manual
resource provisioning.

AWS IoT Greengrass provides this component as JAR file that you can download to specify as a
provisioning plugin during installation. You can download the latest version of the component's
JAR file as the following URL: https://d2s8p88vqu9w66.cloudfront.net/releases/Pkcs11Provider/
aws.greengrass.crypto.Pkcs11Provider-latest.jar.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

Versions

This component has the following versions:

PKCS#11 provider 1003

https://en.wikipedia.org/wiki/PKCS_11
https://d2s8p88vqu9w66.cloudfront.net/releases/Pkcs11Provider/aws.greengrass.crypto.Pkcs11Provider-latest.jar
https://d2s8p88vqu9w66.cloudfront.net/releases/Pkcs11Provider/aws.greengrass.crypto.Pkcs11Provider-latest.jar

AWS IoT Greengrass Developer Guide, Version 2

• 2.0.x

Type

This component is a plugin component (aws.greengrass.plugin). The Greengrass nucleus runs
this component in the same Java Virtual Machine (JVM) as the nucleus. The nucleus restarts when
you change this component's version on the core device.

This component uses the same log file as the Greengrass nucleus. For more information, see
Monitor AWS IoT Greengrass logs.

For more information, see Component types.

Operating system

This component can be installed on Linux core devices only.

Requirements

This component has the following requirements:

• A hardware security module that supports the PKCS#1 v1.5 signature scheme and RSA keys with
an RSA-2048 key size (or larger) or ECC keys.

Note

To use a hardware security module with ECC keys, you must use Greengrass nucleus
v2.5.6 or later.
To use a hardware security module and secret manager, you must use a hardware
security module with RSA keys.

• A PKCS#11 provider library that the AWS IoT Greengrass Core software can load at runtime
(using libdl) to invoke PKCS#11 functions. The PKCS#11 provider library must implement the
following PKCS#11 API operations:

• C_Initialize

• C_Finalize

• C_GetSlotList

• C_GetSlotInfo

• C_GetTokenInfo

PKCS#11 provider 1004

https://tools.ietf.org/html/rfc2313

AWS IoT Greengrass Developer Guide, Version 2

• C_OpenSession

• C_GetSessionInfo

• C_CloseSession

• C_Login

• C_Logout

• C_GetAttributeValue

• C_FindObjectsInit

• C_FindObjects

• C_FindObjectsFinal

• C_DecryptInit

• C_Decrypt

• C_DecryptUpdate

• C_DecryptFinal

• C_SignInit

• C_Sign

• C_SignUpdate

• C_SignFinal

• C_GetMechanismList

• C_GetMechanismInfo

• C_GetInfo

• C_GetFunctionList

• The hardware module must be resolvable by slot label, as defined in the PKCS#11 specification.

• You must store the private key and certificate in the HSM in the same slot, and they must use the
same object label and object ID, if the HSM supports object IDs.

• The certificate and private key must be resolvable by object labels.

• The private key must have the following permissions:

• sign

• decrypt

• (Optional) To use the secret manager component, you must use version 2.1.0 or later, and the
private key must have the following permissions:

PKCS#11 provider 1005

AWS IoT Greengrass Developer Guide, Version 2

• unwrap

• wrap

• (Optional) If you are using the TPM2 library and running the Greengrass core as a service, you
must provide an environment variable with the location of the PKCS#11 store. The following
example is a systemd service file with the required environment variable:

[Unit]
Description=Greengrass Core
After=network.target

[Service]
Type=simple
PIDFile=/var/run/greengrass.pid
Environment=TPM2_PKCS11_STORE=/path/to/store/directory
RemainAfterExit=no
Restart=on-failure
RestartSec=10
ExecStart=/bin/sh /greengrass/v2/alts/current/distro/bin/loader

[Install]
WantedBy=multi-user.target

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.0.9

The following table lists the dependencies for version 2.0.9 of this component.

PKCS#11 provider 1006

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.3 <2.15.0 Soft

2.0.8

The following table lists the dependencies for version 2.0.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.3 <2.14.0 Soft

2.0.7

The following table lists the dependencies for version 2.0.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.3 <2.13.0 Soft

2.0.6

The following table lists the dependencies for version 2.0.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.3 <2.12.0 Soft

2.0.5

The following table lists the dependencies for version 2.0.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.3 <2.11.0 Soft

PKCS#11 provider 1007

AWS IoT Greengrass Developer Guide, Version 2

2.0.4

The following table lists the dependencies for version 2.0.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.3 <2.10.0 Soft

2.0.3

The following table lists the dependencies for version 2.0.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.3 <2.9.0 Soft

2.0.2

The following table lists the dependencies for version 2.0.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.3 <2.8.0 Soft

2.0.1

The following table lists the dependencies for version 2.0.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.3 <2.7.0 Soft

2.0.0

The following table lists the dependencies for version 2.0.0 of this component.

PKCS#11 provider 1008

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.3 <2.6.0 Soft

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

name

A name for the PKCS#11 configuration.

library

The absolute file path to the PKCS#11 implementation's library that the AWS IoT Greengrass
Core software can load with libdl.

slot

The ID of the slot that contains the private key and device certificate. This value is different than
the slot index or slot label.

userPin

The user PIN to use to access the slot.

Example Example: Configuration merge update

{
 "name": "softhsm_pkcs11",
 "library": "/usr/lib/softhsm/libsofthsm2.so",
 "slot": 1,
 "userPin": "1234"
}

Local log file

This component uses the same log file as the Greengrass nucleus component.

PKCS#11 provider 1009

AWS IoT Greengrass Developer Guide, Version 2

Linux

/greengrass/v2/logs/greengrass.log

Windows

C:\greengrass\v2\logs\greengrass.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/greengrass.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\greengrass.log -Tail 10 -Wait

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.0.9 Version updated for Greengrass nucleus version 2.14.0 release.

2.0.8 Version updated for Greengrass nucleus version 2.13.0 release.

2.0.7 Version updated for Greengrass nucleus version 2.12.0 release.

2.0.6 Version updated for Greengrass nucleus version 2.11.0 release.

2.0.5 Version updated for Greengrass nucleus version 2.10.0 release.

PKCS#11 provider 1010

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.0.4 Version updated for Greengrass nucleus version 2.9.0 release.

2.0.3 Version updated for Greengrass nucleus version 2.8.0 release.

2.0.2 Version updated for Greengrass nucleus version 2.7.0 release.

2.0.1 Version updated for Greengrass nucleus version 2.6.0 release.

2.0.0 Initial version.

Secret manager

The secret manager component (aws.greengrass.SecretManager) deploys secrets from AWS
Secrets Manager to Greengrass core devices. Use this component to securely use credentials, such
as passwords, in custom components on your Greengrass core devices. For more information about
Secrets Manager, see What is AWS Secrets Manager? in the AWS Secrets Manager User Guide.

To access this component's secrets in your custom Greengrass components, use the GetSecretValue
operation in the AWS IoT Device SDK. For more information, see Use the AWS IoT Device SDK to
communicate with the Greengrass nucleus, other components, and AWS IoT Core and Retrieve
secret values.

This component encrypts secrets on the core device to keep your credentials and passwords secure
until you need to use them. It uses the core device's private key to encrypt and decrypt secrets.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

Secret manager 1011

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html

AWS IoT Greengrass Developer Guide, Version 2

Versions

This component has the following versions:

• 2.2.x

• 2.1.x

• 2.0.x

Type

This component is a plugin component (aws.greengrass.plugin). The Greengrass nucleus runs
this component in the same Java Virtual Machine (JVM) as the nucleus. The nucleus restarts when
you change this component's version on the core device.

This component uses the same log file as the Greengrass nucleus. For more information, see
Monitor AWS IoT Greengrass logs.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Requirements

This component has the following requirements:

• The Greengrass device role must allow the secretsmanager:GetSecretValue action, as
shown in the following example IAM policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [

Secret manager 1012

AWS IoT Greengrass Developer Guide, Version 2

 "secretsmanager:GetSecretValue"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:secretsmanager:region:123456789012:secret:MySecret"
]
 }
]
}

Note

If you use a customer-managed AWS Key Management Service key to encrypt secrets, the
device role must also allow the kms:Decrypt action.

For more information about IAM policies for Secrets Manager, see the following in the AWS
Secrets Manager User Guide:

• Authentication and access control for AWS Secrets Manager

• Actions, resources, and context keys you can use in an IAM policy or secret policy for AWS
Secrets Manager

• Custom components must define an authorization policy that allows
aws.greengrass#GetSecretValue to get secrets that you store with this component. In
this authorization policy, you can restrict components' access to specific secrets. For more
information, see secret manager IPC authorization.

• (Optional) If you store the core device's private key and certificate in a hardware security module
(HSM), the HSM must support RSA keys, the private key must have the unwrap permission, and
the public key must have the wrap permission.

Endpoints and ports

This component must be able to perform outbound requests to the following endpoints and ports,
in addition to endpoints and ports required for basic operation. For more information, see Allow
device traffic through a proxy or firewall.

Secret manager 1013

https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html

AWS IoT Greengrass Developer Guide, Version 2

Endpoint Port Required Descripti
on

secretsma
nager. region.amazonaws.com

443 Yes Download
secrets to
the core
device.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.2.2

The following table lists the dependencies for versions 2.2.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.15.0 Soft

2.2.0

The following table lists the dependencies for versions 2.2.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.13.0 <2.14.0 Soft

Secret manager 1014

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

2.1.7 – 2.1.8

The following table lists the dependencies for versions 2.1.7 and 2.1.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.13.0 Soft

2.1.6

The following table lists the dependencies for version 2.1.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.12.0 Soft

2.1.5

The following table lists the dependencies for version 2.1.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.11.0 Soft

2.1.4

The following table lists the dependencies for version 2.1.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.10.0 Soft

2.1.3

The following table lists the dependencies for version 2.1.3 of this component.

Secret manager 1015

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.9.0 Soft

2.1.2

The following table lists the dependencies for version 2.1.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.8.0 Soft

2.1.1

The following table lists the dependencies for version 2.1.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.7.0 Soft

2.1.0

The following table lists the dependencies for version 2.1.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.6.0 Soft

2.0.9

The following table lists the dependencies for version 2.0.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Soft

Secret manager 1016

AWS IoT Greengrass Developer Guide, Version 2

2.0.8

The following table lists the dependencies for version 2.0.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Soft

2.0.7

The following table lists the dependencies for version 2.0.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Soft

2.0.6

The following table lists the dependencies for version 2.0.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.2.0 Soft

2.0.4 and 2.0.5

The following table lists the dependencies for versions 2.0.4 and 2.0.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.3 <2.1.0 Soft

For more information about component dependencies, see the component recipe reference.

Secret manager 1017

AWS IoT Greengrass Developer Guide, Version 2

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

periodicRefreshIntervalMin (optional)

The interval in minutes where this component syncs the configured secrets on the core device
with the latest secret values from the AWS Secrets Manager service. If this interval is not
configured, secret manager will not refresh the configured secrets periodically.

{
 "cloudSecrets": [
 {
 "arn": "arn:aws:secretsmanager:us-
west-2:123456789012:secret:MyGreengrassSecret-abcdef"
 }
],
 "periodicRefreshIntervalMin" : 60
}

cloudSecrets

A list of Secrets Manager secrets to deploy to the core device. You can specify labels to define
which versions of each secret to deploy. If you don't specify a version, this component deploys
the version with the staging label AWSCURRENT attached. For more information, see Staging
labels in the AWS Secrets Manager User Guide.

The secret manager component caches secrets locally. If the secret value changes in Secrets
Manager, this component doesn't automatically retrieve the new value. To update the local
copy, give the secret a new label and configure this component to retrieve the secret identified
by the new label.

Each object contains the following information:

arn

The ARN of the secret to deploy. The ARN of the secret can either be a full ARN or a partial
ARN. We recommend that you specify a complete ARN rather than a partial ARN. For more
information, see Finding a secret from a partial ARN. The following is an example of a full
ARN and a partial ARN:

Secret manager 1018

https://docs.aws.amazon.com/secretsmanager/latest/userguide/terms-concepts.html#term_staging-label
https://docs.aws.amazon.com/secretsmanager/latest/userguide/terms-concepts.html#term_staging-label
https://docs.aws.amazon.com/secretsmanager/latest/userguide/troubleshoot.html#ARN_secretnamehyphen

AWS IoT Greengrass Developer Guide, Version 2

• Full ARN: arn:aws:secretsmanager:us-
east-2:111122223333:secret:SecretName-abcdef

• Partial ARN: arn:aws:secretsmanager:us-
east-2:111122223333:secret:SecretName

labels

(Optional) A list of labels to identify the versions of the secret to deploy to the core device.

Each label must be a string.

Example Example: Configuration merge update

{
 "cloudSecrets": [
 {
 "arn": "arn:aws:secretsmanager:us-west-2:123456789012:secret:MyGreengrassSecret-
abcdef"
 }
]
}

Local log file

This component uses the same log file as the Greengrass nucleus component.

Linux

/greengrass/v2/logs/greengrass.log

Windows

C:\greengrass\v2\logs\greengrass.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Secret manager 1019

AWS IoT Greengrass Developer Guide, Version 2

Linux

sudo tail -f /greengrass/v2/logs/greengrass.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\greengrass.log -Tail 10 -Wait

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.2.2 Bug fixes and improvements

Fixes an issue where secret manager doesn’t download the secrets
configured with partial arns.

2.2.1 Bug fixes and improvements

Supports secret manager on Nucleus versions 2.5.0 and above.

2.2.0 New features

Adds support for periodic refresh of the configured secrets through a
new component configuration key.

Adds support for a new request parameter in the GetSecretValue IPC
request to refresh the secrets per request

2.1.8 Bug fixes and improvements

Fixes an issue where secret manager doesn't accept a partial arn.

2.1.7 Version updated for Greengrass nucleus version 2.12.0 release.

2.1.6 Version updated for Greengrass nucleus version 2.11.0 release.

Secret manager 1020

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.1.5 Version updated for Greengrass nucleus version 2.10.0 release.

2.1.4 Bug fixes and improvements

Fixes an issue where cached secrets were being removed when secret
manager is deployed and Greengrass nucleus restarts.

Version updated for Greengrass nucleus version 2.9.0 release.

2.1.3 Version updated for Greengrass nucleus version 2.8.0 release.

2.1.2 Version updated for Greengrass nucleus version 2.7.0 release.

2.1.1 Version updated for Greengrass nucleus version 2.6.0 release.

2.1.0 New features

• Adds support for hardware security integration. The secret manager
component can encrypt and decrypt secrets using a private key that
you store in a hardware security module (HSM). For more information,
see Hardware security integration.

Bug fixes and improvements

• Version updated for Greengrass nucleus version 2.5.0 release.

2.0.9 Version updated for Greengrass nucleus version 2.4.0 release.

2.0.8 Version updated for Greengrass nucleus version 2.3.0 release.

2.0.7 Version updated for Greengrass nucleus version 2.2.0 release.

2.0.6 Version updated for Greengrass nucleus version 2.1.0 release.

2.0.5 Improvements

• Add support for AWS China Regions and AWS GovCloud (US) Regions.

2.0.4 Initial version.

Secret manager 1021

AWS IoT Greengrass Developer Guide, Version 2

Secure tunneling

With the aws.greengrass.SecureTunneling component, you can establish secure bidirectional
communication with a Greengrass core device located behind restricted firewalls.

For example, imagine you have a Greengrass core device behind a firewall that prohibits all
incoming connections. Secure tunneling uses MQTT to transfer an access token to the device and
then uses WebSockets to make an SSH connection to the device through the firewall. With this
AWS IoT managed tunnel, you can open the SSH connection needed for your device. For more
information about using AWS IoT secure tunneling to connect to remote devices, see AWS IoT
secure tunneling in the AWS IoT Developer Guide.

This component subscribes to the AWS IoT Core MQTT message broker on the $aws/
things/greengrass-core-device/tunnels/notify topic to receive secure tunneling
notifications.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• Licenses

• Usage

• See also

• Changelog

Versions

This component has the following versions:

• 1.0.x

Secure tunneling 1022

https://docs.aws.amazon.com/iot/latest/developerguide/secure-tunneling.html
https://docs.aws.amazon.com/iot/latest/developerguide/secure-tunneling.html

AWS IoT Greengrass Developer Guide, Version 2

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on Linux core devices only.

Architectures:

• Armv71

• Armv8 (AArch64)

• x86_64

Requirements

This component has the following requirements:

• Minimum of 32 MB disk space available for the secure tunneling component. This requirement
does not include the Greengrass core software or other components running on the same device.

• Minimum of 16 MB RAM available for the secure tunneling component. This requirement does
not include the Greengrass core software or other components running on the same device. For
more information, see Control memory allocation with JVM options.

• GNU C Library (glibc) version 2.25 or greater with a Linux kernel of 3.2 or greater are required
for the secure tunneling component version 1.0.12 and greater. Versions of the operating system
and libraries past their long-term support end of life date are not supported. You should use an
operating system and libraries with long-term support.

• Both the operating system and the Java runtime must be installed as 64 bit.

• Python 3.5 or later installed on the Greengrass core device and added to the PATH environment
variable.

• libcrypto.so.1.1 installed on the Greengrass core device and added to the PATH
environment variable.

• Open outbound traffic on port 443 on the Greengrass core device.

Secure tunneling 1023

https://www.python.org/

AWS IoT Greengrass Developer Guide, Version 2

• Turn on support for the communication service that you want to use to communicate with the
Greengrass core device. For example, to open an SSH connection to the device, you must turn on
SSH on that device.

Endpoints and ports

This component must be able to perform outbound requests to the following endpoints and ports,
in addition to endpoints and ports required for basic operation. For more information, see Allow
device traffic through a proxy or firewall.

Endpoint Port Required Descripti
on

data.tunneling.iot
. region.amazonaws.com

443 Yes Establish
secure
tunnels.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

1.1.0

The following table lists the dependencies for version 1.1.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <3.0.0 Soft

Secure tunneling 1024

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

1.0.19

The following table lists the dependencies for version 1.0.19 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <3.0.0 Soft

1.0.18

The following table lists the dependencies for version 1.0.18 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.13.0 Soft

1.0.16 – 1.0.17

The following table lists the dependencies for versions 1.0.16 to 1.0.17 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.12.0 Soft

1.0.14 – 1.0.15

The following table lists the dependencies for versions 1.0.14 to 1.0.15 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.11.0 Soft

1.0.11 – 1.0.13

The following table lists the dependencies for versions 1.0.11 – 1.0.13 of this component.

Secure tunneling 1025

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.10.0 Soft

1.0.10

The following table lists the dependencies for version 1.0.10 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.9.0 Soft

1.0.9

The following table lists the dependencies for version 1.0.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.8.0 Soft

1.0.8

The following table lists the dependencies for version 1.0.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.7.0 Soft

1.0.5 - 1.0.7

The following table lists the dependencies for versions 1.0.5 through 1.0.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.6.0 Soft

Secure tunneling 1026

AWS IoT Greengrass Developer Guide, Version 2

1.0.4

The following table lists the dependencies for version 1.0.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Soft

1.0.3

The following table lists the dependencies for version 1.0.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Soft

1.0.2

The following table lists the dependencies for version 1.0.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Soft

1.0.1

The following table lists the dependencies for version 1.0.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.2.0 Soft

1.0.0

The following table lists the dependencies for version 1.0.0 of this component.

Secure tunneling 1027

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.3 <2.1.0 Soft

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

OS_DIST_INFO

(Optional) The operating system of your core device. By default, the component attempts to
identify automatically the operating system running on your core device. If the component
fails to start with the default value, use this value to specify the operating system. For a list of
supported operating systems for this component, see Device requirements.

This value can be one of the following: auto, ubuntu, amzn2, raspberrypi.

Default: auto

accessControl

(Optional) The object that contains the authorization policy that allows the component to
subscribe to the secure tunneling notifications topic.

Note

Do not modify this configuration parameter if your deployment targets a thing
group. If your deployment targets an individual core device, and you want to restrict
its subscription to the device's topic, specify the core device's thing name. In the
resources value in the device's authorization policy, replace the MQTT topic wildcard
with the device's thing name.

{
 "aws.greengrass.ipc.mqttproxy": {

Secure tunneling 1028

AWS IoT Greengrass Developer Guide, Version 2

 "aws.iot.SecureTunneling:mqttproxy:1": {
 "policyDescription": "Access to tunnel notification pubsub topic",
 "operations": [
 "aws.greengrass#SubscribeToIoTCore"
],
 "resources": [
 "$aws/things/+/tunnels/notify"
]
 }
 }
}

Example Example: Configuration merge update

The following example configuration specifies to allow this component to open secure tunnels on a
core device named MyGreengrassCore that runs Ubuntu.

{
 "OS_DIST_INFO": "ubuntu",
 "accessControl": {
 "aws.greengrass.ipc.mqttproxy": {
 "aws.iot.SecureTunneling:mqttproxy:1": {
 "policyDescription": "Access to tunnel notification pubsub topic",
 "operations": [
 "aws.greengrass#SubscribeToIoTCore"
],
 "resources": [
 "$aws/things/MyGreengrassCore/tunnels/notify"
]
 }
 }
 }
}

Local log file

This component uses the following log file.

/greengrass/v2/logs/aws.greengrass.SecureTunneling.log

Secure tunneling 1029

AWS IoT Greengrass Developer Guide, Version 2

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 with the path to the AWS IoT Greengrass root folder.

sudo tail -f /greengrass/v2/logs/aws.greengrass.SecureTunneling.log

Licenses

This component includes the following third-party software/licensing:

• AWS IoT Device Client/Apache License 2.0

• AWS IoT Device SDK for Java/Apache License 2.0

• gson/Apache License 2.0

• log4j/Apache License 2.0

• slf4j/Apache License 2.0

Usage

To use the secure tunneling component on your device, do the following:

1. Deploy the secure tunneling component to your device.

2. Open the AWS IoT console. From the left menu, choose Remote actions, and then choose
Secure tunnels.

3. Create a tunnel to your Greengrass device.

4. Download the source access token.

5. Use the local proxy with the source access token to connect to your destination. For more
information, see How to use the local proxy in the AWS IoT Developer Guide.

See also

• AWS IoT secure tunneling in the AWS IoT Developer Guide

• How to use the local proxy in the AWS IoT Developer Guide

Secure tunneling 1030

https://github.com/awslabs/aws-iot-device-client
https://github.com/aws/aws-greengrass-core-sdk-java/
https://github.com/google/gson
https://logging.apache.org/log4j/2.x/
http://www.slf4j.org/
https://console.aws.amazon.com/iot
https://docs.aws.amazon.com/iot/latest/developerguide/how-use-local-proxy.html
https://docs.aws.amazon.com/iot/latest/developerguide/secure-tunneling.html
https://docs.aws.amazon.com/iot/latest/developerguide/how-use-local-proxy.html

AWS IoT Greengrass Developer Guide, Version 2

Changelog

The following table describes the changes in each version of the component.

Version Changes

1.1.0 New features

• Add recipe supports for Greengrass nucleus lite

1.0.19 Bug fixes and improvements

• Upgrades the underlying AWS IoT Device Client invoked by the
component from version 1.8.0 to version 1.9.0.

• Increases the concurrent tunnel limit to 20 tunnels on a component
 level.

• Increases the default AWS IoT Greengrass Core IPC timeout from 3
seconds to 10 seconds.

Warning

If you are using the secure tunneling local proxy as the tunnel source
client, do not update your component to this version until you have
also upgraded the local proxy to version 3.1.1 or later.

1.0.18 Version updated for Greengrass nucleus version 2.12.0 release.

1.0.17 Bug fixes and improvements

• Fixes the thread cleanup issue which was blocking users from creating
tunnels. This component will now cleanup a thread either once it
receives the CloseTunnel signal or if the tunnel is expired after 12
hours.

1.0.16 Version updated for Greengrass nucleus version 2.11.0 release.

Secure tunneling 1031

https://github.com/awslabs/aws-iot-device-client

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

1.0.15 Bug fixes and improvements

• Fixes a startup issue for users that do not have a home directory on the
device. The secure tunneling component now starts without creating a
directory for shadow documents.

1.0.14 Version updated for Greengrass nucleus version 2.10.0 release.

1.0.13 Bug fixes and improvements

• Fixes an issue where an orphan client process prevents more than one
tunnel from targeting the device.

1.0.12 Bug fixes and improvements

• Adds support for x86_64 (AMD64) and ARMv8 (Aarch64) when running
on Raspberry Pi OS.

1.0.11 Version updated for Greengrass nucleus version 2.9.0 release.

1.0.10 Version updated for Greengrass nucleus version 2.8.0 release.

1.0.9 Version updated for Greengrass nucleus version 2.7.0 release.

1.0.8 Version updated for Greengrass nucleus version 2.6.0 release.

1.0.7 Bug fixes and improvements

• Fixes an issue where the component disconnects when you transfer
large files over SCP.

1.0.6 This version contains bug fixes.

1.0.5 Version updated for Greengrass nucleus version 2.5.0 release.

1.0.4 Version updated for Greengrass nucleus version 2.4.0 release.

1.0.3 Version updated for Greengrass nucleus version 2.3.0 release.

1.0.2 Version updated for Greengrass nucleus version 2.2.0 release.

1.0.1 Version updated for Greengrass nucleus version 2.1.0 release.

Secure tunneling 1032

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

1.0.0 Initial version.

Shadow manager

The shadow manager component (aws.greengrass.ShadowManager) enables the local shadow
service on your core device. The local shadow service allows components to use interprocess
communication to interact with local shadows. The shadow manager component manages the
storage of local shadow documents, and also handles synchronization of local shadow states with
the AWS IoT Device Shadow service.

For more information about how Greengrass core devices can interact with shadows, see Interact
with device shadows.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

Versions

This component has the following versions:

• 2.3.x

• 2.2.x

• 2.1.x

• 2.0.x

Shadow manager 1033

AWS IoT Greengrass Developer Guide, Version 2

Type

This component is a plugin component (aws.greengrass.plugin). The Greengrass nucleus runs
this component in the same Java Virtual Machine (JVM) as the nucleus. The nucleus restarts when
you change this component's version on the core device.

This component uses the same log file as the Greengrass nucleus. For more information, see
Monitor AWS IoT Greengrass logs.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Requirements

This component has the following requirements:

• (Optional) To sync shadows to the AWS IoT Device Shadow service, the Greengrass core device's
AWS IoT policy must allow the following AWS IoT Core shadow policy actions:

• iot:GetThingShadow

• iot:UpdateThingShadow

• iot:DeleteThingShadow

For more information about these AWS IoT Core policies, see AWS IoT Core policy actions in the
AWS IoT Developer Guide.

For more information about the minimal AWS IoT policy, see Minimal AWS IoT policy for AWS IoT
Greengrass V2 core devices

• The shadow manager component is supported to run in a VPC.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of

Shadow manager 1034

https://docs.aws.amazon.com/iot/latest/developerguide/iot-policy-actions.html

AWS IoT Greengrass Developer Guide, Version 2

its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.3.10

The following table lists the dependencies for version 2.3.10 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.15.0 Soft

2.3.9

The following table lists the dependencies for version 2.3.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.14.0 Soft

2.3.5 – 2.3.8

The following table lists the dependencies for versions 2.3.5 through 2.3.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.13.0 Soft

2.3.3 and 2.3.4

The following table lists the dependencies for versions 2.3.3 and 2.3.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.12.0 Soft

Shadow manager 1035

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

2.3.2

The following table lists the dependencies for version 2.3.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.11.0 Soft

2.3.0 and 2.3.1

The following table lists the dependencies for versions 2.3.0 and 2.3.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.5.0 <2.10.0 Soft

2.2.3 and 2.2.4

The following table lists the dependencies for versions 2.2.3 and 2.2.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <3.0.0 Soft

2.2.2

The following table lists the dependencies for version 2.2.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.9.0 Soft

2.2.1

The following table lists the dependencies for version 2.2.1 of this component.

Shadow manager 1036

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.8.0 Soft

2.1.1 and 2.2.0

The following table lists the dependencies for versions 2.1.1 and 2.2.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.7.0 Soft

2.0.5 - 2.1.0

The following table lists the dependencies for versions 2.0.5 through 2.1.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.6.0 Soft

2.0.3 and 2.0.4

The following table lists the dependencies for versions 2.0.3 and 2.0.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.5.0 Soft

2.0.1 and 2.0.2

The following table lists the dependencies for versions 2.0.1 and 2.0.2 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.4.0 Soft

Shadow manager 1037

AWS IoT Greengrass Developer Guide, Version 2

2.0.0

The following table lists the dependencies for version 2.0.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.2.0 <2.3.0 Soft

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

2.3.x

strategy

(Optional) The strategy that this component uses to sync shadows between AWS IoT Core
and the core device.

This object contains the following information.

type

(Optional) The type of strategy that this component uses to sync shadows between AWS
IoT Core and the core device. Choose from the following options:

• realTime – Sync shadows with AWS IoT Core each time a shadow update occurs.

• periodic – Sync shadows with AWS IoT Core on a regular interval that you specify
with the delay configuration parameter.

Default: realTime

delay

(Optional) The interval in seconds where this component syncs shadows with AWS IoT
Core, when you specify the periodic sync strategy.

Shadow manager 1038

AWS IoT Greengrass Developer Guide, Version 2

Note

This parameter is required if you specify the periodic sync strategy.

synchronize

(Optional) The synchronization settings that determine how shadows are synced with the
AWS Cloud.

Note

You must create a configuration update with this property to sync shadows with the
AWS Cloud.

This object contains the following information.

coreThing

(Optional) The core device shadows to sync. This object contains the following
information.

classic

(Optional) By default, the shadow manager syncs the local state of the classic shadow
for your core device with the AWS Cloud. If you don't want to sync the classic device
shadow, set this to false.

Default: true

namedShadows

(Optional) The list of named core device shadows to sync. You must specify the exact
names of the shadows.

Warning

The AWS IoT Greengrass service uses the
AWSManagedGreengrassV2Deployment named shadow to manage
deployments that target individual core devices. This named shadow is

Shadow manager 1039

AWS IoT Greengrass Developer Guide, Version 2

reserved for use by the AWS IoT Greengrass service. Do not update or delete
this named shadow.

shadowDocumentsMap

(Optional) The additional device shadows to sync. Using this configuration parameter
makes it easier to specify shadow documents. We recommend that you use this
parameter instead of the shadowDocuments object.

Note

If you specify a shadowDocumentsMap object, you must not specify a
shadowDocuments object.

Each object contains the following information:

thingName

The shadow configuration for the thingName for this shadow configuration.

classic

(Optional) If you don't want to sync the classic device shadow for the thingName
device, set this to false.

namedShadows

The list of named shadows that you want to sync. You must specify the exact
names of the shadows.

shadowDocuments

(Optional) The list of additional device shadows to sync. We recommend that you use the
shadowDocumentsMap parameter instead.

Note

If you specify a shadowDocuments object, you must not specify a
shadowDocumentsMap object.

Shadow manager 1040

AWS IoT Greengrass Developer Guide, Version 2

Each object in this list contains the following information.

thingName

The thing name of the device for which to sync shadows.

classic

(Optional) If you don't want to sync the classic device shadow for the thingName
device, set this to false.

Default: true

namedShadows

(Optional) The list of named device shadows that you want to sync. You must specify
the exact names of the shadows.

direction

(Optional) The direction to sync shadows between the local shadow service and the AWS
Cloud. You can configure this option to reduce bandwidth and connections to the AWS
Cloud. Choose from the following options:

• betweenDeviceAndCloud – Synchronize shadows between the local shadow service
and the AWS Cloud.

• deviceToCloud – Send shadow updates from the local shadow service to the AWS
Cloud, and ignore shadow updates from the AWS Cloud.

• cloudToDevice – Receive shadow updates from the AWS Cloud, and don't send
shadow updates from the local shadow service to the AWS Cloud.

Default: BETWEEN_DEVICE_AND_CLOUD

rateLimits

(Optional) The settings that determine the rate limits for shadow service requests.

This object contains the following information.

maxOutboundSyncUpdatesPerSecond

(Optional) The maximum number of sync requests per second that the device transmits.

Default: 100 requests/second

Shadow manager 1041

AWS IoT Greengrass Developer Guide, Version 2

maxTotalLocalRequestsRate

(Optional) The maximum number of local IPC requests per second that are sent to the
core device.

Default: 200 requests/second

maxLocalRequestsPerSecondPerThing

(Optional) The maximum number of local IPC requests per second that are sent for each
connected IoT thing.

Default: 20 requests/second for each thing

Note

These rate limits parameters define the maximum number of requests per second
for the local shadow service. The maximum number of requests per second for the
AWS IoT Device Shadow service depends on your AWS Region. For more information,
see the limits for the AWS IoT Device Shadow Service API in the Amazon Web Services
General Reference.

shadowDocumentSizeLimitBytes

(Optional) The maximum allowed size of each JSON state document for local shadows.

If you increase this value, you must also increase the resource limit for the JSON state
document for cloud shadows. For more information, see the limits for the AWS IoT Device
Shadow Service API in the Amazon Web Services General Reference.

Default: 8192 bytes

Maximum: 30720 bytes

Example Example: Configuration merge update

The following example shows a sample configuration merge update with all available
configuration parameters for the shadow manager component.

{
 "strategy":{

Shadow manager 1042

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#device-shadow-limits
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#device-shadow-limits
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#device-shadow-limits

AWS IoT Greengrass Developer Guide, Version 2

 "type":"periodic",
 "delay":300
 },
 "synchronize":{
 "shadowDocumentsMap":{
 "MyDevice1":{
 "classic":false,
 "namedShadows":[
 "MyShadowA",
 "MyShadowB"
]
 },
 "MyDevice2":{
 "classic":true,
 "namedShadows":[]
 }
 },
 "direction":"betweenDeviceAndCloud"
 },
 "rateLimits":{
 "maxOutboundSyncUpdatesPerSecond":100,
 "maxTotalLocalRequestsRate":200,
 "maxLocalRequestsPerSecondPerThing":20
 },
 "shadowDocumentSizeLimitBytes":8192
}

2.2.x

strategy

(Optional) The strategy that this component uses to sync shadows between AWS IoT Core
and the core device.

This object contains the following information.

type

(Optional) The type of strategy that this component uses to sync shadows between AWS
IoT Core and the core device. Choose from the following options:

• realTime – Sync shadows with AWS IoT Core each time a shadow update occurs.

• periodic – Sync shadows with AWS IoT Core on a regular interval that you specify
with the delay configuration parameter.

Shadow manager 1043

AWS IoT Greengrass Developer Guide, Version 2

Default: realTime

delay

(Optional) The interval in seconds where this component syncs shadows with AWS IoT
Core, when you specify the periodic sync strategy.

Note

This parameter is required if you specify the periodic sync strategy.

synchronize

(Optional) The synchronization settings that determine how shadows are synced with the
AWS Cloud.

Note

You must create a configuration update with this property to sync shadows with the
AWS Cloud.

This object contains the following information.

coreThing

(Optional) The core device shadows to sync. This object contains the following
information.

classic

(Optional) By default, the shadow manager syncs the local state of the classic shadow
for your core device with the AWS Cloud. If you don't want to sync the classic device
shadow, set this to false.

Default: true

namedShadows

(Optional) The list of named core device shadows to sync. You must specify the exact
names of the shadows.

Shadow manager 1044

AWS IoT Greengrass Developer Guide, Version 2

Warning

The AWS IoT Greengrass service uses the
AWSManagedGreengrassV2Deployment named shadow to manage
deployments that target individual core devices. This named shadow is
reserved for use by the AWS IoT Greengrass service. Do not update or delete
this named shadow.

shadowDocumentsMap

(Optional) The additional device shadows to sync. Using this configuration parameter
makes it easier to specify shadow documents. We recommend that you use this
parameter instead of the shadowDocuments object.

Note

If you specify a shadowDocumentsMap object, you must not specify a
shadowDocuments object.

Each object contains the following information:

thingName

The shadow configuration for the thingName for this shadow configuration.

classic

(Optional) If you don't want to sync the classic device shadow for the thingName
device, set this to false.

namedShadows

The list of named shadows that you want to sync. You must specify the exact
names of the shadows.

shadowDocuments

(Optional) The list of additional device shadows to sync. We recommend that you use the
shadowDocumentsMap parameter instead.

Shadow manager 1045

AWS IoT Greengrass Developer Guide, Version 2

Note

If you specify a shadowDocuments object, you must not specify a
shadowDocumentsMap object.

Each object in this list contains the following information.

thingName

The thing name of the device for which to sync shadows.

classic

(Optional) If you don't want to sync the classic device shadow for the thingName
device, set this to false.

Default: true

namedShadows

(Optional) The list of named device shadows that you want to sync. You must specify
the exact names of the shadows.

direction

(Optional) The direction to sync shadows between the local shadow service and the AWS
Cloud. You can configure this option to reduce bandwidth and connections to the AWS
Cloud. Choose from the following options:

• betweenDeviceAndCloud – Synchronize shadows between the local shadow service
and the AWS Cloud.

• deviceToCloud – Send shadow updates from the local shadow service to the AWS
Cloud, and ignore shadow updates from the AWS Cloud.

• cloudToDevice – Receive shadow updates from the AWS Cloud, and don't send
shadow updates from the local shadow service to the AWS Cloud.

Default: BETWEEN_DEVICE_AND_CLOUD

rateLimits

(Optional) The settings that determine the rate limits for shadow service requests.

Shadow manager 1046

AWS IoT Greengrass Developer Guide, Version 2

This object contains the following information.

maxOutboundSyncUpdatesPerSecond

(Optional) The maximum number of sync requests per second that the device transmits.

Default: 100 requests/second

maxTotalLocalRequestsRate

(Optional) The maximum number of local IPC requests per second that are sent to the
core device.

Default: 200 requests/second

maxLocalRequestsPerSecondPerThing

(Optional) The maximum number of local IPC requests per second that are sent for each
connected IoT thing.

Default: 20 requests/second for each thing

Note

These rate limits parameters define the maximum number of requests per second
for the local shadow service. The maximum number of requests per second for the
AWS IoT Device Shadow service depends on your AWS Region. For more information,
see the limits for the AWS IoT Device Shadow Service API in the Amazon Web Services
General Reference.

shadowDocumentSizeLimitBytes

(Optional) The maximum allowed size of each JSON state document for local shadows.

If you increase this value, you must also increase the resource limit for the JSON state
document for cloud shadows. For more information, see the limits for the AWS IoT Device
Shadow Service API in the Amazon Web Services General Reference.

Default: 8192 bytes

Maximum: 30720 bytes

Shadow manager 1047

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#device-shadow-limits
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#device-shadow-limits
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#device-shadow-limits

AWS IoT Greengrass Developer Guide, Version 2

Example Example: Configuration merge update

The following example shows a sample configuration merge update with all available
configuration parameters for the shadow manager component.

{
 "strategy":{
 "type":"periodic",
 "delay":300
 },
 "synchronize":{
 "shadowDocumentsMap":{
 "MyDevice1":{
 "classic":false,
 "namedShadows":[
 "MyShadowA",
 "MyShadowB"
]
 },
 "MyDevice2":{
 "classic":true,
 "namedShadows":[]
 }
 },
 "direction":"betweenDeviceAndCloud"
 },
 "rateLimits":{
 "maxOutboundSyncUpdatesPerSecond":100,
 "maxTotalLocalRequestsRate":200,
 "maxLocalRequestsPerSecondPerThing":20
 },
 "shadowDocumentSizeLimitBytes":8192
}

2.1.x

strategy

(Optional) The strategy that this component uses to sync shadows between AWS IoT Core
and the core device.

This object contains the following information.

Shadow manager 1048

AWS IoT Greengrass Developer Guide, Version 2

type

(Optional) The type of strategy that this component uses to sync shadows between AWS
IoT Core and the core device. Choose from the following options:

• realTime – Sync shadows with AWS IoT Core each time a shadow update occurs.

• periodic – Sync shadows with AWS IoT Core on a regular interval that you specify
with the delay configuration parameter.

Default: realTime

delay

(Optional) The interval in seconds where this component syncs shadows with AWS IoT
Core, when you specify the periodic sync strategy.

Note

This parameter is required if you specify the periodic sync strategy.

synchronize

(Optional) The synchronization settings that determine how shadows are synced with the
AWS Cloud.

Note

You must create a configuration update with this property to sync shadows with the
AWS Cloud.

This object contains the following information.

coreThing

(Optional) The core device shadows to sync. This object contains the following
information.

Shadow manager 1049

AWS IoT Greengrass Developer Guide, Version 2

classic

(Optional) By default, the shadow manager syncs the local state of the classic shadow
for your core device with the AWS Cloud. If you don't want to sync the classic device
shadow, set this to false.

Default: true

namedShadows

(Optional) The list of named core device shadows to sync. You must specify the exact
names of the shadows.

Warning

The AWS IoT Greengrass service uses the
AWSManagedGreengrassV2Deployment named shadow to manage
deployments that target individual core devices. This named shadow is
reserved for use by the AWS IoT Greengrass service. Do not update or delete
this named shadow.

shadowDocumentsMap

(Optional) The additional device shadows to sync. Using this configuration parameter
makes it easier to specify shadow documents. We recommend that you use this
parameter instead of the shadowDocuments object.

Note

If you specify a shadowDocumentsMap object, you must not specify a
shadowDocuments object.

Each object contains the following information:

thingName

The shadow configuration for the thingName for this shadow configuration.

Shadow manager 1050

AWS IoT Greengrass Developer Guide, Version 2

classic

(Optional) If you don't want to sync the classic device shadow for the thingName
device, set this to false.

namedShadows

The list of named shadows that you want to sync. You must specify the exact
names of the shadows.

shadowDocuments

(Optional) The list of additional device shadows to sync. We recommend that you use the
shadowDocumentsMap parameter instead.

Note

If you specify a shadowDocuments object, you must not specify a
shadowDocumentsMap object.

Each object in this list contains the following information.

thingName

The thing name of the device for which to sync shadows.

classic

(Optional) If you don't want to sync the classic device shadow for the thingName
device, set this to false.

Default: true

namedShadows

(Optional) The list of named device shadows that you want to sync. You must specify
the exact names of the shadows.

rateLimits

(Optional) The settings that determine the rate limits for shadow service requests.

This object contains the following information.

Shadow manager 1051

AWS IoT Greengrass Developer Guide, Version 2

maxOutboundSyncUpdatesPerSecond

(Optional) The maximum number of sync requests per second that the device transmits.

Default: 100 requests/second

maxTotalLocalRequestsRate

(Optional) The maximum number of local IPC requests per second that are sent to the
core device.

Default: 200 requests/second

maxLocalRequestsPerSecondPerThing

(Optional) The maximum number of local IPC requests per second that are sent for each
connected IoT thing.

Default: 20 requests/second for each thing

Note

These rate limits parameters define the maximum number of requests per second
for the local shadow service. The maximum number of requests per second for the
AWS IoT Device Shadow service depends on your AWS Region. For more information,
see the limits for the AWS IoT Device Shadow Service API in the Amazon Web Services
General Reference.

shadowDocumentSizeLimitBytes

(Optional) The maximum allowed size of each JSON state document for local shadows.

If you increase this value, you must also increase the resource limit for the JSON state
document for cloud shadows. For more information, see the limits for the AWS IoT Device
Shadow Service API in the Amazon Web Services General Reference.

Default: 8192 bytes

Maximum: 30720 bytes

Shadow manager 1052

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#device-shadow-limits
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#device-shadow-limits
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#device-shadow-limits

AWS IoT Greengrass Developer Guide, Version 2

Example Example: Configuration merge update

The following example shows a sample configuration merge update with all available
configuration parameters for the shadow manager component.

{
 "strategy":{
 "type":"periodic",
 "delay":300
 },
 "synchronize":{
 "shadowDocumentsMap":{
 "MyDevice1":{
 "classic":false,
 "namedShadows":[
 "MyShadowA",
 "MyShadowB"
]
 },
 "MyDevice2":{
 "classic":true,
 "namedShadows":[]
 }
 },
 "direction":"betweenDeviceAndCloud"
 },
 "rateLimits":{
 "maxOutboundSyncUpdatesPerSecond":100,
 "maxTotalLocalRequestsRate":200,
 "maxLocalRequestsPerSecondPerThing":20
 },
 "shadowDocumentSizeLimitBytes":8192
}

2.0.x

synchronize

(Optional) The synchronization settings that determine how shadows are synced with the
AWS Cloud.

Shadow manager 1053

AWS IoT Greengrass Developer Guide, Version 2

Note

You must create a configuration update with this property to sync shadows with the
AWS Cloud.

This object contains the following information.

coreThing

(Optional) The core device shadows to sync. This object contains the following
information.

classic

(Optional) By default, the shadow manager syncs the local state of the classic shadow
for your core device with the AWS Cloud. If you don't want to sync the classic device
shadow, set this to false.

Default: true

namedShadows

(Optional) The list of named core device shadows to sync. You must specify the exact
names of the shadows.

Warning

The AWS IoT Greengrass service uses the
AWSManagedGreengrassV2Deployment named shadow to manage
deployments that target individual core devices. This named shadow is
reserved for use by the AWS IoT Greengrass service. Do not update or delete
this named shadow.

shadowDocumentsMap

(Optional) The additional device shadows to sync. Using this configuration parameter
makes it easier to specify shadow documents. We recommend that you use this
parameter instead of the shadowDocuments object.

Shadow manager 1054

AWS IoT Greengrass Developer Guide, Version 2

Note

If you specify a shadowDocumentsMap object, you must not specify a
shadowDocuments object.

Each object contains the following information:

thingName

The shadow configuration for the thingName for this shadow configuration.

classic

(Optional) If you don't want to sync the classic device shadow for the thingName
device, set this to false.

namedShadows

The list of named shadows that you want to sync. You must specify the exact
names of the shadows.

shadowDocuments

(Optional) The list of additional device shadows to sync. We recommend that you use the
shadowDocumentsMap parameter instead.

Note

If you specify a shadowDocuments object, you must not specify a
shadowDocumentsMap object.

Each object in this list contains the following information.

thingName

The thing name of the device for which to sync shadows.

classic

(Optional) If you don't want to sync the classic device shadow for the thingName
device, set this to false.

Shadow manager 1055

AWS IoT Greengrass Developer Guide, Version 2

Default: true

namedShadows

(Optional) The list of named device shadows that you want to sync. You must specify
the exact names of the shadows.

rateLimits

(Optional) The settings that determine the rate limits for shadow service requests.

This object contains the following information.

maxOutboundSyncUpdatesPerSecond

(Optional) The maximum number of sync requests per second that the device transmits.

Default: 100 requests/second

maxTotalLocalRequestsRate

(Optional) The maximum number of local IPC requests per second that are sent to the
core device.

Default: 200 requests/second

maxLocalRequestsPerSecondPerThing

(Optional) The maximum number of local IPC requests per second that are sent for each
connected IoT thing.

Default: 20 requests/second for each thing

Note

These rate limits parameters define the maximum number of requests per second
for the local shadow service. The maximum number of requests per second for the
AWS IoT Device Shadow service depends on your AWS Region. For more information,
see the limits for the AWS IoT Device Shadow Service API in the Amazon Web Services
General Reference.

shadowDocumentSizeLimitBytes

(Optional) The maximum allowed size of each JSON state document for local shadows.

Shadow manager 1056

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#device-shadow-limits

AWS IoT Greengrass Developer Guide, Version 2

If you increase this value, you must also increase the resource limit for the JSON state
document for cloud shadows. For more information, see the limits for the AWS IoT Device
Shadow Service API in the Amazon Web Services General Reference.

Default: 8192 bytes

Maximum: 30720 bytes

Example Example: Configuration merge update

The following example shows a sample configuration merge update with all available
configuration parameters for the shadow manager component.

{
 "synchronize": {
 "coreThing": {
 "classic": true,
 "namedShadows": [
 "MyCoreShadowA",
 "MyCoreShadowB"
]
 },
 "shadowDocuments": [
 {
 "thingName": "MyDevice1",
 "classic": false,
 "namedShadows": [
 "MyShadowA",
 "MyShadowB"
]
 },
 {
 "thingName": "MyDevice2",
 "classic": true,
 "namedShadows": []
 }
]
 },
 "rateLimits": {
 "maxOutboundSyncUpdatesPerSecond": 100,
 "maxTotalLocalRequestsRate": 200,
 "maxLocalRequestsPerSecondPerThing": 20
 },

Shadow manager 1057

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#device-shadow-limits
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#device-shadow-limits

AWS IoT Greengrass Developer Guide, Version 2

 "shadowDocumentSizeLimitBytes": 8192
}

Local log file

This component uses the same log file as the Greengrass nucleus component.

Linux

/greengrass/v2/logs/greengrass.log

Windows

C:\greengrass\v2\logs\greengrass.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/greengrass.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\greengrass.log -Tail 10 -Wait

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.3.10 Version updated for Greengrass nucleus version 2.14.0 release.

Shadow manager 1058

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.3.9 Version updated for Greengrass nucleus version 2.13.0 release.

2.3.8 Bug fixes and improvements

• Fixes an issue where shadow manager creates a deadlock situation
during the MQTT client connection.

2.3.7 Bug fixes and improvements

• Fixes an issue where shadow manager periodically logs a NullPoint
erException error during a shadow manager sync.

2.3.6 Bug fixes and improvements

• Fixes an issue where shadow properties that are deleted through AWS
Cloud updates while the device is offline continue to exist in the local
shadow after regaining connectivity.

2.3.5 Version updated for Greengrass nucleus version 2.12.0 release.

2.3.4 Bug fixes and improvements

• Adds support for null and empty shadow state documents.

2.3.3 Version updated for Greengrass nucleus version 2.11.0 release.

2.3.2 Bug fixes and improvements

• Fixes an issue where shadow manager enters the BROKEN state when
the local shadow database is corrupted.

• Version updated for Greengrass nucleus version 2.10.0 release.

2.3.1 Bug fixes and improvements

• Fixes a condition that may prevent cloud shadow updates from
syncing.

• Fixes an issue where changes to named shadow sync configuration
applies to only one named shadow.

Shadow manager 1059

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.3.0 Bug fixes and improvements

• Fixes an issue that might prevent shadows from syncing when the
Greengrass device private key is stored in a hardware security module.

2.2.4 Bug fixes and improvements

• Fixes an issue where the validation of the shadow's size wasn't
consistent with the cloud when updating the local shadow document.

• Fixes an issue where the shadow manager stops listening to configura
tion updates if a deployment performs a RESET on the configuration
nodes.

2.2.3 Version updated for Greengrass nucleus version 2.9.0 release.

2.2.2 Version updated for Greengrass nucleus version 2.8.0 release.

2.2.1 Version updated for Greengrass nucleus version 2.7.0 release.

2.2.0 New features

• Adds support for the local shadow service over the local publish/s
ubscribe interface. You can now communicate with the local publish/s
ubscribe message broker on shadow MQTT topics to get, update, and
delete shadows on the core device. This feature enables you to connect
client devices to the local shadow service by using the MQTT bridge to
relay messages on shadow topics between client devices and the local
publish/subscribe interface.

This feature requires v2.6.0 or later of the Greengrass nucleus
component. To connect client devices to the local shadow service, you
must also use v2.2.0 or later of the MQTT bridge component.

• Adds the direction option that you can configure to customize the
direction to sync shadows between the local shadow service and the
AWS Cloud. You can configure this option to reduce bandwidth and
connections to the AWS Cloud.

Shadow manager 1060

https://docs.aws.amazon.com/iot/latest/developerguide/reserved-topics.html#reserved-topics-shadow

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.1.1 Bug fixes and improvements

• Fixes an issue where the maximum depth in the desired and
reported sections of the JSON device shadow state document was 4
levels instead of 5 levels.

• Version updated for Greengrass nucleus version 2.6.0 release.

2.1.0 New features

• Adds support for periodic shadow synchronization intervals, so you can
configure the core device to reduce bandwidth usage and charges.

2.0.6 This version contains bug fixes and improvements.

2.0.5 Version updated for Greengrass nucleus version 2.5.0 release.

2.0.4 Bug fixes and improvements

• Fixes an issue that caused shadow manager to delete newly created
versions of any shadow that was previously deleted.

• Updates the DeleteThingShadow IPC operation to increment the
shadow version when called.

2.0.3 Version updated for Greengrass nucleus version 2.4.0 release.

2.0.2 Bug fixes and improvements

• Fixed an issue that caused shadow manager to not recognize the
delta property when syncing shadow states from AWS IoT Core.

• Fixed an issue that sometimes caused sync requests for a shadow to be
merged incorrectly.

2.0.1 Version updated for Greengrass nucleus version 2.3.0 release.

2.0.0 Initial version.

Shadow manager 1061

AWS IoT Greengrass Developer Guide, Version 2

Amazon SNS

The Amazon SNS component (aws.greengrass.SNS) publishes messages to an Amazon Simple
Notification Service (Amazon SNS) topic. You can use this component to send events from
Greengrass core devices to web servers, email addresses, and other message subscribers. For more
information, see What is Amazon SNS? in the Amazon Simple Notification Service Developer Guide.

To publish to an Amazon SNS topic with this component, publish a message to the topic where this
component subscribes. By default, this component subscribes to the sns/message local publish/
subscribe topic. You can specify other topics, including AWS IoT Core MQTT topics, when you
deploy this component.

In your custom component, you might want to implement filtering or formatting logic to process
messages from other sources before you publish them to this component. This enables you to
centralize your message processing logic on a single component.

Note

This component provides similar functionality to the Amazon SNS connector in AWS
IoT Greengrass V1. For more information, see Amazon SNS connector in the AWS IoT
Greengrass V1 Developer Guide.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Input data

• Output data

• Local log file

• Licenses

• Changelog

Amazon SNS 1062

https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/sns-connector.html

AWS IoT Greengrass Developer Guide, Version 2

Versions

This component has the following versions:

• 2.1.x

• 2.0.x

Type

This component is a Lambda component (aws.greengrass.lambda). The Greengrass nucleus
runs this component's Lambda function using the Lambda launcher component.

For more information, see Component types.

Operating system

This component can be installed on Linux core devices only.

Requirements

This component has the following requirements:

• Your core device must meet the requirements to run Lambda functions. If you want the core
device to run containerized Lambda functions, the device must meet the requirements to do so.
For more information, see Lambda function requirements.

• Python version 3.7 installed on the core device and added to the PATH environment variable.

• An Amazon SNS topic. For more information, see Creating an Amazon SNS topic in the Amazon
Simple Notification Service Developer Guide.

• The Greengrass device role must allow the sns:Publish action, as shown in the following
example IAM policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sns:Publish"
],
 "Effect": "Allow",

Amazon SNS 1063

https://www.python.org/
https://docs.aws.amazon.com/sns/latest/dg/sns-create-topic.html

AWS IoT Greengrass Developer Guide, Version 2

 "Resource": [
 "arn:aws:sns:region:account-id:topic-name"
]
 }
]
}

You can dynamically override the default topic in the input message payload for this component.
If your application uses this feature, the IAM policy must include all target topics as resources.
You can grant granular or conditional access to resources (for example, by using a wildcard *
naming scheme).

• To receive output data from this component, you must merge the following
configuration update for the legacy subscription router component
(aws.greengrass.LegacySubscriptionRouter) when you deploy this component. This
configuration specifies the topic where this component publishes responses.

Legacy subscription router v2.1.x

{
 "subscriptions": {
 "aws-greengrass-sns": {
 "id": "aws-greengrass-sns",
 "source": "component:aws.greengrass.SNS",
 "subject": "sns/message/status",
 "target": "cloud"
 }
 }
}

Legacy subscription router v2.0.x

{
 "subscriptions": {
 "aws-greengrass-sns": {
 "id": "aws-greengrass-sns",
 "source": "arn:aws:lambda:region:aws:function:aws-greengrass-sns:version",
 "subject": "sns/message/status",
 "target": "cloud"
 }
 }
}

Amazon SNS 1064

AWS IoT Greengrass Developer Guide, Version 2

• Replace region with the AWS Region that you use.

• Replace version with the version of the Lambda function that this component runs.
To find the Lambda function version, you must view the recipe for the version of this
component that you want to deploy. Open this component's details page in the AWS IoT
Greengrass console, and look for the Lambda function key-value pair. This key-value pair
contains the name and version of the Lambda function.

Important

You must update the Lambda function version on the legacy subscription router
every time you deploy this component. This ensures that you use the correct Lambda
function version for the component version that you deploy.

For more information, see Create deployments.

• The Amazon SNS component is supported to run in a VPC. To deploy this component in a VPC,
the following is required.

• The Amazon SNS component must have connectivity to sns.region.amazonaws.com which
has the VPC endpoint of com.amazonaws.us-east-1.sns.

Endpoints and ports

This component must be able to perform outbound requests to the following endpoints and ports,
in addition to endpoints and ports required for basic operation. For more information, see Allow
device traffic through a proxy or firewall.

Endpoint Port Required Descripti
on

sns.region.amazonaws.com 443 Yes Publish
messages
to Amazon
SNS.

Amazon SNS 1065

https://console.aws.amazon.com/greengrass
https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.1.9

The following table lists the dependencies for version 2.1.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.15.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.8

The following table lists the dependencies for version 2.1.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.14.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

Amazon SNS 1066

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

2.1.7

The following table lists the dependencies for version 2.1.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.13.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.6

The following table lists the dependencies for version 2.1.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.12.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.5

The following table lists the dependencies for version 2.1.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.11.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Amazon SNS 1067

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Token exchange service ^2.0.0 Hard

2.1.4

The following table lists the dependencies for version 2.1.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.10.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.3

The following table lists the dependencies for version 2.1.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.9.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.2

The following table lists the dependencies for version 2.1.2 of this component.

Amazon SNS 1068

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.8.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.1.1

The following table lists the dependencies for version 2.1.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.7.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.8 - 2.1.0

The following table lists the dependencies for versions 2.0.8 and 2.1.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.6.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

Amazon SNS 1069

AWS IoT Greengrass Developer Guide, Version 2

2.0.7

The following table lists the dependencies for version 2.0.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.6

The following table lists the dependencies for version 2.0.6 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.5

The following table lists the dependencies for version 2.0.5 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Amazon SNS 1070

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Token exchange service ^2.0.0 Hard

2.0.4

The following table lists the dependencies for version 2.0.4 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.2.0 Hard

Lambda launcher ^2.0.0 Hard

Lambda runtimes ^2.0.0 Soft

Token exchange service ^2.0.0 Hard

2.0.3

The following table lists the dependencies for version 2.0.3 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.3 <2.1.0 Hard

Lambda launcher >=1.0.0 Hard

Lambda runtimes >=1.0.0 Soft

Token exchange service >=1.0.0 Hard

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

Amazon SNS 1071

AWS IoT Greengrass Developer Guide, Version 2

Note

This component's default configuration includes Lambda function parameters. We
recommend that you edit only the following parameters to configure this component on
your devices.

lambdaParams

An object that contains the parameters for this component's Lambda function. This object
contains the following information:

EnvironmentVariables

An object that contains the Lambda function's parameters. This object contains the
following information:

DEFAULT_SNS_ARN

The ARN of the default Amazon SNS topic where this component publishes messages.
You can override the destination topic with the sns_topic_arn property in the input
message payload.

containerMode

(Optional) The containerization mode for this component. Choose from the following options:

• NoContainer – The component doesn't run in an isolated runtime environment.

• GreengrassContainer – The component runs in an isolated runtime environment inside
the AWS IoT Greengrass container.

Default: GreengrassContainer

containerParams

(Optional) An object that contains the container parameters for this component. The
component uses these parameters if you specify GreengrassContainer for containerMode.

This object contains the following information:

memorySize

(Optional) The amount of memory (in kilobytes) to allocate to the component.

Defaults to 512 MB (525,312 KB).

Amazon SNS 1072

AWS IoT Greengrass Developer Guide, Version 2

pubsubTopics

(Optional) An object that contains the topics where the component subscribes to receive
messages. You can specify each topic and whether the component subscribes to MQTT topics
from AWS IoT Core or local publish/subscribe topics.

This object contains the following information:

0 – This is an array index as a string.

An object that contains the following information:

type

(Optional) The type of publish/subscribe messaging that this component uses to
subscribe to messages. Choose from the following options:

• PUB_SUB – Subscribe to local publish/subscribe messages. If you choose this option,
the topic can't contain MQTT wildcards. For more information about how to send
messages from custom component when you specify this option, see Publish/subscribe
local messages.

• IOT_CORE – Subscribe to AWS IoT Core MQTT messages. If you choose this option, the
topic can contain MQTT wildcards. For more information about how to send messages
from custom components when you specify this option, see Publish/subscribe AWS IoT
Core MQTT messages.

Default: PUB_SUB

topic

(Optional) The topic to which the component subscribes to receive messages. If you
specify IotCore for type, you can use MQTT wildcards (+ and #) in this topic.

Example Example: Configuration merge update (container mode)

{
 "lambdaExecutionParameters": {
 "EnvironmentVariables": {
 "DEFAULT_SNS_ARN": "arn:aws:sns:us-west-2:123456789012:mytopic"
 }
 },
 "containerMode": "GreengrassContainer"
}

Amazon SNS 1073

AWS IoT Greengrass Developer Guide, Version 2

Example Example: Configuration merge update (no container mode)

{
 "lambdaExecutionParameters": {
 "EnvironmentVariables": {
 "DEFAULT_SNS_ARN": "arn:aws:sns:us-west-2:123456789012:mytopic"
 }
 },
 "containerMode": "NoContainer"
}

Input data

This component accepts messages on the following topic and publishes the message as is to
the target Amazon SNS topic. By default, this component subscribes to local publish/subscribe
messages. For more information about how to publish messages to this component from your
custom components, see Publish/subscribe local messages.

Default topic (local publish/subscribe): sns/message

The message accepts the following properties. Input messages must be in JSON format.

request

The information about the message to send to the Amazon SNS topic.

Type: object that contains the following information:

message

The content of the message as a string.

To send a JSON object, serialize it as a string, and specify json for the
message_structure property.

Type: string

subject

(Optional) The subject of the message.

Type: string

The subject can be ASCII text and up to 100 characters. It must begin with a letter, number,
or punctuation mark. It can't include line breaks or control characters.

Amazon SNS 1074

AWS IoT Greengrass Developer Guide, Version 2

sns_topic_arn

(Optional) The ARN of the Amazon SNS topic where this component publishes the message.
Specify this property to override the default Amazon SNS topic.

Type: string

message_structure

(Optional) The structure of the message. Specify json to send a JSON message that you
serialize as a string in the content property.

Type: string

Valid values: json

id

An arbitrary ID for the request. Use this property to map an input request to an output
response. When you specify this property, the component sets the id property in the response
object to this value.

Type: string

Note

The message size can be a maximum of 256 KB.

Example Example input: String message

{
 "request": {
 "subject": "Message subject",
 "message": "Message data",
 "sns_topic_arn": "arn:aws:sns:region:account-id:topic2-name"
 },
 "id": "request123"
}

Example Example input: JSON message

{

Amazon SNS 1075

AWS IoT Greengrass Developer Guide, Version 2

 "request": {
 "subject": "Message subject",
 "message": "{ \"default\": \"Message data\" }",
 "message_structure": "json"
 },
 "id": "request123"
}

Output data

This component publishes responses as output data on the following MQTT topic by default. You
must specify this topic as the subject in the configuration for the legacy subscription router
component. For more information about how to subscribe to messages on this topic in your custom
components, see Publish/subscribe AWS IoT Core MQTT messages.

Default topic (AWS IoT Core MQTT): sns/message/status

Example Example output: Success

{
 "response": {
 "sns_message_id": "f80a81bc-f44c-56f2-a0f0-d5af6a727c8a",
 "status": "success"
 },
 "id": "request123"
}

Example Example output: Failure

{
 "response" : {
 "error": "InvalidInputException",
 "error_message": "SNS Topic Arn is invalid",
 "status": "fail"
 },
 "id": "request123"
}

Local log file

This component uses the following log file.

Amazon SNS 1076

AWS IoT Greengrass Developer Guide, Version 2

/greengrass/v2/logs/aws.greengrass.SNS.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 with the path to the AWS IoT Greengrass root folder.

sudo tail -f /greengrass/v2/logs/aws.greengrass.SNS.log

Licenses

This component includes the following third-party software/licensing:

• AWS SDK for Python (Boto3)/Apache License 2.0

• botocore/Apache License 2.0

• dateutil/PSF License

• docutils/BSD License, GNU General Public License (GPL), Python Software Foundation License,
Public Domain

• jmespath/MIT License

• s3transfer/Apache License 2.0

• urllib3/MIT License

This component is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.1.9 Version updated for Greengrass nucleus version 2.14.0 release.

2.1.8 Version updated for Greengrass nucleus version 2.13.0 release.

2.1.7 Version updated for Greengrass nucleus version 2.12.0 release.

Amazon SNS 1077

https://pypi.org/project/boto3/
https://pypi.org/project/botocore/
https://pypi.org/project/python-dateutil/1.4/
https://pypi.org/project/docutils/
https://pypi.org/project/jmespath/
https://pypi.org/project/s3transfer/
https://pypi.org/project/urllib3/
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.1.6 Version updated for Greengrass nucleus version 2.11.0 release.

2.1.5 Version updated for Greengrass nucleus version 2.10.0 release.

2.1.4 Version updated for Greengrass nucleus version 2.9.0 release.

2.1.3 Version updated for Greengrass nucleus version 2.8.0 release.

2.1.2 Version updated for Greengrass nucleus version 2.7.0 release.

2.1.1 Version updated for Greengrass nucleus version 2.6.0 release.

2.1.0 New features

• Adds support for HTTPS network proxy configurations. For more
information, see Connect on port 443 or through a network proxy and
Enable the core device to trust an HTTPS proxy.

2.0.8 Version updated for Greengrass nucleus version 2.5.0 release.

2.0.7 Version updated for Greengrass nucleus version 2.4.0 release.

2.0.6 Version updated for Greengrass nucleus version 2.3.0 release.

2.0.5 Version updated for Greengrass nucleus version 2.2.0 release.

2.0.4 Version updated for Greengrass nucleus version 2.1.0 release.

2.0.3 Initial version.

Stream manager

The stream manager component (aws.greengrass.StreamManager) enables you to process
data streams to transfer to the AWS Cloud from Greengrass core devices.

For more information about how to configure and use stream manager in custom components, see
Manage data streams on Greengrass core devices.

Topics

Stream manager 1078

AWS IoT Greengrass Developer Guide, Version 2

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

Versions

This component has the following versions:

• 2.2.x

• 2.1.x

• 2.0.x

Note

If you use stream manager to export data to the cloud, you can't upgrade version 2.0.7
of the stream manager component to a version between v2.0.8 and v2.0.11. If you are
deploying stream manager for the first time, we strongly recommend that you deploy the
latest version of the stream manager component.

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

Stream manager 1079

AWS IoT Greengrass Developer Guide, Version 2

• Linux

• Windows

Requirements

This component has the following requirements:

• The token exchange role must allow access to the AWS Cloud destinations that you use with
stream manager. For more information, see:

• the section called “AWS IoT Analytics channels”

• the section called “Amazon Kinesis data streams”

• the section called “AWS IoT SiteWise asset properties”

• the section called “Amazon S3 objects”

• The stream manager component is supported to run in a VPC. To deploy this component in a
VPC, the following is required.

• The stream manager component must have connectivity to the AWS service you publish data
to.

• Amazon S3: com.amazonaws.region.s3

• Amazon Kinesis Data Streams: com.amazonaws.region.kinesis-streams

• AWS IoT SiteWise: com.amazonaws.region.iotsitewise.data

• If you publish data to Amazon S3 in the us-east-1 region, this component will attempt to
use the S3 global endpoint by default; however, this endpoint is not available through the
Amazon S3 VPC interface endpoint. For more information, see Restrictions and limitations of
AWS PrivateLink for Amazon S3. To resolve this, you can choose from the following options.

• Configure the stream manager component to use the regional S3 endpoint in the us-
east-1 region, by setting up -Daws.s3UseUsEast1RegionalEndpoint=regional in
JVM_ARGS.

• Create an Amazon S3 gateway VPC endpoint instead of an Amazon S3 interface VPC
endpoint. S3 gateway endpoints support access to the S3 global endpoint. For more
information, see Create a gateway endpoint.

Stream manager 1080

https://docs.aws.amazon.com/AmazonS3/latest/userguide/privatelink-interface-endpoints.html#privatelink-limitations
https://docs.aws.amazon.com/AmazonS3/latest/userguide/privatelink-interface-endpoints.html#privatelink-limitations
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-s3.html#create-gateway-endpoint-s3

AWS IoT Greengrass Developer Guide, Version 2

Endpoints and ports

This component must be able to perform outbound requests to the following endpoints and ports,
in addition to endpoints and ports required for basic operation. For more information, see Allow
device traffic through a proxy or firewall.

Endpoint Port Required Descripti
on

iotanalytics. region.amazonaw
s.com

443 No Required
if you
publish
data to
AWS IoT
Analytics.

kinesis.region.amazonaws.com 443 No Required
if you
publish
data to
Firehose.

data.iots
itewise. region.amazonaw
s.com

443 No Required
if you
publish
data to
AWS IoT
SiteWise.

*.s3.amazonaws.com 443 No Required
if you
publish
data to S3
buckets.

You can
replace
* with

Stream manager 1081

AWS IoT Greengrass Developer Guide, Version 2

Endpoint Port Required Descripti
on

the name
of each
bucket
where you
publish
data.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

2.2.0

The following table lists the dependencies for version 2.2.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.15.0 Soft

Token exchange service >=2.2.0 Hard

2.1.13

The following table lists the dependencies for version 2.1.11 to 2.1.10 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.14.0 Soft

Stream manager 1082

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Token exchange service >=0.0.0 Hard

2.1.11 - 2.1.12

The following table lists the dependencies for version 2.1.11 to 2.1.10 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.13.0 Soft

Token exchange service >=0.0.0 Hard

2.1.9 – 2.1.10

The following table lists the dependencies for versions 2.1.9 to 2.1.10 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.12.0 Soft

Token exchange service >=0.0.0 Hard

2.1.5 – 2.1.8

The following table lists the dependencies for versions 2.1.5 to 2.1.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.11.0 Soft

Token exchange service >=0.0.0 Hard

2.1.2 – 2.1.4

The following table lists the dependencies for versions 2.1.2 to 2.1.4 of this component.

Stream manager 1083

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.10.0 Soft

Token exchange service >=0.0.0 Hard

2.1.1

The following table lists the dependencies for version 2.1.1 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.9.0 Soft

Token exchange service >=0.0.0 Hard

2.1.0

The following table lists the dependencies for version 2.1.0 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.8.0 Soft

Token exchange service >=0.0.0 Hard

2.0.15

The following table lists the dependencies for version 2.0.15 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.7.0 Soft

Token exchange service >=0.0.0 Hard

Stream manager 1084

AWS IoT Greengrass Developer Guide, Version 2

2.0.13 and 2.0.14

The following table lists the dependencies for versions 2.0.13 and 2.0.14 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.6.0 Soft

Token exchange service >=0.0.0 Hard

2.0.11 and 2.0.12

The following table lists the dependencies for versions 2.0.11 and 2.0.12 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.5.0 Soft

Token exchange service >=0.0.0 Hard

2.0.10

The following table lists the dependencies for version 2.0.10 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.4.0 Soft

Token exchange service >=0.0.0 Hard

2.0.9

The following table lists the dependencies for version 2.0.9 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.3.0 Soft

Stream manager 1085

AWS IoT Greengrass Developer Guide, Version 2

Dependency Compatible versions Dependency type

Token exchange service >=0.0.0 Hard

2.0.8

The following table lists the dependencies for version 2.0.8 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.0 <2.2.0 Soft

Token exchange service >=0.0.0 Hard

2.0.7

The following table lists the dependencies for version 2.0.7 of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.0.3 <2.1.0 Soft

Token exchange service >=0.0.0 Hard

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

STREAM_MANAGER_STORE_ROOT_DIR

(Optional) The absolute path of the local directory used to store streams. This value must start
with a forward slash (for example, /data).

You must specify an existing folder, and the system user who runs the stream manager
component must have permissions to read and write to this folder. For example, you can run

Stream manager 1086

AWS IoT Greengrass Developer Guide, Version 2

the following commands to create and configure a folder, /var/greengrass/streams, which
you specify as the stream manager root folder. These commands allow the default system user,
ggc_user, to read and write to this folder.

sudo mkdir /var/greengrass/streams
sudo chown ggc_user /var/greengrass/streams
sudo chmod 700 /var/greengrass/streams

Default: /greengrass/v2/work/aws.greengrass.StreamManager

STREAM_MANAGER_SERVER_PORT

(Optional) The local port number to use to communicate with stream manager.

You can specify 0 to use a random available port.

Default: 8088

STREAM_MANAGER_AUTHENTICATE_CLIENT

(Optional) You can make it mandatory for clients to authenticate before they can interact with
stream manager. The Stream Manager SDK controls interaction between clients and stream
manager. This parameter determines which clients can call the Stream Manager SDK to work
with streams. For more information, see stream manager client authentication.

If you specify true, the Stream Manager SDK allows only Greengrass components as clients.

If you specify false, the Stream Manager SDK allows all processes on the core device to be
clients.

Default: true

STREAM_MANAGER_EXPORTER_MAX_BANDWIDTH

(Optional) The average maximum bandwidth (in kilobits per second) that stream manager can
use to export data.

Default: No limit

STREAM_MANAGER_EXPORTER_THREAD_POOL_SIZE

(Optional) The maximum number of active threads that stream manager can use to export data.

Stream manager 1087

AWS IoT Greengrass Developer Guide, Version 2

The optimal size depends on your hardware, stream volume, and planned number of export
streams. If your export speed is slow, you can adjust this setting to find the optimal size for your
hardware and business case. The CPU and memory of your core device hardware are limiting
factors. To start, you might try setting this value equal to the number of processor cores on the
device.

Be careful not to set a size that's higher than your hardware can support. Each stream consumes
hardware resources, so try to limit the number of export streams on constrained devices.

Default: 5 threads

STREAM_MANAGER_EXPORTER_S3_DESTINATION_MULTIPART_UPLOAD_MIN_PART_SIZE_BYTES

(Optional) The minimum size (in bytes) of a part in a multipart upload to Amazon S3. Stream
manager uses this setting and the size of the input file to determine how to batch data in a
multipart PUT request.

Note

Stream manager uses the streams sizeThresholdForMultipartUploadBytes
property to determine whether to export to Amazon S3 as a single or multipart upload.
AWS IoT Greengrass components can set this threshold when they create a stream that
exports to Amazon S3.

Default: 5242880 (5 MB). This is also the minimum value.

LOG_LEVEL

(Optional) The logging level for the component. Choose from the following log levels, listed
here in level order:

• TRACE

• DEBUG

• INFO

• WARN

• ERROR

Default: INFO

Stream manager 1088

AWS IoT Greengrass Developer Guide, Version 2

JVM_ARGS

(Optional) The custom Java Virtual Machine arguments to pass to stream manager at startup.
Separate multiple arguments by spaces.

Use this parameter only when you must override the default settings used by the JVM. For
example, you might need to increase the default heap size if you plan to export a large number
of streams.

Example Example: Configuration merge update

The following example configuration specifies to use a non-default port.

{
 "STREAM_MANAGER_SERVER_PORT": "18088"
}

Local log file

This component uses the following log file.

Linux

/greengrass/v2/logs/aws.greengrass.StreamManager.log

Windows

C:\greengrass\v2\logs\aws.greengrass.StreamManager.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/aws.greengrass.StreamManager.log

Stream manager 1089

AWS IoT Greengrass Developer Guide, Version 2

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\aws.greengrass.StreamManager.log -Tail 10 -
Wait

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.2.0 New features

• Adds a new configuration key for startup timeout. Default value is 120
seconds.

• Adds recipe supports for Greengrass nucleus lite.

2.1.13 Bug fixes and improvements

Supports FIPS endpoints for AWS IoT SiteWise

2.1.12 Bug fixes and improvements

Updates the order that credentials are used so that Greengrass credentia
ls are preferred for AWS service requests.

2.1.11 Version updated for Greengrass nucleus version 2.12.0 release.

2.1.10 Bug fixes and improvements

Fixes an issue where the HTTPS proxy configuration doesn't trust the
Greengrass certificate authority (CA) certificate chain.

2.1.9 Version updated for Greengrass nucleus version 2.11.0 release.

2.1.8 Bug fixes and improvements

Fixes an issue where stream manager infinitely retries SiteWise exports
failing with InvalidRequestException .

Stream manager 1090

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.1.7 Bug fixes and improvements

Fixes an issue where stream manager fails to read the proxy configura
tion correctly.

2.1.6 Bug fixes and improvements

Fixes an issue that could cause a crash at startup on certain ARMv8
processors, including the Jetson Nano.

2.1.5 Version updated for Greengrass nucleus version 2.10.0 release.

2.1.4 Bug fixes and improvements

• Fixes an issue where entries for the same property asset with the
same timestamp within a single batch return ConflictingOperati
onException from the SiteWise API which causes stream manager
to continuously retry.

• Updates default connection timeout from 3 seconds to 1 minute.

2.1.3 Bug fixes and improvements

Fixes a startup issue on Windows OS when running as the SYSTEM user.

2.1.2 Bug fixes and improvements

• Fixes an issue on Windows OS that use a non-English language.

• Version updated for Greengrass nucleus version 2.9.0 release.

2.1.1 Version updated for Greengrass nucleus version 2.8.0 release.

Stream manager 1091

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.1.0 New features

• Updates this component to automatically send telemetry metrics to
Amazon EventBridge. For more information, see Gather system health
telemetry data from AWS IoT Greengrass core devices.

This feature requires v2.7.0 or later of the Greengrass nucleus
component.

• Version updated for Greengrass nucleus version 2.7.0 release.

2.0.15 Version updated for Greengrass nucleus version 2.6.0 release.

2.0.14 This version contains bug fixes and improvements.

2.0.13 Version updated for Greengrass nucleus version 2.5.0 release.

2.0.12 Bug fixes and improvements

Fixes an issue that prevented upgrading stream manager v2.0.7 to a
version between v2.0.8 and v2.0.11. If you use stream manager to export
data to the cloud, you can now upgrade to v2.0.12.

2.0.11 Version updated for Greengrass nucleus version 2.4.0 release.

2.0.10 Version updated for Greengrass nucleus version 2.3.0 release.

2.0.9 Version updated for Greengrass nucleus version 2.2.0 release.

2.0.8 Version updated for Greengrass nucleus version 2.1.0 release.

2.0.7 Initial version.

Systems Manager Agent

The AWS Systems Manager Agent component (aws.greengrass.SystemsManagerAgent)
installs the Systems Manager Agent, so you can manage core devices with Systems Manager.
Systems Manager is an AWS service that you can use to view and control your infrastructure on
AWS, including Amazon EC2 instances, on-premises servers and virtual machines (VMs), and edge

Systems Manager Agent 1092

AWS IoT Greengrass Developer Guide, Version 2

devices. Systems Manager enables you to view operational data, automate operation tasks, and
maintain security and compliance. For more information, see What is AWS Systems Manager? and
About Systems Manager Agent in the AWS Systems Manager User Guide.

Systems Manager tools and features are called capabilities. Greengrass core devices support all
Systems Manager capabilities. For more information about these capabilities and how to use
Systems Manager to manage core devices, see Systems Manager capabilities in the AWS Systems
Manager User Guide.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• See also

• Changelog

Versions

This component has the following versions:

• 1.1.x

• 1.0.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on Linux core devices only.

Systems Manager Agent 1093

https://docs.aws.amazon.com/systems-manager/latest/userguide/what-is-systems-manager.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/prereqs-ssm-agent.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/features.html

AWS IoT Greengrass Developer Guide, Version 2

Requirements

This component has the following requirements:

• A Greengrass core device that runs on a 64-bit Linux platform: Armv8 (AArch64) or x86_64.

• You must have an AWS Identity and Access Management (IAM) service role that Systems Manager
can assume. This role must include the AmazonSSMManagedInstanceCore managed policy or
a custom policy that defines equivalent permissions. For more information, see Create an IAM
service role for edge devices in the AWS Systems Manager User Guide.

When you deploy this component, you must specify this role's name for the
SSMRegistrationRole configuration parameter.

• The Greengrass device role must allow the ssm:AddTagsToResource and
ssm:RegisterManagedInstance actions. The device role must also allow the iam:PassRole
action for the IAM service role that fulfills the previous requirement. The following example IAM
policy grants these permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iam:PassRole"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:iam::account-id:role/SSMServiceRole"
]
 },
 {
 "Action": [
 "ssm:AddTagsToResource",
 "ssm:RegisterManagedInstance"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Systems Manager Agent 1094

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-setting-up-edge-devices.html#systems-manager-setting-up-edge-devices-service-role
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-setting-up-edge-devices.html#systems-manager-setting-up-edge-devices-service-role

AWS IoT Greengrass Developer Guide, Version 2

Endpoints and ports

This component must be able to perform outbound requests to the following endpoints and ports,
in addition to endpoints and ports required for basic operation. For more information, see Allow
device traffic through a proxy or firewall.

Endpoint Port Required Descripti
on

ec2messages. region.amazonaw
s.com

443 Yes Communica
te with the
Systems
Manager
service in
the AWS
Cloud.

ssm.region.amazonaws.com 443 Yes Register
the core
device as
a Systems
Manager
managed
node.

ssmmessages. region.amazonaw
s.com

443 Yes Communica
te with
Session
Manager, a
capability
of Systems
Manager,
in the AWS
Cloud.

For more information, see Reference: ec2messages, ssmmessages, and other API calls in the AWS
Systems Manager User Guide.

Systems Manager Agent 1095

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-setting-up-messageAPIs.html

AWS IoT Greengrass Developer Guide, Version 2

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

The following table lists the dependencies for versions 1.0.0 to 1.2.4 of this component.

Dependency Compatible versions Dependency type

Token exchange service ^2.0.0 Soft

For more information about component dependencies, see the component recipe reference.

Configuration

This component provides the following configuration parameters that you can customize when you
deploy the component.

SSMRegistrationRole

The IAM service role that Systems Manager can assume and that includes the
AmazonSSMManagedInstanceCore managed policy or a custom policy that defines equivalent
permissions. For more information, see Create an IAM service role for edge devices in the AWS
Systems Manager User Guide.

SSMOverrideExistingRegistration

(Optional) If the core device already runs the Systems Manager Agent registered with a hybrid
activation, you can override the device's existing Systems Manager Agent registration. Set this
option to true to register the core device as a managed node using the Systems Manager
Agent that this component provides.

Systems Manager Agent 1096

https://console.aws.amazon.com/greengrass
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-setting-up-edge-devices-service-role.html

AWS IoT Greengrass Developer Guide, Version 2

Note

This option applies only to devices that are registered with a hybrid activation. If the
core device runs on an Amazon EC2 instance with the Systems Manager Agent installed
and an instance profile role configured, the Amazon EC2 instance's existing managed
node ID starts with i-. When you install the Systems Manager Agent component,
the Systems Manager agent registers a new managed node whose ID starts with
mi- instead of i-. Then, you can use the managed node whose ID starts with mi- to
manage the core device with Systems Manager.

Default: false

SSMResourceTags

(Optional) The tags to add to the Systems Manager managed node that this component creates
for the core device. You can use these tags to manage groups of core devices with Systems
Manager. For example, you can run a command on all devices that have a tag that you specify.

Specify a list where each tag is an object with a Key and a Value. For example, the following
value for SSMResourceTags instructs this component to set the Owner tag to richard-roe
on the core device's managed node.

[
 {
 "Key": "Owner",
 "Value": "richard-roe"
 }
]

This component ignores these tags if the managed node already exists and
SSMOverrideExistingRegistration is false.

Example Example: Configuration merge update

The following example configuration specifies to use a service role named SSMServiceRole to
allow the core device to register and communicate with Systems Manager.

{

Systems Manager Agent 1097

AWS IoT Greengrass Developer Guide, Version 2

 "SSMRegistrationRole": "SSMServiceRole",
 "SSMOverrideExistingRegistration": false,
 "SSMResourceTags": [
 {
 "Key": "Owner",
 "Value": "richard-roe"
 },
 {
 "Key": "Team",
 "Value": "solar"
 }
]
}

Local log file

The Systems Manager Agent software writes logs to a folder outside the Greengrass root folder.
For more information, see Viewing Systems Manager Agent logs in the AWS Systems Manager User
Guide.

The Systems Manager Agent component uses shell scripts to install, start, and stop the Systems
Manager Agent. You can find the output from these scripts in the following log file.

/greengrass/v2/logs/aws.greengrass.SystemsManagerAgent.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 with the path to the AWS IoT Greengrass root folder.

sudo tail -f /greengrass/v2/logs/aws.greengrass.SystemsManagerAgent.log

See also

• Manage Greengrass core devices with AWS Systems Manager

• What is AWS Systems Manager? in the AWS Systems Manager User Guide

• About Systems Manager Agent in the AWS Systems Manager User Guide

Systems Manager Agent 1098

https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-agent-logs.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/what-is-systems-manager.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/prereqs-ssm-agent.html

AWS IoT Greengrass Developer Guide, Version 2

Changelog

The following table describes the changes in each version of the component.

Version Changes

1.2.4 Bug fixes and improvments

Updates this component to get the Agent version 3.2.2303.0.

1.2.3 Bug fixes and improvements

• Adds retries for the Agent component's installation with snap on
Greengrass.

• Updates the Agent component's configuration to use only the Onprem
Identity in Greengrass.

• Updates this component to update the Agent only when the installed
 Agent version doesn't match the Greengrass SSM Agent component's
version.

1.1.0 This version contains bug fixes and improvements.

1.0.0 Initial version.

Token exchange service

The token exchange service component (aws.greengrass.TokenExchangeService) provides
AWS credentials that you can use to interact with AWS services in your custom components.

The token exchange service runs an Amazon Elastic Container Service (Amazon ECS) container
instance as a local server. This local server connects to the AWS IoT credentials provider using
the AWS IoT role alias that you configure in the Greengrass core nucleus component. The
component provides two environment variables, AWS_CONTAINER_CREDENTIALS_FULL_URI
and AWS_CONTAINER_AUTHORIZATION_TOKEN. AWS_CONTAINER_CREDENTIALS_FULL_URI
defines the URI to this local server. When a component creates an AWS SDK client,
the client recognizes this URI environment variable and uses the token in the
AWS_CONTAINER_AUTHORIZATION_TOKEN to connect to the token exchange service and retrieve
AWS credentials. This allows Greengrass core devices to call AWS service operations. For more

Token exchange service 1099

AWS IoT Greengrass Developer Guide, Version 2

information about how to use this component in custom components, see Interact with AWS
services.

Important

Support to acquire AWS credentials in this way was added to the AWS SDKs on July
13th, 2016. Your component must use an AWS SDK version that was created on or after
that date. For more information, see Using a supported AWS SDK in the Amazon Elastic
Container Service Developer Guide.

Topics

• Versions

• Type

• Operating system

• Dependencies

• Configuration

• Local log file

• Changelog

Versions

This component has the following versions:

• 2.0.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

Token exchange service 1100

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html#task-iam-roles-minimum-sdk

AWS IoT Greengrass Developer Guide, Version 2

• Linux

• Windows

Dependencies

This component doesn't have any dependencies.

Configuration

This component doesn't have any configuration parameters.

Local log file

This component uses the same log file as the Greengrass nucleus component.

Linux

/greengrass/v2/logs/greengrass.log

Windows

C:\greengrass\v2\logs\greengrass.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/greengrass.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\greengrass.log -Tail 10 -Wait

Token exchange service 1101

AWS IoT Greengrass Developer Guide, Version 2

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.0.3 Initial version.

IoT SiteWise OPC UA collector

The IoT SiteWise OPC UA collector component (aws.iot.SiteWiseEdgeCollectorOpcua)
enables AWS IoT SiteWise gateways to collect data from local OPC UA servers.

With this component, AWS IoT SiteWise gateways can connect to multiple OPC UA servers. For
more information about AWS IoT SiteWise gateways, see Using AWS IoT SiteWise at the edge in the
AWS IoT SiteWise User Guide.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Input data

• Output data

• Local log file

• Troubleshooting and debugging

• Licenses

• Changelog

• See also

Versions

This component has the following versions:

IoT SiteWise OPC UA collector 1102

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/gateways-ggv2.html

AWS IoT Greengrass Developer Guide, Version 2

• 2.6.x

• 2.5.x

• 2.4.x

• 2.3.x

• 2.2.x

• 2.1.x

• 2.0.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Requirements

This component has the following requirements:

• The Greengrass core device must run on one of the following platforms:

• os: Ubuntu 18.04 or later

architecture: x86_64 (AMD64) or ARMv8 (Aarch64)

• os: Red Hat Enterprise Linux (RHEL) 8

architecture: x86_64 (AMD64) or ARMv8 (Aarch64)

• os: Amazon Linux 2

architecture: x86_64 (AMD64) or ARMv8 (Aarch64)

IoT SiteWise OPC UA collector 1103

AWS IoT Greengrass Developer Guide, Version 2

• os: Debian 11

architecture: x86_64 (AMD64) or ARMv8 (Aarch64)

• os: Windows Server 2019 or later

architecture: x86_64 (AMD64)

• The Greengrass core device must allow outbound network connectivity to OPC UA servers.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

The following table lists the dependencies for all versions of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.3.0 <3.0.0 Hard

Stream manager >2.0.10<3.0.0 Hard

Secret manager >=2.0.8 <3.0.0 Hard

For more information about component dependencies, see the component recipe reference.

Configuration

This component doesn't have any configuration parameters.

You can use the AWS IoT SiteWise console or API to configure the IoT SiteWise OPC UA collector
component. For more information, see Step 4: Add data sources - optional in the AWS IoT SiteWise
User Guide.

IoT SiteWise OPC UA collector 1104

https://console.aws.amazon.com/greengrass
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/create-gateway-ggv2.html#add-data-sources-console

AWS IoT Greengrass Developer Guide, Version 2

Input data

This component only accepts data in the following formats, all others will be ignored and
discarded. The table below maps the OPC UA data types to their SiteWise equivalent.

SiteWise data type OPC UA data type Description

STRING String

Guid

XmlElement

A string of maximum length
1024 bytes.

INTEGER SByte

Byte

Int16

UInt16

Int32

UInt32*

Int64*

A signed 32-bit integer with
a range from -2,147,48
3,648 to 2,147,483
,647 .

DOUBLE UInt32*

Int64*

Float

Double

A floating point number
with range from –10^100
to 10^100 and IEEE 754
double precision.

BOOLEAN Boolean true or false.

* For OPC UA data types UInt32 and Int64, its SiteWise data type will be INTEGER if SiteWise is
able to represent its value, otherwise it will be DOUBLE.

IoT SiteWise OPC UA collector 1105

AWS IoT Greengrass Developer Guide, Version 2

Output data

This component writes BatchPutAssetPropertyValue messages to AWS IoT Greengrass stream
manager. For more information, see BatchPutAssetPropertyValue in the AWS IoT SiteWise API
Reference.

Local log file

This component uses the following log file.

Linux

/greengrass/v2/logs/aws.iot.SiteWiseEdgeCollectorOpcua.log

Windows

C:\greengrass\v2\logs\aws.iot.SiteWiseEdgeCollectorOpcua.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/aws.iot.SiteWiseEdgeCollectorOpcua.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\aws.iot.SiteWiseEdgeCollectorOpcua.log -Tail
 10 -Wait

Troubleshooting and debugging

This component includes a new events log to help customers identify and fix problems. The log file
is separate from the local log file, and is found in the following location. Replace /greengrass/
v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass root folder.

IoT SiteWise OPC UA collector 1106

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html

AWS IoT Greengrass Developer Guide, Version 2

Linux

/greengrass/v2/work/aws.iot.SiteWiseEdgeCollectorOpcua/logs/
IotSiteWiseOpcUaCollectorEvents.log

Windows

C:\greengrass\v2\work\aws.iot.SiteWiseEdgeCollectorOpcua\logs
\IotSiteWiseOpcUaCollectorEvents.log

This log includes detailed information and troubleshooting instructions. Troubleshooting
information is provided alongside the diagnostics, with a description of how to remedy the issue,
and sometimes with links to further information. Diagnostic information includes the following:

• Severity level

• Timestamp

• Additional event-specific information

Example Example log

dataSourceConnectionSuccess:
 Summary: Successfully connected to OpcUa server
 Level: INFO
 Timestamp: '2023-06-15T21:04:16.303Z'
 Description: Successfully connected to the data source.
 AssociatedMetrics:
 - Name: FetchedDataStreams
 Description: The number of fetched data streams for this data source
 Value: 1.0
 Namespace: IoTSiteWise
 Dimensions:
 - Name: SourceName
 Value: SourceName{value=OPC UA Server}
 - Name: ThingName
 Value: test-core
 AssociatedData:
 - Name: DataSourceTrace
 Description: Name of the data source
 Data:
 - OPC UA Server

IoT SiteWise OPC UA collector 1107

AWS IoT Greengrass Developer Guide, Version 2

 - Name: EndpointUri
 Description: The endpoint to which the connection was attempted.
 Data:
 - '"opc.tcp://10.0.0.1:1234"'

Licenses

This component is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the component.

Version Changes

2.6.0 New features

Added support for ingestion of Null and NaN values. For AWS IoT
SiteWise to accept Null and NaN values, your AWS account must be
configured to allow these types. To view or modify the Null and NaN
configuration in AWS IoT SiteWise, see the DescribeStorageConfiguration
and PutStorageConfiguration APIs.

2.5.1 Bug fixes and improvements

• Fixes a bug where future snapshotting tasks are cancelled if an error is
encountered while a snapshot task is running.

• Fixes a bug where data source configuration updates do not persist
until after restarting the OPC UA Collector, if the connection to the
data source's OPC UA server is lost.

2.5.0 New features

• Adds a data source option to convert simple arrays and DateTime
values to strings.

• Adds a property group option to select either a source or server
timestamp when collecting data from an OPC UA server.

Bug fixes and improvements

• Resets the default polling configuration to use the source timestamp.

IoT SiteWise OPC UA collector 1108

https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeStorageConfiguration.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_PutStorageConfiguration.html

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.4.2 Bug fixes and improvements

• Fixes issues during OPC UA server discovery in which a node may be
discovered multiple times.

• Fixes the snapshot feature to ensure the timestamp is new for each
snapshot data point.

2.4.1 Bug fixes and improvements

• Fixes issues related to proxy support.

• Fixes issue where thread cleanup failed and caused a data blockage.

2.4.0 New features

• Adds an events log to make it easier to identify and remediate
 problems.

Bug fixes and improvements

• Fixes an issue with the OPC UA client that caused certificate errors
when connecting to an OPC UA server that uses version 1.05 of the
OPC UA specification.

2.3.0 New features

• Adds support for the Greengrass nucleus HTTP proxy configuration on
Linux.

Bug fixes and improvements

• Fixes a security issue (CVE-2019-19135).

IoT SiteWise OPC UA collector 1109

https://docs.aws.amazon.com/greengrass/v2/developerguide/configure-greengrass-core-v2.html#configure-alpn-network-proxy
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-19135

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.2.0 New features

• Adds support for installing Data Collection Pack on Linux ARMv8
architecture.

• Minimum requirements for Linux ARMv8:

• Memory: 4 GB

• CPU: ARM Cortex-A72 or equivalent specification

Bug fixes and improvements

• Improves logging of metrics in node discovery process.

• Improves handling of unsupported data types.

• Improves logging of data stream errors.

2.1.3 New features

• Adds support for Windows Server 2019 or higher.

Bug fixes and improvements

• Improves error messages when you deploy this component on
unsupported devices.

IoT SiteWise OPC UA collector 1110

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.1.1 New features

• Adds support for configuring the following subscription properties:

• DataChangeTrigger ‐ You can define the condition that initiates a
data change alert.

• QueueSize ‐ The depth of the queue on an OPC‐UA server for
a particular metric where notifications for Monitored Items are
queued.

• PublishingIntervalMilliseconds ‐ The interval (in milliseconds) of a
publishing cycle specified when a subscription is created.

• SnapshotFrequencyMilliseconds ‐ You can configure the snapshot
frequency timeout setting to ensure that AWS IoT SiteWise Edge
ingests a steady stream of data.

• This version supports ingestion of BAD quality data and filters data
based on the following data qualities:

• UNCERTAIN quality data

• BAD quality data

Bug fixes and improvements

• Improvements to customer metrics.

• Fixes the security encoding that sometimes caused issues when
connecting to servers with encryption enabled.

• Fixes an issue where the property group failed to update.

2.0.3 Bug fixes and improvements.

2.0.2 Bug fixes and improvements to asset priority syncing with edge.

2.0.1 Initial version.

See also

• What is AWS IoT SiteWise? in the AWS IoT SiteWise User Guide.

IoT SiteWise OPC UA collector 1111

https://reference.opcfoundation.org/v104/Core/docs/Part4/7.17.2/
https://reference.opcfoundation.org/v104/Core/docs/Part4/7.16/
https://reference.opcfoundation.org/v104/Core/docs/Part4/5.13.2/
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/what-is-sitewise.html

AWS IoT Greengrass Developer Guide, Version 2

IoT SiteWise OPC UA data source simulator

The IoT SiteWise OPC UA data source simulator component
(aws.iot.SiteWiseEdgeOpcuaDataSourceSimulator) starts a local OPC UA server that
generates sample data. Use this OPC UA server to simulate a data source read by the IoT SiteWise
OPC UA collector component on an AWS IoT SiteWise gateway. Then, you can explore AWS IoT
SiteWise features using this sample data. For more information about AWS IoT SiteWise gateways,
see Using AWS IoT SiteWise at the edge in the AWS IoT SiteWise User Guide.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• Changelog

• See also

Versions

This component has the following versions:

• 1.0.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

IoT SiteWise OPC UA data source simulator 1112

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/gateways-ggv2.html

AWS IoT Greengrass Developer Guide, Version 2

• Linux

• Windows

Requirements

This component has the following requirements:

• The Greengrass core device must be able to use port 4840 on the local host. This component's
local OPC UA server runs at this port.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

The following table lists the dependencies for all versions of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.3.0 <3.0.0 Hard

For more information about component dependencies, see the component recipe reference.

Configuration

This component doesn't have any configuration parameters.

Local log file

This component uses the following log file.

IoT SiteWise OPC UA data source simulator 1113

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Linux

/greengrass/v2/logs/aws.iot.SiteWiseEdgeOpcuaDataSourceSimulator.log

Windows

C:\greengrass\v2\logs\aws.iot.SiteWiseEdgeOpcuaDataSourceSimulator.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/
aws.iot.SiteWiseEdgeOpcuaDataSourceSimulator.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs
\aws.iot.SiteWiseEdgeOpcuaDataSourceSimulator.log -Tail 10 -Wait

Changelog

The following table describes the changes in each version of the component.

Version Changes

1.0.0 Initial version.

Adds support for Windows Server 2016 or higher.

See also

• What is AWS IoT SiteWise? in the AWS IoT SiteWise User Guide.

IoT SiteWise OPC UA data source simulator 1114

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/what-is-sitewise.html

AWS IoT Greengrass Developer Guide, Version 2

IoT SiteWise publisher

The IoT SiteWise publisher component (aws.iot.SiteWiseEdgePublisher) enables AWS IoT
SiteWise gateways to export data from the edge to the AWS Cloud.

For more information about AWS IoT SiteWise gateways, see Using AWS IoT SiteWise at the edge in
the AWS IoT SiteWise User Guide.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Input data

• Local log file

• Troubleshooting and debugging

• Licenses

• Changelog

• See also

Versions

This component has the following versions:

• 3.2.x

• 3.1.x

• 3.0.x

• 2.4.x

• 2.3.x

• 2.2.x

IoT SiteWise publisher 1115

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/gateways-ggv2.html

AWS IoT Greengrass Developer Guide, Version 2

• 2.1.x

• 2.0.x

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Requirements

This component has the following requirements:

• The Greengrass core device must run on one of the following platforms:

• os: Ubuntu 18.04 or later

architecture: x86_64 (AMD64) or ARMv8 (Aarch64)

• os: Red Hat Enterprise Linux (RHEL) 8

architecture: x86_64 (AMD64) or ARMv8 (Aarch64)

• os: Amazon Linux 2

architecture: x86_64 (AMD64) or ARMv8 (Aarch64)

• os: Debian 11

architecture: x86_64 (AMD64) or ARMv8 (Aarch64)

• os: Windows Server 2019 or later

architecture: x86_64 (AMD64)

• The Greengrass core device must connect to the Internet.

IoT SiteWise publisher 1116

AWS IoT Greengrass Developer Guide, Version 2

• The Greengrass core device must be authorized to perform the
iotsitewise:BatchPutAssetPropertyValue action. For more information, see Authorize
core devices to interact with AWS services.

Example permissions policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iotsitewise:BatchPutAssetPropertyValue",
 "Resource": "*"
 }
]
}

Endpoints and ports

This component must be able to perform outbound requests to the following endpoints and ports,
in addition to endpoints and ports required for basic operation. For more information, see Allow
device traffic through a proxy or firewall.

Endpoint Port Required Descripti
on

data.iots
itewise. region.amazonaw
s.com

443 Yes Publish
data to
AWS IoT
SiteWise.

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of

IoT SiteWise publisher 1117

https://docs.aws.amazon.com/greengrass/v2/developerguide/device-service-role.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/device-service-role.html

AWS IoT Greengrass Developer Guide, Version 2

the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

The following table lists the dependencies for versions 2.0.x to 2.2.x of this component.

Dependency Compatible versions Dependency type

Greengrass nucleus >=2.3.0<3.0.0 Hard

Stream manager >=2.0.10<3.0.0 Hard

For more information about component dependencies, see the component recipe reference.

Configuration

This component doesn't have any configuration parameters.

You can use the AWS IoT SiteWise console or API to configure the IoT SiteWise publisher
component. For more information, see Step 3: Configure publisher - optional in the AWS IoT
SiteWise User Guide.

Input data

This component reads PutAssetPropertyValueEntry messages from AWS IoT Greengrass
stream manager. For more information, see PutAssetPropertyValueEntry in the AWS IoT SiteWise
API Reference.

Local log file

This component uses the following log file.

Linux

/greengrass/v2/logs/aws.iot.SiteWiseEdgePublisher.log

Windows

C:\greengrass\v2\logs\aws.iot.SiteWiseEdgePublisher.log

IoT SiteWise publisher 1118

https://console.aws.amazon.com/greengrass
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/create-gateway-ggv2.html#configure-publisher
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_PutAssetPropertyValueEntry.html

AWS IoT Greengrass Developer Guide, Version 2

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/aws.iot.SiteWiseEdgePublisher.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\aws.iot.SiteWiseEdgePublisher.log -Tail 10 -
Wait

Troubleshooting and debugging

This component includes a new events log to help customers identify and fix problems. The log file
is separate from the local log file, and is found in the following location. Replace /greengrass/
v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass root folder.

Linux

/greengrass/v2/work/aws.iot.SiteWiseEdgePublisher/logs/
IotSiteWisePublisherEvents.log

Windows

C:\greengrass\v2\work\aws.iot.SiteWiseEdgePublisher\logs
\IotSiteWisePublisherEvents.log

This log includes detailed information and troubleshooting instructions. Troubleshooting
information is provided alongside the diagnostics, with a description of how to remedy the issue,
and sometimes with links to further information. Diagnostic information includes the following:

• Severity level

• Timestamp

IoT SiteWise publisher 1119

AWS IoT Greengrass Developer Guide, Version 2

• Additional event-specific information

Example Example log

accountBeingThrottled:
 Summary: Data upload speed slowed due to quota limits
 Level: WARN
 Timestamp: '2023-06-09T21:30:24.654Z'
 Description: The IoT SiteWise Publisher is limited to the "Rate of data points
 ingested"
 quota for a customers account. See the associated documentation and associated
 metric for the number of requests that were limited for more information. Note
 that this may be temporary and not require any change, although if the issue
 continues
 you may need to request an increase for the mentioned quota.
 FurtherInformation:
 - https://docs.aws.amazon.com/iot-sitewise/latest/userguide/quotas.html
 - https://docs.aws.amazon.com/iot-sitewise/latest/userguide/troubleshooting-
gateway.html#gateway-issue-data-streams
 AssociatedMetrics:
 - Name: TotalErrorCount
 Description: The total number of errors of this type that occurred.
 Value: 327724.0
 AssociatedData:
 - Name: AggregatePropertyAliases
 Description: The aggregated property aliases of the throttled data.
 FileLocation: /greengrass/v2/work/aws.iot.SiteWiseEdgePublisher/./logs/data/
AggregatePropertyAliases_1686346224654.log

Licenses

This component is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the component.

IoT SiteWise publisher 1120

https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

3.2.0 New features

Added support for ingestion of Null and NaN values. For AWS IoT
SiteWise to accept Null and NaN values, your AWS account must be
configured to allow these types. To view or modify the Null and NaN
configuration in AWS IoT SiteWise, see the DescribeStorageConfiguration
and PutStorageConfiguration APIs.

Bug fixes and improvements

• Fixes issues causing corrupted checkpoint database files.

• Fixes issues generating duplicated metrics.

3.1.4 Bug fixes and improvements

• Fixes issues that could cause longer-than-expected startup times after
being offline.

3.1.3 Bug fixes and improvements

• Fixes an issue where the events log file located at /greengrass/v2/
work/aws.iot.SiteWiseEdgePublisher/logs/IoTSiteW
isePublisherEvents.log was created but no events were
being logged.

• Adds the following CloudWatch metrics for monitoring the connection
with the MQTT broker:

• IoTSiteWisePublisher.IsConnectedToMqttBroker

• IoTSiteWisePublisher.NumberOfSubscriptionsToM
qttBroker

• IoTSiteWisePublisher.NumberOfUniqueMqttTopics
Received

• IoTSiteWisePublisher.MqttMessageReceivedSucce
ssCount

• IoTSiteWisePublisher.MqttReceivedSuccessBytes

For more information about these metrics, see AWS IoT Greengrass
Version 2 gateway metrics.

IoT SiteWise publisher 1121

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeStorageConfiguration.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_PutStorageConfiguration.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/gateway-metrics-ggv2.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/gateway-metrics-ggv2.html

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

• Fixes an issue where the BatchCreateJob API is still called even if
uploading a parquet file to S3 fails.

3.1.2 Bug fixes and improvements

• Fixes the issue of high CPU usage introduced in version 3.1.1.

3.1.1
Warning

Version 3.1.1 was discontinued on March 12, 2024. The improveme
nts in this version are available in later versions of this component.

Bug fixes and improvements

• Adds additional logging that identifies the affected data aliases when
an error occurs.

• Adds local enforcement of AWS IoT SiteWise API limits on the age of
the data ingested.

• Fixes the issue where Publisher mixes up the checkpoints of the
StreamManager streams when there are multiple Amazon S3 destinati
ons.

• Fixes performance bottleneck with how the Publisher reads from the
StreamManager streams.

3.1.0 New features

• Adds support to publish data as parquet files to Amazon S3.

• Adds support for AWS IoT SiteWise buffered ingestion.

3.0.0 Bug fixes and improvements

• Fixes issues related to proxy support.

New features

• Enables support of data ingestion from an MQTT broker.

IoT SiteWise publisher 1122

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.4.1 Bug fixes and improvements

• Enable component to work with Java Corretto 11 versions 11.0.20.8.1
and later. Component versions 2.4.0 and 2.3.3 show the "Could not
find or load main class" error message when used with Java
Corretto version 11.0.20.8.1.

2.4.0 New features

• Adds a new events log to make it easier to identify and remediate
 problems.

Bug fixes and improvements

• Improves Publisher checkpoint recovery.

2.3.3 Bug fixes and improvements

• Improves ability to support high throughput.

2.3.2 Bug fixes and improvements

• Fixes HTTP proxy support when downloading Publisher configuration.

2.3.1 New features

• Adds support for installing Data Collection Pack on Linux ARMv8
architecture.

• Minimum requirements for Linux ARMv8:

• Memory: 4 GB

• CPU: ARM Cortex-A72 or equivalent specification

2.2.3 Bug fixes and improvements

• Removes retry for generic exception which was not in the retriable
 exception list.

2.2.2 Bug fixes and improvements

• Reintroduces data upload support to AWS IoT SiteWise through an
HTTP proxy server.

IoT SiteWise publisher 1123

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.2.1
Note

This version doesn't support HTTP proxy configuration. Version 2.2.2
and higher reintroduces support for this feature.

New features

• Adds support to this component to toggle compression when
uploading data to AWS IoT SiteWise.

2.2.0
Note

This version doesn't support HTTP proxy configuration. Version 2.2.2
and higher reintroduces support for this feature.

New features

• Updates this component to compress data before sending it to the
AWS IoT SiteWise service.

• In most cases, this change reduces bandwidth usage by 75 percent
compared to previous versions of this component.

• In most cases, this change increases CPU usage by up to 5 percent.
On gateways that process large amounts of data, this change can
increase CPU usage by up to 15 percent.

• This change doesn't affect AWS IoT SiteWise service charges or
service quota usage.

• Adds support for Windows Server 2019 or higher.

Bug fixes and improvements

• Fixes an issue that prevents this component from starting when the
checkpoint file is corrupted.

2.1.4 Bug fixes and improvements

• Fixes compatibility with Java version 8.

IoT SiteWise publisher 1124

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.1.3
Warning

This version is no longer available, except in the US East (Ohio),
Canada (Central), and AWS GovCloud (US-East) Regions. This
component version requires Java version 11 or greater to run. The
improvements in this version are available in later versions of this
component.

Bug fixes and improvements

• Improves error messages when you deploy this component on
unsupported devices.

• Updates to log errors when data uploads fail.

2.1.2 Bug fixes and improvements

• Updates to invoke the expired data export feature as soon as data
expires.

2.1.1 Bug fixes and improvements.

2.1.0 New features

• Adds support for publishing the newest data to the cloud first.

• Adds support for not publishing expired data to the cloud.

• Adds support for storing expired data locally.

Bug fixes and improvements

• Reduces disk I/O and corresponding latency.

2.0.2 Bug fixes and improvements.

2.0.1 Initial version.

See also

• What is AWS IoT SiteWise? in the AWS IoT SiteWise User Guide.

IoT SiteWise publisher 1125

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/what-is-sitewise.html

AWS IoT Greengrass Developer Guide, Version 2

IoT SiteWise processor

The IoT SiteWise processor component (aws.iot.SiteWiseEdgeProcessor) enables AWS IoT
SiteWise gateways to process data at the edge.

With this component, AWS IoT SiteWise gateways can use asset models and assets to process data
on gateway devices. For more information about AWS IoT SiteWise gateways, see Using AWS IoT
SiteWise at the edge in the AWS IoT SiteWise User Guide.

Topics

• Versions

• Type

• Operating system

• Requirements

• Dependencies

• Configuration

• Local log file

• Licenses

• Changelog

• See also

Versions

This component has the following versions:

• 3.5.x

• 3.4.x

• 3.3.x

• 3.2.x

• 3.1.x

• 3.0.x

• 2.2.x

• 2.1.x

• 2.0.x

IoT SiteWise processor 1126

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/gateways-ggv2.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/gateways-ggv2.html

AWS IoT Greengrass Developer Guide, Version 2

Type

This component is a generic component (aws.greengrass.generic). The Greengrass nucleus
runs the component's lifecycle scripts.

For more information, see Component types.

Operating system

This component can be installed on core devices that run the following operating systems:

• Linux

• Windows

Requirements

This component has the following requirements:

• The Greengrass core device must run on one of the following platforms:

• os: Ubuntu 20.04 or 18.04

architecture: x86_64 (AMD64)

• os: Red Hat Enterprise Linux (RHEL) 8

architecture: x86_64 (AMD64)

• os: Amazon Linux 2

architecture: x86_64 (AMD64)

• os: Windows Server 2019 or later

architecture: x86_64 (AMD64)

• The Greengrass core device must allow inbound traffic on port 443.

• The Greengrass core device must allow outbound traffic on port 443 and 8883.

• The following ports are reserved for use by AWS IoT SiteWise: 80, 443, 3001, 4569, 4572, 8000,
8081, 8082, 8084, 8085, 8086, 8445, 9000, 9500, 11080, and 50010. Using a reserved port for
traffic can result in a terminated connection.

IoT SiteWise processor 1127

AWS IoT Greengrass Developer Guide, Version 2

Note

Port 8087 is required only for version 2.0.15 and later of this component.

• The Greengrass device role must have permissions that allow you to use AWS IoT SiteWise
gateways on your AWS IoT Greengrass V2 devices. For more information, see Requirements in
the AWS IoT SiteWise User Guide.

Endpoints and ports

This component must be able to perform outbound requests to the following endpoints and ports,
in addition to endpoints and ports required for basic operation. For more information, see Allow
device traffic through a proxy or firewall.

Endpoint Port Required Descripti
on

model.iotsitewise.
region.amazonaws.com

443 Yes Get
informati
on about
your
AWS IoT
SiteWise
assets
and asset
models.

edge.iots
itewise. region.amazonaw
s.com

443 Yes Get
informati
on about
the core
device's
AWS IoT
SiteWise
gateway

IoT SiteWise processor 1128

https://docs.aws.amazon.com/greengrass/v2/developerguide/device-service-role.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/configure-gateway-ggv2.html#gateway-requirements

AWS IoT Greengrass Developer Guide, Version 2

Endpoint Port Required Descripti
on

configura
tion.

ecr.region.amazonaws.com 443 Yes Download
AWS IoT
SiteWise
Edge
gateway
Docker
images
from
Amazon
Elastic
Container
Registry.

iot.region.amazonaws.com 443 Yes Get device
endpoints
for your
AWS
account.

sts.region.amazonaws.com 443 Yes Get the
ID of
your AWS
account.

monitor.iotsitewis
e. region.amazonaws.com

443 No Required if
you access
AWS IoT
SiteWise
Monitor
portals on
the core
device.

IoT SiteWise processor 1129

AWS IoT Greengrass Developer Guide, Version 2

Dependencies

When you deploy a component, AWS IoT Greengrass also deploys compatible versions of its
dependencies. This means that you must meet the requirements for the component and all of
its dependencies to successfully deploy the component. This section lists the dependencies for
the released versions of this component and the semantic version constraints that define the
component versions for each dependency. You can also view the dependencies for each version of
the component in the AWS IoT Greengrass console. On the component details page, look for the
Dependencies list.

The following table lists the dependencies for versions 2.0.x to 2.1.x of this component.

Dependency Compatible versions Dependency type

Token exchange service >=2.0.3 <3.0.0 Hard

Stream manager >=2.0.10 <3.0.0 Hard

Greengrass CLI >=2.3.0 <3.0.0 Hard

For more information about component dependencies, see the component recipe reference.

Configuration

This component doesn't have any configuration parameters.

Local log file

This component uses the following log file.

Linux

/greengrass/v2/logs/aws.iot.SiteWiseEdgeProcessor.log

Windows

C:\greengrass\v2\logs\aws.iot.SiteWiseEdgeProcessor.log

IoT SiteWise processor 1130

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/aws.iot.SiteWiseEdgeProcessor.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\aws.iot.SiteWiseEdgeProcessor.log -Tail 10 -
Wait

Licenses

This component includes the following third-party software/licensing:

• Apache-2.0

• MIT

• BSD-2-Clause

• BSD-3-Clause

• CDDL-1.0

• CDDL-1.1

• ISC

• Zlib

• GPL-3.0-with-GCC-exception

• Public Domain

• Python-2.0

• Unicode-DFS-2015

• BSD-1-Clause

• OpenSSL

• EPL-1.0

IoT SiteWise processor 1131

AWS IoT Greengrass Developer Guide, Version 2

• EPL-2.0

• GPL-2.0-with-classpath-exception

• MPL-2.0

• CC0-1.0

• JSON

This component is released under the Greengrass Core Software License Agreement.

Changelog

The following table describes the changes in each version of the component.

Version Changes

3.5.1 New features

Added support for ingestion of Null and NaN values if ingestion is
enabled in AWS IoT SiteWise. To view or modify the Null and NaN
configuration in AWS IoT SiteWise, see the DescribeStorageConfiguration
and PutStorageConfiguration APIs.

Bug fixes and improvements

Updated dependencies to address potential security vulnerabilities.

3.4.0 New features

• Added support for ingestion of Null and NaN values. For AWS IoT
SiteWise to accept Null and NaN values, your AWS account must
be configured to allow these types. To view or modify the Null and
NaN configuration in AWS IoT SiteWise, see the DescribeStorageCon
figuration and PutStorageConfiguration APIs.

• Added configurable session timeout settings to manage inactivity
periods for AWS OpsHub and SiteWise Edge APIs. For more informati
on, see Configure session timeouts for AWS IoT SiteWise Edge in the
AWS IoT SiteWise User Guide.

IoT SiteWise processor 1132

https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeStorageConfiguration.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_PutStorageConfiguration.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeStorageConfiguration.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeStorageConfiguration.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_PutStorageConfiguration.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/edge-apis-session-timeout.html

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

Performance improvements

Reduced the time for incoming data to reach edge device storage from 5
seconds to less than 1 second. The latency for data uploads to AWS IoT
SiteWise remains unchanged.

3.3.1 New feature

• Added optional CORS support to SiteWise Edge APIs, enhancing cross-
origin resource sharing capabilities. This feature improves flexibility for
web applications interacting with the APIs.

3.3.0 Performance improvements

• Optimized cache refresh mechanism to reduce I/O usage between AWS
IoT SiteWise asset syncs by only refreshing entries for new or updated
assets.

• Reduced memory footprint for maintaining a cache with a large
number of synced asset properties.

Bug fixes and improvements

• Suppressed logs for ingesting individual property values when there
are no ingestion errors, which reduces log noise during high ingestion
 rates.

• Improved log readability by using human-readable formatting for
certain log entries.

• Added support for Java 17 and higher.

IoT SiteWise processor 1133

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

3.2.1 Bug fixes and improvements

• Fix issue where the AWS IoT SiteWise API calls do not paginate
synchronously with SiteWise Edge.

• Fix issue to not publish the MessageRemaining.SiteWise_E
dge_Stream metric anymore.

• Added the following CloudWatch metrics to monitor the connection
with the MQTT broker.

• IoTSiteWiseProcessor.IsConnectedToMqttBroker

• IoTSiteWiseProcessor.NumberOfSubscriptionsToM
qttBroker

• IoTSiteWiseProcessor.NumberOfUniqueMqttTopics
Received

• IoTSiteWiseProcessor.MqttMessageReceivedSucce
ssCount

• IoTSiteWiseProcessor.MqttReceivedSuccessBytes

For more information about these metrics, see AWS IoT Greengrass
Version 2 gateway metrics.

IoT SiteWise processor 1134

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/gateway-metrics-ggv2.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/gateway-metrics-ggv2.html

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

3.2.0 Performance improvements

• Optimize API services to have smaller memory footprint and require
less disk space to install

• This provides a 2 GB reduction in initial memory usage (now uses
7.5 GB of memory on startup, however 16 GB is still recommend
ed) and 500 MB reduction in download size (now requires a 1.4 GB
download) for the entire component.

New features

• GetAssetPropertyValueAggregates API now supports 15
minute aggregation windows on the edge.

• Ports 8081 and 8082 no longer need to be available for this
component to run correctly.

Note

The local endpoint for AWS IoT SiteWise data plane APIs, such
as get-asset-property-value , is being changed from
http://localhost:8081 to http://localhost:1
1080/data . The local endpoint for AWS IoT SiteWise
control plane APIs, such as list-asset-models , is being
changed from http://localhost:11080 to http://lo
calhost:11080/control . AWS always recommends that
you use the SiteWise Edge gateway HTTPS endpoints. Those
endpoints have not changed.

Bug fixes and improvements

• Syncing from AWS IoT SiteWise will now transition resources into a
valid state if the previous sync was interrupted. This will fix issues with
some resources being corrupted after a forced restart.

• Fixes a rare condition where a resource may be corrupted on the
edge if it is modified during sync. Sync will now fail if this condition is
detected, and the resource will be retried in the next sync.

IoT SiteWise processor 1135

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

• Fixes an issue that could have allowed the HTTP endpoint for APIs to
be called externally. Only HTTPS can be used to call APIs outside of
the local loopback address now.

• ListAssets API now shows the asset hierarchies for assets stored
on the edge.

• Fixes an issue where the Data Processing Pack failed to restart,
upgrade, or downgrade on Windows.

• Fixes a bug in the Data Processing Pack for Windows OS that
prevented customers from using credentials to connect with an MQTT
Broker.

3.1.3 Bug fixes and improvements

• Fix issue where the Data Processing Pack incorrectly reported a
successful sync when some of the resources actually failed.

• Allow multiple assets to have the same name as long as they don’t
have the same parent.

3.1.1 Bug fixes and improvements

• Fix issue where SigV4 request fails due to a timezone mismatch.

• Fix issue where transform and metric properties stop calculating when
they rely on attributes after restarting.

• Enable support of custom Stream Manager Port configuration.

• Fix an issue where properties that are synced to the edge might stop
getting updated.

3.1.0 Bug fixes and improvements

• Fix issue where ListAssetModels API fails to generate next token.

3.0.0 New features

• Enables support of data ingestion from an MQTT broker.

IoT SiteWise processor 1136

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.2.1 Bug fixes and improvements

• Adjust the sync process in order to make control plane data storage
more consistent with how cloud operates. This slightly impacts
upgrading.

Note

Control plane data synced on version 2.2.1 or higher won't be
compatible with previous versions. To downgrade to previous
versions, you'll need to complete a fresh install. This doesn't
impact upgrades, data synced on previous versions will work
with version 2.2.1.

• Additional modifications to the AWS credentials chain to prioritize
AWS IoT Greengrass V2 credentials.

2.1.37 Bug fixes and improvements

• Deprecate dependency-routing-service process and move its functiona
lity into the property-state-service process to reduce resource usage
from the processes communicating.

• Increase maximum result limit for the get-asset-property-
value-history API to 20,000 to match the limit used by AWS IoT
SiteWise.

• Fix an issue where next token wasn't being provided in paginated
results for the get-asset-property-value-history API when
no max result limit was specified.

2.1.35 Bug fixes and improvements

• Modifies the AWS credentials chain to prioritize AWS IoT Greengrass
credentials.

• Fixes an issue with account detection when deploying as part of an
AWS IoT Thing group.

IoT SiteWise processor 1137

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.1.34 Bug fixes and improvements

• Adjusts metric/transform computations to use multi-threading on
Linux. Windows continues to run single-threaded computations for
compatibility.

• Fixes an issue where metric computations would be missing for some
computation windows.

2.1.33 Bug fixes and improvements

• Fixes an issue with error state reporting to the Greengrass console.

2.1.32 Bug fixes and improvements

• Adds support for customized user names and groups.

2.1.31 Bug fixes and improvements

• Adds support to compute the time-weighted average and the time-
weighted standard deviation for data that is modeled in AWS IoT
SiteWise.

2.1.29 Bug fixes and improvements

• Adds support to filter assets on the edge functionality.

2.1.28 Bug fixes and improvements

• Optimizes resource synchronization to enable a large number of assets
to sync from the AWS Cloud to the edge.

2.1.24 Bug fixes and improvements

• Fixes an issue that caused the dashboard to disappear when syncing a
resource for the second time.

IoT SiteWise processor 1138

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.1.23 Bug fixes and improvements

• Added a timeout for the aws.iot.SiteWiseEdgeProcessor
install process to avoid installation failure if internet connectivity is
slow.

• Optimized resource sync to improve sync efficiency between the cloud
and edge.

2.1.21
Warning

Upgrading from 2.0.x to 2.1.x will result in loss of local data.

New features

• Adds support for Windows Server 2019 or higher.

• Removes docker for Linux-based operating systems.

2.0.16 This version contains bug fixes and improvements.

2.0.15 Bug fixes and improvements

• Changes the port that this component uses for resource sync API
operations from 8085 to 8087. As a result, this component now
requires port 8087 to be available. This component still requires port
8085 to be available.

• Updates AWS OpsHub authentication to deny unauthorized users
during login instead of when a user attempts to call API operations.

2.0.14 This version contains bug fixes and improvements.

2.0.13 Bug fixes and improvements

• Fixes an issue so that when this component reports data to Amazon
CloudWatch metrics, it now correctly indicates which data is
unmodeled.

IoT SiteWise processor 1139

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

2.0.9 Bug fixes and improvements

• Improves reliability to create and update AWS IoT SiteWise resources
on the core device.

• Adds additional local API operations that you can use to monitor
which components are installed on the core device, the version of
each component, and the status of each component. You can view
this information on the Settings tab in the AWS OpsHub for AWS IoT
SiteWise application on the core device.

• Adds a health status for the Docker containers that this component
 runs. You can run the docker ps command to view the containers'
health status.

2.0.7 Bug fixes and improvements

• Fixes support for viewing AWS IoT SiteWise Monitor portals on the
core device.

2.0.6 Bug fixes and improvements

• Fixes the AWS IoT SiteWise statetime() , earliest() , and
latest() functions that this component computes on the core
device.

2.0.5 Bug fixes and improvements

• Adds support for the AWS IoT SiteWise pretrigger() function in
transforms that this component computes on the core device.

• Changes the path where this component stores the Lightweight
Directory Access Protocol (LDAP) configuration for authentication.

2.0.2 Initial version.

See also

• What is AWS IoT SiteWise? in the AWS IoT SiteWise User Guide.

IoT SiteWise processor 1140

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/what-is-sitewise.html

AWS IoT Greengrass Developer Guide, Version 2

Publisher-supported components

Publisher-supported components are in a preview release for AWS IoT Greengrass and are
subject to change. These components are not supported by AWS. You must contact the
Publisher for any issues with each of the components.

The Greengrass Publisher-supported components are developed, offered, and serviced by third-
party component vendors. Third-party component vendors are either from the AWS Partner Device
Catalog, AWS Heroes, or community vendors. You can purchase the components in this catalog by
contacting the third-party component vendor directly.

The Greengrass Publisher-supported components include the following:

Topics

• AIShield.Edge

• AI EdgeLabs Sensor

• Greengrass S3 Ingestor

AIShield.Edge

This component was developed and is supported by AIShield, powered by Bosch. Boost your AI
security with AIShield.Edge. This component is designed to seamlessly deploy threat-informed,
tailored defenses to edge devices, which safeguardes your devices against AI attacks.

This component offers the following benefits:

• Seamlessly transition from vulnerability analysis with AIShield AI Security to fortified edge
defenses within AWS

• Deploy tailored defenses across multiple edge devices with ease

• Broad protection tailored to diverse AI setups which supports various model types and
frameworks

• Stay updated with seamless integration into Amazon SageMaker AI and Greengrass workflows

• Gain immediate insights into potential threats, with data relayed directly to AWS IoT Core

• A cohesive AI security pathway for defense deployment on the edge from AIShield AI Security on
the AWS Marketplace

Publisher-supported components 1141

AWS IoT Greengrass Developer Guide, Version 2

This component must run on the following platform:

• os: linux

If you are interested in purchasing this component, contact Bosch Software and Digital Solutions:
<AIShield.Contact@bosch.com>.

AI EdgeLabs Sensor

This component was developed and is supported by AI EdgeLabs. AI EdgeLabs Sensor is a
container-based application that contains AI-based threat detection and prevention capabilities.
AI Sensor is wrapped into a Greengrass component and deployed as a standalone container on the
core device alongside other Greengrass components.

This current component is a container-based agent that continuously verifies network
communication, looks for threat patterns in software running on the Edge Host or IoT gateway.
This component uses eBPF, behavioral verification of processes bandwidth, and the host-based
configuration. The main functionality of this component is based on NDR/IPS and EDR functions.

This component offers the following benefits:

• AI-based threat detection against network attacks and malware (EDR/NDR)

• Automated AI-based Incident response (IPS)

• Host-local threat intelligence with minimal data-transfer outside

• Lightweight deployment with Docker and Greengrass

This component must run on one of the following platforms:

• os: linux

If you are interested in purchasing this component, contact AI EdgeLabs:
<contact@edgelabs.ai>.

Greengrass S3 Ingestor

This component was developed and is supported by Nathan Glover. The Greengrass S3 Ingestor
component is designed to be used with the stream manager component. This component takes a

AI EdgeLabs Sensor 1142

https://docs.aws.amazon.com/greengrass/v2/developerguide/stream-manager-component.html

AWS IoT Greengrass Developer Guide, Version 2

line-delimited stream of JSON messages from stream manager and batches them into a GZIP file.
This component enables efficient ingestion of data into Amazon S3 for further processing or for
storage. This component doesn’t support sending data to the AWS Cloud in realtime.

This component must run on one of the following platforms:

• os: linux

• os: Windows

If you are interested in purchasing this component, contact Nathan Glover:
<nathan@glovers.id.au>.

Community components

The Greengrass Software Catalog is an index of Greengrass components that are developed by
the Greengrass community. From this catalog, you can download, modify, and deploy components
to create your Greengrass applications. You can view the catalog at the following link: https://
github.com/aws-greengrass/aws-greengrass-software-catalog.

Each component has a public GitHub repository that you can explore. View the Greengrass
Software Catalog on GitHub to find the full list of community components. For example, this
catalog includes the following components:

• Amazon Kinesis Video Streams

This component ingests audio and video streams from local cameras that use Real Time
Streaming Protocol (RTSP). The component then uploads the audio and video streams to
Amazon Kinesis Video Streams.

• Bluetooth IoT gateway

This component uses the BluePy library that enables communication with Bluetooth Low Energy
(LE) devices to create Bluetooth LE client interfaces.

• Certificate Rotator

This component provides a means of rotating the AWS IoT Greengrass core device certificate and
private key, across your fleet, at scale.

• Containerized secure tunneling

Community components 1143

https://github.com/aws-greengrass/aws-greengrass-software-catalog
https://github.com/aws-greengrass/aws-greengrass-software-catalog
https://github.com/awslabs/aws-greengrass-labs-kvs-stream-uploader
https://en.wikipedia.org/wiki/Real_Time_Streaming_Protocol
https://en.wikipedia.org/wiki/Real_Time_Streaming_Protocol
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/what-is-kinesis-video.html
https://github.com/awslabs/aws-greengrass-labs-bluetooth-gateway
https://ianharvey.github.io/bluepy-doc/index.html
https://github.com/awslabs/aws-greengrass-labs-certificate-rotator
https://github.com/awslabs/aws-greengrass-labs-containerized-secure-tunneling

AWS IoT Greengrass Developer Guide, Version 2

This component provides a Docker container for secure tunneling with all dependencies and
matching libraries in a reusable recipe that doesn't rely on a specific host operating system.

• Grafana

This component enables you to host a Grafana server on a Greengrass core device. You can use
Grafana dashboards to visualize and manage data on the core device.

• GStreamer for Amazon Lookout for Vision

This component provides a GStreamer plugin so that you can perform Lookout for Vision
anomaly detection in your custom GStreamer pipelines.

• Home assistant

This component enables the customer to use Home Assistant to provide local control of smart
home devices. It provides integration with AWS services at the edge and in the cloud to deliver
home automation solutions that extend Home Assistant.

• InfluxDBGrafana dashboard

This component provides a one-click experience to set up the InfluxDB and Grafana components.
It connects InfluxDB to Grafana and automates the setup of a local Grafana dashboard that
renders AWS IoT Greengrass telemetry in real time.

• InfluxDB

This component provides an InfluxDB time-series database on a Greengrass core device. You can
use this component to process data from IoT sensors, analyze data in real time, and monitor
operations at the edge.

• InfluxDB publisher

This component relays AWS IoT Greengrass system health telemetry from the Nucleus emitter
plugin to InfluxDB. This component can also forward custom telemetry to InfluxDB.

• IoT pubsub framework

This framework provides an application architecture, template code, and deployable examples
that help improve code quality for distributed event-driven IoT pubsub applications using AWS
IoT Greengrass v2 custom components. For more information, see Create AWS IoT Greengrass
components.

• Jupyter Labs

Community components 1144

https://github.com/awslabs/aws-greengrass-labs-dashboard-grafana
https://grafana.com/
https://github.com/awslabs/aws-greengrass-labs-lookoutvision-gstreamer
https://github.com/awslabs/aws-greengrass-labs-component-for-home-assistant
https://www.home-assistant.io/
https://github.com/awslabs/aws-greengrass-labs-dashboard-influxdb-grafana
https://github.com/awslabs/aws-greengrass-labs-database-influxdb
https://www.influxdata.com/products/influxdb/
https://github.com/awslabs/aws-greengrass-labs-telemetry-influxdbpublisher
https://github.com/aws-greengrass/aws-greengrass-telemetry-nucleus-emitter
https://github.com/aws-greengrass/aws-greengrass-telemetry-nucleus-emitter
https://github.com/aws-samples/aws-greengrass-application-framework
https://github.com/awslabs/aws-greengrass-labs-jupyterlab

AWS IoT Greengrass Developer Guide, Version 2

This component deploys JupyterLab to an AWS IoT Greengrass core device. The Jupyter
environment has access to the process and environment variable resources set by AWS IoT
Greengrass, simplifying the process of testing and developing components written in Python.

• Local web server

This component enables you to create a local web user interface on a Greengrass core device.
You can create a local web user interface that enables you to configure device and application
settings or monitor the device, for example.

• LoRaWaN protocol adapter

This component ingests data from local wireless devices that use the LoRaWaN protocol, which
is a low-power wide-area network (LPWAN) protocol. The component enables you to analyze and
act on data locally without communicating with the cloud.

• Modbus TCP

This component collects data from local devices using the ModbusTCP protocol and publishes it
to selected data streams.

• Node-RED

This component installs Node-RED on an AWS IoT Greengrass core device using NPM. The
component depends on the Node-RED Auth component which must be explicitly deployed and
configured. You can use the Node-RED CLI for Greengrass to deploy Node-RED flows to AWS IoT
Greengrass devices.

• Node-RED Docker

This component installs Node-RED on the AWS IoT Greengrass core device using the official
Node-RED Docker container. The component depends on the Node-RED Auth component which
must be explicitly deployed and configured. You can use the Node-RED CLI for Greengrass to
deploy Node-RED flows to AWS IoT Greengrass devices.

• Node-RED Auth

This component configures a user name and password to secure the Node-RED instance running
on an AWS IoT Greengrass core device.

• OpenThread Border Router

This component deploys the OpenThread Border Router Docker container. The component helps
to compose a Matter device that includes a Thread border router.

Community components 1145

https://github.com/awslabs/aws-greengrass-labs-local-web-server
https://github.com/awslabs/aws-greengrass-labs-component-for-the-things-stack-lorawan
https://github.com/awslabs/aws-greengrass-labs-modbus-tcp-protocol-adapter
https://github.com/awslabs/aws-greengrass-labs-nodered
https://github.com/awslabs/aws-greengrass-labs-nodered-auth
https://github.com/awslabs/aws-greengrass-labs-node-red-app-cli
https://github.com/awslabs/aws-greengrass-labs-nodered-docker
https://github.com/awslabs/aws-greengrass-labs-nodered-auth
https://github.com/awslabs/aws-greengrass-labs-node-red-app-cli
https://github.com/awslabs/aws-greengrass-labs-nodered-auth
https://github.com/awslabs/aws-greengrass-labs-openthread-border-router

AWS IoT Greengrass Developer Guide, Version 2

• OSI Pi Streaming Data Connector

This component provides streaming real-time data ingestion from OSI Pi Data Archive to a
modern data architecture on AWS. It integrates to OSI Pi Asset Framework that is centrally
managed over AWS IoT PubSub messaging.

• Parsec Provider

This component enables AWS IoT Greengrass devices to integrate hardware security solutions
using the open source Parsec project from Cloud Native Computing Foundation (CNCF).

• PostgreSQL DB

This component provides support for PostgreSQL relational database at the edge. Customers
can use this component to provision and manage a local PostgreSQL instance inside a docker
container.

• S3 file uploader

This component monitors a directory for new files, uploads them to Amazon Simple Storage
Service (Amazon S3), and then deletes them after a successful upload.

• Secrets Manager client

This component provides a CLI tool that can be used by other components needing to retrieve
secrets from the Secrets Manager component in a recipe lifecycle script.

• TES routing to container

This component configures nftables or iptables on an AWS IoT Greengrass device so that it can
use the Token exchange service component with containers.

• WebRTC

This component ingests audio and video streams from RTSP cameras connected to the AWS IoT
Greengrass core device. And then the component turns the audio and video streams into peer-
to-peer communication or relay through Amazon Kinesis Video Streams.

To request a feature or report a bug, open a GitHub issue on the repository for that component.
AWS doesn't provide support for community components. For more information, see the
CONTRIBUTING.md file in each component's repository.

Several AWS-provided components are also open source. For more information, see Open source
AWS IoT Greengrass Core software.

Community components 1146

https://github.com/awslabs/aws-greengrass-labs-osi-pi-streaming-data-connector
https://github.com/awslabs/aws-greengrass-labs-parsec-provider
https://parsec.community/
https://www.cncf.io/
https://github.com/awslabs/aws-greengrass-labs-database-postgresql
https://www.postgresql.org/
https://github.com/awslabs/aws-greengrass-labs-s3-file-uploader
https://github.com/awslabs/aws-greengrass-labs-secretsmanagerclient
https://github.com/awslabs/aws-greengrass-labs-tes-router
https://github.com/awslabs/aws-greengrass-labs-webrtc

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass development tools

Use AWS IoT Greengrass development tools to create, test, build, publish, and deploy custom
Greengrass components.

• Greengrass Development Kit CLI

Use the AWS IoT Greengrass Development Kit Command-Line Interface (GDK CLI) in your local
development environment to create components from templates and community components in
the Greengrass Software Catalog. You can use the GDK CLI to build the component and publish
the component to the AWS IoT Greengrass service as a private component in your AWS account.

• Greengrass Command Line Interface

Use the Greengrass Command Line Interface (Greengrass CLI) on Greengrass core devices
to deploy and debug Greengrass components. The Greengrass CLI is a component that you
can deploy to your core devices to create local deployments, view details about installed
components, and explore log files.

• Local debug console

Use the local debug console on Greengrass core devices to deploy and debug Greengrass
components using a local dashboard web interface. The local debug console is a component that
you can deploy to your core devices to create local deployments and view details about installed
components.

AWS IoT Greengrass also provides the following SDKs that you can use in custom Greengrass
components:

• The AWS IoT Device SDK, which contains the interprocess communication (IPC) library. For more
information, see Use the AWS IoT Device SDK to communicate with the Greengrass nucleus,
other components, and AWS IoT Core.

• The Stream Manager SDK, which you can use to transfer data streams to the AWS Cloud. For
more information, see Manage data streams on Greengrass core devices.

Topics

• AWS IoT Greengrass Development Kit Command-Line Interface

• Greengrass Command Line Interface

Greengrass development tools 1147

AWS IoT Greengrass Developer Guide, Version 2

• Use AWS IoT Greengrass Testing Framework

AWS IoT Greengrass Development Kit Command-Line Interface

The AWS IoT Greengrass Development Kit Command-Line Interface (GDK CLI) provides features
that help you develop custom Greengrass components. You can use the GDK CLI to create, build,
and publish custom components. When you create a component repository with the GDK CLI, you
can start from a template or a community component from the Greengrass Software Catalog.
Then, you can choose a build system that packages files as ZIP archives, uses a Maven or Gradle
build script, or runs a custom build command. After you create a component, you can use the GDK
CLI to publish it to the AWS IoT Greengrass service, so you can use the AWS IoT Greengrass console
or API to deploy the component to your Greengrass core devices.

When you develop Greengrass components without the GDK CLI, you must update the version and
artifact URIs in the component recipe file each time you create a new version of the component.
When you use the GDK CLI, it can automatically update the version and artifact URIs for you each
time you publish a new version of the component.

The GDK CLI is open source and available on GitHub. You can customize and extend the GDK CLI to
meet your component development needs. We invite you to open issues and pull requests on the
GitHub repository. You can find the GDK CLI source at the following link: https://github.com/aws-
greengrass/aws-greengrass-gdk-cli.

Prerequisites

To install and use the Greengrass Development Kit CLI, you need the following:

• An AWS account. If you don't have one, see Set up an AWS account.

• A Windows, macOS, or Unix-like development computer with an internet connection.

• For GDK CLI version 1.1.0 or later, Python 3.6 or later installed on your development computer.

For GDK CLI version 1.0.0, Python 3.8 or later installed on your development computer.

• Git installed on your development computer.

• AWS Command Line Interface (AWS CLI) installed and configured with credentials on your
development computer. For more information, see Installing, updating, and uninstalling the AWS
CLI and Configuring the AWS CLI in the AWS Command Line Interface User Guide.

Greengrass Development Kit CLI 1148

https://github.com/aws-greengrass/aws-greengrass-gdk-cli
https://github.com/aws-greengrass/aws-greengrass-gdk-cli
https://www.python.org/downloads/
https://www.python.org/downloads/
https://git-scm.com/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

AWS IoT Greengrass Developer Guide, Version 2

Note

If you use a Raspberry Pi or another 32-bit ARM device, install AWS CLI V1. AWS CLI V2
isn't available for 32-bit ARM devices. For more information, see Installing, updating, and
uninstalling the AWS CLI version 1.

• To use the GDK CLI to publish components to the AWS IoT Greengrass service, you must have the
following permissions:

• s3:CreateBucket

• s3:GetBucketLocation

• s3:PutObject

• greengrass:CreateComponentVersion

• greengrass:ListComponentVersions

• To use the GDK CLI to build a component whose artifacts exist in an S3 bucket and not in the
local file system, you must have the following permissions:

• s3:ListBucket

This feature is available for GDK CLI v1.1.0 and later.

Changelog

The following table describes the changes in each version of the GDK CLI. For more information,
see the GDK CLI Releases page on GitHub.

Version Changes

1.6.2 Bug fixes and improvements

• Fixes an issue where Windows gradlew.bat does not work due to the
relative path.

• Minor improvements to logging, testing, and packaging.

1.6.1 Bug fixes and improvements

• Adds a security fix for CLI argument parsing.

Greengrass Development Kit CLI 1149

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv1.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv1.html
https://github.com/aws-greengrass/aws-greengrass-gdk-cli/releases

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

• Enables the GDK to get the latest Greengrass Testing Framework (GTF)
release name as the default GTF version.

• Enables GDK to recommend customers using an older version of GTF
that they update to the latest version.

1.6.0 New features

• Adds a recipe validation check against the Greengrass recipe schema
during the component build and component publish commands.
This update helps developers to identify actionable issues within their
component recipes earlier in the component creation process.

• Adds a confidence test suite to the template that can be pulled
down by the test-e2e init command. This confidence test suite
includes eight generic tests that can be used and extended to fit basic
component testing needs.

Bug fixes and improvements

• Updates the default Greengrass Testing Framework (GTF) version used
by the test-e2e command to version 1.2.0.

1.5.0 Bug fixes and improvements

Updates the patterns recognized by the excludes build option when
build_system is zip. This version will now recognize glob patterns
which match pathnames based on their wildcard characters. This enables
custom specification of which directories to exclude from.

Greengrass Development Kit CLI 1150

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

1.4.0 New features

• Adds a new config command that starts an interactive prompt to
modify fields within an existing GDK configuration file.

• Modifies the gdk component build and gdk component
publish commands to verify that the recipe size is within Greengrass
requirements (<=16000 bytes) before proceeding.

Bug fixes and improvements

• Adds additional logging in the output of the gdk component
build command when a recipe syntax error is preventing the build
from completing for awareness.

• Renames the otf-options and otf-version to gtf-options
and gtf-version respectively, due to the renaming of Open Test
Framework to Greengrass Testing Framework.

1.3.0 New features

• Adds a new test-e2e command to support end-to-end testing of
components using Open Test Framework.

• Adds a new configuration option, zip_name, to support configurable
zip file names with the zip build system.

• Makes the region property in the GDK configuration file optional.

Bug fixes and improvements

• Fixes an issue where a new directory is created even when the specified
template or repository doesn't exist when initializing a GDK project
with the --name argument.

1.2.3 Bug fixes and improvements

• Fixes an issues where bucket creation fails due to incorrect error
handling.

• Fixes an issue where list structures in the component recipe are
removed.

Greengrass Development Kit CLI 1151

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

1.2.2 Bug fixes and improvements

• Recipe keys are no longer case sensitive.

• Adds a check to determine if a bucket exists in an AWS Region and is
accessible by the user before creating a new bucket. Requires the user
to have the GetBucketLocation permission.

• Fixes an issue with the excludes keyword in the GDK CLI configura
tion file.

1.2.1 Bug fixes and improvements

• Accepts the Canada (Central) (ca-central-1) AWS Region in the
region configuration entry in the gdk-config.json file.

• Fixes issues with the --region GDK CLI argument to the publish
command.

1.2.0 New features

• Adds the options entry to the build configuration in the GDK CLI
configuration file. Supports excludes under options to exclude
certain files from the zip artifact when using the zip build system.

• Adds the gradlew build system to use Gradle Wrapper to build
components.

• Adds support for Kotlin DSL build files for the gradle build option.

• Adds an options entry to the publish configuration in the GDK CLI
configuration file. Supports the file_upload_args under options
to provide extra arguments when uploading files to Amazon S3.

Bug fixes and improvements

• Fixes an issue where Gradle builds didn't clean before running a build
command.

• Fixes an issue where the build didn't exit when the build command
fails.

• Improves the output format of the gdk component list command.

Greengrass Development Kit CLI 1152

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

1.1.0 New features

• Adds support for the Gradle build system.

• Adds support for the Maven build system on Windows devices.

• Adds the --bucket argument to the component publish command.
You can use this argument to specify the exact bucket where the GDK
CLI uploads component artifacts.

• Adds the --name argument to the component init command. You can
use this option to specify the folder where the GDK CLI initializes the
component.

• Adds support for component artifacts that exist in an S3 bucket but
not in the local component build folder. You can use this feature to
reduce bandwidth costs for large component artifacts, such as machine
learning models.

Bug fixes and improvements

• Updates the component publish command to check if the component
is built before it publishes the component. If the component isn't built,
this command now builds the component for you.

• Fixes an issue where the zip build system fails to build on Windows
devices when the ZIP file name contains capital letters.

• Improves the log message format and changes the default log level to
INFO on devices that run Python versions earlier than 3.8.

• Changes the minimum Python version requirement to Python 3.6.

1.0.0 Initial version.

Install or update the AWS IoT Greengrass Development Kit Command-Line
Interface

The AWS IoT Greengrass Development Kit Command-Line Interface (GDK CLI) is built on Python, so
you can use pip to install it on your development computer.

Greengrass Development Kit CLI 1153

AWS IoT Greengrass Developer Guide, Version 2

Tip

You can also install the GDK CLI in a Python virtual environments such as venv. For more
information, see Virtual Environments and Packages in the Python 3 documentation.

To install or update the GDK CLI

1. Run the following command to install the latest version of the GDK CLI from its GitHub
repository.

python3 -m pip install -U git+https://github.com/aws-greengrass/aws-greengrass-gdk-
cli.git@v1.6.2

Note

To install a specific version of the GDK CLI, replace versionTag with the version tag
to install. You can view version tags for the GDK CLI in its GitHub repository.

python3 -m pip install -U git+https://github.com/aws-greengrass/aws-
greengrass-gdk-cli.git@versionTag

2. Run the following command to verify that the GDK CLI installed successfully.

gdk --help

If the gdk command isn't found, add its folder to PATH.

• On Linux devices, add /home/MyUser/.local/bin to PATH, and replace MyUser with the
name of your user.

• On Windows devices, add PythonPath\\Scripts to PATH, and replace PythonPath with
the path to the Python folder on your device.

You can now use the GDK CLI to create, build, and publish Greengrass components. For more
information about how to use the GDK CLI, see AWS IoT Greengrass Development Kit Command-
Line Interface commands.

Greengrass Development Kit CLI 1154

https://docs.python.org/3/library/venv.html#module-venv
https://docs.python.org/3/tutorial/venv.html
https://github.com/aws-greengrass/aws-greengrass-gdk-cli
https://github.com/aws-greengrass/aws-greengrass-gdk-cli
https://github.com/aws-greengrass/aws-greengrass-gdk-cli/tags

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass Development Kit Command-Line Interface commands

The AWS IoT Greengrass Development Kit Command-Line Interface (GDK CLI) provides a command
line interface that you can use to create, build, and publish Greengrass components on your
development computer. GDK CLI commands use the following format.

gdk <command> <subcommand> [arguments]

When you install the GDK CLI, the installer adds gdk to the PATH so you can run the GDK CLI from
the command line.

You can use the following arguments with any command:

• Use -h or --help for information about a GDK CLI command.

• Use -v or --version to see what version of GDK CLI is installed.

• Use -d or --debug to output verbose logs that you can use to debug the GDK CLI.

This section describes the GDK CLI commands and provides examples for each command. The
synopsis for each command shows its arguments and their usage. Optional arguments are shown in
square brackets.

Available commands

• component

• config

• test-e2e

component

Use the component command in the AWS IoT Greengrass Development Kit Command-Line
Interface (GDK CLI) to create, build, and publish custom Greengrass components.

Subcommands

• init

• build

• publish

• list

Greengrass Development Kit CLI 1155

AWS IoT Greengrass Developer Guide, Version 2

init

Initialize a Greengrass component folder from a component template or community component.

The GDK CLI retrieves community components from the Greengrass Software Catalog and
component templates from the AWS IoT Greengrass Component Templates repository on GitHub.

Note

If you use GDK CLI v1.0.0, you must run this command in an empty folder. The GDK CLI
downloads the template or community component to the current folder.
If you use GDK CLI v1.1.0 or later, you can specify the --name argument to specify the
folder where the GDK CLI downloads the template or community component. If you use
this argument, specify a folder that doesn't exist. The GDK CLI creates the folder for you. If
you don't specify this argument, the GDK CLI uses the current folder, which must be empty.
If the component uses the zip build system, the GDK CLI zips certain files in the
component's folder into a zip file with the same name as the component folder. For
example, if the component folder's name is HelloWorld, the GDK CLI creates a zip file
named HelloWorld.zip. In the component recipe, the zip artifact name must match the
name of the component folder. If you use GDK CLI version 1.0.0 on a Windows device, the
component folder and zip file names must contain only lowercase letters.
If you initialize a template or community component that uses the zip build system to a
folder with a different name than the template or component, you must change the zip
artifact name in the component recipe. Update the Artifacts and Lifecycle definitions
such that the zip file name matches the name of the component folder. The following
example highlights the zip file name in the Artifacts and Lifecycle definitions.

JSON

{
 ...
 "Manifests": [
 {
 "Platform": {
 "os": "all"
 },
 "Artifacts": [
 {
 "URI": "s3://BUCKET_NAME/COMPONENT_NAME/
COMPONENT_VERSION/HelloWorld.zip",

Greengrass Development Kit CLI 1156

https://github.com/aws-greengrass/aws-greengrass-component-templates

AWS IoT Greengrass Developer Guide, Version 2

 "Unarchive": "ZIP"
 }
],
 "Lifecycle": {
 "Run": "python3 -u {artifacts:decompressedPath}/HelloWorld/main.py
 {configuration:/Message}"
 }
 }
]
}

YAML

...
Manifests:
 - Platform:
 os: all
 Artifacts:
 - URI: "s3://BUCKET_NAME/COMPONENT_NAME/
COMPONENT_VERSION/HelloWorld.zip"
 Unarchive: ZIP
 Lifecycle:
 Run: "python3 -u {artifacts:decompressedPath}/HelloWorld/main.py
 {configuration:/Message}"

Synopsis

$ gdk component init
 [--language]
 [--template]
 [--repository]
 [--name]

Arguments (initialize from component template)

• -l, --language – The programming language to use for the template that you specify.

You must specify either --repository or --language and --template.

• -t, --template – The component template to use for a local component project. To view
available templates, use the list command.

Greengrass Development Kit CLI 1157

AWS IoT Greengrass Developer Guide, Version 2

You must specify either --repository or --language and --template.

• -n, --name – (Optional) The name of the local folder where the GDK CLI initializes the
component. Specify a folder that doesn't exist. The GDK CLI creates the folder for you.

This feature is available for GDK CLI v1.1.0 and later.

Arguments (initialize from community component)

• -r, --repository – The community component to check out into the local folder. To view
available community components, use the list command.

You must specify either --repository or --language and --template.

• -n, --name – (Optional) The name of the local folder where the GDK CLI initializes the
component. Specify a folder that doesn't exist. The GDK CLI creates the folder for you.

This feature is available for GDK CLI v1.1.0 and later.

Output

The following example shows the output produced when you run this command to initialize a
component folder from the Python Hello World template.

$ gdk component init -l python -t HelloWorld
[2021-11-29 12:51:40] INFO - Initializing the project directory with a python
 component template - 'HelloWorld'.
[2021-11-29 12:51:40] INFO - Fetching the component template 'HelloWorld-python'
 from Greengrass Software Catalog.

The following example shows the output produced when you run this command to initialize a
component folder from a community component.

$ gdk component init -r aws-greengrass-labs-database-influxdb
[2022-01-24 15:44:33] INFO - Initializing the project directory with a component
 from repository catalog - 'aws-greengrass-labs-database-influxdb'.
[2022-01-24 15:44:33] INFO - Fetching the component repository 'aws-greengrass-labs-
database-influxdb' from Greengrass Software Catalog.

build

Build a component's source into a recipe and artifacts that you can publish to the AWS
IoT Greengrass service. The GDK CLI runs the build system that you specify in the GDK CLI

Greengrass Development Kit CLI 1158

AWS IoT Greengrass Developer Guide, Version 2

configuration file, gdk-config.json. You must run this command in the same folder where the
gdk-config.json file exists.

When you run this command, the GDK CLI creates a recipe and artifacts in the
greengrass-build folder in the component folder. The GDK CLI saves the recipe in the
greengrass-build/recipes folder and saves the artifacts in the greengrass-build/
artifacts/componentName/componentVersion folder.

If you use GDK CLI v1.1.0 or later, the component recipe can specify artifacts that exist in an S3
bucket but not in the local component build folder. You can use this feature to reduce bandwidth
usage when you develop components with large artifacts, such as machine learning models.

After you build a component, you can do one of the following to test it on a Greengrass core
device:

• If you develop on a different device than where you run the AWS IoT Greengrass Core software,
you must publish the component to deploy it to a Greengrass core device. Publish the
component to the AWS IoT Greengrass service, and deploy it to the Greengrass core device. For
more information, see the publish command and Create deployments.

• If you develop on the same device where you run the AWS IoT Greengrass Core software, you
can publish the component to the AWS IoT Greengrass service to deploy, or you can create
a local deployment to install and run the component. To create a local deployment, use the
Greengrass CLI. For more information, see Greengrass Command Line Interface and Test AWS IoT
Greengrass components with local deployments. When you create the local deployment, specify
greengrass-build/recipes as the recipes folder and greengrass-build/artifacts as
the artifacts folder.

Synopsis

$ gdk component build

Arguments

None

Output

The following example shows the output produced when you run this command.

$ gdk component build

Greengrass Development Kit CLI 1159

AWS IoT Greengrass Developer Guide, Version 2

[2021-11-29 13:18:49] INFO - Getting project configuration from gdk-config.json
[2021-11-29 13:18:49] INFO - Found component recipe file 'recipe.yaml' in the
 project directory.
[2021-11-29 13:18:49] INFO - Building the component 'com.example.PythonHelloWorld'
 with the given project configuration.
[2021-11-29 13:18:49] INFO - Using 'zip' build system to build the component.
[2021-11-29 13:18:49] WARNING - This component is identified as using 'zip' build
 system. If this is incorrect, please exit and specify custom build command in the
 'gdk-config.json'.
[2021-11-29 13:18:49] INFO - Zipping source code files of the component.
[2021-11-29 13:18:49] INFO - Copying over the build artifacts to the greengrass
 component artifacts build folder.
[2021-11-29 13:18:49] INFO - Updating artifact URIs in the recipe.
[2021-11-29 13:18:49] INFO - Creating component recipe in 'C:\Users\MyUser\Documents
\greengrass-components\python\HelloWorld\greengrass-build\recipes'.

publish

Publish this component to the AWS IoT Greengrass service. This command uploads build artifacts
to an S3 bucket, updates the artifact URI in the recipe, and creates a new version of component
from the recipe. The GDK CLI uses the S3 bucket and AWS Region that you specify in the GDK CLI
configuration file, gdk-config.json. You must run this command in the same folder where the
gdk-config.json file exists.

If you use GDK CLI v1.1.0 or later, you can specify the --bucket argument to specify the S3 bucket
where the GDK CLI uploads the component's artifacts. If you don't specify this argument, the
GDK CLI uploads to the S3 bucket whose name is bucket-region-accountId, where bucket
and region are the values that you specify in gdk-config.json, and accountId is your AWS
account ID. The GDK CLI creates the bucket if it doesn't exist.

If you use GDK CLI v1.2.0 or later, You can override the AWS Region specified in the GDK CLI
configuration file using the --region parameter. You can also specify additional options using
the --options parameter. For a list of available options, see Greengrass Development Kit CLI
configuration file.

When you run this command, the GDK CLI publishes the component with the version that you
specify in the recipe. If you specify NEXT_PATCH, the GDK CLI uses the next patch version that
doesn't already exist. Semantic versions use a major.minor.patch numbering system. For more
information, see the semantic version specification.

Greengrass Development Kit CLI 1160

https://semver.org/

AWS IoT Greengrass Developer Guide, Version 2

Note

If you use GDK CLI v1.1.0 or later, when you run this command, the GDK CLI checks if the
component is built. If the component isn't built, the GDK CLI builds the component before
it publishes the component.

Synopsis

$ gdk component publish
 [--bucket] [--region] [--options]

Arguments

• -b, --bucket – (Optional) Specify the name of the S3 bucket where the GDK CLI publishes
component artifacts.

If you don't specify this argument, the GDK CLI uploads to the S3 bucket whose name is
bucket-region-accountId, where bucket and region are the values that you specify in
gdk-config.json, and accountId is your AWS account ID. The GDK CLI creates the bucket
if it doesn't exist.

The GDK CLI creates the bucket if it doesn't exist.

This feature is available for GDK CLI v1.1.0 and later.

• -r, --region – (Optional) Specify the name of the AWS Region to when the component is
created. This argument overrides the Region name in the GDK CLI configuration.

This feature is available for GDK CLI v1.2.0 and later.

• -o, --options (Optional) Specify a list of options for publishing a component. The
argument must be a valid JSON string or a file path to a JSON file containing the publishing
options. This argument overrides the options in the GDK CLI configuration.

This feature is available for GDK CLI v1.2.0 and later.

Output

The following example shows the output produced when you run this command.

$ gdk component publish
[2021-11-29 13:45:29] INFO - Getting project configuration from gdk-config.json

Greengrass Development Kit CLI 1161

AWS IoT Greengrass Developer Guide, Version 2

[2021-11-29 13:45:29] INFO - Found component recipe file 'recipe.yaml' in the
 project directory.
[2021-11-29 13:45:29] INFO - Found credentials in shared credentials file: ~/.aws/
credentials
[2021-11-29 13:45:30] INFO - Publishing the component 'com.example.PythonHelloWorld'
 with the given project configuration.
[2021-11-29 13:45:30] INFO - No private version of the component
 'com.example.PythonHelloWorld' exist in the account. Using '1.0.0' as the next
 version to create.
[2021-11-29 13:45:30] INFO - Uploading the component built artifacts to s3 bucket.
[2021-11-29 13:45:30] INFO - Uploading component artifacts to S3 bucket: {bucket}.
 If this is your first time using this bucket, add the 's3:GetObject' permission
 to each core device's token exchange role to allow it to download the component
 artifacts. For more information, see https://docs.aws.amazon.com/greengrass/v2/
developerguide/device-service-role.html.
[2021-11-29 13:45:30] INFO - Not creating an artifacts bucket as it already exists.
[2021-11-29 13:45:30] INFO - Updating the component recipe
 com.example.PythonHelloWorld-1.0.0.
[2021-11-29 13:45:30] INFO - Creating a new greengrass component
 com.example.PythonHelloWorld-1.0.0
[2021-11-29 13:45:30] INFO - Created private version '1.0.0' of the component in the
 account.'com.example.PythonHelloWorld'.

list

Retrieve the list of available component templates and community components.

The GDK CLI retrieves community components from the Greengrass Software Catalog and
component templates from the AWS IoT Greengrass Component Templates repository on GitHub.

You can pass the output of this command to the init command to initialize component repositories
from templates and community components.

Synopsis

$ gdk component list
 [--template]
 [--repository]

Arguments

• -t, --template – (Optional) Specify this argument to list available component
templates. This command outputs the name and language of each template in the format

Greengrass Development Kit CLI 1162

https://github.com/aws-greengrass/aws-greengrass-component-templates

AWS IoT Greengrass Developer Guide, Version 2

name-language. For example, in HelloWorld-python, the template name is HelloWorld
and the language is python.

• -r, --repository – (Optional) Specify this argument to list available community
component repositories.

Output

The following example shows the output produced when you run this command.

$ gdk component list --template
[2021-11-29 12:29:04] INFO - Listing all the available component templates from
 Greengrass Software Catalog.
[2021-11-29 12:29:04] INFO - Found '2' component templates to display.
1. HelloWorld-python
2. HelloWorld-java

config

Use the config command in the AWS IoT Greengrass Development Kit Command-Line Interface
(GDK CLI) to modify the configuration for the GDK in the configuration file, gdk-config.json.

Subcommands

• update

update

Start an interactive prompt to modify fields within an existing GDK configuration file.

Synopsis

$ gdk config update
 [--component]

Arguments

• -c, --component – To update component-related fields in the gdk-config.json file. This
argument is required since it is the only option.

Greengrass Development Kit CLI 1163

AWS IoT Greengrass Developer Guide, Version 2

Output

The following example shows the output produced when you run this command to configure a
component.

$ gdk config update --component
Current value of the REQUIRED component_name is (default:
 com.example.PythonHelloWorld):
Current value of the REQUIRED author is (default: author):
Current value of the REQUIRED version is (default: NEXT_PATCH):
Do you want to change the build configurations? (y/n)
Do you want to change the publish configurations? (y/n)
[2023-09-26 10:19:48] INFO - Config file has been updated. Exiting...

test-e2e

Use the test-e2e command in the AWS IoT Greengrass Development Kit Command-Line Interface
(GDK CLI) to initialize, build, and run end-to-end test modules in the GDK project.

Subcommands

• init

• build

• run

init

Initialize an existing GDK CLI project with a testing module that uses Greengrass Testing
Framework (GTF).

By default, GDK CLI retrieves the maven module template from the AWS IoT Greengrass
Component Templates repository on GitHub. This maven module comes with a dependency on the
aws-greengrass-testing-standalone JAR file.

This command creates a new directory called gg-e2e-tests inside of the GDK project. If the
testing module directory already exists and is not empty, the command exits without doing
anything. This gg-e2e-tests folder contains the Cucumber feature and step definitions
structured in a maven project.

By default, this command will try to use the latest release version of GTF.

Greengrass Development Kit CLI 1164

https://github.com/aws-greengrass/aws-greengrass-component-templates
https://github.com/aws-greengrass/aws-greengrass-component-templates

AWS IoT Greengrass Developer Guide, Version 2

Synopsis

$ gdk test-e2e init
 [--gtf-version]

Arguments

• -ov, --gtf-version – (Optional) The version of the GTF to use with the end-to-end testing
module in the GDK project. This value must be one of the GTF versions from releases. This
argument overrides the gtf_version in the GDK CLI configuration.

Output

The following example shows the output produced when you run this command to initialize the
GDK project with the testing module.

$ gdk test-e2e init
[2023-12-06 12:20:28] INFO - Using the GTF version provided in the GDK test config
 1.2.0
[2023-12-06 12:20:28] INFO - Downloading the E2E testing template from GitHub into
 gg-e2e-tests directory...

build

Note

You must build the component by running gdk component build before building the end-
to-end test module.

Build the end-to-end testing module. The GDK CLI builds the testing module using the build
system that you specify in the GDK CLI configuration file, gdk-config.json, under the test-
e2e property. You must run this command in the same folder where the gdk-config.json file
exists.

By default, GDK CLI uses maven build system to build the testing module. Maven is required to run
the gdk test-e2e build command.

You must build the component by running gdk-component-build before building the
testing module, if the test feature files have variables like GDK_COMPONENT_NAME and
GDK_COMPONENT_RECIPE_FILE to interpolate.

Greengrass Development Kit CLI 1165

https://github.com/aws-greengrass/aws-greengrass-testing/releases
https://maven.apache.org/

AWS IoT Greengrass Developer Guide, Version 2

When you run this command, the GDK CLI interpolates all of the variables from the GDK project
configuration and builds the gg-e2e-tests module to generate the final testing JAR file.

Synopsis

$ gdk test-e2e build

Arguments

None

Output

The following example shows the output produced when you run this command.

$ gdk test-e2e build
[2023-07-20 15:36:48] INFO - Updating feature file: file:///path/to//
HelloWorld/greengrass-build/gg-e2e-tests/src/main/resources/greengrass/features/
component.feature
[2023-07-20 15:36:48] INFO - Creating the E2E testing recipe file:///path/to/
HelloWorld/greengrass-build/recipes/e2e_test_recipe.yaml
[2023-07-20 15:36:48] INFO - Building the E2E testing module
[2023-07-20 15:36:48] INFO - Running the build command 'mvn package'
.........

run

Run the testing module with the testing options in the GDK configuration file.

Note

You must build the testing module by running gdk test-e2e build before running the end-
to-end tests.

Synopsis

$ gdk test-e2e run
 [--gtf-options]

Greengrass Development Kit CLI 1166

AWS IoT Greengrass Developer Guide, Version 2

Arguments

• -oo, --gtf-options – (Optional) Specify a list of options for running the end-to-end tests.
The argument must be a valid JSON string or a file path to a JSON file containing the GTF
options. The options provided in the configuration file are merged with the ones provided in
the command arguments. If an option is present in both places, the one in argument takes
precendence over the one from the configuration file.

If the tags option is not specified in this command, GDK uses Sample for tags. If ggc-
archive is not specified, GDK downloads the latest version of the Greengrass nucleus
archive.

Output

The following example shows the output produced when you run this command.

$ gdk test-e2e run
[2023-07-20 16:35:53] INFO - Downloading latest nucleus archive from url https://
d2s8p88vqu9w66.cloudfront.net/releases/greengrass-latest.zip
[2023-07-20 16:35:57] INFO - Running test jar with command java -jar /path/to/
greengrass-build/gg-e2e-tests/target/uat-features-1.0.0.jar —ggc-archive=/path/to/
aws-greengrass-gdk-cli/HelloWorld/greengrass-build/greengrass-nucleus-latest.zip —
tags=Sample

16:35:59.693 [] [] [] [INFO]
 com.aws.greengrass.testing.modules.GreengrassContextModule - Extracting /path/
to/workplace/aws-greengrass-gdk-cli/HelloWorld/greengrass-build/greengrass-
nucleus-latest.zip into /var/folders/7g/ltzcb_3s77nbtmkzfb6brwv40000gr/T/gg-
testing-7718418114158172636/greengrass
16:36:00.534 [gtf-1.1.0-SNAPSHOT] [] [] [INFO]
 com.aws.greengrass.testing.features.LoggerSteps - GTF Version is gtf-1.1.0-SNAPSHOT
.......

Greengrass Development Kit CLI configuration file

The AWS IoT Greengrass Development Kit Command-Line Interface (GDK CLI) reads from a
configuration file named gdk-config.json to build and publish components. This configuration
file must exist in the root of the component repository. You can use the GDK CLI init command to
initialize component repositories with this configuration file.

Topics

Greengrass Development Kit CLI 1167

AWS IoT Greengrass Developer Guide, Version 2

• GDK CLI configuration file format

• GDK CLI configuration file examples

GDK CLI configuration file format

When you define a GDK CLI configuration file for a component, you specify the following
information in JSON format.

gdk_version

The minimum version of the GDK CLI that is compatible with this component. This value must
be one of the GDK CLI versions from releases.

component

The configuration for this component.

componentName

author

The author or publisher of the component.

version

The version of the component. Specify one of the following:

• NEXT_PATCH – When you choose this option, the GDK CLI sets the version when
you publish the component. The GDK CLI queries the AWS IoT Greengrass service to
identify the latest published version of the component. Then, it sets the version to the
next patch version after that version. If you haven't published the component before,
the GDK CLI uses version 1.0.0.

If you choose this option, you can't use the Greengrass CLI to locally deploy and test
the component to your local development computer that runs the AWS IoT Greengrass
Core software. To enable local deployments, you must specify a semantic version
instead.

• A semantic version, such as 1.0.0. Semantic versions use a major.minor.patch
numbering system. For more information, see the semantic version specification.

If you develop components on a Greengrass core device where you want to deploy and
test the component, choose this option. You must build the component with a specific
version to create local deployments with the Greengrass CLI.

Greengrass Development Kit CLI 1168

https://github.com/aws-greengrass/aws-greengrass-gdk-cli/releases
https://semver.org/

AWS IoT Greengrass Developer Guide, Version 2

build

The configuration to use to build this component's source into artifacts. This object
contains the following information:

 build_system

The build system to use. Choose from the following options:

• zip – Packages the component's folder into a ZIP file to define as the component's
only artifact. Choose this option for the following types of components:

• Components that use interpreted programming languages, such as Python or
JavaScript.

• Components that package files other than code, such as machine learning models
or other resources.

The GDK CLI zips the component's folder into a zip file with the same name as the
component folder. For example, if the component folder's name is HelloWorld,
the GDK CLI creates a zip file named HelloWorld.zip.

Note

If you use GDK CLI version 1.0.0 on a Windows device, the component
folder and zip file names must contain only lowercase letters.

When the GDK CLI zips the component's folder into a zip file, it skips the following
files:

• The gdk-config.json file

• The recipe file (recipe.json or recipe.yaml)

• Build folders, such as greengrass-build

• maven – Runs the mvn clean package command to build the component's
source into artifacts. Choose this option for components that use Maven, such as
Java components.

On Windows devices, this feature is available for GDK CLI v1.1.0 and later.

Greengrass Development Kit CLI 1169

https://maven.apache.org/

AWS IoT Greengrass Developer Guide, Version 2

• gradle – Runs the gradle build command to build the component's source
into artifacts. Choose this option for components that use Gradle. This feature is
available for GDK CLI v1.1.0 and later.

The gradle build system supports Kotlin DSL as the build file. This feature is
available for GDK CLI v1.2.0 and later.

• gradlew – Runs the gradlew command to build the component's source into
artifacts. Choose this option for components that use the Gradle Wrapper .

This feature is available for GDK CLI v1.2.0 and later.

• custom – Runs a custom command to build the component's source into a recipe
and artifacts. Specify the custom command in the custom_build_command
parameter.

custom_build_command

(Optional) The custom build command to run for a custom build system. You must
specify this parameter if you specify custom for build_system.

Important

This command must create a recipe and artifacts in the following folders
within the component folder. The GDK CLI creates these folders for you when
you run the component build command.

• Recipe folder: greengrass-build/recipes

• Artifacts folder: greengrass-build/
artifacts/componentName/componentVersion

Replace componentName with the component name, and replace
componentVersion with the component version or NEXT_PATCH.

You can specify a single string or a list of strings, where each string is a word in the
command. For example, to run a custom build command for a C++ component, you
might specify cmake --build build --config Release or ["cmake", "--
build", "build", "--config", "Release"].

To view an example of a custom build system, see the
aws.greengrass.labs.LocalWebServer community component on GitHub.

Greengrass Development Kit CLI 1170

https://gradle.org/
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://github.com/awslabs/aws-greengrass-labs-local-web-server

AWS IoT Greengrass Developer Guide, Version 2

options

(Optional) Additional configuration options used during the component build process.

This feature is available for GDK CLI v1.2.0 and later.

excludes

A list of glob patterns that define which files to exclude from the component
directory when building the zip file. Only valid when the build_system is zip.

Note

In GDK CLI versions 1.4.0 and earlier, any file that matches an entry in the
excludes list is excluded from all of the component's subdirectories. To
achieve the same behavior in GDK CLI versions 1.5.0 and later, prepend
**/ to the existing entries in the excludes list. For example, *.txt will
exclude text files from just the directory; **/*.txt will exclude text files
from all directories and subdirectories.
In GDK CLI versions 1.5.0 and later, you may see a warning during
the component build when excludes is defined in the GDK
configuration file. To disable this warning, set the environment variable
GDK_EXCLUDES_WARN_IGNORE to true.

The GDK CLI always excludes the following files from the zip file:

• The gdk-config.json file

• The recipe file (recipe.json or recipe.yaml)

• Build folders, such as greengrass-build

The following files are excluded by default. However, you can control which of
these files are excluded with the excludes option.

• Any folder that starts with the prefix "test" (test*)

• All hidden files

• The node_modules folder

If you specify the excludes option, the GDK CLI excludes only those files you set
with the excludes option. If you don't specify the excludes option, the GDK CLI
excludes the previously noted default files and folders.

Greengrass Development Kit CLI 1171

AWS IoT Greengrass Developer Guide, Version 2

zip_name

The zip file name to use when you create a zip artifact during the build process.
Only valid when the build_system is zip. If the build_system is empty, the
component name is used for the zip file name.

publish

The configuration to use to publish this component to the AWS IoT Greengrass service.

If you use GDK CLI v1.1.0 or later, you can specify the --bucket argument to
specify the S3 bucket where the GDK CLI uploads the component's artifacts. If you
don't specify this argument, the GDK CLI uploads to the S3 bucket whose name is
bucket-region-accountId, where bucket and region are the values that you
specify in gdk-config.json, and accountId is your AWS account ID. The GDK CLI
creates the bucket if it doesn't exist.

This object contains the following information:

bucket

The S3 bucket name to use to host component artifacts.

region

The AWS Region where the GDK CLI publishes this component.

This property is optional if you are using GDK CLI v1.3.0 or later.

options

(Optional) Additional configuration options used during component version creation.

This feature is available for GDK CLI v1.2.0 and later.

file_upload_args

A JSON structure containing arguments sent to Amazon S3 while uploading
files to a bucket, such as metadata and encryption mechanisms. For a list of the
allowed arguments, see the S3Transfer class in the Boto3 documentation..

test-e2e

(Optional) The configuration to use during end-to-end testing of the component. This feature is
available for GDK CLI v1.3.0 and later.

Greengrass Development Kit CLI 1172

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/customizations/s3.html#boto3.s3.transfer.S3Transfer.ALLOWED_UPLOAD_ARGS

AWS IoT Greengrass Developer Guide, Version 2

build

build_system – The build system to use. Default option is maven. Choose from the
following options:

• maven – Runs the mvn package command to build the testing module. Choose this
option for building the testing module that uses Maven.

• gradle – Runs the gradle build command to build the testing module. Choose this
option for the testing module that uses Gradle.

gtf_version

(Optional) The version of the Greengrass Testing Framework (GTF) to use as a dependency
of the end-to-end testing module when you initialize the GDK project with GTF. This value
must be one of the GTF versions from releases. The default is GTF version 1.1.0.

gtf_options

(Optional) Additional configuration options used during the end-to-end testing of the
component.

The following list includes the options you can use with GTF version 1.1.0.

• additional-plugins – (Optional) Additional Cucumber plugins

• aws-region – Targets specific regional endpoints for AWS services. Defaults to what the
AWS SDK discovers.

• credentials-path – Optional AWS profile credentials path. Defaults to credentials
discovered on host environment.

• credentials-path-rotation – Optional rotation duration for AWS credentials.
Defaults to 15 minutes or PT15M.

• csr-path – The path for the CSR using which the device certificate will be generated.

• device-mode – The target device under test. Defaults to local device.

• env-stage – Targets the deployment environment of Greengrass. Defaults to production.

• existing-device-cert-arn – The arn of an existing certificate that you want to use as
a device certificate for Greengrass.

• feature-path – File or directory containing additional feature files. Default is no
additional feature files are used.

• gg-cli-version – Overrides the version of the Greengrass CLI. Defaults to the value
found in ggc.version.

Greengrass Development Kit CLI 1173

https://maven.apache.org/
https://gradle.org/
https://github.com/aws-greengrass/aws-greengrass-testing/releases

AWS IoT Greengrass Developer Guide, Version 2

• gg-component-bucket – The name of an existing Amazon S3 bucket that houses
Greengrass components.

• gg-component-overrides – A list of Greengrass component overrides.

• gg-persist – A list of test elements to persist after a test run. Default behavior is to
persist nothing. Accepted values are: aws.resources, installed.software, and
generated.files.

• gg-runtime – A list of values to influence how the test interacts with testing resources.
These values supersede the gg.persist parameter. If the default is empty, it assumes
all testing resources are manged by test case, including the installed Greengrass runtime.
Accepted values are: aws.resources, installed.software, and generated.files.

• ggc-archive – The path to the archived Greengrass nucleus component.

• ggc-install-root – Directory to install the Greengrass nucleus component. Defaults to
test.temp.path and test run folder.

• ggc-log-level – Set the Greengrass nucleus log level for the test run. Default is "INFO".

• ggc-tes-rolename – The IAM role that AWS IoT Greengrass Core will assume to access
AWS services. If a role with given name does not exist then one will be created and default
access policy.

• ggc-trusted-plugins – The comma separate list of the paths (on host) of the trusted
plugins that need to added to Greengrass. To provide the path on the DUT itself, prefix the
path with 'dut:'

• ggc-user-name – The user:group posixUser value for the Greengrass nucleus. Defaults to
the current username that is logged in.

• ggc-version – Overrides the version of the running Greengrass nucleus component.
Defaults to the value found in ggc.archive.

• log-level – Log level of the test run. Defaults to "INFO".

• parallel-config – Set of batch index and number of batches as a JSON String. Default
value of batch index is 0 and number of batches is 1.

• proxy-url – Configure all tests to route traffic through this URL.

• tags – Only run feature tags. Can be intersected with '&'

• test-id-prefix – A common prefix applied to all test specific resources including AWS
resource names and tags. Default is a "gg" prefix.

• test-log-path – Directory that will contain the results of the entire test run. Defaults to
"testResults".

Greengrass Development Kit CLI 1174

AWS IoT Greengrass Developer Guide, Version 2

• test-results-json – Flag to determine if a resulting Cucumber JSON report is
generated written to disk. Defaults to true.

• test-results-log – Flag to determine if the console output is generated written to
disk. Defaults to false.

• test-results-xml – Flag to determine if a resulting JUnit XML report is generated
written to disk. Defaults to true.

• test-temp-path – Directory to generate local test artifacts. Defaults to a random temp
directory prefixed with gg-testing.

• timeout-multiplier – Multiplier provided to all test timeouts. Default is 1.0.

GDK CLI configuration file examples

You can reference the following GDK CLI configuration file examples to help you configure
Greengrass component environments.

Hello World (Python)

The following GDK CLI configuration file supports a Hello World component that runs a Python
script. This configuration file uses the zip build system to package the component's Python script
into a ZIP file that the GDK CLI uploads as an artifact.

{
 "component": {
 "com.example.PythonHelloWorld": {
 "author": "Amazon",
 "version": "NEXT_PATCH",
 "build": {
 "build_system" : "zip",
 "options": {
 "excludes": [".*"]
 }
 },
 "publish": {
 "bucket": "greengrass-component-artifacts",
 "region": "us-west-2",
 "options": {
 "file_upload_args": {
 "Metadata": {
 "some-key": "some-value"
 }

Greengrass Development Kit CLI 1175

AWS IoT Greengrass Developer Guide, Version 2

 }
 }
 }
 },
 "test-e2e":{
 "build":{
 "build_system": "maven"
 },
 "gtf_version": "1.1.0",
 "gtf_options": {
 "tags": "Sample"
 }
 },
 "gdk_version": "1.6.1"
 }
}

Hello World (Java)

The following GDK CLI configuration file supports a Hello World component that runs a Java
application. This configuration file uses the maven build system to package the component's Java
source code into a JAR file that the GDK CLI uploads as an artifact.

{
 "component": {
 "com.example.JavaHelloWorld": {
 "author": "Amazon",
 "version": "NEXT_PATCH",
 "build": {
 "build_system" : "maven"
 },
 "publish": {
 "bucket": "greengrass-component-artifacts",
 "region": "us-west-2",
 "options": {
 "file_upload_args": {
 "Metadata": {
 "some-key": "some-value"
 }
 }
 }
 }
 },

Greengrass Development Kit CLI 1176

AWS IoT Greengrass Developer Guide, Version 2

 "test-e2e":{
 "build":{
 "build_system": "maven"
 },
 "gtf_version": "1.1.0",
 "gtf_options": {
 "tags": "Sample"
 }
 },
 "gdk_version": "1.6.1"
 }
}

Community components

Several community components in the Greengrass Software Catalog use the GDK CLI. You can
explore the GDK CLI configuration files in these components' repositories.

To view community components' GDK CLI configuration files

1. Run the following command to list the community components that use the GDK CLI.

gdk component list --repository

The response lists the name of the GitHub repository for each community component that
uses the GDK CLI. Each repository exists in the awslabs organization.

[2022-02-22 17:27:31] INFO - Listing all the available component repositories from
 Greengrass Software Catalog.
[2022-02-22 17:27:31] INFO - Found '6' component repositories to display.
1. aws-greengrass-labs-database-influxdb
2. aws-greengrass-labs-telemetry-influxdbpublisher
3. aws-greengrass-labs-dashboard-grafana
4. aws-greengrass-labs-dashboard-influxdb-grafana
5. aws-greengrass-labs-local-web-server
6. aws-greengrass-labs-lookoutvision-gstreamer

2. Open a community component's GitHub repository at the following URL. Replace community-
component-name with the name of a community component from the previous step.

https://github.com/awslabs/community-component-name

Greengrass Development Kit CLI 1177

AWS IoT Greengrass Developer Guide, Version 2

Greengrass Command Line Interface

The Greengrass Command Line Interface (CLI) lets you interact with AWS IoT Greengrass Core
on your device to locally develop components and debug issues. For example, you can use the
Greengrass CLI to create a local deployment and restart a component on the core device.

Deploy the Greengrass CLI component (aws.greengrass.Cli) to install the Greengrass CLI on
your core device.

Important

We recommend that you use this component in only development environments, not
production environments. This component provides access to information and operations
that you typically won't need in a production environment. Follow the principle of least
privilege by deploying this component to only core devices where you need it.

Topics

• Install the Greengrass CLI

• Greengrass CLI commands

Install the Greengrass CLI

You can install the Greengrass CLI in one of the following ways:

• Use the --deploy-dev-tools argument when you first set up AWS IoT Greengrass Core
software on your device. You must also specify --provision true to apply this argument.

• Deploy the Greengrass CLI component (aws.greengrass.Cli) on your device.

This section describes the steps to deploy the Greengrass CLI component. For information about
installing the Greengrass CLI during initial setup, see Tutorial: Getting started with AWS IoT
Greengrass V2.

Prerequisites

To deploy the Greengrass CLI component, you must meet the following requirements:

Greengrass Command Line Interface 1178

AWS IoT Greengrass Developer Guide, Version 2

• AWS IoT Greengrass Core software installed and configured on your core device. For more
information, see Tutorial: Getting started with AWS IoT Greengrass V2.

• To use the AWS CLI to deploy the Greengrass CLI, you must have installed and configured the
AWS CLI. For more information, see Configuring the AWS CLI in the AWS Command Line Interface
User Guide.

• You must be authorized to use the Greengrass CLI to interact with the AWS IoT Greengrass Core
software. Do one of the following to use the Greengrass CLI:

• Use the system user that runs the AWS IoT Greengrass Core software.

• Use a user with root or adminstrative permissions. On Linux core devices, you can use sudo to
gain root permissions.

• Use a system user that's in a group that you specify in the AuthorizedPosixGroups or
AuthorizedWindowsGroups configuration parameters when you deploy the component. For
more information, see Greengrass CLI component configuration.

Deploy the Greengrass CLI component

Complete the following steps to deploy the Greengrass CLI component to your core device:

To deploy the Greengrass CLI component (console)

1. Sign in to the AWS IoT Greengrass console.

2. In the navigation menu, choose Components.

3. On the Components page, on the Public components tab, choose aws.greengrass.Cli.

4. On the aws.greengrass.Cli page, choose Deploy.

5. From Add to deployment, choose Create new deployment.

6. On the Specify target page, under Deployment targets, in the Target name list, choose the
Greengrass group that you want to deploy to, and choose Next.

7. On the Select components page, verify that the aws.greengrass.Cli component is selected,
and choose Next.

8. On the Configure components page, keep the default configuration settings, and choose
Next.

9. On the Configure advanced setting page, keep the default configuration settings, and choose
Next.

10. On the Review page, click Deploy

Greengrass Command Line Interface 1179

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

To deploy the Greengrass CLI component (AWS CLI)

1. On your device, create a deployment.json file to define the deployment configuration for
the Greengrass CLI component. This file should look like the following:

{
 "targetArn":"targetArn",
 "components": {
 "aws.greengrass.Cli": {
 "componentVersion": "2.14.0",
 "configurationUpdate": {
 "merge": "{\"AuthorizedPosixGroups\":\"<group1>,<group2>,...,<groupN>\",
\"AuthorizedWindowsGroups\":\"<group1>,<group2>,...,<groupN>\"}"
 }
 }
 }
}

• In the target field, replace targetArn with the Amazon Resource Name (ARN) of the thing
or thing group to target for the deployment, in the following format:

• Thing: arn:aws:iot:region:account-id:thing/thingName

• Thing group: arn:aws:iot:region:account-id:thinggroup/thingGroupName

• In the aws.greengrass.Cli component object, specify values as follows:

version

The version of the Greengrass CLI component.

configurationUpdate.AuthorizedPosixGroups

(Optional) A string that contains a comma-separated list of system groups. You
authorize these system groups to use the Greengrass CLI to interact with the AWS IoT
Greengrass Core software. You can specify group names or group IDs. For example,
group1,1002,group3 authorizes three system groups (group1, 1002, and group3) to
use the Greengrass CLI.

If you don't specify any groups to authorize, you can use the Greengrass CLI as the root
user (sudo) or as the system user that runs the AWS IoT Greengrass Core software.

Greengrass Command Line Interface 1180

AWS IoT Greengrass Developer Guide, Version 2

configurationUpdate.AuthorizedWindowsGroups

(Optional) A string that contains a comma-separated list of system groups. You
authorize these system groups to use the Greengrass CLI to interact with the AWS IoT
Greengrass Core software. You can specify group names or group IDs. For example,
group1,1002,group3 authorizes three system groups (group1, 1002, and group3) to
use the Greengrass CLI.

If you don't specify any groups to authorize, you can use the Greengrass CLI as an
administrator or as the system user that runs the AWS IoT Greengrass Core software.

2. Run the following command to deploy the Greengrass CLI component on the device:

$ aws greengrassv2 create-deployment --cli-input-json file://path/
to/deployment.json

During installation, the component adds a symbolic link to greengrass-cli in the /
greengrass/v2/bin folder on your device, and you run the Greengrass CLI from this path. To run
the Greengrass CLI without its absolute path, add your /greengrass/v2/bin folder to your PATH
variable. To verify the Greengrass CLI installation, run the following command:

Linux or Unix

/greengrass/v2/bin/greengrass-cli help

Windows

C:\greengrass\v2\bin\greengrass-cli help

You should see the following output:

Usage: greengrass-cli [-hV] [--ggcRootPath=<ggcRootPath>] [COMMAND]
Greengrass command line interface

 --ggcRootPath=<ggcRootPath>
 The AWS IoT Greengrass V2 root directory.
 -h, --help Show this help message and exit.
 -V, --version Print version information and exit.
Commands:

Greengrass Command Line Interface 1181

AWS IoT Greengrass Developer Guide, Version 2

 help Show help information for a command.
 component Retrieve component information and stop or restart
 components.
 deployment Create local deployments and retrieve deployment status.
 logs Analyze Greengrass logs.
 get-debug-password Generate a password for use with the HTTP debug view
 component.

If the greengrass-cli isn't found, the deployment might have failed to install the Greengrass
CLI. For more information, see Troubleshooting AWS IoT Greengrass V2.

Greengrass CLI commands

The Greengrass CLI provides a command line interface to interact locally with your AWS IoT
Greengrass core device. Greengrass CLI commands use the following format.

$ greengrass-cli <command> <subcommand> [arguments]

By default, the greengrass-cli executable file in the /greengrass/v2/bin/ folder interacts
with the version of the AWS IoT Greengrass Core software running in the /greengrass/v2 folder.
If you call an executable that is not placed in this location, or if you want to interact with AWS IoT
Greengrass Core software in a different location, then you must use one of the following methods
to explicitly specify the root path of the AWS IoT Greengrass Core software that you want to
interact with:

• Set the GGC_ROOT_PATH environment variable to /greengrass/v2.

• Add the --ggcRootPath /greengrass/v2 argument to your command as shown in the
following example.

greengrass-cli --ggcRootPath /greengrass/v2 <command> <subcommand> [arguments]

You can use the following arguments with any command:

• Use --help for information about a specific Greengrass CLI command.

• Use --version for information about the Greengrass CLI version.

Greengrass Command Line Interface 1182

AWS IoT Greengrass Developer Guide, Version 2

This section describes the Greengrass CLI commands and provides examples for these commands.
The synopsis for each command shows its arguments and their usage. Optional arguments are
shown in square brackets.

Available commands

• component

• deployment

• logs

• get-debug-password

component

Use the component command to interact with local components on your core device.

Subcommands

• details

• list

• restart

• stop

details

Retrieve the version, status, and configuration of one component.

Synopsis

greengrass-cli component details --name <component-name>

Arguments

--name, -n. The component name.

Output

The following example shows the output produced when you run this command.

$ sudo greengrass-cli component details --name MyComponent

Greengrass Command Line Interface 1183

AWS IoT Greengrass Developer Guide, Version 2

Component Name: MyComponent
Version: 1.0.0
State: RUNNING
Configuration: null

list

Retrieve the name, version, status, and configuration of each component installed on the device.

Synopsis

greengrass-cli component list

Arguments

None

Output

The following example shows the output produced when you run this command.

$ sudo greengrass-cli component list

Components currently running in Greengrass:
Component Name: FleetStatusService
Version: 0.0.0
State: RUNNING
Configuration: {"periodicUpdateIntervalSec":86400.0}
Component Name: UpdateSystemPolicyService
Version: 0.0.0
State: RUNNING
Configuration: null
Component Name: aws.greengrass.Nucleus
Version: 2.0.0
State: FINISHED
Configuration: {"awsRegion":"region","runWithDefault":
{"posixUser":"ggc_user:ggc_group"},"telemetry":{}}
Component Name: DeploymentService
Version: 0.0.0
State: RUNNING
Configuration: null
Component Name: TelemetryAgent

Greengrass Command Line Interface 1184

AWS IoT Greengrass Developer Guide, Version 2

Version: 0.0.0
State: RUNNING
Configuration: null
Component Name: aws.greengrass.Cli
Version: 2.0.0
State: RUNNING
Configuration: {"AuthorizedPosixGroups":"ggc_user"}

restart

Restart components.

Synopsis

greengrass-cli component restart --names <component-name>,...

Arguments

--names, -n. The component name. At least one component name is required. You can specify
additional component names, separating each name with a comma.

Output

None

stop

Stop running components.

Synopsis

greengrass-cli component stop --names <component-name>,...

Arguments

--names, -n. The component name. At least one component name is required. You can specify
additional component names if needed, separating each name with a comma.

Output

None

Greengrass Command Line Interface 1185

AWS IoT Greengrass Developer Guide, Version 2

deployment

Use the deployment command to interact with local components on your core device.

To monitor the progress of a local deployment, use the status subcommand. You can't monitor
the progress of a local deployment using the console.

Subcommands

• create

• cancel

• list

• status

create

Create or update a local deployment using specified component recipes, artifacts, and runtime
arguments.

Synopsis

greengrass-cli deployment create
 --recipeDir path/to/component/recipe
 [--artifactDir path/to/artifact/folder]
 [--update-config {component-configuration}]
 [--groupId <thing-group>]
 [--merge "<component-name>=<component-version>"]...
 [--runWith "<component-name>:posixUser=<user-name>[:<group-name>]"]...
 [--systemLimits "{component-system-resource-limits}]"]...
 [--remove <component-name>,...]
 [--failure-handling-policy <policy name[ROLLBACK, DO_NOTHING]>]

Arguments

• --recipeDir, -r. The full path to the folder that contains the component recipe files.

• --artifactDir, -a. The full path to the folder that contains the artifact files you want
to include in your deployment. The artifacts folder must contain the following directory
structure:

/path/to/artifact/folder/<component-name>/<component-version>/<artifacts>

Greengrass Command Line Interface 1186

AWS IoT Greengrass Developer Guide, Version 2

• --update-config, -c. The configuration arguments for the deployment, provided as a
JSON string or a JSON file. The JSON string should be in the following format:

{ \
 "componentName": { \
 "MERGE": {"config-key": "config-value"}, \
 "RESET": ["path/to/reset/"] \
 } \
}

MERGE and RESET are case-sensitive and must be in upper case.

• --groupId, -g. The target thing group for the deployment.

• --merge, -m. The name and version of the target component that you want
to add or update. You must provide the component information in the format
<component>=<version>. Use a separate argument for each additional component to
specify. If needed, use the --runWith argument to provide the posixUser, posixGroup,
and windowsUser information for running the component.

• --runWith. The posixUser, posixGroup, and windowsUser information for running
a generic or Lambda component. You must provide this information in the format
<component>:{posixUser|windowsUser}=<user>[:<=posixGroup>]. For
example, you might specify HelloWorld:posixUser=ggc_user:ggc_group or
HelloWorld:windowsUser=ggc_user. Use a separate argument for each additional option
to specify.

For more information, see Configure the user that runs components.

• --systemLimits. The system resource limits to apply to generic and non-containerized
Lambda components' processes on the core device. You can configure the maximum amount
of CPU and RAM usage that each component's processes can use. Specify a serialized JSON
object or a file path to a JSON file. The JSON object must have the following format.

{ \
 "componentName": { \
 "cpus": cpuTimeLimit, \
 "memory": memoryLimitInKb \
 } \
}

You can configure the following system resource limits for each component:

Greengrass Command Line Interface 1187

AWS IoT Greengrass Developer Guide, Version 2

• cpus – The maximum amount of CPU time that this component's processes can use on
the core device. A core device's total CPU time is equivalent to the device's number of CPU
cores. For example, on a core device with 4 CPU cores, you can set this value to 2 to limit
this component's processes to 50 percent usage of each CPU core. On a device with 1 CPU
core, you can set this value to 0.25 to limit this component's processes to 25 percent usage
of the CPU. If you set this value to a number greater than the number of CPU cores, the
AWS IoT Greengrass Core software doesn't limit the component's CPU usage.

• memory – The maximum amount of RAM (in kilobytes) that this component's processes can
use on the core device.

For more information, see Configure system resource limits for components.

This feature is available for v2.4.0 and later of the Greengrass nucleus component and
Greengrass CLI on Linux core devices. AWS IoT Greengrass doesn't currently support this
feature on Windows core devices.

• --remove. The name of the target component that you want to remove from a local
deployment. To remove a component that was merged from a cloud deployment, you must
provide the group ID of the target thing group in the following format:

Greengrass nucleus v2.4.0 and later

--remove <component-name> --groupId <group-name>

Earlier than v2.4.0

--remove <component-name> --groupId thinggroup/<group-name>

• --failure-handling-policy. Defines the action taken when a deployment fails. There
are two actions that you can specify:

• ROLLBACK –

• DO_NOTHING –

This feature is available for v2.11.0 and later of the Greengrass nucleus.

Output

The following example shows the output produced when you run this command.

$ sudo greengrass-cli deployment create \
 --merge MyApp1=1.0.0 \

Greengrass Command Line Interface 1188

AWS IoT Greengrass Developer Guide, Version 2

 --merge MyApp2=1.0.0 --runWith MyApp2:posixUser=ggc_user \
 --remove MyApp3 \
 --recipeDir recipes/ \
 --artifactDir artifacts/

Local deployment has been submitted! Deployment Id: 44d89f46-1a29-4044-
ad89-5151213dfcbc

cancel

Cancels the specified deployment.

Synopsis

greengrass-cli deployment cancel
 -i <deployment-id>

Arguments

-i. The unique identifier of the deployment to cancel. The deployment ID is returned in the
output of the create command.

Output

• None

list

Retrieve the status of the last 10 local deployments.

Synopsis

greengrass-cli deployment list

Arguments

None

Output

The following example shows the output produced when you run this command. Depending
on the status of your deployment, the output shows one of the following status values:
IN_PROGRESS, SUCCEEDED, or FAILED.

Greengrass Command Line Interface 1189

AWS IoT Greengrass Developer Guide, Version 2

$ sudo greengrass-cli deployment list

44d89f46-1a29-4044-ad89-5151213dfcbc: SUCCEEDED
Created on: 6/27/23 11:05 AM

status

Retrieve the status of a specific deployment.

Synopsis

greengrass-cli deployment status -i <deployment-id>

Arguments

-i. The ID of the deployment.

Output

The following example shows the output produced when you run this command. Depending
on the status of your deployment, the output shows one of the following status values:
IN_PROGRESS, SUCCEEDED, or FAILED.

$ sudo greengrass-cli deployment status -i 44d89f46-1a29-4044-ad89-5151213dfcbc

44d89f46-1a29-4044-ad89-5151213dfcbc: FAILED
Created on: 6/27/23 11:05 AM
Detailed Status: <Detailed deployment status>
Deployment Error Stack: List of error codes
Deployment Error Types: List of error types
Failure Cause: Cause

logs

Use the logs command to analyze Greengrass logs on your core device.

Subcommands

• get

• list-keywords

Greengrass Command Line Interface 1190

AWS IoT Greengrass Developer Guide, Version 2

• list-log-files

get

Collect, filter, and visualize Greengrass log files. This command supports only JSON-formatted log
files. You can specify the logging format in the nucleus configuration.

Synopsis

greengrass-cli logs get
 [--log-dir path/to/a/log/folder]
 [--log-file path/to/a/log/file]
 [--follow true | false]
 [--filter <filter>]
 [--time-window <start-time>,<end-time>]
 [--verbose]
 [--no-color]
 [--before <value>]
 [--after <value>]
 [--syslog]
 [--max-long-queue-size <value>]

Arguments

• --log-dir, -ld. The path to the directory to check for log files, such as /greengrass/
v2/logs. Do not use with --syslog. Use a separate argument for each additional directory
to specify. You must use at least one of --log-dir or --log-file. You can also use both
arguments in a single command.

• --log-file, -lf. The paths to the log directories you want to use. Use a separate argument
for each additional directory to specify. You must use at least one of --log-dir or --log-
file. You can also use both arguments in a single command.

• --follow, -fol. Show log updates as they occur. Greengrass CLI continues to run and reads
from the specified logs. If you specify a time window, then Greengrass CLI stops monitoring
logs after all of the time windows end.

• --filter, -f. The keyword, regular expressions, or key-value pair to use as a filter. Provide
this value as a string, a regular expression, or as a key-value pair. Use a separate argument for
each additional filter to specify.

When evaluated, multiple filters specified in a single argument are separated by
OR operators, and filters specified in additional arguments are combined with AND

Greengrass Command Line Interface 1191

AWS IoT Greengrass Developer Guide, Version 2

operators. For example, if your command includes --filter "installed" --filter
"name=alpha,name=beta", then Greengrass CLI will filter and display log messages that
contain both the keyword installed and a name key that has the values alpha or beta.

• --time-window, -t. The time window for which to show log information. You can use
both exact timestamps and relative offsets. You must provide this information in the format
<begin-time>,<end-time>. If you do not specify either the begin time or the end time,
then the value for that option defaults to the current system date and time. Use a separate
argument for each additional time window to specify.

Greengrass CLI supports the following formats for timestamps:

• yyyy-MM-DD, for example, 2020-06-30. The time defaults to 00:00:00 when you use this
format.

yyyyMMDD, for example, 20200630. The time defaults to 00:00:00 when you use this
format.

HH:mm:ss, for example, 15:30:45. The date defaults to the current system date when you
use this format.

HH:mm:ssSSS, for example, 15:30:45. The date defaults the current system date when
you use this format.

YYYY-MM-DD'T'HH:mm:ss'Z', for example, 2020-06-30T15:30:45Z.

YYYY-MM-DD'T'HH:mm:ss, for example, 2020-06-30T15:30:45.

yyyy-MM-dd'T'HH:mm:ss.SSS, for example, 2020-06-30T15:30:45.250.

Relative offsets specify a time period offset from the current system time. Greengrass CLI
supports the following format for relative offsets: +|-[<value>h|hr|hours][valuem|
min|minutes][value]s|sec|seconds.

For example, the following argument to specify a time window between 1 hour and 2 hours
15 minutes before the current time is --time-window -2h15min,-1hr.

• --verbose. Show all fields from the log messages. Do not use with --syslog.

• --no-color, -nc. Remove color coding. The default color coding for log messages uses bold
red text. Supports only UNIX-like terminals because it uses ANSI escape sequences.

• --before, -b. The number of lines to show preceding a matched log entry. Default is 0.
Greengrass Command Line Interface 1192

AWS IoT Greengrass Developer Guide, Version 2

• --after, -a. The number of lines to show following a matched log entry. Default is 0.

• --syslog. Process all log files using the syslog protocol defined by RFC3164. Do not
use with --log-dir and --verbose. The syslog protocol uses the following format: "<
$Priority>$Timestamp $Host $Logger ($Class): $Message". If you do not specify
a log file, then Greengrass CLI reads log messages from the following locations: /var/log/
messages, /var/log/syslog, or the /var/log/system.log.

AWS IoT Greengrass doesn't currently support this feature on Windows core devices.

• --max-log-queue-size, -m. The maximum number of log entries to allocate to memory.
Use this option to optimize memory usage. Default is 100.

Output

The following example shows the output produced when you run this command.

$ sudo greengrass-cli logs get --verbose \
 --log-file /greengrass/v2/logs/greengrass.log \
 --filter deployment,serviceName=DeploymentService \
 --filter level=INFO \
 --time-window 2020-12-08T01:11:17,2020-12-08T01:11:22

2020-12-08T01:11:17.615Z [INFO] (pool-2-thread-14)
 com.aws.greengrass.deployment.DeploymentService: Current deployment finished.
 {DeploymentId=44d89f46-1a29-4044-ad89-5151213dfcbc, serviceName=DeploymentService,
 currentState=RUNNING}
2020-12-08T01:11:17.675Z [INFO] (pool-2-thread-14)
 com.aws.greengrass.deployment.IotJobsHelper: Updating status of persisted
 deployment. {Status=SUCCEEDED, StatusDetails={detailed-deployment-
status=SUCCESSFUL}, ThingName=MyThing, JobId=22d89f46-1a29-4044-ad89-5151213dfcbc

list-keywords

Show suggested keywords that you can use to filter log files.

Synopsis

greengrass-cli logs list-keywords [arguments]

Arguments

None

Greengrass Command Line Interface 1193

AWS IoT Greengrass Developer Guide, Version 2

Output

The following examples show the output produced when you run this command.

$ sudo greengrass-cli logs list-keywords

Here is a list of suggested keywords for Greengrass log:
level=$str
thread=$str
loggerName=$str
eventType=$str
serviceName=$str
error=$str

$ sudo greengrass-cli logs list-keywords --syslog

Here is a list of suggested keywords for syslog:
priority=$int
host=$str
logger=$str
class=$str

list-log-files

Show log files located in a specified directory.

Synopsis

greengrass-cli logs list-log-files [arguments]

Arguments

--log-dir, -ld. The path to the directory to check for log files.

Output

The following example shows the output produced when you run this command.

$ sudo greengrass-cli logs list-log-files -ld /greengrass/v2/logs/

/greengrass/v2/logs/aws.greengrass.Nucleus.log

Greengrass Command Line Interface 1194

AWS IoT Greengrass Developer Guide, Version 2

/greengrass/v2/logs/main.log
/greengrass/v2/logs/greengrass.log
Total 3 files found.

get-debug-password

Use the get-debug-password command to print a randomly generated password for the local
debug console component (aws.greengrass.LocalDebugConsole). The password expires 8
hours after it is generated.

Synopsis

greengrass-cli get-debug-password

Arguments

None

Output

The following example shows the output produced when you run this command.

$ sudo greengrass-cli get-debug-password

Username: debug
Password: bEDp3MOHdj8ou2w5de_sCBI2XAaguy3a8XxREXAMPLE
Password expires at: 2021-04-01T17:01:43.921999931-07:00
The local debug console is configured to use TLS security. The certificate is self-
signed so you will need to bypass your web browser's security warnings to open the
 console.
Before you bypass the security warning, verify that the certificate fingerprint
 matches the following fingerprints.
SHA-256: 15 0B 2C E2 54 8B 22 DE 08 46 54 8A B1 2B 25 DE FB 02 7D 01 4E 4A 56 67 96
 DA A6 CC B1 D2 C4 1B
SHA-1: BC 3E 16 04 D3 80 70 DA E0 47 25 F9 90 FA D6 02 80 3E B5 C1

Use AWS IoT Greengrass Testing Framework

Greengrass Testing Framework (GTF) is a collection of building blocks that supports end-to-end
automation from the customer perspective. GTF uses Cucumber as the feature driver. AWS IoT

Use Greengrass Testing Framework 1195

https://cucumber.io

AWS IoT Greengrass Developer Guide, Version 2

Greengrass uses the same building blocks to qualify software changes on various devices. For more
information, see Greengrass Testing Framework on Github.

GTF is implemented using Cucumber, a tool used to run automated tests, to encourage a Behavior-
Driven Development (BDD) of the components. In Cucumber, the features of this system are
outlined in a special type of file called feature. Each feature is described in a human-readable
format called scenarios which are specifications that can be converted into automated tests.
Each scenario is outlined as a series of steps that define the interactions and outcomes of this
system under test using a domain-specific language called Gherkin. A Gherkin step is linked to the
programming code using a method called step definition which hard wires the specification to the
test flow. Step definitions in GTF are implemented with Java.

Topics

• How it works

• Changelog

• Greengrass Testing Framework configuration options

• Tutorial: Run end-to-end tests using Greengrass Testing Framework and Greengrass
Development Kit

• Tutorial: Use a confidence test from the confidence test suite

How it works

AWS IoT Greengrass distributes the GTF as a standalone JAR that consists of several Java modules.
To use GTF for end-to-end testing of components, you must implement the tests within a Java
project. Adding the testing standable JAR as a dependency in your Java project enables you to
use the existing functionality of the GTF and extend it by writing your own custom test cases.
To run the custom test cases, you can build your Java project and run the target JAR with the
configuration options described in Greengrass Testing Framework configuration options.

GTF standalone JAR

Greengrass uses Cloudfront as a Maven repository to host different versions of the GTF standalone
JAR. For a full list of GTF versions, see GTF releases.

GTF standalone JAR includes the following modules. It is not limited to only these modules. You
can pick and choose each of these dependencies separately in your project or include all of them at
once with the testing standalone JAR file.

Use Greengrass Testing Framework 1196

https://github.com/aws-greengrass/aws-greengrass-testing
https://cucumber.io/docs/gherkin/reference/#steps
https://maven.apache.org/
https://github.com/aws-greengrass/aws-greengrass-testing/releases
https://github.com/aws-greengrass/aws-greengrass-testing/tree/main/aws-greengrass-testing-standalone

AWS IoT Greengrass Developer Guide, Version 2

• aws-greengrass-testing-resources: This module provides abstraction for managing the
lifecycle of an AWS resource during the course of a test. You can use this to define your custom
AWS resources using ResourceSpec abstraction so GTF can take care of creation and removal of
those resources for you.

• aws-greengrass-testing-platform: This module provides platform-level abstraction
for the device under test during the test lifecycle. It contains APIs used to interact with the OS
independent of the platform and can be used to simulate the commands running in the device
shell.

• aws-greengrass-testing-components: This module consists of sample components that
are used for testing the Greengrass core features such as deployments, IPC, and other features.

• aws-greengrass-testing-features: This module consists of reusable common steps and
their definitions which are used for testing within in the Greengrass environment.

Topics

• Changelog

• Greengrass Testing Framework configuration options

• Tutorial: Run end-to-end tests using Greengrass Testing Framework and Greengrass
Development Kit

• Tutorial: Use a confidence test from the confidence test suite

Changelog

The following table describes the changes in each version of the GTF. For more information, see the
GTF Releases page on GitHub.

Version Changes

1.2.0 New features

• Adds network-related steps to configure MQTT and internet network
connectivity during tests.

• Adds system metric steps to monitor device RAM and CPU use.

Bug fixes and improvements

• Greengrass CLI local deployment step retries until it succeeds.

Use Greengrass Testing Framework 1197

https://github.com/aws-greengrass/aws-greengrass-testing/releases

AWS IoT Greengrass Developer Guide, Version 2

Version Changes

• Tests gracefully stop Greengrass nucleus instead of killing it.

• Adds improvement where GTF polls the AWS IoT Credentials endpoint
until credentials are retrievable for the thing and role alias.

• Fixes missing artifacts and recipe directories. This version also fixes
missing component versions.

• Fixes an issue where GTF fails during docker image cleanup if the
docker image does not exist.

• Adds CURRENT keyword as version of component.

1.1.0 New features

• Adds the ability to install a custom component with configuration. This
requires a recipe for the custom component.

• Adds the ability to update a local deployment with a custom configura
tion.

Bug fixes and improvements

• Fixes log context GTF version inconsistency issue.

1.0.0 Initial version.

Greengrass Testing Framework configuration options

GTF configuration options

Greengrass Testing Framework (GTF) enables you to configure certain parameters during the
launch of the end-to-end testing process to orchestrate the test flow. You can specify these
configuration options as CLI arguments for the GTF standalone JAR.

GTF version 1.1.0 and later provides the following configuration options.

• additional-plugins – (Optional) Additional Cucumber plugins

• aws-region – Targets specific regional endpoints for AWS services. Defaults to what the AWS
SDK discovers.

• credentials-path – Optional AWS profile credentials path. Defaults to credentials discovered
on host environment.

Use Greengrass Testing Framework 1198

AWS IoT Greengrass Developer Guide, Version 2

• credentials-path-rotation – Optional rotation duration for AWS credentials. Defaults to
15 minutes or PT15M.

• csr-path – The path for the CSR using which the device certificate will be generated.

• device-mode – The target device under test. Defaults to local device.

• env-stage – Targets the deployment environment of Greengrass. Defaults to production.

• existing-device-cert-arn – The arn of an existing certificate that you want to use as a
device certificate for Greengrass.

• feature-path – File or directory containing additional feature files. Default is no additional
feature files are used.

• gg-cli-version – Overrides the version of the Greengrass CLI. Defaults to the value found in
ggc.version.

• gg-component-bucket – The name of an existing Amazon S3 bucket that houses Greengrass
components.

• gg-component-overrides – A list of Greengrass component overrides.

• gg-persist – A list of test elements to persist after a test run. Default behavior is to
persist nothing. Accepted values are: aws.resources, installed.software, and
generated.files.

• gg-runtime – A list of values to influence how the test interacts with testing resources. These
values supersede the gg.persist parameter. If the default is empty, it assumes all testing
resources are manged by test case, including the installed Greengrass runtime. Accepted values
are: aws.resources, installed.software, and generated.files.

• ggc-archive – The path to the archived Greengrass nucleus component.

• ggc-install-root – Directory to install the Greengrass nucleus component. Defaults to
test.temp.path and test run folder.

• ggc-log-level – Set the Greengrass nucleus log level for the test run. Default is "INFO".

• ggc-tes-rolename – The IAM role that AWS IoT Greengrass Core will assume to access AWS
services. If a role with given name does not exist then one will be created and default access
policy.

• ggc-trusted-plugins – The comma separate list of the paths (on host) of the trusted plugins
that need to added to Greengrass. To provide the path on the DUT itself, prefix the path with
'dut:'

• ggc-user-name – The user:group posixUser value for the Greengrass nucleus. Defaults to the
current username that is logged in.

Use Greengrass Testing Framework 1199

AWS IoT Greengrass Developer Guide, Version 2

• ggc-version – Overrides the version of the running Greengrass nucleus component. Defaults
to the value found in ggc.archive.

• log-level – Log level of the test run. Defaults to "INFO".

• parallel-config – Set of batch index and number of batches as a JSON String. Default value
of batch index is 0 and number of batches is 1.

• proxy-url – Configure all tests to route traffic through this URL.

• tags – Only run feature tags. Can be intersected with '&'

• test-id-prefix – A common prefix applied to all test specific resources including AWS
resource names and tags. Default is a "gg" prefix.

• test-log-path – Directory that will contain the results of the entire test run. Defaults to
"testResults".

• test-results-json – Flag to determine if a resulting Cucumber JSON report is generated
written to disk. Defaults to true.

• test-results-log – Flag to determine if the console output is generated written to disk.
Defaults to false.

• test-results-xml – Flag to determine if a resulting JUnit XML report is generated written to
disk. Defaults to true.

• test-temp-path – Directory to generate local test artifacts. Defaults to a random temp
directory prefixed with gg-testing.

• timeout-multiplier – Multiplier provided to all test timeouts. Default is 1.0.

Tutorial: Run end-to-end tests using Greengrass Testing Framework and
Greengrass Development Kit

AWS IoT Greengrass Testing Framework (GTF) and Greengrass Development Kit (GDK) offer
developers ways to run end-to-end tests. You can complete this tutorial to initialize a GDK project
with a component, initialize a GDK project with an end-to-end test module, and build a custom test
case. After you build your custom test case, you can then run the test.

In this tutorial, you do the following:

1. Initialize a GDK project with a component.

2. Initialize a GDK project with an end-to-end test module.

3. Build a custom test case.

Use Greengrass Testing Framework 1200

AWS IoT Greengrass Developer Guide, Version 2

4. Add a tag to the new test case.

5. Build the test JAR.

6. Run the test.

Topics

• Prerequisites

• Step 1: Initialize a GDK project with a component

• Step 2: Initialize a GDK project with an end-to-end test module

• Step 3: Build a custom test case

• Step 4: Add a tag to the new test case

• Step 5: Build the test JAR

• Step 6: Run the test

• Example: Build a custom test case

Prerequisites

To complete this tutorial, you need the following:

• GDK version 1.3.0 or later

• Java

• Maven

• Git

Step 1: Initialize a GDK project with a component

• Initialize an empty folder with a GDK project. Download the HelloWorld component
implemented in Python by running the following command.

gdk component init -t HelloWorld -l python -n HelloWorld

This command creates a new directory named HelloWorld in the current directory.

Use Greengrass Testing Framework 1201

AWS IoT Greengrass Developer Guide, Version 2

Step 2: Initialize a GDK project with an end-to-end test module

• GDK enables you to download the testing module template consisting of a feature and step
implementation. Run the following command to open the HelloWorld directory and initialize
the existing GDK project using a testing module.

cd HelloWorld
gdk test-e2e init

This command creates a new directory named gg-e2e-tests within the HelloWorld
directory. This test directory is a Maven project which has a dependency on the Greengrass
testing standalone JAR.

Step 3: Build a custom test case

Writing a custom test case broadly consists of two steps: create a feature file with a test scenario
and implement step definitions. For an example of building a custom test case, see Example: Build
a custom test case. Use the following steps to build your custom test case:

1. Create a feature file with a test scenario

A feature typically describes a specific functionality of the software that is being tested.
In Cucumber, each feature is specified as an individual feature file with a title, a detailed
description, and one or more examples of specific cases called scenarios. Each scenario consists
of a title, a detailed description, and a series of steps that define the interactions and expected
outcomes. Scenarios are written in a structured format using "given," "when," and "then"
keywords.

2. Implement step definitions

A step definition links the Gherkin step in plain language to the programmatic code. When
Cucumber identifies a Gherkin step in a scenario, it will look for a matching step definition to
run.

Step 4: Add a tag to the new test case

• You can assign tags to the features and scenarios to organize the test process. You can use tags
to categorize the subsets of scenarios and also select hooks conditionally to run. Features and
scenarios can have multiple tags separated by a space.

Use Greengrass Testing Framework 1202

https://maven.apache.org/
https://cucumber.io/docs/gherkin/reference/#steps

AWS IoT Greengrass Developer Guide, Version 2

In this example, we are using the HelloWorld component.

In the feature file, add a new tag named @HelloWorld beside the @Sample tag.

@Sample @HelloWorld
Scenario: As a developer, I can create a component and deploy it on my device
....

Step 5: Build the test JAR

1. Build the component. You must build the component before building the test module.

gdk component build

2. Build the test module using the following command. This command will build the testing JAR
in the greengrass-build folder.

gdk test-e2e build

Step 6: Run the test

When you run a custom test case, the GTF automates the lifecycle of the test along with managing
resources that were created during the test. It first provisions a device under test (DUT) as an AWS
IoT thing and installs the Greengrass core software on it. It will then create a new component
named HelloWorld using the recipe specified in that path. The HelloWorld component is then
deployed onto the core device through a Greengrass thing deployment. It will then be verified if
the deployment is successful. The deployment status will changed to COMPLETED within 3 minutes
if the deployment is successful.

1. Go to the gdk-config.json file in the project directory to target the tests with the
HelloWorld tag. Update the the test-e2e key using the following command.

 "test-e2e":{
 "gtf_options" : {
 "tags":"HelloWorld"
 }
 }

Use Greengrass Testing Framework 1203

AWS IoT Greengrass Developer Guide, Version 2

2. Before running the tests, you must provide AWS credentials to the host device. GTF uses these
credentials to manage the AWS resources during the testing process. Make sure the role you
provide has permissions to automate the necessary operations that are included in the test.

Run the following commands to provide the AWS credentials.

• Linux or Unix

export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Windows Command Prompt (CMD)

set AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
set AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

PowerShell

$env:AWS_ACCESS_KEY_ID="AKIAIOSFODNN7EXAMPLE"
$env:AWS_SECRET_ACCESS_KEY="wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"

3. Run the test using the following command.

gdk test-e2e run

This command downloads the latest version of the Greengrass nucleus in the greengrass-
build folder and runs tests using it. This command also targets only the scenarios with the
HelloWorld tag and generates a report for those scenarios. You will see the AWS resources
that were created during this test are discarded at the end of the test.

Example: Build a custom test case

Example

The downloaded testing module in the GDK project consists of a sample feature and a step
implementation file.

In the following example, we create a feature file for testing the thing deployment feature of
the Greengrass software. We partially test the functionality of this feature with a scenario that
Use Greengrass Testing Framework 1204

AWS IoT Greengrass Developer Guide, Version 2

performs deployment of a component through the Greengrass AWS Cloud. This is a series of steps
that help us to understand the interactions and expected outcomes of this use case.

1. Create a feature file

Navigate to the gg-e2e-tests/src/main/resources/greengrass/features folder
in the current directory. You can find the sample component.feature that looks like the
following example.

In this feature file, you can test the thing deployment feature of the Greengrass software. You
can partially test the functionality of this feature with a scenario that performs a deployment
of a component through the Greengrass cloud. The scenario is a series of steps that help with
understanding the interactions and expected outcomes of this use case.

Feature: Testing features of Greengrassv2 component

Background:
 Given my device is registered as a Thing
 And my device is running Greengrass

@Sample
Scenario: As a developer, I can create a component and deploy it on my device
 When I create a Greengrass deployment with components
 HelloWorld | /path/to/recipe/file
 And I deploy the Greengrass deployment configuration
 Then the Greengrass deployment is COMPLETED on the device after 180 seconds
 And I call my custom step

GTF contains the step definitions of all of the following steps, except for the step named: And
I call my custom step.

2. Implement step definitions

GTF standalone JAR contains the step definitions of all of the steps except for one step: And I
call my custom step. You can implement this step in the testing module.

Navigate to the source code of the testing file. You can link your custom step using a step
definition by using the following command.

@And("I call my custom step")

Use Greengrass Testing Framework 1205

AWS IoT Greengrass Developer Guide, Version 2

public void customStep() {
 System.out.println("My custom step was called ");
}

Tutorial: Use a confidence test from the confidence test suite

AWS IoT Greengrass Testing Framework (GTF) and Greengrass Development Kit (GDK) offer
developers ways to run end-to-end tests. You can complete this tutorial to initialize a GDK project
with a component, initialize a GDK project with an end-to-end test module, and use a confidence
test from the confidence test suite. After you build your custom test case, you can then run the
test.

A confidence test is a generic test provided by Greengrass that validates fundamental component
behaviors. These tests can be modified or extended to fit more specific component needs.

For this tutorial we will be using a HelloWorld component. If you are using another component,
replace the HelloWorld component with your component.

In this tutorial, you do the following:

1. Initialize a GDK project with a component.

2. Initialize a GDK project with an end-to-end test module.

3. Use a test from the confidence test suite.

4. Add a tag to the new test case.

5. Build the test JAR.

6. Run the test.

Topics

• Prerequisites

• Step 1: Initialize a GDK project with a component

• Step 2: Initialize a GDK project with an end-to-end test module

• Step 3: Use a test from the confidence test suite

• Step 4: Add a tag to the new test case

• Step 5: Build the test JAR

• Step 6: Run the test

Use Greengrass Testing Framework 1206

AWS IoT Greengrass Developer Guide, Version 2

• Example: Use a confidence test

Prerequisites

To complete this tutorial, you need the following:

• GDK version 1.6.0 or later

• Java

• Maven

• Git

Step 1: Initialize a GDK project with a component

• Initialize an empty folder with a GDK project. Download the HelloWorld component
implemented in Python by running the following command.

gdk component init -t HelloWorld -l python -n HelloWorld

This command creates a new directory named HelloWorld in the current directory.

Step 2: Initialize a GDK project with an end-to-end test module

• GDK enables you to download the testing module template consisting of a feature and step
implementation. Run the following command to open the HelloWorld directory and initialize
the existing GDK project using a testing module.

cd HelloWorld
gdk test-e2e init

This command creates a new directory named gg-e2e-tests within the HelloWorld
directory. This test directory is a Maven project which has a dependency on the Greengrass
testing standalone JAR.

Use Greengrass Testing Framework 1207

https://maven.apache.org/

AWS IoT Greengrass Developer Guide, Version 2

Step 3: Use a test from the confidence test suite

Writing a confidence test case consists of using the provided feature file and, if needed, modifying
the scenarios. For an example of using a confidence test, see Example: Build a custom test case. Use
the following steps to use a confidence test:

• Use the provided feature file.

Navigate to gg-e2e-tests/src/main/resources/greengrass/features folder in the
current directory. Open the sample confidenceTest.feature file to use the confidence
test.

Step 4: Add a tag to the new test case

• You can assign tags to the features and scenarios to organize the test process. You can use tags
to categorize the subsets of scenarios and also select hooks conditionally to run. Features and
scenarios can have multiple tags separated by a space.

In this example, we are using the HelloWorld component.

Each scenario is tagged with @ConfidenceTest. Change or add tags if you want to run only
a subset of the test suite. Each test scenario is described at the top of each confidence test.
The scenario is a series of steps that help with understanding the interactions and expected
outcomes of each test case. You can extend these tests by adding your own steps or by
modifying the existing ones.

@ConfidenceTest
Scenario: As a Developer, I can deploy GDK_COMPONENT_NAME to my device and see it
 is working as expected
....

Step 5: Build the test JAR

1. Build the component. You must build the component before building the test module.

gdk component build

2. Build the test module using the following command. This command will build the testing JAR
in the greengrass-build folder.

Use Greengrass Testing Framework 1208

AWS IoT Greengrass Developer Guide, Version 2

gdk test-e2e build

Step 6: Run the test

When you run a confidence test, the GTF automates the lifecycle of the test along with managing
resources that were created during the test. It first provisions a device under test (DUT) as an AWS
IoT thing and installs the Greengrass core software on it. It will then create a new component
named HelloWorld using the recipe specified in that path. The HelloWorld component is then
deployed onto the core device through a Greengrass thing deployment. It will then be verified if
the deployment is successful. The deployment status will changed to COMPLETED within 3 minutes
if the deployment is successful.

1. Go to the gdk-config.json file in the project directory to target the tests with the
ConfidenceTest tag or whichever tag yo8u specified in Step 4. Update the the test-e2e
key using the following command.

 "test-e2e":{
 "gtf_options" : {
 "tags":"ConfidenceTest"
 }
 }

2. Before running the tests, you must provide AWS credentials to the host device. GTF uses these
credentials to manage the AWS resources during the testing process. Make sure the role you
provide has permissions to automate the necessary operations that are included in the test.

Run the following commands to provide the AWS credentials.

• Linux or Unix

export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Windows Command Prompt (CMD)

set AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
set AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Use Greengrass Testing Framework 1209

AWS IoT Greengrass Developer Guide, Version 2

PowerShell

$env:AWS_ACCESS_KEY_ID="AKIAIOSFODNN7EXAMPLE"
$env:AWS_SECRET_ACCESS_KEY="wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"

3. Run the test using the following command.

gdk test-e2e run

This command downloads the latest version of the Greengrass nucleus in the greengrass-
build folder and runs tests using it. This command also targets only the scenarios with
the ConfidenceTest tag and generates a report for those scenarios. You will see the AWS
resources that were created during this test are discarded at the end of the test.

Example: Use a confidence test

Example

The downloaded testing module in the GDK project consists of a provided feature file.

In the following example, we use a feature file for testing the thing deployment feature of the
Greengrass software. We partially test the functionality of this feature with a scenario that
performs deployment of a component through the Greengrass AWS Cloud. This is a series of steps
that help us to understand the interactions and expected outcomes of this use case.

• Use the provided feature file.

Navigate to the gg-e2e-tests/src/main/resources/greengrass/features folder in
the current directory. You can find the sample confidenceTest.feature that looks like the
following example.

Feature: Confidence Test Suite

Background:
 Given my device is registered as a Thing
 And my device is running Greengrass

@ConfidenceTest
Scenario: As a Developer, I can deploy GDK_COMPONENT_NAME to my device and see it
 is working as expected

Use Greengrass Testing Framework 1210

AWS IoT Greengrass Developer Guide, Version 2

 When I create a Greengrass deployment with components
 | GDK_COMPONENT_NAME | GDK_COMPONENT_RECIPE_FILE |
 | aws.greengrass.Cli | LATEST |
 And I deploy the Greengrass deployment configuration
 Then the Greengrass deployment is COMPLETED on the device after 180 seconds
 # Update component state accordingly. Possible states: {RUNNING, FINISHED,
 BROKEN, STOPPING}
 And I verify the GDK_COMPONENT_NAME component is RUNNING using the greengrass-
cli

Each test scenario is described at the top of each confidence test. The scenario is a series of
steps that help with understanding the interactions and expected outcomes of each test case.
You can extend these tests by adding your own steps or by modifying the existing ones. Each
of the scenarios include comments that help you to make these adjustments.

Develop AWS IoT Greengrass components

You can develop and test components on your Greengrass core device. As a result, you can create
and iterate your AWS IoT Greengrass software without interacting with the AWS Cloud. When you
finish a version of your component, you can upload it to AWS IoT Greengrass in the cloud, so you
and your team can deploy the component to other devices in your fleet. For more information
about how to deploy components, see Deploy AWS IoT Greengrass components to devices.

Every component is composed of a recipe and artifacts.

• Recipes

Every component contains a recipe file, which defines its metadata. The recipe also specifies
the component's configuration parameters, component dependencies, lifecycle, and platform
compatibility. The component lifecycle defines the commands that install, run, and shut down
the component. For more information, see AWS IoT Greengrass component recipe reference.

You can define recipes in JSON or YAML format.

• Artifacts

Components can have any number of artifacts, which are component binaries. Artifacts can
include scripts, compiled code, static resources, and any other files that a component consumes.
Components can also consume artifacts from component dependencies.

Develop components 1211

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/YAML

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass provides pre-built components that you can use in your applications and
deploy to your devices. For example, you can use the stream manager component to upload data
to various AWS services, or you can use the CloudWatch metrics component to publish custom
metrics to Amazon CloudWatch. For more information, see AWS-provided components.

AWS IoT Greengrass curates an index of Greengrass components, called the Greengrass Software
Catalog. This catalog tracks Greengrass components that are developed by the Greengrass
community. From this catalog, you can download, modify, and deploy components to create your
Greengrass applications. For more information, see Community components.

The AWS IoT Greengrass Core software runs components as the system user and group, such as
ggc_user and ggc_group, that you configure on the core device. This means that components
have the permissions of that system user. If you use a system user without a home directory, then
components can't use run commands or code that use a home directory. This means that you
can't use the pip install some-library --user command to install Python packages for
example. If you followed the getting started tutorial to set up your core device, then your system
user doesn't have a home directory. For more information about how to configure the user and
group that run components, see Configure the user that runs components.

Note

AWS IoT Greengrass uses semantic versions for components. Semantic versions follow a
major.minor.patch number system. For example, version 1.0.0 represents the first major
release for a component. For more information, see the semantic version specification.

Topics

• Component lifecycle

• Component types

• Create AWS IoT Greengrass components

• Test AWS IoT Greengrass components with local deployments

• Publish components to deploy to your core devices

• Interact with AWS services

• Run a Docker container

• AWS IoT Greengrass component recipe reference

• Component environment variable reference

Develop components 1212

https://semver.org/

AWS IoT Greengrass Developer Guide, Version 2

Component lifecycle

The component lifecycle defines the stages that the AWS IoT Greengrass Core software uses to
install and run components. Each stage defines a script and other information that specifies how
the component behaves. For example, when you install a component, the AWS IoT Greengrass Core
software runs the install lifecycle script for that component. Components on core devices have
the following lifecycle states:

• NEW – The component's recipe and artifacts are loaded on the core device, but the component
isn't installed. After a component enters this state, it runs its install script.

• INSTALLED – The component is installed on the core device. The component enters this state
after it runs its install script.

• STARTING – The component is starting on the core device. The component enters this state
when it runs its startup script. If the startup succeeds, the component enters the RUNNING state.

• RUNNING – The component is running on the core device. The component enters this state when
it runs its run script or when it has active background processes from its startup script.

• FINISHED – The component ran successfully and completed its run.

• STOPPING – The component is stopping. The component enters this state when it runs its
shutdown script.

• ERRORED – The component encountered an error. When the component enters this state, it runs
its recover script. Then, the component restarts to try returning to normal use. If the component
enters the ERRORED state three times without a successful run, the component becomes BROKEN.

• BROKEN – The component encountered errors multiple times and can't recover. You must deploy
the component again to fix it.

Component types

The component type specifies how the AWS IoT Greengrass Core software runs the component.
Components can have the following types:

• Nucleus (aws.greengrass.nucleus)

The Greengrass nucleus is the component that provides the minimum functionality of the AWS
IoT Greengrass Core software. For more information, see Greengrass nucleus.

• Plugin (aws.greengrass.plugin)

Component lifecycle 1213

AWS IoT Greengrass Developer Guide, Version 2

The Greengrass nucleus runs a plugin component in the same Java Virtual Machine (JVM) as the
nucleus. The nucleus restarts when you change the version of a plugin component on a core
device. To install and run plugin components, you must configure the Greengrass nucleus to run
as a system service. For more information, see Configure the Greengrass nucleus as a system
service.

Several components that are provided by AWS are plugin components, which enables them to
interface directly with the Greengrass nucleus. Plugin components use the same log file as the
Greengrass nucleus. For more information, see Monitor AWS IoT Greengrass logs.

• Generic (aws.greengrass.generic)

The Greengrass nucleus runs a generic component's lifecycle scripts, if the component defines a
lifecycle.

This type is the default type for custom components.

• Lambda (aws.greengrass.lambda)

The Greengrass nucleus runs a Lambda function component using the Lambda launcher
component.

When you create a component from a Lambda function, the component has this type. For more
information, see Run AWS Lambda functions.

Note

We don't recommend that you specify the component type in a recipe. AWS IoT Greengrass
sets the type for you when you create a component.

Create AWS IoT Greengrass components

You can develop custom AWS IoT Greengrass components on a local development computer or
a Greengrass core device. AWS IoT Greengrass provides the AWS IoT Greengrass Development
Kit Command-Line Interface (GDK CLI) to help you create, build, and publish components from
predefined component templates and community components. You can also run built-in shell
commands to create, build, and publish components. Choose from the following options to create
custom Greengrass components:

Create components 1214

AWS IoT Greengrass Developer Guide, Version 2

• Use the Greengrass Development Kit CLI

Use the GDK CLI to develop components on a local development computer. The GDK CLI builds
and packages component source code into a recipe and artifacts that you can publish as a private
component to the AWS IoT Greengrass service. You can configure the GDK CLI to automatically
update the component's version and artifact URIs when you publish the component, so you don't
need to update the recipe each time. To develop a component using the GDK CLI, you can start
from a template or a community component from the Greengrass Software Catalog. For more
information, see AWS IoT Greengrass Development Kit Command-Line Interface.

• Run built-in shell commands

You can run built-in shell commands to develop components on a local development computer
or on a Greengrass core device. You use shell commands to copy or build component source code
into artifacts. Each time you create a new version of a component, you must create or update
the recipe with the new component version. When you publish the component to the AWS IoT
Greengrass service, you must update the URI to each component artifact in the recipe.

Topics

• Create a component (GDK CLI)

• Create a component (shell commands)

Create a component (GDK CLI)

Follow instructions in this section to create and build a component using the GDK CLI.

To develop a Greengrass component (GDK CLI)

1. If you haven't already, install the GDK CLI on your development computer. For more
information, see Install or update the AWS IoT Greengrass Development Kit Command-Line
Interface.

2. Change to the folder where you want to create component folders.

Linux or Unix

mkdir ~/greengrassv2
cd ~/greengrassv2

Create components 1215

AWS IoT Greengrass Developer Guide, Version 2

Windows Command Prompt (CMD)

mkdir %USERPROFILE%\greengrassv2
cd %USERPROFILE%\greengrassv2

PowerShell

mkdir ~/greengrassv2
cd ~/greengrassv2

3. Choose a component template or community component to download. The GDK CLI
downloads the template or community component, so you can start from a functional
example. Use the component list command to retrieve the list of available templates or
community components.

• To list component templates, run the following command. Each line in the response
includes a template's name and programming language.

gdk component list --template

• To list community components, run the following command.

gdk component list --repository

4. Create and change to a component folder where the GDK CLI downloads the template or
community component. Replace HelloWorld with the name of the component, or another
name that helps you identify this component folder.

Linux or Unix

mkdir HelloWorld
cd HelloWorld

Windows Command Prompt (CMD)

mkdir HelloWorld
cd HelloWorld

Create components 1216

AWS IoT Greengrass Developer Guide, Version 2

PowerShell

mkdir HelloWorld
cd HelloWorld

5. Download the template or community component to the current folder. Use the component
init command.

• To create a component folder from a template, run the following command. Replace
HelloWorld with the name of the template, and replace python with the name of the
programming language.

gdk component init --template HelloWorld --language python

• To create a component folder from a community component, run the following command.
Replace ComponentName with the name of the community component.

gdk component init --repository ComponentName

Note

If you use GDK CLI v1.0.0, you must run this command in an empty folder. The GDK CLI
downloads the template or community component to the current folder.
If you use GDK CLI v1.1.0 or later, you can specify the --name argument to specify the
folder where the GDK CLI downloads the template or community component. If you
use this argument, specify a folder that doesn't exist. The GDK CLI creates the folder
for you. If you don't specify this argument, the GDK CLI uses the current folder, which
must be empty.

6. The GDK CLI reads from the GDK CLI configuration file, named gdk-config.json, to build
and publish components. This configuration file exists in the root of the component folder.
The previous step creates this file for you. In this step, you update gdk-config.json with
information about your component. Do the following:

a. Open gdk-config.json in a text editor.

b. (Optional) Change the name of the component. The component name is the key in the
component object.

c. Change the author of the component.

Create components 1217

AWS IoT Greengrass Developer Guide, Version 2

d. (Optional) Change the version of the component. Specify one of the following:

• NEXT_PATCH – When you choose this option, the GDK CLI sets the version when you
publish the component. The GDK CLI queries the AWS IoT Greengrass service to identify
the latest published version of the component. Then, it sets the version to the next
patch version after that version. If you haven't published the component before, the
GDK CLI uses version 1.0.0.

If you choose this option, you can't use the Greengrass CLI to locally deploy and test the
component to your local development computer that runs the AWS IoT Greengrass Core
software. To enable local deployments, you must specify a semantic version instead.

• A semantic version, such as 1.0.0. Semantic versions use a major.minor.patch
numbering system. For more information, see the semantic version specification.

If you develop components on a Greengrass core device where you want to deploy and
test the component, choose this option. You must build the component with a specific
version to create local deployments with the Greengrass CLI.

e. (Optional) Change the build configuration for the component. The build configuration
defines how the GDK CLI builds the component's source into artifacts. Choose from the
following options for build_system:

• zip – Packages the component's folder into a ZIP file to define as the component's only
artifact. Choose this option for the following types of components:

• Components that use interpreted programming languages, such as Python or
JavaScript.

• Components that package files other than code, such as machine learning models or
other resources.

The GDK CLI zips the component's folder into a zip file with the same name as the
component folder. For example, if the component folder's name is HelloWorld, the
GDK CLI creates a zip file named HelloWorld.zip.

Note

If you use GDK CLI version 1.0.0 on a Windows device, the component folder and
zip file names must contain only lowercase letters.

Create components 1218

https://semver.org/

AWS IoT Greengrass Developer Guide, Version 2

When the GDK CLI zips the component's folder into a zip file, it skips the following files:

• The gdk-config.json file

• The recipe file (recipe.json or recipe.yaml)

• Build folders, such as greengrass-build

• maven – Runs the mvn clean package command to build the component's source
into artifacts. Choose this option for components that use Maven, such as Java
components.

On Windows devices, this feature is available for GDK CLI v1.1.0 and later.

• gradle – Runs the gradle build command to build the component's source into
artifacts. Choose this option for components that use Gradle. This feature is available
for GDK CLI v1.1.0 and later.

The gradle build system supports Kotlin DSL as the build file. This feature is available
for GDK CLI v1.2.0 and later.

• gradlew – Runs the gradlew command to build the component's source into artifacts.
Choose this option for components that use the Gradle Wrapper .

This feature is available for GDK CLI v1.2.0 and later.

• custom – Runs a custom command to build the component's source into a recipe and
artifacts. Specify the custom command in the custom_build_command parameter.

f. If you specify custom for build_system, add the custom_build_command to the
build object. In custom_build_command, specify a single string or list of strings, where
each string is a word in the command. For example, to run a custom build command for a
C++ component, you might specify ["cmake", "--build", "build", "--config",
"Release"].

g. If you use GDK CLI v1.1.0 or later, you can specify the --bucket argument to
specify the S3 bucket where the GDK CLI uploads the component's artifacts. If you
don't specify this argument, the GDK CLI uploads to the S3 bucket whose name is
bucket-region-accountId, where bucket and region are the values that you specify
in gdk-config.json, and accountId is your AWS account ID. The GDK CLI creates the
bucket if it doesn't exist.

Change the publish configuration for the component. Do the following:

Create components 1219

https://maven.apache.org/
https://gradle.org/
https://docs.gradle.org/current/userguide/gradle_wrapper.html

AWS IoT Greengrass Developer Guide, Version 2

i. Specify the name of the S3 bucket to use to host component artifacts.

ii. Specify the AWS Region where the GDK CLI publishes the component.

When you're done with this step, the gdk-config.json file might look similar to the
following example.

{
 "component": {
 "com.example.PythonHelloWorld": {
 "author": "Amazon",
 "version": "NEXT_PATCH",
 "build": {
 "build_system" : "zip"
 },
 "publish": {
 "bucket": "greengrass-component-artifacts",
 "region": "us-west-2"
 }
 }
 },
 "gdk_version": "1.0.0"
}

7. Update the component recipe file, named recipe.yaml or recipe.json. Do the following:

a. If you downloaded a template or community component that uses the zip build system,
check that the zip artifact name matches the name of the component folder. The GDK
CLI zips the component folder into a zip file with the same name as the component
folder. The recipe contains the zip artifact name in the list of component artifacts and in
lifecycle scripts that use files in the zip artifact. Update the Artifacts and Lifecycle
definitions such that the zip file name matches the name of the component folder. The
following partial recipe examples highlight the zip file name in the Artifacts and
Lifecycle definitions.

JSON

{
 ...
 "Manifests": [
 {

Create components 1220

AWS IoT Greengrass Developer Guide, Version 2

 "Platform": {
 "os": "all"
 },
 "Artifacts": [
 {
 "URI": "s3://{COMPONENT_NAME}/{COMPONENT_VERSION}/HelloWorld.zip",
 "Unarchive": "ZIP"
 }
],
 "Lifecycle": {
 "Run": "python3 -u {artifacts:decompressedPath}/HelloWorld/main.py
 {configuration:/Message}"
 }
 }
]
}

YAML

...
Manifests:
 - Platform:
 os: all
 Artifacts:
 - URI: "s3://BUCKET_NAME/COMPONENT_NAME/
COMPONENT_VERSION/HelloWorld.zip"
 Unarchive: ZIP
 Lifecycle:
 Run: "python3 -u {artifacts:decompressedPath}/HelloWorld/main.py
 {configuration:/Message}"

b. (Optional) Update the component description, default configuration, artifacts, lifecycle
scripts, and platform support. For more information, see AWS IoT Greengrass component
recipe reference.

When you're done with this step, the recipe file might look similar to the following examples.

JSON

{
 "RecipeFormatVersion": "2020-01-25",

Create components 1221

AWS IoT Greengrass Developer Guide, Version 2

 "ComponentName": "{COMPONENT_NAME}",
 "ComponentVersion": "{COMPONENT_VERSION}",
 "ComponentDescription": "This is a simple Hello World component written in
 Python.",
 "ComponentPublisher": "{COMPONENT_AUTHOR}",
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "Message": "World"
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "all"
 },
 "Artifacts": [
 {
 "URI": "s3://{COMPONENT_NAME}/{COMPONENT_VERSION}/HelloWorld.zip",
 "Unarchive": "ZIP"
 }
],
 "Lifecycle": {
 "Run": "python3 -u {artifacts:decompressedPath}/HelloWorld/main.py
 {configuration:/Message}"
 }
 }
]
}

YAML

RecipeFormatVersion: "2020-01-25"
ComponentName: "{COMPONENT_NAME}"
ComponentVersion: "{COMPONENT_VERSION}"
ComponentDescription: "This is a simple Hello World component written in
 Python."
ComponentPublisher: "{COMPONENT_AUTHOR}"
ComponentConfiguration:
 DefaultConfiguration:
 Message: "World"
Manifests:
 - Platform:

Create components 1222

AWS IoT Greengrass Developer Guide, Version 2

 os: all
 Artifacts:
 - URI: "s3://BUCKET_NAME/COMPONENT_NAME/COMPONENT_VERSION/HelloWorld.zip"
 Unarchive: ZIP
 Lifecycle:
 Run: "python3 -u {artifacts:decompressedPath}/HelloWorld/main.py
 {configuration:/Message}"

8. Develop and build the Greengrass component. The component build command produces
a recipe and artifacts in the greengrass-build folder in the component folder. Run the
following command.

gdk component build

When you're ready to test your component, use the GDK CLI to publish it to the AWS IoT
Greengrass service. Then, you can deploy the component to Greengrass core devices. For more
information, see Publish components to deploy to your core devices.

Create a component (shell commands)

Follow instructions in this section to create recipe and artifact folders that contain source code and
artifacts for multiple components.

To develop a Greengrass component (shell commands)

1. Create a folder for your components with subfolders for recipes and artifacts. Run the
following commands on your Greengrass core device to create these folders and change to the
component folder. Replace ~/greengrassv2 or %USERPROFILE%\greengrassv2 with the
path to the folder to use for local development.

Linux or Unix

mkdir -p ~/greengrassv2/{recipes,artifacts}
cd ~/greengrassv2

Windows Command Prompt (CMD)

mkdir %USERPROFILE%\greengrassv2\\recipes, %USERPROFILE%\greengrassv2\\artifacts
cd %USERPROFILE%\greengrassv2

Create components 1223

AWS IoT Greengrass Developer Guide, Version 2

PowerShell

mkdir ~/greengrassv2/recipes, ~/greengrassv2/artifacts
cd ~/greengrassv2

2. Use a text editor to create a recipe file that defines your component's metadata, parameters,
dependencies, lifecycle, and platform capability. Include the component version in the recipe
file name so that you can identify which recipe reflects which component version. You can
choose YAML or JSON format for your recipe.

For example, on a Linux-based system, you can run the following command to use GNU nano
to create the file.

JSON

nano recipes/com.example.HelloWorld-1.0.0.json

YAML

nano recipes/com.example.HelloWorld-1.0.0.yaml

Note

AWS IoT Greengrass uses semantic versions for components. Semantic versions follow
a major.minor.patch number system. For example, version 1.0.0 represents the
first major release for a component. For more information, see the semantic version
specification.

3. Define the recipe for your component. For more information, see AWS IoT Greengrass
component recipe reference.

Your recipe might look similar to the following Hello World example recipe.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.HelloWorld",

Create components 1224

https://semver.org/
https://semver.org/

AWS IoT Greengrass Developer Guide, Version 2

 "ComponentVersion": "1.0.0",
 "ComponentDescription": "My first AWS IoT Greengrass component.",
 "ComponentPublisher": "Amazon",
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "Message": "world"
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "linux"
 },
 "Lifecycle": {
 "Run": "python3 -u {artifacts:path}/hello_world.py {configuration:/
Message}"
 }
 },
 {
 "Platform": {
 "os": "windows"
 },
 "Lifecycle": {
 "Run": "py -3 -u {artifacts:path}/hello_world.py {configuration:/
Message}"
 }
 }
]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.HelloWorld
ComponentVersion: '1.0.0'
ComponentDescription: My first AWS IoT Greengrass component.
ComponentPublisher: Amazon
ComponentConfiguration:
 DefaultConfiguration:
 Message: world
Manifests:
 - Platform:

Create components 1225

AWS IoT Greengrass Developer Guide, Version 2

 os: linux
 Lifecycle:
 Run: |
 python3 -u {artifacts:path}/hello_world.py "{configuration:/Message}"
 - Platform:
 os: windows
 Lifecycle:
 Run: |
 py -3 -u {artifacts:path}/hello_world.py "{configuration:/Message}"

This recipe runs a Hello World Python script, which might look similar to the following
example script.

import sys

message = "Hello, %s!" % sys.argv[1]

Print the message to stdout, which Greengrass saves in a log file.
print(message)

4. Create a folder for the component version to develop. We recommend that you use a separate
folder for each component version's artifacts so that you can identify which artifacts are for
each component version. Run the following command.

Linux or Unix

mkdir -p artifacts/com.example.HelloWorld/1.0.0

Windows Command Prompt (CMD)

mkdir artifacts/com.example.HelloWorld/1.0.0

PowerShell

mkdir artifacts/com.example.HelloWorld/1.0.0

Create components 1226

AWS IoT Greengrass Developer Guide, Version 2

Important

You must use the following format for the artifact folder path. Include the component
name and version that you specify in the recipe.

artifacts/componentName/componentVersion/

5. Create the artifacts for your component in the folder that you created in the previous step.
Artifacts can include software, images, and any other binaries that your component uses.

When your component is ready, test your component.

Test AWS IoT Greengrass components with local deployments

If you develop a Greengrass component on a core device, you can create a local deployment to
install and test it. Follow the steps in this section to create a local deployment.

If you develop the component on a different computer, such as a local development computer,
you can't create a local deployment. Instead, publish the component to the AWS IoT Greengrass
service so that you can deploy it to Greengrass core devices to test it. For more information, see
Publish components to deploy to your core devices and Deploy AWS IoT Greengrass components to
devices.

To test a component on an Greengrass core device

1. The core device logs events such as component updates. You can view this log file to discover
and troubleshoot errors with your component, such as an invalid recipe. This log file also
displays messages that your component prints to standard out (stdout). We recommend that
you open an additional terminal session on your core device to observe new log messages in
real time. Open a new terminal session, such as through SSH, and run the following command
to view the logs. Replace /greengrass/v2 with the path to the AWS IoT Greengrass root
folder.

Linux or Unix

sudo tail -f /greengrass/v2/logs/greengrass.log

Test components with local deployments 1227

AWS IoT Greengrass Developer Guide, Version 2

PowerShell

gc C:\greengrass\v2\logs\greengrass.log -Tail 10 -Wait

You can also view the log file for your component.

Linux or Unix

sudo tail -f /greengrass/v2/logs/com.example.HelloWorld.log

PowerShell

gc C:\greengrass\v2\logs\com.example.HelloWorld.log -Tail 10 -Wait

2. In your original terminal session, run the following command to update the core device with
your component. Replace /greengrass/v2 with the path to the AWS IoT Greengrass root
folder, and replace ~/greengrassv2 with the path to your local development folder.

Linux or Unix

sudo /greengrass/v2/bin/greengrass-cli deployment create \
 --recipeDir ~/greengrassv2/recipes \
 --artifactDir ~/greengrassv2/artifacts \
 --merge "com.example.HelloWorld=1.0.0"

Windows Command Prompt (CMD)

C:\greengrass\v2\bin\greengrass-cli deployment create ^
 --recipeDir %USERPROFILE%\greengrassv2\recipes ^
 --artifactDir %USERPROFILE%\greengrassv2\artifacts ^
 --merge "com.example.HelloWorld=1.0.0"

PowerShell

C:\greengrass\v2\bin\greengrass-cli deployment create `
 --recipeDir ~/greengrassv2/recipes `
 --artifactDir ~/greengrassv2/artifacts `
 --merge "com.example.HelloWorld=1.0.0"

Test components with local deployments 1228

AWS IoT Greengrass Developer Guide, Version 2

Note

You can also use the greengrass-cli deployment create command to set the
value of your component's configuration parameters. For more information, see create.

3. Use the greengrass-cli deployment status command to monitor the progress of your
component's deployment.

Unix or Linux

sudo /greengrass/v2/bin/greengrass-cli deployment status \
 -i deployment-id

Windows Command Prompt (CMD)

C:\greengrass\v2\bin\greengrass-cli deployment status ^
 -i deployment-id

PowerShell

C:\greengrass\v2\bin\greengrass-cli deployment status `
 -i deployment-id

4. Test your component as it runs on the Greengrass core device. When you finish this version of
your component, you can upload it to the AWS IoT Greengrass service. Then, you can deploy
the component to other core devices. For more information, see Publish components to deploy
to your core devices.

Publish components to deploy to your core devices

After you build or complete a version of a component, you can publish it to the AWS IoT
Greengrass service. Then, you can deploy it to Greengrass core devices.

If you use the Greengrass Development Kit CLI (GDK CLI) to develop and build a component, you
can use the GDK CLI to publish the component to the AWS Cloud. Otherwise, use built-in shell
commands and the AWS CLI to publish the component.

Publish components to deploy 1229

AWS IoT Greengrass Developer Guide, Version 2

You can also use AWS CloudFormation to create components and other AWS resources
from templates. For more information, see What is AWS CloudFormation? and
AWS::GreengrassV2::ComponentVersion in the AWS CloudFormation User Guide.

Topics

• Publish a component (GDK CLI)

• Publish a component (shell commands)

Publish a component (GDK CLI)

Follow instructions in this section to publish a component using the GDK CLI. The GDK CLI uploads
build artifacts to an S3 bucket, updates the artifact URIs in the recipe, and creates the component
from the recipe. You specify the S3 bucket and Region to use in the GDK CLI configuration file.

If you use GDK CLI v1.1.0 or later, you can specify the --bucket argument to specify the S3 bucket
where the GDK CLI uploads the component's artifacts. If you don't specify this argument, the
GDK CLI uploads to the S3 bucket whose name is bucket-region-accountId, where bucket
and region are the values that you specify in gdk-config.json, and accountId is your AWS
account ID. The GDK CLI creates the bucket if it doesn't exist.

Important

Core device roles don't allow access to S3 buckets by default. If this is your first time using
this S3 bucket, you must add permissions to the role to allow core devices to retrieve
component artifacts from this S3 bucket. For more information, see Allow access to S3
buckets for component artifacts.

To publish a Greengrass component (GDK CLI)

1. Open the component folder in a command prompt or terminal.

2. If you haven't already, build the Greengrass component. The component build command
produces a recipe and artifacts in the greengrass-build folder in the component folder.
Run the following command.

gdk component build

Publish components to deploy 1230

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-greengrassv2-componentversion.html

AWS IoT Greengrass Developer Guide, Version 2

3. Publish the component to the AWS Cloud. The component publish command uploads the
component's artifacts to Amazon S3 and updates the component's recipe with each artifact's
URI. Then, it creates the component in the AWS IoT Greengrass service.

Note

AWS IoT Greengrass computes the digest of each artifact when you create the
component. This means that you can't modify the artifact files in your S3 bucket after
you create a component. If you do, deployments that include this component will fail,
because the file digest doesn't match. If you modify an artifact file, you must create a
new version of the component.

If you specify NEXT_PATCH for the component version in the GDK CLI configuration file, the
GDK CLI uses the next patch version that doesn't already exist in the AWS IoT Greengrass
service.

Run the following command.

gdk component publish

The output tells you the version of the component that the GDK CLI created.

After you publish the component, you can deploy the component to core devices. For more
information, see Deploy AWS IoT Greengrass components to devices.

Publish a component (shell commands)

Use the following procedure to publish a component using shell commands and the AWS
Command Line Interface (AWS CLI). When you publish a component, you do the following:

1. Publish component artifacts to an S3 bucket.

2. Add each artifact's Amazon S3 URI to the component recipe.

3. Create a component version in AWS IoT Greengrass from the component recipe.

Publish components to deploy 1231

AWS IoT Greengrass Developer Guide, Version 2

Note

Each component version that you upload must be unique. Make sure that you upload the
correct component version, because you can't edit it after you upload it.

You can follow these steps to publish a component from your development computer or your
Greengrass core device.

To publish a component (shell commands)

1. If the component uses a version that exists in the AWS IoT Greengrass service, then you
must change the version of the component. Open the recipe in a text editor, increment the
version, and save the file. Choose a new version that reflects the changes that you made to the
component.

Note

AWS IoT Greengrass uses semantic versions for components. Semantic versions follow
a major.minor.patch number system. For example, version 1.0.0 represents the
first major release for a component. For more information, see the semantic version
specification.

2. If your component has artifacts, do the following:

a. Publish the component's artifacts to an S3 bucket in your AWS account.

Tip

We recommend that you include the component name and version in the path
to the artifact in the S3 bucket. This naming scheme can help you maintain the
artifacts that previous versions of the component use, so you can continue to
support previous component versions.

Run the following command to publish an artifact file to an S3 bucket. Replace
amzn-s3-demo-bucket with the name of the bucket, and replace artifacts/
com.example.HelloWorld/1.0.0/artifact.py with the path to the artifact file.

Publish components to deploy 1232

https://semver.org/
https://semver.org/

AWS IoT Greengrass Developer Guide, Version 2

aws s3 cp artifacts/com.example.HelloWorld/1.0.0/artifact.py s3://amzn-s3-demo-
bucket/artifacts/com.example.HelloWorld/1.0.0/artifact.py

Important

Core device roles don't allow access to S3 buckets by default. If this is your first
time using this S3 bucket, you must add permissions to the role to allow core
devices to retrieve component artifacts from this S3 bucket. For more information,
see Allow access to S3 buckets for component artifacts.

b. Add a list named Artifacts to the component recipe if it isn't present. The Artifacts
list appears in each manifest, which defines the component's requirements on each
platform that it supports (or the component's default requirements for all platforms).

c. Add each artifact to the list of artifacts, or update the URI of existing artifacts. The
Amazon S3 URI is composed of the bucket name and the path to the artifact object in the
bucket. Your artifacts' Amazon S3 URIs should look similar to the following example.

s3://amzn-s3-demo-bucket/artifacts/com.example.HelloWorld/1.0.0/artifact.py

After you complete these steps, your recipe should have an Artifacts list that looks like the
following.

JSON

{
 ...
 "Manifests": [
 {
 "Lifecycle": {
 ...
 },
 "Artifacts": [
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
MyGreengrassComponent/1.0.0/artifact.py",
 "Unarchive": "NONE"
 }
]

Publish components to deploy 1233

AWS IoT Greengrass Developer Guide, Version 2

 }
]
}

Note

You can add the "Unarchive": "ZIP" option for a ZIP artifact to configure
the AWS IoT Greengrass Core software to unzip the artifact when the component
deploys.

YAML

...
Manifests:
 - Lifecycle:
 ...
 Artifacts:
 - URI: s3://amzn-s3-demo-bucket/artifacts/MyGreengrassComponent/1.0.0/
artifact.py
 Unarchive: NONE

Note

You can use the Unarchive: ZIP option to configure the AWS IoT Greengrass
Core software to unzip a ZIP artifact when the component deploys. For
more information about how to use ZIP artifacts in a component, see the
artifacts:decompressedPath recipe variable.

For more information about recipes, see AWS IoT Greengrass component recipe reference.

3. Use the AWS IoT Greengrass console to create a component from the recipe file.

Run the following command to create the component from a recipe file. This command creates
the component and publishes it as a private AWS IoT Greengrass component in your AWS
account. Replace path/to/recipeFile with the path to the recipe file.

Publish components to deploy 1234

AWS IoT Greengrass Developer Guide, Version 2

aws greengrassv2 create-component-version --inline-recipe fileb://path/to/
recipeFile

Copy the arn from the response to check the state of the component in the next step.

Note

AWS IoT Greengrass computes the digest of each artifact when you create the
component. This means that you can't modify the artifact files in your S3 bucket after
you create a component. If you do, deployments that include this component will fail,
because the file digest doesn't match. If you modify an artifact file, you must create a
new version of the component.

4. Each component in the AWS IoT Greengrass service has a state. Run the following command
to confirm the state of the component version that you publish in this procedure. Replace
com.example.HelloWorld and 1.0.0 with the component version to query. Replace the
arn with the ARN from the previous step.

aws greengrassv2 describe-component --arn "arn:aws:greengrass:region:account-
id:components:com.example.HelloWorld:versions:1.0.0"

The operation returns a response that contains the component's metadata. The metadata
contains a status object that contains the component state and any errors, if applicable.

When the component state is DEPLOYABLE, you can deploy the component to devices. For
more information, see Deploy AWS IoT Greengrass components to devices.

Interact with AWS services

Greengrass core devices use X.509 certificates to connect to AWS IoT Core using TLS mutual
authentication protocols. These certificates let devices interact with AWS IoT without AWS
credentials, which typically comprise an access key ID and a secret access key. Other AWS services
require AWS credentials instead of X.509 certificates to call API operations at service endpoints.
AWS IoT Core has a credentials provider that enables devices to use their X.509 certificate to
authenticate AWS requests. The AWS IoT credentials provider authenticates devices using an X.509
certificate and issues AWS credentials in the form a temporary, limited-privilege security token.

Interact with AWS services 1235

AWS IoT Greengrass Developer Guide, Version 2

Devices can use this token to sign and authenticate any AWS request. This eliminates the need to
store AWS credentials on Greengrass core devices. For more information, see Authorizing direct
calls to AWS services in the AWS IoT Core Developer Guide.

To fetch credentials from AWS IoT, Greengrass, core devices use an AWS IoT role alias that points
to an IAM role. This IAM role is called the token exchange role. You create the role alias and token
exchange role when you install the AWS IoT Greengrass Core software. To specify the role alias that
a core device uses, configure the iotRoleAlias parameter of the Greengrass nucleus.

The AWS IoT credentials provider assumes the token exchange role on your behalf to provide
AWS credentials to core devices. You can attach appropriate IAM policies to this role to allow your
core devices access to your AWS resources, such as components artifacts in S3 buckets. For more
information about how to configure the token exchange role, see Authorize core devices to interact
with AWS services.

Greengrass core devices store AWS credentials in memory, and the credentials expire after an hour
by default. If the AWS IoT Greengrass Core software restarts, it must fetch credentials again. You
can use the UpdateRoleAlias operation to configure the duration that credentials are valid.

AWS IoT Greengrass provides a public component, the token exchange service component,
that you can define as a dependency in your custom component to interact with AWS
services. The token exchange service provides your component with an environment variable,
AWS_CONTAINER_CREDENTIALS_FULL_URI, that defines the URI to a local server that provides
AWS credentials. When you create an AWS SDK client, the client checks for this environment
variable and connects to the local server to retrieve AWS credentials and uses them to sign API
requests. This lets you use AWS SDKs and other tools to call AWS services in your components. For
more information, see Token exchange service.

Important

Support to acquire AWS credentials in this way was added to the AWS SDKs on July
13th, 2016. Your component must use an AWS SDK version that was created on or after
that date. For more information, see Using a supported AWS SDK in the Amazon Elastic
Container Service Developer Guide.

To acquire AWS credentials in your custom component, define
aws.greengrass.TokenExchangeService as a dependency in the component recipe. The

Interact with AWS services 1236

https://docs.aws.amazon.com/iot/latest/developerguide/authorizing-direct-aws.html
https://docs.aws.amazon.com/iot/latest/developerguide/authorizing-direct-aws.html
https://docs.aws.amazon.com/iot/latest/apireference/API_UpdateRoleAlias.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html#task-iam-roles-minimum-sdk

AWS IoT Greengrass Developer Guide, Version 2

following example recipe defines a component that installs boto3 and runs a Python script that
uses AWS credentials from the token exchange service to list Amazon S3 buckets.

Note

To run this example component, your device must have the s3:ListAllMyBuckets
permission. For more information, see Authorize core devices to interact with AWS services.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.ListS3Buckets",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "A component that uses the token exchange service to list
 S3 buckets.",
 "ComponentPublisher": "Amazon",
 "ComponentDependencies": {
 "aws.greengrass.TokenExchangeService": {
 "VersionRequirement": "^2.0.0",
 "DependencyType": "HARD"
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "linux"
 },
 "Lifecycle": {
 "install": "pip3 install --user boto3",
 "Run": "python3 -u {artifacts:path}/list_s3_buckets.py"
 }
 },
 {
 "Platform": {
 "os": "windows"
 },
 "Lifecycle": {
 "install": "pip3 install --user boto3",
 "Run": "py -3 -u {artifacts:path}/list_s3_buckets.py"
 }

Interact with AWS services 1237

https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

AWS IoT Greengrass Developer Guide, Version 2

 }
]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.ListS3Buckets
ComponentVersion: '1.0.0'
ComponentDescription: A component that uses the token exchange service to list S3
 buckets.
ComponentPublisher: Amazon
ComponentDependencies:
 aws.greengrass.TokenExchangeService:
 VersionRequirement: '^2.0.0'
 DependencyType: HARD
Manifests:
 - Platform:
 os: linux
 Lifecycle:
 install:
 pip3 install --user boto3
 Run: |-
 python3 -u {artifacts:path}/list_s3_buckets.py
 - Platform:
 os: windows
 Lifecycle:
 install:
 pip3 install --user boto3
 Run: |-
 py -3 -u {artifacts:path}/list_s3_buckets.py

This example component runs the following Python script, list_s3_buckets.py that lists
Amazon S3 buckets.

import boto3
import os

try:
 print("Creating boto3 S3 client...")
 s3 = boto3.client('s3')

Interact with AWS services 1238

AWS IoT Greengrass Developer Guide, Version 2

 print("Successfully created boto3 S3 client")
except Exception as e:
 print("Failed to create boto3 s3 client. Error: " + str(e))
 exit(1)

try:
 print("Listing S3 buckets...")
 response = s3.list_buckets()
 for bucket in response['Buckets']:
 print(f'\t{bucket["Name"]}')
 print("Successfully listed S3 buckets")
except Exception as e:
 print("Failed to list S3 buckets. Error: " + str(e))
 exit(1)

Run a Docker container

You can configure AWS IoT Greengrass components to run a Docker container from images stored
in the following locations:

• Public and private image repositories in Amazon Elastic Container Registry (Amazon ECR)

• Public Docker Hub repository

• Public Docker Trusted Registry

• S3 bucket

In your custom component, include the Docker image URI as an artifact to retrieve the image
and run it on the core device. For Amazon ECR and Docker Hub images, you can use the Docker
application manager component to download the images and manage credentials for private
Amazon ECR repositories.

Topics

• Requirements

• Run a Docker container from a public image in Amazon ECR or Docker Hub

• Run a Docker container from a private image in Amazon ECR

• Run a Docker container from an image in Amazon S3

• Use interprocess communication in Docker container components

• Use AWS credentials in Docker container components (Linux)

Run a Docker container 1239

https://www.docker.com/

AWS IoT Greengrass Developer Guide, Version 2

• Use stream manager in Docker container components (Linux)

Requirements

To run a Docker container in a component, you need the following:

• A Greengrass core device. If you don't have one, see Tutorial: Getting started with AWS IoT
Greengrass V2.

• Docker Engine 1.9.1 or later installed on the Greengrass core device. Version 20.10 is the latest
version that is verified to work with the AWS IoT Greengrass Core software. You must install
Docker directly on the core device before you deploy components that run Docker containers.

Tip

You can also configure the core device to install Docker Engine when the component
installs. For example, the following install script installs Docker Engine before it loads
the Docker image. This install script works on Debian-based Linux distributions, such as
Ubuntu. If you configure the component to install Docker Engine with this command,
you may need to set RequiresPrivilege to true in the lifecycle script to run the
installation and docker commands. For more information, see AWS IoT Greengrass
component recipe reference.

apt-get install docker-ce docker-ce-cli containerd.io && docker load -i
 {artifacts:path}/hello-world.tar

• The system user that runs a Docker container component must have root or administrator
permissions, or you must configure Docker to run it as a non-root or non-admistrator user.

• On Linux devices, you can add a user to the docker group to call docker commands without
sudo.

• On Windows devices, you can add a user to the docker-users group to call docker
commands without adminstrator privileges.

Linux or Unix

To add ggc_user, or the non-root user that you use to run Docker container components, to
the docker group, run the following command.

Run a Docker container 1240

https://docs.docker.com/engine/

AWS IoT Greengrass Developer Guide, Version 2

sudo usermod -aG docker ggc_user

For more information, see Manage Docker as a non-root user.

Windows Command Prompt (CMD)

To add ggc_user, or the user that you use to run Docker container components, to the
docker-users group, run the following command as an administrator.

net localgroup docker-users ggc_user /add

Windows PowerShell

To add ggc_user, or the user that you use to run Docker container components, to the
docker-users group, run the following command as an administrator.

Add-LocalGroupMember -Group docker-users -Member ggc_user

• Files accessed by the Docker container component mounted as a volume in the Docker container.

• If you configure the AWS IoT Greengrass Core software to use a network proxy, you must
configure Docker to use the same proxy server.

In addition to these requirements, you must also meet the following requirements if they apply to
your environment:

• To use Docker Compose to create and start your Docker containers, install Docker Compose
on your Greengrass core device, and upload your Docker Compose file to an S3 bucket. You
must store your Compose file in an S3 bucket in the same AWS account and AWS Region as
the component. For an example that uses the docker-compose up command in a custom
component, see Run a Docker container from a public image in Amazon ECR or Docker Hub.

• If you run AWS IoT Greengrass behind a network proxy, configure the Docker daemon to use a
proxy server.

• If your Docker images are stored in Amazon ECR or Docker Hub, include the Docker component
manager component as a dependency in your Docker container component. You must start the
Docker daemon on the core device before you deploy your component.

Run a Docker container 1241

https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user
https://docs.docker.com/storage/volumes/
https://docs.docker.com/network/proxy/
https://docs.docker.com/compose/
https://docs.docker.com/network/proxy/

AWS IoT Greengrass Developer Guide, Version 2

Also, include the image URIs as component artifacts. Image URIs must be in the format
docker:registry/image[:tag|@digest] as shown in the following examples:

• Private Amazon ECR image: docker:account-
id.dkr.ecr.region.amazonaws.com/repository/image[:tag|@digest]

• Public Amazon ECR image: docker:public.ecr.aws/repository/image[:tag|
@digest]

• Public Docker Hub image: docker:name[:tag|@digest]

For more information about running Docker containers from images stored in public repositories,
see Run a Docker container from a public image in Amazon ECR or Docker Hub.

• If your Docker images are stored in an Amazon ECR private repository, then you must
include the token exchange service component as a dependency in the Docker container
component. Also, the Greengrass device role must allow the ecr:GetAuthorizationToken,
ecr:BatchGetImage, and ecr:GetDownloadUrlForLayer actions, as shown in the following
example IAM policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ecr:GetAuthorizationToken",
 "ecr:BatchGetImage",
 "ecr:GetDownloadUrlForLayer"
],
 "Resource": [
 "*"
],
 "Effect": "Allow"
 }
]
}

For information about running Docker containers from images stored in an Amazon ECR private
repository, see Run a Docker container from a private image in Amazon ECR.

• To use Docker images stored in an Amazon ECR private repository, the private repository must be
in the same AWS Region as the core device.

Run a Docker container 1242

AWS IoT Greengrass Developer Guide, Version 2

• If your Docker images or Compose files are stored in an S3 bucket, the Greengrass device role
must allow the s3:GetObject permission to allow core devices to download the images as
component artifacts, as shown in the following example IAM policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "*"
],
 "Effect": "Allow"
 }
]
}

For information about running Docker containers from images stored in Amazon S3, see Run a
Docker container from an image in Amazon S3.

• To use interprocess communication (IPC), AWS credentials, or stream manager in your Docker
container component, you must specify additional options when you run the Docker container.
For more information, see the following:

• Use interprocess communication in Docker container components

• Use AWS credentials in Docker container components (Linux)

• Use stream manager in Docker container components (Linux)

Run a Docker container from a public image in Amazon ECR or Docker Hub

This section describes how you can create a custom component that uses Docker Compose to run a
Docker container from Docker images that are stored Amazon ECR and Docker Hub.

To run a Docker container using Docker Compose

1. Create and upload a Docker Compose file to an Amazon S3 bucket. Make sure that the
Greengrass device role allows the s3:GetObject permission to enable the device to access

Run a Docker container 1243

AWS IoT Greengrass Developer Guide, Version 2

the Compose file. The example Compose file shown in the following example includes the
Amazon CloudWatch Agent image from Amazon ECR and the MySQL image from Docker Hub.

version: "3"
services:
 cloudwatchagent:
 image: "public.ecr.aws/cloudwatch-agent/cloudwatch-agent:latest"
 mysql:
 image: "mysql:8.0"

2. Create a custom component on your AWS IoT Greengrass core device. The example recipe
shown in the following example has the following properties:

• The Docker application manager component as a dependency. This component enables AWS
IoT Greengrass to download images from public Amazon ECR and Docker Hub repositories.

• A component artifact that specifies a Docker image in a public Amazon ECR repository.

• A component artifact that specifies a Docker image in a public Docker Hub repository.

• A component artifact that specifies the Docker Compose file that includes containers for the
Docker images that you want to run.

• A lifecycle run script that uses docker-compose up to create and start a container from the
specified images.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.MyDockerComposeComponent",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "A component that uses Docker Compose to run images
 from public Amazon ECR and Docker Hub.",
 "ComponentPublisher": "Amazon",
 "ComponentDependencies": {
 "aws.greengrass.DockerApplicationManager": {
 "VersionRequirement": "~2.0.0"
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "all"

Run a Docker container 1244

https://docs.docker.com/compose/reference/up/

AWS IoT Greengrass Developer Guide, Version 2

 },
 "Lifecycle": {
 "Run": "docker-compose -f {artifacts:path}/docker-compose.yaml up"
 },
 "Artifacts": [
 {
 "URI": "docker:public.ecr.aws/cloudwatch-agent/cloudwatch-
agent:latest"
 },
 {
 "URI": "docker:mysql:8.0"
 },
 {
 "URI": "s3://amzn-s3-demo-bucket/folder/docker-compose.yaml"
 }
]
 }
]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.MyDockerComposeComponent
ComponentVersion: '1.0.0'
ComponentDescription: 'A component that uses Docker Compose to run images from
 public Amazon ECR and Docker Hub.'
ComponentPublisher: Amazon
ComponentDependencies:
 aws.greengrass.DockerApplicationManager:
 VersionRequirement: ~2.0.0
Manifests:
 - Platform:
 os: all
 Lifecycle:
 Run: docker-compose -f {artifacts:path}/docker-compose.yaml up
 Artifacts:
 - URI: "docker:public.ecr.aws/cloudwatch-agent/cloudwatch-agent:latest"
 - URI: "docker:mysql:8.0"
 - URI: "s3://amzn-s3-demo-bucket/folder/docker-compose.yaml"

Run a Docker container 1245

AWS IoT Greengrass Developer Guide, Version 2

Note

To use interprocess communication (IPC), AWS credentials, or stream manager in your
Docker container component, you must specify additional options when you run the
Docker container. For more information, see the following:

• Use interprocess communication in Docker container components

• Use AWS credentials in Docker container components (Linux)

• Use stream manager in Docker container components (Linux)

3. Test the component to verify that it works as expected.

Important

You must install and start the Docker daemon before you deploy the component.

After you deploy the component locally, you can run the docker container ls command to
verify that your container runs.

docker container ls

4. When the component is ready, upload the component to AWS IoT Greengrass to deploy to
other core devices. For more information, see Publish components to deploy to your core
devices.

Run a Docker container from a private image in Amazon ECR

This section describes how you can create a custom component that runs a Docker container from a
Docker image that is stored in a private repository in Amazon ECR.

To run a Docker container

1. Create a custom component on your AWS IoT Greengrass core device. Use the following
example recipe, which has the following properties:

Run a Docker container 1246

https://docs.docker.com/engine/reference/commandline/container_ls/

AWS IoT Greengrass Developer Guide, Version 2

• The Docker application manager component as a dependency. This component enables AWS
IoT Greengrass to manage credentials to download images from private repositories.

• The token exchange service component as a dependency. This component enables AWS IoT
Greengrass to retrieve AWS credentials to interact with Amazon ECR.

• A component artifact that specifies a Docker image in a private Amazon ECR repository.

• A lifecycle run script that uses docker run to create and start a container from the image.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.MyPrivateDockerComponent",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "A component that runs a Docker container from a
 private Amazon ECR image.",
 "ComponentPublisher": "Amazon",
 "ComponentDependencies": {
 "aws.greengrass.DockerApplicationManager": {
 "VersionRequirement": "~2.0.0"
 },
 "aws.greengrass.TokenExchangeService": {
 "VersionRequirement": "~2.0.0"
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "all"
 },
 "Lifecycle": {
 "Run": "docker run account-
id.dkr.ecr.region.amazonaws.com/repository[:tag|@digest]"
 },
 "Artifacts": [
 {
 "URI": "docker:account-
id.dkr.ecr.region.amazonaws.com/repository[:tag|@digest]"
 }
]
 }

Run a Docker container 1247

https://docs.docker.com/engine/reference/commandline/run/

AWS IoT Greengrass Developer Guide, Version 2

]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.MyPrivateDockerComponent
ComponentVersion: '1.0.0'
ComponentDescription: 'A component that runs a Docker container from a private
 Amazon ECR image.'
ComponentPublisher: Amazon
ComponentDependencies:
 aws.greengrass.DockerApplicationManager:
 VersionRequirement: ~2.0.0
 aws.greengrass.TokenExchangeService:
 VersionRequirement: ~2.0.0
Manifests:
 - Platform:
 os: all
 Lifecycle:
 Run: docker run account-id.dkr.ecr.region.amazonaws.com/repository[:tag|
@digest]
 Artifacts:
 - URI: "docker:account-id.dkr.ecr.region.amazonaws.com/repository[:tag|
@digest]"

Note

To use interprocess communication (IPC), AWS credentials, or stream manager in your
Docker container component, you must specify additional options when you run the
Docker container. For more information, see the following:

• Use interprocess communication in Docker container components

• Use AWS credentials in Docker container components (Linux)

• Use stream manager in Docker container components (Linux)

2. Test the component to verify that it works as expected.

Run a Docker container 1248

AWS IoT Greengrass Developer Guide, Version 2

Important

You must install and start the Docker daemon before you deploy the component.

After you deploy the component locally, you can run the docker container ls command to
verify that your container runs.

docker container ls

3. Upload the component to AWS IoT Greengrass to deploy to other core devices. For more
information, see Publish components to deploy to your core devices.

Run a Docker container from an image in Amazon S3

This section describes how you can run a Docker container in a component from a Docker image
that is stored in Amazon S3.

To run a Docker container in a component from an image in Amazon S3

1. Run the docker save command to create a backup of a Docker container. You provide this
backup as a component artifact to run the container on AWS IoT Greengrass. Replace hello-
world with the name of the image, and replace hello-world.tar with the name of the
archive file to create.

docker save hello-world > artifacts/com.example.MyDockerComponent/1.0.0/hello-
world.tar

2. Create a custom component on your AWS IoT Greengrass core device. Use the following
example recipe, which has the following properties:

• A lifecycle install script that uses docker load to load a Docker image from an archive.

• A lifecycle run script that uses docker run to create and start a container from the image.
The --rm option cleans up the container when it exits.

JSON

{

Run a Docker container 1249

https://docs.docker.com/engine/reference/commandline/container_ls/
https://docs.docker.com/engine/reference/commandline/save/
https://docs.docker.com/engine/reference/commandline/load/
https://docs.docker.com/engine/reference/commandline/run/

AWS IoT Greengrass Developer Guide, Version 2

 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.MyS3DockerComponent",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "A component that runs a Docker container from an
 image in an S3 bucket.",
 "ComponentPublisher": "Amazon",
 "Manifests": [
 {
 "Platform": {
 "os": "linux"
 },
 "Lifecycle": {
 "install": {
 "Script": "docker load -i {artifacts:path}/hello-world.tar"
 },
 "Run": {
 "Script": "docker run --rm hello-world"
 }
 }
 }
]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.MyS3DockerComponent
ComponentVersion: '1.0.0'
ComponentDescription: 'A component that runs a Docker container from an image in
 an S3 bucket.'
ComponentPublisher: Amazon
Manifests:
 - Platform:
 os: linux
 Lifecycle:
 install:
 Script: docker load -i {artifacts:path}/hello-world.tar
 Run:
 Script: docker run --rm hello-world

Run a Docker container 1250

AWS IoT Greengrass Developer Guide, Version 2

Note

To use interprocess communication (IPC), AWS credentials, or stream manager in your
Docker container component, you must specify additional options when you run the
Docker container. For more information, see the following:

• Use interprocess communication in Docker container components

• Use AWS credentials in Docker container components (Linux)

• Use stream manager in Docker container components (Linux)

3. Test the component to verify that it works as expected.

After you deploy the component locally, you can run the docker container ls command to
verify that your container runs.

docker container ls

4. When the component is ready, upload the Docker image archive to an S3 bucket, and add its
URI to the component recipe. Then, you can upload the component to AWS IoT Greengrass to
deploy to other core devices. For more information, see Publish components to deploy to your
core devices.

When you're done, the component recipe should look like the following example.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.MyS3DockerComponent",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "A component that runs a Docker container from an
 image in an S3 bucket.",
 "ComponentPublisher": "Amazon",
 "Manifests": [
 {
 "Platform": {
 "os": "linux"
 },
 "Lifecycle": {

Run a Docker container 1251

https://docs.docker.com/engine/reference/commandline/container_ls/

AWS IoT Greengrass Developer Guide, Version 2

 "install": {
 "Script": "docker load -i {artifacts:path}/hello-world.tar"
 },
 "Run": {
 "Script": "docker run --rm hello-world"
 }
 },
 "Artifacts": [
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.MyDockerComponent/1.0.0/hello-world.tar"
 }
]
 }
]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.MyS3DockerComponent
ComponentVersion: '1.0.0'
ComponentDescription: 'A component that runs a Docker container from an image in
 an S3 bucket.'
ComponentPublisher: Amazon
Manifests:
 - Platform:
 os: linux
 Lifecycle:
 install:
 Script: docker load -i {artifacts:path}/hello-world.tar
 Run:
 Script: docker run --rm hello-world
 Artifacts:
 - URI: s3://amzn-s3-demo-bucket/artifacts/
com.example.MyDockerComponent/1.0.0/hello-world.tar

Use interprocess communication in Docker container components

You can use the Greengrass interprocess communication (IPC) library in the AWS IoT Device SDK to
communicate with the Greengrass nucleus, other Greengrass components, and AWS IoT Core. For

Run a Docker container 1252

AWS IoT Greengrass Developer Guide, Version 2

more information, see Use the AWS IoT Device SDK to communicate with the Greengrass nucleus,
other components, and AWS IoT Core.

To use IPC in a Docker container component, you must run the Docker container with the following
parameters:

• Mount the IPC socket in the container. The Greengrass nucleus provides the IPC socket file path
in the AWS_GG_NUCLEUS_DOMAIN_SOCKET_FILEPATH_FOR_COMPONENT environment variable.

• Set the SVCUID and AWS_GG_NUCLEUS_DOMAIN_SOCKET_FILEPATH_FOR_COMPONENT
environment variables to the values that the Greengrass nucleus provides to components. Your
component uses these environment variables to authenticate connections to the Greengrass
nucleus.

Example Example recipe: Publish an MQTT message to AWS IoT Core (Python)

The following recipe defines an example Docker container component that publishes an MQTT
message to AWS IoT Core. This recipe has the following properties:

• An authorization policy (accessControl) that allows the component to publish MQTT
messages to AWS IoT Core on all topics. For more information, see Authorize components to
perform IPC operations and AWS IoT Core MQTT IPC authorization.

• A component artifact that specifies a Docker image as a TAR archive in Amazon S3.

• A lifecycle install script that loads the Docker image from the TAR archive.

• A lifecycle run script that runs a Docker container from the image. The Docker run command has
the following arguments:

• The -v argument mounts the Greengrass IPC socket in the container.

• The first two -e arguments set the required environment variables in the Docker container.

• The additional -e arguments set environment variables used by this example.

• The --rm argument cleans up the container when it exits.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.python.docker.PublishToIoTCore",
 "ComponentVersion": "1.0.0",

Run a Docker container 1253

https://docs.docker.com/engine/reference/run/

AWS IoT Greengrass Developer Guide, Version 2

 "ComponentDescription": "Uses interprocess communication to publish an MQTT
 message to IoT Core.",
 "ComponentPublisher": "Amazon",
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "topic": "test/topic/java",
 "message": "Hello, World!",
 "qos": "1",
 "accessControl": {
 "aws.greengrass.ipc.mqttproxy": {
 "com.example.python.docker.PublishToIoTCore:pubsub:1": {
 "policyDescription": "Allows access to publish to IoT Core on all
 topics.",
 "operations": [
 "aws.greengrass#PublishToIoTCore"
],
 "resources": [
 "*"
]
 }
 }
 }
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "all"
 },
 "Lifecycle": {
 "install": "docker load -i {artifacts:path}/publish-to-iot-core.tar",
 "Run": "docker run -v $AWS_GG_NUCLEUS_DOMAIN_SOCKET_FILEPATH_FOR_COMPONENT:
$AWS_GG_NUCLEUS_DOMAIN_SOCKET_FILEPATH_FOR_COMPONENT -e SVCUID -e
 AWS_GG_NUCLEUS_DOMAIN_SOCKET_FILEPATH_FOR_COMPONENT -e MQTT_TOPIC=
\"{configuration:/topic}\" -e MQTT_MESSAGE=\"{configuration:/message}\" -e MQTT_QOS=
\"{configuration:/qos}\" --rm publish-to-iot-core"
 },
 "Artifacts": [
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.python.docker.PublishToIoTCore/1.0.0/publish-to-iot-core.tar"
 }
]
 }

Run a Docker container 1254

AWS IoT Greengrass Developer Guide, Version 2

]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.python.docker.PublishToIoTCore
ComponentVersion: 1.0.0
ComponentDescription: Uses interprocess communication to publish an MQTT message to
 IoT Core.
ComponentPublisher: Amazon
ComponentConfiguration:
 DefaultConfiguration:
 topic: 'test/topic/java'
 message: 'Hello, World!'
 qos: '1'
 accessControl:
 aws.greengrass.ipc.mqttproxy:
 'com.example.python.docker.PublishToIoTCore:pubsub:1':
 policyDescription: Allows access to publish to IoT Core on all topics.
 operations:
 - 'aws.greengrass#PublishToIoTCore'
 resources:
 - '*'
Manifests:
 - Platform:
 os: all
 Lifecycle:
 install: 'docker load -i {artifacts:path}/publish-to-iot-core.tar'
 Run: |
 docker run \
 -v $AWS_GG_NUCLEUS_DOMAIN_SOCKET_FILEPATH_FOR_COMPONENT:
$AWS_GG_NUCLEUS_DOMAIN_SOCKET_FILEPATH_FOR_COMPONENT \
 -e SVCUID \
 -e AWS_GG_NUCLEUS_DOMAIN_SOCKET_FILEPATH_FOR_COMPONENT \
 -e MQTT_TOPIC="{configuration:/topic}" \
 -e MQTT_MESSAGE="{configuration:/message}" \
 -e MQTT_QOS="{configuration:/qos}" \
 --rm publish-to-iot-core
 Artifacts:
 - URI: s3://amzn-s3-demo-bucket/artifacts/
com.example.python.docker.PublishToIoTCore/1.0.0/publish-to-iot-core.tar

Run a Docker container 1255

AWS IoT Greengrass Developer Guide, Version 2

Use AWS credentials in Docker container components (Linux)

You can use the token exchange service component to interact with AWS services in Greengrass
components. This component provides AWS credentials from the core device's token exchange role
using a local container server. For more information, see Interact with AWS services.

Note

The example in this section works only on Linux core devices.

To use AWS credentials from the token exchange service in a Docker container component, you
must run the Docker container with the following parameters:

• Provide access to the host network using the --network=host argument. This option enables
the Docker container to connect to the local token exchange service to retrieve AWS credentials.
This argument works on only Docker for Linux.

Warning

This option gives the container access to all local network interfaces on the host, so this
option is less secure than if you run Docker containers without this access to the host
network. Consider this when you develop and run Docker container components that use
this option. For more information, see Network: host in the Docker Documentation.

• Set the AWS_CONTAINER_CREDENTIALS_FULL_URI and
AWS_CONTAINER_AUTHORIZATION_TOKEN environment variables to the values that the
Greengrass nucleus provides to components. AWS SDKs use these environment variables to
retrieve AWS credentials.

Example Example recipe: List S3 buckets in a Docker container component (Python)

The following recipe defines an example Docker container component that lists the S3 buckets in
your AWS account. This recipe has the following properties:

• The token exchange service component as a dependency. This dependency enables the
component to retrieve AWS credentials to interact with other AWS services.

• A component artifact that specifies a Docker image as a tar archive in Amazon S3.

Run a Docker container 1256

https://docs.docker.com/engine/reference/run/#network-host

AWS IoT Greengrass Developer Guide, Version 2

• A lifecycle install script that loads the Docker image from the TAR archive.

• A lifecycle run script that runs a Docker container from the image. The Docker run command has
the following arguments:

• The --network=host argument provides the container access to the host network, so the
container can connect to the token exchange service.

• The -e argument sets the required environment variables in the Docker container.

• The --rm argument cleans up the container when it exits.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.python.docker.ListS3Buckets",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "Uses the token exchange service to lists your S3
 buckets.",
 "ComponentPublisher": "Amazon",
 "ComponentDependencies": {
 "aws.greengrass.TokenExchangeService": {
 "VersionRequirement": "^2.0.0",
 "DependencyType": "HARD"
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "linux"
 },
 "Lifecycle": {
 "install": "docker load -i {artifacts:path}/list-s3-buckets.tar",
 "Run": "docker run --network=host -e AWS_CONTAINER_AUTHORIZATION_TOKEN -e
 AWS_CONTAINER_CREDENTIALS_FULL_URI --rm list-s3-buckets"
 },
 "Artifacts": [
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.python.docker.ListS3Buckets/1.0.0/list-s3-buckets.tar"
 }
]
 }
]

Run a Docker container 1257

https://docs.docker.com/engine/reference/run/

AWS IoT Greengrass Developer Guide, Version 2

}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.python.docker.ListS3Buckets
ComponentVersion: 1.0.0
ComponentDescription: Uses the token exchange service to lists your S3 buckets.
ComponentPublisher: Amazon
ComponentDependencies:
 aws.greengrass.TokenExchangeService:
 VersionRequirement: ^2.0.0
 DependencyType: HARD
Manifests:
 - Platform:
 os: linux
 Lifecycle:
 install: 'docker load -i {artifacts:path}/list-s3-buckets.tar'
 Run: |
 docker run \
 --network=host \
 -e AWS_CONTAINER_AUTHORIZATION_TOKEN \
 -e AWS_CONTAINER_CREDENTIALS_FULL_URI \
 --rm list-s3-buckets
 Artifacts:
 - URI: s3://amzn-s3-demo-bucket/artifacts/
com.example.python.docker.ListS3Buckets/1.0.0/list-s3-buckets.tar

Use stream manager in Docker container components (Linux)

You can use the stream manager component to manage data streams in Greengrass components.
This component enables you to process data streams and transfer high-volume IoT data to the
AWS Cloud. AWS IoT Greengrass provides a stream manager SDK that you use to interact with the
stream manager component. For more information, see Manage data streams on Greengrass core
devices.

Note

The example in this section works only on Linux core devices.

Run a Docker container 1258

AWS IoT Greengrass Developer Guide, Version 2

To use the stream manager SDK in a Docker container component, you must run the Docker
container with the following parameters:

• Provide access to the host network using the --network=host argument. This option
enables the Docker container to interact with the stream manager component over a local TLS
connection. This argument works on only Docker for Linux

Warning

This option gives the container access to all local network interfaces on the host, so this
option is less secure than if you run Docker containers without this access to the host
network. Consider this when you develop and run Docker container components that use
this option. For more information, see Network: host in the Docker Documentation.

• If you configure the stream manager component to require authentication, which is the default
behavior, set the AWS_CONTAINER_CREDENTIALS_FULL_URI environment variable to the value
that the Greengrass nucleus provides to components. For more information, see stream manager
configuration.

• If you configure the stream manager component to use a non-default port, use interprocess
communication (IPC) to get the port from the stream manager component configuration. You
must run the Docker container with additional options to use IPC. For more information, see the
following:

• Connect to stream manager in application code

• Use interprocess communication in Docker container components

Example Example recipe: Stream a file to an S3 bucket in a Docker container component
(Python)

The following recipe defines an example Docker container component that creates a file and
streams it to an S3 bucket. This recipe has the following properties:

• The stream manager component as a dependency. This dependency enables the component to
use the stream manager SDK to interact with the stream manager component.

• A component artifact that specifies a Docker image as a TAR archive in Amazon S3.

• A lifecycle install script that loads the Docker image from the TAR archive.

• A lifecycle run script that runs a Docker container from the image. The Docker run command has
the following arguments:

Run a Docker container 1259

https://docs.docker.com/engine/reference/run/#network-host
https://docs.docker.com/engine/reference/run/

AWS IoT Greengrass Developer Guide, Version 2

• The --network=host argument provides the container access to the host network, so the
container can connect to the stream manager component.

• The first -e argument sets the required AWS_CONTAINER_AUTHORIZATION_TOKEN
environment variable in the Docker container.

• The additional -e arguments set environment variables used by this example.

• The -v argument mounts the component's work folder in the container. This example creates a
file in the work folder to upload that file to Amazon S3 using stream manager.

• The --rm argument cleans up the container when it exits.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.python.docker.StreamFileToS3",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "Creates a text file and uses stream manager to stream the
 file to S3.",
 "ComponentPublisher": "Amazon",
 "ComponentDependencies": {
 "aws.greengrass.StreamManager": {
 "VersionRequirement": "^2.0.0",
 "DependencyType": "HARD"
 }
 },
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "bucketName": ""
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "linux"
 },
 "Lifecycle": {
 "install": "docker load -i {artifacts:path}/stream-file-to-s3.tar",
 "Run": "docker run --network=host -e AWS_CONTAINER_AUTHORIZATION_TOKEN
 -e BUCKET_NAME=\"{configuration:/bucketName}\" -e WORK_PATH=\"{work:path}\" -v
 {work:path}:{work:path} --rm stream-file-to-s3"
 },

Run a Docker container 1260

AWS IoT Greengrass Developer Guide, Version 2

 "Artifacts": [
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.python.docker.StreamFileToS3/1.0.0/stream-file-to-s3.tar"
 }
]
 }
]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.python.docker.StreamFileToS3
ComponentVersion: 1.0.0
ComponentDescription: Creates a text file and uses stream manager to stream the file
 to S3.
ComponentPublisher: Amazon
ComponentDependencies:
 aws.greengrass.StreamManager:
 VersionRequirement: ^2.0.0
 DependencyType: HARD
ComponentConfiguration:
 DefaultConfiguration:
 bucketName: ''
Manifests:
 - Platform:
 os: linux
 Lifecycle:
 install: 'docker load -i {artifacts:path}/stream-file-to-s3.tar'
 Run: |
 docker run \
 --network=host \
 -e AWS_CONTAINER_AUTHORIZATION_TOKEN \
 -e BUCKET_NAME="{configuration:/bucketName}" \
 -e WORK_PATH="{work:path}" \
 -v {work:path}:{work:path} \
 --rm stream-file-to-s3
 Artifacts:
 - URI: s3://amzn-s3-demo-bucket/artifacts/
com.example.python.docker.StreamFileToS3/1.0.0/stream-file-to-s3.tar

Run a Docker container 1261

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass component recipe reference

The component recipe is a file that defines a component's details, dependencies, artifacts, and
lifecycles. The component lifecycle specifies the commands to run to install, run, and shut down the
component, for example. The AWS IoT Greengrass core uses the lifecycles that you define in the
recipe to install and run components. The AWS IoT Greengrass service uses the recipe to identify
the dependencies and artifacts to deploy to your core devices when you deploy the component.

In the recipe, you can define unique dependencies and lifecycles for each platform that a
component supports. You can use this capability to deploy a component to devices with multiple
platforms that have different requirements. You can also use this to prevent AWS IoT Greengrass
from installing a component on devices that don't support it.

Each recipe contains a list of manifests. Each manifest specifies a set of platform requirements and
the lifecycle and artifacts to use for core devices whose platform meets those requirements. The
core device uses the first manifest with platform requirements that the device meets. Specify a
manifest without any platform requirements to match any core device.

You can also specify a global lifecycle that isn't in a manifest. In the global lifecycle, you can use
selection keys that identify sub-sections of the lifecycle. Then, you can specify these selection
keys within a manifest to use those sections of the global lifecycle in addition to the manifest's
lifecycle. The core device uses the manifest's selection keys only if the manifest doesn't define
a lifecycle. You can use the all selection in a manifest to match sections of the global lifecycle
without selection keys.

After the AWS IoT Greengrass Core software selects a manifest that matches the core device, it
does the following to identify the lifecycle steps to use:

• If the selected manifest defines a lifecycle, the core device uses that lifecycle.

• If the selected manifest doesn't define a lifecycle, the core device uses the global lifecycle. The
core device does the following to identify which sections of the global lifecycle to use:

• If the manifest defines selection keys, the core device uses the sections of the global lifecycle
that contain the manifest's selection keys.

• If the manifest doesn't define selection keys, the core device uses the sections of the global
lifecycle that don't have selection keys. This behavior is equivalent to a manifest that defines
the all selection.

Recipe reference 1262

AWS IoT Greengrass Developer Guide, Version 2

Important

A core device must match least one manifest's platform requirements to install the
component. If no manifest matches the core device, then the AWS IoT Greengrass Core
software doesn't install the component and the deployment fails.

You can define recipes in JSON or YAML format. The recipe examples section includes recipes in
each format.

Topics

• Recipe validation

• Recipe format

• Recipe variables

• Recipe examples

Recipe validation

Greengrass validates a JSON or YAML component recipe when creating a component version.
This recipe validation checks your JSON or YAML component recipe for common errors in order
to prevent potential deployment issues. The validation checks the recipe for common errors (e.g.,
missing commas, braces, and fields) and to make sure the recipe is well-formed.

If you receive a recipe validation error message, check your recipe for any missing commas, braces,
or fields. Verify that you are not missing any fields by looking at the recipe format.

Recipe format

When you define a recipe for a component, you specify the following information in the recipe
document. The same structure applies to recipes in YAML and JSON formats.

RecipeFormatVersion

The template version for the recipe. Choose the following option:

• 2020-01-25

Recipe reference 1263

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/YAML

AWS IoT Greengrass Developer Guide, Version 2

ComponentName

The name of the component that this recipe defines. The component name must be unique in
your AWS account in each Region.

Tips

• Use inverse domain name format to avoid name collision within your
company. For example, if your company owns example.com and you work
on a solar energy project, you can name your Hello World component
com.example.solar.HelloWorld. This helps avoid component name collisions
within your company.

• Avoid the aws.greengrass prefix in your component names. AWS IoT Greengrass
uses this prefix for the public components that it provides. If you choose the same
name as a public component, your component replaces that component. Then, AWS
IoT Greengrass provides your component instead of the public component when
it deploys components with a dependency on that public component. This feature
enables you to override the behavior of public components, but it can also break
other components if you don't intend to override a public component.

ComponentVersion

The version of the component. The maximum value for the major, minor, and patch values is
999999.

Note

AWS IoT Greengrass uses semantic versions for components. Semantic versions follow
a major.minor.patch number system. For example, version 1.0.0 represents the
first major release for a component. For more information, see the semantic version
specification.

ComponentDescription

(Optional) The description of the component.

Recipe reference 1264

https://semver.org/
https://semver.org/

AWS IoT Greengrass Developer Guide, Version 2

ComponentPublisher

The publisher or author of the component.

ComponentConfiguration

(Optional) An object that defines the configuration or parameters for the component. You
define the default configuration, and then when you deploy the component, you can specify the
configuration object to provide to the component. Component configuration supports nested
parameters and structures. This object contains the following information:

DefaultConfiguration

An object that defines the default configuration for the component. You define the structure
of this object.

Note

AWS IoT Greengrass uses JSON for configuration values. JSON specifies a number
type but doesn't differentiate between integers and floats. As a result, configuration
values might convert to floats in AWS IoT Greengrass. To ensure that your
component uses the correct data type, we recommend that you define numeric
configuration values as strings. Then, have your component parse them as integers
or floats. This ensures that your configuration values have the same type in the
configuration and on your core device.

ComponentDependencies

(Optional) A dictionary of objects that each define a component dependency for the
component. The key for each object identifies the name of the component dependency. AWS
IoT Greengrass installs component dependencies when the component installs. AWS IoT
Greengrass waits for dependencies to start before it starts the component. Each object contains
the following information:

VersionRequirement

The npm-style semantic version constraint that defines the compatible component versions
for this dependency. You can specify a version or a range of versions. For more information,
see the npm semantic version calculator.

Recipe reference 1265

https://semver.npmjs.com/

AWS IoT Greengrass Developer Guide, Version 2

DependencyType

(Optional) The type of this dependency. Choose from the following options.

• SOFT – The component doesn't restart if the dependency changes state.

• HARD – The component restarts if the dependency changes state.

Defaults to HARD.

ComponentType

(Optional) The type of component.

Note

We don't recommend that you specify the component type in a recipe. AWS IoT
Greengrass sets the type for you when you create a component.

The type can be one the following types:

• aws.greengrass.generic – The component runs commands or provides artifacts.

• aws.greengrass.lambda – The component runs a Lambda function using the Lambda
launcher component. The ComponentSource parameter specifies the ARN of the Lambda
function that this component runs.

We don't recommend that you use this option, because it's set by AWS IoT Greengrass when
you create a component from a Lambda function. For more information, see Run AWS
Lambda functions.

• aws.greengrass.plugin – The component runs in the same Java Virtual Machine (JVM) as
the Greengrass nucleus. If you deploy or restart a plugin component, the Greengrass nucleus
restarts.

Plugin components use the same log file as the Greengrass nucleus. For more information,
see Monitor AWS IoT Greengrass logs.

We don't recommend that you use this option in component recipes, because it's intended
for AWS-provided components written in Java that directly interface with the Greengrass
nucleus. For more information about which public components are plugins, see AWS-provided
components.

Recipe reference 1266

AWS IoT Greengrass Developer Guide, Version 2

• aws.greengrass.nucleus – The nucleus component. For more information, see
Greengrass nucleus.

We don't recommend that you use this option in component recipes. It is intended for the
Greengrass nucleus component, which provides the minimum functionality of the AWS IoT
Greengrass Core software.

Defaults to aws.greengrass.generic when you create a component from a recipe, or
aws.greengrass.lambda when you create a component from a Lambda function.

For more information, see Component types.

ComponentSource

(Optional) The ARN of the Lambda function that a component runs.

We don't recommend that you specify the component source in a recipe. AWS IoT Greengrass
sets this parameter for you when you create a component from a Lambda function. For more
information, see Run AWS Lambda functions.

 Manifests

A list of objects that each define the component's lifecycle, parameters, and requirements
for a platform. If a core device matches multiple manifests' platform requirements, AWS IoT
Greengrass uses the first manifest that the core device matches. To ensure that core devices use
the correct manifest, define the manifests with stricter platform requirements first. A manifest
that applies to all platforms must be the last manifest in the list.

Important

A core device must match least one manifest's platform requirements to install the
component. If no manifest matches the core device, then the AWS IoT Greengrass Core
software doesn't install the component and the deployment fails.

Each object contains the following information:

Name

(Optional) A friendly name for the platform that this manifest defines.

If you omit this parameter, AWS IoT Greengrass creates a name from the platform os and
architecture.

Recipe reference 1267

AWS IoT Greengrass Developer Guide, Version 2

 Platform

(Optional) An object that defines the platform to which this manifest applies. Omit this
parameter to define a manifest that applies to all platforms.

This object specifies key-value pairs about the platform on which a core device runs.
When you deploy this component, the AWS IoT Greengrass Core software compares these
key-value pairs with the platform attributes on the core device. The AWS IoT Greengrass
Core software always defines os and architecture, and it might define additional
attributes. You can specify custom platform attributes for a core device when you deploy the
Greengrass nucleus component. For more information, see the platform overrides parameter
of the Greengrass nucleus component.

For each key-value pair, you can specify one of the following values:

• An exact value, such as linux or windows. Exact values must start with a letter or a
number.

• *, which matches any value. This also matches when a value isn't present.

• A Java-style regular expression, such as /windows|linux/. The regular expression must
start and end with a slash character (/). For example, the regular expression /.+/ matches
any non-blank value.

This object contains the following information:

runtime

The Greengrass nucleus runtime for the platform that this manifest supports. When
defining multiple manifests with platform runtime, The supported runtime values in a
recipe are aws_nucleus_lite and * only. To target a classic device, runtime field MUST
NOT be specified in the the recipe. Supported Greengrass Nucleus runtimes include the
following values:

• *

• aws_nucleus_lite

os

(Optional) The name of the operating system for the platform that this manifest
supports. Common platforms include the following values:

• linux

• windows

Recipe reference 1268

https://docs.aws.amazon.com/greengrass/v2/developerguide/how-it-works.html#concept-overview

AWS IoT Greengrass Developer Guide, Version 2

• darwin (macOS)

architecture

(Optional) The processor architecture for the platform that this manifest supports.
Common architectures include the following values:

• amd64

• arm

• aarch64

• x86

architecture.detail

(Optional) The processor architecture detail for the platform that this manifest supports.
Common architecture details include the following values:

• arm61

• arm71

• arm81

key

(Optional) A platform attribute that you define for this manifest. Replace Key with the
name of the platform attribute. The AWS IoT Greengrass Core software matches this
platform attribute with the key-value pairs that you specify in the Greengrass nucleus
component configuration. For more information, see the platform overrides parameter of
the Greengrass nucleus component.

Tip

Use inverse domain name format to avoid name collision within your
company. For example, if your company owns example.com and you
work on a radio project, you can name a custom platform attribute
com.example.radio.RadioModule. This helps avoid platform attribute name
collisions within your company.

For example, you might define a platform attribute,
com.example.radio.RadioModule, to specify a different manifest based on which
radio module is available on a core device. Each manifest can include different artifacts

Recipe reference 1269

AWS IoT Greengrass Developer Guide, Version 2

that apply to different hardware configurations, so that you deploy the minimal set of
software to the core device.

 Lifecycle

An object or string that defines how to install and run the component on the platform that
this manifest defines. You can also define a global lifecycle that applies to all platforms. The
core device uses the global lifecycle only if the manifest to use doesn't specify a lifecycle.

Note

You define this lifecycle within a manifest. The lifecycle steps that you specify here
apply to only the platform that this manifest defines. You can also define a global
lifecycle that applies to all platforms.

This object or string contains the following information:

 Setenv

(Optional) A dictionary of environment variables to provide to all lifecycle scripts. You
can override these environment variables with Setenv in each lifecycle script.

 install

(Optional) An object or string that defines the script to run when the component installs.
The AWS IoT Greengrass Core software also runs this lifecycle step each time the
software launches.

If the install script exits with a success code, the component enters the INSTALLED
state.

This object or string contains the following information:

Script

The script to run.

RequiresPrivilege

(Optional) You can run the script with root privileges. If you set this option to true,
then the AWS IoT Greengrass Core software runs this lifecycle script as root instead of
as the system user that you configure to run this component. Defaults to false.

Recipe reference 1270

AWS IoT Greengrass Developer Guide, Version 2

Skipif

(Optional) The check to determine whether or not to run the script. You can define to
check if an executable is on the path or if a file exists. If the output is true, then the
AWS IoT Greengrass Core software skips the step. Choose one of the following checks:

• onpath runnable – Check if a runnable is on the system path. For example, use
onpath python3 to skip this lifecycle step if Python 3 is available.

• exists file – Check if a file exists. For example, use exists /tmp/my-
configuration.db to skip this lifecycle step if /tmp/my-configuration.db is
present.

Timeout

(Optional) The maximum amount of time in seconds that the script can run before the
AWS IoT Greengrass Core software terminates the process.

Default: 120 seconds

Setenv

(Optional) The dictionary of environment variables to provide to the script.
These environment variables override the variables that you provide in
Lifecycle.Setenv.

 run

(Optional) An object or string that defines the script to run when the component starts.

The component enters the RUNNING state when this lifecycle step runs. If the run script
exits with a success code, the component enters the STOPPING state. If a shutdown
script is specified, it runs; otherwise the component enters the FINISHED state.

Components that depend on this component start when this lifecycle step runs. To run a
background process, such as a service that dependent components use, use the startup
lifecycle step instead.

When you deploy components with a run lifecycle, the core device can report the
deployment as complete as soon as this lifecycle script runs. As a result, the deployment
can be complete and successful even if the run lifecycle script fails soon after running. If
you want the deployment status to depend on the result of the component's start script,
use the startup lifecycle step instead.

Recipe reference 1271

AWS IoT Greengrass Developer Guide, Version 2

Note

You can define only one startup or run lifecycle.

This object or string contains the following information:

Script

The script to run.

RequiresPrivilege

(Optional) You can run the script with root privileges. If you set this option to true,
then the AWS IoT Greengrass Core software runs this lifecycle script as root instead of
as the system user that you configure to run this component. Defaults to false.

Skipif

(Optional) The check to determine whether or not to run the script. You can define to
check if an executable is on the path or if a file exists. If the output is true, then the
AWS IoT Greengrass Core software skips the step. Choose one of the following checks:

• onpath runnable – Check if a runnable is on the system path. For example, use
onpath python3 to skip this lifecycle step if Python 3 is available.

• exists file – Check if a file exists. For example, use exists /tmp/my-
configuration.db to skip this lifecycle step if /tmp/my-configuration.db is
present.

Timeout

(Optional) The maximum amount of time in seconds that the script can run before the
AWS IoT Greengrass Core software terminates the process.

This lifecycle step doesn't timeout by default. If you omit this timeout, the run script
runs until it exits.

Setenv

(Optional) The dictionary of environment variables to provide to the script.
These environment variables override the variables that you provide in
Lifecycle.Setenv.

Recipe reference 1272

AWS IoT Greengrass Developer Guide, Version 2

 startup

(Optional) An object or string that defines the background process to run when the
component starts.

Use startup to run a command that must exit successfully or update the component's
status to RUNNING before dependent components can start. Use the UpdateState IPC
operation to set the component's status to RUNNING or ERRORED when the component
starts a script that doesn't exit. For example, you might define a startup step that starts
the MySQL process with /etc/init.d/mysqld start.

The component enters the STARTING state when this lifecycle step runs. If the startup
script exits with a success code, the component enters the RUNNING state. Then,
dependent components can start.

When you deploy components with a startup lifecycle, the core device can report
the deployment as complete after this lifecycle script exits or reports its state. In other
words, the deployment's status is IN_PROGRESS until all components' startup scripts exit
or report a state.

Note

You can define only one startup or run lifecycle.

This object or string contains the following information:

Script

The script to run.

RequiresPrivilege

(Optional) You can run the script with root privileges. If you set this option to true,
then the AWS IoT Greengrass Core software runs this lifecycle script as root instead of
as the system user that you configure to run this component. Defaults to false.

Skipif

(Optional) The check to determine whether or not to run the script. You can define to
check if an executable is on the path or if a file exists. If the output is true, then the
AWS IoT Greengrass Core software skips the step. Choose one of the following checks:

Recipe reference 1273

AWS IoT Greengrass Developer Guide, Version 2

• onpath runnable – Check if a runnable is on the system path. For example, use
onpath python3 to skip this lifecycle step if Python 3 is available.

• exists file – Check if a file exists. For example, use exists /tmp/my-
configuration.db to skip this lifecycle step if /tmp/my-configuration.db is
present.

Timeout

(Optional) The maximum amount of time in seconds that the script can run before the
AWS IoT Greengrass Core software terminates the process.

Default: 120 seconds

Setenv

(Optional) The dictionary of environment variables to provide to the script.
These environment variables override the variables that you provide in
Lifecycle.Setenv.

 shutdown

(Optional) An object or string that defines the script to run when the component shuts
down. Use the shutdown lifecycle to execute code that you want to run when the
component is in the STOPPING state. The shutdown lifecycle can be used to stop a
process started by the startup or run scripts.

If you start a background process in startup, use the shutdown step to stop that
process when the component shuts down. For example, you might define a shutdown
step that stops the MySQL process with /etc/init.d/mysqld stop.

The shutdown script runs after the component enters the STOPPING state. If the script
completes successfully, the component enters the FINISHED state.

This object or string contains the following information:

Script

The script to run.

RequiresPrivilege

(Optional) You can run the script with root privileges. If you set this option to true,
then the AWS IoT Greengrass Core software runs this lifecycle script as root instead of
as the system user that you configure to run this component. Defaults to false.

Recipe reference 1274

AWS IoT Greengrass Developer Guide, Version 2

Skipif

(Optional) The check to determine whether or not to run the script. You can define to
check if an executable is on the path or if a file exists. If the output is true, then the
AWS IoT Greengrass Core software skips the step. Choose one of the following checks:

• onpath runnable – Check if a runnable is on the system path. For example, use
onpath python3 to skip this lifecycle step if Python 3 is available.

• exists file – Check if a file exists. For example, use exists /tmp/my-
configuration.db to skip this lifecycle step if /tmp/my-configuration.db is
present.

Timeout

(Optional) The maximum amount of time in seconds that the script can run before the
AWS IoT Greengrass Core software terminates the process.

Default: 15 seconds.

Setenv

(Optional) The dictionary of environment variables to provide to the script.
These environment variables override the variables that you provide in
Lifecycle.Setenv.

 recover

(Optional) An object or string that defines the script to run when the component
encounters an error.

This step runs when a component enters the ERRORED state. If the component becomes
ERRORED three times without successfully recovering, the component changes to the
BROKEN state. To fix a BROKEN component, you must deploy it again.

This object or string contains the following information:

Script

The script to run.

RequiresPrivilege

(Optional) You can run the script with root privileges. If you set this option to true,
then the AWS IoT Greengrass Core software runs this lifecycle script as root instead of
as the system user that you configure to run this component. Defaults to false.

Recipe reference 1275

AWS IoT Greengrass Developer Guide, Version 2

Skipif

(Optional) The check to determine whether or not to run the script. You can define to
check if an executable is on the path or if a file exists. If the output is true, then the
AWS IoT Greengrass Core software skips the step. Choose one of the following checks:

• onpath runnable – Check if a runnable is on the system path. For example, use
onpath python3 to skip this lifecycle step if Python 3 is available.

• exists file – Check if a file exists. For example, use exists /tmp/my-
configuration.db to skip this lifecycle step if /tmp/my-configuration.db is
present.

Timeout

(Optional) The maximum amount of time in seconds that the script can run before the
AWS IoT Greengrass Core software terminates the process.

Default: 60 seconds.

Setenv

(Optional) The dictionary of environment variables to provide to the script.
These environment variables override the variables that you provide in
Lifecycle.Setenv.

 bootstrap

(Optional) An object or string that defines a script that requires the AWS IoT Greengrass
Core software or core device to restart. This lets you develop a component that performs
a restart after it installs operating system updates or runtime updates, for example.

Note

To install updates or dependencies that don't require the AWS IoT Greengrass
Core software or device to restart, use the install lifecycle.

This lifecycle step runs before the install lifecycle step in the following cases when the
AWS IoT Greengrass Core software deploys the component:

• The component deploys to the core device for the first time.

• The component version changes.

• The bootstrap script changes as the result of a component configuration update.

Recipe reference 1276

AWS IoT Greengrass Developer Guide, Version 2

After the AWS IoT Greengrass Core software completes the bootstrap step for all
components that have a bootstrap step in a deployment, the software restarts.

Important

You must configure the AWS IoT Greengrass Core software as a system service
to restart the AWS IoT Greengrass Core software or the core device. If you
don't configure the AWS IoT Greengrass Core software as a system service, the
software won't restart. For more information, see Configure the Greengrass
nucleus as a system service.

This object or string contains the following information:

BootstrapOnRollback

Note

When this feature is enabled, BootstrapOnRollback will only run for
components that have either completed or attempted to run the bootstrap
lifecycle steps as part of a failed target deployment. This feature is available
for Greengrass nucleus versions 2.12.0 and later.

(Optional) You can run the bootstrap lifecycle steps as part of a rollback deployment.
If you set this option to true, the bootstrap lifecycle steps defined within a rollback
deployment will run. When a deployment fails, the previous version of the component
bootstrap lifecycle will run again during a rollback deployment.

Defaults to false.

Script

The script to run. The exit code of this script defines the restart instruction. Use the
following exit codes:

• 0 – Don't restart the AWS IoT Greengrass Core software or the core device. The AWS
IoT Greengrass Core software still restarts after all components bootstrap.

• 100 – Request to restart the AWS IoT Greengrass Core software.

• 101 – Request to restart the core device.

Recipe reference 1277

AWS IoT Greengrass Developer Guide, Version 2

Exit codes 100 to 199 are reserved for special behavior. Other exit codes represent
script errors.

RequiresPrivilege

(Optional) You can run the script with root privileges. If you set this option to true,
then the AWS IoT Greengrass Core software runs this lifecycle script as root instead of
as the system user that you configure to run this component. Defaults to false.

Timeout

(Optional) The maximum amount of time in seconds that the script can run before the
AWS IoT Greengrass Core software terminates the process.

Default: 120 seconds

Setenv

(Optional) The dictionary of environment variables to provide to the script.
These environment variables override the variables that you provide in
Lifecycle.Setenv.

 Selections

(Optional) A list of selection keys that specify sections of the global lifecycle to run for this
manifest. In the global lifecycle, you can define lifecycle steps with selection keys at any
level to select sub-sections of the lifecycle. Then, the core device uses those sections that
match the selection keys in this manifest. For more information, see the global lifecycle
examples.

Important

The core device uses the selections from the global lifecycle only if this manifest
doesn't define a lifecycle.

You can specify the all selection key to run sections of the global lifecycle that don't have
selection keys.

 Artifacts

(Optional) A list of objects that each define a binary artifact for the component on the
platform that this manifest defines. For example, you can define code or images as artifacts.

Recipe reference 1278

AWS IoT Greengrass Developer Guide, Version 2

When the component deploys, the AWS IoT Greengrass Core software downloads the
artifact to a folder on the core device. You can also define artifacts as archive files that the
software extracts after it downloads them.

You can use recipe variables to get the paths to the folders where the artifacts install on the
core device.

• Normal files – Use the artifacts:path recipe variable to get the path to the folder that
contains the artifacts. For example, specify {artifacts:path}/my_script.py in a
recipe to get the path to an artifact that has the URI s3://amzn-s3-demo-bucket/
path/to/my_script.py.

• Extracted archives – Use the artifacts:decompressedPath recipe variable to get the path
to the folder that contains the extracted archive artifacts. The AWS IoT Greengrass Core
software extracts each archive to a folder with the same name as the archive. For example,
specify {artifacts:decompressedPath}/my_archive/my_script.py in a recipe to
get the path to my_script.py in the archive artifact that has the URI s3://amzn-s3-
demo-bucket/path/to/my_archive.zip.

Note

When you develop a component with an archive artifact on a local core device, you
might not have a URI for that artifact. To test your component with an Unarchive
option that extracts the artifact, specify a URI where the file name matches the
name of your archive artifact file. You can specify the URI where you expect to
upload the archive artifact, or you can specify a new placeholder URI. For example,
to extract the my_archive.zip artifact during a local deployment, you can specify
s3://amzn-s3-demo-bucket/my_archive.zip.

Each object contains the following information:

Uri

The URI of an artifact in an S3 bucket. The AWS IoT Greengrass Core software fetches the
artifact from this URI when the component installs, unless the artifact already exists on
the device. Each artifact must have a unique file name within each manifest.

Unarchive

(Optional) The type of archive to unpack. Choose from the following options:

Recipe reference 1279

AWS IoT Greengrass Developer Guide, Version 2

• NONE – The file isn't an archive to unpack. The AWS IoT Greengrass Core software
installs the artifact to a folder on the core device. You can use the artifacts:path recipe
variable to get the path to this folder.

• ZIP – The file is a ZIP archive. The AWS IoT Greengrass Core software extracts
the archive to a folder with the same name as the archive. You can use the
artifacts:decompressedPath recipe variable to get the path to the folder that contains
this folder.

Defaults to NONE.

 Permission

(Optional) An object that defines the access permissions to set for this artifact file. You
can set the read permission and the execute permission.

Note

You can't set the write permission, because the AWS IoT Greengrass Core
software doesn't allow components to edit artifact files in the artifacts folder.
To edit an artifact file in a component, copy it to another location or publish and
deploy a new artifact file.

If you define an artifact as an archive to unpack, then the AWS IoT Greengrass Core
software sets these access permissions on the files that it unpacks from the archive. The
AWS IoT Greengrass Core software sets the folder's access permissions to ALL for Read
and Execute. This allows components to view the unpacked files in the folder. To set
permissions on individual files from the archive, you can set the permissions in the install
lifecycle script.

This object contains the following information:

Read

(Optional) The read permission to set for this artifact file. To allow other components
to access this artifact, such as components that depend on this component, specify
ALL. Choose from the following options:

• NONE – The file isn't readable.

• OWNER – The file is readable by the system user that you configure to run this
component.

Recipe reference 1280

AWS IoT Greengrass Developer Guide, Version 2

• ALL – The file is readable by all users.

Defaults to OWNER.

Execute

(Optional) The run permission to set for this artifact file. The Execute permission
implies the Read permission. For example, if you specify ALL for Execute, then all
users can read and run this artifact file.

Choose from the following options:

• NONE – The file isn't runnable.

• OWNER – The file is runnable by the system user that you configure to run the
component.

• ALL – The file is runnable by all users.

Defaults to NONE.

Digest

(Read-only) The cryptographic digest hash of the artifact. When you create a component,
AWS IoT Greengrass uses a hash algorithm to calculate a hash of the artifact file. Then,
when you deploy the component, the Greengrass nucleus calculates the hash of the
downloaded artifact and compares the hash with this digest to verify the artifact before
installation. If the hash doesn't match the digest, the deployment fails.

If you set this parameter, AWS IoT Greengrass replaces the value that you set when you
create the component.

Algorithm

(Read-only) The hash algorithm that AWS IoT Greengrass uses to calculate the digest
hash of the artifact.

If you set this parameter, AWS IoT Greengrass replaces the value that you set when you
create the component.

 Lifecycle

An object that defines how to install and run the component. The core device uses the global
lifecycle only if the manifest to use doesn't specify a lifecycle.

Recipe reference 1281

AWS IoT Greengrass Developer Guide, Version 2

Note

You define this lifecycle outside a manifest. You can also define a manifest lifecycle that
applies to the platforms that match that manifest.

In the global lifecycle, you can specify lifecycles that run for certain selection keys that you
specify in each manifest. Selection keys are strings that identify sections of the global lifecycle
to run for each manifest.

The all selection key is the default on any section without a selection key. This means that
you can specify the all selection key in a manifest to run the sections of the global lifecycle
without selection keys. You don't need to specify the all selection key in the global lifecycle.

If a manifest doesn't define a lifecycle or selection keys, the core device defaults to use the all
selection. This means that in this case, the core device uses the sections of the global lifecycle
that don't use selection keys.

This object contains the same information as the manifest lifecycle, but you can specify
selection keys at any level to select sub-sections of the lifecycle.

Tip

We recommend that you use only lowercase letters for each selection key to avoid
conflicts between selection keys and lifecycle keys. Lifecycle keys start with a capital
letter.

Example Example global lifecycle with top-level selection keys

Lifecycle:
 key1:
 install:
 SkipIf: either onpath executable or exists file
 Script: command1
 key2:
 install:
 Script: command2
 all:
 install:

Recipe reference 1282

AWS IoT Greengrass Developer Guide, Version 2

 Script: command3

Example Example global lifecycle with bottom-level selection keys

Lifecycle:
 install:
 Script:
 key1: command1
 key2: command2
 all: command3

Example Example global lifecycle with multiple levels of selection keys

Lifecycle:
 key1:
 install:
 SkipIf: either onpath executable or exists file
 Script: command1
 key2:
 install:
 Script: command2
 all:
 install:
 Script:
 key3: command3
 key4: command4
 all: command5

Recipe variables

Recipe variables expose information from the current component and nucleus for you to use
in your recipes. For example, you can use a recipe variable to pass component configuration
parameters to an application that you run in a lifecycle script.

You can use recipe variables in the following sections of component recipes:

• Lifecycle definitions.

• Component configuration definitions, if you use Greengrass nucleus v2.6.0 or later and set the
interpolateComponentConfiguration configuration option to true. You can also use recipes
variables when you deploy component configuration updates.

Recipe reference 1283

AWS IoT Greengrass Developer Guide, Version 2

Recipe variables use {recipe_variable} syntax. The curly braces indicate a recipe variable.

AWS IoT Greengrass supports the following recipe variables:

component_dependency_name:configuration:json_pointer

The value of a configuration parameter for the component that this recipe defines or for a
component on which this component depends.

You can use this variable to provide a parameter to a script that you run in the component
lifecycle.

Note

AWS IoT Greengrass supports this recipe variable only in component lifecycle
definitions.

This recipe variable has the following inputs:

• component_dependency_name – (Optional) The name of the component dependency to
query. Omit this segment to query the component that this recipe defines. You can specify
only direct dependencies.

• json_pointer – The JSON pointer to the configuration value to evaluate. JSON pointers
start with a forward slash /. To identify a value in a nested component configuration, use
forward slashes (/) to separate the keys for each level in the configuration. You can use a
number as a key to specify an index in a list. For more information, see the JSON pointer
specification.

AWS IoT Greengrass Core uses JSON pointers for recipes in YAML format.

The JSON pointer can reference the following node types:

• A value node. AWS IoT Greengrass Core replaces the recipe variable with the string
representation of the value. Null values convert to null as a string.

• An object node. AWS IoT Greengrass Core replaces the recipe variable with the serialized
JSON string representation of that object.

• No node. AWS IoT Greengrass Core doesn't replace the recipe variable.

For example, the {configuration:/Message} recipe variable retrieves
the value of the Message key in the component configuration. The

Recipe reference 1284

https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc6901

AWS IoT Greengrass Developer Guide, Version 2

{com.example.MyComponentDependency:configuration:/server/port} recipe
variable retrieves the value of port in the server configuration object of a component
dependency.

 component_dependency_name:artifacts:path

The root path of the artifacts for the component that this recipe defines or for a component on
which this component depends.

When a component installs, AWS IoT Greengrass copies the component's artifacts to the folder
that this variable exposes. You can use this variable to identify the location of a script to run in
the component lifecycle, for example.

The folder at this path is read-only. To modify artifact files, copy the files to another location,
such as the current working directory ($PWD or .). Then, modify the files there.

To read or run an artifact from a component dependency, that artifact's Read or Execute
permission must be ALL. For more information, see the artifact permissions that you define in
the component recipe.

This recipe variable has the following inputs:

• component_dependency_name – (Optional) The name of the component dependency to
query. Omit this segment to query the component that this recipe defines. You can specify
only direct dependencies.

 component_dependency_name:artifacts:decompressedPath

The root path of the decompressed archive artifacts for the component that this recipe defines
or for a component on which this component depends.

When a component installs, AWS IoT Greengrass unpacks the component's archive artifacts to
the folder that this variable exposes. You can use this variable to identify the location of a script
to run in the component lifecycle, for example.

Each artifact unzips to a folder within the decompressed path, where the folder has the same
name as the artifact minus its extension. For example, a ZIP artifact named models.zip
unpacks to the {artifacts:decompressedPath}/models folder.

The folder at this path is read-only. To modify artifact files, copy the files to another location,
such as the current working directory ($PWD or .). Then, modify the files there.

Recipe reference 1285

AWS IoT Greengrass Developer Guide, Version 2

To read or run an artifact from a component dependency, that artifact's Read or Execute
permission must be ALL. For more information, see the artifact permissions that you define in
the component recipe.

This recipe variable has the following inputs:

• component_dependency_name – (Optional) The name of the component dependency to
query. Omit this segment to query the component that this recipe defines. You can specify
only direct dependencies.

 component_dependency_name:work:path

This feature is available for v2.0.4 and later of the Greengrass nucleus component.

The work path for the component that this recipe defines or for a component on which this
component depends. The value of this recipe variable is equivalent to the output of the $PWD
environment variable and the pwd command when run from the context of the component.

You can use this recipe variable to share files between a component and a dependency.

The folder at this path is readable and writable by the component that this recipe defines and
by other components that run as the same user and group.

This recipe variable has the following inputs:

• component_dependency_name – (Optional) The name of the component dependency to
query. Omit this segment to query the component that this recipe defines. You can specify
only direct dependencies.

kernel:rootPath

The AWS IoT Greengrass Core root path.

iot:thingName

This feature is available for v2.3.0 and later of the Greengrass nucleus component.

The name of the core device's AWS IoT thing.

Recipe examples

You can reference the following recipe examples to help you create recipes for your components.

AWS IoT Greengrass curates an index of Greengrass components, called the Greengrass Software
Catalog. This catalog tracks Greengrass components that are developed by the Greengrass

Recipe reference 1286

https://en.wikipedia.org/wiki/Pwd

AWS IoT Greengrass Developer Guide, Version 2

community. From this catalog, you can download, modify, and deploy components to create your
Greengrass applications. For more information, see Community components.

Topics

• Hello World component recipe

• Python runtime component example

• Component recipe that specifies several fields

Hello World component recipe

The following recipe describes a Hello World component that runs a Python script. This component
supports all platforms and accepts a Message parameter that AWS IoT Greengrass passes as an
argument to the Python script. This is the recipe for the Hello World component in the Getting
started tutorial.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.HelloWorld",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "My first AWS IoT Greengrass component.",
 "ComponentPublisher": "Amazon",
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "Message": "world"
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "linux"
 },
 "Lifecycle": {
 "Run": "python3 -u {artifacts:path}/hello_world.py {configuration:/Message}"
 }
 },
 {
 "Platform": {
 "os": "windows"
 },

Recipe reference 1287

AWS IoT Greengrass Developer Guide, Version 2

 "Lifecycle": {
 "Run": "py -3 -u {artifacts:path}/hello_world.py {configuration:/Message}"
 }
 }
]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.HelloWorld
ComponentVersion: '1.0.0'
ComponentDescription: My first AWS IoT Greengrass component.
ComponentPublisher: Amazon
ComponentConfiguration:
 DefaultConfiguration:
 Message: world
Manifests:
 - Platform:
 os: linux
 Lifecycle:
 Run: |
 python3 -u {artifacts:path}/hello_world.py "{configuration:/Message}"
 - Platform:
 os: windows
 Lifecycle:
 Run: |
 py -3 -u {artifacts:path}/hello_world.py "{configuration:/Message}"

Python runtime component example

The following recipe describes a component that installs Python. This component supports 64-bit
Linux devices.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.PythonRuntime",
 "ComponentDescription": "Installs Python 3.7",
 "ComponentPublisher": "Amazon",

Recipe reference 1288

AWS IoT Greengrass Developer Guide, Version 2

 "ComponentVersion": "3.7.0",
 "Manifests": [
 {
 "Platform": {
 "os": "linux",
 "architecture": "amd64"
 },
 "Lifecycle": {
 "install": "apt-get update\napt-get install python3.7"
 }
 }
]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.PythonRuntime
ComponentDescription: Installs Python 3.7
ComponentPublisher: Amazon
ComponentVersion: '3.7.0'
Manifests:
 - Platform:
 os: linux
 architecture: amd64
 Lifecycle:
 install: |
 apt-get update
 apt-get install python3.7

Component recipe that specifies several fields

The following component recipe uses several recipe fields.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.FooService",
 "ComponentDescription": "Complete recipe for AWS IoT Greengrass components",
 "ComponentPublisher": "Amazon",

Recipe reference 1289

AWS IoT Greengrass Developer Guide, Version 2

 "ComponentVersion": "1.0.0",
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "TestParam": "TestValue"
 }
 },
 "ComponentDependencies": {
 "BarService": {
 "VersionRequirement": "^1.1.0",
 "DependencyType": "SOFT"
 },
 "BazService": {
 "VersionRequirement": "^2.0.0"
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "linux",
 "architecture": "amd64"
 },
 "Lifecycle": {
 "install": {
 "Skipif": "onpath git",
 "Script": "sudo apt-get install git"
 },
 "Setenv": {
 "environment_variable1": "variable_value1",
 "environment_variable2": "variable_value2"
 }
 },
 "Artifacts": [
 {
 "Uri": "s3://amzn-s3-demo-bucket/hello_world.zip",
 "Unarchive": "ZIP"
 },
 {
 "Uri": "s3://amzn-s3-demo-bucket/hello_world_linux.py"
 }
]
 },
 {
 "Lifecycle": {
 "install": {

Recipe reference 1290

AWS IoT Greengrass Developer Guide, Version 2

 "Skipif": "onpath git",
 "Script": "sudo apt-get install git",
 "RequiresPrivilege": "true"
 }
 },
 "Artifacts": [
 {
 "Uri": "s3://amzn-s3-demo-bucket/hello_world.py"
 }
]
 }
]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.FooService
ComponentDescription: Complete recipe for AWS IoT Greengrass components
ComponentPublisher: Amazon
ComponentVersion: 1.0.0
ComponentConfiguration:
 DefaultConfiguration:
 TestParam: TestValue
ComponentDependencies:
 BarService:
 VersionRequirement: ^1.1.0
 DependencyType: SOFT
 BazService:
 VersionRequirement: ^2.0.0
Manifests:
 - Platform:
 os: linux
 architecture: amd64
 Lifecycle:
 install:
 SkipIf: onpath git
 Script: sudo apt-get install git
 SetEnv:
 environment_variable1: variable_value1
 environment_variable2: variable_value2
 Artifacts:

Recipe reference 1291

AWS IoT Greengrass Developer Guide, Version 2

 - Uri: 's3://amzn-s3-demo-bucket/hello_world.zip'
 Unarchive: ZIP
 - Uri: 's3://amzn-s3-demo-bucket/hello_world_linux.py'
 - Lifecycle:
 install:
 SkipIf: onpath git
 Script: sudo apt-get install git
 RequiresPrivilege: 'true'
 Artifacts:
 - Uri: 's3://amzn-s3-demo-bucket/hello_world.py'

Component environment variable reference

The AWS IoT Greengrass Core software sets environment variables when it runs lifecycle scripts for
components. You can get these environment variables in your components to get the thing name,
AWS Region, and Greengrass nucleus version. The software also sets environment variables that
your component requires to use the interprocess communication SDK and to interact with AWS
services.

You can also set custom environment variables for your component's lifecycle scripts. For more
information, see Setenv.

The AWS IoT Greengrass Core software sets the following environment variables:

AWS_IOT_THING_NAME

The name of the AWS IoT thing that represents this Greengrass core device.

AWS_REGION

The AWS Region where this Greengrass core device operates.

The AWS SDKs use this environment variable to identify the default Region to use. This variable
is equivalent to AWS_DEFAULT_REGION.

AWS_DEFAULT_REGION

The AWS Region where this Greengrass core device operates.

The AWS CLI uses this environment variable to identify the default Region to use. This variable
is equivalent to AWS_REGION.

Environment variables 1292

AWS IoT Greengrass Developer Guide, Version 2

GGC_VERSION

The version of the Greengrass nucleus component that runs on this Greengrass core device.

GG_ROOT_CA_PATH

This feature is available for v2.5.5 and later of the Greengrass nucleus component.

The path to the root certificate authority (CA) certificate that the Greengrass nucleus uses.

AWS_GG_NUCLEUS_DOMAIN_SOCKET_FILEPATH_FOR_COMPONENT

The path to the IPC socket that components use to communicate with the AWS IoT Greengrass
Core software. For more information, see Use the AWS IoT Device SDK to communicate with the
Greengrass nucleus, other components, and AWS IoT Core.

SVCUID

The secret token that components use to connect to the IPC socket and communicate with the
AWS IoT Greengrass Core software. For more information, see Use the AWS IoT Device SDK to
communicate with the Greengrass nucleus, other components, and AWS IoT Core.

AWS_CONTAINER_AUTHORIZATION_TOKEN

The secret token that components use to retrieve credentials from the token exchange service
component.

AWS_CONTAINER_CREDENTIALS_FULL_URI

The URI that components request to retrieve credentials from the token exchange service
component.

Deploy AWS IoT Greengrass components to devices

You can use AWS IoT Greengrass to deploy components to devices or groups of devices. You use
deployments to define the components and configurations that are sent to the devices. AWS IoT
Greengrass deploys to targets, AWS IoT things or thing groups that represent Greengrass core
devices. AWS IoT Greengrass uses AWS IoT Core jobs to deploy to your core devices. You can
configure how the job rolls out to your devices.

Deploy components to devices 1293

https://docs.aws.amazon.com/iot/latest/developerguide/iot-jobs.html

AWS IoT Greengrass Developer Guide, Version 2

Core device deployments

Each core device runs the components of the deployments for that device. A new deployment to
the same target overwrites the previous deployment to the target. When you create a deployment,
you define the components and configurations to apply to the core device's existing software.

When you revise a deployment for a target, you replace the components from the previous revision
with the components in the new revision. For example, you deploy the Log manager and Secret
manager components to the thing group TestGroup. Then you create another deployment for
TestGroup that specifies only the secret manager component. As a result, the core devices in that
group no longer run the log manager.

Platform dependency resolution

When a core device receives a deployment, it checks to make sure that the components are
compatible with the core device. For example, if you deploy the Firehose to a Windows target, the
deployment will fail.

Component dependency resolution

The core device also checks whether each components dependencies are compatible with
version constraints for deployments of other components to this thing group. Where the version
constraints for a component overlap, Greengrass uses the highest applicable version of the
component. For example:

• You deploy component A to TestGroup. Component A depends on component
com.example.PythonRuntime versions 3.5 - 3.10.

• You then deploy component B to TestGroup. Component B depends on component
com.example.PythonRuntime versions 3.7 to 3.8.

As a result, core devices in TestGroup determine that they can deploy version 3.8 of the
com.example.PythonRuntime component because this version is the highest applicable version
where the version constraints overlap.

Core device deployments 1294

AWS IoT Greengrass Developer Guide, Version 2

You then deploy component C to TestGroup. Component C depends on component
com.example.PythonRuntime versions 2.6 - 2.7. This deployment fails because there's no
component version that meets the constraint 2.6 - 2.7 and 3.7 - 3.8.

Removing a device from a thing group

When you remove a core device from a thing group, the component deployment behavior depends
on the version of the Greengrass nucleus that the core device runs.

2.5.1 and later

When you remove a core device from a thing group, the behavior depends on whether the
AWS IoT policy grants the greengrass:ListThingGroupsForCoreDevice permission.
For more information about this permission and AWS IoT policies for core devices, see Device
authentication and authorization for AWS IoT Greengrass.

• If the AWS IoT policy grants this permission

When you remove a core device from a thing group, AWS IoT Greengrass removes the thing
group's components the next time a deployment is made to the device. If a component on the
device is included in the next deployment, that component is not removed from the device.

• If the AWS IoT policy doesn't grant this permission

When you remove a core device from a thing group, AWS IoT Greengrass doesn't delete that
thing group's components from the device.

To remove a component from a device, use the deployment create command of the
Greengrass CLI. Specify the component to remove with the --remove argument, and specify
the thing group with the --groupId argument.

Removing a device from a thing group 1295

AWS IoT Greengrass Developer Guide, Version 2

2.5.0

When you remove a core device from a thing group, AWS IoT Greengrass removes the thing
group's components the next time a deployment is made to the device. If a component on the
device is included in the next deployment, that component is not removed from the device.

This behavior requires that the core device's AWS IoT policy grants the
greengrass:ListThingGroupsForCoreDevice permission. If a core device doesn't have
this permission, the core device fails to apply deployments. For more information, see Device
authentication and authorization for AWS IoT Greengrass.

2.0.x - 2.4.x

When you remove a core device from a thing group, AWS IoT Greengrass doesn't delete that
thing group's components from the device.

To remove a component from a device, use the deployment create command of the Greengrass
CLI. Specify the component to remove with the --remove argument, and specify the thing
group with the --groupId argument.

Deployments

Deployments are continuous. When you create a deployment, AWS IoT Greengrass rolls out the
deployment to target devices that are online. If a target device isn't online, then it receives the
deployment the next time it connects to AWS IoT Greengrass. When you add a core device to a
target thing group, AWS IoT Greengrass sends the device the latest deployment for that thing
group.

Before a core device deploys a component, by default it notifies each component on the device.
Greengrass components can respond to the notification to defer deployment. You might want
to defer deployment if the device has a low battery level or is running a process that can't be
interrupted. For more information, see Tutorial: Develop a Greengrass component that defers
component updates. When you create a deployment you can configure it to deploy without
notifying components.

Each target thing or thing group can have one deployment at a time. This means that when you
create a deployment for a target, AWS IoT Greengrass no longer deploys the previous revision of
that target's deployment.

Deployments 1296

AWS IoT Greengrass Developer Guide, Version 2

Deployment options

Deployments provide several options that let you control which devices receive an update and how
the update deploys. When you create a deployment, you can configure the following options:

• AWS IoT Greengrass components

Define the components to install and run on the target devices. AWS IoT Greengrass components
are software modules that you deploy and run on Greengrass core devices. Devices receive
components only if the component supports the device's platform. This lets you deploy to
groups of devices even if the target devices run on multiple platforms. If a component doesn't
support the device's platform, the component doesn't deploy to the device.

You can deploy custom components and AWS-provided components to your devices. When
you deploy a component, AWS IoT Greengrass identifies any component dependencies and
deploys them too. For more information, see Develop AWS IoT Greengrass components and
AWS-provided components.

You define the version and configuration update to deploy for each component. The
configuration update specifies how to modify the component's existing configuration on the
core device, or the component's default configuration if the component doesn't exist on the
core device. You can specify which configuration values to reset to default values and the new
configuration values to merge onto the core device. When a core device receives deployments
for different targets, and each deployment specifies compatible component versions, the core
device applies configuration updates in order based on the timestamp of when you create the
deployment. For more information, see Update component configurations.

Important

When you deploy a component, AWS IoT Greengrass installs the latest supported
versions of all of that component's dependencies. Because of this, new patch versions of
AWS-provided public components might be automatically deployed to your core devices
if you add new devices to a thing group, or you update the deployment that targets
those devices. Some automatic updates, such as a nucleus update, can cause your devices
to restart unexpectedly.
To prevent unintended updates for a component that is running on your device, we
recommend that you directly include your preferred version of that component when

Deployment options 1297

AWS IoT Greengrass Developer Guide, Version 2

you create a deployment. For more information about update behavior for AWS IoT
Greengrass Core software, see Update the AWS IoT Greengrass Core software (OTA).

• Deployment policies

Define when it's safe to deploy a configuration and what to do if the deployment fails. You
can specify whether or not to wait for components to report that they can update. You can
also specify whether or not to roll back devices to their previous configuration if they apply a
deployment that fails.

• Stop configuration

Define when and how to stop a deployment. The deployment stops and fails if the criteria that
you define are met. For example, you can configure a deployment to stop if a percentage of
devices fail to apply that deployment after a minimum number of devices receive it.

• Rollout configuration

Define the rate at which a deployments rolls out to the target devices. You can configure an
exponential rate increase with minimum and maximum rate bounds.

• Timeout configuration

Define the maximum amount of time each device has to apply a deployment. If a device exceeds
the duration that you specify, then the device fails to apply the deployment.

Important

Custom components can define artifacts in S3 buckets. When the AWS IoT Greengrass
Core software deploys a component, it downloads the component's artifacts from the
AWS Cloud. Core device roles don't allow access to S3 buckets by default. To deploy
custom components that define artifacts in an S3 bucket, the core device role must grant
permissions to download artifacts from that bucket. For more information, see Allow access
to S3 buckets for component artifacts.

Topics

• Create deployments

• Create subdeployments

Deployment options 1298

AWS IoT Greengrass Developer Guide, Version 2

• Revise deployments

• Cancel deployments

• Check deployment status

Create deployments

You can create a deployment that targets a thing or thing group.

When you create a deployment, you configure the software components to deploy and how the
deployment job rolls out to target devices. You can define the deployment in the JSON file that
you provide to the AWS CLI.

The deployment target determines the devices on which you want to run your components. To
deploy to one core device, specify a thing. To deploy to multiple core devices, specify a thing group
that includes those devices. For more information about how to configure thing groups, see Static
thing groups and Dynamic thing groups in the AWS IoT Developer Guide.

Follow the steps in this section to create a deployment to a target. For more information
about how to update the software components on a target that has a deployment, see Revise
deployments.

Warning

The CreateDeployment operation can uninstall components from core devices. If a
component is present in the previous deployment and not the new deployment, the
core device uninstalls that component. To avoid uninstalling components, first use the
ListDeployments operation to check if the target for the deployment already has an
existing deployment. Then, use the GetDeployment operation to start from that existing
deployment when you create a new deployment.

To create a deployment (AWS CLI)

1. Create a file called deployment.json, and then copy the following JSON object into the
file. Replace targetArn with the ARN of the AWS IoT thing or thing group to target for the
deployment. Thing and thing group ARNs have the following format:

• Thing: arn:aws:iot:region:account-id:thing/thingName

Create deployments 1299

https://docs.aws.amazon.com/iot/latest/developerguide/thing-groups.html
https://docs.aws.amazon.com/iot/latest/developerguide/thing-groups.html
https://docs.aws.amazon.com/iot/latest/developerguide/dynamic-thing-groups.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_CreateDeployment.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_ListDeployments.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_GetDeployment.html

AWS IoT Greengrass Developer Guide, Version 2

• Thing group: arn:aws:iot:region:account-id:thinggroup/thingGroupName

{
 "targetArn": "targetArn"
}

2. Check if the deployment target has an existing deployment that you want to revise. Do the
following:

a. Run the following command to list the deployments for the deployment target. Replace
targetArn with the ARN of the target AWS IoT thing or thing group.

aws greengrassv2 list-deployments --target-arn targetArn

The response contains a list with the latest deployment for the target. If the response
is empty, the target doesn't have an existing deployment, and you can skip to Step 3.
Otherwise, copy the deploymentId from the response to use in the next step.

Note

You can also revise a deployment other than the latest revision for the target.
Specify the --history-filter ALL argument to list all deployments for the
target. Then, copy the ID of the deployment that you want to revise.

b. Run the following command to get the deployment's details. These details include
metadata, components, and job configuration. Replace deploymentId with the ID from
the previous step.

aws greengrassv2 get-deployment --deployment-id deploymentId

The response contains the deployment's details.

c. Copy any of the following key-value pairs from the previous command's response into
deployment.json. You can change these values for the new deployment.

• deploymentName – The deployment's name.

• components – The deployment's components. To uninstall a component, remove it
from this object.

Create deployments 1300

AWS IoT Greengrass Developer Guide, Version 2

• deploymentPolicies – The deployment's policies.

• iotJobConfiguration – The deployment's job configuration.

• tags – The deployment's tags.

3. (Optional) Define a name for the deployment. Replace deploymentName with the name of the
deployment.

{
 "targetArn": "targetArn",
 "deploymentName": "deploymentName"
}

4. Add each component to deploy the target devices. To do so, add key-value pairs to the
components object, where the key is the component name, and the value is an object that
contains the details for that component. Specify the following details for each component that
you add:

• version – The component version to deploy.

• configurationUpdate – The configuration update to deploy. The update is a patch
operation that modifies the component's existing configuration on each target device, or the
component's default configuration if it doesn't exist on the target device. You can specify the
following configuration updates:

• Reset updates (reset) – (Optional) A list of JSON pointers that define the configuration
values to reset to their default values on the target device. The AWS IoT Greengrass Core
software applies reset updates before it applies merge updates. For more information, see
Reset updates.

• Merge updates (merge) – (Optional) A JSON document that defines the configuration
values to merge onto the target device. You must serialize the JSON document as a string.
For more information, see Merge updates.

•
runWith – (Optional) The system process options that the AWS IoT Greengrass Core
software uses to run this component's processes on the core device. If you omit a parameter
in the runWith object, the AWS IoT Greengrass Core software uses the default values that
you configure on the Greengrass nucleus component.

You can specify any of the following options:

• posixUser – The POSIX system user and, optionally, group to use to run this component
on Linux core devices. The user, and group if specified, must exist on each Linux core

Create deployments 1301

AWS IoT Greengrass Developer Guide, Version 2

device. Specify the user and group separated by a colon (:) in the following format:
user:group. The group is optional. If you don't specify a group, the AWS IoT Greengrass
Core software uses the primary group for the user. For more information, see Configure
the user that runs components.

• windowsUser – The Windows user to use to run this component on Windows core
devices. The user must exist on each Windows core device, and its name and password
must be stored in the LocalSystem account's Credentials Manager instance. For more
information, see Configure the user that runs components.

This feature is available for v2.5.0 and later of the Greengrass nucleus component.

• systemResourceLimits – The system resource limits to apply to this component's
processes. You can apply system resource limits to generic and non-containerized Lambda
components. For more information, see Configure system resource limits for components.

You can specify any of the following options:

• cpus – The maximum amount of CPU time that this component's processes can use on
the core device. A core device's total CPU time is equivalent to the device's number of
CPU cores. For example, on a core device with 4 CPU cores, you can set this value to 2
to limit this component's processes to 50 percent usage of each CPU core. On a device
with 1 CPU core, you can set this value to 0.25 to limit this component's processes to
25 percent usage of the CPU. If you set this value to a number greater than the number
of CPU cores, the AWS IoT Greengrass Core software doesn't limit the component's CPU
usage.

• memory – The maximum amount of RAM (in kilobytes) that this component's processes
can use on the core device.

This feature is available for v2.4.0 and later of the Greengrass nucleus component. AWS
IoT Greengrass doesn't currently support this feature on Windows core devices.

Example Example basic configuration update

The following example components object specifies to deploy a component,
com.example.PythonRuntime, that expects a configuration parameter named
pythonVersion.

Create deployments 1302

AWS IoT Greengrass Developer Guide, Version 2

{
 "targetArn": "targetArn",
 "deploymentName": "deploymentName",
 "components": {
 "com.example.PythonRuntime": {
 "componentVersion": "1.0.0",
 "configurationUpdate": {
 "merge": "{\"pythonVersion\":\"3.7\"}"
 }
 }
 }
}

Example Example configuration update with reset and merge updates

Consider an example industrial dashboard component,
com.example.IndustrialDashboard, that has the following default configuration.

{
 "name": null,
 "mode": "REQUEST",
 "network": {
 "useHttps": true,
 "port": {
 "http": 80,
 "https": 443
 },
 },
 "tags": []
}

The following configuration update specifies the following instructions:

1. Reset the HTTPS setting to its default value (true).

2. Reset the list of industrial tags to an empty list.

3. Merge a list of industrial tags that identify temperature and pressure data streams for two
boilers.

{

Create deployments 1303

AWS IoT Greengrass Developer Guide, Version 2

 "reset": [
 "/network/useHttps",
 "/tags"
],
 "merge": {
 "tags": [
 "/boiler/1/temperature",
 "/boiler/1/pressure",
 "/boiler/2/temperature",
 "/boiler/2/pressure"
]
 }
}

The following example components object specifies to deploy this industrial dashboard
component and configuration update.

{
 "targetArn": "targetArn",
 "deploymentName": "deploymentName",
 "components": {
 "com.example.IndustrialDashboard": {
 "componentVersion": "1.0.0",
 "configurationUpdate": {
 "reset": [
 "/network/useHttps",
 "/tags"
],
 "merge": "{\"tags\":[\"/boiler/1/temperature\",\"/boiler/1/pressure\",\"/
boiler/2/temperature\",\"/boiler/2/pressure\"]}"
 }
 }
 }
}

5. (Optional) Define deployment policies for the deployment. You can configure when core
devices can safely apply a deployment or what to do if a core device fails to apply the
deployment. To do so, add a deploymentPolicies object to deployment.json, and then
do any of the following:

1. (Optional) Specify the component update policy (componentUpdatePolicy). This policy
defines whether or not the deployment lets components defer an update until they are

Create deployments 1304

AWS IoT Greengrass Developer Guide, Version 2

ready to update. For example, components may need to clean up resources or finish critical
actions before they can restart to apply an update. This policy also defines the amount of
time that components have to respond to an update notification.

This policy is an object with the following parameters:

• action – (Optional) Whether or not to notify components and wait for them to report
when they're ready to update. Choose from the following options:

• NOTIFY_COMPONENTS – The deployment notifies each component before it stops and
updates that component. Components can use the SubscribeToComponentUpdates IPC
operation to receive these notifications.

• SKIP_NOTIFY_COMPONENTS – The deployment doesn't notify components or wait for
them to be safe to update.

Defaults to NOTIFY_COMPONENTS.

• timeoutInSeconds The amount of time in seconds that each component has to
respond to an update notification with the DeferComponentUpdate IPC operation. If the
component doesn't respond within this amount of time, then the deployment proceeds
on the core device.

Defaults to 60 seconds.

2. (Optional) Specify the configuration validation policy
(configurationValidationPolicy). This policy defines how long each component
has to validate a configuration update from a deployment. Components can
use the SubscribeToValidateConfigurationUpdates IPC operation to subscribe to
notifications for their own configuration updates. Then, components can use the
SendConfigurationValidityReport IPC operation to tell the AWS IoT Greengrass Core
software if the configuration update is valid. If the configuration update isn't valid, the
deployment fails.

This policy is an object with the following parameter:

• timeoutInSeconds (Optional) The amount of time in seconds that each component has
to validate a configuration update. If the component doesn't respond within this amount
of time, then the deployment proceeds on the core device.

Defaults to 30 seconds.

Create deployments 1305

AWS IoT Greengrass Developer Guide, Version 2

3. (Optional) Specify the failure handling policy (failureHandlingPolicy). This policy is a
string that defines whether or not to roll back devices if the deployment fails. Choose from
the following options:

• ROLLBACK – If the deployment fails on a core device, then the AWS IoT Greengrass Core
software rolls back that core device to its previous configuration.

• DO_NOTHING – If the deployment fails on a core device, then the AWS IoT Greengrass
Core software keeps the new configuration. This can result in broken components if the
new configuration isn't valid.

Defaults to ROLLBACK.

Your deployment in deployment.json may look similar to the following example:

{
 "targetArn": "targetArn",
 "deploymentName": "deploymentName",
 "components": {
 "com.example.IndustrialDashboard": {
 "componentVersion": "1.0.0",
 "configurationUpdate": {
 "reset": [
 "/network/useHttps",
 "/tags"
],
 "merge": "{\"tags\":[\"/boiler/1/temperature\",\"/boiler/1/pressure\",\"/
boiler/2/temperature\",\"/boiler/2/pressure\"]}"
 }
 }
 },
 "deploymentPolicies": {
 "componentUpdatePolicy": {
 "action": "NOTIFY_COMPONENTS",
 "timeoutInSeconds": 30
 },
 "configurationValidationPolicy": {
 "timeoutInSeconds": 60
 },
 "failureHandlingPolicy": "ROLLBACK"
 }
}

Create deployments 1306

AWS IoT Greengrass Developer Guide, Version 2

6. (Optional) Define how the deployment stops, rolls out, or times out. AWS IoT Greengrass uses
AWS IoT Core jobs to send deployments to core devices, so these options are identical to the
configuration options for AWS IoT Core jobs. For more information, see Job rollout and abort
configuration in the AWS IoT Developer Guide.

To define the job options, add an iotJobConfiguration object to deployment.json.
Then, define the options to configure.

Your deployment in deployment.json may look similar to the following example:

{
 "targetArn": "targetArn",
 "deploymentName": "deploymentName",
 "components": {
 "com.example.IndustrialDashboard": {
 "componentVersion": "1.0.0",
 "configurationUpdate": {
 "reset": [
 "/network/useHttps",
 "/tags"
],
 "merge": "{\"tags\":[\"/boiler/1/temperature\",\"/boiler/1/pressure\",\"/
boiler/2/temperature\",\"/boiler/2/pressure\"]}"
 }
 }
 },
 "deploymentPolicies": {
 "componentUpdatePolicy": {
 "action": "NOTIFY_COMPONENTS",
 "timeoutInSeconds": 30
 },
 "configurationValidationPolicy": {
 "timeoutInSeconds": 60
 },
 "failureHandlingPolicy": "ROLLBACK"
 },
 "iotJobConfiguration": {
 "abortConfig": {
 "criteriaList": [
 {
 "action": "CANCEL",
 "failureType": "ALL",
 "minNumberOfExecutedThings": 100,

Create deployments 1307

https://docs.aws.amazon.com/iot/latest/developerguide/job-rollout-abort.html
https://docs.aws.amazon.com/iot/latest/developerguide/job-rollout-abort.html

AWS IoT Greengrass Developer Guide, Version 2

 "thresholdPercentage": 5
 }
]
 },
 "jobExecutionsRolloutConfig": {
 "exponentialRate": {
 "baseRatePerMinute": 5,
 "incrementFactor": 2,
 "rateIncreaseCriteria": {
 "numberOfNotifiedThings": 10,
 "numberOfSucceededThings": 5
 }
 },
 "maximumPerMinute": 50
 },
 "timeoutConfig": {
 "inProgressTimeoutInMinutes": 5
 }
 }
}

7. (Optional) Add tags (tags) for the deployment. For more information, see Tag your AWS IoT
Greengrass Version 2 resources.

8. Run the following command to create the deployment from deployment.json.

aws greengrassv2 create-deployment --cli-input-json file://deployment.json

The response includes a deploymentId that identifies this deployment. You can use the
deployment ID to check the status of the deployment. For more information, see Check
deployment status.

Update component configurations

Component configurations are JSON objects that define the parameters for each component.
Each component's recipe defines its default configuration, which you modify when you deploy
components to core devices.

When you create a deployment, you can specify the configuration update to apply for each
component. Configuration updates are patch operations, which means that the update modifies
the component configuration that exists on the core device. If the core device doesn't have the

Create deployments 1308

AWS IoT Greengrass Developer Guide, Version 2

component, then the configuration update modifies and applies the default configuration for that
deployment.

The configuration update defines reset updates and merge updates. Reset updates define
which configuration values to reset to their defaults or remove. Merge updates define the new
configuration values to set for the component. When you deploy a configuration update, the AWS
IoT Greengrass Core software runs the reset update before the merge update.

Components can validate the configuration updates that you deploy. The component subscribes
to receive a notification when a deployment changes its configuration, and it can reject a
configuration that it doesn't support. For more information, see Interact with component
configuration.

Topics

• Reset updates

• Merge updates

• Examples

Reset updates

Reset updates define which configuration values to reset to their default values on the core device.
If a configuration value doesn't have a default value, then the reset update removes that value
from the component's configuration. This can help you fix a component that breaks as the result of
an invalid configuration.

Use a list of JSON pointers to define which configuration values to reset. JSON pointers start with a
forward slash /. To identify a value in a nested component configuration, use forward slashes (/) to
separate the keys for each level in the configuration. For more information, see the JSON pointer
specification.

Note

You can reset only an entire list to its default values. You can't use reset updates to reset an
individual element in a list.

To reset a component's entire configuration to its default values, specify a single empty string as
the reset update.

Create deployments 1309

https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc6901

AWS IoT Greengrass Developer Guide, Version 2

"reset": [""]

Merge updates

Merge updates define the configuration values to insert into the component configuration on the
core. The merge update is a JSON object that the AWS IoT Greengrass Core software merges after
it resets the values in the paths that you specify in the reset update. When you use the AWS CLI or
AWS SDKs, you must serialize this JSON object as a string.

You can merge a key-value pair that doesn't exist in the component's default configuration. You
can also merge a key-value pair that has a different type than the value with the same key. The
new value replaces the old value. This means that you can change the configuration object's
structure.

You can merge null values and empty strings, lists, and objects.

Note

You can't use merge updates for the purpose of inserting or appending an element to a list.
You can replace an entire list, or you can define an object where each element has a unique
key.
AWS IoT Greengrass uses JSON for configuration values. JSON specifies a number type but
doesn't differentiate between integers and floats. As a result, configuration values might
convert to floats in AWS IoT Greengrass. To ensure that your component uses the correct
data type, we recommend that you define numeric configuration values as strings. Then,
have your component parse them as integers or floats. This ensures that your configuration
values have the same type in the configuration and on your core device.

Use recipe variables in merge updates

This feature is available for v2.6.0 and later of the Greengrass nucleus component.

If you set the Greengrass nucleus' interpolateComponentConfiguration
configuration option to true, you can use recipe variables, other than the
component_dependency_name:configuration:json_pointer recipe variable, in merge
updates. For example, you can use the {iot:thingName} recipe variable in a merge update to
include the core device's AWS IoT thing name in a component configuration value, such as an
interprocess communication (IPC) authorization policy.

Create deployments 1310

AWS IoT Greengrass Developer Guide, Version 2

Examples

The following example demonstrates configuration updates for a dashboard component that has
the following default configuration. This example component displays information about industrial
equipment.

{
 "name": null,
 "mode": "REQUEST",
 "network": {
 "useHttps": true,
 "port": {
 "http": 80,
 "https": 443
 },
 },
 "tags": []
}

Industrial dashboard component recipe

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.IndustrialDashboard",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "Displays information about industrial equipment.",
 "ComponentPublisher": "Amazon",
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "name": null,
 "mode": "REQUEST",
 "network": {
 "useHttps": true,
 "port": {
 "http": 80,
 "https": 443
 },
 },
 "tags": []
 }
 },

Create deployments 1311

AWS IoT Greengrass Developer Guide, Version 2

 "Manifests": [
 {
 "Platform": {
 "os": "linux"
 },
 "Lifecycle": {
 "Run": "python3 -u {artifacts:path}/industrial_dashboard.py"
 }
 },
 {
 "Platform": {
 "os": "windows"
 },
 "Lifecycle": {
 "Run": "py -3 -u {artifacts:path}/industrial_dashboard.py"
 }
 }
]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.IndustrialDashboard
ComponentVersion: '1.0.0'
ComponentDescription: Displays information about industrial equipment.
ComponentPublisher: Amazon
ComponentConfiguration:
 DefaultConfiguration:
 name: null
 mode: REQUEST
 network:
 useHttps: true
 port:
 http: 80
 https: 443
 tags: []
Manifests:
 - Platform:
 os: linux
 Lifecycle:
 Run: |

Create deployments 1312

AWS IoT Greengrass Developer Guide, Version 2

 python3 -u {artifacts:path}/industrial_dashboard.py
 - Platform:
 os: windows
 Lifecycle:
 Run: |
 py -3 -u {artifacts:path}/industrial_dashboard.py

Example Example 1: Merge update

You create a deployment that applies the following configuration update, which specifies a merge
update but not a reset update. This configuration update tells the component to display the
dashboard on HTTP port 8080 with data from two boilers.

Console

Configuration to merge

{
 "name": "Factory 2A",
 "network": {
 "useHttps": false,
 "port": {
 "http": 8080
 }
 },
 "tags": [
 "/boiler/1/temperature",
 "/boiler/1/pressure",
 "/boiler/2/temperature",
 "/boiler/2/pressure"
]
}

AWS CLI

The following command creates a deployment to a core device.

aws greengrassv2 create-deployment --cli-input-json file://dashboard-deployment.json

The dashboard-deployment.json file contains the following JSON document.

Create deployments 1313

AWS IoT Greengrass Developer Guide, Version 2

{
 "targetArn": "arn:aws:iot:us-west-2:123456789012:thing/MyGreengrassCore",
 "deploymentName": "Deployment for MyGreengrassCore",
 "components": {
 "com.example.IndustrialDashboard": {
 "componentVersion": "1.0.0",
 "configurationUpdate": {
 "merge": "{\"name\":\"Factory 2A\",\"network\":{\"useHttps\":false,\"port
\":{\"http\":8080}},\"tags\":[\"/boiler/1/temperature\",\"/boiler/1/pressure\",\"/
boiler/2/temperature\",\"/boiler/2/pressure\"]}"
 }
 }
 }
}

Greengrass CLI

The following Greengrass CLI command creates a local deployment on a core device.

sudo greengrass-cli deployment create \
 --recipeDir recipes \
 --artifactDir artifacts \
 --merge "com.example.IndustrialDashboard=1.0.0" \
 --update-config dashboard-configuration.json

The dashboard-configuration.json file contains the following JSON document.

{
 "com.example.IndustrialDashboard": {
 "MERGE": {
 "name": "Factory 2A",
 "network": {
 "useHttps": false,
 "port": {
 "http": 8080
 }
 },
 "tags": [
 "/boiler/1/temperature",
 "/boiler/1/pressure",
 "/boiler/2/temperature",
 "/boiler/2/pressure"

Create deployments 1314

AWS IoT Greengrass Developer Guide, Version 2

]
 }
 }
}

After this update, the dashboard component has the following configuration.

{
 "name": "Factory 2A",
 "mode": "REQUEST",
 "network": {
 "useHttps": false,
 "port": {
 "http": 8080,
 "https": 443
 }
 },
 "tags": [
 "/boiler/1/temperature",
 "/boiler/1/pressure",
 "/boiler/2/temperature",
 "/boiler/2/pressure"
]
}

Example Example 2: Reset and merge updates

Then, you create a deployment that applies the following configuration update, which specifies a
reset update and a merge update. These updates specify to display the dashboard on the default
HTTPS port with data from different boilers. These updates modify the configuration that results
from the configuration updates in the previous example.

Console

Reset paths

[
 "/network/useHttps",
 "/tags"
]

Create deployments 1315

AWS IoT Greengrass Developer Guide, Version 2

Configuration to merge

{
 "tags": [
 "/boiler/3/temperature",
 "/boiler/3/pressure",
 "/boiler/4/temperature",
 "/boiler/4/pressure"
]
}

AWS CLI

The following command creates a deployment to a core device.

aws greengrassv2 create-deployment --cli-input-json file://dashboard-
deployment2.json

The dashboard-deployment2.json file contains the following JSON document.

{
 "targetArn": "arn:aws:iot:us-west-2:123456789012:thing/MyGreengrassCore",
 "deploymentName": "Deployment for MyGreengrassCore",
 "components": {
 "com.example.IndustrialDashboard": {
 "componentVersion": "1.0.0",
 "configurationUpdate": {
 "reset": [
 "/network/useHttps",
 "/tags"
],
 "merge": "{\"tags\":[\"/boiler/3/temperature\",\"/boiler/3/pressure\",\"/
boiler/4/temperature\",\"/boiler/4/pressure\"]}"
 }
 }
 }
}

Greengrass CLI

The following Greengrass CLI command creates a local deployment on a core device.

Create deployments 1316

AWS IoT Greengrass Developer Guide, Version 2

sudo greengrass-cli deployment create \
 --recipeDir recipes \
 --artifactDir artifacts \
 --merge "com.example.IndustrialDashboard=1.0.0" \
 --update-config dashboard-configuration2.json

The dashboard-configuration2.json file contains the following JSON document.

{
 "com.example.IndustrialDashboard": {
 "RESET": [
 "/network/useHttps",
 "/tags"
],
 "MERGE": {
 "tags": [
 "/boiler/3/temperature",
 "/boiler/3/pressure",
 "/boiler/4/temperature",
 "/boiler/4/pressure"
]
 }
 }
}

After this update, the dashboard component has the following configuration.

{
 "name": "Factory 2A",
 "mode": "REQUEST",
 "network": {
 "useHttps": true,
 "port": {
 "http": 8080,
 "https": 443
 }
 },
 "tags": [
 "/boiler/3/temperature",
 "/boiler/3/pressure",
 "/boiler/4/temperature",

Create deployments 1317

AWS IoT Greengrass Developer Guide, Version 2

 "/boiler/4/pressure",
]
}

Create subdeployments

Note

The subdeployment feature is available on Greengrass nucleus version 2.9.0 and later. It is
not possible to deploy a configuration to a subdeployment with earlier component versions
of Greengrass nucleus.

A subdeployment is a deployment that targets a smaller subset of devices within a parent
deployment. You can use subdeployments to deploy a configuration to a smaller subset of devices.
You can also create subdeployments to retry an unsuccessful parent deployment when one or more
devices in that parent deployment fails. With this feature, you can select devices that failed in that
parent deployment and create a subdeployment to test configurations until the subdeployment
is successful. Once the subdeployment is successful, you can redeploy that configuration to the
parent deployment.

Follow the steps in this section to create a subdeployment and check its status. For more
information about how to create deployments, see Create deployments.

To create a subdeployment (AWS CLI)

1. Run the following command to retrieve the latest deployments for a thing group. Replace the
ARN in the command with the ARN of the thing group to query. Set --history-filter to
LATEST_ONLY to see the latest deployment of that thing group.

aws greengrassv2 list-deployments --target-arn arn:aws:iot:region:account-
id:thinggroup/thingGroupName --history-filter LATEST_ONLY

2. Copy the deploymentId from the response to the list-deployments command to use in the
next step.

3. Run the following command to retrieve the status of a deployment. Replace deploymentId
with the ID of the deployment to query.

Create subdeployments 1318

https://docs.aws.amazon.com/greengrass/v2/developerguide/create-deployments.html

AWS IoT Greengrass Developer Guide, Version 2

aws greengrassv2 get-deployment --deployment-id deploymentId

4. Copy the iotJobId from the response to the get-deployment command to use in the
following step.

5. Run the following command to retrieve the list of job executions for the specified job. Replace
jobID with the iotJobId from the previous step. Replace status with the status you want
to filter for. You can filter results with the following statuses:

• QUEUED

• IN_PROGRESS

• SUCCEEDED

• FAILED

• TIMED_OUT

• REJECTED

• REMOVED

• CANCELED

aws iot list-job-executions-for-job --job-id jobID --status status

6. Create a new AWS IoT thing group, or use an existing thing group, for your subdeployment.
Then, add an AWS IoT thing to this thing group. You use thing groups to manage fleets of
Greengrass core devices. When you deploy software components to your devices, you can
target either individual devices or groups of devices. You can add a device to a thing group
with an active Greengrass deployment. Once added, you can then deploy that thing group's
software components to that device.

To create a new thing group and add your devices to it, do the following:

a. Create an AWS IoT thing group. Replace MyGreengrassCoreGroup with the name for
the new thing group. You can't use a colon (:) in a thing group name.

Create subdeployments 1319

AWS IoT Greengrass Developer Guide, Version 2

Note

If a thing group for a subdeployment is used with one parentTargetArn, it can't
be reused with a different parent fleet. If a thing group has already been used to
create a subdeployment for another fleet, the API will return an error.

aws iot create-thing-group --thing-group-name MyGreengrassCoreGroup

If the request succeeds, the response looks similar to the following example:

{
 "thingGroupName": "MyGreengrassCoreGroup",
 "thingGroupArn": "arn:aws:iot:us-
west-2:123456789012:thinggroup/MyGreengrassCoreGroup",
 "thingGroupId": "4df721e1-ff9f-4f97-92dd-02db4e3f03aa"
}

b. Add a provisioned Greengrass core to your thing group. Run the following command with
these parameters:

• Replace MyGreengrassCore with the name of your provisioned Greengrass core.

• Replace MyGreengrassCoreGroup with the name of your thing group.

aws iot add-thing-to-thing-group --thing-name MyGreengrassCore --thing-group-
name MyGreengrassCoreGroup

The command doesn't have any output if the request succeeds.

7. Create a file called deployment.json, and then copy the following JSON object into
the file. Replace targetArn with the ARN of the AWS IoT thing group to target for the
subdeployment. A subdeployment target can only be a thing group. Thing group ARNs have
the following format:

• Thing group – arn:aws:iot:region:account-id:thinggroup/thingGroupName

{

Create subdeployments 1320

AWS IoT Greengrass Developer Guide, Version 2

 "targetArn": "targetArn"
}

8. Run the following command again to get the original deployment's details. These details
include metadata, components, and job configuration. Replace deploymentId with the ID
from Step 1. You can use this deployment configuration to configure your subdeployment and
make changes as needed.

aws greengrassv2 get-deployment --deployment-id deploymentId

The response contains the deployment's details. Copy any of the following key-value pairs
from the get-deployment command's response into deployment.json. You can change
these values for the subdeployment. For more information about the details of this command,
see GetDeployment.

• components – The deployment's components. To uninstall a component, remove it from
this object.

• deploymentName – The deployment's name.

• deploymentPolicies – The deployment's policies.

• iotJobConfiguration – The deployment's job configuration.

• parentTargetArn – The target of the parent deployment.

• tags – The deployment's tags.

9. Run the following command to create the subdeployment from deployment.json. Replace
subdeploymentName with a name for the subdeployment.

aws greengrassv2 create-deployment --deployment-name subdeploymentName --cli-input-
json file://deployment.json

The response includes a deploymentId that identifies this subdeployment. You can use
the deployment ID to check the status of the deployment. For more information, see Check
deployment status.

10. If the subdeployment is successful, you can use its configuration to revise the parent
deployent. Copy the deployment.json that you used in the previous step. Replace the
targetArn in the JSON file with the parent deployment's ARN and run the following
command to create the parent deployment using this new configuration.

Create subdeployments 1321

https://docs.aws.amazon.com/greengrass/v2/APIReference/API_GetDeployment.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/check-deployment-status.html#check-cloud-deployment-status
https://docs.aws.amazon.com/greengrass/v2/developerguide/check-deployment-status.html#check-cloud-deployment-status

AWS IoT Greengrass Developer Guide, Version 2

Note

If you create a new deployment revision of the parent fleet, it replaces all deployment
revisions and subdeployments for that parent deployment. For more information, see
Revise deployments.

aws greengrassv2 create-deployment --cli-input-json file://deployment.json

The response includes a deploymentId that identifies this deployment. You can use the
deployment ID to check the status of the deployment. For more information, see Check
deployment status.

Revise deployments

Each target thing or thing group can have one active deployment at a time. When you create a
deployment for a target that already has a deployment, the software components in the new
deployment replace those from the previous deployment. If the new deployment doesn't define a
component that the previous deployment defines, the AWS IoT Greengrass Core software removes
that component from the target core devices. You can revise an existing deployment so that you
don't remove the components that run on core devices from a previous deployment to a target.

To revise a deployment, you create a deployment that starts from the same components and
configurations that exist in a previous deployment. You use the CreateDeployment operation,
which is the same operation that you use to create deployments.

To revise a deployment (AWS CLI)

1. Run the following command to list the deployments for the deployment target. Replace
targetArn with the ARN of the target AWS IoT thing or thing group.

aws greengrassv2 list-deployments --target-arn targetArn

The response contains a list with the latest deployment for the target. Copy the
deploymentId from the response to use in the next step.

Revise deployments 1322

https://docs.aws.amazon.com/greengrass/v2/developerguide/revise-deployments.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_CreateDeployment.html

AWS IoT Greengrass Developer Guide, Version 2

Note

You can also revise a deployment other than the latest revision for the target. Specify
the --history-filter ALL argument to list all deployments for the target. Then,
copy the ID of the deployment that you want to revise.

2. Run the following command to get the deployment's details. These details include metadata,
components, and job configuration. Replace deploymentId with the ID from the previous
step.

aws greengrassv2 get-deployment --deployment-id deploymentId

The response contains the deployment's details.

3. Create a file called deployment.json and copy the previous command's response into the
file.

4. Remove the following key-value pairs from the JSON object in deployment.json:

• deploymentId

• revisionId

• iotJobId

• iotJobArn

• creationTimestamp

• isLatestForTarget

• deploymentStatus

The CreateDeployment operation expects a payload with the following structure.

{
 "targetArn": "String",
 "components": Map of components,
 "deploymentPolicies": DeploymentPolicies,
 "iotJobConfiguration": DeploymentIoTJobConfiguration,
 "tags": Map of tags
}

5. In deployment.json, do any of the following:

Revise deployments 1323

https://docs.aws.amazon.com/greengrass/v2/APIReference/API_CreateDeployment.html

AWS IoT Greengrass Developer Guide, Version 2

• Change the deployment's name (deploymentName).

• Change the deployment's components (components).

• Change the deployment's policies (deploymentPolicies).

• Change the deployment's job configuration (iotJobConfiguration).

• Change the deployment's tags (tags).

For more information about how to define these deployment details, see Create deployments.

6. Run the following command to create the deployment from deployment.json.

aws greengrassv2 create-deployment --cli-input-json file://deployment.json

The response includes a deploymentId that identifies this deployment. You can use the
deployment ID to check the status of the deployment. For more information, see Check
deployment status.

Cancel deployments

You can cancel an active deployment to prevent its software components from installing on
AWS IoT Greengrass core devices. If you cancel a deployment that targets a thing group, core
devices that you add to the group won't receive that continuous deployment. If a core device
already runs the deployment, you won't change the components on that device when you cancel
the deployment. You must create a new deployment or revise the deployment to modify the
components that run on the core devices that received the canceled deployment.

To cancel a deployment (AWS CLI)

1. Run the following command to find the ID of the latest deployment revision for a target.
The latest revision is the only deployment that can be active for a target, because previous
deployments cancel when you create a new revision. Replace targetArn with the ARN of the
target AWS IoT thing or thing group.

aws greengrassv2 list-deployments --target-arn targetArn

The response contains a list with the latest deployment for the target. Copy the
deploymentId from the response to use in the next step.

Cancel deployments 1324

AWS IoT Greengrass Developer Guide, Version 2

2. Run the following command to cancel the deployment. Replace deploymentId with the ID
from the previous step.

aws greengrassv2 cancel-deployment --deployment-id deploymentId

If the operation succeeds, the deployment status changes to CANCELED.

Check deployment status

You can check the status of a deployment that you create in AWS IoT Greengrass. You can also
check the status of the AWS IoT jobs that roll out the deployment to each core device. While a
deployment is active, the AWS IoT job's status is IN_PROGRESS. After you create a new revision of
a deployment, the status of the previous revision's AWS IoT job changes to CANCELLED.

Topics

• Check deployment status

• Check device deployment status

Check deployment status

You can check the status of a deployment that you identify by its target or its ID.

To check deployment status by target (AWS CLI)

• Run the following command to retrieve the status of the latest deployment for a target.
Replace targetArn with the Amazon Resource Name (ARN) of the AWS IoT thing or thing
group that the deployment targets.

aws greengrassv2 list-deployments --target-arn targetArn

The response contains a list with the latest deployment for the target. This deployment object
includes the status of the deployment.

To check deployment status by ID (AWS CLI)

• Run the following command to retrieve the status of a deployment. Replace deploymentId
with the ID of the deployment to query.

Check deployment status 1325

AWS IoT Greengrass Developer Guide, Version 2

aws greengrassv2 get-deployment --deployment-id deploymentId

The response contains the status of the deployment.

Check device deployment status

You can check the status of a deployment job that applies to an individual core device. You can also
check the status of a deployment job for a thing group deployment.

To check deployment job statuses for a core device (AWS CLI)

• Run the following command to retrieve the status of all deployment jobs for a core device.
Replace coreDeviceName with the name of the core device to query.

aws greengrassv2 list-effective-deployments --core-device-thing-name coreDeviceName

The response contains the list of deployment jobs for the core device. You can identify the job
for a deployment by the job's deploymentId or targetArn. Each deployment job contains
the status of the job on the core device.

To check deployment statuses for a thing group (AWS CLI)

1. Run the following command to retrieve the ID of an existing deployment. Replace targetArn
with the ARN of the target thing group.

aws greengrassv2 list-deployments --target-arn targetArn

The response contains a list with the latest deployment for the target. Copy the
deploymentId from the response to use in the next step.

Note

You can also list a deployment other than the latest deployment for the target. Specify
the --history-filter ALL argument to list all deployments for the target. Then,
copy the ID of the deployment that you want to check the status of.

Check deployment status 1326

AWS IoT Greengrass Developer Guide, Version 2

2. Run the following command to get the deployment's details. Replace deploymentID with the
ID from the previous step.

aws greengrassv2 get-deployment --deployment-id deploymentId

The response contains information about the deployment. Copy the iotJobId from the
response to use in the following step.

3. Run the following command to describe a core device's job execution for the deployment.
Replace iotJobId and coreDeviceThingName with the job ID from the previous step and
the core device you want to check the status for.

aws iot describe-job-execution --job-id iotJobId --thing-name coreDeviceThingName

The response contains the status of the core device's deployment job execution and details
about the status. The detailsMap contains the following information:

• detailed-deployment-status – The deployment result status, which can be one of the
following values:

• SUCCESSFUL – The deployment succeeded.

• FAILED_NO_STATE_CHANGE – The deployment failed while the core device prepared to
apply the deployment.

• FAILED_ROLLBACK_NOT_REQUESTED – The deployment failed, and the deployment
didn't specify to roll back to a previous working configuration, so the core device might
not be functioning correctly.

• FAILED_ROLLBACK_COMPLETE – The deployment failed, and the core device successfully
rolled back to a previous working configuration.

• FAILED_UNABLE_TO_ROLLBACK – The deployment failed, and the core device failed to
roll back to a previous working configuration, so the core device might not be functioning
correctly.

If the deployment failed, check the deployment-failure-cause value and the core
device's log files to identify the issue. For more information about how to access the core
device's log files, see Monitor AWS IoT Greengrass logs.

• deployment-failure-cause – An error message that provides additional details about
why the job execution failed.

Check deployment status 1327

AWS IoT Greengrass Developer Guide, Version 2

The response looks similar to the following example.

{
 "execution": {
 "jobId": "2cc2698a-5175-48bb-adf2-1dd345606ebd",
 "status": "FAILED",
 "statusDetails": {
 "detailsMap": {
 "deployment-failure-cause": "No local or cloud component version satisfies
 the requirements. Check whether the version constraints conflict and that
 the component exists in your AWS account with a version that matches the
 version constraints. If the version constraints conflict, revise deployments
 to resolve the conflict. Component com.example.HelloWorld version constraints:
 LOCAL_DEPLOYMENT requires =1.0.0, thinggroup/MyGreengrassCoreGroup requires
 =1.0.1.",
 "detailed-deployment-status": "FAILED_NO_STATE_CHANGE"
 }
 },
 "thingArn": "arn:aws:iot:us-west-2:123456789012:thing/MyGreengrassCore",
 "queuedAt": "2022-02-15T14:45:53.098000-08:00",
 "startedAt": "2022-02-15T14:46:05.670000-08:00",
 "lastUpdatedAt": "2022-02-15T14:46:20.892000-08:00",
 "executionNumber": 1,
 "versionNumber": 3
 }
}

Check deployment status 1328

AWS IoT Greengrass Developer Guide, Version 2

Logging and monitoring in AWS IoT Greengrass

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS
IoT Greengrass and your AWS solutions. You should collect monitoring data from all parts of your
AWS solution so that you can more easily debug a multi-point failure, if one occurs. Before you
start monitoring AWS IoT Greengrass, you should create a monitoring plan that includes answers to
the following questions:

• What are your monitoring goals?

• Which resources will you monitor?

• How often will you monitor these resources?

• Which monitoring tools will you use?

• Who will perform the monitoring tasks?

• Who should be notified when something goes wrong?

Topics

• Monitoring tools

• Monitor AWS IoT Greengrass logs

• Log AWS IoT Greengrass V2 API calls with AWS CloudTrail

• Gather system health telemetry data from AWS IoT Greengrass core devices

• Get deployment and component health status notifications

• Check Greengrass core device status

Monitoring tools

AWS provides tools that you can use to monitor AWS IoT Greengrass. You can configure some
of these tools to do the monitoring for you. Some of the tools require manual intervention. We
recommend that you automate monitoring tasks as much as possible.

You can use the following automated monitoring tools to monitor AWS IoT Greengrass and report
issues:

Monitoring tools 1329

AWS IoT Greengrass Developer Guide, Version 2

• Amazon CloudWatch Logs – Monitor, store, and access your log files from AWS CloudTrail or
other sources. For more information, see Monitoring log files in the Amazon CloudWatch User
Guide.

• AWS CloudTrail Log Monitoring – Share log files between accounts, monitor CloudTrail log files
in real time by sending them to CloudWatch Logs, write log processing applications in Java, and
validate that your log files have not changed after delivery by CloudTrail. For more information,
see Working with CloudTrail log files in the AWS CloudTrail User Guide.

• Greengrass system health telemetry – Subscribe to receive telemetry data sent from the
Greengrass core. For more information, see the section called “Gather system health telemetry
data”.

• Device health notifications Create events using Amazon EventBridge to receive status updates
regarding deployments and components. For more information, see Get deployment and
component health status notifications.

• Fleet status service – Use the fleet status API operations to check the status of core devices
and their Greengrass components. You can also view fleet status information in the AWS IoT
Greengrass console. For more information, see Check Greengrass core device status.

Monitor AWS IoT Greengrass logs

AWS IoT Greengrass consists of the cloud service and the AWS IoT Greengrass Core software. The
AWS IoT Greengrass Core software can write logs to Amazon CloudWatch Logs and to the core
device's local file system. Greengrass components that run on the core device can also write logs to
CloudWatch Logs and the local file system. You can use logs to monitor events and troubleshoot
issues. All AWS IoT Greengrass log entries include a timestamp, log level, and information about
the event.

By default, the AWS IoT Greengrass Core software writes logs to only the local file system. You
can view file system logs in real time, so you can debug Greengrass components that you develop
and deploy. You can also configure a core device to write logs to CloudWatch Logs, so you can
troubleshoot the core device without access to the local file system. For more information, see
Enable logging to CloudWatch Logs.

Topics

• Access file system logs

• Access CloudWatch Logs

• Access system service logs

Monitor Greengrass logs 1330

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html

AWS IoT Greengrass Developer Guide, Version 2

• Enable logging to CloudWatch Logs

• Configure logging for AWS IoT Greengrass

• AWS CloudTrail logs

Access file system logs

The AWS IoT Greengrass Core software stores logs in the /greengrass/v2/logs folder on a core
device, where /greengrass/v2 is the path to the AWS IoT Greengrass root folder. The logs folder
has the following structure.

/greengrass/v2
logs
 ### greengrass.log
 ### greengrass_2021_09_14_15_0.log
 ### ComponentName.log
 ### ComponentName_2021_09_14_15_0.log
 ### main.log

• greengrass.log – The AWS IoT Greengrass Core software log file. Use this log file to view
real-time information about components and deployments. This log file includes logs for the
Greengrass nucleus, which is the core of the AWS IoT Greengrass Core software, and plugin
components, such as log manager and secret manager.

• ComponentName.log – Greengrass component log files. Use component log files to view
real-time information about a Greengrass component that runs on the core device. Generic
components and Lambda components write standard output (stdout) and standard error (stderr)
to these log files.

• main.log – The log file for the main service that handles component lifecycles. This log file will
always be empty.

For more information about the differences between plugin, generic, and Lambda components, see
Component types.

The following considerations apply when you use file system logs:

• Root user permissions

You must have root permissions to read AWS IoT Greengrass logs on the file system.

Access file system logs 1331

AWS IoT Greengrass Developer Guide, Version 2

• Log file rotation

The AWS IoT Greengrass Core software rotates log files every hour or when they exceed a file
size limit. Rotated log files contain a timestamp in their file name. For example, a rotated AWS
IoT Greengrass Core software log file might be named greengrass_2021_09_14_15_0.log.
The default file size limit is 1,024 KB (1 MB). You can configure the file size limit on the
Greengrass nucleus component.

• Log file deletion

The AWS IoT Greengrass Core software cleans up earlier log files when the size of AWS IoT
Greengrass Core software log files or Greengrass component log files, including rotated log
files, exceeds a disk space limit. The default disk space limit for the AWS IoT Greengrass Core
software log and each component log is 10,240 KB (10 MB). You can configure the AWS IoT
Greengrass Core software log disk space limit on the Greengrass nucleus component or the
log manager component. You can configure each component's log disk space limit on the log
manager component.

To view the AWS IoT Greengrass Core software log file

• Run the following command to view the log file in real time. Replace /greengrass/v2 with
the path to the AWS IoT Greengrass root folder.

Linux or Unix

sudo tail -f /greengrass/v2/logs/greengrass.log

Windows Command Prompt (CMD)

type C:\greengrass\v2\logs\com.example.HelloWorld.log

The type command writes the file's contents to the terminal. Run this command multiple
times to observe changes in the file.

PowerShell

gc C:\greengrass\v2\logs\greengrass.log -Tail 10 -Wait

Access file system logs 1332

AWS IoT Greengrass Developer Guide, Version 2

To view the log file for a component

• Run the following command to view the log file in real time. Replace /greengrass/v2
or C:\greengrass\v2 with the path to the AWS IoT Greengrass root folder, and replace
com.example.HelloWorld with the name of the component.

Linux or Unix

sudo tail -f /greengrass/v2/logs/com.example.HelloWorld.log

PowerShell

gc C:\greengrass\v2\logs\com.example.HelloWorld.log -Tail 10 -Wait

You can also use the logs command of the Greengrass CLI to analyze Greengrass logs on a core
device. To use the logs command, you must configure the Greengrass nucleus to output JSON
format log files. For more information, see Greengrass Command Line Interface and logs.

Access CloudWatch Logs

You can deploy the log manager component to configure the core device to write to CloudWatch
Logs. For more information, see Enable logging to CloudWatch Logs. Then, you can view logs on
the Logs page of the Amazon CloudWatch console or using the CloudWatch Logs API.

Log group name

/aws/greengrass/componentType/region/componentName

The log group name uses the following variables:

• componentType – The type of the component, which can be one of the following:

• GreengrassSystemComponent – This log group includes logs for the nucleus and plugin
components, which run in the same JVM as the Greengrass nucleus. The component is part
of the Greengrass nucleus.

• UserComponent – This log group includes logs for generic components, Lambda
components, and other applications on the device. The component isn't part of the
Greengrass nucleus.

Access CloudWatch Logs 1333

AWS IoT Greengrass Developer Guide, Version 2

For more information, see Component types.

• region – The AWS Region that the core device uses.

• componentName – The name of the component. For system logs, this value is System.

Log stream name

/date/thing/thingName

The log stream name uses the following variables:

• date – The date of the log, such as 2020/12/15. The log manager component uses the
yyyy/MM/dd format.

• thingName – The name of the core device.

Note

If a thing name contains a colon (:), the log manager replaces the colon with a plus (+).

The following considerations apply when you use the log manager component to write to
CloudWatch Logs:

• Log delays

Note

We recommend that you upgrade to log manager version 2.3.0 which reduces log delays
for rotated and active log files. When you upgrade to log manager 2.3.0, we recommend
you also upgrade to Greengrass nucleus 2.9.1.

The log manager component version 2.2.8 (and earlier) processes and uploads logs from only
rotated log files. By default, the AWS IoT Greengrass Core software rotates log files every hour or
after they are 1,024 KB. As a result, the log manager component uploads logs only after the AWS
IoT Greengrass Core software or a Greengrass component writes over 1,024 KB worth of logs.
You can configure a lower log file size limit to cause log files to rotate more often. This causes
the log manager component to upload logs to CloudWatch Logs more frequently.

Access CloudWatch Logs 1334

AWS IoT Greengrass Developer Guide, Version 2

The log manager component version 2.3.0 (and later) processes and uploads all logs. When you
write a new log, log manager version 2.3.0 (and later) processes and directly uploads that active
log file instead of waiting for it to be rotated. This means that you can view the new log in 5
minutes or less.

The log manager component uploads new logs periodically. By default, the log manager
component uploads new logs every 5 minutes. You can configure a lower upload interval, so the
log manager component uploads logs to CloudWatch Logs more frequently by configuring the
periodicUploadIntervalSec. For more information about how to configure this periodic
interval, see Configuration.

Logs can be uploaded in near real-time from the same Greengrass file system. If you need to
observe logs in real time, consider using file system logs.

Note

If you're using different file systems to write logs to, log manager reverts back to the
behavior in log manager component versions 2.2.8 and earlier. For information about
accessing file system logs, see Access file system logs.

• Clock skew

The log manager component uses the standard Signature Version 4 signing process to create API
requests to CloudWatch Logs. If the system time on a core device is out of sync by more than 15
minutes, then CloudWatch Logs rejects the requests. For more information, see Signature Version
4 signing process in the AWS General Reference.

Access system service logs

If you configure the AWS IoT Greengrass Core software as a system service, you can view system
service logs to troubleshoot issues, such as the software failing to start.

To view system service logs (CLI)

1. Run the following command to view AWS IoT Greengrass Core software system service logs.

Access system service logs 1335

https://docs.aws.amazon.com/greengrass/v2/developerguide/log-manager-component.html#log-manager-component-configuration
https://docs.aws.amazon.com/greengrass/v2/developerguide/monitor-logs.html#access-local-logs
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

AWS IoT Greengrass Developer Guide, Version 2

Linux or Unix (systemd)

sudo journalctl -u greengrass.service

Windows Command Prompt (CMD)

type C:\greengrass\v2\logs\greengrass.wrapper.log

PowerShell

gc C:\greengrass\v2\logs\greengrass.wrapper.log

2. On Windows devices, the AWS IoT Greengrass Core software creates a separate log file for
system service errors. Run the following command to view the system service error logs.

Windows Command Prompt (CMD)

type C:\greengrass\v2\logs\greengrass.err.log

PowerShell

gc C:\greengrass\v2\logs\greengrass.err.log

On Windows devices, you can also use the Event Viewer application to view system service logs.

To view Windows service logs (Event Viewer)

1. Open the Event Viewer application.

2. Select Windows Logs to expand it.

3. Choose Application to view application service logs.

4. Find and open event logs whose Source is greengrass.

Access system service logs 1336

AWS IoT Greengrass Developer Guide, Version 2

Enable logging to CloudWatch Logs

You can deploy the log manager component to configure a core device to write logs to CloudWatch
Logs. You can enable CloudWatch Logs for AWS IoT Greengrass Core software logs, and you can
enable CloudWatch Logs for specific Greengrass components.

Note

The Greengrass core device's token exchange role must allow the core device to write to
CloudWatch Logs, as shown in the following example IAM policy. If you installed the AWS
IoT Greengrass Core software with automatic resource provisioning, your core device has
these permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams"
],
 "Effect": "Allow",
 "Resource": "arn:aws:logs:*:*:*"
 }
]
}

To configure a core device to write AWS IoT Greengrass Core software logs to CloudWatch Logs,
create a deployment that specifies a configuration update that sets uploadToCloudWatch to
true for the aws.greengrass.LogManager component. AWS IoT Greengrass Core software logs
include logs for the Greengrass nucleus and plugin components.

{
 "logsUploaderConfiguration": {
 "systemLogsConfiguration": {
 "uploadToCloudWatch": "true"
 }

Enable logging to CloudWatch Logs 1337

AWS IoT Greengrass Developer Guide, Version 2

 }
}

To configure a core device to write a Greengrass component's logs to CloudWatch Logs, create
a deployment that specifies a configuration update that adds the component to the list of
component logging configurations. When you add a component to this list, the log manager
component writes its logs to CloudWatch Logs. Component logs include logs for generic
components and Lambda components.

{
 "logsUploaderConfiguration": {
 "componentLogsConfigurationMap": {
 "com.example.HelloWorld": {

 }
 }
 }
}

When you deploy the log manager component, you can also configure disk space limits and
whether the core device deletes log files after writing them to CloudWatch Logs. For more
information, see Configure logging for AWS IoT Greengrass.

Configure logging for AWS IoT Greengrass

You can configure the following options to customize logging for Greengrass core devices.
To configure these options, create a deployment that specifies a configuration update to the
Greengrass nucleus or log manager components.

• Writing logs to CloudWatch Logs

To remotely troubleshoot core devices, you can configure core devices to write AWS IoT
Greengrass Core software and component logs to CloudWatch Logs. To do so, deploy and
configure the log manager component. For more information, see Enable logging to CloudWatch
Logs.

• Deleting uploaded log files

To reduce disk space usage, you can configure core devices to delete log files after writing
the log files to CloudWatch Logs. For more information, see the log manager component's

Configure logging for AWS IoT Greengrass 1338

AWS IoT Greengrass Developer Guide, Version 2

deleteLogFileAfterCloudUpload parameter, which you can specify for AWS IoT Greengrass
Core software logs and component logs.

• Log disk space limits

To limit disk space usage, you can configure the maximum disk space for each log, including its
rotated log files, on a core device. For example, you can configure the maximum combined disk
space for greengrass.log and rotated greengrass.log files. For more information, see the
Greengrass nucleus component's logging.totalLogsSizeKB parameter and the log manager
component's diskSpaceLimit parameter, which you can specify for AWS IoT Greengrass Core
software logs and component logs.

• Log file size limit

You can configure the maximum file size for each log file. After a log file exceeds this file size
limit, the AWS IoT Greengrass Core software creates a new log file. The log manager component
version 2.28 (and earlier) writes only rotated log files to CloudWatch Logs, so you can specify
a lower file size limit to write logs to CloudWatch Logs more frequently. The log manager
component version 2.3.0 (and later) processes and uploads all logs instead of waiting for them
to be rotated. For more information, see the Greengrass nucleus component's log file size limit
parameter (logging.fileSizeKB).

• Minimum log levels

You can configure the minimum log level that the Greengrass nucleus component writes to file
system logs. For example, you might specify DEBUG level logs to help with troubleshooting,
or you might specify ERROR level logs to reduce the amount of logs that a core device
creates. For more information, see the Greengrass nucleus component's log level parameter
(logging.level).

You can also configure the minimum log level that the log manager component writes to
CloudWatch Logs. For example, you might specify a higher log level to reduce logging costs. For
more information, see the log manager component's minimumLogLevel parameter, which you
can specify for AWS IoT Greengrass Core software logs and component logs.

• Interval to check for logs to write to CloudWatch Logs

To increase or decrease how frequently the log manager component writes logs to CloudWatch
Logs, you can configure the interval where it checks for new log files to write. For example, you
might specify a lower interval to view logs in CloudWatch Logs sooner than you would with the
default 5-minute interval. You might specify a higher interval to reduce costs, because the log

Configure logging for AWS IoT Greengrass 1339

https://aws.amazon.com/cloudwatch/pricing/

AWS IoT Greengrass Developer Guide, Version 2

manager component batches log files into fewer requests. For more information, see the log
manager component's upload interval parameter (periodicUploadIntervalSec).

• Log format

You can choose whether the AWS IoT Greengrass Core software writes logs in text or JSON
format. Choose text format if you read logs, or choose JSON format if you use an application to
read or parse logs. For more information, see the Greengrass nucleus component's log format
parameter (logging.format).

• Local file system logs folder

You can change the logs folder from /greengrass/v2/logs to another folder on the core
device. For more information, see the Greengrass nucleus component's output directory
parameter (logging.outputDirectory).

AWS CloudTrail logs

AWS IoT Greengrass integrates with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or AWS service in AWS IoT Greengrass. For more information, see Log AWS IoT
Greengrass V2 API calls with AWS CloudTrail.

Log AWS IoT Greengrass V2 API calls with AWS CloudTrail

AWS IoT Greengrass V2 is integrated with AWS CloudTrail, a service that provides a record of
actions taken by a user, role, or an AWS service in AWS IoT Greengrass Version 2. CloudTrail
captures all API calls for AWS IoT Greengrass as events. The calls that are captured include calls
from the AWS IoT Greengrass console and code calls to the AWS IoT Greengrass API operations.

If you create a trail, you can enable continuous delivery of CloudTrail events to an S3 bucket,
including events for AWS IoT Greengrass. If you don't configure a trail, you can still view the
most recent events in the CloudTrail console in Event history. Using the information collected by
CloudTrail, you can determine the request that was made to AWS IoT Greengrass, the IP address
from which the request was made, who made the request, when it was made, and additional
details.

For more information about CloudTrail, see the AWS CloudTrail User Guide.

Topics

AWS CloudTrail logs 1340

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

AWS IoT Greengrass Developer Guide, Version 2

• AWS IoT Greengrass V2 information in CloudTrail

• AWS IoT Greengrass data events in CloudTrail

• AWS IoT Greengrass management events in CloudTrail

• Understanding AWS IoT Greengrass V2 log file entries

AWS IoT Greengrass V2 information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
AWS IoT Greengrass, that activity is recorded in a CloudTrail event along with other AWS service
events in Event history. You can view, search, and download recent events in your AWS account.
For more information, see Viewing events with CloudTrail Event history.

For an ongoing record of events in your AWS account, including events for AWS IoT Greengrass,
create a trail. A trail enables CloudTrail to deliver log files to an S3 bucket. By default, when
you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from
all Regions in the AWS partition and delivers the log files to the S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

All AWS IoT Greengrass V2 actions are logged by CloudTrail and are documented in the AWS
IoT Greengrass V2 API Reference. For example, calls to the CreateComponentVersion,
CreateDeployment and CancelDeployment actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

AWS IoT Greengrass V2 information in CloudTrail 1341

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/Welcome.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/Welcome.html

AWS IoT Greengrass Developer Guide, Version 2

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

AWS IoT Greengrass data events in CloudTrail

Data events provide information about the resource operations performed on or in a resource
(for example, getting a component version or the configuration of a deployment). These are
also known as data plane operations. Data events are often high-volume activities. By default,
CloudTrail doesn’t log data events. The CloudTrail Event history doesn't record data events.

Additional charges apply for data events. For more information about CloudTrail pricing, see AWS
CloudTrail Pricing.

You can log data events for the AWS IoT Greengrass resource types by using the CloudTrail console,
AWS CLI, or CloudTrail API operations. The table in this section shows the resource types available
for AWS IoT Greengrass.

• To log data events using the CloudTrail console, create a trail or event data store to log data
events, or update an existing trail or event data store to log data events.

1. Choose Data events to log data events.

2. From the Data event type list, choose the resource type for which you want to log data
events.

3. Choose the log selector template you want to use. You can log all data events for the
resource type, log all readOnly events, log all writeOnly events, or create a custom log
selector template to filter on the readOnly, eventName, and resources.ARN fields.

• To log data events using the AWS CLI, configure the --advanced-event-selectors
parameter to set the eventCategory field equal to Data and the resources.type field
equal to the resource type value (see table). You can add conditions to filter on the values of the
readOnly, eventName, and resources.ARN fields.

• To configure a trail to log data events, run the put-event-selectors command. For more
information, see Logging data events for trails with the AWS CLI.

• To configure an event data store to log data events, run the create-event-data-store command
to create a new event data store to log data events, or run the update-event-data-store
command to update an existing event data store. For more information, see Logging data
events for event data stores with the AWS CLI.

AWS IoT Greengrass data events in CloudTrail 1342

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events
https://aws.amazon.com/cloudtrail/pricing/
https://aws.amazon.com/cloudtrail/pricing/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html#creating-a-trail-in-the-console
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/query-event-data-store-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-console
https://docs.aws.amazon.com/cli/latest/reference/cloudtrail/put-event-selectors.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-CLI-trail-examples
https://docs.aws.amazon.com/cli/latest/reference/cloudtrail/create-event-data-store.html
https://docs.aws.amazon.com/cli/latest/reference/cloudtrail/update-event-data-store.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-CLI-eds-examples
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-CLI-eds-examples

AWS IoT Greengrass Developer Guide, Version 2

The following table lists the AWS IoT Greengrass resource types. The Data event type (console)
column shows the value to choose from the Data event type list on the CloudTrail console. The
resources.type value column shows the resources.type value, which you would specify when
configuring advanced event selectors using the AWS CLI or CloudTrail APIs. The Data APIs logged
to CloudTrail column shows the API calls logged to CloudTrail for the resource type.

Data event type (console) resources.type value Data APIs logged to
CloudTrail

IoT certificate AWS::IoT::Certific
ate

• VerifyClientDeviceIdentity

• VerifyClientDeviceIoTCertif
icateAssociation

IoT Greengrass component
version

AWS::GreengrassV2:
:ComponentVersion

• ResolveComponentCa
ndidates

IoT Greengrass deployment AWS::GreengrassV2:
:Deployment

• GetDeploymentConfi
guration

IoT thing AWS::IoT::Thing • ListThingGroupsFor
CoreDevices

• PutCertificateAuthorities

• VerifyClientDeviceIoTCertif
icateAssociation

You can configure advanced event selectors to filter on the eventName, readOnly, and
resources.ARN fields to log only those events that are important to you.

Add a filter on eventName to include or exclude specific data APIs.

For more information about these fields, see AdvancedFieldSelector.

The following examples show how to configure advanced selectors using the AWS CLI. Replace
TrailName and region with your own information.

Example – Log data events for IoT things

aws cloudtrail put-event-selectors --trail-name TrailName --region region \

AWS IoT Greengrass data events in CloudTrail 1343

https://docs.aws.amazon.com/greengrass/v2/APIReference/API_ResolveComponentCandidates.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_ResolveComponentCandidates.html
https://docs.aws.amazon.com/awscloudtrail/latest/APIReference/API_AdvancedFieldSelector.html

AWS IoT Greengrass Developer Guide, Version 2

--advanced-event-selectors \
‘[
 {
 “Name”: “Log all thing data events”,
 “FieldSelectors”: [
 { “Field”: “eventCategory”, “Equals”: [“Data”] },
 { “Field”: “resources.type”, “Equals”: [“AWS::IoT::Thing”] }
]
 }
]’

Example – Filter on a specific IoT thing API

aws cloudtrail put-event-selectors --trail-name TrailName --region region \
--advanced-event-selectors \
‘[
 {
 “Name”: “Log IoT Greengrass PutCertificateAuthorities API calls”,
 “FieldSelectors”: [
 { “Field”: “eventCategory”, “Equals”: [“Data”] },
 { “Field”: “resources.type”, “Equals”: [“AWS::IoT::Thing”] },
 { “Field”: “eventName”, “Equals”: [“PutCertificateAuthorities”] }
]
 }
]’

Example – Log all Greengrass data events

aws cloudtrail put-event-selectors --trail-name TrailName --region region \
--advanced-event-selectors \
‘[
 {
 “Name”: “Log all certificate data events”,
 “FieldSelectors”: [
 {
 “Field”: “eventCategory”,
 “Equals”: [
 “Data”
]
 },
 {
 “Field”: “resources.type”,
 “Equals”: [

AWS IoT Greengrass data events in CloudTrail 1344

AWS IoT Greengrass Developer Guide, Version 2

 “AWS::IoT::Certificate”
]
 }
]
 },
 {
 “Name”: “Log all component version data events”,
 “FieldSelectors”: [
 {
 “Field”: “eventCategory”,
 “Equals”: [
 “Data”
]
 },
 {
 “Field”: “resources.type”,
 “Equals”: [
 “AWS::GreengrassV2::ComponentVersion”
]
 }
]
 },
 {
 “Name”: “Log all deployment version”,
 “FieldSelectors”: [
 {
 “Field”: “eventCategory”,
 “Equals”: [
 “Data”
]
 },
 {
 “Field”: “resources.type”,
 “Equals”: [
 “AWS::GreengrassV2::Deployment”
]
 }
]
 },
 {
 “Name”: “Log all thing data events”,
 “FieldSelectors”: [
 {
 “Field”: “eventCategory”,

AWS IoT Greengrass data events in CloudTrail 1345

AWS IoT Greengrass Developer Guide, Version 2

 “Equals”: [
 “Data”
]
 },
 {
 “Field”: “resources.type”,
 “Equals”: [
 “AWS::IoT::Thing”
]
 }
]
 }
]’

AWS IoT Greengrass management events in CloudTrail

Management events provide information about management operations that are performed on
resources in your AWS account. These are also known as control plane operations. By default,
CloudTrail logs management events.

AWS IoT Greengrass logs all AWS IoT Greengrass control plane operations as management events.
For a list of the AWS IoT Greengrass control plane operations that AWS IoT Greengrass logs to
CloudTrail, see the AWS IoT Greengrass API reference, version 2.

Understanding AWS IoT Greengrass V2 log file entries

A trail is a configuration that enables delivery of events as log files to an S3 bucket that you
specify. CloudTrail log files contain one or more log entries. An event represents a single request
from any source. It includes information about the requested action, the date and time of the
action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateDeployment
action.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/Administrator",
 "accountId": "123456789012",

AWS IoT Greengrass management events in CloudTrail 1346

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html#logging-management-events
https://docs.aws.amazon.com/greengrass/v2/APIReference/Welcome.html

AWS IoT Greengrass Developer Guide, Version 2

 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "Administrator"
 },
 "eventTime": "2021-01-06T02:38:05Z",
 "eventSource": "greengrass.amazonaws.com",
 "eventName": "CreateDeployment",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-cli/2.1.9 Python/3.7.9 Windows/10 exe/AMD64 prompt/off command/
greengrassv2.create-deployment",
 "requestParameters": {
 "deploymentPolicies": {
 "failureHandlingPolicy": "DO_NOTHING",
 "componentUpdatePolicy": {
 "timeoutInSeconds": 60,
 "action": "NOTIFY_COMPONENTS"
 },
 "configurationValidationPolicy": {
 "timeoutInSeconds": 60
 }
 },
 "deploymentName": "Deployment for MyGreengrassCoreGroup",
 "components": {
 "aws.greengrass.Cli": {
 "componentVersion": "2.0.3"
 }
 },
 "iotJobConfiguration": {},
 "targetArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/
MyGreengrassCoreGroup"
 },
 "responseElements": {
 "iotJobArn": "arn:aws:iot:us-west-2:123456789012:job/fdfeba1d-ac6d-44ef-
ab28-54f684ea578d",
 "iotJobId": "fdfeba1d-ac6d-44ef-ab28-54f684ea578d",
 "deploymentId": "4196dddc-0a21-4c54-a985-66a525f6946e"
 },
 "requestID": "311b9529-4aad-42ac-8408-c06c6fec79a9",
 "eventID": "c0f3aa2c-af22-48c1-8161-bad4a2ab1841",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "eventCategory": "Management",
 "recipientAccountId": "123456789012"

Understanding AWS IoT Greengrass V2 log file entries 1347

AWS IoT Greengrass Developer Guide, Version 2

}

Gather system health telemetry data from AWS IoT Greengrass
core devices

System health telemetry data is diagnostic data that can help you monitor the performance of
critical operations on your Greengrass core devices. You can create projects and applications to
retrieve, analyze, transform, and report telemetry data from your edge devices. Domain experts,
such as process engineers, can use these applications to gain insights into fleet health.

You can use the following methods to gather telemetry data from your Greengrass core devices:

• Nucleus telemetry emitter component—The nucleus telemetry emitter component
(aws.greengrass.telemetry.NucleusEmitter) on a Greengrass core device publishes
telemetry data to the $local/greengrass/telemetry topic by default. You can use the
data that is published to this topic to act locally on your core device, even when your device has
limited connectivity to the cloud. Optionally, you can also configure the component to publish
telemetry data to an AWS IoT Core MQTT topic of your choice.

You must deploy the nucleus emitter component to a core device to publish telemetry data.
There are no costs associated with publishing telemetry data to the local topic. However, the use
of an MQTT topic to publish data to the AWS Cloud is subject to AWS IoT Core pricing.

AWS IoT Greengrass provides several community components to help you analyze and visualize
telemetry data locally on your core device using InfluxDB and Grafana. These components use
telemetry data from the nucleus emitter component. For more information, see the README for
the InfluxDB publisher component.

• Telemetry agent—The telemetry agent on Greengrass core devices collects local telemetry data
and publishes it to Amazon EventBridge without requiring any customer interaction. Core devices
publish telemetry data to EventBridge on a best effort basis. For example, core devices might fail
to deliver telemetry data while offline.

The telemetry agent feature is enabled by default for all Greengrass core devices. You
automatically start to receive data as soon as you set up a Greengrass core device. Aside from
your data link costs, the data transfer from the core device to AWS IoT Core is without charge.
This is because the agent publishes to an AWS reserved topic. However, depending on your use
case, you might incur costs when you receive or process the data.

Gather system health telemetry data 1348

https://aws.amazon.com/iot-core/pricing/
https://github.com/awslabs/aws-greengrass-labs-telemetry-influxdbpublisher

AWS IoT Greengrass Developer Guide, Version 2

Note

Amazon EventBridge is an event bus service that you can use to connect your
applications with data from a variety of sources, such as Greengrass core devices. For
more information, see What is Amazon EventBridge? in the Amazon EventBridge User
Guide.

To ensure that the the AWS IoT Greengrass Core software functions properly, AWS IoT Greengrass
uses the data for development and quality improvement purposes. This feature also helps inform
new and enhanced edge capabilities. AWS IoT Greengrass retains telemetry data for up to seven
days.

This section describes how to configure and use the telemetry agent. For information about
configuring the nucleus telemetry emitter component, see Nucleus telemetry emitter.

Topics

• Telemetry metrics

• Configure telemetry agent settings

• Subscribe to telemetry data in EventBridge

Telemetry metrics

The following table describes the metrics that are published by the telemetry agent.

Name Description

System

SystemMemUsage The amount of memory
currently in use by all
applications on the Greengras
s core device, including the
operating system.

CpuUsage The amount of CPU currently
in use by all applications on

Telemetry metrics 1349

https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html

AWS IoT Greengrass Developer Guide, Version 2

Name Description

the Greengrass core device,
including the operating
system.

TotalNumberOfFDs The number of file descripto
rs stored by the operating
system of the Greengrass core
device. One file descriptor
uniquely identifies one open
file.

Greengrass nucleus

NumberOfComponents
Running

The number of component
s that are running on the
Greengrass core device.

NumberOfComponents
Errored

The number of components
that are in error state on the
Greengrass core device.

NumberOfComponents
Installed

The number of component
s that are installed on the
Greengrass core device.

NumberOfComponents
Starting

The number of component
s that are starting on the
Greengrass core device.

NumberOfComponents
New

The number of component
s that are new on the
Greengrass core device.

NumberOfComponents
Stopping

The number of component
s that are stopping on the
Greengrass core device.

Telemetry metrics 1350

AWS IoT Greengrass Developer Guide, Version 2

Name Description

NumberOfComponents
Finished

The number of component
s that are finished on the
Greengrass core device.

NumberOfComponents
Broken

The number of component
s that are broken on the
Greengrass core device.

NumberOfComponents
Stateless

The number of component
s that are stateless on the
Greengrass core device.

Client device auth – This
feature requires v2.4.0 or
later of the client device auth
component.

VerifyClientDevice
Identity.Success

The number of times
verifying that the client
device identity succeeded.

VerifyClientDevice
Identity.Failure

The number of times
verifying that the client
device identity failed.

AuthorizeClientDev
iceActions.Success

The number of times the
client device is authorized to
complete requested actions.

AuthorizeClientDev
iceActions.Failure

The number of times the
client device is not authorize
d to complete requested
actions.

GetClientDeviceAut
hToken.Success

The number of times the
client device is successfully
authenticated.

Telemetry metrics 1351

AWS IoT Greengrass Developer Guide, Version 2

Name Description

GetClientDeviceAut
hToken.Failure

The number of times the
client device is not able to be
authenticated.

SubscribeToCertifi
cateUpdates.Success

The number of successful
subscriptions to certificate
updates.

SubscribeToCertifi
cateUpdates.Failure

The number of unsuccess
ful attempts to subscribe to
certificate updates.

ServiceError The number of unhandled
internal errors across the
client device auth.

Stream manager – This
feature requires v2.7.0 or
later of the Greengrass
nucleus component.

BytesAppended The number of bytes of data
appended to stream manager.

BytesUploadedToIoT
Analytics

The number of bytes of
data that stream manager
exports to channels in AWS
IoT Analytics.

BytesUploadedToKin
esis

The number of bytes of data
that stream manager exports
to streams in Amazon Kinesis
Data Streams.

Telemetry metrics 1352

AWS IoT Greengrass Developer Guide, Version 2

Name Description

BytesUploadedToIoT
SiteWise

The number of bytes of data
that stream manager exports
to asset properties in AWS IoT
SiteWise.

BytesUploadedToS3 The number of bytes of data
that stream manager exports
to objects in Amazon S3.

Configure telemetry agent settings

The telemetry agent uses the following default settings:

• The telemetry agent aggregates telemetry data every hour.

• The telemetry agent publishes a telemetry message every 24 hours.

The telemetry agent publishes data using the MQTT protocol with a quality of service (QoS)
level of 0, which means that it doesn't confirm delivery or retry publishing attempts. Telemetry
messages share an MQTT connection with other messages for subscriptions destined for AWS IoT
Core.

Aside from your data link costs, the data transfer from the core to AWS IoT Core is without charge.
This is because the agent publishes to an AWS reserved topic. However, depending on your use
case, you might incur costs when you receive or process the data.

You can enable or disable the telemetry agent feature for each Greengrass core device. You can
also configure the intervals over which the core device aggregates and publishes data. To configure
telemetry, customize the telemetry configuration parameter when you deploy the Greengrass
nucleus component.

Subscribe to telemetry data in EventBridge

You can create rules in Amazon EventBridge that define how to process telemetry data published
from the telemetry agent on the Greengrass core device. When EventBridge receives the data, it
invokes the target actions defined in your rules. For example, you can create event rules that send
notifications, store event information, take corrective action, or invoke other events.

Configure telemetry agent settings 1353

AWS IoT Greengrass Developer Guide, Version 2

Telemetry events

Telemetry events use the following format.

{
 "version": "0",
 "id": "a09d303e-2f6e-3d3c-a693-8e33f4fe3955",
 "detail-type": "Greengrass Telemetry Data",
 "source": "aws.greengrass",
 "account": "123456789012",
 "time": "2020-11-30T20:45:53Z",
 "region": "us-east-1",
 "resources": [],
 "detail": {
 "ThingName": "MyGreengrassCore",
 "Schema": "2020-07-30",
 "ADP": [
 {
 "TS": 1602186483234,
 "NS": "SystemMetrics",
 "M": [
 {
 "N": "TotalNumberOfFDs",
 "Sum": 6447.0,
 "U": "Count"
 },
 {
 "N": "CpuUsage",
 "Sum": 15.458333333333332,
 "U": "Percent"
 },
 {
 "N": "SystemMemUsage",
 "Sum": 10201.0,
 "U": "Megabytes"
 }
]
 },
 {
 "TS": 1602186483234,
 "NS": "GreengrassComponents",
 "M": [
 {
 "N": "NumberOfComponentsStopping",

Subscribe to telemetry data in EventBridge 1354

AWS IoT Greengrass Developer Guide, Version 2

 "Sum": 0.0,
 "U": "Count"
 },
 {
 "N": "NumberOfComponentsStarting",
 "Sum": 0.0,
 "U": "Count"
 },
 {
 "N": "NumberOfComponentsBroken",
 "Sum": 0.0,
 "U": "Count"
 },
 {
 "N": "NumberOfComponentsFinished",
 "Sum": 1.0,
 "U": "Count"
 },
 {
 "N": "NumberOfComponentsInstalled",
 "Sum": 0.0,
 "U": "Count"
 },
 {
 "N": "NumberOfComponentsRunning",
 "Sum": 7.0,
 "U": "Count"
 },
 {
 "N": "NumberOfComponentsNew",
 "Sum": 0.0,
 "U": "Count"
 },
 {
 "N": "NumberOfComponentsErrored",
 "Sum": 0.0,
 "U": "Count"
 },
 {
 "N": "NumberOfComponentsStateless",
 "Sum": 0.0,
 "U": "Count"
 }
]

Subscribe to telemetry data in EventBridge 1355

AWS IoT Greengrass Developer Guide, Version 2

 },
 {
 "TS": 1602186483234,
 "NS": "aws.greengrass.ClientDeviceAuth",
 "M": [
 {
 "N": "VerifyClientDeviceIdentity.Success",
 "Sum": 3.0,
 "U": "Count"
 },
 {
 "N": "VerifyClientDeviceIdentity.Failure",
 "Sum": 1.0,
 "U": "Count"
 },
 {
 "N": "AuthorizeClientDeviceActions.Success",
 "Sum": 20.0,
 "U": "Count"
 },
 {
 "N": "AuthorizeClientDeviceActions.Failure",
 "Sum": 5.0,
 "U": "Count"
 },
 {
 "N": "GetClientDeviceAuthToken.Success",
 "Sum": 5.0,
 "U": "Count"
 },
 {
 "N": "GetClientDeviceAuthToken.Failure",
 "Sum": 2.0,
 "U": "Count"
 },
 {
 "N": "SubscribeToCertificateUpdates.Success",
 "Sum": 10.0,
 "U": "Count"
 },
 {
 "N": "SubscribeToCertificateUpdates.Failure",
 "Sum": 1.0,
 "U": "Count"

Subscribe to telemetry data in EventBridge 1356

AWS IoT Greengrass Developer Guide, Version 2

 },
 {
 "N": "ServiceError",
 "Sum": 3.0,
 "U": "Count"
 }
]
 },
 {
 "TS": 1602186483234,
 "NS": "aws.greengrass.StreamManager",
 "M": [
 {
 "N": "BytesAppended",
 "Sum": 157745524.0,
 "U": "Bytes"
 },
 {
 "N": "BytesUploadedToIoTAnalytics",
 "Sum": 149012.0,
 "U": "Bytes"
 },
 {
 "N": "BytesUploadedToKinesis",
 "Sum": 12192.0,
 "U": "Bytes"
 },
 {
 "N": "BytesUploadedToIoTSiteWise",
 "Sum": 13321.0,
 "U": "Bytes"
 },
 {
 "N": "BytesUploadedToS3",
 "Sum": 12213.0,
 "U": "Bytes"
 }
]
 }
]
 }
}

Subscribe to telemetry data in EventBridge 1357

AWS IoT Greengrass Developer Guide, Version 2

The ADP array contains a list of aggregated data points that have the following properties:

TS

The timestamp of when the data was gathered.

NS

The metric namespace.

M

The list of metrics. A metric contains the following properties:

N

The name of the metric.

Sum

The sum of the metric's values in this telemetry event.

U

The unit of the metric value.

For more information about each metric, see Telemetry metrics.

Prerequisites to create EventBridge rules

Before you create an EventBridge rule for AWS IoT Greengrass, you should do the following:

• Familiarize yourself with events, rules, and targets in EventBridge.

• Create and configure the targets invoked by your EventBridge rules. Rules can invoke many types
of targets, such as Amazon Kinesis streams, AWS Lambda functions, Amazon SNS topics, and
Amazon SQS queues.

Your EventBridge rule, and the associated targets must be in the AWS Region where you created
your Greengrass resources. For more information, see Service endpoints and quotas in the AWS
General Reference.

For more information, see What is Amazon EventBridge? and Getting started with Amazon
EventBridge in the Amazon EventBridge User Guide.

Subscribe to telemetry data in EventBridge 1358

https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-targets.html
https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-getting-set-up.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-getting-set-up.html

AWS IoT Greengrass Developer Guide, Version 2

Create an event rule to get telemetry data (console)

Use the following steps to use the AWS Management Console to create an EventBridge rule that
receives telemetry data published by the Greengrass core device. This allows web servers, email
addresses, and other topic subscribers to respond to the event. For more information, see Creating
a EventBridge rule that triggers on an event from an AWS resource in the Amazon EventBridge User
Guide.

1. Open the Amazon EventBridge console, and choose Create rule.

2. Under Name and description, enter a name and description for the rule.

3. Under Define pattern, configure the rule pattern.

a. Choose Event pattern.

b. Choose Pre-defined pattern by service.

c. For Service provider, choose AWS.

d. For Service name, choose Greengrass.

e. For Event type, select Greengrass Telemetry Data.

4. Under Select event bus, keep the default event bus options.

5. Under Select targets, configure your target. The following example uses an Amazon SQS
queue, but you can configure other target types.

a. For Target, choose SQS queue.

b. For Queue*, choose your target queue.

6. Under Tags - optional, define tags for the rule or leave the fields empty.

7. Choose Create.

Create an event rule to get telemetry data (CLI)

Use the following steps to use the AWS CLI to create an EventBridge rule that receives telemetry
data published by Greengrass core devices. This allows web servers, email addresses, and other
topic subscribers to respond to the event.

1. Create the rule.

• Replace thing-name with the thing name of the core device.

Subscribe to telemetry data in EventBridge 1359

https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-rule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-rule.html
https://console.aws.amazon.com/events/

AWS IoT Greengrass Developer Guide, Version 2

Linux or Unix

aws events put-rule \
 --name MyGreengrassTelemetryEventRule \
 --event-pattern "{\"source\": [\"aws.greengrass\"], \"detail\": {\"ThingName
\": [\"thing-name\"]}}"

Windows Command Prompt (CMD)

aws events put-rule ^
 --name MyGreengrassTelemetryEventRule ^
 --event-pattern "{\"source\": [\"aws.greengrass\"], \"detail\": {\"ThingName
\": [\"thing-name\"]}}"

PowerShell

aws events put-rule `
 --name MyGreengrassTelemetryEventRule `
 --event-pattern "{\"source\": [\"aws.greengrass\"], \"detail\": {\"ThingName
\": [\"thing-name\"]}}"

Properties that are omitted from the pattern are ignored.

2. Add the topic as a rule target. The following example uses Amazon SQS but you can configure
other target types.

• Replace queue-arn with the ARN of your Amazon SQS queue.

Linux or Unix

aws events put-targets \
 --rule MyGreengrassTelemetryEventRule \
 --targets "Id"="1","Arn"="queue-arn"

Windows Command Prompt (CMD)

aws events put-targets ^
 --rule MyGreengrassTelemetryEventRule ^

Subscribe to telemetry data in EventBridge 1360

AWS IoT Greengrass Developer Guide, Version 2

 --targets "Id"="1","Arn"="queue-arn"

PowerShell

aws events put-targets `
 --rule MyGreengrassTelemetryEventRule `
 --targets "Id"="1","Arn"="queue-arn"

Note

To allow Amazon EventBridge to invoke your target queue, you must add a resource-
based policy to your topic. For more information, see Amazon SQS permissions in the
Amazon EventBridge User Guide.

For more information, see Events and event patterns in EventBridge in the Amazon EventBridge
User Guide.

Get deployment and component health status notifications

Amazon EventBridge event rules provide you with notifications about state changes for your
Greengrass deployments received by your devices and for installed components on your device.
EventBridge delivers a near real-time stream of system events that describes changes in AWS
resources. AWS IoT Greengrass sends these events to EventBridge on a best-effort basis. This means
that AWS IoT Greengrass attempts to send all events to EventBridge but, in some rare cases, an
event might not be delivered. Additionally, AWS IoT Greengrass might send multiple copies of a
given event, which means that your event listeners might not receive the events in the order that
the events occurred.

Note

Amazon EventBridge is an event bus service that you can use to connect your applications
with data from a variety of sources, such as Greengrass core devices and deployment and
component notifications. For more information, see What is Amazon EventBridge? in the
Amazon EventBridge User Guide.

Get deployment and component health status notifications 1361

https://docs.aws.amazon.com/eventbridge/latest/userguide/resource-based-policies-eventbridge.html#sqs-permissions
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html

AWS IoT Greengrass Developer Guide, Version 2

Topics

• Deployment status change event

• Component status change event

• Prerequisites for creating EventBridge rules

• Configure device health notifications (console)

• Configure device health notifications (CLI)

• Configure device health notifications (AWS CloudFormation)

• See also

Deployment status change event

AWS IoT Greengrass emits an event when a deployment enters the following states: FAILED,
SUCCEEDED, COMPLETED, REJECTED, and CANCELED. You can create an EventBridge rule that runs
for all state transitions or transitions to states you specify. When a deployment enters a state that
initiates a rule, EventBridge invokes the target actions defined in the rule. This allows you to send
notifications, capture event information, take corrective action, or initiate other events in response
to a state change. For example, you can create rules for the following use cases:

• Initiate post-deployment operations, such as downloading assets and notifying personnel.

• Send notifications upon a successful or failed deployment.

• Publish custom metrics about deployment events.

The event for a deployment state change uses the following format:

{
 "version":"0",
 "id":" cd4d811e-ab12-322b-8255-EXAMPLEb1bc8",
 "detail-type":"Greengrass V2 Effective Deployment Status Change",
 "source":"aws.greengrass",
 "account":"123456789012",
 "region":"us-west-2",
 "time":"2018-03-22T00:38:11Z",
 "resources":["arn:aws:greengrass:us-
east-1:123456789012:coreDevices:MyGreengrassCore"],
 "detail":{
 "deploymentId": "4f38f1a7-3dd0-42a1-af48-EXAMPLE09681",
 "coreDeviceExecutionStatus": "FAILED|SUCCEEDED|COMPLETED|REJECTED|CANCELED",

Deployment status change event 1362

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html

AWS IoT Greengrass Developer Guide, Version 2

 "statusDetails": {
 "errorStack": ["DEPLOYMENT_FAILURE", "ARTIFACT_DOWNLOAD_ERROR", "S3_ERROR",
 "S3_ACCESS_DENIED", "S3_HEAD_OBJECT_ACCESS_DENIED"],
 "errorTypes": ["DEPENDENCY_ERROR", "PERMISSION_ERROR"],
 },
 "reason": "S3_HEAD_OBJECT_ACCESS_DENIED: FAILED_NO_STATE_CHANGE: Failed to
 download artifact name: 's3://pentest27/nucleus/281/aws.greengrass.nucleus.zip' for
 component aws.greengrass.Nucleus-2.8.1, reason: S3 HeadObject returns 403 Access
 Denied. Ensure the IAM role associated with the core device has a policy granting
 s3:GetObject. null (Service: S3, Status Code: 403, Request ID: HR94ZNT2161DAR58,
 Extended Request ID: wTX4DDI+qigQt3uzwl9rlnQiYlBgwvPm/KJFWeFAn9t1mnGXTms/
luLCYANgq08RIH+x2H+hEKc=)"
 }
}

You can create rules and events that will update you on the status of a deployment. An event is
initiated when a deployment completes as either FAILED, SUCCEEDED, COMPLETED, REJECTED,
or CANCELED. If the deployment failed on the core device, you will receive a detailed response
that explains why the deployment failed. For more information about deployment error codes, see
Detailed deployment error codes.

Deployment states

• FAILED. The deployment failed.

• SUCCEEDED. The deployment targeted to a thing group successfully completed.

• COMPLETED. The deployment targeted to a thing successfully completed.

• REJECTED. The deployment was rejected. For more information, see the statusDetails
field.

• CANCELED. The deployment was canceled by the user.

It's possible that events might be duplicated or out of order. To determine the order of events, use
the time property.

For a full list of error codes in errorStacks and errorTypes, see Detailed deployment error
codes and Detailed component status codes.

Component status change event

For AWS IoT Greengrass versions 2.12.2 and earlier, Greengrass emits an event when a component
enters the following states: ERRORED and BROKEN. For Greengrass nucleus versions 2.12.3 and

Component status change event 1363

AWS IoT Greengrass Developer Guide, Version 2

later, Greengrass emits an event when a component enters the following states: ERRORED, BROKEN,
RUNNING, and FINISHED. Greengrass will also emit an event when a deployment completes. You
can create an EventBridge rule that runs for all state transitions or transitions to states you specify.
When an installed component enters a state that initiates a rule, EventBridge invokes the target
actions defined in the rule. This allows you to send notifications, capture event information, take
corrective action, or initiate other events in response to a state change.

The event for a component state change uses the following formats:

Greengrass nucleus v2.12.2 and earlier

<title>Component status: ERRORED or BROKEN</title>

{
 "version":"0",
 "id":" cd4d811e-ab12-322b-8255-EXAMPLEb1bc8",
 "detail-type":"Greengrass V2 Installed Component Status Change",
 "source":"aws.greengrass",
 "account":"123456789012",
 "region":"us-west-2",
 "time":"2018-03-22T00:38:11Z",
 "resources":["arn:aws:greengrass:us-
east-1:123456789012:coreDevices:MyGreengrassCore"],
 "detail": {
 "components": [
 {
 "componentName": "MyComponent",
 "componentVersion": "1.0.0",
 "root": true,
 "lifecycleState": "ERRORED|BROKEN",
 "lifecycleStatusCodes": ["STARTUP_ERROR"],
 "lifecycleStateDetails": "An error occurred during startup. The startup
 script exited with code 1."
 }
]
 }
}

Greengrass nucleus v2.12.3 and later

<title>Component status: ERRORED or BROKEN</title>

{

Component status change event 1364

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/CloudWatchEventsandEventPatterns.html

AWS IoT Greengrass Developer Guide, Version 2

 "version":"0",
 "id":" cd4d811e-ab12-322b-8255-EXAMPLEb1bc8",
 "detail-type":"Greengrass V2 Installed Component Status Change",
 "source":"aws.greengrass",
 "account":"123456789012",
 "region":"us-west-2",
 "time":"2018-03-22T00:38:11Z",
 "resources":["arn:aws:greengrass:us-
east-1:123456789012:coreDevices:MyGreengrassCore"],
 "detail": {
 "components": [
 {
 "componentName": "MyComponent",
 "componentVersion": "1.0.0",
 "root": true,
 "lifecycleState": "ERRORED|BROKEN",
 "lifecycleStatusCodes": ["STARTUP_ERROR"],
 "lifecycleStateDetails": "An error occurred during startup. The startup
 script exited with code 1."
 }
]
 }
}

<title>Component status: RUNNING or FINISHED</title>

{
 "version":"0",
 "id":" cd4d811e-ab12-322b-8255-EXAMPLEb1bc8",
 "detail-type":"Greengrass V2 Installed Component Status Change",
 "source":"aws.greengrass",
 "account":"123456789012",
 "region":"us-west-2",
 "time":"2018-03-22T00:38:11Z",
 "resources":["arn:aws:greengrass:us-
east-1:123456789012:coreDevices:MyGreengrassCore"],
 "detail": {
 "components": [
 {
 "componentName": "MyComponent",
 "componentVersion": "1.0.0",
 "root": true,
 "lifecycleState": "RUNNING|FINISHED",

Component status change event 1365

AWS IoT Greengrass Developer Guide, Version 2

 "lifecycleStateDetails": null
 }
]
 }
}

You can create rules and events that will update you on the status of an installed component.
An event is initiated when a component changes state on the device. You will receive a detailed
response that explains why a component is errored or broken. You will also receive a status code
that will indicate a reason for the failure. For more information about component status codes, see
Detailed component status codes.

Prerequisites for creating EventBridge rules

Before you create an EventBridge rule for AWS IoT Greengrass, do the following:

• Familiarize yourself with events, rules, and targets in EventBridge.

• Create and configure the targets invoked by your EventBridge rules. Rules can invoke many types
of targets, including:

• Amazon Simple Notification Service (Amazon SNS)

• AWS Lambda functions

• Amazon Kinesis Video Streams

• Amazon Simple Queue Service (Amazon SQS) queues

For more information, see What is Amazon EventBridge? and Getting started with Amazon
EventBridge in the Amazon EventBridge User Guide.

Configure device health notifications (console)

Use the following steps to create an EventBridge rule that publishes an Amazon SNS topic when
the deployment state changes for a group. This allows web servers, email addresses, and other
topic subscribers to respond to the event. For more information, see Creating a EventBridge rule
that triggers on an event from an AWS resource in the Amazon EventBridge User Guide.

1. Open the Amazon EventBridge console.

2. In the navigation pane, choose Rules.

3. Choose Create rule.

Prerequisites for creating EventBridge rules 1366

https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-getting-set-up.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-getting-set-up.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-rule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-rule.html
https://console.aws.amazon.com/events/

AWS IoT Greengrass Developer Guide, Version 2

4. Enter a name and description for the rule.

A rule can't have the same name as another rule in the same Region and on the same event
bus.

5. For Event bus, choose the event bus that you want to associate with this rule. If you want this
rule to match events that come from your account, select AWS default event bus. When an
AWS service in your account emits an event, it always goes to your account's default event bus.

6. For Rule type, choose Rule with an event pattern.

7. Choose Next.

8. For Event source, choose AWS events.

9. For Event pattern, choose AWS services.

10. For AWS service, choose Greengrass.

11. For Event type, choose from the following:

• For deployment events, choose Greengrass V2 Effective Deployment Status Change.

• For component events, choose Greengrass V2 Installed Component Status Change.

12. Choose Next.

13. For Target types, choose AWS service.

14. For Select a target, configure your target. This example uses an Amazon SNS topic, but you
can configure other target types to send notifications.

a. For Target, choose SNS topic.

b. For Topic, choose your target topic.

c. Choose Next.

15. Choose Next.

16. Review the details of the rule and choose Create rule.

Configure device health notifications (CLI)

Use the following steps to create an EventBridge rule that publishes an Amazon SNS topic when
there is a Greengrass status change event. This allows web servers, email addresses, and other
topic subscribers to respond to the event.

1. Create the rule.

Configure device health notifications (CLI) 1367

AWS IoT Greengrass Developer Guide, Version 2

• For deployment status change events.

aws events put-rule \
 --name TestRule \
 --event-pattern "{\"source\": [\"aws.greengrass\"], \"detail-type\":
 [\"Greengrass V2 Effective Deployment Status Change\"]}"

• For component status change events.

aws events put-rule \
 --name TestRule \
 --event-pattern "{\"source\": [\"aws.greengrass\"], \"detail-type\":
 [\"Greengrass V2 Installed Component Status Change\"]}"

Properties that are omitted from the pattern are ignored.

2. Add the topic as a rule target.

• Replace topic-arn with the ARN of your Amazon SNS topic.

aws events put-targets \
 --rule TestRule \
 --targets "Id"="1","Arn"="topic-arn"

Note

To allow Amazon EventBridge to call your target topic, you must add a resource-based
policy to your topic. For more information, see Amazon SNS permissions in the Amazon
EventBridge User Guide.

For more information, see Events and event patterns in EventBridge in the Amazon EventBridge
User Guide.

Configure device health notifications (CLI) 1368

https://docs.aws.amazon.com/eventbridge/latest/userguide/resource-based-policies-eventbridge.html#sns-permissions
https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html

AWS IoT Greengrass Developer Guide, Version 2

Configure device health notifications (AWS CloudFormation)

Use AWS CloudFormation templates to create EventBridge rules that send notifications about state
changes for your Greengrass group deployments. For more information, see Amazon EventBridge
resource type reference in the AWS CloudFormation User Guide.

See also

• Check device deployment status

• What is Amazon EventBridge? in the Amazon EventBridge User Guide

Check Greengrass core device status

Greengrass core devices report the status of their software components to AWS IoT Greengrass.
You can check the health summary of each device, and you can check the status of each
component on each device.

Core devices have the following health statuses:

• HEALTHY – The AWS IoT Greengrass Core software and all components run without issue on the
core device.

• UNHEALTHY – The AWS IoT Greengrass Core software or a component is in an error state on the
core device.

Note

AWS IoT Greengrass relies on individual devices to send status updates to the AWS Cloud.
If the AWS IoT Greengrass Core software isn't running on the device, or if device isn't
connected to the AWS Cloud, then the reported status of that device might not reflect its
current status. The status timestamp indicates when the device status was last updated.
Core devices send status updates at the following times:

• When the AWS IoT Greengrass Core software starts

• When the core device receives a deployment from the AWS Cloud

• For Greengrass nucleus 2.12.2 and earlier, the core device sends status updates when the
status of any component on the core device becomes ERRORED or BROKEN

Configure device health notifications (AWS CloudFormation) 1369

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_Events.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_Events.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/what-is-amazon-eventbridge.html

AWS IoT Greengrass Developer Guide, Version 2

• For Greengrass nucleus 2.12.3 and later, the core device sends status updates when the
status of any component on the core device becomes ERRORED, BROKEN, RUNNING, or
FINISHED

• At a regular interval that you can configure, which defaults to 24 hours

For AWS IoT Greengrass Core v2.7.0 and later, the core device sends status updates when
local deployment and cloud deployment occurs

Topics

• Check health of a core device

• Check health of a core device group

• Check core device component status

Check health of a core device

You can check the status of individual core devices.

To check the status of a core device (AWS CLI)

• Run the following command to retrieve the status of a device. Replace coreDeviceName with
the name of the core device to query.

aws greengrassv2 get-core-device --core-device-thing-name coreDeviceName

The response contains information about the core device, including its status.

Check health of a core device group

You can check the status of a group of core devices (a thing group).

To check the status of a group of devices (AWS CLI)

• Run the following command to retrieve the status of multiple core devices. Replace the ARN in
the command with the ARN of the thing group to query.

Check health of a core device 1370

AWS IoT Greengrass Developer Guide, Version 2

aws greengrassv2 list-core-devices --thing-group-arn "arn:aws:iot:region:account-
id:thinggroup/thingGroupName"

The response contains the list of core devices in the thing group. Each entry in the list contains
the status of the core device.

Check core device component status

You can check the status, such as lifecycle state, of the software components on a core device. For
more information about component lifecycle states, see Develop AWS IoT Greengrass components.

To check the status of components on a core device (AWS CLI)

• Run the following command to retrieve the status of the components on a core device. Replace
coreDeviceName with the name of the core device to query.

aws greengrassv2 list-installed-components --core-device-thing-name coreDeviceName

The response contains the list of components that run on the core device. Each entry in the list
contains the lifecycle state of the component, including how current the status of the data is
and when the Greengrass core device last sent a message containing a certain component to
the cloud. The response will also include the most recent deployment source that brought the
component to the Greengrass core device.

Note

This command retrieves a paginated list of the components that a Greengrass core
device runs. By default, this list doesn't include components that are deployed as
dependencies of other components. You can include dependencies in the response by
setting the topologyFilter parameter to ALL.

Check core device component status 1371

AWS IoT Greengrass Developer Guide, Version 2

Run AWS Lambda functions

Note

AWS IoT Greengrass doesn't currently support this feature on Windows core devices.

You can import AWS Lambda functions as components that run on AWS IoT Greengrass core
devices. You might want to do this in the following cases:

• You have application code in Lambda functions that you want to deploy to core devices.

• You have AWS IoT Greengrass V1 applications that you want to run on AWS IoT Greengrass
V2 core devices. For more information, see Step 2: Create and deploy AWS IoT Greengrass V2
components to migrate AWS IoT Greengrass V1 applications.

Lambda functions include dependencies on the following components. You don't need to define
these components as dependencies when you import the function. When you deploy the Lambda
function component, the deployment includes these Lambda component dependencies.

• The Lambda launcher component (aws.greengrass.LambdaLauncher) handles processes and
environment configuration.

• The Lambda manager component (aws.greengrass.LambdaManager) handles interprocess
communication and scaling.

• The Lambda runtimes component (aws.greengrass.LambdaRuntimes) provides artifacts for
each supported Lambda runtime.

Topics

• Requirements

• Configure Lambda function lifecycle

• Configure Lambda function containerization

• Import a Lambda function as a component (console)

• Import a Lambda function as a component (AWS CLI)

1372

AWS IoT Greengrass Developer Guide, Version 2

Requirements

Your core devices and Lambda functions must meet the following requirements for you to run the
functions on the AWS IoT Greengrass Core software:

• Your core device must meet the requirements to run Lambda functions. If you want the core
device to run containerized Lambda functions, the device must meet the requirements to do so.
For more information, see Lambda function requirements.

• You must install the programming languages that the Lambda function uses on your core
devices.

Tip

You can create a component that installs the programming language, and then specify
that component as a dependency of your Lambda function component. Greengrass
supports all Lambda supported versions of Python, Node.js, and Java runtimes.
Greengrass doesn't apply any additional restrictions on deprecated Lambda runtime
versions. You can run Lambda functions that use these deprecated runtimes on AWS IoT
Greengrass, but you can't create them in AWS Lambda. For more information about AWS
IoT Greengrass support for Lambda runtimes, see Run AWS Lambda functions.

Configure Lambda function lifecycle

The Greengrass Lambda function lifecycle determines when a function starts and how it creates
and uses containers. The lifecycle also determines how the AWS IoT Greengrass Core software
retains variables and preprocessing logic that are outside of the function handler.

AWS IoT Greengrass supports on-demand (default) and long-lived lifecycles:

• On-demand functions start when they are invoked and stop when there are no tasks left to run.
Each invocation of the function creates a separate container, also called a sandbox, to process
invocations, unless an existing container is available for reuse. Any of the containers might
process data that you send to the function.

Multiple invocations of an on-demand function can run simultaneously.

Requirements 1373

AWS IoT Greengrass Developer Guide, Version 2

Variables and preprocessing logic that you define outside of the function handler are not
retained when new containers are created.

• Long-lived (or pinned) functions start when the AWS IoT Greengrass Core software starts and
run in a single container. The same container processes all data that you send to the function.

Multiple invocations are queued until the AWS IoT Greengrass Core software runs earlier
invocations.

Variables and preprocessing logic that you define outside of the function handler are retained for
every invocation of the handler.

Use long-lived Lambda functions when you need to start doing work without any initial input.
For example, a long-lived function can load and start processing a machine learning model to be
ready when the function receives device data.

Note

Long-lived functions have timeouts that are associated with each invocation of their
handler. If you want to invoke code that runs indefinitely, you must start it outside of
the handler. Make sure that there's no blocking code outside of the handler that might
prevent the function from initializing.
These functions run unless the AWS IoT Greengrass Core software stops, such as during a
deployment or reboot. These functions won't run if the function encounters an uncaught
exception, exceeds its memory limits, or enters an error state, such as a handler timeout.

For more information about container reuse, see Understanding Container Reuse in AWS Lambda in
the AWS Compute Blog.

Configure Lambda function containerization

By default, Lambda functions run inside of an AWS IoT Greengrass container. Greengrass containers
provide isolation between your functions and the host. This isolation increases security for both the
host and the functions in the container.

We recommend that you run Lambda functions in a Greengrass container, unless your use case
requires them to run without containerization. By running your Lambda functions in a Greengrass
container, you have more control over how you restrict access to resources.

Configure Lambda function containerization 1374

https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/

AWS IoT Greengrass Developer Guide, Version 2

You might run a Lambda function without containerization in the following cases:

• You want to run AWS IoT Greengrass on a device that doesn't support container mode. An
example would be if you wanted to use a special Linux distribution, or have an earlier kernel
version that is out of date.

• You want to run your Lambda function in another container environment with its own OverlayFS,
but encounter OverlayFS conflicts when you run in a Greengrass container.

• You need access to local resources with paths that can't be determined at deployment time, or
whose paths can change after deployment. An example of this resource would be a pluggable
device.

• You have an earlier application that was written as a process, and you encounter issues when you
run it in a Greengrass container.

Containerization differences

Containerization Notes

Greengrass container • All AWS IoT Greengrass features are
available when you run a Lambda function
in a Greengrass container.

• Lambda functions that run in a Greengrass
container don't have access to the deployed
code of other Lambda functions, even if
they run with the same system group. In
other words, your Lambda functions run
with increased isolation from one another.

• Because the AWS IoT Greengrass Core
software runs all child processes in the same
container as the Lambda function, the child
processes stop when the Lambda function
stops.

No container • The following features aren't available to
non-containerized Lambda functions:

• Lambda function memory limits.

Configure Lambda function containerization 1375

AWS IoT Greengrass Developer Guide, Version 2

Containerization Notes

• Local device and volume resources. You
must access these resources using their
file paths on the core device instead of as
Lambda function resources.

• If your non-containerized Lambda function
accesses a machine learning resource, you
must identify a resource owner and set
access permissions on the resource, not on
the Lambda function.

• Non-containerized Lambda functions have
read-only access to the deployed code of
other Lambda functions that run with the
same system group.

If you change the containerization for a Lambda function when you deploy it, the function might
not work as expected. If the Lambda function uses local resources that are no longer available with
the new containerization setting, deployment fails.

• When you change a Lambda function from running in a Greengrass container to running without
containerization, the function's memory limits are discarded. You must access the file system
directly instead of using attached local resources. You must remove any attached resources
before you deploy the Lambda function.

• When you change a Lambda function from running without containerization to running in
a container, your Lambda function loses direct access to the file system. You must define a
memory limit for each function or accept the default 16 MB memory limit. You can configure
these settings for each Lambda function when you deploy it.

To change containerization settings for a Lambda function component, set the value of the
containerMode configuration parameter to one of the following options when you deploy the
component.

• NoContainer – The component doesn't run in an isolated runtime environment.

Configure Lambda function containerization 1376

AWS IoT Greengrass Developer Guide, Version 2

• GreengrassContainer – The component runs in an isolated runtime environment inside the
AWS IoT Greengrass container.

For more information about how to deploy and configure components, see Deploy AWS IoT
Greengrass components to devices and Update component configurations.

Import a Lambda function as a component (console)

When you use the AWS IoT Greengrass console to create a Lambda function component, you
import an existing AWS Lambda function and then configure it to create a component that runs on
your Greengrass device.

Before you begin, review the requirements to run Lambda functions on Greengrass devices.

Tasks

• Step 1: Choose a Lambda function to import

• Step 2: Configure Lambda function parameters

• Step 3: (Optional) Specify supported platforms for the Lambda function

• Step 4: (Optional) Specify component dependencies for the Lambda function

• Step 5: (Optional) Run the Lambda function in a container

• Step 6: Create the Lambda function component

Step 1: Choose a Lambda function to import

1. In the AWS IoT Greengrass console navigation menu, choose Components.

2. On the Components page, choose Create component.

3. On the Create component page, under Component information, choose Import Lambda
function.

4. In Lambda function, search for and choose the Lambda function that you want to import.

AWS IoT Greengrass creates the component with the name of the Lambda function.

5. In Lambda function version, choose the version to import. You can't choose Lambda aliases
like $LATEST.

Import a Lambda function as a component (console) 1377

https://console.aws.amazon.com/greengrass
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-lambda-functions.html#run-lambda-functions-requirements
https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass creates the component with the version of the Lambda function as a valid
semantic version. For example, if your function version is 3, the component version becomes
3.0.0.

Step 2: Configure Lambda function parameters

On the Create component page, under Lambda function configuration, configure the following
parameters to use to run the Lambda function.

1. (Optional) Add the list of event sources to which the Lambda function subscribes for work
messages. You can specify event sources to subscribe this function to local publish/subscribe
messages and AWS IoT Core MQTT messages. The Lambda function is called when it receives a
message from an event source.

Note

To subscribe this function to messages from other Lambda functions or components,
deploy the legacy subscription router component when you deploy this Lambda
function component. When you deploy the legacy subscription router component,
specify the subscriptions that the Lambda function uses.

Under Event sources, do the following to add an event source:

a. For each event source that you add, specify the following options:

• Topic – The topic to subscribe for messages.

• Type – The type of event source. Choose from the following options:

• Local publish/subscribe – Subscribe to local publish/subscribe messages.

If you use Greengrass nucleus v2.6.0 or later and Lambda manager v2.2.5 or later, you
can use MQTT topic wildcards (+ and #) in the Topic when you specify this type.

• AWS IoT Core MQTT – Subscribe to AWS IoT Core MQTT messages.

You can use MQTT topic wildcards (+ and #) in the Topic when you specify this type.

Step 2: Configure Lambda function parameters 1378

AWS IoT Greengrass Developer Guide, Version 2

b. To add another event source, choose Add event source and repeat the previous step.
To remove an event source, choose Remove next to the event source that you want to
remove.

2. For Timeout (seconds), enter the maximum amount of time in seconds that a non-pinned
Lambda function can run before it times out. The default is 3 seconds.

3. For Pinned, choose whether the Lambda function component is pinned. The default is True.

• A pinned (or long-lived) Lambda function starts when AWS IoT Greengrass starts and keeps
running in its own container.

• A non-pinned (or on-demand) Lambda function starts only when it receives a work item and
exits after it remains idle for a specified maximum idle time. If the function has multiple
work items, the AWS IoT Greengrass Core software creates multiple instances of the
function.

4. (Optional) Under Additional parameters, set the following Lambda function parameters.

• Status timeout (seconds) – The interval in seconds at which the Lambda function
component sends status updates to the Lambda manager component. This parameter
applies only to pinned functions. The default is 60 seconds.

• Maximum queue size – The maximum size of the message queue for the Lambda function
component. The AWS IoT Greengrass Core software stores messages in a FIFO (first-in, first-
out) queue until it can run the Lambda function to consume each message. The default is
1,000 messages.

• Maximum number of instances – The maximum number of instances that a non-pinned
Lambda function can run at the same time. The default is 100 instances.

• Maximum idle time (seconds) – The maximum amount of time in seconds that a non-
pinned Lambda function can idle before the AWS IoT Greengrass Core software stops its
process. The default is 60 seconds.

• Encoding type – The type of payload that the Lambda function supports. Choose from the
following options:

• JSON

• Binary

The default is JSON.

5. (Optional) Specify the list of command line arguments to pass to the Lambda function when it
runs.

Step 2: Configure Lambda function parameters 1379

AWS IoT Greengrass Developer Guide, Version 2

a. Under Additional parameters, Process arguments, choose Add argument.

b. For each argument that you add, enter the argument that you want to pass to the
function.

c. To remove an argument, choose Remove next to the argument that you want to remove.

6. (Optional) Specify the environment variables that are available to the Lambda function when
it runs. Environment variables enable you to store and update configuration settings without
the need to change function code.

a. Under Additional parameters, Environment variables, choose Add environment
variable.

b. For each environment variable that you add, specify the following options:

• Key – The variable name.

• Value – The default value for this variable.

c. To remove an environment variable, choose Remove next to the environment variable
that you want to remove.

Step 3: (Optional) Specify supported platforms for the Lambda
function

All core devices have attributes for operating system and architecture. When you deploy the
Lambda function component, the AWS IoT Greengrass Core software compares the platform values
that you specify with the platform attributes on the core device to determine whether the Lambda
function is supported on that device.

Note

You can also specify custom platform attributes when you deploy the Greengrass nucleus
component to a core device. For more information, see the platform overrides parameter of
the Greengrass nucleus component.

Under Lambda function configuration, Additional parameters, Platforms, do the following to
specify the platforms that this Lambda function supports.

1. For each platform, specify the following options:

Step 3: (Optional) Specify supported platforms for the Lambda function 1380

AWS IoT Greengrass Developer Guide, Version 2

• Operating system – The name of the operating system for the platform. Currently, the only
supported value is linux.

• Architecture – The processor architecture for the platform. Supported values are:

• amd64

• arm

• aarch64

• x86

2. To add another platform, choose Add platform and repeat the previous step. To remove a
supported platform, choose Remove next to the platform that you want to remove.

Step 4: (Optional) Specify component dependencies for the Lambda
function

Component dependencies identify additional AWS-provided components or custom components
that your function uses. When you deploy the Lambda function component, the deployment
includes these dependencies for your function to run.

Important

To import a Lambda function that you created to run on AWS IoT Greengrass V1, you
must define individual component dependencies for the features that your function uses,
such as secrets, local shadows, and stream manager. Define these components as hard
dependencies so that your Lambda function component restarts if the dependency changes
state. For more information, see Import V1 Lambda functions.

Under Lambda function configuration, Additional parameters, Component dependencies,
complete the following steps to specify the component dependencies for your Lambda function.

1. Choose Add dependency.

2. For each component dependency that you add, specify the following options:

• Component name – The component name. For example, enter
aws.greengrass.StreamManager to include the stream manager component.

Step 4: (Optional) Specify component dependencies for the Lambda function 1381

AWS IoT Greengrass Developer Guide, Version 2

• Version requirement – The npm-style semantic version constraint that identifies the
compatible versions of this component dependency. You can specify a single version or a
range of versions. For example, enter ^1.0.0 to specify that this Lambda function depends
on any version in the first major version of the stream manager component. For more
information about semantic version constraints, see the npm semver calculator.

• Type – The type of dependency. Choose from the following options:

• Hard – The Lambda function component restarts if the dependency changes state. This is
the default selection.

• Soft – The Lambda function component doesn't restart if the dependency changes state.

3. To remove a component dependency, choose Remove next to the component dependency

Step 5: (Optional) Run the Lambda function in a container

By default, Lambda functions run in an isolated runtime environment inside the AWS IoT
Greengrass Core software. You can also choose to run the Lambda function as a process without
any isolation (that is, in No container mode).

Under Linux process configuration, for Isolation mode, choose from the following options to
select the containerization for your Lambda function:

• Greengrass container – The Lambda function runs in a container. This is the default selection.

• No container – The Lambda function runs as a process without any isolation.

If you run the Lambda function in a container, complete the following steps to configure the
process configuration for the Lambda function.

1. Configure the amount of memory and the system resources, such as volumes and devices, to
make available to the container.

Under Container parameters, do the following.

a. For Memory size, enter the memory size that you want to allocate to the container. You
can specify the memory size in MB or kB.

b. For Read-only sys folder, choose whether or not the container can read information from
the device's /sys folder. The default is False.

Step 5: (Optional) Run the Lambda function in a container 1382

https://semver.npmjs.com/

AWS IoT Greengrass Developer Guide, Version 2

2. (Optional) Configure the local volumes that the containerized Lambda function can access.
When you define a volume, the AWS IoT Greengrass Core software mounts the source files to
the destination inside the container.

a. Under Volumes, choose Add volume.

b. For each volume that you add, specify the following options:

• Physical volume – The path to the source folder on the core device.

• Logical volume – The path to the destination folder in the container.

• Permission – (Optional) The permission to access the source folder from the container.
Choose from the following options:

• Read-only – The Lambda function has read-only access to the source folder. This is
the default selection.

• Read-write – The Lambda function has read/write access to the source folder.

• Add group owner – (Optional) Whether or not to add the system group that runs the
Lambda function component as an owner of the source folder. The default is False.

c. To remove a volume, choose Remove next to the volume that you want to remove.

3. (Optional) Configure the local system devices that the containerized Lambda function can
access.

a. Under Devices, choose Add device.

b. For each device that you add, specify the following options:

• Mount path – The path to the system device on the core device.

• Permission – (Optional) The permission to access the system device from the container.
Choose from the following options:

• Read-only – The Lambda function has read-only access to the system device. This is
the default selection.

• Read-write – The Lambda function has read/write access to the source folder.

• Add group owner – (Optional) Whether or not to add the system group that runs the
Lambda function component as an owner of the system device. The default is False.

Step 5: (Optional) Run the Lambda function in a container 1383

AWS IoT Greengrass Developer Guide, Version 2

Step 6: Create the Lambda function component

After you configure settings for your Lambda function component, choose Create to finish creating
the new component.

To run the Lambda function on your core device, you can then deploy the new component to your
core devices. For more information, see Deploy AWS IoT Greengrass components to devices.

Import a Lambda function as a component (AWS CLI)

Use the CreateComponentVersion operation to create components from Lambda functions. When
you call this operation, specify lambdaFunction to import a Lambda function.

Tasks

• Step 1: Define the Lambda function configuration

• Step 2: Create the Lambda function component

Step 1: Define the Lambda function configuration

1. Create a file called lambda-function-component.json, and then copy the following JSON
object into the file. Replace the lambdaArn with the ARN of the Lambda function to import.

{
 "lambdaFunction": {
 "lambdaArn": "arn:aws:lambda:region:account-id:function:HelloWorld:1"
 }
}

Important

You must specify an ARN that includes the version of the function to import. You can't
use version aliases like $LATEST.

2. (Optional) Specify the name (componentName) of the component. If you omit this parameter,
AWS IoT Greengrass creates the component with the name of the Lambda function.

{
 "lambdaFunction": {

Step 6: Create the Lambda function component 1384

https://docs.aws.amazon.com/greengrass/v2/APIReference/API_CreateComponentVersion.html

AWS IoT Greengrass Developer Guide, Version 2

 "lambdaArn": "arn:aws:lambda:region:account-id:function:HelloWorld:1",
 "componentName": "com.example.HelloWorldLambda"
 }
}

3. (Optional) Specify the version (componentVersion) for the component. If you omit this
parameter, AWS IoT Greengrass creates the component with the version of the Lambda
function as a valid semantic version. For example, if your function version is 3, the component
version becomes 3.0.0.

Note

Each component version that you upload must be unique. Make sure that you upload
the correct component version, because you can't edit it after you upload it.
AWS IoT Greengrass uses semantic versions for components. Semantic versions follow
a major.minor.patch number system. For example, version 1.0.0 represents the
first major release for a component. For more information, see the semantic version
specification.

{
 "lambdaFunction": {
 "lambdaArn": "arn:aws:lambda:region:account-id:function:HelloWorld:1",
 "componentName": "com.example.HelloWorldLambda",
 "componentVersion": "1.0.0"
 }
}

4. (Optional) Specify the platforms that this Lambda function supports. Each platform contains
a map of attributes that identify a platform. All core devices have attributes for operating
system (os) and architecture (architecture). The AWS IoT Greengrass Core software may
add other platform attributes. You can also specify custom platform attributes when you
deploy the Greengrass nucleus component to a core device. Do the following:

a. Add a list of platforms (componentPlatforms) to the Lambda function in lambda-
function-component.json.

{
 "lambdaFunction": {
 "lambdaArn": "arn:aws:lambda:region:account-id:function:HelloWorld:1",

Step 1: Define the Lambda function configuration 1385

https://semver.org/
https://semver.org/

AWS IoT Greengrass Developer Guide, Version 2

 "componentName": "com.example.HelloWorldLambda",
 "componentVersion": "1.0.0",
 "componentPlatforms": [

]
 }
}

b. Add each supported platform to the list. Each platform has a friendly name to identify it
and a map of attributes. The following example specifies that this function supports x86
devices that run Linux.

{
 "name": "Linux x86",
 "attributes": {
 "os": "linux",
 "architecture": "x86"
 }
}

Your lambda-function-component.json might contain a document similar to the
following example.

{
 "lambdaFunction": {
 "lambdaArn": "arn:aws:lambda:region:account-id:function:HelloWorld:1",
 "componentName": "com.example.HelloWorldLambda",
 "componentVersion": "1.0.0",
 "componentPlatforms": [
 {
 "name": "Linux x86",
 "attributes": {
 "os": "linux",
 "architecture": "x86"
 }
 }
]
 }
}

Step 1: Define the Lambda function configuration 1386

AWS IoT Greengrass Developer Guide, Version 2

5. (Optional) Specify the component dependencies for your Lambda function. When you deploy
the Lambda function component, the deployment includes these dependencies for your
function to run.

Important

To import a Lambda function that you created to run on AWS IoT Greengrass V1,
you must define individual component dependencies for the features that your
function uses, such as secrets, local shadows, and stream manager. Define these
components as hard dependencies so that your Lambda function component restarts
if the dependency changes state. For more information, see Import V1 Lambda
functions.

Do the following:

a. Add a map of component dependencies (componentDependencies) to the Lambda
function in lambda-function-component.json.

{
 "lambdaFunction": {
 "lambdaArn": "arn:aws:lambda:region:account-id:function:HelloWorld:1",
 "componentName": "com.example.HelloWorldLambda",
 "componentVersion": "1.0.0",
 "componentPlatforms": [
 {
 "name": "Linux x86",
 "attributes": {
 "os": "linux",
 "architecture": "x86"
 }
 }
],
 "componentDependencies": {

 }
 }
}

b. Add each component dependency to the map. Specify the component name as the key
and specify an object with the following parameters:

Step 1: Define the Lambda function configuration 1387

AWS IoT Greengrass Developer Guide, Version 2

• versionRequirement – The npm-style semantic version constraint that identifies the
compatible versions of the component dependency. You can specify a single version or
a range of versions. For more information about semantic version constraints, see the
npm semver calculator.

• dependencyType – (Optional) The type of the dependency. Choose from the following:

• SOFT – The Lambda function component doesn't restart if the dependency changes
state.

• HARD – The Lambda function component restarts if the dependency changes state.

The default is HARD.

The following example specifies that this Lambda function depends on any version in the
first major version of the stream manager component. The Lambda function component
restarts when stream manager restarts or updates.

{
 "aws.greengrass.StreamManager": {
 "versionRequirement": "^1.0.0",
 "dependencyType": "HARD"
 }
}

Your lambda-function-component.json might contain a document similar to the
following example.

{
 "lambdaFunction": {
 "lambdaArn": "arn:aws:lambda:region:account-id:function:HelloWorld:1",
 "componentName": "com.example.HelloWorldLambda",
 "componentVersion": "1.0.0",
 "componentPlatforms": [
 {
 "name": "Linux x86",
 "attributes": {
 "os": "linux",
 "architecture": "x86"
 }
 }

Step 1: Define the Lambda function configuration 1388

https://semver.npmjs.com/

AWS IoT Greengrass Developer Guide, Version 2

],
 "componentDependencies": {
 "aws.greengrass.StreamManager": {
 "versionRequirement": "^1.0.0",
 "dependencyType": "HARD"
 }
 }
 }
}

6. (Optional) Configure the Lambda function parameters to use to run the function. You can
configure options such environment variables, message event sources, timeouts, and container
settings. Do the following:

a. Add the Lambda parameters object (componentLambdaParameters) to the Lambda
function in lambda-function-component.json.

{
 "lambdaFunction": {
 "lambdaArn": "arn:aws:lambda:region:account-id:function:HelloWorld:1",
 "componentName": "com.example.HelloWorldLambda",
 "componentVersion": "1.0.0",
 "componentPlatforms": [
 {
 "name": "Linux x86",
 "attributes": {
 "os": "linux",
 "architecture": "x86"
 }
 }
],
 "componentDependencies": {
 "aws.greengrass.StreamManager": {
 "versionRequirement": "^1.0.0",
 "dependencyType": "HARD"
 }
 },
 "componentLambdaParameters": {

 }
 }
}

Step 1: Define the Lambda function configuration 1389

AWS IoT Greengrass Developer Guide, Version 2

b. (Optional) Specify the event sources to which the Lambda function subscribes for work
messages. You can specify event sources to subscribe this function to local publish/
subscribe messages and AWS IoT Core MQTT messages. The Lambda function is called
when it receives a message from an event source.

Note

To subscribe this function to messages from other Lambda functions or
components, deploy the legacy subscription router component when you deploy
this Lambda function component. When you deploy the legacy subscription router
component, specify the subscriptions that the Lambda function uses.

Do the following:

i. Add the list of event sources (eventSources) to the Lambda function parameters.

{
 "lambdaFunction": {
 "lambdaArn": "arn:aws:lambda:region:account-id:function:HelloWorld:1",
 "componentName": "com.example.HelloWorldLambda",
 "componentVersion": "1.0.0",
 "componentPlatforms": [
 {
 "name": "Linux x86",
 "attributes": {
 "os": "linux",
 "architecture": "x86"
 }
 }
],
 "componentDependencies": {
 "aws.greengrass.StreamManager": {
 "versionRequirement": "^1.0.0",
 "dependencyType": "HARD"
 }
 },
 "componentLambdaParameters": {
 "eventSources": [

]

Step 1: Define the Lambda function configuration 1390

AWS IoT Greengrass Developer Guide, Version 2

 }
 }
}

ii. Add each event source to the list. Each event source has the following parameters:

• topic – The topic to subscribe for messages.

• type – The type of event source. Choose from the following options:

• PUB_SUB – Subscribe to local publish/subscribe messages.

If you use Greengrass nucleus v2.6.0 or later and Lambda manager v2.2.5 or later,
you can use MQTT topic wildcards (+ and #) in the topic when you specify this
type.

• IOT_CORE – Subscribe to AWS IoT Core MQTT messages.

You can use MQTT topic wildcards (+ and #) in the topic when you specify this
type.

The following example subscribes to AWS IoT Core MQTT on topics that match the
hello/world/+ topic filter.

{
 "topic": "hello/world/+",
 "type": "IOT_CORE"
}

Your lambda-function-component.json might look similar to the following
example.

{
 "lambdaFunction": {
 "lambdaArn": "arn:aws:lambda:region:account-
id:function:HelloWorld:1",
 "componentName": "com.example.HelloWorldLambda",
 "componentVersion": "1.0.0",
 "componentPlatforms": [
 {
 "name": "Linux x86",
 "attributes": {
 "os": "linux",

Step 1: Define the Lambda function configuration 1391

AWS IoT Greengrass Developer Guide, Version 2

 "architecture": "x86"
 }
 }
],
 "componentDependencies": {
 "aws.greengrass.StreamManager": {
 "versionRequirement": "^1.0.0",
 "dependencyType": "HARD"
 }
 },
 "componentLambdaParameters": {
 "eventSources": [
 {
 "topic": "hello/world/+",
 "type": "IOT_CORE"
 }
]
 }
 }
}

c. (Optional) Specify any of the following parameters in the Lambda function parameters
object:

• environmentVariables – The map of environment variables that are available to the
Lambda function when it runs.

• execArgs – The list of arguments to pass to the Lambda function when it runs.

• inputPayloadEncodingType – The type of payload that the Lambda function
supports. Choose from the following options:

• json

• binary

Default: json

• pinned – Whether or not the Lambda function is pinned. The default is true.

• A pinned (or long-lived) Lambda function starts when AWS IoT Greengrass starts and
keeps running in its own container.

• A non-pinned (or on-demand) Lambda function starts only when it receives a work
item and exits after it remains idle for a specified maximum idle time. If the function

Step 1: Define the Lambda function configuration 1392

AWS IoT Greengrass Developer Guide, Version 2

has multiple work items, the AWS IoT Greengrass Core software creates multiple
instances of the function.

Use maxIdleTimeInSeconds to set the maximum idle time for your function.

• timeoutInSeconds – The maximum amount of time in seconds that the Lambda
function can run before it times out. The default is 3 seconds.

• statusTimeoutInSeconds – The interval in seconds at which the Lambda function
component sends status updates to the Lambda manager component. This parameter
applies only to pinned functions. The default is 60 seconds.

• maxIdleTimeInSeconds – The maximum amount of time in seconds that a non-
pinned Lambda function can idle before the AWS IoT Greengrass Core software stops its
process. The default is 60 seconds.

• maxInstancesCount – The maximum number of instances that a non-pinned Lambda
function can run at the same time. The default is 100 instances.

• maxQueueSize – The maximum size of the message queue for the Lambda function
component. The AWS IoT Greengrass Core software stores messages in a FIFO (first-in-
first-out) queue until it can run the Lambda function to consume each message. The
default is 1,000 messages.

Your lambda-function-component.json might contain a document similar to the
following example.

{
 "lambdaFunction": {
 "lambdaArn": "arn:aws:lambda:region:account-id:function:HelloWorld:1",
 "componentName": "com.example.HelloWorldLambda",
 "componentVersion": "1.0.0",
 "componentPlatforms": [
 {
 "name": "Linux x86",
 "attributes": {
 "os": "linux",
 "architecture": "x86"
 }
 }
],
 "componentDependencies": {
 "aws.greengrass.StreamManager": {

Step 1: Define the Lambda function configuration 1393

AWS IoT Greengrass Developer Guide, Version 2

 "versionRequirement": "^1.0.0",
 "dependencyType": "HARD"
 }
 },
 "componentLambdaParameters": {
 "eventSources": [
 {
 "topic": "hello/world/+",
 "type": "IOT_CORE"
 }
],
 "environmentVariables": {
 "LIMIT": "300"
 },
 "execArgs": [
 "-d"
],
 "inputPayloadEncodingType": "json",
 "pinned": true,
 "timeoutInSeconds": 120,
 "statusTimeoutInSeconds": 30,
 "maxIdleTimeInSeconds": 30,
 "maxInstancesCount": 50,
 "maxQueueSize": 500
 }
 }
}

d. (Optional) Configure the container settings for the Lambda function. By default, Lambda
functions run in an isolated runtime environment inside the AWS IoT Greengrass Core
software. You can also choose to run the Lambda function as a process without any
isolation. If you run the Lambda function in a container, you configure the memory size
of the container and what system resources are available to the Lambda function. Do the
following:

i. Add the Linux process parameters object (linuxProcessParams) to the Lambda
parameters object in lambda-function-component.json.

{
 "lambdaFunction": {
 "lambdaArn": "arn:aws:lambda:region:account-id:function:HelloWorld:1",
 "componentName": "com.example.HelloWorldLambda",

Step 1: Define the Lambda function configuration 1394

AWS IoT Greengrass Developer Guide, Version 2

 "componentVersion": "1.0.0",
 "componentPlatforms": [
 {
 "name": "Linux x86",
 "attributes": {
 "os": "linux",
 "architecture": "x86"
 }
 }
],
 "componentDependencies": {
 "aws.greengrass.StreamManager": {
 "versionRequirement": "^1.0.0",
 "dependencyType": "HARD"
 }
 },
 "componentLambdaParameters": {
 "eventSources": [
 {
 "topic": "hello/world/+",
 "type": "IOT_CORE"
 }
],
 "environmentVariables": {
 "LIMIT": "300"
 },
 "execArgs": [
 "-d"
],
 "inputPayloadEncodingType": "json",
 "pinned": true,
 "timeoutInSeconds": 120,
 "statusTimeoutInSeconds": 30,
 "maxIdleTimeInSeconds": 30,
 "maxInstancesCount": 50,
 "maxQueueSize": 500,
 "linuxProcessParams": {

 }
 }
 }
}

Step 1: Define the Lambda function configuration 1395

AWS IoT Greengrass Developer Guide, Version 2

ii. (Optional) Specify whether or not the Lambda function runs in a container. Add the
isolationMode parameter to the process parameters object, and choose from the
following options:

• GreengrassContainer – The Lambda function runs in a container.

• NoContainer – The Lambda function runs as a process without any isolation.

The default is GreengrassContainer.

iii. (Optional) If you run the Lambda function in a container, you can configure the
amount of memory and the system resources, such as volumes and devices, to make
available to the container. Do the following:

A. Add the container parameters object (containerParams) to the Linux process
parameters object in lambda-function-component.json.

{
 "lambdaFunction": {
 "lambdaArn": "arn:aws:lambda:region:account-
id:function:HelloWorld:1",
 "componentName": "com.example.HelloWorldLambda",
 "componentVersion": "1.0.0",
 "componentPlatforms": [
 {
 "name": "Linux x86",
 "attributes": {
 "os": "linux",
 "architecture": "x86"
 }
 }
],
 "componentDependencies": {
 "aws.greengrass.StreamManager": {
 "versionRequirement": "^1.0.0",
 "dependencyType": "HARD"
 }
 },
 "componentLambdaParameters": {
 "eventSources": [
 {
 "topic": "hello/world/+",

Step 1: Define the Lambda function configuration 1396

AWS IoT Greengrass Developer Guide, Version 2

 "type": "IOT_CORE"
 }
],
 "environmentVariables": {
 "LIMIT": "300"
 },
 "execArgs": [
 "-d"
],
 "inputPayloadEncodingType": "json",
 "pinned": true,
 "timeoutInSeconds": 120,
 "statusTimeoutInSeconds": 30,
 "maxIdleTimeInSeconds": 30,
 "maxInstancesCount": 50,
 "maxQueueSize": 500,
 "linuxProcessParams": {
 "containerParams": {

 }
 }
 }
 }
}

B. (Optional) Add the memorySizeInKB parameter to specify the memory size of
the container. The default is 16,384 KB (16 MB).

C. (Optional) Add the mountROSysfs parameter to specify whether or not the
container can read information from the device's /sys folder. The default is
false.

D. (Optional) Configure the local volumes that the containerized Lambda function
can access. When you define a volume, the AWS IoT Greengrass Core software
mounts the source files to the destination inside the container. Do the following:

I. Add the list of volumes (volumes) to the container parameters.

{
 "lambdaFunction": {
 "lambdaArn": "arn:aws:lambda:region:account-
id:function:HelloWorld:1",
 "componentName": "com.example.HelloWorldLambda",
 "componentVersion": "1.0.0",

Step 1: Define the Lambda function configuration 1397

AWS IoT Greengrass Developer Guide, Version 2

 "componentPlatforms": [
 {
 "name": "Linux x86",
 "attributes": {
 "os": "linux",
 "architecture": "x86"
 }
 }
],
 "componentDependencies": {
 "aws.greengrass.StreamManager": {
 "versionRequirement": "^1.0.0",
 "dependencyType": "HARD"
 }
 },
 "componentLambdaParameters": {
 "eventSources": [
 {
 "topic": "hello/world/+",
 "type": "IOT_CORE"
 }
],
 "environmentVariables": {
 "LIMIT": "300"
 },
 "execArgs": [
 "-d"
],
 "inputPayloadEncodingType": "json",
 "pinned": true,
 "timeoutInSeconds": 120,
 "statusTimeoutInSeconds": 30,
 "maxIdleTimeInSeconds": 30,
 "maxInstancesCount": 50,
 "maxQueueSize": 500,
 "linuxProcessParams": {
 "containerParams": {
 "memorySizeInKB": 32768,
 "mountROSysfs": true,
 "volumes": [

]
 }
 }

Step 1: Define the Lambda function configuration 1398

AWS IoT Greengrass Developer Guide, Version 2

 }
 }
}

II. Add each volume to the list. Each volume has the following parameters:

• sourcePath – The path to the source folder on the core device.

• destinationPath – The path to the destination folder in the container.

• permission – (Optional) The permission to access the source folder from
the container. Choose from the following options:

• ro – The Lambda function has read-only access to the source folder.

• rw – The Lambda function has read-write access to the source folder.

The default is ro.

• addGroupOwner – (Optional) Whether or not to add the system group
that runs the Lambda function component as an owner of the source
folder. The default is false.

Your lambda-function-component.json might contain a document
similar to the following example.

{
 "lambdaFunction": {
 "lambdaArn": "arn:aws:lambda:region:account-
id:function:HelloWorld:1",
 "componentName": "com.example.HelloWorldLambda",
 "componentVersion": "1.0.0",
 "componentPlatforms": [
 {
 "name": "Linux x86",
 "attributes": {
 "os": "linux",
 "architecture": "x86"
 }
 }
],
 "componentDependencies": {
 "aws.greengrass.StreamManager": {
 "versionRequirement": "^1.0.0",
 "dependencyType": "HARD"

Step 1: Define the Lambda function configuration 1399

AWS IoT Greengrass Developer Guide, Version 2

 }
 },
 "componentLambdaParameters": {
 "eventSources": [
 {
 "topic": "hello/world/+",
 "type": "IOT_CORE"
 }
],
 "environmentVariables": {
 "LIMIT": "300"
 },
 "execArgs": [
 "-d"
],
 "inputPayloadEncodingType": "json",
 "pinned": true,
 "timeoutInSeconds": 120,
 "statusTimeoutInSeconds": 30,
 "maxIdleTimeInSeconds": 30,
 "maxInstancesCount": 50,
 "maxQueueSize": 500,
 "linuxProcessParams": {
 "containerParams": {
 "memorySizeInKB": 32768,
 "mountROSysfs": true,
 "volumes": [
 {
 "sourcePath": "/var/data/src",
 "destinationPath": "/var/data/dest",
 "permission": "rw",
 "addGroupOwner": true
 }
]
 }
 }
 }
 }
}

E. (Optional) Configure the local system devices that the containerized Lambda
function can access. Do the following:

I. Add the list of system devices (devices) to the container parameters.

Step 1: Define the Lambda function configuration 1400

AWS IoT Greengrass Developer Guide, Version 2

{
 "lambdaFunction": {
 "lambdaArn": "arn:aws:lambda:region:account-
id:function:HelloWorld:1",
 "componentName": "com.example.HelloWorldLambda",
 "componentVersion": "1.0.0",
 "componentPlatforms": [
 {
 "name": "Linux x86",
 "attributes": {
 "os": "linux",
 "architecture": "x86"
 }
 }
],
 "componentDependencies": {
 "aws.greengrass.StreamManager": {
 "versionRequirement": "^1.0.0",
 "dependencyType": "HARD"
 }
 },
 "componentLambdaParameters": {
 "eventSources": [
 {
 "topic": "hello/world/+",
 "type": "IOT_CORE"
 }
],
 "environmentVariables": {
 "LIMIT": "300"
 },
 "execArgs": [
 "-d"
],
 "inputPayloadEncodingType": "json",
 "pinned": true,
 "timeoutInSeconds": 120,
 "statusTimeoutInSeconds": 30,
 "maxIdleTimeInSeconds": 30,
 "maxInstancesCount": 50,
 "maxQueueSize": 500,
 "linuxProcessParams": {
 "containerParams": {

Step 1: Define the Lambda function configuration 1401

AWS IoT Greengrass Developer Guide, Version 2

 "memorySizeInKB": 32768,
 "mountROSysfs": true,
 "volumes": [
 {
 "sourcePath": "/var/data/src",
 "destinationPath": "/var/data/dest",
 "permission": "rw",
 "addGroupOwner": true
 }
],
 "devices": [

]
 }
 }
 }
 }
}

II. Add each system device to the list. Each system device has the following
parameters:

• path – The path to the system device on the core device.

• permission – (Optional) The permission to access the system device from
the container. Choose from the following options:

• ro – The Lambda function has read-only access to the system device.

• rw – The Lambda function has read-write access to the system device.

The default is ro.

• addGroupOwner – (Optional) Whether or not to add the system group
that runs the Lambda function component as an owner of the system
device. The default is false.

Your lambda-function-component.json might contain a document similar
to the following example.

{
 "lambdaFunction": {
 "lambdaArn": "arn:aws:lambda:region:account-
id:function:HelloWorld:1",

Step 1: Define the Lambda function configuration 1402

AWS IoT Greengrass Developer Guide, Version 2

 "componentName": "com.example.HelloWorldLambda",
 "componentVersion": "1.0.0",
 "componentPlatforms": [
 {
 "name": "Linux x86",
 "attributes": {
 "os": "linux",
 "architecture": "x86"
 }
 }
],
 "componentDependencies": {
 "aws.greengrass.StreamManager": {
 "versionRequirement": "^1.0.0",
 "dependencyType": "HARD"
 }
 },
 "componentLambdaParameters": {
 "eventSources": [
 {
 "topic": "hello/world/+",
 "type": "IOT_CORE"
 }
],
 "environmentVariables": {
 "LIMIT": "300"
 },
 "execArgs": [
 "-d"
],
 "inputPayloadEncodingType": "json",
 "pinned": true,
 "timeoutInSeconds": 120,
 "statusTimeoutInSeconds": 30,
 "maxIdleTimeInSeconds": 30,
 "maxInstancesCount": 50,
 "maxQueueSize": 500,
 "linuxProcessParams": {
 "containerParams": {
 "memorySizeInKB": 32768,
 "mountROSysfs": true,
 "volumes": [
 {
 "sourcePath": "/var/data/src",

Step 1: Define the Lambda function configuration 1403

AWS IoT Greengrass Developer Guide, Version 2

 "destinationPath": "/var/data/dest",
 "permission": "rw",
 "addGroupOwner": true
 }
],
 "devices": [
 {
 "path": "/dev/sda3",
 "permission": "rw",
 "addGroupOwner": true
 }
]
 }
 }
 }
 }
}

7. (Optional) Add tags (tags) for the component. For more information, see Tag your AWS IoT
Greengrass Version 2 resources.

Step 2: Create the Lambda function component

1. Run the following command to create the Lambda function component from lambda-
function-component.json.

aws greengrassv2 create-component-version --cli-input-json file://lambda-function-
component.json

The response looks similar to the following example if the request succeeds.

{
 "arn":
 "arn:aws:greengrass:region:123456789012:components:com.example.HelloWorldLambda:versions:1.0.0",
 "componentName": "com.example.HelloWorldLambda",
 "componentVersion": "1.0.0",
 "creationTimestamp": "Mon Dec 15 20:56:34 UTC 2020",
 "status": {
 "componentState": "REQUESTED",
 "message": "NONE",
 "errors": {}

Step 2: Create the Lambda function component 1404

AWS IoT Greengrass Developer Guide, Version 2

 }
}

Copy the arn from the output to check the state of the component in the next step.

2. When you create a component, its state is REQUESTED. Then, AWS IoT Greengrass validates
that the component is deployable. You can run the following command to query the
component status and verify that your component is deployable. Replace the arn with the
ARN from the previous step.

aws greengrassv2 describe-component \
 --arn "arn:aws:greengrass:region:account-
id:components:com.example.HelloWorldLambda:versions:1.0.0"

If the component validates, the response indicates that the component state is DEPLOYABLE.

{
 "arn": "arn:aws:greengrass:region:account-
id:components:com.example.HelloWorldLambda:versions:1.0.0",
 "componentName": "com.example.HelloWorldLambda",
 "componentVersion": "1.0.0",
 "creationTimestamp": "2020-12-15T20:56:34.376000-08:00",
 "publisher": "AWS Lambda",
 "status": {
 "componentState": "DEPLOYABLE",
 "message": "NONE",
 "errors": {}
 },
 "platforms": [
 {
 "name": "Linux x86",
 "attributes": {
 "architecture": "x86",
 "os": "linux"
 }
 }
]
}

After the component is DEPLOYABLE, you can deploy the Lambda function to your core
devices. For more information, see Deploy AWS IoT Greengrass components to devices.

Step 2: Create the Lambda function component 1405

AWS IoT Greengrass Developer Guide, Version 2

Use the AWS IoT Device SDK to communicate with the
Greengrass nucleus, other components, and AWS IoT
Core

Components running on your core device can use the AWS IoT Greengrass Core interprocess
communication (IPC) library in the AWS IoT Device SDK to communicate with the AWS IoT
Greengrass nucleus and other Greengrass components. To develop and run custom components
that use IPC, you must use the AWS IoT Device SDK to connect to the AWS IoT Greengrass Core IPC
service and perform IPC operations.

The IPC interface supports two types of operations:

• Request/response

Components send a request to the IPC service and receive a response that contains the result of
the request.

• Subscription

Components send a subscription request to the IPC service and expect a stream of event
messages in response. Components provide a subscription handler that handles event messages,
errors, and stream closure. The AWS IoT Device SDK includes a handler interface with the correct
response and event types for each IPC operation. For more information, see Subscribe to IPC
event streams.

Topics

• IPC client versions

• Supported SDKs for interprocess communication

• Connect to the AWS IoT Greengrass Core IPC service

• Authorize components to perform IPC operations

• Subscribe to IPC event streams

• IPC best practices

• Publish/subscribe local messages

• Publish/subscribe AWS IoT Core MQTT messages

1406

AWS IoT Greengrass Developer Guide, Version 2

• Interact with component lifecycle

• Interact with component configuration

• Retrieve secret values

• Interact with local shadows

• Manage local deployments and components

• Authenticate and authorize client devices

IPC client versions

In later versions of the Java and Python SDKs, AWS IoT Greengrass provides an improved version of
the IPC client, called IPC client V2. IPC client V2:

• Reduces the amount of code that you need to write to use IPC operations and helps avoid
common errors that can occur with IPC client V1.

• Calls subscription handler callbacks in a separate thread, so you can now run blocking code,
including additional IPC function calls, in subscription handler callbacks. IPC client V1 uses the
same thread to communicate with the IPC server and call subscription handler callbacks.

• Lets you call subscription operations using Lambda expressions (Java) or functions (Python). IPC
client V1 requires you to define subscription handler classes.

• Provides synchronous and asynchronous versions of each IPC operation. IPC client V1 provides
only asynchronous versions of each operation.

We recommend that you use IPC client V2 to take advantage of these improvements. However,
many examples in this documentation and in some online content demonstrate only how to use
IPC client V1. You can use the following examples and tutorials to see sample components that use
IPC client V2:

• PublishToTopic examples

• SubscribeToTopic examples

• Tutorial: Develop a Greengrass component that defers component updates

• Tutorial: Interact with local IoT devices over MQTT

Currently, the AWS IoT Device SDK for C++ v2 supports only IPC client V1.

IPC client versions 1407

AWS IoT Greengrass Developer Guide, Version 2

Supported SDKs for interprocess communication

The AWS IoT Greengrass Core IPC libraries are included in the following AWS IoT Device SDK
versions.

SDK Minimum version Usage

AWS IoT Device SDK
for Java v2

v1.6.0 See Use AWS IoT
Device SDK for Java
v2 (IPC client V2)

AWS IoT Device SDK
for Python v2

v1.9.0 See Use AWS IoT
Device SDK for
Python v2 (IPC client
V2)

AWS IoT Device SDK
for C++ v2

v1.17.0 See Use AWS IoT
Device SDK for C++
v2

AWS IoT Device SDK
for JavaScript v2

v1.12.0 See Use AWS IoT
Device SDK for
JavaScript v2 (IPC
client V1)

Connect to the AWS IoT Greengrass Core IPC service

To use interprocess communication in your custom component, you must create a connection to an
IPC server socket that the AWS IoT Greengrass Core software runs. Complete the following tasks to
download and use the AWS IoT Device SDK in the language of your choice.

Use AWS IoT Device SDK for Java v2 (IPC client V2)

To use the AWS IoT Device SDK for Java v2 (IPC client V2)

1. Download the AWS IoT Device SDK for Java v2 (v1.6.0 or later).

2. Do one of the following to run your custom code in your component:

Supported SDKs 1408

https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-java-v2

AWS IoT Greengrass Developer Guide, Version 2

• Build your component as a JAR file that includes the AWS IoT Device SDK, and run this JAR
file in your component recipe.

• Define the AWS IoT Device SDK JAR as a component artifact, and add that artifact to the
classpath when you run your application in your component recipe.

3. Use the following code to create the IPC client.

try (GreengrassCoreIPCClientV2 ipcClient =
 GreengrassCoreIPCClientV2.builder().build()) {
 // Use client.
} catch (Exception e) {
 LOGGER.log(Level.SEVERE, "Exception occurred when using IPC.", e);
 System.exit(1);
}

Use AWS IoT Device SDK for Python v2 (IPC client V2)

To use the AWS IoT Device SDK for Python v2 (IPC client V2)

1. Download the AWS IoT Device SDK for Python (v1.9.0 or later).

2. Add the SDK's installation steps to the install lifecycle in your component's recipe.

3. Create a connection to the AWS IoT Greengrass Core IPC service. Use the following code to
create the IPC client.

from awsiot.greengrasscoreipc.clientv2 import GreengrassCoreIPCClientV2

try:
 ipc_client = GreengrassCoreIPCClientV2()
 # Use IPC client.
except Exception:
 print('Exception occurred when using IPC.', file=sys.stderr)
 traceback.print_exc()
 exit(1)

Use AWS IoT Device SDK for C++ v2

To build the AWS IoT Device SDK v2 for C++, a device must have the following tools:

Connect to the AWS IoT Greengrass Core IPC service 1409

https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2#installation

AWS IoT Greengrass Developer Guide, Version 2

• C++ 11 or later

• CMake 3.1 or later

• One of the following compilers:

• GCC 4.8 or later

• Clang 3.9 or later

• MSVC 2015 or later

To use the AWS IoT Device SDK for C++ v2

1. Download the AWS IoT Device SDK for C++ v2 (v1.17.0 or later).

2. Follow the installation instructions in the README to build the AWS IoT Device SDK for C++ v2
from source.

3. In your C++ build tool, link the Greengrass IPC library, AWS::GreengrassIpc-cpp, that you
built in the previous step. The following CMakeLists.txt example links the Greengrass IPC
library to a project that you build with CMake.

cmake_minimum_required(VERSION 3.1)
project (greengrassv2_pubsub_subscriber)

file(GLOB MAIN_SRC
 "*.h"
 "*.cpp"
)
add_executable(${PROJECT_NAME} ${MAIN_SRC})

set_target_properties(${PROJECT_NAME} PROPERTIES
 LINKER_LANGUAGE CXX
 CXX_STANDARD 11)
find_package(aws-crt-cpp PATHS ~/sdk-cpp-workspace/build)
find_package(EventstreamRpc-cpp PATHS ~/sdk-cpp-workspace/build)
find_package(GreengrassIpc-cpp PATHS ~/sdk-cpp-workspace/build)
target_link_libraries(${PROJECT_NAME} AWS::GreengrassIpc-cpp)

4. In your component code, create a connection to the AWS IoT Greengrass Core IPC service to
create an IPC client (Aws::Greengrass::GreengrassCoreIpcClient). You must define an
IPC connection lifecycle handler that handles IPC connection, disconnection, and error events.
The following example creates an IPC client and an IPC connection lifecycle handler that prints
when the IPC client connects, disconnects, and encounters errors.

Connect to the AWS IoT Greengrass Core IPC service 1410

https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2#Installation

AWS IoT Greengrass Developer Guide, Version 2

#include <iostream>

#include <aws/crt/Api.h>
#include <aws/greengrass/GreengrassCoreIpcClient.h>

using namespace Aws::Crt;
using namespace Aws::Greengrass;

class IpcClientLifecycleHandler : public ConnectionLifecycleHandler {
 void OnConnectCallback() override {
 std::cout << "OnConnectCallback" << std::endl;
 }

 void OnDisconnectCallback(RpcError error) override {
 std::cout << "OnDisconnectCallback: " << error.StatusToString() <<
 std::endl;
 exit(-1);
 }

 bool OnErrorCallback(RpcError error) override {
 std::cout << "OnErrorCallback: " << error.StatusToString() << std::endl;
 return true;
 }
};

int main() {
 // Create the IPC client.
 ApiHandle apiHandle(g_allocator);
 Io::EventLoopGroup eventLoopGroup(1);
 Io::DefaultHostResolver socketResolver(eventLoopGroup, 64, 30);
 Io::ClientBootstrap bootstrap(eventLoopGroup, socketResolver);
 IpcClientLifecycleHandler ipcLifecycleHandler;
 GreengrassCoreIpcClient ipcClient(bootstrap);
 auto connectionStatus = ipcClient.Connect(ipcLifecycleHandler).get();
 if (!connectionStatus) {
 std::cerr << "Failed to establish IPC connection: " <<
 connectionStatus.StatusToString() << std::endl;
 exit(-1);
 }

 // Use the IPC client to create an operation request.

 // Activate the operation request.

Connect to the AWS IoT Greengrass Core IPC service 1411

AWS IoT Greengrass Developer Guide, Version 2

 auto activate = operation.Activate(request, nullptr);
 activate.wait();

 // Wait for Greengrass Core to respond to the request.
 auto responseFuture = operation.GetResult();
 if (responseFuture.wait_for(std::chrono::seconds(timeout)) ==
 std::future_status::timeout) {
 std::cerr << "Operation timed out while waiting for response from
 Greengrass Core." << std::endl;
 exit(-1);
 }

 // Check the result of the request.
 auto response = responseFuture.get();
 if (response) {
 std::cout << "Successfully published to topic: " << topic << std::endl;
 } else {
 // An error occurred.
 std::cout << "Failed to publish to topic: " << topic << std::endl;
 auto errorType = response.GetResultType();
 if (errorType == OPERATION_ERROR) {
 auto *error = response.GetOperationError();
 std::cout << "Operation error: " << error->GetMessage().value() <<
 std::endl;
 } else {
 std::cout << "RPC error: " << response.GetRpcError() << std::endl;
 }
 exit(-1);
 }

 return 0;
}

5. To run your custom code in your component, build your code as a binary artifact, and run the
binary artifact in your component recipe. Set the artifact's Execute permission to OWNER to
enable the AWS IoT Greengrass Core software to run the binary artifact.

Your component recipe's Manifests section might look similar to the following example.

JSON

{
 ...

Connect to the AWS IoT Greengrass Core IPC service 1412

AWS IoT Greengrass Developer Guide, Version 2

 "Manifests": [
 {
 "Lifecycle": {
 "Run": "{artifacts:path}/greengrassv2_pubsub_subscriber"
 },
 "Artifacts": [
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.PubSubSubscriberCpp/1.0.0/greengrassv2_pubsub_subscriber",
 "Permission": {
 "Execute": "OWNER"
 }
 }
]
 }
]
}

YAML

...
Manifests:
 - Lifecycle:
 Run: {artifacts:path}/greengrassv2_pubsub_subscriber
 Artifacts:
 - URI: s3://amzn-s3-demo-bucket/artifacts/
com.example.PubSubSubscriberCpp/1.0.0/greengrassv2_pubsub_subscriber
 Permission:
 Execute: OWNER

Use AWS IoT Device SDK for JavaScript v2 (IPC client V1)

To build the AWS IoT Device SDK for JavaScript v2 for use with NodeJS, a device must have the
following tools:

• NodeJS 10.0 or later

• Run node -v to check the Node version.

• CMake 3.1 or later

Connect to the AWS IoT Greengrass Core IPC service 1413

AWS IoT Greengrass Developer Guide, Version 2

To use the AWS IoT Device SDK for JavaScript v2 (IPC client V1)

1. Download the AWS IoT Device SDK for JavaScript v2 (v1.12.10 or later).

2. Follow the installation instructions in the README to build the AWS IoT Device SDK for
JavaScript v2 from source.

3. Create a connection to the AWS IoT Greengrass Core IPC service. Complete the following steps
to create the IPC client and establish a connection.

4. Use the following code to create the IPC client.

import * as greengrascoreipc from 'aws-iot-device-sdk-v2';

let client = greengrascoreipc.createClient();

5. Use the following code to establish a connection from your component to the Greengrass
nucleus.

await client.connect();

Authorize components to perform IPC operations

To allow your custom components to use some IPC operations, you must define authorization
policies that allow the component to perform the operation on certain resources. Each
authorization policy defines a list of operations and a list of resources that the policy allows. For
example, the publish/subscribe messaging IPC service defines publish and subscribe operations for
topic resources. You can use the * wildcard to allow access to all operations or all resources.

You define authorization policies with the accessControl configuration parameter, which you
can set in the component recipe or when you deploy the component. The accessControl object
maps IPC service identifiers to lists of authorization policies. You can define multiple authorization
policies for each IPC service to control access. Each authorization policy has a policy ID, which must
be unique among all components.

Tip

To create unique policy IDs, you can combine the component name, IPC service name, and a
counter. For example, a component named com.example.HelloWorld might define two
publish/subscribe authorization policies with the following IDs:

Authorize components to perform IPC operations 1414

https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2/tree/v1.12.1#installation

AWS IoT Greengrass Developer Guide, Version 2

• com.example.HelloWorld:pubsub:1

• com.example.HelloWorld:pubsub:2

Authorization policies use the following format. This object is the accessControl configuration
parameter.

JSON

{
 "IPC service identifier": {
 "policyId": {
 "policyDescription": "description",
 "operations": [
 "operation1",
 "operation2"
],
 "resources": [
 "resource1",
 "resource2"
]
 }
 }
}

YAML

IPC service identifier:
 policyId:
 policyDescription: description
 operations:
 - operation1
 - operation2
 resources:
 - resource1
 - resource2

Authorize components to perform IPC operations 1415

AWS IoT Greengrass Developer Guide, Version 2

Wildcards in authorization policies

You can use the * wildcard in the resources element of IPC authorization policies to allow access
to multiple resources in a single authorization policy.

• In all versions of the Greengrass nucleus, you can specify a single * character as a resource to
allow access to all resources.

• In Greengrass nucleus v2.6.0 and later, you can specify the * character in a resource to match any
combination of characters. For example, you can specify factory/1/devices/Thermostat*/
status to allow access to a status topic for all thermostat devices in a factory, where each
device's name begins with Thermostat.

When you define authorization policies for the AWS IoT Core MQTT IPC service, you can also use
MQTT wildcards (+ and #) to match multiple resources. For more information, see MQTT wildcards
in AWS IoT Core MQTT IPC authorization policies.

Recipe variables in authorization policies

If you use Greengrass nucleus v2.6.0 or later, and you set the Greengrass nucleus'
interpolateComponentConfiguration configuration option to true, you can use the
{iot:thingName} recipe variable in authorization policies. When you need an authorization
policy that includes the core device's name, such as for MQTT topics or device shadows, you can
use this recipe variable to configure a single authorization policy for a group of core devices. For
example, you can allow a component access to the following resource for shadow IPC operations.

$aws/things/{iot:thingName}/shadow/

Special characters in authorization policies

To specify a literal * or ? character in an authorization policy, you must use an escape sequence.
The following escape sequences instruct the AWS IoT Greengrass Core software to use the literal
value instead of the character's special meaning. For example, the * character is a wildcard that
matches any combination of characters.

Literal character Escape sequence Notes

* ${*}

Wildcards in authorization policies 1416

AWS IoT Greengrass Developer Guide, Version 2

Literal character Escape sequence Notes

? ${?} AWS IoT Greengrass doesn't
currently support the ?
wildcard, which matches any
single character.

$ ${$} Use this escape sequence
to match a resource that
contains ${. For example,
to match a resource named
${resourceName} , you
must specify ${$}{reso
urceName} . Otherwise
, to match a resource that
contains $, you can use a
literal $, such as to allow
access to a topic that begins
with $aws.

Authorization policy examples

You can reference the following authorization policy examples to help you configure authorization
policies for your components.

Example Example component recipe with an authorization policy

The following example component recipe includes an accessControl object defines an
authorization policy. This policy authorizes the com.example.HelloWorld component to publish
to the test/topic topic.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.HelloWorld",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "A component that publishes messages.",

Authorization policy examples 1417

AWS IoT Greengrass Developer Guide, Version 2

 "ComponentPublisher": "Amazon",
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "accessControl": {
 "aws.greengrass.ipc.pubsub": {
 "com.example.HelloWorld:pubsub:1": {
 "policyDescription": "Allows access to publish to test/topic.",
 "operations": [
 "aws.greengrass#PublishToTopic"
],
 "resources": [
 "test/topic"
]
 }
 }
 }
 }
 },
 "Manifests": [
 {
 "Lifecycle": {
 "Run": "java -jar {artifacts:path}/HelloWorld.jar"
 }
 }
]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.HelloWorld
ComponentVersion: '1.0.0'
ComponentDescription: A component that publishes messages.
ComponentPublisher: Amazon
ComponentConfiguration:
 DefaultConfiguration:
 accessControl:
 aws.greengrass.ipc.pubsub:
 "com.example.HelloWorld:pubsub:1":
 policyDescription: Allows access to publish to test/topic.
 operations:
 - "aws.greengrass#PublishToTopic"

Authorization policy examples 1418

AWS IoT Greengrass Developer Guide, Version 2

 resources:
 - "test/topic"
Manifests:
 - Lifecycle:
 Run: |-
 java -jar {artifacts:path}/HelloWorld.jar

Example Example component configuration update with an authorization policy

The following example configuration update in a deployment specifies to configure a component
with an accessControl object that defines an authorization policy. This policy authorizes the
com.example.HelloWorld component to publish to the test/topic topic.

Console

Configuration to merge

{
 "accessControl": {
 "aws.greengrass.ipc.pubsub": {
 "com.example.HelloWorld:pubsub:1": {
 "policyDescription": "Allows access to publish to test/topic.",
 "operations": [
 "aws.greengrass#PublishToTopic"
],
 "resources": [
 "test/topic"
]
 }
 }
 }
}

AWS CLI

The following command creates a deployment to a core device.

aws greengrassv2 create-deployment --cli-input-json file://hello-world-
deployment.json

Authorization policy examples 1419

AWS IoT Greengrass Developer Guide, Version 2

The hello-world-deployment.json file contains the following JSON document.

{
 "targetArn": "arn:aws:iot:us-west-2:123456789012:thing/MyGreengrassCore",
 "deploymentName": "Deployment for MyGreengrassCore",
 "components": {
 "com.example.HelloWorld": {
 "componentVersion": "1.0.0",
 "configurationUpdate": {
 "merge": "{\"accessControl\":{\"aws.greengrass.ipc.pubsub\":
{\"com.example.HelloWorld:pubsub:1\":{\"policyDescription\":\"Allows access to
 publish to test/topic.\",\"operations\":[\"aws.greengrass#PublishToTopic\"],
\"resources\":[\"test/topic\"]}}}}"
 }
 }
 }
}

Greengrass CLI

The following Greengrass CLI command creates a local deployment on a core device.

sudo greengrass-cli deployment create \
 --recipeDir recipes \
 --artifactDir artifacts \
 --merge "com.example.HelloWorld=1.0.0" \
 --update-config hello-world-configuration.json

The hello-world-configuration.json file contains the following JSON document.

{
 "com.example.HelloWorld": {
 "MERGE": {
 "accessControl": {
 "aws.greengrass.ipc.pubsub": {
 "com.example.HelloWorld:pubsub:1": {
 "policyDescription": "Allows access to publish to test/topic.",
 "operations": [
 "aws.greengrass#PublishToTopic"
],
 "resources": [
 "test/topic"
]

Authorization policy examples 1420

AWS IoT Greengrass Developer Guide, Version 2

 }
 }
 }
 }
 }
}

Subscribe to IPC event streams

You can use IPC operations to subscribe to streams of events on a Greengrass core device. To use a
subscribe operation, define a subscription handler and create a request to the IPC service. Then, the
IPC client runs the subscription handler's functions each time that the core device streams an event
message to your component.

You can close a subscription to stop processing event messages. To do so, call closeStream()
(Java), close() (Python), or Close() (C++) on the subscription operation object that you used to
open the subscription.

The AWS IoT Greengrass Core IPC service supports the following subscribe operations:

• SubscribeToTopic

• SubscribeToIoTCore

• SubscribeToComponentUpdates

• SubscribeToConfigurationUpdate

• SubscribeToValidateConfigurationUpdates

Topics

• Define subscription handlers

• Example subscription handlers

Define subscription handlers

To define a subscription handler, define callback functions that handle event messages, errors, and
stream closure. If you use IPC client V1, you must define these functions in a class. If you use IPC
client V2, which is available in later versions of the Java and Python SDKs, you can define these
functions without creating a subscription handler class.

Subscribe to IPC event streams 1421

AWS IoT Greengrass Developer Guide, Version 2

Java

If you use IPC client V1, you must implement the generic
software.amazon.awssdk.eventstreamrpc.StreamResponseHandler<StreamEventType>
interface. StreamEventType is the type of event message for the subscription operation.
Define the following functions to handle event messages, errors, and stream closure.

If you use IPC client V2, you can define these functions outside of a subscription handler class or
use lambda expressions.

void onStreamEvent(StreamEventType event)

The callback that the IPC client calls when it receives an event message, such as an MQTT
message or a component update notification.

boolean onStreamError(Throwable error)

The callback that the IPC client calls when a stream error occurs.

Return true to close the subscription stream as a result of the error, or return false to keep
the stream open.

void onStreamClosed()

The callback that the IPC client calls when the stream closes.

Python

If you use IPC client V1, you must extend the stream response handler class that corresponds
to the subscription operation. The AWS IoT Device SDK includes a subscription handler class
for each subscription operation. StreamEventType is the type of event message for the
subscription operation. Define the following functions to handle event messages, errors, and
stream closure.

If you use IPC client V2, you can define these functions outside of a subscription handler class or
use lambda expressions.

def on_stream_event(self, event: StreamEventType) -> None

The callback that the IPC client calls when it receives an event message, such as an MQTT
message or a component update notification.

Define subscription handlers 1422

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions

AWS IoT Greengrass Developer Guide, Version 2

def on_stream_error(self, error: Exception) -> bool

The callback that the IPC client calls when a stream error occurs.

Return true to close the subscription stream as a result of the error, or return false to keep
the stream open.

def on_stream_closed(self) -> None

The callback that the IPC client calls when the stream closes.

C++

Implement a class that derives from the stream response handler class that corresponds to
the subscription operation. The AWS IoT Device SDK includes a subscription handler base class
for each subscription operation. StreamEventType is the type of event message for the
subscription operation. Define the following functions to handle event messages, errors, and
stream closure.

void OnStreamEvent(StreamEventType *event)

The callback that the IPC client calls when it receives an event message, such as an MQTT
message or a component update notification.

bool OnStreamError(OperationError *error)

The callback that the IPC client calls when a stream error occurs.

Return true to close the subscription stream as a result of the error, or return false to keep
the stream open.

void OnStreamClosed()

The callback that the IPC client calls when the stream closes.

JavaScript

Implement a class that derives from the stream response handler class that corresponds to
the subscription operation. The AWS IoT Device SDK includes a subscription handler base class
for each subscription operation. StreamEventType is the type of event message for the
subscription operation. Define the following functions to handle event messages, errors, and
stream closure.

Define subscription handlers 1423

AWS IoT Greengrass Developer Guide, Version 2

on(event: 'ended', listener: StreamingOperationEndedListener)

The callback that the IPC client calls when the stream closes.

on(event: 'streamError', listener: StreamingRpcErrorListener)

The callback that the IPC client calls when a stream error occurs.

Return true to close the subscription stream as a result of the error, or return false to keep
the stream open.

on(event: 'message', listener: (message: InboundMessageType) => void)

The callback that the IPC client calls when it receives an event message, such as an MQTT
message or a component update notification.

Example subscription handlers

The following example demonstrates how to use the SubscribeToTopic operation and a
subscription handler to subscribe to local publish/subscribe messages.

Java (IPC client V2)

Example Example: Subscribe to local publish/subscribe messages

package com.aws.greengrass.docs.samples.ipc;

import software.amazon.awssdk.aws.greengrass.GreengrassCoreIPCClientV2;
import software.amazon.awssdk.aws.greengrass.SubscribeToTopicResponseHandler;
import software.amazon.awssdk.aws.greengrass.model.*;

import java.nio.charset.StandardCharsets;
import java.util.Optional;

public class SubscribeToTopicV2 {

 public static void main(String[] args) {
 String topic = args[0];
 try (GreengrassCoreIPCClientV2 ipcClient =
 GreengrassCoreIPCClientV2.builder().build()) {
 SubscribeToTopicRequest request = new
 SubscribeToTopicRequest().withTopic(topic);
 GreengrassCoreIPCClientV2.StreamingResponse<SubscribeToTopicResponse,
 SubscribeToTopicResponseHandler> response =

Example subscription handlers 1424

AWS IoT Greengrass Developer Guide, Version 2

 ipcClient.subscribeToTopic(request,
 SubscribeToTopicV2::onStreamEvent,
 Optional.of(SubscribeToTopicV2::onStreamError),
 Optional.of(SubscribeToTopicV2::onStreamClosed));
 SubscribeToTopicResponseHandler responseHandler =
 response.getHandler();
 System.out.println("Successfully subscribed to topic: " + topic);

 // Keep the main thread alive, or the process will exit.
 try {
 while (true) {
 Thread.sleep(10000);
 }
 } catch (InterruptedException e) {
 System.out.println("Subscribe interrupted.");
 }

 // To stop subscribing, close the stream.
 responseHandler.closeStream();
 } catch (Exception e) {
 if (e.getCause() instanceof UnauthorizedError) {
 System.err.println("Unauthorized error while publishing to topic: "
 + topic);
 } else {
 System.err.println("Exception occurred when using IPC.");
 }
 e.printStackTrace();
 System.exit(1);
 }
 }

 public static void onStreamEvent(SubscriptionResponseMessage
 subscriptionResponseMessage) {
 try {
 BinaryMessage binaryMessage =
 subscriptionResponseMessage.getBinaryMessage();
 String message = new String(binaryMessage.getMessage(),
 StandardCharsets.UTF_8);
 String topic = binaryMessage.getContext().getTopic();
 System.out.printf("Received new message on topic %s: %s%n", topic,
 message);
 } catch (Exception e) {
 System.err.println("Exception occurred while processing subscription
 response " +

Example subscription handlers 1425

AWS IoT Greengrass Developer Guide, Version 2

 "message.");
 e.printStackTrace();
 }
 }

 public static boolean onStreamError(Throwable error) {
 System.err.println("Received a stream error.");
 error.printStackTrace();
 return false; // Return true to close stream, false to keep stream open.
 }

 public static void onStreamClosed() {
 System.out.println("Subscribe to topic stream closed.");
 }
}

Python (IPC client V2)

Example Example: Subscribe to local publish/subscribe messages

import sys
import time
import traceback

from awsiot.greengrasscoreipc.clientv2 import GreengrassCoreIPCClientV2
from awsiot.greengrasscoreipc.model import (
 SubscriptionResponseMessage,
 UnauthorizedError
)

def main():
 args = sys.argv[1:]
 topic = args[0]

 try:
 ipc_client = GreengrassCoreIPCClientV2()
 # Subscription operations return a tuple with the response and the
 operation.
 _, operation = ipc_client.subscribe_to_topic(topic=topic,
 on_stream_event=on_stream_event,

 on_stream_error=on_stream_error, on_stream_closed=on_stream_closed)
 print('Successfully subscribed to topic: ' + topic)

Example subscription handlers 1426

AWS IoT Greengrass Developer Guide, Version 2

 # Keep the main thread alive, or the process will exit.
 try:
 while True:
 time.sleep(10)
 except InterruptedError:
 print('Subscribe interrupted.')

 # To stop subscribing, close the stream.
 operation.close()
 except UnauthorizedError:
 print('Unauthorized error while subscribing to topic: ' +
 topic, file=sys.stderr)
 traceback.print_exc()
 exit(1)
 except Exception:
 print('Exception occurred', file=sys.stderr)
 traceback.print_exc()
 exit(1)

def on_stream_event(event: SubscriptionResponseMessage) -> None:
 try:
 message = str(event.binary_message.message, 'utf-8')
 topic = event.binary_message.context.topic
 print('Received new message on topic %s: %s' % (topic, message))
 except:
 traceback.print_exc()

def on_stream_error(error: Exception) -> bool:
 print('Received a stream error.', file=sys.stderr)
 traceback.print_exc()
 return False # Return True to close stream, False to keep stream open.

def on_stream_closed() -> None:
 print('Subscribe to topic stream closed.')

if __name__ == '__main__':
 main()

Example subscription handlers 1427

AWS IoT Greengrass Developer Guide, Version 2

C++

Example Example: Subscribe to local publish/subscribe messages

#include <iostream>

#include </crt/Api.h>
#include <aws/greengrass/GreengrassCoreIpcClient.h>

using namespace Aws::Crt;
using namespace Aws::Greengrass;

class SubscribeResponseHandler : public SubscribeToTopicStreamHandler {
 public:
 virtual ~SubscribeResponseHandler() {}

 private:
 void OnStreamEvent(SubscriptionResponseMessage *response) override {
 auto jsonMessage = response->GetJsonMessage();
 if (jsonMessage.has_value() &&
 jsonMessage.value().GetMessage().has_value()) {
 auto messageString =
 jsonMessage.value().GetMessage().value().View().WriteReadable();
 // Handle JSON message.
 } else {
 auto binaryMessage = response->GetBinaryMessage();
 if (binaryMessage.has_value() &&
 binaryMessage.value().GetMessage().has_value()) {
 auto messageBytes = binaryMessage.value().GetMessage().value();
 std::string messageString(messageBytes.begin(),
 messageBytes.end());
 // Handle binary message.
 }
 }
 }

 bool OnStreamError(OperationError *error) override {
 // Handle error.
 return false; // Return true to close stream, false to keep stream open.
 }

 void OnStreamClosed() override {
 // Handle close.
 }

Example subscription handlers 1428

AWS IoT Greengrass Developer Guide, Version 2

};

class IpcClientLifecycleHandler : public ConnectionLifecycleHandler {
 void OnConnectCallback() override {
 // Handle connection to IPC service.
 }

 void OnDisconnectCallback(RpcError error) override {
 // Handle disconnection from IPC service.
 }

 bool OnErrorCallback(RpcError error) override {
 // Handle IPC service connection error.
 return true;
 }
};

int main() {
 ApiHandle apiHandle(g_allocator);
 Io::EventLoopGroup eventLoopGroup(1);
 Io::DefaultHostResolver socketResolver(eventLoopGroup, 64, 30);
 Io::ClientBootstrap bootstrap(eventLoopGroup, socketResolver);
 IpcClientLifecycleHandler ipcLifecycleHandler;
 GreengrassCoreIpcClient ipcClient(bootstrap);
 auto connectionStatus = ipcClient.Connect(ipcLifecycleHandler).get();
 if (!connectionStatus) {
 std::cerr << "Failed to establish IPC connection: " <<
 connectionStatus.StatusToString() << std::endl;
 exit(-1);
 }

 String topic("my/topic");
 int timeout = 10;

 SubscribeToTopicRequest request;
 request.SetTopic(topic);

 //SubscribeResponseHandler streamHandler;
 auto streamHandler = MakeShared<SubscribeResponseHandler>(DefaultAllocator());
 auto operation = ipcClient.NewSubscribeToTopic(streamHandler);
 auto activate = operation->Activate(request, nullptr);
 activate.wait();

 auto responseFuture = operation->GetResult();

Example subscription handlers 1429

AWS IoT Greengrass Developer Guide, Version 2

 if (responseFuture.wait_for(std::chrono::seconds(timeout)) ==
 std::future_status::timeout) {
 std::cerr << "Operation timed out while waiting for response from Greengrass
 Core." << std::endl;
 exit(-1);
 }

 auto response = responseFuture.get();
 if (!response) {
 // Handle error.
 auto errorType = response.GetResultType();
 if (errorType == OPERATION_ERROR) {
 auto *error = response.GetOperationError();
 (void)error;
 // Handle operation error.
 } else {
 // Handle RPC error.
 }
 exit(-1);
 }

 // Keep the main thread alive, or the process will exit.
 while (true) {
 std::this_thread::sleep_for(std::chrono::seconds(10));
 }

 operation->Close();
 return 0;
}

JavaScript

Example Example: Subscribe to local publish/subscribe messages

import * as greengrasscoreipc from "aws-iot-device-sdk-v2/dist/greengrasscoreipc";
import {SubscribeToTopicRequest, SubscriptionResponseMessage} from "aws-iot-device-
sdk-v2/dist/greengrasscoreipc/model";
import {RpcError} from "aws-iot-device-sdk-v2/dist/eventstream_rpc";

class SubscribeToTopic {
 private ipcClient : greengrasscoreipc.Client
 private readonly topic : string;

Example subscription handlers 1430

AWS IoT Greengrass Developer Guide, Version 2

 constructor() {
 // define your own constructor, e.g.
 this.topic = "<define_your_topic>";
 this.subscribeToTopic().then(r => console.log("Started workflow"));
 }

 private async subscribeToTopic() {
 try {
 this.ipcClient = await getIpcClient();

 const subscribeToTopicRequest : SubscribeToTopicRequest = {
 topic: this.topic,
 }

 const streamingOperation =
 this.ipcClient.subscribeToTopic(subscribeToTopicRequest, undefined); //
 conditionally apply options

 streamingOperation.on("message", (message: SubscriptionResponseMessage)
 => {
 // parse the message depending on your use cases, e.g.
 if(message.binaryMessage && message.binaryMessage.message) {
 const receivedMessage =
 message.binaryMessage?.message.toString();
 }
 });

 streamingOperation.on("streamError", (error : RpcError) => {
 // define your own error handling logic
 })

 streamingOperation.on("ended", () => {
 // define your own logic
 })

 await streamingOperation.activate();

 // Keep the main thread alive, or the process will exit.
 await new Promise((resolve) => setTimeout(resolve, 10000))
 } catch (e) {
 // parse the error depending on your use cases
 throw e
 }
 }

Example subscription handlers 1431

AWS IoT Greengrass Developer Guide, Version 2

}

export async function getIpcClient(){
 try {
 const ipcClient = greengrasscoreipc.createClient();
 await ipcClient.connect()
 .catch(error => {
 // parse the error depending on your use cases
 throw error;
 });
 return ipcClient
 } catch (err) {
 // parse the error depending on your use cases
 throw err
 }
}

// starting point
const subscribeToTopic = new SubscribeToTopic();

IPC best practices

The best practices for using IPC in custom components differ between IPC client V1 and IPC client
V2. Follow the best practices for the IPC client version that you use.

IPC client V2

The IPC client V2 runs callback functions in a separate thread, so compared to IPC client V1,
there are fewer guidelines for you to follow when you use IPC and write subscription handler
functions.

• Reuse one IPC client

After you create an IPC client, keep it open and reuse it for all IPC operations. Creating
multiple clients uses extra resources and can result in resource leaks.

• Handle exceptions

The IPC client V2 logs uncaught exceptions in subscription handler functions. You should
catch exceptions in your handler functions to handle errors that occur in your code.

IPC best practices 1432

AWS IoT Greengrass Developer Guide, Version 2

IPC client V1

The IPC client V1 uses a single thread that communicates with the IPC server and calls
subscription handlers. You must consider this synchronous behavior when you write
subscription handler functions.

• Reuse one IPC client

After you create an IPC client, keep it open and reuse it for all IPC operations. Creating
multiple clients uses extra resources and can result in resource leaks.

• Run blocking code asynchronously

The IPC client V1 can't send new requests or process new event messages while the thread
is blocked. You should run blocking code in a separate thread that you run from the handler
function. Blocking code includes sleep calls, loops that continuously run, and synchronous I/
O requests that take time to complete.

• Send new IPC requests asynchronously

The IPC client V1 can't send a new request from within subscription handler functions,
because the request blocks the handler function if you wait for a response. You should send
IPC requests in a separate thread that you run from the handler function.

• Handle exceptions

The IPC client V1 doesn't handle uncaught exceptions in subscription handler functions. If
your handler function throws an exception, the subscription closes, and the exception doesn't
appear in your component logs. You should catch exceptions in your handler functions to
keep the subscription open and log errors that occur in your code.

Publish/subscribe local messages

Publish/subscribe (pubsub) messaging enables you to send and receive messages to topics.
Components can publish messages to topics to send messages to other components. Then,
components that are subscribed to that topic can act on the messages that they receive.

Publish/subscribe local messages 1433

AWS IoT Greengrass Developer Guide, Version 2

Note

You can't use this publish/subscribe IPC service to publish or subscribe to AWS IoT Core
MQTT. For more information about how to exchange messages with AWS IoT Core MQTT,
see Publish/subscribe AWS IoT Core MQTT messages.

Topics

• Minimum SDK versions

• Authorization

• PublishToTopic

• SubscribeToTopic

• Examples

Minimum SDK versions

The following table lists the minimum versions of the AWS IoT Device SDK that you must use to
publish and subscribe to messages to and from local topics.

SDK Minimum version

AWS IoT Device SDK for Java
v2

v1.2.10

AWS IoT Device SDK for
Python v2

v1.5.3

AWS IoT Device SDK for C++
v2

v1.17.0

AWS IoT Device SDK for
JavaScript v2

v1.12.0

Minimum SDK versions 1434

https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2

AWS IoT Greengrass Developer Guide, Version 2

Authorization

To use local publish/subscribe messaging in a custom component, you must define authorization
policies that allow your component to send and receive messages to topics. For information about
defining authorization policies, see Authorize components to perform IPC operations.

Authorization policies for publish/subscribe messaging have the following properties.

IPC service identifier: aws.greengrass.ipc.pubsub

Operation Description Resources

aws.greengrass#Pub
lishToTopic

Allows a component to
publish messages to the
topics that you specify.

A topic string, such as test/
topic . Use an * to match
any combination of character
s in a topic.

This topic string doesn't
support MQTT topic wildcards
(# and +).

aws.greengrass#Sub
scribeToTopic

Allows a component to
subscribe to messages for the
topics that you specify.

A topic string, such as test/
topic . Use an * to match
any combination of character
s in a topic.

In Greengrass nucleus v2.6.0
and later, you can subscribe
to topics that contain MQTT
topic wildcards (# and +). This
topic string supports MQTT
topic wildcards as literal
characters. For example, if a
component's authorization
policy grants access to test/
topic/# , the component
can subscribe to test/topi

Authorization 1435

AWS IoT Greengrass Developer Guide, Version 2

Operation Description Resources

c/# , but it can't subscribe to
test/topic/filter .

* Allows a component to
publish and subscribe to
messages for the topics that
you specify.

A topic string, such as test/
topic . Use an * to match
any combination of character
s in a topic.

In Greengrass nucleus v2.6.0
and later, you can subscribe
to topics that contain MQTT
topic wildcards (# and +). This
topic string supports MQTT
topic wildcards as literal
characters. For example, if a
component's authorization
policy grants access to test/
topic/# , the component
can subscribe to test/topi
c/# , but it can't subscribe to
test/topic/filter .

Authorization policy examples

You can reference the following authorization policy example to help you configure authorization
policies for your components.

Example Example authorization policy

The following example authorization policy allows a component to publish and subscribe to all
topics.

{
 "accessControl": {
 "aws.greengrass.ipc.pubsub": {
 "com.example.MyLocalPubSubComponent:pubsub:1": {
 "policyDescription": "Allows access to publish/subscribe to all topics.",

Authorization 1436

AWS IoT Greengrass Developer Guide, Version 2

 "operations": [
 "aws.greengrass#PublishToTopic",
 "aws.greengrass#SubscribeToTopic"
],
 "resources": [
 "*"
]
 }
 }
 }
}

PublishToTopic

Publish a message to a topic.

Request

This operation's request has the following parameters:

topic

The topic to which to publish the message.

publishMessage (Python: publish_message)

The message to publish. This object, PublishMessage, contains the following information.
You must specify one of jsonMessage and binaryMessage.

jsonMessage (Python: json_message)

(Optional) A JSON message. This object, JsonMessage, contains the following information:

message

The JSON message as an object.

context

The context of the message, such as the topic where the message was published.

This feature is available for v2.6.0 and later of the Greengrass nucleus component. The
following table lists the minimum versions of the AWS IoT Device SDK that you must use
to access the message context.

PublishToTopic 1437

AWS IoT Greengrass Developer Guide, Version 2

SDK Minimum version

AWS IoT Device SDK for
Java v2

v1.9.3

AWS IoT Device SDK for
Python v2

v1.11.3

AWS IoT Device SDK for C+
+ v2

v1.18.4

AWS IoT Device SDK for
JavaScript v2

v1.12.0

Note

The AWS IoT Greengrass Core software uses the same message objects in the
PublishToTopic and SubscribeToTopic operations. The AWS IoT Greengrass
Core software sets this context object in messages when you subscribe, and
ignores this context object in messages that you publish.

This object, MessageContext, contains the following information:

topic

The topic where the message was published.

binaryMessage (Python: binary_message)

(Optional) A binary message. This object, BinaryMessage, contains the following
information:

message

The binary message as a blob.

context

The context of the message, such as the topic where the message was published.

PublishToTopic 1438

https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2

AWS IoT Greengrass Developer Guide, Version 2

This feature is available for v2.6.0 and later of the Greengrass nucleus component. The
following table lists the minimum versions of the AWS IoT Device SDK that you must use
to access the message context.

SDK Minimum version

AWS IoT Device SDK for
Java v2

v1.9.3

AWS IoT Device SDK for
Python v2

v1.11.3

AWS IoT Device SDK for C+
+ v2

v1.18.4

AWS IoT Device SDK for
JavaScript v2

v1.12.0

Note

The AWS IoT Greengrass Core software uses the same message objects in the
PublishToTopic and SubscribeToTopic operations. The AWS IoT Greengrass
Core software sets this context object in messages when you subscribe, and
ignores this context object in messages that you publish.

This object, MessageContext, contains the following information:

topic

The topic where the message was published.

Response

This operation doesn't provide any information in its response.

Examples

The following examples demonstrate how to call this operation in custom component code.

PublishToTopic 1439

https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2

AWS IoT Greengrass Developer Guide, Version 2

Java (IPC client V2)

Example Example: Publish a binary message

package com.aws.greengrass.docs.samples.ipc;

import software.amazon.awssdk.aws.greengrass.GreengrassCoreIPCClientV2;
import software.amazon.awssdk.aws.greengrass.model.BinaryMessage;
import software.amazon.awssdk.aws.greengrass.model.PublishMessage;
import software.amazon.awssdk.aws.greengrass.model.PublishToTopicRequest;
import software.amazon.awssdk.aws.greengrass.model.PublishToTopicResponse;
import software.amazon.awssdk.aws.greengrass.model.UnauthorizedError;

import java.nio.charset.StandardCharsets;

public class PublishToTopicV2 {

 public static void main(String[] args) {
 String topic = args[0];
 String message = args[1];
 try (GreengrassCoreIPCClientV2 ipcClient =
 GreengrassCoreIPCClientV2.builder().build()) {
 PublishToTopicV2.publishBinaryMessageToTopic(ipcClient, topic,
 message);
 System.out.println("Successfully published to topic: " + topic);
 } catch (Exception e) {
 if (e.getCause() instanceof UnauthorizedError) {
 System.err.println("Unauthorized error while publishing to topic: "
 + topic);
 } else {
 System.err.println("Exception occurred when using IPC.");
 }
 e.printStackTrace();
 System.exit(1);
 }
 }

 public static PublishToTopicResponse publishBinaryMessageToTopic(
 GreengrassCoreIPCClientV2 ipcClient, String topic, String message)
 throws InterruptedException {
 BinaryMessage binaryMessage =
 new
 BinaryMessage().withMessage(message.getBytes(StandardCharsets.UTF_8));

PublishToTopic 1440

AWS IoT Greengrass Developer Guide, Version 2

 PublishMessage publishMessage = new
 PublishMessage().withBinaryMessage(binaryMessage);
 PublishToTopicRequest publishToTopicRequest =
 new
 PublishToTopicRequest().withTopic(topic).withPublishMessage(publishMessage);
 return ipcClient.publishToTopic(publishToTopicRequest);
 }
}

Python (IPC client V2)

Example Example: Publish a binary message

import sys
import traceback

from awsiot.greengrasscoreipc.clientv2 import GreengrassCoreIPCClientV2
from awsiot.greengrasscoreipc.model import (
 PublishMessage,
 BinaryMessage
)

def main():
 args = sys.argv[1:]
 topic = args[0]
 message = args[1]

 try:
 ipc_client = GreengrassCoreIPCClientV2()
 publish_binary_message_to_topic(ipc_client, topic, message)
 print('Successfully published to topic: ' + topic)
 except Exception:
 print('Exception occurred', file=sys.stderr)
 traceback.print_exc()
 exit(1)

def publish_binary_message_to_topic(ipc_client, topic, message):
 binary_message = BinaryMessage(message=bytes(message, 'utf-8'))
 publish_message = PublishMessage(binary_message=binary_message)
 return ipc_client.publish_to_topic(topic=topic,
 publish_message=publish_message)

PublishToTopic 1441

AWS IoT Greengrass Developer Guide, Version 2

if __name__ == '__main__':
 main()

C++

Example Example: Publish a binary message

#include <iostream>

#include <aws/crt/Api.h>
#include <aws/greengrass/GreengrassCoreIpcClient.h>

using namespace Aws::Crt;
using namespace Aws::Greengrass;

class IpcClientLifecycleHandler : public ConnectionLifecycleHandler {
 void OnConnectCallback() override {
 // Handle connection to IPC service.
 }

 void OnDisconnectCallback(RpcError error) override {
 // Handle disconnection from IPC service.
 }

 bool OnErrorCallback(RpcError error) override {
 // Handle IPC service connection error.
 return true;
 }
};

int main() {
 ApiHandle apiHandle(g_allocator);
 Io::EventLoopGroup eventLoopGroup(1);
 Io::DefaultHostResolver socketResolver(eventLoopGroup, 64, 30);
 Io::ClientBootstrap bootstrap(eventLoopGroup, socketResolver);
 IpcClientLifecycleHandler ipcLifecycleHandler;
 GreengrassCoreIpcClient ipcClient(bootstrap);
 auto connectionStatus = ipcClient.Connect(ipcLifecycleHandler).get();
 if (!connectionStatus) {
 std::cerr << "Failed to establish IPC connection: " <<
 connectionStatus.StatusToString() << std::endl;
 exit(-1);
 }

PublishToTopic 1442

AWS IoT Greengrass Developer Guide, Version 2

 String topic("my/topic");
 String message("Hello, World!");
 int timeout = 10;

 PublishToTopicRequest request;
 Vector<uint8_t> messageData({message.begin(), message.end()});
 BinaryMessage binaryMessage;
 binaryMessage.SetMessage(messageData);
 PublishMessage publishMessage;
 publishMessage.SetBinaryMessage(binaryMessage);
 request.SetTopic(topic);
 request.SetPublishMessage(publishMessage);

 auto operation = ipcClient.NewPublishToTopic();
 auto activate = operation->Activate(request, nullptr);
 activate.wait();

 auto responseFuture = operation->GetResult();
 if (responseFuture.wait_for(std::chrono::seconds(timeout)) ==
 std::future_status::timeout) {
 std::cerr << "Operation timed out while waiting for response from Greengrass
 Core." << std::endl;
 exit(-1);
 }

 auto response = responseFuture.get();
 if (!response) {
 // Handle error.
 auto errorType = response.GetResultType();
 if (errorType == OPERATION_ERROR) {
 auto *error = response.GetOperationError();
 (void)error;
 // Handle operation error.
 } else {
 // Handle RPC error.
 }
 }
 return 0;
}

PublishToTopic 1443

AWS IoT Greengrass Developer Guide, Version 2

JavaScript

Example Example: Publish a binary message

import * as greengrasscoreipc from "aws-iot-device-sdk-v2/dist/greengrasscoreipc";
import {BinaryMessage, PublishMessage, PublishToTopicRequest} from "aws-iot-device-
sdk-v2/dist/greengrasscoreipc/model";

class PublishToTopic {
 private ipcClient : greengrasscoreipc.Client
 private readonly topic : string;
 private readonly messageString : string;

 constructor() {
 // define your own constructor, e.g.
 this.topic = "<define_your_topic>";
 this.messageString = "<define_your_message_string>";
 this.publishToTopic().then(r => console.log("Started workflow"));
 }

 private async publishToTopic() {
 try {
 this.ipcClient = await getIpcClient();

 const binaryMessage : BinaryMessage = {
 message: this.messageString
 }

 const publishMessage : PublishMessage = {
 binaryMessage: binaryMessage
 }

 const request : PublishToTopicRequest = {
 topic: this.topic,
 publishMessage: publishMessage
 }

 this.ipcClient.publishToTopic(request).finally(() =>
 console.log(`Published message ${publishMessage.binaryMessage?.message} to topic`))

 } catch (e) {
 // parse the error depending on your use cases
 throw e

PublishToTopic 1444

AWS IoT Greengrass Developer Guide, Version 2

 }
 }
}

export async function getIpcClient(){
 try {
 const ipcClient = greengrasscoreipc.createClient();
 await ipcClient.connect()
 .catch(error => {
 // parse the error depending on your use cases
 throw error;
 });
 return ipcClient
 } catch (err) {
 // parse the error depending on your use cases
 throw err
 }
}

// starting point
const publishToTopic = new PublishToTopic();

SubscribeToTopic

Subscribe to messages on a topic.

This operation is a subscription operation where you subscribe to a stream of event messages. To
use this operation, define a stream response handler with functions that handle event messages,
errors, and stream closure. For more information, see Subscribe to IPC event streams.

Event message type: SubscriptionResponseMessage

Request

This operation's request has the following parameters:

topic

The topic to which to subscribe.

SubscribeToTopic 1445

AWS IoT Greengrass Developer Guide, Version 2

Note

In Greengrass nucleus v2.6.0 and later, this topic supports MQTT topic wildcards (# and
+).

receiveMode (Python: receive_mode)

(Optional) The behavior that specifies whether the component receives messages from itself.
You can change this behavior to allow a component to act on its own messages. The default
behavior depends on whether the topic contains an MQTT wildcard. Choose from the following
options:

• RECEIVE_ALL_MESSAGES – Receive all messages that match the topic, including messages
from the component that subscribes.

This mode is the default option when you subscribe to a topic that doesn't contain an MQTT
wildcard.

• RECEIVE_MESSAGES_FROM_OTHERS – Receive all messages that match the topic, except
messages from the component that subscribes.

This mode is the default option when you subscribe to a topic that contains an MQTT
wildcard.

This feature is available for v2.6.0 and later of the Greengrass nucleus component. The
following table lists the minimum versions of the AWS IoT Device SDK that you must use to set
the receive mode.

SDK Minimum version

AWS IoT Device SDK for Java
v2

v1.9.3

AWS IoT Device SDK for
Python v2

v1.11.3

AWS IoT Device SDK for C++
v2

v1.18.4

SubscribeToTopic 1446

https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2

AWS IoT Greengrass Developer Guide, Version 2

SDK Minimum version

AWS IoT Device SDK for
JavaScript v2

v1.12.0

Response

This operation's response has the following information:

messages

The stream of messages. This object, SubscriptionResponseMessage, contains the
following information. Each message contains jsonMessage or binaryMessage.

jsonMessage (Python: json_message)

(Optional) A JSON message. This object, JsonMessage, contains the following information:

message

The JSON message as an object.

context

The context of the message, such as the topic where the message was published.

This feature is available for v2.6.0 and later of the Greengrass nucleus component. The
following table lists the minimum versions of the AWS IoT Device SDK that you must use
to access the message context.

SDK Minimum version

AWS IoT Device SDK for
Java v2

v1.9.3

AWS IoT Device SDK for
Python v2

v1.11.3

AWS IoT Device SDK for C+
+ v2

v1.18.4

SubscribeToTopic 1447

https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2

AWS IoT Greengrass Developer Guide, Version 2

SDK Minimum version

AWS IoT Device SDK for
JavaScript v2

v1.12.0

Note

The AWS IoT Greengrass Core software uses the same message objects in the
PublishToTopic and SubscribeToTopic operations. The AWS IoT Greengrass
Core software sets this context object in messages when you subscribe, and
ignores this context object in messages that you publish.

This object, MessageContext, contains the following information:

topic

The topic where the message was published.

binaryMessage (Python: binary_message)

(Optional) A binary message. This object, BinaryMessage, contains the following
information:

message

The binary message as a blob.

context

The context of the message, such as the topic where the message was published.

This feature is available for v2.6.0 and later of the Greengrass nucleus component. The
following table lists the minimum versions of the AWS IoT Device SDK that you must use
to access the message context.

SDK Minimum version

AWS IoT Device SDK for
Java v2

v1.9.3

SubscribeToTopic 1448

https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2

AWS IoT Greengrass Developer Guide, Version 2

SDK Minimum version

AWS IoT Device SDK for
Python v2

v1.11.3

AWS IoT Device SDK for C+
+ v2

v1.18.4

AWS IoT Device SDK for
JavaScript v2

v1.12.0

Note

The AWS IoT Greengrass Core software uses the same message objects in the
PublishToTopic and SubscribeToTopic operations. The AWS IoT Greengrass
Core software sets this context object in messages when you subscribe, and
ignores this context object in messages that you publish.

This object, MessageContext, contains the following information:

topic

The topic where the message was published.

topicName (Python: topic_name)

The topic to which the message was published.

Note

This property isn't currently used. In Greengrass nucleus v2.6.0 and later, you
can get the (jsonMessage|binaryMessage).context.topic value from a
SubscriptionResponseMessage to get the topic where the message was published.

Examples

The following examples demonstrate how to call this operation in custom component code.

SubscribeToTopic 1449

https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2

AWS IoT Greengrass Developer Guide, Version 2

Java (IPC client V2)

Example Example: Subscribe to local publish/subscribe messages

package com.aws.greengrass.docs.samples.ipc;

import software.amazon.awssdk.aws.greengrass.GreengrassCoreIPCClientV2;
import software.amazon.awssdk.aws.greengrass.SubscribeToTopicResponseHandler;
import software.amazon.awssdk.aws.greengrass.model.*;

import java.nio.charset.StandardCharsets;
import java.util.Optional;

public class SubscribeToTopicV2 {

 public static void main(String[] args) {
 String topic = args[0];
 try (GreengrassCoreIPCClientV2 ipcClient =
 GreengrassCoreIPCClientV2.builder().build()) {
 SubscribeToTopicRequest request = new
 SubscribeToTopicRequest().withTopic(topic);
 GreengrassCoreIPCClientV2.StreamingResponse<SubscribeToTopicResponse,
 SubscribeToTopicResponseHandler> response =
 ipcClient.subscribeToTopic(request,
 SubscribeToTopicV2::onStreamEvent,
 Optional.of(SubscribeToTopicV2::onStreamError),
 Optional.of(SubscribeToTopicV2::onStreamClosed));
 SubscribeToTopicResponseHandler responseHandler =
 response.getHandler();
 System.out.println("Successfully subscribed to topic: " + topic);

 // Keep the main thread alive, or the process will exit.
 try {
 while (true) {
 Thread.sleep(10000);
 }
 } catch (InterruptedException e) {
 System.out.println("Subscribe interrupted.");
 }

 // To stop subscribing, close the stream.
 responseHandler.closeStream();
 } catch (Exception e) {
 if (e.getCause() instanceof UnauthorizedError) {

SubscribeToTopic 1450

AWS IoT Greengrass Developer Guide, Version 2

 System.err.println("Unauthorized error while publishing to topic: "
 + topic);
 } else {
 System.err.println("Exception occurred when using IPC.");
 }
 e.printStackTrace();
 System.exit(1);
 }
 }

 public static void onStreamEvent(SubscriptionResponseMessage
 subscriptionResponseMessage) {
 try {
 BinaryMessage binaryMessage =
 subscriptionResponseMessage.getBinaryMessage();
 String message = new String(binaryMessage.getMessage(),
 StandardCharsets.UTF_8);
 String topic = binaryMessage.getContext().getTopic();
 System.out.printf("Received new message on topic %s: %s%n", topic,
 message);
 } catch (Exception e) {
 System.err.println("Exception occurred while processing subscription
 response " +
 "message.");
 e.printStackTrace();
 }
 }

 public static boolean onStreamError(Throwable error) {
 System.err.println("Received a stream error.");
 error.printStackTrace();
 return false; // Return true to close stream, false to keep stream open.
 }

 public static void onStreamClosed() {
 System.out.println("Subscribe to topic stream closed.");
 }
}

Python (IPC client V2)

Example Example: Subscribe to local publish/subscribe messages

import sys

SubscribeToTopic 1451

AWS IoT Greengrass Developer Guide, Version 2

import time
import traceback

from awsiot.greengrasscoreipc.clientv2 import GreengrassCoreIPCClientV2
from awsiot.greengrasscoreipc.model import (
 SubscriptionResponseMessage,
 UnauthorizedError
)

def main():
 args = sys.argv[1:]
 topic = args[0]

 try:
 ipc_client = GreengrassCoreIPCClientV2()
 # Subscription operations return a tuple with the response and the
 operation.
 _, operation = ipc_client.subscribe_to_topic(topic=topic,
 on_stream_event=on_stream_event,

 on_stream_error=on_stream_error, on_stream_closed=on_stream_closed)
 print('Successfully subscribed to topic: ' + topic)

 # Keep the main thread alive, or the process will exit.
 try:
 while True:
 time.sleep(10)
 except InterruptedError:
 print('Subscribe interrupted.')

 # To stop subscribing, close the stream.
 operation.close()
 except UnauthorizedError:
 print('Unauthorized error while subscribing to topic: ' +
 topic, file=sys.stderr)
 traceback.print_exc()
 exit(1)
 except Exception:
 print('Exception occurred', file=sys.stderr)
 traceback.print_exc()
 exit(1)

SubscribeToTopic 1452

AWS IoT Greengrass Developer Guide, Version 2

def on_stream_event(event: SubscriptionResponseMessage) -> None:
 try:
 message = str(event.binary_message.message, 'utf-8')
 topic = event.binary_message.context.topic
 print('Received new message on topic %s: %s' % (topic, message))
 except:
 traceback.print_exc()

def on_stream_error(error: Exception) -> bool:
 print('Received a stream error.', file=sys.stderr)
 traceback.print_exc()
 return False # Return True to close stream, False to keep stream open.

def on_stream_closed() -> None:
 print('Subscribe to topic stream closed.')

if __name__ == '__main__':
 main()

C++

Example Example: Subscribe to local publish/subscribe messages

#include <iostream>

#include </crt/Api.h>
#include <aws/greengrass/GreengrassCoreIpcClient.h>

using namespace Aws::Crt;
using namespace Aws::Greengrass;

class SubscribeResponseHandler : public SubscribeToTopicStreamHandler {
 public:
 virtual ~SubscribeResponseHandler() {}

 private:
 void OnStreamEvent(SubscriptionResponseMessage *response) override {
 auto jsonMessage = response->GetJsonMessage();
 if (jsonMessage.has_value() &&
 jsonMessage.value().GetMessage().has_value()) {

SubscribeToTopic 1453

AWS IoT Greengrass Developer Guide, Version 2

 auto messageString =
 jsonMessage.value().GetMessage().value().View().WriteReadable();
 // Handle JSON message.
 } else {
 auto binaryMessage = response->GetBinaryMessage();
 if (binaryMessage.has_value() &&
 binaryMessage.value().GetMessage().has_value()) {
 auto messageBytes = binaryMessage.value().GetMessage().value();
 std::string messageString(messageBytes.begin(),
 messageBytes.end());
 // Handle binary message.
 }
 }
 }

 bool OnStreamError(OperationError *error) override {
 // Handle error.
 return false; // Return true to close stream, false to keep stream open.
 }

 void OnStreamClosed() override {
 // Handle close.
 }
};

class IpcClientLifecycleHandler : public ConnectionLifecycleHandler {
 void OnConnectCallback() override {
 // Handle connection to IPC service.
 }

 void OnDisconnectCallback(RpcError error) override {
 // Handle disconnection from IPC service.
 }

 bool OnErrorCallback(RpcError error) override {
 // Handle IPC service connection error.
 return true;
 }
};

int main() {
 ApiHandle apiHandle(g_allocator);
 Io::EventLoopGroup eventLoopGroup(1);
 Io::DefaultHostResolver socketResolver(eventLoopGroup, 64, 30);

SubscribeToTopic 1454

AWS IoT Greengrass Developer Guide, Version 2

 Io::ClientBootstrap bootstrap(eventLoopGroup, socketResolver);
 IpcClientLifecycleHandler ipcLifecycleHandler;
 GreengrassCoreIpcClient ipcClient(bootstrap);
 auto connectionStatus = ipcClient.Connect(ipcLifecycleHandler).get();
 if (!connectionStatus) {
 std::cerr << "Failed to establish IPC connection: " <<
 connectionStatus.StatusToString() << std::endl;
 exit(-1);
 }

 String topic("my/topic");
 int timeout = 10;

 SubscribeToTopicRequest request;
 request.SetTopic(topic);

 //SubscribeResponseHandler streamHandler;
 auto streamHandler = MakeShared<SubscribeResponseHandler>(DefaultAllocator());
 auto operation = ipcClient.NewSubscribeToTopic(streamHandler);
 auto activate = operation->Activate(request, nullptr);
 activate.wait();

 auto responseFuture = operation->GetResult();
 if (responseFuture.wait_for(std::chrono::seconds(timeout)) ==
 std::future_status::timeout) {
 std::cerr << "Operation timed out while waiting for response from Greengrass
 Core." << std::endl;
 exit(-1);
 }

 auto response = responseFuture.get();
 if (!response) {
 // Handle error.
 auto errorType = response.GetResultType();
 if (errorType == OPERATION_ERROR) {
 auto *error = response.GetOperationError();
 (void)error;
 // Handle operation error.
 } else {
 // Handle RPC error.
 }
 exit(-1);
 }

SubscribeToTopic 1455

AWS IoT Greengrass Developer Guide, Version 2

 // Keep the main thread alive, or the process will exit.
 while (true) {
 std::this_thread::sleep_for(std::chrono::seconds(10));
 }

 operation->Close();
 return 0;
}

JavaScript

Example Example: Subscribe to local publish/subscribe messages

import * as greengrasscoreipc from "aws-iot-device-sdk-v2/dist/greengrasscoreipc";
import {SubscribeToTopicRequest, SubscriptionResponseMessage} from "aws-iot-device-
sdk-v2/dist/greengrasscoreipc/model";
import {RpcError} from "aws-iot-device-sdk-v2/dist/eventstream_rpc";

class SubscribeToTopic {
 private ipcClient : greengrasscoreipc.Client
 private readonly topic : string;

 constructor() {
 // define your own constructor, e.g.
 this.topic = "<define_your_topic>";
 this.subscribeToTopic().then(r => console.log("Started workflow"));
 }

 private async subscribeToTopic() {
 try {
 this.ipcClient = await getIpcClient();

 const subscribeToTopicRequest : SubscribeToTopicRequest = {
 topic: this.topic,
 }

 const streamingOperation =
 this.ipcClient.subscribeToTopic(subscribeToTopicRequest, undefined); //
 conditionally apply options

 streamingOperation.on("message", (message: SubscriptionResponseMessage)
 => {
 // parse the message depending on your use cases, e.g.

SubscribeToTopic 1456

AWS IoT Greengrass Developer Guide, Version 2

 if(message.binaryMessage && message.binaryMessage.message) {
 const receivedMessage =
 message.binaryMessage?.message.toString();
 }
 });

 streamingOperation.on("streamError", (error : RpcError) => {
 // define your own error handling logic
 })

 streamingOperation.on("ended", () => {
 // define your own logic
 })

 await streamingOperation.activate();

 // Keep the main thread alive, or the process will exit.
 await new Promise((resolve) => setTimeout(resolve, 10000))
 } catch (e) {
 // parse the error depending on your use cases
 throw e
 }
 }
}

export async function getIpcClient(){
 try {
 const ipcClient = greengrasscoreipc.createClient();
 await ipcClient.connect()
 .catch(error => {
 // parse the error depending on your use cases
 throw error;
 });
 return ipcClient
 } catch (err) {
 // parse the error depending on your use cases
 throw err
 }
}

// starting point
const subscribeToTopic = new SubscribeToTopic();

SubscribeToTopic 1457

AWS IoT Greengrass Developer Guide, Version 2

Examples

Use the following examples to learn how to use the publish/subscribe IPC service in your
components.

Example publish/subscribe publisher (Java, IPC client V1)

The following example recipe allows the component to publish to all topics.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.PubSubPublisherJava",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "A component that publishes messages.",
 "ComponentPublisher": "Amazon",
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "accessControl": {
 "aws.greengrass.ipc.pubsub": {
 "com.example.PubSubPublisherJava:pubsub:1": {
 "policyDescription": "Allows access to publish to all topics.",
 "operations": [
 "aws.greengrass#PublishToTopic"
],
 "resources": [
 "*"
]
 }
 }
 }
 }
 },
 "Manifests": [
 {
 "Lifecycle": {
 "Run": "java -jar {artifacts:path}/PubSubPublisher.jar"
 }
 }
]
}

Examples 1458

AWS IoT Greengrass Developer Guide, Version 2

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.PubSubPublisherJava
ComponentVersion: '1.0.0'
ComponentDescription: A component that publishes messages.
ComponentPublisher: Amazon
ComponentConfiguration:
 DefaultConfiguration:
 accessControl:
 aws.greengrass.ipc.pubsub:
 'com.example.PubSubPublisherJava:pubsub:1':
 policyDescription: Allows access to publish to all topics.
 operations:
 - 'aws.greengrass#PublishToTopic'
 resources:
 - '*'
Manifests:
 - Lifecycle:
 Run: |-
 java -jar {artifacts:path}/PubSubPublisher.jar

The following example Java application demonstrates how to use the publish/subscribe IPC service
to publish messages to other components.

/* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0 */

package com.example.ipc.pubsub;

import software.amazon.awssdk.aws.greengrass.GreengrassCoreIPCClient;
import software.amazon.awssdk.aws.greengrass.model.*;
import software.amazon.awssdk.eventstreamrpc.EventStreamRPCConnection;

import java.nio.charset.StandardCharsets;
import java.util.Optional;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

Examples 1459

AWS IoT Greengrass Developer Guide, Version 2

public class PubSubPublisher {

 public static void main(String[] args) {
 String message = "Hello from the pub/sub publisher (Java).";
 String topic = "test/topic/java";

 try (EventStreamRPCConnection eventStreamRPCConnection =
 IPCUtils.getEventStreamRpcConnection()) {
 GreengrassCoreIPCClient ipcClient = new
 GreengrassCoreIPCClient(eventStreamRPCConnection);

 while (true) {
 PublishToTopicRequest publishRequest = new PublishToTopicRequest();
 PublishMessage publishMessage = new PublishMessage();
 BinaryMessage binaryMessage = new BinaryMessage();
 binaryMessage.setMessage(message.getBytes(StandardCharsets.UTF_8));
 publishMessage.setBinaryMessage(binaryMessage);
 publishRequest.setPublishMessage(publishMessage);
 publishRequest.setTopic(topic);
 CompletableFuture<PublishToTopicResponse> futureResponse = ipcClient
 .publishToTopic(publishRequest,
 Optional.empty()).getResponse();

 try {
 futureResponse.get(10, TimeUnit.SECONDS);
 System.out.println("Successfully published to topic: " + topic);
 } catch (TimeoutException e) {
 System.err.println("Timeout occurred while publishing to topic: " +
 topic);
 } catch (ExecutionException e) {
 if (e.getCause() instanceof UnauthorizedError) {
 System.err.println("Unauthorized error while publishing to
 topic: " + topic);
 } else {
 System.err.println("Execution exception while publishing to
 topic: " + topic);
 }
 throw e;
 }
 Thread.sleep(5000);
 }
 } catch (InterruptedException e) {
 System.out.println("Publisher interrupted.");
 } catch (Exception e) {

Examples 1460

AWS IoT Greengrass Developer Guide, Version 2

 System.err.println("Exception occurred when using IPC.");
 e.printStackTrace();
 System.exit(1);
 }
 }
}

Example publish/subscribe subscriber (Java, IPC client V1)

The following example recipe allows the component to subscribe to all topics.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.PubSubSubscriberJava",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "A component that subscribes to messages.",
 "ComponentPublisher": "Amazon",
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "accessControl": {
 "aws.greengrass.ipc.pubsub": {
 "com.example.PubSubSubscriberJava:pubsub:1": {
 "policyDescription": "Allows access to subscribe to all topics.",
 "operations": [
 "aws.greengrass#SubscribeToTopic"
],
 "resources": [
 "*"
]
 }
 }
 }
 }
 },
 "Manifests": [
 {
 "Lifecycle": {
 "Run": "java -jar {artifacts:path}/PubSubSubscriber.jar"
 }
 }
]

Examples 1461

AWS IoT Greengrass Developer Guide, Version 2

}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.PubSubSubscriberJava
ComponentVersion: '1.0.0'
ComponentDescription: A component that subscribes to messages.
ComponentPublisher: Amazon
ComponentConfiguration:
 DefaultConfiguration:
 accessControl:
 aws.greengrass.ipc.pubsub:
 'com.example.PubSubSubscriberJava:pubsub:1':
 policyDescription: Allows access to subscribe to all topics.
 operations:
 - 'aws.greengrass#SubscribeToTopic'
 resources:
 - '*'
Manifests:
 - Lifecycle:
 Run: |-
 java -jar {artifacts:path}/PubSubSubscriber.jar

The following example Java application demonstrates how to use the publish/subscribe IPC service
to subscribe to messages to other components.

/* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0 */

package com.example.ipc.pubsub;

import software.amazon.awssdk.aws.greengrass.GreengrassCoreIPCClient;
import software.amazon.awssdk.aws.greengrass.SubscribeToTopicResponseHandler;
import software.amazon.awssdk.aws.greengrass.model.SubscribeToTopicRequest;
import software.amazon.awssdk.aws.greengrass.model.SubscribeToTopicResponse;
import software.amazon.awssdk.aws.greengrass.model.SubscriptionResponseMessage;
import software.amazon.awssdk.aws.greengrass.model.UnauthorizedError;
import software.amazon.awssdk.eventstreamrpc.EventStreamRPCConnection;
import software.amazon.awssdk.eventstreamrpc.StreamResponseHandler;

Examples 1462

AWS IoT Greengrass Developer Guide, Version 2

import java.nio.charset.StandardCharsets;
import java.util.Optional;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class PubSubSubscriber {

 public static void main(String[] args) {
 String topic = "test/topic/java";

 try (EventStreamRPCConnection eventStreamRPCConnection =
 IPCUtils.getEventStreamRpcConnection()) {
 GreengrassCoreIPCClient ipcClient = new
 GreengrassCoreIPCClient(eventStreamRPCConnection);

 SubscribeToTopicRequest subscribeRequest = new SubscribeToTopicRequest();
 subscribeRequest.setTopic(topic);
 SubscribeToTopicResponseHandler operationResponseHandler = ipcClient
 .subscribeToTopic(subscribeRequest, Optional.of(new
 SubscribeResponseHandler()));
 CompletableFuture<SubscribeToTopicResponse> futureResponse =
 operationResponseHandler.getResponse();

 try {
 futureResponse.get(10, TimeUnit.SECONDS);
 System.out.println("Successfully subscribed to topic: " + topic);
 } catch (TimeoutException e) {
 System.err.println("Timeout occurred while subscribing to topic: " +
 topic);
 throw e;
 } catch (ExecutionException e) {
 if (e.getCause() instanceof UnauthorizedError) {
 System.err.println("Unauthorized error while subscribing to topic:
 " + topic);
 } else {
 System.err.println("Execution exception while subscribing to topic:
 " + topic);
 }
 throw e;
 }

 // Keep the main thread alive, or the process will exit.

Examples 1463

AWS IoT Greengrass Developer Guide, Version 2

 try {
 while (true) {
 Thread.sleep(10000);
 }
 } catch (InterruptedException e) {
 System.out.println("Subscribe interrupted.");
 }
 } catch (Exception e) {
 System.err.println("Exception occurred when using IPC.");
 e.printStackTrace();
 System.exit(1);
 }
 }

 private static class SubscribeResponseHandler implements
 StreamResponseHandler<SubscriptionResponseMessage> {

 @Override
 public void onStreamEvent(SubscriptionResponseMessage
 subscriptionResponseMessage) {
 try {
 String message = new
 String(subscriptionResponseMessage.getBinaryMessage()
 .getMessage(), StandardCharsets.UTF_8);
 System.out.println("Received new message: " + message);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 @Override
 public boolean onStreamError(Throwable error) {
 System.err.println("Received a stream error.");
 error.printStackTrace();
 return false; // Return true to close stream, false to keep stream open.
 }

 @Override
 public void onStreamClosed() {
 System.out.println("Subscribe to topic stream closed.");
 }
 }
}

Examples 1464

AWS IoT Greengrass Developer Guide, Version 2

Example publish/subscribe publisher (Python, IPC client V1)

The following example recipe allows the component to publish to all topics.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.PubSubPublisherPython",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "A component that publishes messages.",
 "ComponentPublisher": "Amazon",
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "accessControl": {
 "aws.greengrass.ipc.pubsub": {
 "com.example.PubSubPublisherPython:pubsub:1": {
 "policyDescription": "Allows access to publish to all topics.",
 "operations": [
 "aws.greengrass#PublishToTopic"
],
 "resources": [
 "*"
]
 }
 }
 }
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "linux"
 },
 "Lifecycle": {
 "install": "python3 -m pip install --user awsiotsdk",
 "Run": "python3 -u {artifacts:path}/pubsub_publisher.py"
 }
 },
 {
 "Platform": {
 "os": "windows"
 },
 "Lifecycle": {

Examples 1465

AWS IoT Greengrass Developer Guide, Version 2

 "install": "py -3 -m pip install --user awsiotsdk",
 "Run": "py -3 -u {artifacts:path}/pubsub_publisher.py"
 }
 }
]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.PubSubPublisherPython
ComponentVersion: 1.0.0
ComponentDescription: A component that publishes messages.
ComponentPublisher: Amazon
ComponentConfiguration:
 DefaultConfiguration:
 accessControl:
 aws.greengrass.ipc.pubsub:
 com.example.PubSubPublisherPython:pubsub:1:
 policyDescription: Allows access to publish to all topics.
 operations:
 - aws.greengrass#PublishToTopic
 resources:
 - "*"
Manifests:
 - Platform:
 os: linux
 Lifecycle:
 install: python3 -m pip install --user awsiotsdk
 Run: python3 -u {artifacts:path}/pubsub_publisher.py
 - Platform:
 os: windows
 Lifecycle:
 install: py -3 -m pip install --user awsiotsdk
 Run: py -3 -u {artifacts:path}/pubsub_publisher.py

The following example Python application demonstrates how to use the publish/subscribe IPC
service to publish messages to other components.

import concurrent.futures
import sys

Examples 1466

AWS IoT Greengrass Developer Guide, Version 2

import time
import traceback

import awsiot.greengrasscoreipc
from awsiot.greengrasscoreipc.model import (
 PublishToTopicRequest,
 PublishMessage,
 BinaryMessage,
 UnauthorizedError
)

topic = "test/topic/python"
message = "Hello from the pub/sub publisher (Python)."
TIMEOUT = 10

try:
 ipc_client = awsiot.greengrasscoreipc.connect()

 while True:
 request = PublishToTopicRequest()
 request.topic = topic
 publish_message = PublishMessage()
 publish_message.binary_message = BinaryMessage()
 publish_message.binary_message.message = bytes(message, "utf-8")
 request.publish_message = publish_message
 operation = ipc_client.new_publish_to_topic()
 operation.activate(request)
 future_response = operation.get_response()

 try:
 future_response.result(TIMEOUT)
 print('Successfully published to topic: ' + topic)
 except concurrent.futures.TimeoutError:
 print('Timeout occurred while publishing to topic: ' + topic,
 file=sys.stderr)
 except UnauthorizedError as e:
 print('Unauthorized error while publishing to topic: ' + topic,
 file=sys.stderr)
 raise e
 except Exception as e:
 print('Exception while publishing to topic: ' + topic, file=sys.stderr)
 raise e
 time.sleep(5)

Examples 1467

AWS IoT Greengrass Developer Guide, Version 2

except InterruptedError:
 print('Publisher interrupted.')
except Exception:
 print('Exception occurred when using IPC.', file=sys.stderr)
 traceback.print_exc()
 exit(1)

Example publish/subscribe subscriber (Python, IPC client V1)

The following example recipe allows the component to subscribe to all topics.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.PubSubSubscriberPython",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "A component that subscribes to messages.",
 "ComponentPublisher": "Amazon",
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "accessControl": {
 "aws.greengrass.ipc.pubsub": {
 "com.example.PubSubSubscriberPython:pubsub:1": {
 "policyDescription": "Allows access to subscribe to all topics.",
 "operations": [
 "aws.greengrass#SubscribeToTopic"
],
 "resources": [
 "*"
]
 }
 }
 }
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "linux"
 },
 "Lifecycle": {
 "install": "python3 -m pip install --user awsiotsdk",
 "Run": "python3 -u {artifacts:path}/pubsub_subscriber.py"

Examples 1468

AWS IoT Greengrass Developer Guide, Version 2

 }
 },
 {
 "Platform": {
 "os": "windows"
 },
 "Lifecycle": {
 "install": "py -3 -m pip install --user awsiotsdk",
 "Run": "py -3 -u {artifacts:path}/pubsub_subscriber.py"
 }
 }
]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.PubSubSubscriberPython
ComponentVersion: 1.0.0
ComponentDescription: A component that subscribes to messages.
ComponentPublisher: Amazon
ComponentConfiguration:
 DefaultConfiguration:
 accessControl:
 aws.greengrass.ipc.pubsub:
 com.example.PubSubSubscriberPython:pubsub:1:
 policyDescription: Allows access to subscribe to all topics.
 operations:
 - aws.greengrass#SubscribeToTopic
 resources:
 - "*"
Manifests:
 - Platform:
 os: linux
 Lifecycle:
 install: python3 -m pip install --user awsiotsdk
 Run: python3 -u {artifacts:path}/pubsub_subscriber.py
 - Platform:
 os: windows
 Lifecycle:
 install: py -3 -m pip install --user awsiotsdk
 Run: py -3 -u {artifacts:path}/pubsub_subscriber.py

Examples 1469

AWS IoT Greengrass Developer Guide, Version 2

The following example Python application demonstrates how to use the publish/subscribe IPC
service to subscribe to messages to other components.

import concurrent.futures
import sys
import time
import traceback

import awsiot.greengrasscoreipc
import awsiot.greengrasscoreipc.client as client
from awsiot.greengrasscoreipc.model import (
 SubscribeToTopicRequest,
 SubscriptionResponseMessage,
 UnauthorizedError
)

topic = "test/topic/python"
TIMEOUT = 10

class StreamHandler(client.SubscribeToTopicStreamHandler):
 def __init__(self):
 super().__init__()

 def on_stream_event(self, event: SubscriptionResponseMessage) -> None:
 try:
 message = str(event.binary_message.message, "utf-8")
 print("Received new message: " + message)
 except:
 traceback.print_exc()

 def on_stream_error(self, error: Exception) -> bool:
 print("Received a stream error.", file=sys.stderr)
 traceback.print_exc()
 return False # Return True to close stream, False to keep stream open.

 def on_stream_closed(self) -> None:
 print('Subscribe to topic stream closed.')

try:
 ipc_client = awsiot.greengrasscoreipc.connect()

Examples 1470

AWS IoT Greengrass Developer Guide, Version 2

 request = SubscribeToTopicRequest()
 request.topic = topic
 handler = StreamHandler()
 operation = ipc_client.new_subscribe_to_topic(handler)
 operation.activate(request)
 future_response = operation.get_response()

 try:
 future_response.result(TIMEOUT)
 print('Successfully subscribed to topic: ' + topic)
 except concurrent.futures.TimeoutError as e:
 print('Timeout occurred while subscribing to topic: ' + topic,
 file=sys.stderr)
 raise e
 except UnauthorizedError as e:
 print('Unauthorized error while subscribing to topic: ' + topic,
 file=sys.stderr)
 raise e
 except Exception as e:
 print('Exception while subscribing to topic: ' + topic, file=sys.stderr)
 raise e

 # Keep the main thread alive, or the process will exit.
 try:
 while True:
 time.sleep(10)
 except InterruptedError:
 print('Subscribe interrupted.')
except Exception:
 print('Exception occurred when using IPC.', file=sys.stderr)
 traceback.print_exc()
 exit(1)

Example publish/subscribe publisher (C++)

The following example recipe allows the component to publish to all topics.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.PubSubPublisherCpp",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "A component that publishes messages.",

Examples 1471

AWS IoT Greengrass Developer Guide, Version 2

 "ComponentPublisher": "Amazon",
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "accessControl": {
 "aws.greengrass.ipc.pubsub": {
 "com.example.PubSubPublisherCpp:pubsub:1": {
 "policyDescription": "Allows access to publish to all topics.",
 "operations": [
 "aws.greengrass#PublishToTopic"
],
 "resources": [
 "*"
]
 }
 }
 }
 }
 },
 "Manifests": [
 {
 "Lifecycle": {
 "Run": "{artifacts:path}/greengrassv2_pubsub_publisher"
 },
 "Artifacts": [
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.PubSubPublisherCpp/1.0.0/greengrassv2_pubsub_publisher",
 "Permission": {
 "Execute": "OWNER"
 }
 }
]
 }
]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.PubSubPublisherCpp
ComponentVersion: 1.0.0
ComponentDescription: A component that publishes messages.

Examples 1472

AWS IoT Greengrass Developer Guide, Version 2

ComponentPublisher: Amazon
ComponentConfiguration:
 DefaultConfiguration:
 accessControl:
 aws.greengrass.ipc.pubsub:
 com.example.PubSubPublisherCpp:pubsub:1:
 policyDescription: Allows access to publish to all topics.
 operations:
 - aws.greengrass#PublishToTopic
 resources:
 - "*"
Manifests:
 - Lifecycle:
 Run: "{artifacts:path}/greengrassv2_pubsub_publisher"
 Artifacts:
 - URI: s3://amzn-s3-demo-bucket/artifacts/
com.example.PubSubPublisherCpp/1.0.0/greengrassv2_pubsub_publisher
 Permission:
 Execute: OWNER

The following example C++ application demonstrates how to use the publish/subscribe IPC service
to publish messages to other components.

#include <iostream>

#include <aws/crt/Api.h>
#include <aws/greengrass/GreengrassCoreIpcClient.h>

using namespace Aws::Crt;
using namespace Aws::Greengrass;

class IpcClientLifecycleHandler : public ConnectionLifecycleHandler {
 void OnConnectCallback() override {
 std::cout << "OnConnectCallback" << std::endl;
 }

 void OnDisconnectCallback(RpcError error) override {
 std::cout << "OnDisconnectCallback: " << error.StatusToString() << std::endl;
 exit(-1);
 }

 bool OnErrorCallback(RpcError error) override {

Examples 1473

AWS IoT Greengrass Developer Guide, Version 2

 std::cout << "OnErrorCallback: " << error.StatusToString() << std::endl;
 return true;
 }
};

int main() {
 String message("Hello from the pub/sub publisher (C++).");
 String topic("test/topic/cpp");
 int timeout = 10;

 ApiHandle apiHandle(g_allocator);
 Io::EventLoopGroup eventLoopGroup(1);
 Io::DefaultHostResolver socketResolver(eventLoopGroup, 64, 30);
 Io::ClientBootstrap bootstrap(eventLoopGroup, socketResolver);
 IpcClientLifecycleHandler ipcLifecycleHandler;
 GreengrassCoreIpcClient ipcClient(bootstrap);
 auto connectionStatus = ipcClient.Connect(ipcLifecycleHandler).get();
 if (!connectionStatus) {
 std::cerr << "Failed to establish IPC connection: " <<
 connectionStatus.StatusToString() << std::endl;
 exit(-1);
 }

 while (true) {
 PublishToTopicRequest request;
 Vector<uint8_t> messageData({message.begin(), message.end()});
 BinaryMessage binaryMessage;
 binaryMessage.SetMessage(messageData);
 PublishMessage publishMessage;
 publishMessage.SetBinaryMessage(binaryMessage);
 request.SetTopic(topic);
 request.SetPublishMessage(publishMessage);

 auto operation = ipcClient.NewPublishToTopic();
 auto activate = operation->Activate(request, nullptr);
 activate.wait();

 auto responseFuture = operation->GetResult();
 if (responseFuture.wait_for(std::chrono::seconds(timeout)) ==
 std::future_status::timeout) {
 std::cerr << "Operation timed out while waiting for response from
 Greengrass Core." << std::endl;
 exit(-1);
 }

Examples 1474

AWS IoT Greengrass Developer Guide, Version 2

 auto response = responseFuture.get();
 if (response) {
 std::cout << "Successfully published to topic: " << topic << std::endl;
 } else {
 // An error occurred.
 std::cout << "Failed to publish to topic: " << topic << std::endl;
 auto errorType = response.GetResultType();
 if (errorType == OPERATION_ERROR) {
 auto *error = response.GetOperationError();
 std::cout << "Operation error: " << error->GetMessage().value() <<
 std::endl;
 } else {
 std::cout << "RPC error: " << response.GetRpcError() << std::endl;
 }
 exit(-1);
 }

 std::this_thread::sleep_for(std::chrono::seconds(5));
 }

 return 0;
}

Example publish/subscribe subscriber (C++)

The following example recipe allows the component to subscribe to all topics.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.PubSubSubscriberCpp",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "A component that subscribes to messages.",
 "ComponentPublisher": "Amazon",
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "accessControl": {
 "aws.greengrass.ipc.pubsub": {
 "com.example.PubSubSubscriberCpp:pubsub:1": {
 "policyDescription": "Allows access to subscribe to all topics.",
 "operations": [
 "aws.greengrass#SubscribeToTopic"

Examples 1475

AWS IoT Greengrass Developer Guide, Version 2

],
 "resources": [
 "*"
]
 }
 }
 }
 }
 },
 "Manifests": [
 {
 "Lifecycle": {
 "Run": "{artifacts:path}/greengrassv2_pub_sub_subscriber"
 },
 "Artifacts": [
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.PubSubSubscriberCpp/1.0.0/greengrassv2_pub_sub_subscriber",
 "Permission": {
 "Execute": "OWNER"
 }
 }
]
 }
]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.PubSubSubscriberCpp
ComponentVersion: 1.0.0
ComponentDescription: A component that subscribes to messages.
ComponentPublisher: Amazon
ComponentConfiguration:
 DefaultConfiguration:
 accessControl:
 aws.greengrass.ipc.pubsub:
 com.example.PubSubSubscriberCpp:pubsub:1:
 policyDescription: Allows access to subscribe to all topics.
 operations:
 - aws.greengrass#SubscribeToTopic

Examples 1476

AWS IoT Greengrass Developer Guide, Version 2

 resources:
 - "*"
Manifests:
 - Lifecycle:
 Run: "{artifacts:path}/greengrassv2_pub_sub_subscriber"
 Artifacts:
 - URI: s3://amzn-s3-demo-bucket/artifacts/
com.example.PubSubSubscriberCpp/1.0.0/greengrassv2_pub_sub_subscriber
 Permission:
 Execute: OWNER

The following example C++ application demonstrates how to use the publish/subscribe IPC service
to subscribe to messages to other components.

#include <iostream>

#include <aws/crt/Api.h>
#include <aws/greengrass/GreengrassCoreIpcClient.h>

using namespace Aws::Crt;
using namespace Aws::Greengrass;

class SubscribeResponseHandler : public SubscribeToTopicStreamHandler {
 public:
 virtual ~SubscribeResponseHandler() {}

 private:
 void OnStreamEvent(SubscriptionResponseMessage *response) override {
 auto jsonMessage = response->GetJsonMessage();
 if (jsonMessage.has_value() &&
 jsonMessage.value().GetMessage().has_value()) {
 auto messageString =
 jsonMessage.value().GetMessage().value().View().WriteReadable();
 std::cout << "Received new message: " << messageString << std::endl;
 } else {
 auto binaryMessage = response->GetBinaryMessage();
 if (binaryMessage.has_value() &&
 binaryMessage.value().GetMessage().has_value()) {
 auto messageBytes = binaryMessage.value().GetMessage().value();
 std::string messageString(messageBytes.begin(),
 messageBytes.end());

Examples 1477

AWS IoT Greengrass Developer Guide, Version 2

 std::cout << "Received new message: " << messageString <<
 std::endl;
 }
 }
 }

 bool OnStreamError(OperationError *error) override {
 std::cout << "Received an operation error: ";
 if (error->GetMessage().has_value()) {
 std::cout << error->GetMessage().value();
 }
 std::cout << std::endl;
 return false; // Return true to close stream, false to keep stream open.
 }

 void OnStreamClosed() override {
 std::cout << "Subscribe to topic stream closed." << std::endl;
 }
};

class IpcClientLifecycleHandler : public ConnectionLifecycleHandler {
 void OnConnectCallback() override {
 std::cout << "OnConnectCallback" << std::endl;
 }

 void OnDisconnectCallback(RpcError error) override {
 std::cout << "OnDisconnectCallback: " << error.StatusToString() << std::endl;
 exit(-1);
 }

 bool OnErrorCallback(RpcError error) override {
 std::cout << "OnErrorCallback: " << error.StatusToString() << std::endl;
 return true;
 }
};

int main() {
 String topic("test/topic/cpp");
 int timeout = 10;

 ApiHandle apiHandle(g_allocator);
 Io::EventLoopGroup eventLoopGroup(1);
 Io::DefaultHostResolver socketResolver(eventLoopGroup, 64, 30);
 Io::ClientBootstrap bootstrap(eventLoopGroup, socketResolver);

Examples 1478

AWS IoT Greengrass Developer Guide, Version 2

 IpcClientLifecycleHandler ipcLifecycleHandler;
 GreengrassCoreIpcClient ipcClient(bootstrap);
 auto connectionStatus = ipcClient.Connect(ipcLifecycleHandler).get();
 if (!connectionStatus) {
 std::cerr << "Failed to establish IPC connection: " <<
 connectionStatus.StatusToString() << std::endl;
 exit(-1);
 }

 SubscribeToTopicRequest request;
 request.SetTopic(topic);
 auto streamHandler = MakeShared<SubscribeResponseHandler>(DefaultAllocator());
 auto operation = ipcClient.NewSubscribeToTopic(streamHandler);
 auto activate = operation->Activate(request, nullptr);
 activate.wait();

 auto responseFuture = operation->GetResult();
 if (responseFuture.wait_for(std::chrono::seconds(timeout)) ==
 std::future_status::timeout) {
 std::cerr << "Operation timed out while waiting for response from Greengrass
 Core." << std::endl;
 exit(-1);
 }

 auto response = responseFuture.get();
 if (response) {
 std::cout << "Successfully subscribed to topic: " << topic << std::endl;
 } else {
 // An error occurred.
 std::cout << "Failed to subscribe to topic: " << topic << std::endl;
 auto errorType = response.GetResultType();
 if (errorType == OPERATION_ERROR) {
 auto *error = response.GetOperationError();
 std::cout << "Operation error: " << error->GetMessage().value() <<
 std::endl;
 } else {
 std::cout << "RPC error: " << response.GetRpcError() << std::endl;
 }
 exit(-1);
 }

 // Keep the main thread alive, or the process will exit.
 while (true) {
 std::this_thread::sleep_for(std::chrono::seconds(10));

Examples 1479

AWS IoT Greengrass Developer Guide, Version 2

 }

 operation->Close();
 return 0;
}

Publish/subscribe AWS IoT Core MQTT messages

The AWS IoT Core MQTT messaging IPC service lets you send and receive MQTT messages to and
from AWS IoT Core. Components can publish messages to AWS IoT Core and subscribe to topics
to act on MQTT messages from other sources. For more information about the AWS IoT Core
implementation of MQTT, see MQTT in the AWS IoT Core Developer Guide.

Note

This MQTT messaging IPC service lets you exchange messages with AWS IoT Core. For more
information about how to exchange messages between components, see Publish/subscribe
local messages.

Topics

• Minimum SDK versions

• Authorization

• PublishToIoTCore

• SubscribeToIoTCore

• Examples

Minimum SDK versions

The following table lists the minimum versions of the AWS IoT Device SDK that you must use to
publish and subscribe to MQTT messages to and from AWS IoT Core.

SDK Minimum version

AWS IoT Device SDK for Java
v2

v1.2.10

Publish/subscribe AWS IoT Core MQTT messages 1480

https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html
https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2

AWS IoT Greengrass Developer Guide, Version 2

SDK Minimum version

AWS IoT Device SDK for
Python v2

v1.5.3

AWS IoT Device SDK for C++
v2

v1.17.0

AWS IoT Device SDK for
JavaScript v2

v1.12.0

Authorization

To use AWS IoT Core MQTT messaging in a custom component, you must define authorization
policies that allow your component to send and receive messages on topics. For information about
defining authorization policies, see Authorize components to perform IPC operations.

Authorization policies for AWS IoT Core MQTT messaging have the following properties.

IPC service identifier: aws.greengrass.ipc.mqttproxy

Operation Description Resources

aws.greengrass#Pub
lishToIoTCore

Allows a component to
publish messages to AWS IoT
Core on the MQTT topics that
you specify.

A topic string, such as test/
topic , or * to allow access
to all topics. You can use
MQTT topic wildcards (#
and +) to match multiple
resources.

aws.greengrass#Sub
scribeToIoTCore

Allows a component to
subscribe to messages from
AWS IoT Core on the topics
that you specify.

A topic string, such as test/
topic , or * to allow access
to all topics. You can use
MQTT topic wildcards (#
and +) to match multiple
resources.

Authorization 1481

https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2

AWS IoT Greengrass Developer Guide, Version 2

Operation Description Resources

* Allows a component to
publish and subscribe to AWS
IoT Core MQTT messages for
the topics that you specify.

A topic string, such as test/
topic , or * to allow access
to all topics. You can use
MQTT topic wildcards (#
and +) to match multiple
resources.

MQTT wildcards in AWS IoT Core MQTT authorization policies

You can use MQTT wildcards in AWS IoT Core MQTT IPC authorization policies. Components can
publish and subscribe to topics that match the topic filter that you allow in an authorization
policy. For example, if a component's authorization policy grants access to test/topic/#, the
component can subscribe to test/topic/#, and it can publish and subscribe to test/topic/
filter.

Recipe variables in AWS IoT Core MQTT authorization policies

If you use v2.6.0 or later of the Greengrass nucleus, you can use the {iot:thingName} recipe
variable in authorization policies. This feature enables you to configure a single authorization
policy for a group of core devices, where each core device can access only topics that contain its
own name. For example, you can allow a component access to the following topic resource.

devices/{iot:thingName}/messages

For more information, see Recipe variables and Use recipe variables in merge updates.

Authorization policy examples

You can reference the following authorization policy examples to help you configure authorization
policies for your components.

Example Example authorization policy with unrestricted access

The following example authorization policy allows a component to publish and subscribe to all
topics.

Authorization 1482

AWS IoT Greengrass Developer Guide, Version 2

JSON

{
 "accessControl": {
 "aws.greengrass.ipc.mqttproxy": {
 "com.example.MyIoTCorePubSubComponent:mqttproxy:1": {
 "policyDescription": "Allows access to publish/subscribe to all topics.",
 "operations": [
 "aws.greengrass#PublishToIoTCore",
 "aws.greengrass#SubscribeToIoTCore"
],
 "resources": [
 "*"
]
 }
 }
 }
}

YAML

accessControl:
 aws.greengrass.ipc.mqttproxy:
 com.example.MyIoTCorePubSubComponent:mqttproxy:1:
 policyDescription: Allows access to publish/subscribe to all topics.
 operations:
 - aws.greengrass#PublishToIoTCore
 - aws.greengrass#SubscribeToIoTCore
 resources:
 - "*"

Example Example authorization policy with limited access

The following example authorization policy allows a component to publish and subscribe to two
topics named factory/1/events and factory/1/actions.

JSON

{
 "accessControl": {
 "aws.greengrass.ipc.mqttproxy": {

Authorization 1483

AWS IoT Greengrass Developer Guide, Version 2

 "com.example.MyIoTCorePubSubComponent:mqttproxy:1": {
 "policyDescription": "Allows access to publish/subscribe to factory 1
 topics.",
 "operations": [
 "aws.greengrass#PublishToIoTCore",
 "aws.greengrass#SubscribeToIoTCore"
],
 "resources": [
 "factory/1/actions",
 "factory/1/events"
]
 }
 }
 }
}

YAML

accessControl:
 aws.greengrass.ipc.mqttproxy:
 "com.example.MyIoTCorePubSubComponent:mqttproxy:1":
 policyDescription: Allows access to publish/subscribe to factory 1 topics.
 operations:
 - aws.greengrass#PublishToIoTCore
 - aws.greengrass#SubscribeToIoTCore
 resources:
 - factory/1/actions
 - factory/1/events

Example Example authorization policy for a group of core devices

Important

This example uses a feature that is available for v2.6.0 and later of the Greengrass nucleus
component. Greengrass nucleus v2.6.0 adds support for most recipe variables, such as
{iot:thingName}, in component configurations.

The following example authorization policy allows a component to publish and subscribe to a topic
that contains the name of the core device that runs the component.

Authorization 1484

AWS IoT Greengrass Developer Guide, Version 2

JSON

{
 "accessControl": {
 "aws.greengrass.ipc.mqttproxy": {
 "com.example.MyIoTCorePubSubComponent:mqttproxy:1": {
 "policyDescription": "Allows access to publish/subscribe to all topics.",
 "operations": [
 "aws.greengrass#PublishToIoTCore",
 "aws.greengrass#SubscribeToIoTCore"
],
 "resources": [
 "factory/1/devices/{iot:thingName}/controls"
]
 }
 }
 }
}

YAML

accessControl:
 aws.greengrass.ipc.mqttproxy:
 "com.example.MyIoTCorePubSubComponent:mqttproxy:1":
 policyDescription: Allows access to publish/subscribe to all topics.
 operations:
 - aws.greengrass#PublishToIoTCore
 - aws.greengrass#SubscribeToIoTCore
 resources:
 - factory/1/devices/{iot:thingName}/controls

PublishToIoTCore

Publishes an MQTT message to AWS IoT Core on a topic.

When you publish MQTT messages to AWS IoT Core, there is a quota of 100 transactions per
second. If you exceed this quota, messages are queued for processing on the Greengrass device.
There is also a quota of 512 Kb of data per second and an account-wide quota of 20,000 publishes
per second (2,000 in some AWS Regions). For more information about MQTT message broker limits
in AWS IoT Core, see AWS IoT Core message broker and protocol limits and quotas.

PublishToIoTCore 1485

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#message-broker-limits

AWS IoT Greengrass Developer Guide, Version 2

If you exceed these quotas, the Greengrass device limits publishing messages to AWS IoT Core.
Messages are stored in a spooler in memory. By default, the memory allocated to the spooler is 2.5
Mb. If the spooler fills up, new messages are rejected. You can increase the size of the spooler. For
more information, see Configuration in the Greengrass nucleus documentation. To avoid filling the
spooler and needing to increase the allocated memory, limit publish requests to no more than 100
requests per second.

When your application needs to send messages at a higher rate, or larger messages, consider using
the Stream manager to send messages to Kinesis Data Streams. The stream manager component is
designed to transfer high-volume data to the AWS Cloud. For more information, see Manage data
streams on Greengrass core devices.

Request

This operation's request has the following parameters:

topicName (Python: topic_name)

The topic to which to publish the message.

qos

The MQTT QoS to use. This enum, QOS, has the following values:

• AT_MOST_ONCE – QoS 0. The MQTT message is delivered at most once.

• AT_LEAST_ONCE – QoS 1. The MQTT message is delivered at least once.

payload

(Optional) The message payload as a blob.

The following features are available for v2.10.0 and later of the Greengrass nucleus when using
MQTT 5. These features are ignored when you are using MQTT 3.1.1. The following table lists the
minimum version of the AWS IoT device SDK that you must use to access these features.

SDK Minimum version

AWS IoT Device SDK for Python v2 v1.15.0

AWS IoT Device SDK for Java v2 v1.13.0

PublishToIoTCore 1486

https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-java-v2

AWS IoT Greengrass Developer Guide, Version 2

SDK Minimum version

AWS IoT Device SDK for C++ v2 v1.24.0

AWS IoT Device SDK for JavaScript v2 v1.13.0

payloadFormat

(Optional) The format of the message payload. If you don't set the payloadFormat, the type is
assumed to be BYTES. The enum has the following values:

• BYTES – The content of the payload is a binary blob.

• UTF8 – The content of the payload is a UTF8 string of characters.

retain

(Optional) Indicates whether to set the MQTT retain option to true when publishing.

userProperties

(Optional) A list of application-specific UserProperty objects to send. The UserProperty
object is defined as follows:

UserProperty:
 key: string
 value: string

messageExpiryIntervalSeconds

(Optional) The number of seconds before the message expires and is deleted by the server. If
this value is not set, the message doesn't expire.

correlationData

(Optional) Information added to the request that can be used to associate a request with a
response.

responseTopic

(Optional) The topic that should be used for the response message.

contentType

(Optional) An application-specific identifier of the content type of the message.

PublishToIoTCore 1487

https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-js-v2

AWS IoT Greengrass Developer Guide, Version 2

Response

This operation doesn't provide any information in its response.

Examples

The following examples demonstrate how to call this operation in custom component code.

Java (IPC client V2)

Example Example: Publish a message

package com.aws.greengrass.docs.samples.ipc;

import software.amazon.awssdk.aws.greengrass.GreengrassCoreIPCClientV2;
import software.amazon.awssdk.aws.greengrass.model.PublishToIoTCoreRequest;
import software.amazon.awssdk.aws.greengrass.model.QOS;
import java.nio.charset.StandardCharsets;

public class PublishToIoTCore {

 public static void main(String[] args) {
 String topic = args[0];
 String message = args[1];
 QOS qos = QOS.get(args[2]);

 try (GreengrassCoreIPCClientV2 ipcClientV2 =
 GreengrassCoreIPCClientV2.builder().build()) {
 ipcClientV2.publishToIoTCore(new PublishToIoTCoreRequest()
 .withTopicName(topic)
 .withPayload(message.getBytes(StandardCharsets.UTF_8))
 .withQos(qos));
 System.out.println("Successfully published to topic: " + topic);
 } catch (Exception e) {
 System.err.println("Exception occurred.");
 e.printStackTrace();
 System.exit(1);
 }
 }
}

PublishToIoTCore 1488

AWS IoT Greengrass Developer Guide, Version 2

Python (IPC client V2)

Example Example: Publish a message

Note

This example assumes that you are using version 1.5.4 or later of the AWS IoT Device
SDK for Python v2.

import awsiot.greengrasscoreipc.clientv2 as clientV2

topic = 'my/topic'
qos = '1'
payload = 'Hello, World'

ipc_client = clientV2.GreengrassCoreIPCClientV2()
resp = ipc_client.publish_to_iot_core(topic_name=topic, qos=qos, payload=payload)
ipc_client.close()

Java (IPC client V1)

Example Example: Publish a message

Note

This example uses an IPCUtils class to create a connection to the AWS IoT Greengrass
Core IPC service. For more information, see Connect to the AWS IoT Greengrass Core IPC
service.

package com.aws.greengrass.docs.samples.ipc;

import com.aws.greengrass.docs.samples.ipc.util.IPCUtils;
import software.amazon.awssdk.aws.greengrass.GreengrassCoreIPCClient;
import software.amazon.awssdk.aws.greengrass.PublishToIoTCoreResponseHandler;
import software.amazon.awssdk.aws.greengrass.model.PublishToIoTCoreRequest;
import software.amazon.awssdk.aws.greengrass.model.PublishToIoTCoreResponse;
import software.amazon.awssdk.aws.greengrass.model.QOS;
import software.amazon.awssdk.aws.greengrass.model.UnauthorizedError;
import software.amazon.awssdk.eventstreamrpc.EventStreamRPCConnection;

PublishToIoTCore 1489

AWS IoT Greengrass Developer Guide, Version 2

import java.nio.charset.StandardCharsets;
import java.util.Optional;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class PublishToIoTCore {

 public static final int TIMEOUT_SECONDS = 10;

 public static void main(String[] args) {
 String topic = args[0];
 String message = args[1];
 QOS qos = QOS.get(args[2]);
 try (EventStreamRPCConnection eventStreamRPCConnection =
 IPCUtils.getEventStreamRpcConnection()) {
 GreengrassCoreIPCClient ipcClient =
 new GreengrassCoreIPCClient(eventStreamRPCConnection);
 PublishToIoTCoreResponseHandler responseHandler =
 PublishToIoTCore.publishBinaryMessageToTopic(ipcClient, topic,
 message, qos);
 CompletableFuture<PublishToIoTCoreResponse> futureResponse =
 responseHandler.getResponse();
 try {
 futureResponse.get(TIMEOUT_SECONDS, TimeUnit.SECONDS);
 System.out.println("Successfully published to topic: " + topic);
 } catch (TimeoutException e) {
 System.err.println("Timeout occurred while publishing to topic: " +
 topic);
 } catch (ExecutionException e) {
 if (e.getCause() instanceof UnauthorizedError) {
 System.err.println("Unauthorized error while publishing to
 topic: " + topic);
 } else {
 throw e;
 }
 }
 } catch (InterruptedException e) {
 System.out.println("IPC interrupted.");
 } catch (ExecutionException e) {
 System.err.println("Exception occurred when using IPC.");
 e.printStackTrace();

PublishToIoTCore 1490

AWS IoT Greengrass Developer Guide, Version 2

 System.exit(1);
 }
 }

 public static PublishToIoTCoreResponseHandler
 publishBinaryMessageToTopic(GreengrassCoreIPCClient greengrassCoreIPCClient, String
 topic, String message, QOS qos) {
 PublishToIoTCoreRequest publishToIoTCoreRequest = new
 PublishToIoTCoreRequest();
 publishToIoTCoreRequest.setTopicName(topic);

 publishToIoTCoreRequest.setPayload(message.getBytes(StandardCharsets.UTF_8));
 publishToIoTCoreRequest.setQos(qos);
 return greengrassCoreIPCClient.publishToIoTCore(publishToIoTCoreRequest,
 Optional.empty());
 }
}

Python (IPC client V1)

Example Example: Publish a message

Note

This example assumes that you are using version 1.5.4 or later of the AWS IoT Device
SDK for Python v2.

import awsiot.greengrasscoreipc
import awsiot.greengrasscoreipc.client as client
from awsiot.greengrasscoreipc.model import (
 QOS,
 PublishToIoTCoreRequest
)

TIMEOUT = 10

ipc_client = awsiot.greengrasscoreipc.connect()

topic = "my/topic"
message = "Hello, World"
qos = QOS.AT_LEAST_ONCE

PublishToIoTCore 1491

AWS IoT Greengrass Developer Guide, Version 2

request = PublishToIoTCoreRequest()
request.topic_name = topic
request.payload = bytes(message, "utf-8")
request.qos = qos
operation = ipc_client.new_publish_to_iot_core()
operation.activate(request)
future_response = operation.get_response()
future_response.result(TIMEOUT)

C++

Example Example: Publish a message

#include <iostream>

#include <aws/crt/Api.h>
#include <aws/greengrass/GreengrassCoreIpcClient.h>

using namespace Aws::Crt;
using namespace Aws::Greengrass;

class IpcClientLifecycleHandler : public ConnectionLifecycleHandler {
 void OnConnectCallback() override {
 // Handle connection to IPC service.
 }

 void OnDisconnectCallback(RpcError error) override {
 // Handle disconnection from IPC service.
 }

 bool OnErrorCallback(RpcError error) override {
 // Handle IPC service connection error.
 return true;
 }
};

int main() {
 ApiHandle apiHandle(g_allocator);
 Io::EventLoopGroup eventLoopGroup(1);
 Io::DefaultHostResolver socketResolver(eventLoopGroup, 64, 30);
 Io::ClientBootstrap bootstrap(eventLoopGroup, socketResolver);
 IpcClientLifecycleHandler ipcLifecycleHandler;
 GreengrassCoreIpcClient ipcClient(bootstrap);
 auto connectionStatus = ipcClient.Connect(ipcLifecycleHandler).get();

PublishToIoTCore 1492

AWS IoT Greengrass Developer Guide, Version 2

 if (!connectionStatus) {
 std::cerr << "Failed to establish IPC connection: " <<
 connectionStatus.StatusToString() << std::endl;
 exit(-1);
 }

 String message("Hello, World!");
 String topic("my/topic");
 QOS qos = QOS_AT_MOST_ONCE;
 int timeout = 10;

 PublishToIoTCoreRequest request;
 Vector<uint8_t> messageData({message.begin(), message.end()});
 request.SetTopicName(topic);
 request.SetPayload(messageData);
 request.SetQos(qos);

 auto operation = ipcClient.NewPublishToIoTCore();
 auto activate = operation->Activate(request, nullptr);
 activate.wait();

 auto responseFuture = operation->GetResult();
 if (responseFuture.wait_for(std::chrono::seconds(timeout)) ==
 std::future_status::timeout) {
 std::cerr << "Operation timed out while waiting for response from Greengrass
 Core." << std::endl;
 exit(-1);
 }

 auto response = responseFuture.get();
 if (!response) {
 // Handle error.
 auto errorType = response.GetResultType();
 if (errorType == OPERATION_ERROR) {
 auto *error = response.GetOperationError();
 (void)error;
 // Handle operation error.
 } else {
 // Handle RPC error.
 }
 }

 return 0;

PublishToIoTCore 1493

AWS IoT Greengrass Developer Guide, Version 2

}

JavaScript

Example Example: Publish a message

import * as greengrasscoreipc from "aws-iot-device-sdk-v2/dist/greengrasscoreipc";
import {QOS, PublishToIoTCoreRequest} from "aws-iot-device-sdk-v2/dist/
greengrasscoreipc/model";

class PublishToIoTCore {
 private ipcClient: greengrasscoreipc.Client
 private readonly topic: string;

 constructor() {
 // define your own constructor, e.g.
 this.topic = "<define_your_topic>";
 this.publishToIoTCore().then(r => console.log("Started workflow"));
 }

 private async publishToIoTCore() {
 try {
 const request: PublishToIoTCoreRequest = {
 topicName: this.topic,
 qos: QOS.AT_LEAST_ONCE, // you can change this depending on your use
 case
 }

 this.ipcClient = await getIpcClient();

 await this.ipcClient.publishToIoTCore(request);
 } catch (e) {
 // parse the error depending on your use cases
 throw e
 }
 }
}

export async function getIpcClient(){
 try {
 const ipcClient = greengrasscoreipc.createClient();

PublishToIoTCore 1494

AWS IoT Greengrass Developer Guide, Version 2

 await ipcClient.connect()
 .catch(error => {
 // parse the error depending on your use cases
 throw error;
 });
 return ipcClient
 } catch (err) {
 // parse the error depending on your use cases
 throw err
 }
}

// starting point
const publishToIoTCore = new PublishToIoTCore();

SubscribeToIoTCore

Subscribe to MQTT messages from AWS IoT Core on a topic or topic filter. The AWS IoT Greengrass
Core software removes subscriptions when the component reaches the end of its lifecycle.

This operation is a subscription operation where you subscribe to a stream of event messages. To
use this operation, define a stream response handler with functions that handle event messages,
errors, and stream closure. For more information, see Subscribe to IPC event streams.

Event message type: IoTCoreMessage

Request

This operation's request has the following parameters:

topicName (Python: topic_name)

The topic to which to subscribe. You can use MQTT topic wildcards (# and +) to subscribe to
multiple topics.

qos

The MQTT QoS to use. This enum, QOS, has the following values:

• AT_MOST_ONCE – QoS 0. The MQTT message is delivered at most once.

• AT_LEAST_ONCE – QoS 1. The MQTT message is delivered at least once.

SubscribeToIoTCore 1495

AWS IoT Greengrass Developer Guide, Version 2

Response

This operation's response has the following information:

messages

The stream of MQTT messages. This object, IoTCoreMessage, contains the following
information:

message

The MQTT message. This object, MQTTMessage, contains the following information:

topicName (Python: topic_name)

The topic to which the message was published.

payload

(Optional) The message payload as a blob.

The following features are available for v2.10.0 and later of the Greengrass nucleus when
using MQTT 5. These features are ignored when you are using MQTT 3.1.1. The following
table lists the minimum version of the AWS IoT device SDK that you must use to access these
features.

SDK Minimum version

AWS IoT Device SDK for Python v2 v1.15.0

AWS IoT Device SDK for Java v2 v1.13.0

AWS IoT Device SDK for C++ v2 v1.24.0

AWS IoT Device SDK for JavaScript v2 v1.13.0

payloadFormat

(Optional) The format of the message payload. If you don't set the payloadFormat, the
type is assumed to be BYTES. The enum has the following values:

• BYTES – The content of the payload is a binary blob.

• UTF8 – The content of the payload is a UTF8 string of characters.

SubscribeToIoTCore 1496

https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-js-v2

AWS IoT Greengrass Developer Guide, Version 2

retain

(Optional) Indicates whether to set the MQTT retain option to true when publishing.

userProperties

(Optional) A list of application-specific UserProperty objects to send. The
UserProperty object is defined as follows:

UserProperty:
 key: string
 value: string

messageExpiryIntervalSeconds

(Optional) The number of seconds before the message expires and is deleted by the
server. If this value is not set, the message doesn't expire.

correlationData

(Optional) Information added to the request that can be used to associate a request with
a response.

responseTopic

(Optional) The topic that should be used for the response message.

contentType

(Optional) An application specific identifier of the content type of the message.

Examples

The following examples demonstrate how to call this operation in custom component code.

Java (IPC client V2)

Example Example: Subscribe to messages

package com.aws.greengrass.docs.samples.ipc;

import software.amazon.awssdk.aws.greengrass.GreengrassCoreIPCClientV2;
import software.amazon.awssdk.aws.greengrass.SubscribeToIoTCoreResponseHandler;
import software.amazon.awssdk.aws.greengrass.model.QOS;
import software.amazon.awssdk.aws.greengrass.model.IoTCoreMessage;

SubscribeToIoTCore 1497

AWS IoT Greengrass Developer Guide, Version 2

import software.amazon.awssdk.aws.greengrass.model.SubscribeToIoTCoreRequest;
import software.amazon.awssdk.aws.greengrass.model.SubscribeToIoTCoreResponse;

import java.nio.charset.StandardCharsets;
import java.util.Optional;
import java.util.function.Consumer;
import java.util.function.Function;

public class SubscribeToIoTCore {

 public static void main(String[] args) {
 String topic = args[0];
 QOS qos = QOS.get(args[1]);

 Consumer<IoTCoreMessage> onStreamEvent = ioTCoreMessage ->
 System.out.printf("Received new message on topic %s: %s%n",
 ioTCoreMessage.getMessage().getTopicName(),
 new String(ioTCoreMessage.getMessage().getPayload(),
 StandardCharsets.UTF_8));

 Optional<Function<Throwable, Boolean>> onStreamError =
 Optional.of(e -> {
 System.err.println("Received a stream error.");
 e.printStackTrace();
 return false;
 });

 Optional<Runnable> onStreamClosed = Optional.of(() ->
 System.out.println("Subscribe to IoT Core stream closed."));

 try (GreengrassCoreIPCClientV2 ipcClientV2 =
 GreengrassCoreIPCClientV2.builder().build()) {
 SubscribeToIoTCoreRequest request = new SubscribeToIoTCoreRequest()
 .withTopicName(topic)
 .withQos(qos);

 GreengrassCoreIPCClientV2.StreamingResponse<SubscribeToIoTCoreResponse,
 SubscribeToIoTCoreResponseHandler>
 streamingResponse = ipcClientV2.subscribeToIoTCore(request,
 onStreamEvent, onStreamError, onStreamClosed);

 streamingResponse.getResponse();
 System.out.println("Successfully subscribed to topic: " + topic);

SubscribeToIoTCore 1498

AWS IoT Greengrass Developer Guide, Version 2

 // Keep the main thread alive, or the process will exit.
 while (true) {
 Thread.sleep(10000);
 }

 // To stop subscribing, close the stream.
 streamingResponse.getHandler().closeStream();
 } catch (InterruptedException e) {
 System.out.println("Subscribe interrupted.");
 } catch (Exception e) {
 System.err.println("Exception occurred.");
 e.printStackTrace();
 System.exit(1);
 }
 }
}

Python (IPC client V2)

Example Example: subscribe to messages

Note

This example assumes that you are using version 1.5.4 or later of the AWS IoT Device
SDK for Python v2.

import threading
import traceback

import awsiot.greengrasscoreipc.clientv2 as clientV2

topic = 'my/topic'
qos = '1'

def on_stream_event(event):
 try:
 topic_name = event.message.topic_name
 message = str(event.message.payload, 'utf-8')
 print(f'Received new message on topic {topic_name}: {message}')
 except:

SubscribeToIoTCore 1499

AWS IoT Greengrass Developer Guide, Version 2

 traceback.print_exc()

def on_stream_error(error):
 # Return True to close stream, False to keep stream open.
 return True

def on_stream_closed():
 pass

ipc_client = clientV2.GreengrassCoreIPCClientV2()
resp, operation = ipc_client.subscribe_to_iot_core(
 topic_name=topic,
 qos=qos,
 on_stream_event=on_stream_event,
 on_stream_error=on_stream_error,
 on_stream_closed=on_stream_closed
)

Keep the main thread alive, or the process will exit.
event = threading.Event()
event.wait()

To stop subscribing, close the operation stream.
operation.close()
ipc_client.close()

Java (IPC client V1)

Example Example: Subscribe to messages

Note

This example uses an IPCUtils class to create a connection to the AWS IoT Greengrass
Core IPC service. For more information, see Connect to the AWS IoT Greengrass Core IPC
service.

package com.aws.greengrass.docs.samples.ipc;

import com.aws.greengrass.docs.samples.ipc.util.IPCUtils;
import software.amazon.awssdk.aws.greengrass.GreengrassCoreIPCClient;
import software.amazon.awssdk.aws.greengrass.SubscribeToIoTCoreResponseHandler;

SubscribeToIoTCore 1500

AWS IoT Greengrass Developer Guide, Version 2

import software.amazon.awssdk.aws.greengrass.model.*;
import software.amazon.awssdk.eventstreamrpc.EventStreamRPCConnection;
import software.amazon.awssdk.eventstreamrpc.StreamResponseHandler;

import java.nio.charset.StandardCharsets;
import java.util.Optional;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class SubscribeToIoTCore {

 public static final int TIMEOUT_SECONDS = 10;

 public static void main(String[] args) {
 String topic = args[0];
 QOS qos = QOS.get(args[1]);
 try (EventStreamRPCConnection eventStreamRPCConnection =
 IPCUtils.getEventStreamRpcConnection()) {
 GreengrassCoreIPCClient ipcClient =
 new GreengrassCoreIPCClient(eventStreamRPCConnection);
 StreamResponseHandler<IoTCoreMessage> streamResponseHandler =
 new SubscriptionResponseHandler();
 SubscribeToIoTCoreResponseHandler responseHandler =
 SubscribeToIoTCore.subscribeToIoTCore(ipcClient, topic, qos,
 streamResponseHandler);
 CompletableFuture<SubscribeToIoTCoreResponse> futureResponse =
 responseHandler.getResponse();
 try {
 futureResponse.get(TIMEOUT_SECONDS, TimeUnit.SECONDS);
 System.out.println("Successfully subscribed to topic: " + topic);
 } catch (TimeoutException e) {
 System.err.println("Timeout occurred while subscribing to topic: " +
 topic);
 } catch (ExecutionException e) {
 if (e.getCause() instanceof UnauthorizedError) {
 System.err.println("Unauthorized error while subscribing to
 topic: " + topic);
 } else {
 throw e;
 }
 }

SubscribeToIoTCore 1501

AWS IoT Greengrass Developer Guide, Version 2

 // Keep the main thread alive, or the process will exit.
 try {
 while (true) {
 Thread.sleep(10000);
 }
 } catch (InterruptedException e) {
 System.out.println("Subscribe interrupted.");
 }

 // To stop subscribing, close the stream.
 responseHandler.closeStream();
 } catch (InterruptedException e) {
 System.out.println("IPC interrupted.");
 } catch (ExecutionException e) {
 System.err.println("Exception occurred when using IPC.");
 e.printStackTrace();
 System.exit(1);
 }
 }

 public static SubscribeToIoTCoreResponseHandler
 subscribeToIoTCore(GreengrassCoreIPCClient greengrassCoreIPCClient, String topic,
 QOS qos, StreamResponseHandler<IoTCoreMessage> streamResponseHandler) {
 SubscribeToIoTCoreRequest subscribeToIoTCoreRequest = new
 SubscribeToIoTCoreRequest();
 subscribeToIoTCoreRequest.setTopicName(topic);
 subscribeToIoTCoreRequest.setQos(qos);
 return
 greengrassCoreIPCClient.subscribeToIoTCore(subscribeToIoTCoreRequest,
 Optional.of(streamResponseHandler));
 }

 public static class SubscriptionResponseHandler implements
 StreamResponseHandler<IoTCoreMessage> {

 @Override
 public void onStreamEvent(IoTCoreMessage ioTCoreMessage) {
 try {
 String topic = ioTCoreMessage.getMessage().getTopicName();
 String message = new
 String(ioTCoreMessage.getMessage().getPayload(),
 StandardCharsets.UTF_8);
 System.out.printf("Received new message on topic %s: %s%n", topic,
 message);

SubscribeToIoTCore 1502

AWS IoT Greengrass Developer Guide, Version 2

 } catch (Exception e) {
 System.err.println("Exception occurred while processing subscription
 response " +
 "message.");
 e.printStackTrace();
 }
 }

 @Override
 public boolean onStreamError(Throwable error) {
 System.err.println("Received a stream error.");
 error.printStackTrace();
 return false;
 }

 @Override
 public void onStreamClosed() {
 System.out.println("Subscribe to IoT Core stream closed.");
 }
 }
}

Python (IPC client V1)

Example Example: Subscribe to messages

Note

This example assumes that you are using version 1.5.4 or later of the AWS IoT Device
SDK for Python v2.

import time
import traceback

import awsiot.greengrasscoreipc
import awsiot.greengrasscoreipc.client as client
from awsiot.greengrasscoreipc.model import (
 IoTCoreMessage,
 QOS,
 SubscribeToIoTCoreRequest
)

SubscribeToIoTCore 1503

AWS IoT Greengrass Developer Guide, Version 2

TIMEOUT = 10

ipc_client = awsiot.greengrasscoreipc.connect()

class StreamHandler(client.SubscribeToIoTCoreStreamHandler):
 def __init__(self):
 super().__init__()

 def on_stream_event(self, event: IoTCoreMessage) -> None:
 try:
 message = str(event.message.payload, "utf-8")
 topic_name = event.message.topic_name
 # Handle message.
 except:
 traceback.print_exc()

 def on_stream_error(self, error: Exception) -> bool:
 # Handle error.
 return True # Return True to close stream, False to keep stream open.

 def on_stream_closed(self) -> None:
 # Handle close.
 pass

topic = "my/topic"
qos = QOS.AT_MOST_ONCE

request = SubscribeToIoTCoreRequest()
request.topic_name = topic
request.qos = qos
handler = StreamHandler()
operation = ipc_client.new_subscribe_to_iot_core(handler)
operation.activate(request)
future_response = operation.get_response()
future_response.result(TIMEOUT)

Keep the main thread alive, or the process will exit.
while True:
 time.sleep(10)

To stop subscribing, close the operation stream.
operation.close()

SubscribeToIoTCore 1504

AWS IoT Greengrass Developer Guide, Version 2

C++

Example Example: Subscribe to messages

#include <iostream>

#include <aws/crt/Api.h>
#include <aws/greengrass/GreengrassCoreIpcClient.h>

using namespace Aws::Crt;
using namespace Aws::Greengrass;

class IoTCoreResponseHandler : public SubscribeToIoTCoreStreamHandler {

 public:
 virtual ~IoTCoreResponseHandler() {}

 private:
 void OnStreamEvent(IoTCoreMessage *response) override {
 auto message = response->GetMessage();
 if (message.has_value() && message.value().GetPayload().has_value()) {
 auto messageBytes = message.value().GetPayload().value();
 std::string messageString(messageBytes.begin(), messageBytes.end());
 std::string topicName =
 message.value().GetTopicName().value().c_str();
 // Handle message.
 }
 }

 bool OnStreamError(OperationError *error) override {
 // Handle error.
 return false; // Return true to close stream, false to keep stream open.
 }

 void OnStreamClosed() override {
 // Handle close.
 }
};

class IpcClientLifecycleHandler : public ConnectionLifecycleHandler {
 void OnConnectCallback() override {
 // Handle connection to IPC service.
 }

SubscribeToIoTCore 1505

AWS IoT Greengrass Developer Guide, Version 2

 void OnDisconnectCallback(RpcError error) override {
 // Handle disconnection from IPC service.
 }

 bool OnErrorCallback(RpcError error) override {
 // Handle IPC service connection error.
 return true;
 }
};

int main() {
 ApiHandle apiHandle(g_allocator);
 Io::EventLoopGroup eventLoopGroup(1);
 Io::DefaultHostResolver socketResolver(eventLoopGroup, 64, 30);
 Io::ClientBootstrap bootstrap(eventLoopGroup, socketResolver);
 IpcClientLifecycleHandler ipcLifecycleHandler;
 GreengrassCoreIpcClient ipcClient(bootstrap);
 auto connectionStatus = ipcClient.Connect(ipcLifecycleHandler).get();
 if (!connectionStatus) {
 std::cerr << "Failed to establish IPC connection: " <<
 connectionStatus.StatusToString() << std::endl;
 exit(-1);
 }

 String topic("my/topic");
 QOS qos = QOS_AT_MOST_ONCE;
 int timeout = 10;

 SubscribeToIoTCoreRequest request;
 request.SetTopicName(topic);
 request.SetQos(qos);
 auto streamHandler = MakeShared<IoTCoreResponseHandler>(DefaultAllocator());
 auto operation = ipcClient.NewSubscribeToIoTCore(streamHandler);
 auto activate = operation->Activate(request, nullptr);
 activate.wait();

 auto responseFuture = operation->GetResult();
 if (responseFuture.wait_for(std::chrono::seconds(timeout)) ==
 std::future_status::timeout) {
 std::cerr << "Operation timed out while waiting for response from Greengrass
 Core." << std::endl;
 exit(-1);
 }

SubscribeToIoTCore 1506

AWS IoT Greengrass Developer Guide, Version 2

 auto response = responseFuture.get();
 if (!response) {
 // Handle error.
 auto errorType = response.GetResultType();
 if (errorType == OPERATION_ERROR) {
 auto *error = response.GetOperationError();
 (void)error;
 // Handle operation error.
 } else {
 // Handle RPC error.
 }
 exit(-1);
 }

 // Keep the main thread alive, or the process will exit.
 while (true) {
 std::this_thread::sleep_for(std::chrono::seconds(10));
 }

 operation->Close();
 return 0;
}

JavaScript

Example Example: Subscribe to messages

import * as greengrasscoreipc from "aws-iot-device-sdk-v2/dist/greengrasscoreipc";
import {IoTCoreMessage, QOS, SubscribeToIoTCoreRequest} from "aws-iot-device-sdk-v2/
dist/greengrasscoreipc/model";
import {RpcError} from "aws-iot-device-sdk-v2/dist/eventstream_rpc";

class SubscribeToIoTCore {
 private ipcClient: greengrasscoreipc.Client
 private readonly topic: string;

 constructor() {
 // define your own constructor, e.g.
 this.topic = "<define_your_topic>";
 this.subscribeToIoTCore().then(r => console.log("Started workflow"));
 }

 private async subscribeToIoTCore() {

SubscribeToIoTCore 1507

AWS IoT Greengrass Developer Guide, Version 2

 try {
 const request: SubscribeToIoTCoreRequest = {
 topicName: this.topic,
 qos: QOS.AT_LEAST_ONCE, // you can change this depending on your use
 case
 }

 this.ipcClient = await getIpcClient();

 const streamingOperation = this.ipcClient.subscribeToIoTCore(request);

 streamingOperation.on('message', (message: IoTCoreMessage) => {
 // parse the message depending on your use cases, e.g.
 if (message.message && message.message.payload) {
 const receivedMessage = message.message.payload.toString();
 }
 });

 streamingOperation.on('streamError', (error : RpcError) => {
 // define your own error handling logic
 });

 streamingOperation.on('ended', () => {
 // define your own logic
 });

 await streamingOperation.activate();

 // Keep the main thread alive, or the process will exit.
 await new Promise((resolve) => setTimeout(resolve, 10000))
 } catch (e) {
 // parse the error depending on your use cases
 throw e
 }
 }
}

export async function getIpcClient(){
 try {
 const ipcClient = greengrasscoreipc.createClient();
 await ipcClient.connect()
 .catch(error => {
 // parse the error depending on your use cases
 throw error;

SubscribeToIoTCore 1508

AWS IoT Greengrass Developer Guide, Version 2

 });
 return ipcClient
 } catch (err) {
 // parse the error depending on your use cases
 throw err
 }
}

// starting point
const subscribeToIoTCore = new SubscribeToIoTCore();

Examples

Use the following examples to learn how to use the AWS IoT Core MQTT IPC service in your
components.

Example AWS IoT Core MQTT publisher (C++)

The following example recipe allows the component to publish to all topics.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.IoTCorePublisherCpp",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "A component that publishes MQTT messages to IoT Core.",
 "ComponentPublisher": "Amazon",
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "accessControl": {
 "aws.greengrass.ipc.mqttproxy": {
 "com.example.IoTCorePublisherCpp:mqttproxy:1": {
 "policyDescription": "Allows access to publish to all topics.",
 "operations": [
 "aws.greengrass#PublishToIoTCore"
],
 "resources": [
 "*"
]
 }
 }

Examples 1509

AWS IoT Greengrass Developer Guide, Version 2

 }
 }
 },
 "Manifests": [
 {
 "Lifecycle": {
 "Run": "{artifacts:path}/greengrassv2_iotcore_publisher"
 },
 "Artifacts": [
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.IoTCorePublisherCpp/1.0.0/greengrassv2_iotcore_publisher",
 "Permission": {
 "Execute": "OWNER"
 }
 }
]
 }
]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.IoTCorePublisherCpp
ComponentVersion: 1.0.0
ComponentDescription: A component that publishes MQTT messages to IoT Core.
ComponentPublisher: Amazon
ComponentConfiguration:
 DefaultConfiguration:
 accessControl:
 aws.greengrass.ipc.mqttproxy:
 com.example.IoTCorePublisherCpp:mqttproxy:1:
 policyDescription: Allows access to publish to all topics.
 operations:
 - aws.greengrass#PublishToIoTCore
 resources:
 - "*"
Manifests:
 - Lifecycle:
 Run: "{artifacts:path}/greengrassv2_iotcore_publisher"
 Artifacts:

Examples 1510

AWS IoT Greengrass Developer Guide, Version 2

 - URI: s3://amzn-s3-demo-bucket/artifacts/
com.example.IoTCorePublisherCpp/1.0.0/greengrassv2_iotcore_publisher
 Permission:
 Execute: OWNER

The following example C++ application demonstrates how to use the AWS IoT Core MQTT IPC
service to publish messages to AWS IoT Core.

#include <iostream>

#include <aws/crt/Api.h>
#include <aws/greengrass/GreengrassCoreIpcClient.h>

using namespace Aws::Crt;
using namespace Aws::Greengrass;

class IpcClientLifecycleHandler : public ConnectionLifecycleHandler {
 void OnConnectCallback() override {
 std::cout << "OnConnectCallback" << std::endl;
 }

 void OnDisconnectCallback(RpcError error) override {
 std::cout << "OnDisconnectCallback: " << error.StatusToString() << std::endl;
 exit(-1);
 }

 bool OnErrorCallback(RpcError error) override {
 std::cout << "OnErrorCallback: " << error.StatusToString() << std::endl;
 return true;
 }
};

int main() {
 String message("Hello from the Greengrass IPC MQTT publisher (C++).");
 String topic("test/topic/cpp");
 QOS qos = QOS_AT_LEAST_ONCE;
 int timeout = 10;

 ApiHandle apiHandle(g_allocator);
 Io::EventLoopGroup eventLoopGroup(1);
 Io::DefaultHostResolver socketResolver(eventLoopGroup, 64, 30);
 Io::ClientBootstrap bootstrap(eventLoopGroup, socketResolver);

Examples 1511

AWS IoT Greengrass Developer Guide, Version 2

 IpcClientLifecycleHandler ipcLifecycleHandler;
 GreengrassCoreIpcClient ipcClient(bootstrap);
 auto connectionStatus = ipcClient.Connect(ipcLifecycleHandler).get();
 if (!connectionStatus) {
 std::cerr << "Failed to establish IPC connection: " <<
 connectionStatus.StatusToString() << std::endl;
 exit(-1);
 }

 while (true) {
 PublishToIoTCoreRequest request;
 Vector<uint8_t> messageData({message.begin(), message.end()});
 request.SetTopicName(topic);
 request.SetPayload(messageData);
 request.SetQos(qos);

 auto operation = ipcClient.NewPublishToIoTCore();
 auto activate = operation->Activate(request, nullptr);
 activate.wait();

 auto responseFuture = operation->GetResult();
 if (responseFuture.wait_for(std::chrono::seconds(timeout)) ==
 std::future_status::timeout) {
 std::cerr << "Operation timed out while waiting for response from
 Greengrass Core." << std::endl;
 exit(-1);
 }

 auto response = responseFuture.get();
 if (response) {
 std::cout << "Successfully published to topic: " << topic << std::endl;
 } else {
 // An error occurred.
 std::cout << "Failed to publish to topic: " << topic << std::endl;
 auto errorType = response.GetResultType();
 if (errorType == OPERATION_ERROR) {
 auto *error = response.GetOperationError();
 std::cout << "Operation error: " << error->GetMessage().value() <<
 std::endl;
 } else {
 std::cout << "RPC error: " << response.GetRpcError() << std::endl;
 }
 exit(-1);
 }

Examples 1512

AWS IoT Greengrass Developer Guide, Version 2

 std::this_thread::sleep_for(std::chrono::seconds(5));
 }

 return 0;
}

Example AWS IoT Core MQTT subscriber (C++)

The following example recipe allows the component to subscribe to all topics.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.IoTCoreSubscriberCpp",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "A component that subscribes to MQTT messages from IoT
 Core.",
 "ComponentPublisher": "Amazon",
 "ComponentConfiguration": {
 "DefaultConfiguration": {
 "accessControl": {
 "aws.greengrass.ipc.mqttproxy": {
 "com.example.IoTCoreSubscriberCpp:mqttproxy:1": {
 "policyDescription": "Allows access to subscribe to all topics.",
 "operations": [
 "aws.greengrass#SubscribeToIoTCore"
],
 "resources": [
 "*"
]
 }
 }
 }
 }
 },
 "Manifests": [
 {
 "Lifecycle": {
 "Run": "{artifacts:path}/greengrassv2_iotcore_subscriber"
 },
 "Artifacts": [
 {

Examples 1513

AWS IoT Greengrass Developer Guide, Version 2

 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.IoTCoreSubscriberCpp/1.0.0/greengrassv2_iotcore_subscriber",
 "Permission": {
 "Execute": "OWNER"
 }
 }
]
 }
]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.IoTCoreSubscriberCpp
ComponentVersion: 1.0.0
ComponentDescription: A component that subscribes to MQTT messages from IoT Core.
ComponentPublisher: Amazon
ComponentConfiguration:
 DefaultConfiguration:
 accessControl:
 aws.greengrass.ipc.mqttproxy:
 com.example.IoTCoreSubscriberCpp:mqttproxy:1:
 policyDescription: Allows access to subscribe to all topics.
 operations:
 - aws.greengrass#SubscribeToIoTCore
 resources:
 - "*"
Manifests:
 - Lifecycle:
 Run: "{artifacts:path}/greengrassv2_iotcore_subscriber"
 Artifacts:
 - URI: s3://amzn-s3-demo-bucket/artifacts/
com.example.IoTCoreSubscriberCpp/1.0.0/greengrassv2_iotcore_subscriber
 Permission:
 Execute: OWNER

The following example C++ application demonstrates how to use the AWS IoT Core MQTT IPC
service to subscribe to messages from AWS IoT Core.

#include <iostream>

Examples 1514

AWS IoT Greengrass Developer Guide, Version 2

#include <aws/crt/Api.h>
#include <aws/greengrass/GreengrassCoreIpcClient.h>

using namespace Aws::Crt;
using namespace Aws::Greengrass;

class IoTCoreResponseHandler : public SubscribeToIoTCoreStreamHandler {

 public:
 virtual ~IoTCoreResponseHandler() {}

 private:

 void OnStreamEvent(IoTCoreMessage *response) override {
 auto message = response->GetMessage();
 if (message.has_value() && message.value().GetPayload().has_value()) {
 auto messageBytes = message.value().GetPayload().value();
 std::string messageString(messageBytes.begin(), messageBytes.end());
 std::string messageTopic =
 message.value().GetTopicName().value().c_str();
 std::cout << "Received new message on topic: " << messageTopic <<
 std::endl;
 std::cout << "Message: " << messageString << std::endl;
 }
 }

 bool OnStreamError(OperationError *error) override {
 std::cout << "Received an operation error: ";
 if (error->GetMessage().has_value()) {
 std::cout << error->GetMessage().value();
 }
 std::cout << std::endl;
 return false; // Return true to close stream, false to keep stream open.
 }

 void OnStreamClosed() override {
 std::cout << "Subscribe to IoT Core stream closed." << std::endl;
 }
};

class IpcClientLifecycleHandler : public ConnectionLifecycleHandler {
 void OnConnectCallback() override {
 std::cout << "OnConnectCallback" << std::endl;

Examples 1515

AWS IoT Greengrass Developer Guide, Version 2

 }

 void OnDisconnectCallback(RpcError error) override {
 std::cout << "OnDisconnectCallback: " << error.StatusToString() << std::endl;
 exit(-1);
 }

 bool OnErrorCallback(RpcError error) override {
 std::cout << "OnErrorCallback: " << error.StatusToString() << std::endl;
 return true;
 }
};

int main() {
 String topic("test/topic/cpp");
 QOS qos = QOS_AT_LEAST_ONCE;
 int timeout = 10;

 ApiHandle apiHandle(g_allocator);
 Io::EventLoopGroup eventLoopGroup(1);
 Io::DefaultHostResolver socketResolver(eventLoopGroup, 64, 30);
 Io::ClientBootstrap bootstrap(eventLoopGroup, socketResolver);
 IpcClientLifecycleHandler ipcLifecycleHandler;
 GreengrassCoreIpcClient ipcClient(bootstrap);
 auto connectionStatus = ipcClient.Connect(ipcLifecycleHandler).get();
 if (!connectionStatus) {
 std::cerr << "Failed to establish IPC connection: " <<
 connectionStatus.StatusToString() << std::endl;
 exit(-1);
 }

 SubscribeToIoTCoreRequest request;
 request.SetTopicName(topic);
 request.SetQos(qos);
 auto streamHandler = MakeShared<IoTCoreResponseHandler>(DefaultAllocator());
 auto operation = ipcClient.NewSubscribeToIoTCore(streamHandler);
 auto activate = operation->Activate(request, nullptr);
 activate.wait();

 auto responseFuture = operation->GetResult();
 if (responseFuture.wait_for(std::chrono::seconds(timeout)) ==
 std::future_status::timeout) {
 std::cerr << "Operation timed out while waiting for response from Greengrass
 Core." << std::endl;

Examples 1516

AWS IoT Greengrass Developer Guide, Version 2

 exit(-1);
 }

 auto response = responseFuture.get();
 if (response) {
 std::cout << "Successfully subscribed to topic: " << topic << std::endl;
 } else {
 // An error occurred.
 std::cout << "Failed to subscribe to topic: " << topic << std::endl;
 auto errorType = response.GetResultType();
 if (errorType == OPERATION_ERROR) {
 auto *error = response.GetOperationError();
 std::cout << "Operation error: " << error->GetMessage().value() <<
 std::endl;
 } else {
 std::cout << "RPC error: " << response.GetRpcError() << std::endl;
 }
 exit(-1);
 }

 // Keep the main thread alive, or the process will exit.
 while (true) {
 std::this_thread::sleep_for(std::chrono::seconds(10));
 }

 operation->Close();
 return 0;
}

Interact with component lifecycle

Use the component lifecycle IPC service to:

• Update the component state on the core device.

• Subscribe to component state updates.

• Prevent the nucleus from stopping the component to apply an update during a deployment.

• Pause and resume component processes.

Topics

• Minimum SDK versions

Interact with component lifecycle 1517

AWS IoT Greengrass Developer Guide, Version 2

• Authorization

• UpdateState

• SubscribeToComponentUpdates

• DeferComponentUpdate

• PauseComponent

• ResumeComponent

Minimum SDK versions

The following table lists the minimum versions of the AWS IoT Device SDK that you must use to
interact with component lifecycle.

SDK Minimum version

AWS IoT Device SDK for Java
v2

v1.2.10

AWS IoT Device SDK for
Python v2

v1.5.3

AWS IoT Device SDK for C++
v2

v1.17.0

AWS IoT Device SDK for
JavaScript v2

v1.12.0

Authorization

To pause or resume other components from a custom component, you must define authorization
policies that allow your component to manage other components. For information about defining
authorization policies, see Authorize components to perform IPC operations.

Authorization policies for component lifecycle management have the following properties.

IPC service identifier: aws.greengrass.ipc.lifecycle

Minimum SDK versions 1518

https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2

AWS IoT Greengrass Developer Guide, Version 2

Operation Description Resources

aws.greengrass#Pau
seComponent

Allows a component to pause
the components that you
specify.

A component name, or * to
allow access to all component
s.

aws.greengrass#Res
umeComponent

Allows a component to
resume the components that
you specify.

A component name, or * to
allow access to all component
s.

* Allows a component to pause
and resume the components
that you specify.

A component name, or * to
allow access to all component
s.

Authorization policy examples

You can reference the following authorization policy example to help you configure authorization
policies for your components.

Example Example authorization policy

The following example authorization policy allows a component to pause and resume all
components.

{
 "accessControl": {
 "aws.greengrass.ipc.lifecycle": {
 "com.example.MyLocalLifecycleComponent:lifecycle:1": {
 "policyDescription": "Allows access to pause/resume all components.",
 "operations": [
 "aws.greengrass#PauseComponent",
 "aws.greengrass#ResumeComponent"
],
 "resources": [
 "*"
]
 }
 }
 }
}

Authorization 1519

AWS IoT Greengrass Developer Guide, Version 2

UpdateState

Update the state of the component on the core device.

Request

This operation's request has the following parameters:

state

The state to set. This enum, LifecycleState, has the following values:

• RUNNING

• ERRORED

Response

This operation doesn't provide any information in its response.

SubscribeToComponentUpdates

Subscribe to receive notifications before the AWS IoT Greengrass Core software updates a
component. The notification specifies whether or not the nucleus will restart as part of the update.

The nucleus sends update notifications only if the deployment's component update policy specifies
to notify components. The default behavior is to notify components. For more information, see
Create deployments and the DeploymentComponentUpdatePolicy object that you can provide
when you call the CreateDeployment operation.

Important

Local deployments don't notify components before updates.

This operation is a subscription operation where you subscribe to a stream of event messages. To
use this operation, define a stream response handler with functions that handle event messages,
errors, and stream closure. For more information, see Subscribe to IPC event streams.

Event message type: ComponentUpdatePolicyEvents

UpdateState 1520

https://docs.aws.amazon.com/greengrass/v2/APIReference/API_DeploymentComponentUpdatePolicy.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_CreateDeployment.html

AWS IoT Greengrass Developer Guide, Version 2

Tip

You can follow a tutorial to learn how to develop a component that conditionally defers
component updates. For more information, see Tutorial: Develop a Greengrass component
that defers component updates.

Request

This operation's request doesn't have any parameters.

Response

This operation's response has the following information:

messages

The stream of notification messages. This object, ComponentUpdatePolicyEvents, contains
the following information:

preUpdateEvent (Python: pre_update_event)

(Optional) An event that indicates that the nucleus wants to update a component. You
can respond with the DeferComponentUpdate operation to acknowledge or defer the
update until your component is ready to restart. This object, PreComponentUpdateEvent,
contains the following information:

deploymentId (Python: deployment_id)

The ID of the AWS IoT Greengrass deployment that updates the component.

isGgcRestarting (Python: is_ggc_restarting)

Whether or not the nucleus needs to restart to apply the update.

postUpdateEvent (Python: post_update_event)

(Optional) An event that indicates that the nucleus updated a component. This object,
PostComponentUpdateEvent, contains the following information:

deploymentId (Python: deployment_id)

The ID of the AWS IoT Greengrass deployment that updated the component.

SubscribeToComponentUpdates 1521

AWS IoT Greengrass Developer Guide, Version 2

Note

This feature requires v2.7.0 or later of the Greengrass nucleus component.

DeferComponentUpdate

Acknowledge or defer a component update that you discover with SubscribeToComponentUpdates.
You specify the amount of time to wait before the nucleus checks again if your component is ready
to let the component update proceed. You can also use this operation to tell the nucleus that your
component is ready for the update.

If a component doesn't respond to the component update notification, the nucleus waits the
amount of time that you specify in the deployment's component update policy. After that timeout,
the nucleus proceeds with the deployment. The default component update timeout is 60 seconds.
For more information, see Create deployments and the DeploymentComponentUpdatePolicy
object that you can provide when you call the CreateDeployment operation.

Tip

You can follow a tutorial to learn how to develop a component that conditionally defers
component updates. For more information, see Tutorial: Develop a Greengrass component
that defers component updates.

Request

This operation's request has the following parameters:

deploymentId (Python: deployment_id)

The ID of the AWS IoT Greengrass deployment to defer.

message

(Optional) The name of the component for which to defer updates.

Defaults to the name of the component that makes the request.

DeferComponentUpdate 1522

https://docs.aws.amazon.com/greengrass/v2/APIReference/API_DeploymentComponentUpdatePolicy.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_CreateDeployment.html

AWS IoT Greengrass Developer Guide, Version 2

recheckAfterMs (Python: recheck_after_ms)

The amount of time in milliseconds for which to defer the update. The nucleus waits for this
amount of time and then sends another PreComponentUpdateEvent that you can discover
with SubscribeToComponentUpdates.

Specify 0 to acknowledge the update. This tells the nucleus that your component is ready for
the update.

Defaults to zero milliseconds, which means to acknowledge the update.

Response

This operation doesn't provide any information in its response.

PauseComponent

This feature is available for v2.4.0 and later of the Greengrass nucleus component. AWS IoT
Greengrass doesn't currently support this feature on Windows core devices.

Pauses a component's processes on the core device. To resume a component, use the
ResumeComponent operation.

You can pause only generic components. If you try to pause any other type of component, this
operation throws an InvalidRequestError.

Note

This operation can't pause containerized processes, such as Docker containers. To pause and
resume a Docker container, you can use the docker pause and docker unpause commands.

This operation doesn't pause component dependencies or components that depend on the
component that you pause. Consider this behavior when you pause a component that is a
dependency of another component, because the dependent component might encounter issues
when its dependency is paused.

When you restart or shut down a paused component, such as through a deployment, the
Greengrass nucleus resumes the component and runs its shutdown lifecycle. For more information
about restarting a component, see RestartComponent.

PauseComponent 1523

https://docs.docker.com/engine/reference/commandline/pause/
https://docs.docker.com/engine/reference/commandline/unpause/

AWS IoT Greengrass Developer Guide, Version 2

Important

To use this operation, you must define an authorization policy that grants permission to use
this operation. For more information, see Authorization.

Minimum SDK versions

The following table lists the minimum versions of the AWS IoT Device SDK that you must use to
pause and resume components.

SDK Minimum version

AWS IoT Device SDK for Java
v2

v1.4.3

AWS IoT Device SDK for
Python v2

v1.6.2

AWS IoT Device SDK for C++
v2

v1.13.1

AWS IoT Device SDK for
JavaScript v2

v1.12.0

Request

This operation's request has the following parameters:

componentName (Python: component_name)

The name of the component to pause, which must be a generic component. For more
information, see Component types.

Response

This operation doesn't provide any information in its response.

PauseComponent 1524

https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2

AWS IoT Greengrass Developer Guide, Version 2

ResumeComponent

This feature is available for v2.4.0 and later of the Greengrass nucleus component. AWS IoT
Greengrass doesn't currently support this feature on Windows core devices.

Resumes a component's processes on the core device. To pause a component, use the
PauseComponent operation.

You can resume only paused components. If you try to resume a component that isn't paused, this
operation throws an InvalidRequestError.

Important

To use this operation, you must define an authorization policy that grants permission to do
so. For more information, see Authorization.

Minimum SDK versions

The following table lists the minimum versions of the AWS IoT Device SDK that you must use to
pause and resume components.

SDK Minimum version

AWS IoT Device SDK for Java
v2

v1.4.3

AWS IoT Device SDK for
Python v2

v1.6.2

AWS IoT Device SDK for C++
v2

v1.13.1

AWS IoT Device SDK for
JavaScript v2

v1.12.0

Request

This operation's request has the following parameters:

ResumeComponent 1525

https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2

AWS IoT Greengrass Developer Guide, Version 2

componentName (Python: component_name)

The name of the component to resume.

Response

This operation doesn't provide any information in its response.

Interact with component configuration

The component configuration IPC service lets you do the following:

• Get and set component configuration parameters.

• Subscribe to component configuration updates.

• Validate component configuration updates before the nucleus applies them.

Topics

• Minimum SDK versions

• GetConfiguration

• UpdateConfiguration

• SubscribeToConfigurationUpdate

• SubscribeToValidateConfigurationUpdates

• SendConfigurationValidityReport

Minimum SDK versions

The following table lists the minimum versions of the AWS IoT Device SDK that you must use to
interact with component configuration.

SDK Minimum version

AWS IoT Device SDK for Java
v2

v1.2.10

Interact with component configuration 1526

https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2

AWS IoT Greengrass Developer Guide, Version 2

SDK Minimum version

AWS IoT Device SDK for
Python v2

v1.5.3

AWS IoT Device SDK for C++
v2

v1.17.0

AWS IoT Device SDK for
JavaScript v2

v1.12.0

GetConfiguration

Gets a configuration value for a component on the core device. You specify the key path for which
to get a configuration value.

Request

This operation's request has the following parameters:

componentName (Python: component_name)

(Optional) The name of the component.

Defaults to the name of the component that makes the request.

keyPath (Python: key_path)

The key path to the configuration value. Specify a list where each entry is the key for a single
level in the configuration object. For example, specify ["mqtt", "port"] to get the value of
port in the following configuration.

{
 "mqtt": {
 "port": 443
 }
}

To get the component's complete configuration, specify an empty list.

GetConfiguration 1527

https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2

AWS IoT Greengrass Developer Guide, Version 2

Response

This operation's response has the following information:

componentName (Python: component_name)

The name of the component.

value

The requested configuration as an object.

UpdateConfiguration

Updates a configuration value for this component on the core device.

Request

This operation's request has the following parameters:

keyPath (Python: key_path)

(Optional) The key path to the container node (the object) to update. Specify a list where each
entry is the key for a single level in the configuration object. For example, specify the key path
["mqtt"] and the merge value { "port": 443 } to set the value of port in the following
configuration.

{
 "mqtt": {
 "port": 443
 }
}

The key path must specify a container node (an object) in the configuration. If the node doesn't
exist in the component's configuration, this operation creates it and sets its value to the object
in valueToMerge.

Defaults to the root of the configuration object.

UpdateConfiguration 1528

AWS IoT Greengrass Developer Guide, Version 2

timestamp

The current Unix epoch time in milliseconds. This operation uses this timestamp to resolve
concurrent updates to the key. If the key in the component configuration has a greater
timestamp than the timestamp in the request, then the request fails.

valueToMerge (Python: value_to_merge)

The configuration object to merge at the location that you specify in keyPath. For more
information, see Update component configurations.

Response

This operation doesn't provide any information in its response.

SubscribeToConfigurationUpdate

Subscribe to receive notifications when a component's configuration updates. When you subscribe
to a key, you receive a notification when any child of that key updates.

This operation is a subscription operation where you subscribe to a stream of event messages. To
use this operation, define a stream response handler with functions that handle event messages,
errors, and stream closure. For more information, see Subscribe to IPC event streams.

Event message type: ConfigurationUpdateEvents

Request

This operation's request has the following parameters:

componentName (Python: component_name)

(Optional) The name of the component.

Defaults to the name of the component that makes the request.

keyPath (Python: key_path)

The key path to the configuration value for which to subscribe. Specify a list where each entry is
the key for a single level in the configuration object. For example, specify ["mqtt", "port"]
to get the value of port in the following configuration.

SubscribeToConfigurationUpdate 1529

AWS IoT Greengrass Developer Guide, Version 2

{
 "mqtt": {
 "port": 443
 }
}

To subscribe to updates for all values in the component's configuration, specify an empty list.

Response

This operation's response has the following information:

messages

The stream of notification messages. This object, ConfigurationUpdateEvents, contains the
following information:

configurationUpdateEvent (Python: configuration_update_event)

The configuration update event. This object, ConfigurationUpdateEvent, contains the
following information:

componentName (Python: component_name)

The name of the component.

keyPath (Python: key_path)

The key path to the configuration value that updated.

SubscribeToValidateConfigurationUpdates

Subscribe to receive notifications before this component's configuration updates. This lets
components validate updates to their own configuration. Use the SendConfigurationValidityReport
operation to tell the nucleus whether or not the configuration is valid.

Important

Local deployments don't notify components of updates.

SubscribeToValidateConfigurationUpdates 1530

AWS IoT Greengrass Developer Guide, Version 2

This operation is a subscription operation where you subscribe to a stream of event messages. To
use this operation, define a stream response handler with functions that handle event messages,
errors, and stream closure. For more information, see Subscribe to IPC event streams.

Event message type: ValidateConfigurationUpdateEvents

Request

This operation's request doesn't have any parameters.

Response

This operation's response has the following information:

messages

The stream of notification messages. This object, ValidateConfigurationUpdateEvents,
contains the following information:

validateConfigurationUpdateEvent (Python:
validate_configuration_update_event)

The configuration update event. This object, ValidateConfigurationUpdateEvent,
contains the following information:

deploymentId (Python: deployment_id)

The ID of the AWS IoT Greengrass deployment that updates the component.

configuration

The object that contains the new configuration.

SendConfigurationValidityReport

Tell the nucleus whether or not a configuration update to this component is valid. The
deployment fails if you tell the nucleus that the new configuration isn't valid. Use the
SubscribeToValidateConfigurationUpdates operation to subscribe to validate configuration
updates.

If a component doesn't respond to a validate configuration update notification, the nucleus
waits the amount of time that you specify in the deployment's configuration validation

SendConfigurationValidityReport 1531

AWS IoT Greengrass Developer Guide, Version 2

policy. After that timeout, the nucleus proceeds with the deployment. The default component
validation timeout is 20 seconds. For more information, see Create deployments and the
DeploymentConfigurationValidationPolicy object that you can provide when you call the
CreateDeployment operation.

Request

This operation's request has the following parameters:

configurationValidityReport (Python: configuration_validity_report)

The report that tells the nucleus whether or not the configuration update is valid. This object,
ConfigurationValidityReport, contains the following information:

status

The validity status. This enum, ConfigurationValidityStatus, has the following values:

• ACCEPTED – The configuration is valid and the nucleus can apply it to this component.

• REJECTED – The configuration isn't valid and the deployment fails.

deploymentId (Python: deployment_id)

The ID of the AWS IoT Greengrass deployment that requested the configuration update.

message

(Optional) A message that reports why the configuration isn't valid.

Response

This operation doesn't provide any information in its response.

Retrieve secret values

Use the secret manager IPC service to retrieve secret values from secrets on the core device. You
use the secret manager component to deploy encrypted secrets to core devices. Then, you can use
an IPC operation to decrypt the secret and use its value in your custom components.

Topics

• Minimum SDK versions

• Authorization

Retrieve secret values 1532

https://docs.aws.amazon.com/greengrass/v2/APIReference/API_DeploymentConfigurationValidationPolicy.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_CreateDeployment.html

AWS IoT Greengrass Developer Guide, Version 2

• GetSecretValue

• Examples

Minimum SDK versions

The following table lists the minimum versions of the AWS IoT Device SDK that you must use to
retrieve secret values from secrets on the core device.

SDK Minimum version

AWS IoT Device SDK for Java
v2

v1.2.10

AWS IoT Device SDK for
Python v2

v1.5.3

AWS IoT Device SDK for C++
v2

v1.17.0

AWS IoT Device SDK for
JavaScript v2

v1.12.0

Authorization

To use secret manager in a custom component, you must define authorization policies that allow
your component to get the value of secrets that you store on the core device. For information
about defining authorization policies, see Authorize components to perform IPC operations.

Authorization policies for secret manager have the following properties.

IPC service identifier: aws.greengrass.SecretManager

Operation Description Resources

aws.greengrass#Get
SecretValue or *

Allows a component to get
the value of secrets that are
encrypted on the core device.

A Secrets Manager secret
ARN, or * to allow access to
all secrets.

Minimum SDK versions 1533

https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2

AWS IoT Greengrass Developer Guide, Version 2

Authorization policy examples

You can reference the following authorization policy example to help you configure authorization
policies for your components.

Example Example authorization policy

The following example authorization policy allows a component to get the value of any secret on
the core device.

Note

We recommend that in a production environment, you reduce the scope of the
authorization policy, so that the component retrieves only the secrets that it uses. You can
change the * wildcard to a list of secret ARNs when you deploy the component.

{
 "accessControl": {
 "aws.greengrass.SecretManager": {
 "com.example.MySecretComponent:secrets:1": {
 "policyDescription": "Allows access to a secret.",
 "operations": [
 "aws.greengrass#GetSecretValue"
],
 "resources": [
 "*"
]
 }
 }
 }
}

GetSecretValue

Gets the value of a secret that you store on the core device.

This operation is similar to the Secrets Manager operation that you can use to get the value of a
secret in the AWS Cloud. For more information, see GetSecretValue in the AWS Secrets Manager API
Reference.

GetSecretValue 1534

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html

AWS IoT Greengrass Developer Guide, Version 2

Request

This operation's request has the following parameters:

refresh (Python: refresh)

(optional): Whether to sync the requested secret with its latest value from AWS Secrets Manager
service.

When set to true, secret manager will request the AWS Secrets Manager service for the latest
value of the specified secret label and returns that value as a response. Otherwise, the secret
value that was stored locally will be returned.

This parameter will not work in conjunction with versionId parameter in the request. This
parameter works when used in conjunction with Nucleus 2.13.0 and above.

secretId (Python: secret_id)

The name of the secret to get. You can specify either the Amazon Resource Name (ARN) or the
friendly name of the secret.

versionId (Python: version_id)

(Optional) The ID of the version to get.

You can specify either versionId or versionStage.

If you don't specify versionId or versionStage, this operation defaults to the version with
the AWSCURRENT label.

versionStage (Python: version_stage)

(Optional) The staging label of the version to get.

You can specify either versionId or versionStage.

If you don't specify versionId or versionStage, this operation defaults to the version with
the AWSCURRENT label.

Response

This operation's response has the following information:

GetSecretValue 1535

AWS IoT Greengrass Developer Guide, Version 2

secretId (Python: secret_id)

The ID of the secret.

versionId (Python: version_id)

The ID of this version of the secret.

versionStage (Python: version_stage)

The list of staging labels attached to this version of the secret.

secretValue (Python: secret_value)

The value of this version of the secret. This object, SecretValue, contains the following
information.

secretString (Python: secret_string)

The decrypted part of the protected secret information that you provided to Secrets
Manager as a string.

secretBinary (Python: secret_binary)

(Optional) The decrypted part of the protected secret information that you provided to
Secrets Manager as binary data in the form of a byte array. This property contains the binary
data as a base64-encoded string.

This property isn't used if you created the secret in the Secrets Manager console.

Examples

The following examples demonstrate how to call this operation in custom component code.

Java (IPC client V1)

Example Example: Get a secret value

Note

This example uses an IPCUtils class to create a connection to the AWS IoT Greengrass
Core IPC service. For more information, see Connect to the AWS IoT Greengrass Core IPC
service.

GetSecretValue 1536

AWS IoT Greengrass Developer Guide, Version 2

package com.aws.greengrass.docs.samples.ipc;

import com.aws.greengrass.docs.samples.ipc.util.IPCUtils;
import software.amazon.awssdk.aws.greengrass.GetSecretValueResponseHandler;
import software.amazon.awssdk.aws.greengrass.GreengrassCoreIPCClient;
import software.amazon.awssdk.aws.greengrass.model.GetSecretValueRequest;
import software.amazon.awssdk.aws.greengrass.model.GetSecretValueResponse;
import software.amazon.awssdk.aws.greengrass.model.UnauthorizedError;
import software.amazon.awssdk.eventstreamrpc.EventStreamRPCConnection;

import java.util.Optional;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class GetSecretValue {

 public static final int TIMEOUT_SECONDS = 10;

 public static void main(String[] args) {
 String secretArn = args[0];
 String versionStage = args[1];
 try (EventStreamRPCConnection eventStreamRPCConnection =
 IPCUtils.getEventStreamRpcConnection()) {
 GreengrassCoreIPCClient ipcClient =
 new GreengrassCoreIPCClient(eventStreamRPCConnection);
 GetSecretValueResponseHandler responseHandler =
 GetSecretValue.getSecretValue(ipcClient, secretArn,
 versionStage);
 CompletableFuture<GetSecretValueResponse> futureResponse =
 responseHandler.getResponse();
 try {
 GetSecretValueResponse response =
 futureResponse.get(TIMEOUT_SECONDS, TimeUnit.SECONDS);
 response.getSecretValue().postFromJson();
 String secretString = response.getSecretValue().getSecretString();
 System.out.println("Successfully retrieved secret value: " +
 secretString);
 } catch (TimeoutException e) {
 System.err.println("Timeout occurred while retrieving secret: " +
 secretArn);
 } catch (ExecutionException e) {

GetSecretValue 1537

AWS IoT Greengrass Developer Guide, Version 2

 if (e.getCause() instanceof UnauthorizedError) {
 System.err.println("Unauthorized error while retrieving secret:
 " + secretArn);
 } else {
 throw e;
 }
 }
 } catch (InterruptedException e) {
 System.out.println("IPC interrupted.");
 } catch (ExecutionException e) {
 System.err.println("Exception occurred when using IPC.");
 e.printStackTrace();
 System.exit(1);
 }
 }

 public static GetSecretValueResponseHandler
 getSecretValue(GreengrassCoreIPCClient greengrassCoreIPCClient, String secretArn,
 String versionStage) {
 GetSecretValueRequest getSecretValueRequest = new GetSecretValueRequest();
 getSecretValueRequest.setSecretId(secretArn);
 getSecretValueRequest.setVersionStage(versionStage);
 return greengrassCoreIPCClient.getSecretValue(getSecretValueRequest,
 Optional.empty());
 }
}

Python (IPC client V1)

Example Example: Get a secret value

Note

This example assumes that you are using version 1.5.4 or later of the AWS IoT Device
SDK for Python v2.

import json

import awsiot.greengrasscoreipc
from awsiot.greengrasscoreipc.model import (
 GetSecretValueRequest,
 GetSecretValueResponse,

GetSecretValue 1538

AWS IoT Greengrass Developer Guide, Version 2

 UnauthorizedError
)

secret_id = 'arn:aws:secretsmanager:us-
west-2:123456789012:secret:MyGreengrassSecret-abcdef'
TIMEOUT = 10

ipc_client = awsiot.greengrasscoreipc.connect()

request = GetSecretValueRequest()
request.secret_id = secret_id
request.version_stage = 'AWSCURRENT'
operation = ipc_client.new_get_secret_value()
operation.activate(request)
future_response = operation.get_response()
response = future_response.result(TIMEOUT)
secret_json = json.loads(response.secret_value.secret_string)
Handle secret value.

JavaScript

Example Example: Get a secret value

import {
 GetSecretValueRequest,
} from 'aws-iot-device-sdk-v2/dist/greengrasscoreipc/model';
import * as greengrasscoreipc from "aws-iot-device-sdk-v2/dist/greengrasscoreipc";

class GetSecretValue {
 private readonly secretId : string;
 private readonly versionStage : string;
 private ipcClient : greengrasscoreipc.Client

 constructor() {
 this.secretId = "<define_your_own_secretId>"
 this.versionStage = "<define_your_own_versionStage>"

 this.getSecretValue().then(r => console.log("Started workflow"));
 }

 private async getSecretValue() {
 try {
 this.ipcClient = await getIpcClient();

GetSecretValue 1539

AWS IoT Greengrass Developer Guide, Version 2

 const getSecretValueRequest : GetSecretValueRequest = {
 secretId: this.secretId,
 versionStage: this.versionStage,
 };

 const result = await
 this.ipcClient.getSecretValue(getSecretValueRequest);
 const secretString = result.secretValue.secretString;
 console.log("Successfully retrieved secret value: " + secretString)
 } catch (e) {
 // parse the error depending on your use cases
 throw e
 }
 }
}

export async function getIpcClient(){
 try {
 const ipcClient = greengrasscoreipc.createClient();
 await ipcClient.connect()
 .catch(error => {
 // parse the error depending on your use cases
 throw error;
 });
 return ipcClient
 } catch (err) {
 // parse the error depending on your use cases
 throw err
 }
}

const getSecretValue = new GetSecretValue();

Examples

Use the following examples to learn how to use the secret manager IPC service in your
components.

Example: Print secret (Python, IPC client V1)

This example component prints the value of a secret that you deploy to the core device.

Examples 1540

AWS IoT Greengrass Developer Guide, Version 2

Important

This example component prints the value of a secret, so use it only with secrets that store
test data. Don't use this component to print the value of a secret that stores important
information.

Topics

• Recipe

• Artifacts

• Usage

Recipe

The following example recipe defines a secret ARN configuration parameter and allows the
component to get the value of any secret on the core device.

Note

We recommend that in a production environment, you reduce the scope of the
authorization policy, so that the component retrieves only the secrets that it uses. You can
change the * wildcard to a list of secret ARNs when you deploy the component.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.PrintSecret",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "Prints the value of an AWS Secrets Manager secret.",
 "ComponentPublisher": "Amazon",
 "ComponentDependencies": {
 "aws.greengrass.SecretManager": {
 "VersionRequirement": "^2.0.0",
 "DependencyType": "HARD"
 }
 },
 "ComponentConfiguration": {

Examples 1541

AWS IoT Greengrass Developer Guide, Version 2

 "DefaultConfiguration": {
 "SecretArn": "",
 "accessControl": {
 "aws.greengrass.SecretManager": {
 "com.example.PrintSecret:secrets:1": {
 "policyDescription": "Allows access to a secret.",
 "operations": [
 "aws.greengrass#GetSecretValue"
],
 "resources": [
 "*"
]
 }
 }
 }
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "linux"
 },
 "Lifecycle": {
 "install": "python3 -m pip install --user awsiotsdk",
 "Run": "python3 -u {artifacts:path}/print_secret.py \"{configuration:/
SecretArn}\""
 }
 },
 {
 "Platform": {
 "os": "windows"
 },
 "Lifecycle": {
 "install": "py -3 -m pip install --user awsiotsdk",
 "Run": "py -3 -u {artifacts:path}/print_secret.py \"{configuration:/
SecretArn}\""
 }
 }
]
}

Examples 1542

AWS IoT Greengrass Developer Guide, Version 2

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.PrintSecret
ComponentVersion: 1.0.0
ComponentDescription: Prints the value of a Secrets Manager secret.
ComponentPublisher: Amazon
ComponentDependencies:
 aws.greengrass.SecretManager:
 VersionRequirement: "^2.0.0"
 DependencyType: HARD
ComponentConfiguration:
 DefaultConfiguration:
 SecretArn: ''
 accessControl:
 aws.greengrass.SecretManager:
 com.example.PrintSecret:secrets:1:
 policyDescription: Allows access to a secret.
 operations:
 - aws.greengrass#GetSecretValue
 resources:
 - "*"
Manifests:
 - Platform:
 os: linux
 Lifecycle:
 install: python3 -m pip install --user awsiotsdk
 Run: python3 -u {artifacts:path}/print_secret.py "{configuration:/SecretArn}"
 - Platform:
 os: windows
 Lifecycle:
 install: py -3 -m pip install --user awsiotsdk
 Run: py -3 -u {artifacts:path}/print_secret.py "{configuration:/SecretArn}"

Artifacts

The following example Python application demonstrates how to use the secret manager IPC
service to get the value of a secret on the core device.

import concurrent.futures
import json

Examples 1543

AWS IoT Greengrass Developer Guide, Version 2

import sys
import traceback

import awsiot.greengrasscoreipc
from awsiot.greengrasscoreipc.model import (
 GetSecretValueRequest,
 GetSecretValueResponse,
 UnauthorizedError
)

TIMEOUT = 10

if len(sys.argv) == 1:
 print('Provide SecretArn in the component configuration.', file=sys.stdout)
 exit(1)

secret_id = sys.argv[1]

try:
 ipc_client = awsiot.greengrasscoreipc.connect()

 request = GetSecretValueRequest()
 request.secret_id = secret_id
 operation = ipc_client.new_get_secret_value()
 operation.activate(request)
 future_response = operation.get_response()

 try:
 response = future_response.result(TIMEOUT)
 secret_json = json.loads(response.secret_value.secret_string)
 print('Successfully got secret: ' + secret_id)
 print('Secret value: ' + str(secret_json))
 except concurrent.futures.TimeoutError:
 print('Timeout occurred while getting secret: ' + secret_id, file=sys.stderr)
 except UnauthorizedError as e:
 print('Unauthorized error while getting secret: ' + secret_id,
 file=sys.stderr)
 raise e
 except Exception as e:
 print('Exception while getting secret: ' + secret_id, file=sys.stderr)
 raise e
except Exception:
 print('Exception occurred when using IPC.', file=sys.stderr)
 traceback.print_exc()

Examples 1544

AWS IoT Greengrass Developer Guide, Version 2

 exit(1)

Usage

You can use this example component with the secret manager component to deploy and print the
value of a secret on your core device.

To create, deploy, and print a test secret

1. Create a Secrets Manager secret with test data.

Linux or Unix

aws secretsmanager create-secret \
 --name MyTestGreengrassSecret \
 --secret-string '{"my-secret-key": "my-secret-value"}'

Windows Command Prompt (CMD)

aws secretsmanager create-secret ^
 --name MyTestGreengrassSecret ^
 --secret-string '{"my-secret-key": "my-secret-value"}'

PowerShell

aws secretsmanager create-secret `
 --name MyTestGreengrassSecret `
 --secret-string '{"my-secret-key": "my-secret-value"}'

Save the ARN of the secret to use in the following steps.

For more information, see Creating a secret in the AWS Secrets Manager User Guide.

2. Deploy the secret manager component (aws.greengrass.SecretManager) with the
following configuration merge update. Specify the ARN of the secret that you created earlier.

{
 "cloudSecrets": [
 {
 "arn": "arn:aws:secretsmanager:us-
west-2:123456789012:secret:MyTestGreengrassSecret-abcdef"

Examples 1545

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html

AWS IoT Greengrass Developer Guide, Version 2

 }
]
}

For more information, see Deploy AWS IoT Greengrass components to devices or the
Greengrass CLI deployment command.

3. Create and deploy the example component in this section with the following configuration
merge update. Specify the ARN of the secret that you created earlier.

{
 "SecretArn": "arn:aws:secretsmanager:us-
west-2:123456789012:secret:MyTestGreengrassSecret",
 "accessControl": {
 "aws.greengrass.SecretManager": {
 "com.example.PrintSecret:secrets:1": {
 "policyDescription": "Allows access to a secret.",
 "operations": [
 "aws.greengrass#GetSecretValue"
],
 "resources": [
 "arn:aws:secretsmanager:us-
west-2:123456789012:secret:MyTestGreengrassSecret-abcdef"
]
 }
 }
 }
}

For more information, see Create AWS IoT Greengrass components

4. View the AWS IoT Greengrass Core software logs to verify that the deployments succeed, and
view the com.example.PrintSecret component log to see the secret value printed. For
more information, see Monitor AWS IoT Greengrass logs.

Interact with local shadows

Use the shadow IPC service to interact with local shadows on a device. The device you choose to
interact with can be your core device or a connected client device.

Interact with local shadows 1546

AWS IoT Greengrass Developer Guide, Version 2

To use these IPC operations, include the shadow manager component as a dependency in your
custom component. You can then use IPC operations in your custom components to interact with
local shadows on your device through the shadow manager. To enable custom components to
react to changes in local shadow states, you can also use the publish/subscribe IPC service to
subscribe to shadow events. For more information about using the publish/subscribe service, see
the Publish/subscribe local messages.

Note

To enable a core device to interact with client device shadows, you must also configure and
deploy the MQTT bridge component. For more information, see Enable shadow manager to
communicate with client devices.

Topics

• Minimum SDK versions

• Authorization

• GetThingShadow

• UpdateThingShadow

• DeleteThingShadow

• ListNamedShadowsForThing

Minimum SDK versions

The following table lists the minimum versions of the AWS IoT Device SDK that you must use to
interact with local shadows.

SDK Minimum version

AWS IoT Device SDK for Java
v2

v1.4.0

AWS IoT Device SDK for
Python v2

v1.6.0

Minimum SDK versions 1547

https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2

AWS IoT Greengrass Developer Guide, Version 2

SDK Minimum version

AWS IoT Device SDK for C++
v2

v1.17.0

AWS IoT Device SDK for
JavaScript v2

v1.12.0

Authorization

To use the shadow IPC service in a custom component, you must define authorization policies that
allow your component to interact with shadows. For information about defining authorization
policies, see Authorize components to perform IPC operations.

Authorization policies for shadow interaction have the following properties.

IPC service identifier: aws.greengrass.ShadowManager

Operation Description Resources

aws.greengrass#Get
ThingShadow

Allows a component to
retrieve the shadow of a
thing.

One of the following strings:

• $aws/thin
gs/ thingName /
shadow/, to allow access to
the classic device shadow.

• $aws/thin
gs/ thingName
/shadow/n

ame/ shadowName , to
allow access to a named
shadow.

• * to allow access to all
shadows.

aws.greengrass#Upd
ateThingShadow

Allows a component to
update the shadow of a thing.

One of the following strings:

Authorization 1548

https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2

AWS IoT Greengrass Developer Guide, Version 2

Operation Description Resources

• $aws/thin
gs/ thingName /
shadow/, to allow access to
the classic device shadow.

• $aws/thin
gs/ thingName
/shadow/n

ame/ shadowName , to
allow access to a named
shadow.

• * to allow access to all
shadows.

aws.greengrass#Del
eteThingShadow

Allows a component to delete
the shadow of a thing.

One of the following strings:

• $aws/thin
gs/ thingName /
shadow/, to allow access to
the classic device shadow

• $aws/thin
gs/ thingName
/shadow/n

ame/ shadowName , to
allow access to a named
shadow

• *, to allow access to all
shadows.

aws.greengrass#Lis
tNamedShadowsForTh
ing

Allows a component to
retrieve the list of named
shadows for a thing.

A thing name string that
allows access to the thing to
list its shadows.

Use * to allow access to all
things.

Authorization 1549

AWS IoT Greengrass Developer Guide, Version 2

IPC service identifier: aws.greengrass.ipc.pubsub

Operation Description Resources

aws.greengrass#Sub
scribeToTopic

Allows a component to
subscribe to messages for the
topics that you specify.

One of the following topic
strings:

• shadowTopicPrefix /
get/accepted

• shadowTopicPrefix /
get/rejected

• shadowTopicPrefix /
delete/accepted

• shadowTopicPrefix /
delete/rejected

• shadowTopicPrefix /
update/accepted

• shadowTopicPrefix /
update/delta

• shadowTopicPrefix /
update/rejected

The value of the topic prefix
shadowTopicPrefix
depends on the type of
shadow:

• Classic shadow: $aws/thin
gs/ thingName /shadow

• Named shadow: $aws/
things/ thingName
/shadow/n

ame/ shadowName

Authorization 1550

AWS IoT Greengrass Developer Guide, Version 2

Operation Description Resources

Use * to allow access to all
topics.

In Greengrass nucleus v2.6.0
and later, you can subscribe
to topics that contain MQTT
topic wildcards (# and +). This
topic string supports MQTT
topic wildcards as literal
characters. For example, if a
component's authorization
policy grants access to test/
topic/# , the component
can subscribe to test/topi
c/# , but it can't subscribe to
test/topic/filter .

Recipe variables in local shadow authorization policies

If you use v2.6.0 or later of the Greengrass nucleus, and you set the Greengrass nucleus'
interpolateComponentConfiguration configuration option to true, you can use the
{iot:thingName} recipe variable in authorization policies. This feature enables you to configure
a single authorization policy for a group of core devices, where each core device can access only its
own shadow. For example, you can allow a component access to the following resource for shadow
IPC operations.

$aws/things/{iot:thingName}/shadow/

Authorization policy examples

You can reference the following authorization policy examples to help you configure authorization
policies for your components.

Authorization 1551

AWS IoT Greengrass Developer Guide, Version 2

Example Example: Allow a group of core devices to interact with local shadows

Important

This example uses a feature that is available for v2.6.0 and later of the Greengrass nucleus
component. Greengrass nucleus v2.6.0 adds support for most recipe variables, such
as {iot:thingName}, in component configurations. To enable this feature, set the
Greengrass nucleus' interpolateComponentConfiguration configuration option to true.
For an example that works for all versions of the Greengrass nucleus, see the example
authorization policy for a single core device.

The following example authorization policy allows the component
com.example.MyShadowInteractionComponent to interact with the classic device shadow and
the named shadow myNamedShadow for the core device that runs the component. This policy also
allows this component to receive messages on local topics for these shadows.

JSON

{
 "accessControl": {
 "aws.greengrass.ShadowManager": {
 "com.example.MyShadowInteractionComponent:shadow:1": {
 "policyDescription": "Allows access to shadows",
 "operations": [
 "aws.greengrass#GetThingShadow",
 "aws.greengrass#UpdateThingShadow",
 "aws.greengrass#DeleteThingShadow"
],
 "resources": [
 "$aws/things/{iot:thingName}/shadow",
 "$aws/things/{iot:thingName}/shadow/name/myNamedShadow"
]
 },
 "com.example.MyShadowInteractionComponent:shadow:2": {
 "policyDescription": "Allows access to things with shadows",
 "operations": [
 "aws.greengrass#ListNamedShadowsForThing"
],
 "resources": [
 "{iot:thingName}"

Authorization 1552

AWS IoT Greengrass Developer Guide, Version 2

]
 }
 },
 "aws.greengrass.ipc.pubsub": {
 "com.example.MyShadowInteractionComponent:pubsub:1": {
 "policyDescription": "Allows access to shadow pubsub topics",
 "operations": [
 "aws.greengrass#SubscribeToTopic"
],
 "resources": [
 "$aws/things/{iot:thingName}/shadow/get/accepted",
 "$aws/things/{iot:thingName}/shadow/name/myNamedShadow/get/accepted"
]
 }
 }
 }
}

YAML

accessControl:
 aws.greengrass.ShadowManager:
 'com.example.MyShadowInteractionComponent:shadow:1':
 policyDescription: 'Allows access to shadows'
 operations:
 - 'aws.greengrass#GetThingShadow'
 - 'aws.greengrass#UpdateThingShadow'
 - 'aws.greengrass#DeleteThingShadow'
 resources:
 - $aws/things/{iot:thingName}/shadow
 - $aws/things/{iot:thingName}/shadow/name/myNamedShadow
 'com.example.MyShadowInteractionComponent:shadow:2':
 policyDescription: 'Allows access to things with shadows'
 operations:
 - 'aws.greengrass#ListNamedShadowsForThing'
 resources:
 - '{iot:thingName}'
 aws.greengrass.ipc.pubsub:
 'com.example.MyShadowInteractionComponent:pubsub:1':
 policyDescription: 'Allows access to shadow pubsub topics'
 operations:
 - 'aws.greengrass#SubscribeToTopic'
 resources:

Authorization 1553

AWS IoT Greengrass Developer Guide, Version 2

 - $aws/things/{iot:thingName}/shadow/get/accepted
 - $aws/things/{iot:thingName}/shadow/name/myNamedShadow/get/accepted

Example Example: Allow a group of core devices to interact with client device shadows

Important

This feature requires Greengrass nucleus v2.6.0 or later, shadow manager v2.2.0 or later,
and MQTT bridge v2.2.0 or later. You must configure MQTT bridge to enable shadow
manager to communicate with client devices.

The following example authorization policy allows the component
com.example.MyShadowInteractionComponent to interact with all device shadows for client
devices whose names start with MyClientDevice.

Note

To enable a core device to interact with client device shadows, you must also configure and
deploy the MQTT bridge component. For more information, see Enable shadow manager to
communicate with client devices.

JSON

{
 "accessControl": {
 "aws.greengrass.ShadowManager": {
 "com.example.MyShadowInteractionComponent:shadow:1": {
 "policyDescription": "Allows access to shadows",
 "operations": [
 "aws.greengrass#GetThingShadow",
 "aws.greengrass#UpdateThingShadow",
 "aws.greengrass#DeleteThingShadow"
],
 "resources": [
 "$aws/things/MyClientDevice*/shadow",
 "$aws/things/MyClientDevice*/shadow/name/*"
]

Authorization 1554

AWS IoT Greengrass Developer Guide, Version 2

 },
 "com.example.MyShadowInteractionComponent:shadow:2": {
 "policyDescription": "Allows access to things with shadows",
 "operations": [
 "aws.greengrass#ListNamedShadowsForThing"
],
 "resources": [
 "MyClientDevice*"
]
 }
 }
 }
}

YAML

accessControl:
 aws.greengrass.ShadowManager:
 'com.example.MyShadowInteractionComponent:shadow:1':
 policyDescription: 'Allows access to shadows'
 operations:
 - 'aws.greengrass#GetThingShadow'
 - 'aws.greengrass#UpdateThingShadow'
 - 'aws.greengrass#DeleteThingShadow'
 resources:
 - $aws/things/MyClientDevice*/shadow
 - $aws/things/MyClientDevice*/shadow/name/*
 'com.example.MyShadowInteractionComponent:shadow:2':
 policyDescription: 'Allows access to things with shadows'
 operations:
 - 'aws.greengrass#ListNamedShadowsForThing'
 resources:
 - MyClientDevice*

Example Example: Allow a single core device to interact with local shadows

The following example authorization policy allows the component
com.example.MyShadowInteractionComponent to interact with the classic device shadow
and the named shadow myNamedShadow for the device MyThingName. This policy also allows this
component to receive messages on local topics for these shadows.

Authorization 1555

AWS IoT Greengrass Developer Guide, Version 2

JSON

{
 "accessControl": {
 "aws.greengrass.ShadowManager": {
 "com.example.MyShadowInteractionComponent:shadow:1": {
 "policyDescription": "Allows access to shadows",
 "operations": [
 "aws.greengrass#GetThingShadow",
 "aws.greengrass#UpdateThingShadow",
 "aws.greengrass#DeleteThingShadow"
],
 "resources": [
 "$aws/things/MyThingName/shadow",
 "$aws/things/MyThingName/shadow/name/myNamedShadow"
]
 },
 "com.example.MyShadowInteractionComponent:shadow:2": {
 "policyDescription": "Allows access to things with shadows",
 "operations": [
 "aws.greengrass#ListNamedShadowsForThing"
],
 "resources": [
 "MyThingName"
]
 }
 },
 "aws.greengrass.ipc.pubsub": {
 "com.example.MyShadowInteractionComponent:pubsub:1": {
 "policyDescription": "Allows access to shadow pubsub topics",
 "operations": [
 "aws.greengrass#SubscribeToTopic"
],
 "resources": [
 "$aws/things/MyThingName/shadow/get/accepted",
 "$aws/things/MyThingName/shadow/name/myNamedShadow/get/accepted"
]
 }
 }
 }
}

Authorization 1556

AWS IoT Greengrass Developer Guide, Version 2

YAML

accessControl:
 aws.greengrass.ShadowManager:
 'com.example.MyShadowInteractionComponent:shadow:1':
 policyDescription: 'Allows access to shadows'
 operations:
 - 'aws.greengrass#GetThingShadow'
 - 'aws.greengrass#UpdateThingShadow'
 - 'aws.greengrass#DeleteThingShadow'
 resources:
 - $aws/things/MyThingName/shadow
 - $aws/things/MyThingName/shadow/name/myNamedShadow
 'com.example.MyShadowInteractionComponent:shadow:2':
 policyDescription: 'Allows access to things with shadows'
 operations:
 - 'aws.greengrass#ListNamedShadowsForThing'
 resources:
 - MyThingName
 aws.greengrass.ipc.pubsub:
 'com.example.MyShadowInteractionComponent:pubsub:1':
 policyDescription: 'Allows access to shadow pubsub topics'
 operations:
 - 'aws.greengrass#SubscribeToTopic'
 resources:
 - $aws/things/MyThingName/shadow/get/accepted
 - $aws/things/MyThingName/shadow/name/myNamedShadow/get/accepted

Example Example: Allow a group of core devices to react to local shadow state changes

Important

This example uses a feature that is available for v2.6.0 and later of the Greengrass nucleus
component. Greengrass nucleus v2.6.0 adds support for most recipe variables, such
as {iot:thingName}, in component configurations. To enable this feature, set the
Greengrass nucleus' interpolateComponentConfiguration configuration option to true.
For an example that works for all versions of the Greengrass nucleus, see the example
authorization policy for a single core device.

Authorization 1557

AWS IoT Greengrass Developer Guide, Version 2

The following example access control policy allows the custom
com.example.MyShadowReactiveComponent to receive messages on the /update/delta
topic for the classic device shadow and the named shadow myNamedShadow on each core device
that runs the component.

JSON

{
 "accessControl": {
 "aws.greengrass.ipc.pubsub": {
 "com.example.MyShadowReactiveComponent:pubsub:1": {
 "policyDescription": "Allows access to shadow pubsub topics",
 "operations": [
 "aws.greengrass#SubscribeToTopic"
],
 "resources": [
 "$aws/things/{iot:thingName}/shadow/update/delta",
 "$aws/things/{iot:thingName}/shadow/name/myNamedShadow/update/delta"
]
 }
 }
 }
}

YAML

accessControl:
 aws.greengrass.ipc.pubsub:
 "com.example.MyShadowReactiveComponent:pubsub:1":
 policyDescription: Allows access to shadow pubsub topics
 operations:
 - 'aws.greengrass#SubscribeToTopic'
 resources:
 - $aws/things/{iot:thingName}/shadow/update/delta
 - $aws/things/{iot:thingName}/shadow/name/myNamedShadow/update/delta

Example Example: Allow a single core device to react to local shadow state changes

The following example access control policy allows the custom
com.example.MyShadowReactiveComponent to receive messages on the /update/delta

Authorization 1558

AWS IoT Greengrass Developer Guide, Version 2

topic for the classic device shadow and the named shadow myNamedShadow for the device
MyThingName.

JSON

{
 "accessControl": {
 "aws.greengrass.ipc.pubsub": {
 "com.example.MyShadowReactiveComponent:pubsub:1": {
 "policyDescription": "Allows access to shadow pubsub topics",
 "operations": [
 "aws.greengrass#SubscribeToTopic"
],
 "resources": [
 "$aws/things/MyThingName/shadow/update/delta",
 "$aws/things/MyThingName/shadow/name/myNamedShadow/update/delta"
]
 }
 }
 }
}

YAML

accessControl:
 aws.greengrass.ipc.pubsub:
 "com.example.MyShadowReactiveComponent:pubsub:1":
 policyDescription: Allows access to shadow pubsub topics
 operations:
 - 'aws.greengrass#SubscribeToTopic'
 resources:
 - $aws/things/MyThingName/shadow/update/delta
 - $aws/things/MyThingName/shadow/name/myNamedShadow/update/delta

GetThingShadow

Get the shadow for a specified thing.

Request

This operation's request has the following parameters:

GetThingShadow 1559

AWS IoT Greengrass Developer Guide, Version 2

thingName (Python: thing_name)

The name of the thing.

Type: string

shadowName (Python: shadow_name)

The name of the shadow. To specify the thing's classic shadow, set this parameter to an empty
string ("").

Warning

The AWS IoT Greengrass service uses the AWSManagedGreengrassV2Deployment
named shadow to manage deployments that target individual core devices. This named
shadow is reserved for use by the AWS IoT Greengrass service. Do not update or delete
this named shadow.

Type: string

Response

This operation's response has the following information:

payload

The response state document as a blob.

Type: object that contains the following information:

state

The state information.

This object contains the following information.

desired

The state properties and values requested to be updated in the device.

Type: map of key-value pairs

GetThingShadow 1560

AWS IoT Greengrass Developer Guide, Version 2

reported

The state properties and values reported by the device.

Type: map of key-value pairs

delta

The difference between the desired and reported state properties and values. This
property is present only if the desired and reported states are different.

Type: map of key-value pairs

metadata

The timestamps for each attribute in the desired and reported sections so that you can
determine when the state was updated.

Type: string

timestamp

The epoch date and time that the response was generated.

Type: integer

clientToken (Python: clientToken)

The token that is used to match the request and corresponding response

Type: string

version

The version of the local shadow document.

Type: integer

Errors

This operation can return the following errors.

InvalidArgumentsError

The local shadow service is unable to validate the request parameters. This can occur if the
request contains malformed JSON or unsupported characters.

GetThingShadow 1561

AWS IoT Greengrass Developer Guide, Version 2

ResourceNotFoundError

The requested local shadow document can't be found.

ServiceError

An internal service error occurred, or the number of requests to the IPC service
exceeded the limits specified in the maxLocalRequestsPerSecondPerThing and
maxTotalLocalRequestsRate configuration parameters in the shadow manager component.

UnauthorizedError

The component's authorization policy doesn't include required permissions for this operation.

Examples

The following examples demonstrate how to call this operation in custom component code.

Java (IPC client V1)

Example Example: Get a thing shadow

Note

This example uses an IPCUtils class to create a connection to the AWS IoT Greengrass
Core IPC service. For more information, see Connect to the AWS IoT Greengrass Core IPC
service.

package com.aws.greengrass.docs.samples.ipc;

import com.aws.greengrass.docs.samples.ipc.util.IPCUtils;
import software.amazon.awssdk.aws.greengrass.GetThingShadowResponseHandler;
import software.amazon.awssdk.aws.greengrass.GreengrassCoreIPCClient;
import software.amazon.awssdk.aws.greengrass.model.GetThingShadowRequest;
import software.amazon.awssdk.aws.greengrass.model.GetThingShadowResponse;
import software.amazon.awssdk.aws.greengrass.model.ResourceNotFoundError;
import software.amazon.awssdk.aws.greengrass.model.UnauthorizedError;
import software.amazon.awssdk.eventstreamrpc.EventStreamRPCConnection;

import java.nio.charset.StandardCharsets;
import java.util.Optional;
import java.util.concurrent.CompletableFuture;

GetThingShadow 1562

AWS IoT Greengrass Developer Guide, Version 2

import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class GetThingShadow {

 public static final int TIMEOUT_SECONDS = 10;

 public static void main(String[] args) {
 // Use the current core device's name if thing name isn't set.
 String thingName = args[0].isEmpty() ? System.getenv("AWS_IOT_THING_NAME") :
 args[0];
 String shadowName = args[1];
 try (EventStreamRPCConnection eventStreamRPCConnection =
 IPCUtils.getEventStreamRpcConnection()) {
 GreengrassCoreIPCClient ipcClient =
 new GreengrassCoreIPCClient(eventStreamRPCConnection);
 GetThingShadowResponseHandler responseHandler =
 GetThingShadow.getThingShadow(ipcClient, thingName,
 shadowName);
 CompletableFuture<GetThingShadowResponse> futureResponse =
 responseHandler.getResponse();
 try {
 GetThingShadowResponse response =
 futureResponse.get(TIMEOUT_SECONDS,
 TimeUnit.SECONDS);
 String shadowPayload = new String(response.getPayload(),
 StandardCharsets.UTF_8);
 System.out.printf("Successfully got shadow %s/%s: %s%n", thingName,
 shadowName,
 shadowPayload);
 } catch (TimeoutException e) {
 System.err.printf("Timeout occurred while getting shadow: %s/%s%n",
 thingName,
 shadowName);
 } catch (ExecutionException e) {
 if (e.getCause() instanceof UnauthorizedError) {
 System.err.printf("Unauthorized error while getting shadow: %s/
%s%n",
 thingName, shadowName);
 } else if (e.getCause() instanceof ResourceNotFoundError) {
 System.err.printf("Unable to find shadow to get: %s/%s%n",
 thingName,
 shadowName);

GetThingShadow 1563

AWS IoT Greengrass Developer Guide, Version 2

 } else {
 throw e;
 }
 }
 } catch (InterruptedException e) {
 System.out.println("IPC interrupted.");
 } catch (ExecutionException e) {
 System.err.println("Exception occurred when using IPC.");
 e.printStackTrace();
 System.exit(1);
 }
 }

 public static GetThingShadowResponseHandler
 getThingShadow(GreengrassCoreIPCClient greengrassCoreIPCClient, String thingName,
 String shadowName) {
 GetThingShadowRequest getThingShadowRequest = new GetThingShadowRequest();
 getThingShadowRequest.setThingName(thingName);
 getThingShadowRequest.setShadowName(shadowName);
 return greengrassCoreIPCClient.getThingShadow(getThingShadowRequest,
 Optional.empty());
 }
}

Python (IPC client V1)

Example Example: Get a thing shadow

import awsiot.greengrasscoreipc
import awsiot.greengrasscoreipc.client as client
from awsiot.greengrasscoreipc.model import GetThingShadowRequest

TIMEOUT = 10

def sample_get_thing_shadow_request(thingName, shadowName):
 try:
 # set up IPC client to connect to the IPC server
 ipc_client = awsiot.greengrasscoreipc.connect()

 # create the GetThingShadow request
 get_thing_shadow_request = GetThingShadowRequest()
 get_thing_shadow_request.thing_name = thingName
 get_thing_shadow_request.shadow_name = shadowName

GetThingShadow 1564

AWS IoT Greengrass Developer Guide, Version 2

 # retrieve the GetThingShadow response after sending the request to the IPC
 server
 op = ipc_client.new_get_thing_shadow()
 op.activate(get_thing_shadow_request)
 fut = op.get_response()

 result = fut.result(TIMEOUT)
 return result.payload

 except InvalidArgumentsError as e:
 # add error handling
 ...
 # except ResourceNotFoundError | UnauthorizedError | ServiceError

JavaScript

Example Example: Get a thing shadow

import {
 GetThingShadowRequest
} from 'aws-iot-device-sdk-v2/dist/greengrasscoreipc/model';
import * as greengrasscoreipc from 'aws-iot-device-sdk-v2/dist/greengrasscoreipc';

class GetThingShadow {
 private ipcClient: greengrasscoreipc.Client;
 private thingName: string;
 private shadowName: string;

 constructor() {
 // Define args parameters here
 this.thingName = "<define_your_own_thingName>";
 this.shadowName = "<define_your_own_shadowName>";
 this.bootstrap();
 }

 async bootstrap() {
 try {
 this.ipcClient = await getIpcClient();
 } catch (err) {
 // parse the error depending on your use cases
 throw err
 }

GetThingShadow 1565

AWS IoT Greengrass Developer Guide, Version 2

 try {
 await this.handleGetThingShadowOperation(this.thingName,
 this.shadowName);
 } catch (err) {
 // parse the error depending on your use cases
 throw err
 }
 }

 async handleGetThingShadowOperation(
 thingName: string,
 shadowName: string
) {
 const request: GetThingShadowRequest = {
 thingName: thingName,
 shadowName: shadowName
 };
 const response = await this.ipcClient.getThingShadow(request);
 }
}

export async function getIpcClient() {
 try {
 const ipcClient = greengrasscoreipc.createClient();
 await ipcClient.connect()
 .catch(error => {
 // parse the error depending on your use cases
 throw error;
 });
 return ipcClient
 } catch (err) {
 // parse the error depending on your use caseså
 throw err
 }
}

const startScript = new GetThingShadow();

UpdateThingShadow

Update the shadow for the specified thing. If a shadow doesn't exist, one is created.

UpdateThingShadow 1566

AWS IoT Greengrass Developer Guide, Version 2

Request

This operation's request has the following parameters:

thingName (Python: thing_name)

The name of the thing.

Type: string

shadowName (Python: shadow_name)

The name of the shadow. To specify the thing's classic shadow, set this parameter to an empty
string ("").

Warning

The AWS IoT Greengrass service uses the AWSManagedGreengrassV2Deployment
named shadow to manage deployments that target individual core devices. This named
shadow is reserved for use by the AWS IoT Greengrass service. Do not update or delete
this named shadow.

Type: string

payload

The request state document as a blob.

Type: object that contains the following information:

state

The state information to update. This IPC operation affects only the specified fields.

This object contains the following information. Typically, you'll use either the desired
property or the reported property, but not both in the same request.

desired

The state properties and values requested to be updated in the device.

Type: map of key-value pairs

UpdateThingShadow 1567

AWS IoT Greengrass Developer Guide, Version 2

reported

The state properties and values reported by the device.

Type: map of key-value pairs

clientToken (Python: client_token)

(Optional) The token that is used to match the request and corresponding response by the
client token.

Type: string

version

(Optional) The version of the local shadow document to update. The shadow service
processes the update only if the specified version matches the latest version that it has.

Type: integer

Response

This operation's response has the following information:

payload

The response state document as a blob.

Type: object that contains the following information:

state

The state information.

This object contains the following information.

desired

The state properties and values requested to be updated in the device.

Type: map of key-value pairs

reported

The state properties and values reported by the device.

Type: map of key-value pairs

UpdateThingShadow 1568

AWS IoT Greengrass Developer Guide, Version 2

delta

The state properties and values reported by the device.

Type: map of key-value pairs

metadata

The timestamps for each attribute in the desired and reported sections so that you can
determine when the state was updated.

Type: string

timestamp

The epoch date and time that the response was generated.

Type: integer

clientToken (Python: client_token)

The token that is used to match the request and corresponding response.

Type: string

version

The version of local shadow document after the update is complete.

Type: integer

Errors

This operation can return the following errors.

ConflictError

The local shadow service encountered a version conflict during the update operation. This
occurs when the version in the request payload doesn't match the version in the latest available
local shadow document.

InvalidArgumentsError

The local shadow service is unable to validate the request parameters. This can occur if the
request contains malformed JSON or unsupported characters.

A valid payload has the following properties:

UpdateThingShadow 1569

AWS IoT Greengrass Developer Guide, Version 2

• The state node exists, and is an object that contains the desired or reported state
information.

• The desired and reported nodes are either objects or null. At least one of these objects
must contain valid state information.

• The depth of the desired and reported objects can't exceed eight nodes.

• The length of the clientToken value can't exceed 64 characters.

• The version value must be 1 or higher.

ServiceError

An internal service error occurred, or the number of requests to the IPC service
exceeded the limits specified in the maxLocalRequestsPerSecondPerThing and
maxTotalLocalRequestsRate configuration parameters in the shadow manager component.

UnauthorizedError

The component's authorization policy doesn't include required permissions for this operation.

Examples

The following examples demonstrate how to call this operation in custom component code.

Java (IPC client V1)

Example Example: Update a thing shadow

Note

This example uses an IPCUtils class to create a connection to the AWS IoT Greengrass
Core IPC service. For more information, see Connect to the AWS IoT Greengrass Core IPC
service.

package com.aws.greengrass.docs.samples.ipc;

import com.aws.greengrass.docs.samples.ipc.util.IPCUtils;
import software.amazon.awssdk.aws.greengrass.GreengrassCoreIPCClient;
import software.amazon.awssdk.aws.greengrass.UpdateThingShadowResponseHandler;
import software.amazon.awssdk.aws.greengrass.model.UnauthorizedError;
import software.amazon.awssdk.aws.greengrass.model.UpdateThingShadowRequest;

UpdateThingShadow 1570

AWS IoT Greengrass Developer Guide, Version 2

import software.amazon.awssdk.aws.greengrass.model.UpdateThingShadowResponse;
import software.amazon.awssdk.eventstreamrpc.EventStreamRPCConnection;

import java.nio.charset.StandardCharsets;
import java.util.Optional;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class UpdateThingShadow {

 public static final int TIMEOUT_SECONDS = 10;

 public static void main(String[] args) {
 // Use the current core device's name if thing name isn't set.
 String thingName = args[0].isEmpty() ? System.getenv("AWS_IOT_THING_NAME") :
 args[0];
 String shadowName = args[1];
 byte[] shadowPayload = args[2].getBytes(StandardCharsets.UTF_8);
 try (EventStreamRPCConnection eventStreamRPCConnection =
 IPCUtils.getEventStreamRpcConnection()) {
 GreengrassCoreIPCClient ipcClient =
 new GreengrassCoreIPCClient(eventStreamRPCConnection);
 UpdateThingShadowResponseHandler responseHandler =
 UpdateThingShadow.updateThingShadow(ipcClient, thingName,
 shadowName,
 shadowPayload);
 CompletableFuture<UpdateThingShadowResponse> futureResponse =
 responseHandler.getResponse();
 try {
 futureResponse.get(TIMEOUT_SECONDS, TimeUnit.SECONDS);
 System.out.printf("Successfully updated shadow: %s/%s%n", thingName,
 shadowName);
 } catch (TimeoutException e) {
 System.err.printf("Timeout occurred while updating shadow: %s/%s%n",
 thingName,
 shadowName);
 } catch (ExecutionException e) {
 if (e.getCause() instanceof UnauthorizedError) {
 System.err.printf("Unauthorized error while updating shadow: %s/
%s%n",
 thingName, shadowName);
 } else {

UpdateThingShadow 1571

AWS IoT Greengrass Developer Guide, Version 2

 throw e;
 }
 }
 } catch (InterruptedException e) {
 System.out.println("IPC interrupted.");
 } catch (ExecutionException e) {
 System.err.println("Exception occurred when using IPC.");
 e.printStackTrace();
 System.exit(1);
 }
 }

 public static UpdateThingShadowResponseHandler
 updateThingShadow(GreengrassCoreIPCClient greengrassCoreIPCClient, String
 thingName, String shadowName, byte[] shadowPayload) {
 UpdateThingShadowRequest updateThingShadowRequest = new
 UpdateThingShadowRequest();
 updateThingShadowRequest.setThingName(thingName);
 updateThingShadowRequest.setShadowName(shadowName);
 updateThingShadowRequest.setPayload(shadowPayload);
 return greengrassCoreIPCClient.updateThingShadow(updateThingShadowRequest,
 Optional.empty());
 }
}

Python (IPC client V1)

Example Example: Update a thing shadow

import awsiot.greengrasscoreipc
import awsiot.greengrasscoreipc.client as client
from awsiot.greengrasscoreipc.model import UpdateThingShadowRequest

TIMEOUT = 10

def sample_update_thing_shadow_request(thingName, shadowName, payload):
 try:
 # set up IPC client to connect to the IPC server
 ipc_client = awsiot.greengrasscoreipc.connect()

 # create the UpdateThingShadow request
 update_thing_shadow_request = UpdateThingShadowRequest()
 update_thing_shadow_request.thing_name = thingName
 update_thing_shadow_request.shadow_name = shadowName

UpdateThingShadow 1572

AWS IoT Greengrass Developer Guide, Version 2

 update_thing_shadow_request.payload = payload

 # retrieve the UpdateThingShadow response after sending the request to the
 IPC server
 op = ipc_client.new_update_thing_shadow()
 op.activate(update_thing_shadow_request)
 fut = op.get_response()

 result = fut.result(TIMEOUT)
 return result.payload

 except InvalidArgumentsError as e:
 # add error handling
 ...
 # except ConflictError | UnauthorizedError | ServiceError

JavaScript

Example Example: Update a thing shadow

import {
 UpdateThingShadowRequest
} from 'aws-iot-device-sdk-v2/dist/greengrasscoreipc/model';
import * as greengrasscoreipc from 'aws-iot-device-sdk-v2/dist/greengrasscoreipc';

class UpdateThingShadow {
 private ipcClient: greengrasscoreipc.Client;
 private thingName: string;
 private shadowName: string;
 private shadowDocumentStr: string;

 constructor() {
 // Define args parameters here

 this.thingName = "<define_your_own_thingName>";
 this.shadowName = "<define_your_own_shadowName>";
 this.shadowDocumentStr = "<define_your_own_payload>";

 this.bootstrap();
 }

 async bootstrap() {
 try {
 this.ipcClient = await getIpcClient();

UpdateThingShadow 1573

AWS IoT Greengrass Developer Guide, Version 2

 } catch (err) {
 // parse the error depending on your use cases
 throw err
 }

 try {
 await this.handleUpdateThingShadowOperation(
 this.thingName,
 this.shadowName,
 this.shadowDocumentStr);
 } catch (err) {
 // parse the error depending on your use cases
 throw err
 }
 }

 async handleUpdateThingShadowOperation(
 thingName: string,
 shadowName: string,
 payloadStr: string
) {
 const request: UpdateThingShadowRequest = {
 thingName: thingName,
 shadowName: shadowName,
 payload: payloadStr
 }
 // make the UpdateThingShadow request
 const response = await this.ipcClient.updateThingShadow(request);
 }
}

export async function getIpcClient() {
 try {
 const ipcClient = greengrasscoreipc.createClient();
 await ipcClient.connect()
 .catch(error => {
 // parse the error depending on your use cases
 throw error;
 });
 return ipcClient
 } catch (err) {
 // parse the error depending on your use cases
 throw err
 }

UpdateThingShadow 1574

AWS IoT Greengrass Developer Guide, Version 2

}

const startScript = new UpdateThingShadow();

DeleteThingShadow

Deletes the shadow for the specified thing.

Beginning in shadow manager v2.0.4, deleting a shadow increments the version number. For
example, when you delete the shadow MyThingShadow at version 1, the version of the deleted
shadow is 2. If you then recreate a shadow with the name MyThingShadow, the version for that
shadow is 3.

Request

This operation's request has the following parameters:

thingName (Python: thing_name)

The name of the thing.

Type: string

shadowName (Python: shadow_name)

The name of the shadow. To specify the thing's classic shadow, set this parameter to an empty
string ("").

Warning

The AWS IoT Greengrass service uses the AWSManagedGreengrassV2Deployment
named shadow to manage deployments that target individual core devices. This named
shadow is reserved for use by the AWS IoT Greengrass service. Do not update or delete
this named shadow.

Type: string

Response

This operation's response has the following information:

DeleteThingShadow 1575

AWS IoT Greengrass Developer Guide, Version 2

payload

An empty response state document.

Errors

This operation can return the following errors.

InvalidArgumentsError

The local shadow service is unable to validate the request parameters. This can occur if the
request contains malformed JSON or unsupported characters.

ResourceNotFoundError

The requested local shadow document can't be found.

ServiceError

An internal service error occurred, or the number of requests to the IPC service
exceeded the limits specified in the maxLocalRequestsPerSecondPerThing and
maxTotalLocalRequestsRate configuration parameters in the shadow manager component.

UnauthorizedError

The component's authorization policy doesn't include required permissions for this operation.

Examples

The following examples demonstrate how to call this operation in custom component code.

Java (IPC client V1)

Example Example: Delete a thing shadow

Note

This example uses an IPCUtils class to create a connection to the AWS IoT Greengrass
Core IPC service. For more information, see Connect to the AWS IoT Greengrass Core IPC
service.

DeleteThingShadow 1576

AWS IoT Greengrass Developer Guide, Version 2

package com.aws.greengrass.docs.samples.ipc;

import com.aws.greengrass.docs.samples.ipc.util.IPCUtils;
import software.amazon.awssdk.aws.greengrass.DeleteThingShadowResponseHandler;
import software.amazon.awssdk.aws.greengrass.GreengrassCoreIPCClient;
import software.amazon.awssdk.aws.greengrass.model.DeleteThingShadowRequest;
import software.amazon.awssdk.aws.greengrass.model.DeleteThingShadowResponse;
import software.amazon.awssdk.aws.greengrass.model.ResourceNotFoundError;
import software.amazon.awssdk.aws.greengrass.model.UnauthorizedError;
import software.amazon.awssdk.eventstreamrpc.EventStreamRPCConnection;

import java.util.Optional;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class DeleteThingShadow {

 public static final int TIMEOUT_SECONDS = 10;

 public static void main(String[] args) {
 // Use the current core device's name if thing name isn't set.
 String thingName = args[0].isEmpty() ? System.getenv("AWS_IOT_THING_NAME") :
 args[0];
 String shadowName = args[1];
 try (EventStreamRPCConnection eventStreamRPCConnection =
 IPCUtils.getEventStreamRpcConnection()) {
 GreengrassCoreIPCClient ipcClient =
 new GreengrassCoreIPCClient(eventStreamRPCConnection);
 DeleteThingShadowResponseHandler responseHandler =
 DeleteThingShadow.deleteThingShadow(ipcClient, thingName,
 shadowName);
 CompletableFuture<DeleteThingShadowResponse> futureResponse =
 responseHandler.getResponse();
 try {
 futureResponse.get(TIMEOUT_SECONDS, TimeUnit.SECONDS);
 System.out.printf("Successfully deleted shadow: %s/%s%n", thingName,
 shadowName);
 } catch (TimeoutException e) {
 System.err.printf("Timeout occurred while deleting shadow: %s/%s%n",
 thingName,
 shadowName);

DeleteThingShadow 1577

AWS IoT Greengrass Developer Guide, Version 2

 } catch (ExecutionException e) {
 if (e.getCause() instanceof UnauthorizedError) {
 System.err.printf("Unauthorized error while deleting shadow: %s/
%s%n",
 thingName, shadowName);
 } else if (e.getCause() instanceof ResourceNotFoundError) {
 System.err.printf("Unable to find shadow to delete: %s/%s%n",
 thingName,
 shadowName);
 } else {
 throw e;
 }
 }
 } catch (InterruptedException e) {
 System.out.println("IPC interrupted.");
 } catch (ExecutionException e) {
 System.err.println("Exception occurred when using IPC.");
 e.printStackTrace();
 System.exit(1);
 }
 }

 public static DeleteThingShadowResponseHandler
 deleteThingShadow(GreengrassCoreIPCClient greengrassCoreIPCClient, String
 thingName, String shadowName) {
 DeleteThingShadowRequest deleteThingShadowRequest = new
 DeleteThingShadowRequest();
 deleteThingShadowRequest.setThingName(thingName);
 deleteThingShadowRequest.setShadowName(shadowName);
 return greengrassCoreIPCClient.deleteThingShadow(deleteThingShadowRequest,
 Optional.empty());
 }
}

Python (IPC client V1)

Example Example: Delete a thing shadow

import awsiot.greengrasscoreipc
import awsiot.greengrasscoreipc.client as client
from awsiot.greengrasscoreipc.model import DeleteThingShadowRequest

TIMEOUT = 10

DeleteThingShadow 1578

AWS IoT Greengrass Developer Guide, Version 2

def sample_delete_thing_shadow_request(thingName, shadowName):
 try:
 # set up IPC client to connect to the IPC server
 ipc_client = awsiot.greengrasscoreipc.connect()

 # create the DeleteThingShadow request
 delete_thing_shadow_request = DeleteThingShadowRequest()
 delete_thing_shadow_request.thing_name = thingName
 delete_thing_shadow_request.shadow_name = shadowName

 # retrieve the DeleteThingShadow response after sending the request to the
 IPC server
 op = ipc_client.new_delete_thing_shadow()
 op.activate(delete_thing_shadow_request)
 fut = op.get_response()

 result = fut.result(TIMEOUT)
 return result.payload

 except InvalidArgumentsError as e:
 # add error handling
 ...
 # except ResourceNotFoundError | UnauthorizedError | ServiceError

JavaScript

Example Example: Delete a thing shadow

import {
 DeleteThingShadowRequest
} from 'aws-iot-device-sdk-v2/dist/greengrasscoreipc/model';
import * as greengrasscoreipc from 'aws-iot-device-sdk-v2/dist/greengrasscoreipc';

class DeleteThingShadow {
 private ipcClient: greengrasscoreipc.Client;
 private thingName: string;
 private shadowName: string;

 constructor() {
 // Define args parameters here
 this.thingName = "<define_your_own_thingName>";
 this.shadowName = "<define_your_own_shadowName>";
 this.bootstrap();
 }

DeleteThingShadow 1579

AWS IoT Greengrass Developer Guide, Version 2

 async bootstrap() {
 try {
 this.ipcClient = await getIpcClient();
 } catch (err) {
 // parse the error depending on your use cases
 throw err
 }

 try {
 await this.handleDeleteThingShadowOperation(this.thingName,
 this.shadowName)
 } catch (err) {
 // parse the error depending on your use cases
 throw err
 }
 }

 async handleDeleteThingShadowOperation(thingName: string, shadowName: string) {
 const request: DeleteThingShadowRequest = {
 thingName: thingName,
 shadowName: shadowName
 }
 // make the DeleteThingShadow request
 const response = await this.ipcClient.deleteThingShadow(request);
 }
}

export async function getIpcClient() {
 try {
 const ipcClient = greengrasscoreipc.createClient();
 await ipcClient.connect()
 .catch(error => {
 // parse the error depending on your use cases
 throw error;
 });
 return ipcClient
 } catch (err) {
 // parse the error depending on your use cases
 throw err
 }
}

DeleteThingShadow 1580

AWS IoT Greengrass Developer Guide, Version 2

const startScript = new DeleteThingShadow();

ListNamedShadowsForThing

List the named shadows for the specified thing.

Request

This operation's request has the following parameters:

thingName (Python: thing_name)

The name of the thing.

Type: string

pageSize (Python: page_size)

(Optional) The number of shadow names to return in each call.

Type: integer

Default: 25

Maximum: 100

nextToken (Python: next_token)

(Optional) The token to retrieve the next set of results. This value is returned on paged results
and is used in the call that returns the next page.

Type: string

Response

This operation's response has the following information:

results

The list of shadow names.

ListNamedShadowsForThing 1581

AWS IoT Greengrass Developer Guide, Version 2

Type: array

timestamp

(Optional) The date and time that the response was generated.

Type: integer

nextToken (Python: next_token)

(Optional) The token value to use in paged requests to retrieve the next page in the sequence.
This token isn't present when there are no more shadow names to return.

Type: string

Note

If the requested page size exactly matches the number of shadow names in the
response, then this token is present; however, when used, it returns an empty list.

Errors

This operation can return the following errors.

InvalidArgumentsError

The local shadow service is unable to validate the request parameters. This can occur if the
request contains malformed JSON or unsupported characters.

ResourceNotFoundError

The requested local shadow document can't be found.

ServiceError

An internal service error occurred, or the number of requests to the IPC service
exceeded the limits specified in the maxLocalRequestsPerSecondPerThing and
maxTotalLocalRequestsRate configuration parameters in the shadow manager component.

UnauthorizedError

The component's authorization policy doesn't include required permissions for this operation.

ListNamedShadowsForThing 1582

AWS IoT Greengrass Developer Guide, Version 2

Examples

The following examples demonstrate how to call this operation in custom component code.

Java (IPC client V1)

Example Example: List a thing's named shadows

Note

This example uses an IPCUtils class to create a connection to the AWS IoT Greengrass
Core IPC service. For more information, see Connect to the AWS IoT Greengrass Core IPC
service.

package com.aws.greengrass.docs.samples.ipc;

import com.aws.greengrass.docs.samples.ipc.util.IPCUtils;
import software.amazon.awssdk.aws.greengrass.GreengrassCoreIPCClient;
import
 software.amazon.awssdk.aws.greengrass.ListNamedShadowsForThingResponseHandler;
import software.amazon.awssdk.aws.greengrass.model.ListNamedShadowsForThingRequest;
import
 software.amazon.awssdk.aws.greengrass.model.ListNamedShadowsForThingResponse;
import software.amazon.awssdk.aws.greengrass.model.ResourceNotFoundError;
import software.amazon.awssdk.aws.greengrass.model.UnauthorizedError;
import software.amazon.awssdk.eventstreamrpc.EventStreamRPCConnection;

import java.util.ArrayList;
import java.util.List;
import java.util.Optional;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class ListNamedShadowsForThing {

 public static final int TIMEOUT_SECONDS = 10;

 public static void main(String[] args) {
 // Use the current core device's name if thing name isn't set.

ListNamedShadowsForThing 1583

AWS IoT Greengrass Developer Guide, Version 2

 String thingName = args[0].isEmpty() ? System.getenv("AWS_IOT_THING_NAME") :
 args[0];
 try (EventStreamRPCConnection eventStreamRPCConnection =
 IPCUtils.getEventStreamRpcConnection()) {
 GreengrassCoreIPCClient ipcClient =
 new GreengrassCoreIPCClient(eventStreamRPCConnection);
 List<String> namedShadows = new ArrayList<>();
 String nextToken = null;
 try {
 // Send additional requests until there's no pagination token in the
 response.
 do {
 ListNamedShadowsForThingResponseHandler responseHandler =

 ListNamedShadowsForThing.listNamedShadowsForThing(ipcClient, thingName,
 nextToken, 25);
 CompletableFuture<ListNamedShadowsForThingResponse>
 futureResponse =
 responseHandler.getResponse();
 ListNamedShadowsForThingResponse response =
 futureResponse.get(TIMEOUT_SECONDS, TimeUnit.SECONDS);
 List<String> responseNamedShadows = response.getResults();
 namedShadows.addAll(responseNamedShadows);
 nextToken = response.getNextToken();
 } while (nextToken != null);
 System.out.printf("Successfully got named shadows for thing %s: %s
%n", thingName,
 String.join(",", namedShadows));
 } catch (TimeoutException e) {
 System.err.println("Timeout occurred while listing named shadows for
 thing: " + thingName);
 } catch (ExecutionException e) {
 if (e.getCause() instanceof UnauthorizedError) {
 System.err.println("Unauthorized error while listing named
 shadows for " +
 "thing: " + thingName);
 } else if (e.getCause() instanceof ResourceNotFoundError) {
 System.err.println("Unable to find thing to list named shadows:
 " + thingName);
 } else {
 throw e;
 }
 }
 } catch (InterruptedException e) {

ListNamedShadowsForThing 1584

AWS IoT Greengrass Developer Guide, Version 2

 System.out.println("IPC interrupted.");
 } catch (ExecutionException e) {
 System.err.println("Exception occurred when using IPC.");
 e.printStackTrace();
 System.exit(1);
 }
 }

 public static ListNamedShadowsForThingResponseHandler
 listNamedShadowsForThing(GreengrassCoreIPCClient greengrassCoreIPCClient, String
 thingName, String nextToken, int pageSize) {
 ListNamedShadowsForThingRequest listNamedShadowsForThingRequest =
 new ListNamedShadowsForThingRequest();
 listNamedShadowsForThingRequest.setThingName(thingName);
 listNamedShadowsForThingRequest.setNextToken(nextToken);
 listNamedShadowsForThingRequest.setPageSize(pageSize);
 return
 greengrassCoreIPCClient.listNamedShadowsForThing(listNamedShadowsForThingRequest,
 Optional.empty());
 }
}

Python (IPC client V1)

Example Example: List a thing's named shadows

import awsiot.greengrasscoreipc
import awsiot.greengrasscoreipc.client as client
from awsiot.greengrasscoreipc.model import ListNamedShadowsForThingRequest

TIMEOUT = 10

def sample_list_named_shadows_for_thing_request(thingName, nextToken, pageSize):
 try:
 # set up IPC client to connect to the IPC server
 ipc_client = awsiot.greengrasscoreipc.connect()

 # create the ListNamedShadowsForThingRequest request
 list_named_shadows_for_thing_request = ListNamedShadowsForThingRequest()
 list_named_shadows_for_thing_request.thing_name = thingName
 list_named_shadows_for_thing_request.next_token = nextToken
 list_named_shadows_for_thing_request.page_size = pageSize

ListNamedShadowsForThing 1585

AWS IoT Greengrass Developer Guide, Version 2

 # retrieve the ListNamedShadowsForThingRequest response after sending the
 request to the IPC server
 op = ipc_client.new_list_named_shadows_for_thing()
 op.activate(list_named_shadows_for_thing_request)
 fut = op.get_response()

 list_result = fut.result(TIMEOUT)

 # additional returned fields
 timestamp = list_result.timestamp
 next_token = result.next_token
 named_shadow_list = list_result.results

 return named_shadow_list, next_token, timestamp

 except InvalidArgumentsError as e:
 # add error handling
 ...
 # except ResourceNotFoundError | UnauthorizedError | ServiceError

JavaScript

Example Example: List a thing's named shadows

import {
 ListNamedShadowsForThingRequest
} from 'aws-iot-device-sdk-v2/dist/greengrasscoreipc/model';
import * as greengrasscoreipc from 'aws-iot-device-sdk-v2/dist/greengrasscoreipc';

class listNamedShadowsForThing {
 private ipcClient: greengrasscoreipc.Client;
 private thingName: string;
 private pageSizeStr: string;
 private nextToken: string;

 constructor() {
 // Define args parameters here
 this.thingName = "<define_your_own_thingName>";
 this.pageSizeStr = "<define_your_own_pageSize>";
 this.nextToken = "<define_your_own_token>";
 this.bootstrap();
 }

 async bootstrap() {

ListNamedShadowsForThing 1586

AWS IoT Greengrass Developer Guide, Version 2

 try {
 this.ipcClient = await getIpcClient();
 } catch (err) {
 // parse the error depending on your use cases
 throw err
 }

 try {
 await this.handleListNamedShadowsForThingOperation(this.thingName,
 this.nextToken, this.pageSizeStr);
 } catch (err) {
 // parse the error depending on your use cases
 throw err
 }
 }

 async handleListNamedShadowsForThingOperation(
 thingName: string,
 nextToken: string,
 pageSizeStr: string
) {
 let request: ListNamedShadowsForThingRequest = {
 thingName: thingName,
 nextToken: nextToken,
 };
 if (pageSizeStr) {
 request.pageSize = parseInt(pageSizeStr);
 }
 // make the ListNamedShadowsForThing request
 const response = await this.ipcClient.listNamedShadowsForThing(request);
 const shadowNames = response.results;
 }
}

export async function getIpcClient(){
 try {
 const ipcClient = greengrasscoreipc.createClient();
 await ipcClient.connect()
 .catch(error => {
 // parse the error depending on your use cases
 throw error;
 });
 return ipcClient
 } catch (err) {

ListNamedShadowsForThing 1587

AWS IoT Greengrass Developer Guide, Version 2

 // parse the error depending on your use cases
 throw err
 }
}

const startScript = new listNamedShadowsForThing();

Manage local deployments and components

Note

This feature is available for v2.6.0 and later of the Greengrass nucleus component.

Use the Greengrass CLI IPC service to manage local deployments and Greengrass components on
the core device.

To use these IPC operations, include version 2.6.0 or later of the Greengrass CLI component
as a dependency in your custom component. You can then use IPC operations in your custom
components to do the following:

• Create local deployments to modify and configure Greengrass components on the core device.

• Restart and stop Greengrass components on the core device.

• Generate a password that you can use to sign in to the local debug console.

Topics

• Minimum SDK versions

• Authorization

• CreateLocalDeployment

• ListLocalDeployments

• GetLocalDeploymentStatus

• ListComponents

• GetComponentDetails

• RestartComponent

• StopComponent

Manage local deployments and components 1588

AWS IoT Greengrass Developer Guide, Version 2

• CreateDebugPassword

Minimum SDK versions

The following table lists the minimum versions of the AWS IoT Device SDK that you must use to
interact with the Greengrass CLI IPC service.

SDK Minimum version

AWS IoT Device SDK for Java
v2

v1.2.10

AWS IoT Device SDK for
Python v2

v1.5.3

AWS IoT Device SDK for C++
v2

v1.17.0

AWS IoT Device SDK for
JavaScript v2

v1.12.0

Authorization

To use the Greengrass CLI IPC service in a custom component, you must define authorization
policies that allow your component to manage local deployments and components. For
information about defining authorization policies, see Authorize components to perform IPC
operations.

Authorization policies for the Greengrass CLI have the following properties.

IPC service identifier: aws.greengrass.Cli

Operation Description Resources

aws.greengrass#Cre
ateLocalDeployment

Allows a component to create
a local deployment on the
core device.

*

Minimum SDK versions 1589

https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2

AWS IoT Greengrass Developer Guide, Version 2

Operation Description Resources

aws.greengrass#Lis
tLocalDeployments

Allows a component to list
local deployments on the core
device.

*

aws.greengrass#Get
LocalDeploymentSta
tus

Allows a component to
get the status of a local
deployment on the core
device.

A local deployment ID, or *
to allow access to all local
deployments.

aws.greengrass#Lis
tComponents

Allows a component to list
components on the core
device.

*

aws.greengrass#Get
ComponentDetails

Allows a component to get
details about a component on
the core device.

A component name, such
as com.example.HelloW
orld , or * to allow access to
all components.

aws.greengrass#Res
tartComponent

Allows a component to
restart a component on the
core device.

A component name, such
as com.example.HelloW
orld , or * to allow access to
all components.

aws.greengrass#Sto
pComponent

Allows a component to stop
a component on the core
device.

A component name, such
as com.example.HelloW
orld , or * to allow access to
all components.

aws.greengrass#Cre
ateDebugPassword

Allows a component to
generate a password to use
to sign in to the local debug
console component.

*

Authorization 1590

AWS IoT Greengrass Developer Guide, Version 2

Example Example authorization policy

The following example authorization policies allow a component to create local deployments,
view all local deployments and components, and restart and stop a component named
com.example.HelloWorld.

{
 "accessControl": {
 "aws.greengrass.Cli": {
 "com.example.MyLocalManagerComponent:cli:1": {
 "policyDescription": "Allows access to create local deployments and view
 deployments and components.",
 "operations": [
 "aws.greengrass#CreateLocalDeployment",
 "aws.greengrass#ListLocalDeployments",
 "aws.greengrass#GetLocalDeploymentStatus",
 "aws.greengrass#ListComponents",
 "aws.greengrass#GetComponentDetails"
],
 "resources": [
 "*"
]
 }
 },
 "aws.greengrass.Cli": {
 "com.example.MyLocalManagerComponent:cli:2": {
 "policyDescription": "Allows access to restart and stop the Hello World
 component.",
 "operations": [
 "aws.greengrass#RestartComponent",
 "aws.greengrass#StopComponent"
],
 "resources": [
 "com.example.HelloWorld"
]
 }
 }
 }
}

Authorization 1591

AWS IoT Greengrass Developer Guide, Version 2

CreateLocalDeployment

Create or update a local deployment using specified component recipes, artifacts, and runtime
arguments.

This operation provides the same functionality as the deployment create command in the
Greengrass CLI.

Request

This operation's request has the following parameters:

recipeDirectoryPath (Python: recipe_directory_path)

(Optional) The absolute path to the folder that contains component recipe files.

artifactDirectoryPath (Python: artifact_directory_path)

(Optional) The absolute path to the folder that contains the artifact files to include in the
deployment. The artifacts folder must contain the following folder structure:

/path/to/artifact/folder/component-name/component-version/artifacts

rootComponentVersionsToAdd (Python: root_component_versions_to_add)

(Optional) The component versions to install on the core device. This object,
ComponentToVersionMap, is a map that contains the following key-value pairs:

key

The name of the component.

value

The version of the component.

rootComponentsToRemove (Python: root_components_to_remove)

(Optional) The components to uninstall from the core device. Specify a list where each entry is
the name of a component.

componentToConfiguration (Python: component_to_configuration)

(Optional) The configuration updates for each component in the deployment. This object,
ComponentToConfiguration, is a map that contains the following key-value pairs:

CreateLocalDeployment 1592

AWS IoT Greengrass Developer Guide, Version 2

key

The name of the component.

value

The configuration update JSON object for the component. The JSON object must have the
following format.

{
 "MERGE": {
 "config-key": "config-value"
 },
 "RESET": [
 "path/to/reset/"
]
}

For more information about configuration updates, see Update component configurations.

componentToRunWithInfo (Python: component_to_run_with_info)

(Optional) The runtime configuration for each component in the deployment. This configuration
includes the system user that owns each component's processes and the system limits to apply
to each component. This object, ComponentToRunWithInfo, is a map that contains the
following key-value pairs:

key

The name of the component.

value

The runtime configuration for the component. If you omit a runtime configuration
parameter, the AWS IoT Greengrass Core software uses the default values that you configure
on the Greengrass nucleus. This object, RunWithInfo, contains the following information:

posixUser (Python: posix_user)

(Optional) The POSIX system user and, optionally, group to use to run this component
on Linux core devices. The user, and group if specified, must exist on each Linux core
device. Specify the user and group separated by a colon (:) in the following format:
user:group. The group is optional. If you don't specify a group, the AWS IoT Greengrass

CreateLocalDeployment 1593

AWS IoT Greengrass Developer Guide, Version 2

Core software uses the primary group for the user. For more information, see Configure
the user that runs components.

windowsUser (Python: windows_user)

(Optional) The Windows user to use to run this component on Windows core devices. The
user must exist on each Windows core device, and its name and password must be stored
in the LocalSystem account's Credentials Manager instance. For more information, see
Configure the user that runs components.

systemResourceLimits (Python: system_resource_limits)

(Optional) The system resource limits to apply to this component's processes. You can
apply system resource limits to generic and non-containerized Lambda components. For
more information, see Configure system resource limits for components.

AWS IoT Greengrass doesn't currently support this feature on Windows core devices.

This object, SystemResourceLimits, contains the following information:

cpus

(Optional) The maximum amount of CPU time that this component's processes can
use on the core device. A core device's total CPU time is equivalent to the device's
number of CPU cores. For example, on a core device with 4 CPU cores, you can set this
value to 2 to limit this component's processes to 50 percent usage of each CPU core.
On a device with 1 CPU core, you can set this value to 0.25 to limit this component's
processes to 25 percent usage of the CPU. If you set this value to a number greater
than the number of CPU cores, the AWS IoT Greengrass Core software doesn't limit
the component's CPU usage.

memory

(Optional) The maximum amount of RAM (in kilobytes) that this component's
processes can use on the core device.

groupName (Python: group_name)

(Optional) The name of the thing group to target with this deployment.

Response

This operation's response has the following information:

CreateLocalDeployment 1594

AWS IoT Greengrass Developer Guide, Version 2

deploymentId (Python: deployment_id)

The ID of the local deployment that the request created.

ListLocalDeployments

Gets the status of the last 10 local deployments.

This operation provides the same functionality as the deployment list command in the Greengrass
CLI.

Request

This operation's request doesn't have any parameters.

Response

This operation's response has the following information:

localDeployments (Python: local_deployments)

The list of local deployments. Each object in this list is a LocalDeployment object, which
contains the following information:

deploymentId (Python: deployment_id)

The ID of the local deployment.

status

The status of the local deployment. This enum, DeploymentStatus, has the following
values:

• QUEUED

• IN_PROGRESS

• SUCCEEDED

• FAILED

GetLocalDeploymentStatus

Gets the status of a local deployment.

ListLocalDeployments 1595

AWS IoT Greengrass Developer Guide, Version 2

This operation provides the same functionality as the deployment status command in the
Greengrass CLI.

Request

This operation's request has the following parameters:

deploymentId (Python: deployment_id)

The ID of the local deployment to get.

Response

This operation's response has the following information:

deployment

The local deployment. This object, LocalDeployment, contains the following information:

deploymentId (Python: deployment_id)

The ID of the local deployment.

status

The status of the local deployment. This enum, DeploymentStatus, has the following
values:

• QUEUED

• IN_PROGRESS

• SUCCEEDED

• FAILED

ListComponents

Gets the name, version, status, and configuration of each root component on the core device. A
root component is a component that you specify in a deployment. This response doesn't include
components that are installed as dependencies of other components.

This operation provides the same functionality as the component list command in the Greengrass
CLI.

ListComponents 1596

AWS IoT Greengrass Developer Guide, Version 2

Request

This operation's request doesn't have any parameters.

Response

This operation's response has the following information:

components

The list of root components on the core device. Each object in this list is a ComponentDetails
object, which contains the following information:

componentName (Python: component_name)

The name of the component.

version

The version of the component.

state

The state of the component. This state can be one of the following:

• BROKEN

• ERRORED

• FINISHED

• INSTALLED

• NEW

• RUNNING

• STARTING

• STOPPING

configuration

The component's configuration as a JSON object.

GetComponentDetails

Gets the version, status, and configuration of a component on the core device.

GetComponentDetails 1597

AWS IoT Greengrass Developer Guide, Version 2

This operation provides the same functionality as the component details command in the
Greengrass CLI.

Request

This operation's request has the following parameters:

componentName (Python: component_name)

The name of the component to get.

Response

This operation's response has the following information:

componentDetails (Python: component_details)

The component's details. This object, ComponentDetails, contains the following information:

componentName (Python: component_name)

The name of the component.

version

The version of the component.

state

The state of the component. This state can be one of the following:

• BROKEN

• ERRORED

• FINISHED

• INSTALLED

• NEW

• RUNNING

• STARTING

• STOPPING

configuration

The component's configuration as a JSON object.

GetComponentDetails 1598

AWS IoT Greengrass Developer Guide, Version 2

RestartComponent

Restarts a component on the core device.

Note

While you can restart any component, we recommend that you restart only generic
components.

This operation provides the same functionality as the component restart command in the
Greengrass CLI.

Request

This operation's request has the following parameters:

componentName (Python: component_name)

The name of the component.

Response

This operation's response has the following information:

restartStatus (Python: restart_status)

The status of the restart request. The request status can be one of the following:

• SUCCEEDED

• FAILED

message

A message about why the component failed to restart, if the request failed.

StopComponent

Stops a component's processes on the core device.

RestartComponent 1599

AWS IoT Greengrass Developer Guide, Version 2

Note

While you can stop any component, we recommend that you stop only generic
components.

This operation provides the same functionality as the component stop command in the Greengrass
CLI.

Request

This operation's request has the following parameters:

componentName (Python: component_name)

The name of the component.

Response

This operation's response has the following information:

stopStatus (Python: stop_status)

The status of the stop request. The request status can be one of the following:

• SUCCEEDED

• FAILED

message

A message about why the component failed to stop, if the request failed.

CreateDebugPassword

Generates a random password that you can use to sign in to the local debug console component.
The password expires 8 hours after it is generated.

This operation provides the same functionality as the get-debug-password command in the
Greengrass CLI.

CreateDebugPassword 1600

AWS IoT Greengrass Developer Guide, Version 2

Request

This operation's request doesn't have any parameters.

Response

This operation's response has the following information:

username

The user name to use to sign in.

password

The password to use to sign in.

passwordExpiration (Python: password_expiration)

The time when the password expires.

certificateSHA256Hash (Python: certificate_sha256_hash)

The SHA-256 fingerprint for the self-signed certificate that the local debug console uses when
HTTPS is enabled. When you open the local debug console, use this fingerprint to verify that
the certificate is legitimate and the connection is secure.

certificateSHA1Hash (Python: certificate_sha1_hash)

The SHA-1 fingerprint for the self-signed certificate that the local debug console uses when
HTTPS is enabled. When you open the local debug console, use this fingerprint to verify that
the certificate is legitimate and the connection is secure.

Authenticate and authorize client devices

Note

This feature is available for v2.6.0 and later of the Greengrass nucleus component.

Use the client device auth IPC service to develop a custom local broker component where local IoT
devices, such as client devices, can connect.

Authenticate and authorize client devices 1601

AWS IoT Greengrass Developer Guide, Version 2

To use these IPC operations, include version 2.2.0 or later of the client device auth component
as a dependency in your custom component. You can then use IPC operations in your custom
components to do the following:

• Verify the identity of client devices that connect to the core device.

• Create a session for a client device to connect to the core device.

• Verify whether a client device has permission to perform an action.

• Receive a notification when the core device's server certificate rotates.

Topics

• Minimum SDK versions

• Authorization

• VerifyClientDeviceIdentity

• GetClientDeviceAuthToken

• AuthorizeClientDeviceAction

• SubscribeToCertificateUpdates

Minimum SDK versions

The following table lists the minimum versions of the AWS IoT Device SDK that you must use to
interact with the client device auth IPC service.

SDK Minimum version

AWS IoT Device SDK for Java
v2

v1.9.3

AWS IoT Device SDK for
Python v2

v1.11.3

AWS IoT Device SDK for C++
v2

v1.18.3

AWS IoT Device SDK for
JavaScript v2

v1.12.0

Minimum SDK versions 1602

https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2

AWS IoT Greengrass Developer Guide, Version 2

Authorization

To use the client device auth IPC service in a custom component, you must define authorization
policies that allow your component to perform these operations. For information about defining
authorization policies, see Authorize components to perform IPC operations.

Authorization policies for client device authentication and authorization have the following
properties.

IPC service identifier: aws.greengrass.clientdevices.Auth

Operation Description Resources

aws.greengrass#Ver
ifyClientDeviceIde
ntity

Allows a component to verify
the identity of a client device.

*

aws.greengrass#Get
ClientDeviceAuthTo
ken

Allows a component to
validate a client device's
credentials and create a
session for that client device.

*

aws.greengrass#Aut
horizeClientDevice
Action

Allows a component to verify
whether a client device has
permission to perform an
action.

*

aws.greengrass#Sub
scribeToCertificat
eUpdates

Allows a component to
receive notifications when the
core device's server certificate
rotates.

*

* Allows a component to
perform all client device auth
IPC service operations.

*

Authorization 1603

AWS IoT Greengrass Developer Guide, Version 2

Authorization policy examples

You can reference the following authorization policy example to help you configure authorization
policies for your components.

Example Example authorization policy

The following example authorization policy allows a component to perform all client device auth
IPC operations.

{
 "accessControl": {
 "aws.greengrass.clientdevices.Auth": {
 "com.example.MyLocalBrokerComponent:clientdevices:1": {
 "policyDescription": "Allows access to authenticate and authorize client
 devices.",
 "operations": [
 "aws.greengrass#VerifyClientDeviceIdentity",
 "aws.greengrass#GetClientDeviceAuthToken",
 "aws.greengrass#AuthorizeClientDeviceAction",
 "aws.greengrass#SubscribeToCertificateUpdates"
],
 "resources": [
 "*"
]
 }
 }
 }
}

VerifyClientDeviceIdentity

Verify the identity of a client device. This operation verifies whether the client device is a valid AWS
IoT thing.

Request

This operation's request has the following parameters:

credential

The client device's credentials. This object, ClientDeviceCredential, contains the following
information:

VerifyClientDeviceIdentity 1604

AWS IoT Greengrass Developer Guide, Version 2

clientDeviceCertificate (Python: client_device_certificate)

The client device's X.509 device certificate.

Response

This operation's response has the following information:

isValidClientDevice (Python: is_valid_client_device)

Whether the client device's identity is valid.

GetClientDeviceAuthToken

Validates a client device's credentials and creates a session for the client device. This operation
returns a session token that you can use in subsequent requests to authorize client device actions.

To successfully connect a client device, the client device auth component must grant the
mqtt:connect permission for the client ID that the client device uses.

Request

This operation's request has the following parameters:

credential

The client device's credentials. This object, CredentialDocument, contains the following
information:

mqttCredential (Python: mqtt_credential)

The client device's MQTT credentials. Specify the client ID and certificate that the client
device uses to connect. This object, MQTTCredential, contains the following information:

clientId (Python: client_id)

The client ID to use to connect.

certificatePem (Python: certificate_pem)

The X.509 device certificate to use to connect.

GetClientDeviceAuthToken 1605

AWS IoT Greengrass Developer Guide, Version 2

username

Note

This property isn't currently used.

password

Note

This property isn't currently used.

Response

This operation's response has the following information:

clientDeviceAuthToken (Python: client_device_auth_token)

The session token for the client device. You can use this session token in subsequent requests to
authorize this client device's actions.

AuthorizeClientDeviceAction

Verify whether a client device has permission to perform an action on a resource. Client device
authorization policies specify the permissions that client devices can perform while connected to
a core device. You define client device authorization policies when you configure the client device
auth component.

Request

This operation's request has the following parameters:

clientDeviceAuthToken (Python: client_device_auth_token)

The session token for the client device.

operation

The operation to authorize.

AuthorizeClientDeviceAction 1606

AWS IoT Greengrass Developer Guide, Version 2

resource

The resource where the client device performs the operation.

Response

This operation's response has the following information:

isAuthorized (Python: is_authorized)

Whether the client device is authorized to perform the operation on the resource.

SubscribeToCertificateUpdates

Subscribe to receive the core device's new server certificate each time it rotates. When the server
certificate rotates, brokers must reload using the new server certificate.

The client device auth component rotates server certificates every 7 days by default. You can
configure the rotation interval to between 2 and 10 days.

This operation is a subscription operation where you subscribe to a stream of event messages. To
use this operation, define a stream response handler with functions that handle event messages,
errors, and stream closure. For more information, see Subscribe to IPC event streams.

Event message type: CertificateUpdateEvent

Request

This operation's request has the following parameters:

certificateOptions (Python: certificate_options)

The types of certificate updates to subscribe to. This object, CertificateOptions, contains
the following information:

certificateType (Python: certificate_type)

The type of certificate updates to subscribe to. Choose the following option:

• SERVER

SubscribeToCertificateUpdates 1607

AWS IoT Greengrass Developer Guide, Version 2

Response

This operation's response has the following information:

messages

The stream of messages. This object, CertificateUpdateEvent, contains the following
information:

certificateUpdate (Python: certificate_update)

The information about the new certificate. This object, CertificateUpdate, contains the
following information:

certificate

The certificate.

privateKey (Python: private_key)

The certificate's private key.

publicKey (Python: public_key)

The certificate's public key.

caCertificates (Python: ca_certificates)

The list of certificate authority (CA) certificates in the certificate's CA certificate chain.

SubscribeToCertificateUpdates 1608

AWS IoT Greengrass Developer Guide, Version 2

Interact with local IoT devices

Client devices are local IoT devices that connect to and communicate with a Greengrass core device
over MQTT. You can connect client devices to core devices to do the following:

• Interact with MQTT messages in Greengrass components.

• Relay messages and data between client devices and AWS IoT Core.

• Interact with client device shadows in Greengrass components.

• Sync client devices shadows with AWS IoT Core.

• Use IPv6 for local messaging.

To connect to a core device, client devices can use cloud discovery. Client devices connect to the
AWS IoT Greengrass cloud service to retrieve information about core devices to which they can
connect. Then, they can connect to a core device to process their messages and sync their data with
the AWS IoT Core cloud service.

You can follow a tutorial that walks through how to configure a core device to connect and
communicate with an AWS IoT thing. This tutorial also explores how to develop a custom
Greengrass component that interacts with client devices. For more information, see Tutorial:
Interact with local IoT devices over MQTT.

Topics

• AWS-provided client device components

• Connect client devices to core devices

• Relay MQTT messages between client devices and AWS IoT Core

• Interact with client devices in components

• Interact with and sync client device shadows

• Use IPv6 for local messaging

• Troubleshooting client devices

AWS-provided client device components

AWS IoT Greengrass provides the following public components that you can deploy to core devices.
These components enable client devices to connect and communicate with a core device.

Client device components 1609

AWS IoT Greengrass Developer Guide, Version 2

Note

Several AWS-provided components depend on specific minor versions of the Greengrass
nucleus. Because of this dependency, you need to update these components when
you update the Greengrass nucleus to a new minor version. For information about the
specific versions of the nucleus that each component depends on, see the corresponding
component topic. For more information about updating the nucleus, see Update the AWS
IoT Greengrass Core software (OTA).

When a component has a component type of both generic and Lambda, the current version of the
component is the generic type and a previous version of the component is the Lambda type.

Component Description Component
type

Supported
OS

Open
source

Client device auth Enables local
IoT devices,
called client
devices, to
connect to the
core device.

Plugin Linux,
Windows

Yes

IP detector Reports
MQTT broker
connectivity
information
to AWS IoT
Greengras
s, so client
devices can
discover how
to connect.

Plugin Linux,
Windows

Yes

MQTT bridge Relays MQTT
messages
between

Plugin Linux,
Windows

Yes

Client device components 1610

https://github.com/aws-greengrass/aws-greengrass-client-device-auth
https://github.com/aws-greengrass/aws-greengrass-ip-detector
https://github.com/aws-greengrass/aws-greengrass-mqtt-bridge

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

client devices,
local AWS IoT
Greengras
s publish/s
ubscribe, and
AWS IoT Core.

MQTT 3.1.1 broker (Moquette) Runs an MQTT
3.1.1 broker
that handles
messages
between
client devices
and the core
device.

Plugin Linux,
Windows

Yes

MQTT 5 broker (EMQX) Runs an MQTT
5 broker
that handles
messages
between
client devices
and the core
device.

Generic Linux,
Windows

No

Client device components 1611

https://github.com/aws-greengrass/aws-greengrass-moquette-mqtt

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

Shadow manager Enables
interaction
with shadows
on the core
device. It
manages
shadow
document
storage and
also the
synchroni
zation of local
shadow states
with the AWS
IoT Device
Shadow
service.

Plugin Linux,
Windows

Yes

Connect client devices to core devices

You can configure cloud discovery to connect client devices to core devices. When you configure
cloud discovery, client devices can connect to the AWS IoT Greengrass cloud service to retrieve
information about core devices to which they can connect. Then, the client devices can attempt to
connect to each core device until they successfully connect.

To use cloud discovery, you must do the following:

• Associate client devices to the core devices to which they can connect.

• Specify the MQTT broker endpoints where client devices can connect to each core device.

• Deploy components to the core device that enable support for client devices.

You can also deploy optional components to do the following:

Connect client devices to core devices 1612

https://github.com/aws-greengrass/aws-greengrass-shadow-manager

AWS IoT Greengrass Developer Guide, Version 2

• Relay messages between client devices, Greengrass components, and the AWS IoT Core cloud
service.

• Automatically manage core device MQTT broker endpoints for you.

• Manage local client device shadows and synchronize shadows with the AWS IoT Core cloud
service.

You must also review and update the core device's AWS IoT policy to verify that it has the
permissions required to connect client devices. For more information, see Requirements.

After you configure cloud discovery, you can test communications between a client device and a
core device. For more information, see Test client device communications.

Topics

• Requirements

• Greengrass components for client device support

• Configure cloud discovery (console)

• Configure cloud discovery (AWS CLI)

• Associate client devices

• Authenticating clients while offline

• Manage core device endpoints

• Choose an MQTT broker

• Connecting client devices to an AWS IoT Greengrass Core device with an MQTT broker

• Test client device communications

• Greengrass discovery RESTful API

Requirements

To connect client devices to a core device, you must have the following:

• The core device must run Greengrass nucleus v2.2.0 or later.

• The Greengrass service role associated with AWS IoT Greengrass for your AWS account in the
AWS Region where the core device operates. For more information, see Configure the Greengrass
service role.

• The core device's AWS IoT policy must allow the following permissions:

Requirements 1613

AWS IoT Greengrass Developer Guide, Version 2

• greengrass:PutCertificateAuthorities

• greengrass:VerifyClientDeviceIdentity

• greengrass:VerifyClientDeviceIoTCertificateAssociation

• greengrass:GetConnectivityInfo

• greengrass:UpdateConnectivityInfo – (Optional) This permission is required to use the
IP detector component, which reports the core device's network connectivity information to
the AWS IoT Greengrass cloud service.

• iot:GetThingShadow, iot:UpdateThingShadow, and iot:DeleteThingShadow –
(Optional) These permissions are required to use the shadow manager component to sync
client device shadows with AWS IoT Core. This feature requires Greengrass nucleus v2.6.0 or
later, shadow manager v2.2.0 or later, and MQTT bridge v2.2.0 or later.

For more information, see Configure the AWS IoT thing policy.

Note

If you used the default AWS IoT policy when you installed the AWS IoT Greengrass
Core software, the core device has an AWS IoT policy that allows access to all AWS IoT
Greengrass actions (greengrass:*).

• AWS IoT things that you can connect as client devices. For more information, see Create AWS IoT
resources in the AWS IoT Core Developer Guide.

• The client device must connect using a client ID. A client ID is a thing name. No other client ID
will be accepted.

• Each client device's AWS IoT policy must allow the greengrass:Discover permission. For
more information, see Minimal AWS IoT policy for client devices.

Topics

• Configure the Greengrass service role

• Configure the AWS IoT thing policy

Configure the Greengrass service role

The Greengrass service role is an AWS Identity and Access Management (IAM) service role that
authorizes AWS IoT Greengrass to access resources from AWS services on your behalf. This role

Requirements 1614

https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html
https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html

AWS IoT Greengrass Developer Guide, Version 2

makes it possible for AWS IoT Greengrass to verify the identity of client devices and manage core
device connectivity information.

If you haven't previously set up the Greengrass service role in this Region, you must associate a
Greengrass service role with AWS IoT Greengrass for your AWS account in this Region.

When you use the Configure core device discovery page in the AWS IoT Greengrass console, AWS
IoT Greengrass sets up the Greengrass service role for you. Otherwise, you can manually set it up
using the AWS IoT console or AWS IoT Greengrass API.

In this section, you check whether the Greengrass service role is set up. If it isn't set up, you create
a new Greengrass service role to associate with AWS IoT Greengrass for your AWS account in this
Region.

Configure the Greengrass service role (console)

1. Check if the Greengrass service role is associated with AWS IoT Greengrass for your AWS
account in this Region. Do the following:

a. Navigate to the AWS IoT console.

b. In the navigation pane, choose Settings.

c. In the Greengrass service role section, find Current service role to see whether a
Greengrass service role is associated.

If you have a Greengrass service role associated, you meet this requirement to use the IP
detector component. Skip to Configure the AWS IoT thing policy.

2. If the Greengrass service role isn't associated with AWS IoT Greengrass for your AWS account in
this Region, create a Greengrass service role and associate it. Do the following:

a. Navigate to the IAM console.

b. Choose Roles.

c. Choose Create role.

d. On the Create role page, do the following:

i. Under Trusted entity type, choose AWS service.

ii. Under Use case, Use cases for other AWS services, choose Greengrass, select
Greengrass. This option specifies to add AWS IoT Greengrass as a trusted entity that
can assume this role.

Requirements 1615

https://console.aws.amazon.com/greengrass
https://console.aws.amazon.com/iot
https://console.aws.amazon.com/iot
https://console.aws.amazon.com/iam

AWS IoT Greengrass Developer Guide, Version 2

iii. Choose Next.

iv. Under Permissions policies, select the AWSGreengrassResourceAccessRolePolicy to
attach to the role.

v. Choose Next.

vi. In Role name, enter a name for the role, such as Greengrass_ServiceRole.

vii. Choose Create role.

e. Navigate to the AWS IoT console.

f. In the navigation pane, choose Settings.

g. In the Greengrass service role section, choose Attach role.

h. In the Update Greengrass service role modal, select the IAM role that you created, and
then choose Attach role.

Configure the Greengrass service role (AWS CLI)

1. Check if the Greengrass service role is associated with AWS IoT Greengrass for your AWS
account in this Region.

aws greengrassv2 get-service-role-for-account

If the Greengrass service role is associated, the operation returns a response that contains
information about the role.

If you have a Greengrass service role associated, you meet this requirement to use the IP
detector component. Skip to Configure the AWS IoT thing policy.

2. If the Greengrass service role isn't associated with AWS IoT Greengrass for your AWS account in
this Region, create a Greengrass service role and associate it. Do the following:

a. Create a role with a trust policy that allows AWS IoT Greengrass to assume the role.
This example creates a role named Greengrass_ServiceRole, but you can use
a different name. We recommend that you also include the aws:SourceArn and
aws:SourceAccount global condition context keys in your trust policy to help prevent
the confused deputy security problem. The condition context keys restrict access to allow
only those requests that come from the specified account and Greengrass workspace. For
more information about the confused deputy problem, see Cross-service confused deputy
prevention.

Requirements 1616

https://console.aws.amazon.com/iot

AWS IoT Greengrass Developer Guide, Version 2

Linux or Unix

aws iam create-role --role-name Greengrass_ServiceRole --assume-role-policy-
document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "greengrass.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:greengrass:region:account-id:*"
 },
 "StringEquals": {
 "aws:SourceAccount": "account-id"
 }
 }
 }
]
}'

Windows Command Prompt (CMD)

aws iam create-role --role-name Greengrass_ServiceRole --assume-role-policy-
document "{\\"Version\\":\\"2012-10-17\\",\\"Statement\\":[{\\"Effect\
\":\\"Allow\\",\\"Principal\\":{\\"Service\\":\\"greengrass.amazonaws.com
\\"},\\"Action\\":\\"sts:AssumeRole\\",\\"Condition\\":{\\"ArnLike\\":
{\\"aws:SourceArn\\":\\"arn:aws:greengrass:region:account-id:*\\"},\
\"StringEquals\\":{\\"aws:SourceAccount\\":\\"account-id\\"}}}]}"

PowerShell

aws iam create-role --role-name Greengrass_ServiceRole --assume-role-policy-
document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Requirements 1617

AWS IoT Greengrass Developer Guide, Version 2

 "Principal": {
 "Service": "greengrass.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:greengrass:region:account-id:*"
 },
 "StringEquals": {
 "aws:SourceAccount": "account-id"
 }
 }
 }
]
}'

b. Copy the role ARN from the role metadata in the output. You use the ARN to associate the
role with your account.

c. Attach the AWSGreengrassResourceAccessRolePolicy policy to the role.

aws iam attach-role-policy --role-name Greengrass_ServiceRole --policy-arn
 arn:aws:iam::aws:policy/service-role/AWSGreengrassResourceAccessRolePolicy

d. Associate the Greengrass service role with AWS IoT Greengrass for your AWS account.
Replace role-arn with the ARN of the service role.

aws greengrassv2 associate-service-role-to-account --role-arn role-arn

The operation returns the following response if it succeeds.

{
 "associatedAt": "timestamp"
}

Configure the AWS IoT thing policy

Core devices use X.509 device certificates to authorize connections to AWS. You attach AWS IoT
policies to device certificates to define the permissions for a core device. For more information, see
AWS IoT policies for data plane operations and Minimal AWS IoT policy to support client devices.

Requirements 1618

AWS IoT Greengrass Developer Guide, Version 2

To connect client devices to a core device, the core device's AWS IoT policy must allow the
following permissions:

• greengrass:PutCertificateAuthorities

• greengrass:VerifyClientDeviceIdentity

• greengrass:VerifyClientDeviceIoTCertificateAssociation

• greengrass:GetConnectivityInfo

• greengrass:UpdateConnectivityInfo – (Optional) This permission is required to use the
IP detector component, which reports the core device's network connectivity information to the
AWS IoT Greengrass cloud service.

• iot:GetThingShadow, iot:UpdateThingShadow, and iot:DeleteThingShadow –
(Optional) These permissions are required to use the shadow manager component to sync client
device shadows with AWS IoT Core. This feature requires Greengrass nucleus v2.6.0 or later,
shadow manager v2.2.0 or later, and MQTT bridge v2.2.0 or later.

In this section, you review the AWS IoT policies for your core device and add any required
permissions that are missing. If you used the AWS IoT Greengrass Core software installer to
provision resources, your core device has an AWS IoT policy that allows access to all AWS IoT
Greengrass actions (greengrass:*). In this case, you must update the AWS IoT policy only if
you plan to deploy the shadow manager component to sync device shadows with AWS IoT Core.
Otherwise, you can skip this section.

Configure the AWS IoT thing policy (console)

1. In the AWS IoT Greengrass console navigation menu, choose Core devices.

2. On the Core devices page, choose the core device to update.

3. On the core device details page, choose the link to the core device's Thing. This link opens the
thing details page in the AWS IoT console.

4. On the thing details page, choose Certificates.

5. In the Certificates tab, choose the thing's active certificate.

6. On the certificate details page, choose Policies.

7. In the Policies tab, choose the AWS IoT policy to review and update. You can add the required
permissions to any policy that is attached to the core device's active certificate.

Requirements 1619

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Note

If you used the AWS IoT Greengrass Core software installer to provision resources,
you have two AWS IoT policies. We recommend that you choose the policy named
GreengrassV2IoTThingPolicy, if it exists. Core devices that you create with the quick
installer use this policy name by default. If you add permissions to this policy, you are
also granting these permissions to other core devices that use this policy.

8. In the policy overview, choose Edit active version.

9. Review the policy for the required permissions, and add any required permissions that are
missing.

• greengrass:PutCertificateAuthorities

• greengrass:VerifyClientDeviceIdentity

• greengrass:VerifyClientDeviceIoTCertificateAssociation

• greengrass:GetConnectivityInfo

• greengrass:UpdateConnectivityInfo – (Optional) This permission is required to
use the IP detector component, which reports the core device's network connectivity
information to the AWS IoT Greengrass cloud service.

• iot:GetThingShadow, iot:UpdateThingShadow, and iot:DeleteThingShadow –
(Optional) These permissions are required to use the shadow manager component to sync
client device shadows with AWS IoT Core. This feature requires Greengrass nucleus v2.6.0 or
later, shadow manager v2.2.0 or later, and MQTT bridge v2.2.0 or later.

10. (Optional) To allow the core device to sync shadows with AWS IoT Core, add the following
statement to the policy. If you plan to interact with client device shadows, but not sync them
with AWS IoT Core, skip this step. Replace region and account-id with the Region that you
use and your AWS account number.

• This example statement allows access to all things' device shadows. To follow best security
practices, you can restrict access to only the core device and the client devices that you
connect to the core device. For more information, see Minimal AWS IoT policy to support
client devices.

{
 "Effect": "Allow",

Requirements 1620

AWS IoT Greengrass Developer Guide, Version 2

 "Action": [
 "iot:GetThingShadow",
 "iot:UpdateThingShadow",
 "iot:DeleteThingShadow"
],
 "Resource": [
 "arn:aws:iot:region:account-id:thing/*"
]
}

After you add this statement, the policy document might look similar to the following
example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect",
 "iot:Publish",
 "iot:Subscribe",
 "iot:Receive",
 "greengrass:*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:GetThingShadow",
 "iot:UpdateThingShadow",
 "iot:DeleteThingShadow"
],
 "Resource": [
 "arn:aws:iot:region:account-id:thing/*"
]
 }
]
}

11. To set a new policy version as the active version, under Policy version status, select Set the
edited version as the active version for this policy.

Requirements 1621

AWS IoT Greengrass Developer Guide, Version 2

12. Choose Save as new version.

Configure the AWS IoT thing policy (AWS CLI)

1. List the principals for the core device's AWS IoT thing. Thing principals can be X.509 device
certificates or other identifies. Run the following command, and replace MyGreengrassCore
with the name of the core device.

aws iot list-thing-principals --thing-name MyGreengrassCore

The operation returns a response that lists the core device's thing principals.

{
 "principals": [
 "arn:aws:iot:us-west-2:123456789012:cert/certificateId"
]
}

2. Identify the core device's active certificate. Run the following command, and replace
certificateId with the ID of each certificate from the previous step until you find the active
certificate. The certificate ID is the hexadecimal string at the end of the certificate ARN. The --
query argument specifies to output only the certificate's status.

aws iot describe-certificate --certificate-id certificateId --query
 'certificateDescription.status'

The operation returns the certificate status as a string. For example, if the certificate is active,
this operation outputs "ACTIVE".

3. List the AWS IoT policies that are attached to the certificate. Run the following command, and
replace the certificate ARN with the ARN of the certificate.

aws iot list-principal-policies --principal arn:aws:iot:us-
west-2:123456789012:cert/certificateId

The operation returns a response that lists the AWS IoT policies that are attached to the
certificate.

{

Requirements 1622

AWS IoT Greengrass Developer Guide, Version 2

 "policies": [
 {
 "policyName":
 "GreengrassTESCertificatePolicyMyGreengrassCoreTokenExchangeRoleAlias",
 "policyArn": "arn:aws:iot:us-west-2:123456789012:policy/
GreengrassTESCertificatePolicyMyGreengrassCoreTokenExchangeRoleAlias"
 },
 {
 "policyName": "GreengrassV2IoTThingPolicy",
 "policyArn": "arn:aws:iot:us-west-2:123456789012:policy/
GreengrassV2IoTThingPolicy"
 }
]
}

4. Choose the policy to view and update.

Note

If you used the AWS IoT Greengrass Core software installer to provision resources,
you have two AWS IoT policies. We recommend that you choose the policy named
GreengrassV2IoTThingPolicy, if it exists. Core devices that you create with the quick
installer use this policy name by default. If you add permissions to this policy, you are
also granting these permissions to other core devices that use this policy.

5. Get the policy's document. Run the following command, and replace
GreengrassV2IoTThingPolicy with the name of the policy.

aws iot get-policy --policy-name GreengrassV2IoTThingPolicy

The operation returns a response that contains the policy's document and other information
about the policy. The policy document is a JSON object serialized as a string.

{
 "policyName": "GreengrassV2IoTThingPolicy",
 "policyArn": "arn:aws:iot:us-west-2:123456789012:policy/
GreengrassV2IoTThingPolicy",
 "policyDocument": "{\
 \\"Version\\": \\"2012-10-17\\",\
 \\"Statement\\": [\
 {\

Requirements 1623

AWS IoT Greengrass Developer Guide, Version 2

 \\"Effect\\": \\"Allow\\",\
 \\"Action\\": [\
 \\"iot:Connect\\",\
 \\"iot:Publish\\",\
 \\"iot:Subscribe\\",\
 \\"iot:Receive\\",\
 \\"greengrass:*\\"\
],\
 \\"Resource\\": \\"*\\"\
 }\
]\
}",
 "defaultVersionId": "1",
 "creationDate": "2021-02-05T16:03:14.098000-08:00",
 "lastModifiedDate": "2021-02-05T16:03:14.098000-08:00",
 "generationId":
 "f19144b798534f52c619d44f771a354f1b957dfa2b850625d9f1d0fde530e75f"
}

6. Use an online converter or other tool to convert the policy document string to a JSON object,
and then save it to a file named iot-policy.json.

For example, if you have the jq tool installed, you can run the following command to get the
policy document, convert it to a JSON object, and save the policy document as a JSON object.

aws iot get-policy --policy-name GreengrassV2IoTThingPolicy --query
 'policyDocument' | jq fromjson >> iot-policy.json

7. Review the policy for the required permissions, and add any required permissions that are
missing.

For example, on a Linux-based system, you can run the following command to use GNU nano
to open the file.

nano iot-policy.json

• greengrass:PutCertificateAuthorities

• greengrass:VerifyClientDeviceIdentity

• greengrass:VerifyClientDeviceIoTCertificateAssociation

• greengrass:GetConnectivityInfo

Requirements 1624

https://stedolan.github.io/jq/

AWS IoT Greengrass Developer Guide, Version 2

• greengrass:UpdateConnectivityInfo – (Optional) This permission is required to
use the IP detector component, which reports the core device's network connectivity
information to the AWS IoT Greengrass cloud service.

• iot:GetThingShadow, iot:UpdateThingShadow, and iot:DeleteThingShadow –
(Optional) These permissions are required to use the shadow manager component to sync
client device shadows with AWS IoT Core. This feature requires Greengrass nucleus v2.6.0 or
later, shadow manager v2.2.0 or later, and MQTT bridge v2.2.0 or later.

8. Save the changes as a new version of the policy. Run the following command, and replace
GreengrassV2IoTThingPolicy with the name of the policy.

aws iot create-policy-version --policy-name GreengrassV2IoTThingPolicy --policy-
document file://iot-policy.json --set-as-default

The operation returns a response similar to the following example if it succeeds.

{
 "policyArn": "arn:aws:iot:us-west-2:123456789012:policy/
GreengrassV2IoTThingPolicy",
 "policyDocument": "{\
 \\"Version\\": \\"2012-10-17\\",\
 \\"Statement\\": [\
 {\
 \\"Effect\\": \\"Allow\\",\
 \\"Action\\": [\
\\t\\t\\"iot:Connect\\",\
\\t\\t\\"iot:Publish\\",\
\\t\\t\\"iot:Subscribe\\",\
\\t\\t\\"iot:Receive\\",\
\\t\\t\\"greengrass:*\\"\
],\
 \\"Resource\\": \\"*\\"\
 }\
]\
}",
 "policyVersionId": "2",
 "isDefaultVersion": true
}

Requirements 1625

AWS IoT Greengrass Developer Guide, Version 2

Greengrass components for client device support

Important

The core device must run Greengrass nucleus v2.2.0 or later to support client devices.

To enable client devices to connect and communicate with a core device, you deploy the following
Greengrass components to the core device:

• Client device auth (aws.greengrass.clientdevices.Auth)

Deploy the client device auth component to authenticate client devices and authorize client
device actions. This component allows your AWS IoT things to connect to a core device.

This component requires some configuration to use it. You must specify groups of client
devices and the operations that each group is authorized to perform, such as to connect and
communicate over MQTT. For more information, see client device auth component configuration.

• MQTT 3.1.1 broker (Moquette) (aws.greengrass.clientdevices.mqtt.Moquette)

Deploy the Moquette MQTT broker component to run a lightweight MQTT broker. The Moquette
MQTT broker is compliant with MQTT 3.1.1 and includes local support for QoS 0, QoS 1, QoS 2,
retained messages, last will messages, and persistent subscriptions.

You aren't required to configure this component to use it. However, you can configure the port
where this component operates the MQTT broker. By default, it uses port 8883.

• MQTT 5 broker (EMQX) (aws.greengrass.clientdevices.mqtt.EMQX)

Note

To use the EMQX MQTT 5 broker, you must use Greengrass nucleus v2.6.0 or later and
client device auth v2.2.0 or later.

Deploy the EMQX MQTT broker component to use MQTT 5.0 features in communication
between client devices and the core device. The EMQX MQTT broker is compliant with MQTT
5.0 and includes support for session and message expiration intervals, user properties, shared
subscriptions, topic aliases, and more.

Greengrass components for client device support 1626

AWS IoT Greengrass Developer Guide, Version 2

You aren't required to configure this component to use it. However, you can configure the port
where this component operates the MQTT broker. By default, it uses port 8883.

• MQTT bridge (aws.greengrass.clientdevices.mqtt.Bridge)

(Optional) Deploy the MQTT bridge component to relay messages between client devices (local
MQTT), local publish/subscribe, and AWS IoT Core MQTT. Configure this component to sync
client devices with AWS IoT Core and interact with client devices from Greengrass components.

This component requires configuration to use. You must specify the topic mappings where this
component relays messages. For more information, see MQTT bridge component configuration.

• IP detector (aws.greengrass.clientdevices.IPDetector)

(Optional) Deploy the IP detector component to automatically report the core device's MQTT
broker endpoints to the AWS IoT Greengrass cloud service. You cannot use this component if you
have a complex network setup, such as one where a router forwards the MQTT broker port to the
core device.

You aren't required to configure this component to use it.

• Shadow manager (aws.greengrass.ShadowManager)

Note

To manage client device shadows, you must use Greengrass nucleus v2.6.0 or later,
shadow manager v2.2.0 or later, and MQTT bridge v2.2.0 or later.

(Optional) Deploy the shadow manager component to manage client device shadows on the core
device. Greengrass components can get, update, and delete client device shadows to interact
with client devices. You can also configure the shadow manager component to synchronize client
device shadows with the AWS IoT Core cloud service.

To use this component with client device shadows, you must configure the MQTT bridge
component to relay messages between client devices and shadow manager, which uses local
publish/subscribe. Otherwise, this component doesn't require configuration to use, but it does
require configuration to sync device shadows.

Greengrass components for client device support 1627

AWS IoT Greengrass Developer Guide, Version 2

Note

We recommend that you deploy only one MQTT broker component. The MQTT bridge and
IP detector components work with only one MQTT broker component at a time. If you
deploy multiple MQTT broker components, you must configure them to use different ports.

Configure cloud discovery (console)

You can use the AWS IoT Greengrass console to associate client devices, manage core device
endpoints, and deploy components to enable client device support. For more information, see Step
2: Enable client device support.

Configure cloud discovery (AWS CLI)

You can use the AWS Command Line Interface (AWS CLI) to associate client devices, manage core
device endpoints, and deploy components to enable client device support. For more information,
see the following:

• Manage client device associations (AWS CLI)

• Manage core device endpoints

• AWS-provided client device components

• Create deployments

Associate client devices

To use cloud discovery, associate client devices with a core device so that they can discover the core
device. Then, they can use the Greengrass discovery API to retrieve connectivity information and
certificates for their associated core devices.

Likewise, disassociate client devices from a core device to stop them from discovering the core
device.

Topics

• Manage client device associations (console)

• Manage client device associations (AWS CLI)

• Manage client device associations (API)

Configure cloud discovery (console) 1628

AWS IoT Greengrass Developer Guide, Version 2

Manage client device associations (console)

You can use the AWS IoT Greengrass console to view, add, and delete client device associations.

To view client device associations for a core device (console)

1. Navigate to the AWS IoT Greengrass console.

2. Choose Core devices.

3. Choose the core device to manage.

4. On the core device's details page, choose the Client devices tab.

5. In the Associated client devices section, you can see which client devices (AWS IoT things) are
associated with the core device.

To associate client devices with a core device (console)

1. Navigate to the AWS IoT Greengrass console.

2. Choose Core devices.

3. Choose the core device to manage.

4. On the core device's details page, choose the Client devices tab.

5. In the Associated client devices section, choose Associate client devices.

6. In the Associate client devices with core device modal, do the following for each client device
to associate:

a. Enter the name of the AWS IoT thing to associate as a client device.

b. Choose Add.

7. Choose Associate.

The client devices that you associated can now use the Greengrass discovery API to discover
this core device.

To disassociate client devices from a core device (console)

1. Navigate to the AWS IoT Greengrass console.

2. Choose Core devices.

3. Choose the core device to manage.

Associate client devices 1629

https://console.aws.amazon.com/greengrass
https://console.aws.amazon.com/greengrass
https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

4. On the core device's details page, choose the Client devices tab.

5. In the Associated client devices section, select each client device to disassociate.

6. Choose Disassociate.

7. In the confirmation modal, choose Disassociate.

The client devices that you disassociated can no longer use the Greengrass discovery API to
discover this core device.

Manage client device associations (AWS CLI)

You can use the AWS Command Line Interface (AWS CLI) to manage client device associations for a
core device.

To view client device associations for a core device (AWS CLI)

• Use the following command: list-client-devices-associated-with-core-device.

To associate client devices with a core device (AWS CLI)

• Use the following command: batch-associate-client-device-with-core-device.

To disassociate client devices from a core device (AWS CLI)

• Use the following command: batch-disassociate-client-device-from-core-device.

Manage client device associations (API)

You can use the AWS API to manage client device associations for a core device.

To view client device associations for a core device (AWS API)

• Use the following operation: ListClientDevicesAssociatedWithCoreDevice.

To associate client devices with a core device (AWS API)

• Use the following operation: BatchAssociateClientDeviceWithCoreDevice.

Associate client devices 1630

https://docs.aws.amazon.com/cli/latest/reference/greengrassv2/list-client-devices-associated-with-core-device.html
https://docs.aws.amazon.com/cli/latest/reference/greengrassv2/batch-associate-client-device-with-core-device.html
https://docs.aws.amazon.com/cli/latest/reference/greengrassv2/batch-disassociate-client-device-from-core-device.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_ListClientDevicesAssociatedWithCoreDevice.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_BatchAssociateClientDeviceWithCoreDevice.html

AWS IoT Greengrass Developer Guide, Version 2

To disassociate client devices from a core device (AWS API)

• Use the following operation: BatchDisassociateClientDeviceFromCoreDevice.

Authenticating clients while offline

With offline authentication you can configure your AWS IoT Greengrass Core device so that client
devices can connect to a core device, even when the core device isn't connected to the cloud. When
you use offline authentication, your Greengrass devices can continue to work in a partially offline
environment.

To use offline authentication for a client device with a connection to the cloud, you need the
following:

• An AWS IoT Greengrass Core device with the Client device auth component deployed. You must
use version 2.3.0 or greater for offline authentication.

• A cloud connection for the core device during the initial connection of client devices.

Storing client credentials

When a client device connects to a core device for the first time, the core device calls the AWS IoT
Greengrass service. When called, Greengrass validates the client device's registration as an AWS
IoT thing. It also validates that the device has a valid certificate. The core device then stores this
information locally.

The next time that the device connects, the Greengrass core device attempts to validate the client
device with the AWS IoT Greengrass service. If it can't connect to AWS IoT Greengrass, the core
device uses its locally stored device information to validate the client device.

You can configure the length of time that the Greengrass core device stores credentials.
You can set the timeout from one minute to 2,147,483,647 minutes by setting the
clientDeviceTrustDurationMinutes configuration option in the client device auth
component configuration. The default is one minute, which effectively turns off offline
authentication. When you set this timeout, we recommend that you consider your security needs.
You should also consider how long you expect core devices to run while disconnected from the
cloud.

The core device updates its credential storage at three times:

Authenticating clients while offline 1631

https://docs.aws.amazon.com/greengrass/v2/APIReference/API_BatchDisassociateClientDeviceFromCoreDevice.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-device-auth-component.html#client-device-auth-component-configuration
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-device-auth-component.html#client-device-auth-component-configuration

AWS IoT Greengrass Developer Guide, Version 2

1. When a device connects to the core device for the first time.

2. If the core device is connected to the cloud, when a client device reconnects to the core device.

3. If the core device is connected to the cloud, once a day to refresh the entire credential store.

When the Greengrass core device refreshes its credential store, it uses the
ListClientDevicesAssociatedWithCoreDevice operation. Greengrass only refreshes the devices
returned by this operation. To associate a client device with a core device, see Associate client
devices.

To use the ListClientDevicesAssociatedWithCoreDevice operation, you must add
permission for the operation to the AWS Identity and Access Management (IAM) role associated
with the AWS account that runs AWS IoT Greengrass. For more information, see Authorize core
devices to interact with AWS services.

Manage core device endpoints

When you use cloud discovery, you store MQTT broker endpoints for core devices in the AWS IoT
Greengrass cloud service. Client devices connect to AWS IoT Greengrass to retrieve these endpoints
and other information for their associated core devices.

For each core device, you can automatically or manually manage endpoints.

• Automatically manage endpoints with IP detector

You can deploy the IP detector component to automatically manage core device endpoints for
you if you have a non-complex network setup, such as where the client devices are on the same
network as the core device. You can't use the IP detector component if the core device is behind
a router that forwards the MQTT broker port to the core device, for example.

The IP detector component is also useful if you deploy to thing groups, because it manages the
endpoints for all core devices in the thing group. For more information, see Use IP detector to
automatically manage endpoints.

• Manually manage endpoints

If you can't use the IP detector component, you must manually manage core device endpoints.
You can update these endpoints with the console or the API. For more information, see Manually
manage endpoints.

Manage core device endpoints 1632

https://docs.aws.amazon.com/greengrass/v2/APIReference/API_ListClientDevicesAssociatedWithCoreDevice.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_ListClientDevicesAssociatedWithCoreDevice.html

AWS IoT Greengrass Developer Guide, Version 2

Topics

• Use IP detector to automatically manage endpoints

• Manually manage endpoints

Use IP detector to automatically manage endpoints

If you have a simple network setup, such as the client devices on the same network as the core
device, you can deploy the IP detector component to do the following:

• Monitor the Greengrass core device's local network connectivity information. This information
includes the core device's network endpoints and the port where the MQTT broker operates.

• Report the core device's connectivity information to the AWS IoT Greengrass cloud service.

The IP detector component overwrites endpoints that you set manually.

Important

The core device's AWS IoT policy must allow the
greengrass:UpdateConnectivityInfo permission to use the IP detector component.
For more information, see AWS IoT policies for data plane operations and Configure the
AWS IoT thing policy.

You can do either of the following to deploy the IP detector component:

• Use the Configure discovery page in the console. For more information, see Configure cloud
discovery (console).

• Create and revise deployments to include the IP detector. You can use the console, AWS CLI, or
AWS API to manage deployments. For more information, see Create deployments.

Deploy the IP detector component (console)

1. In the AWS IoT Greengrass console navigation menu, choose Components.

2. On the Components page, choose the Public components tab, and then choose
aws.greengrass.clientdevices.IPDetector.

3. On the aws.greengrass.clientdevices.IPDetector page, choose Deploy.

Manage core device endpoints 1633

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

4. From Add to deployment, choose an existing deployment to revise, or choose to create a new
deployment, and then choose Next.

5. If you chose to create a new deployment, choose the target core device or thing group for the
deployment. On the Specify target page, under Deployment target, choose a core device or
thing group, and then choose Next.

6. On the Select components page, verify that the aws.greengrass.clientdevices.IPDetector
component is selected, choose Next.

7. On the Configure components page, select aws.greengrass.clientdevices.IPDetector, and
then do the following:

a. Choose Configure component.

b. In the Configure aws.greengrass.clientdevices.IPDetector modal, under Configuration
update, in Configuration to merge, you can enter a configuration update to configure the
IP detector component. You can specify any of the following configuration options:

• defaultPort – (Optional) The MQTT broker port to report when this component
detects IP addresses. You must specify this parameter if you configure the MQTT broker
to use a different port than the default port 8883.

• includeIPv4LoopbackAddrs – (Optional) You can enable this option to detect and
report IPv4 loopback addresses. These are IP addresses, such as localhost, where a
device can communicate with itself. Use this option in test environments where the core
device and client device run on the same system.

• includeIPv4LinkLocalAddrs – (Optional) You can enable this option to detect and
report IPv4 link-local addresses. Use this option if the core device's network doesn't
have Dynamic Host Configuration Protocol (DHCP) or statically assigned IP addresses.

• includeIPv6LoopbackAddrs – (Optional) You can enable this option to detect and
report IPv6 loopback addresses. These are IP addresses, such as localhost, where a
device can communicate with itself. Use this option in test environments where the core
device and client device run on the same system. You must set includeIPv4Addrs to
false and includeIPv6Addrs to true to use this option. You must have IP detector
v2.2.0 or later to use this option.

• includeIPv6LinkLocalAddrs – (Optional) You can enable this option to detect and
report IPv6 link-local addresses. Use this option if the core device's network doesn't
have Dynamic Host Configuration Protocol (DHCP) or statically assigned IP addresses.

Manage core device endpoints 1634

https://en.wikipedia.org/wiki/Link-local_address
https://en.wikipedia.org/wiki/Link-local_address

AWS IoT Greengrass Developer Guide, Version 2

You must set includeIPv4Addrs to false and includeIPv6Addrs to true to use
this option. You must have IP detector v2.2.0 or later to use this option.

• includeIPv4Addrs – (Optional) The default is set to true. You can enable this option
to publish IPv4 addresses found on the core device. You must have IP detector v2.2.0 or
later to use this option.

• includeIPv6Addrs – (Optional) You can enable this option to publish IPv6 addresses
found on the core device. Set includeIPv4Addrs to false to use this option. You
must have IP detector v2.2.0 or later to use this option.

The configuration update might look similar to the following example.

{
 "defaultPort": "8883",
 "includeIPv4LoopbackAddrs": false,
 "includeIPv4LinkLocalAddrs": false
}

c. Choose Confirm to close the modal, and then choose Next.

8. On the Configure advanced settings page, keep the default configuration settings, and
choose Next.

9. On the Review page, choose Deploy.

The deployment can take up to a minute to complete.

Deploy the IP detector component (AWS CLI)

To deploy the IP detector component, create a deployment document that includes
aws.greengrass.clientdevices.IPDetector in the components object, and specify the
configuration update for the component. Follow instructions in Create deployments to create a
new deployment or revise an existing deployment.

You can specify any of the following options to configure the IP detector component when you
create the deployment document:

• defaultPort – (Optional) The MQTT broker port to report when this component detects IP
addresses. You must specify this parameter if you configure the MQTT broker to use a different
port than the default port 8883.

Manage core device endpoints 1635

AWS IoT Greengrass Developer Guide, Version 2

• includeIPv4LoopbackAddrs – (Optional) You can enable this option to detect and report
IPv4 loopback addresses. These are IP addresses, such as localhost, where a device can
communicate with itself. Use this option in test environments where the core device and client
device run on the same system.

• includeIPv4LinkLocalAddrs – (Optional) You can enable this option to detect and report
IPv4 link-local addresses. Use this option if the core device's network doesn't have Dynamic Host
Configuration Protocol (DHCP) or statically assigned IP addresses.

• includeIPv6LoopbackAddrs – (Optional) You can enable this option to detect and report
IPv6 loopback addresses. These are IP addresses, such as localhost, where a device can
communicate with itself. Use this option in test environments where the core device and
client device run on the same system. You must set includeIPv4Addrs to false and
includeIPv6Addrs to true to use this option. You must have IP detector v2.2.0 or later to use
this option.

• includeIPv6LinkLocalAddrs – (Optional) You can enable this option to detect and
report IPv6 link-local addresses. Use this option if the core device's network doesn't have
Dynamic Host Configuration Protocol (DHCP) or statically assigned IP addresses. You must set
includeIPv4Addrs to false and includeIPv6Addrs to true to use this option. You must
have IP detector v2.2.0 or later to use this option.

• includeIPv4Addrs – (Optional) The default is set to true. You can enable this option to publish
IPv4 addresses found on the core device. You must have IP detector v2.2.0 or later to use this
option.

• includeIPv6Addrs – (Optional) You can enable this option to publish IPv6 addresses found on
the core device. Set includeIPv4Addrs to false to use this option. You must have IP detector
v2.2.0 or later to use this option.

The following example partial deployment document specifies to report port 8883 as the MQTT
broker port.

{
 ...,
 "components": {
 ...,
 "aws.greengrass.clientdevices.IPDetector": {
 "componentVersion": "2.1.1",
 "configurationUpdate": {
 "merge": "{\"defaultPort\":\"8883\",}"
 }

Manage core device endpoints 1636

https://en.wikipedia.org/wiki/Link-local_address
https://en.wikipedia.org/wiki/Link-local_address

AWS IoT Greengrass Developer Guide, Version 2

 }
 }
}

Manually manage endpoints

You can manually manage MQTT broker endpoints for core devices.

Each MQTT broker endpoint has the following information:

Endpoint (HostAddress)

An IP address or DNS address where client devices can connect to an MQTT broker on the core
device.

Port (PortNumber)

The port where the MQTT broker operates on the core device.

You can configure this port on the Moquette MQTT broker component, which defaults to use
port 8883.

Metadata (Metadata)

Additional metadata to provide to client devices that connect to this endpoint.

Topics

• Manage endpoints (console)

• Manage endpoints (AWS CLI)

• Manage endpoints (API)

Manage endpoints (console)

You can use the AWS IoT Greengrass console to view, update, and remove endpoints for a core
device.

To manage endpoints for a core device (console)

1. Navigate to the AWS IoT Greengrass console.

2. Choose Core devices.

Manage core device endpoints 1637

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

3. Choose the core device to manage.

4. On the core device's details page, choose the Client devices tab.

5. In the MQTT broker endpoints section, you can see the core device's MQTT broker endpoints.
Choose Manage endpoints.

6. In the Manage endpoints modal, add or remove MQTT broker endpoints for the core device.

7. Choose Update.

Manage endpoints (AWS CLI)

You can use the AWS Command Line Interface (AWS CLI) to manage endpoints for a core device.

Note

Because client device support in AWS IoT Greengrass V2 is backward compatible with AWS
IoT Greengrass V1, you can use AWS IoT Greengrass V2 or AWS IoT Greengrass V1 API
operations to manage core device endpoints.

To get endpoints for a core device (AWS CLI)

• Use either of the following commands:

• greengrassv2: get-connectivity-info

• greengrass: get-connectivity-info

To update endpoints for a core device (AWS CLI)

• Use either of the following commands:

• greengrassv2: update-connectivity-info

• greengrass: update-connectivity-info

Manage endpoints (API)

You can use the AWS API to manage endpoints for a core device.

Manage core device endpoints 1638

https://docs.aws.amazon.com/cli/latest/reference/greengrassv2/get-connectivity-info.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/get-connectivity-info.html
https://docs.aws.amazon.com/cli/latest/reference/greengrassv2/update-connectivity-info.html
https://docs.aws.amazon.com/cli/latest/reference/greengrass/update-connectivity-info.html

AWS IoT Greengrass Developer Guide, Version 2

Note

Because client device support in AWS IoT Greengrass V2 is backward compatible with AWS
IoT Greengrass V1, you can use AWS IoT Greengrass V2 or AWS IoT Greengrass V1 API
operations to manage core device endpoints.

To get endpoints for a core device (AWS API)

• Use either of the following operations:

• V2: GetConnectivityInfo

• V1: GetConnectivityInfo

To update endpoints for a core device (AWS API)

• Use either of the following operations:

• V2: UpdateConnectivityInfo

• V1: UpdateConnectivityInfo

Choose an MQTT broker

AWS IoT Greengrass provides options for you to choose which local MQTT broker to run on your
core devices. Client devices connect to the MQTT broker that runs on a core device, so choose an
MQTT broker that is compatible with the client devices that you want to connect.

Note

We recommend that you deploy only one MQTT broker component. The MQTT bridge and
IP detector components work with only one MQTT broker component at a time. If you
deploy multiple MQTT broker components, you must configure them to use different ports.

You can choose from the following MQTT brokers:

• MQTT 3.1.1 broker (Moquette) – aws.greengrass.clientdevices.mqtt.Moquette

Choose an MQTT broker 1639

https://docs.aws.amazon.com/greengrass/v2/APIReference/API_GetConnectivityInfo.html
https://docs.aws.amazon.com/greengrass/v1/apireference/getconnectivityinfo-get.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_UpdateConnectivityInfo.html
https://docs.aws.amazon.com/greengrass/v1/apireference/updateconnectivityinfo-put.html

AWS IoT Greengrass Developer Guide, Version 2

Choose this option for a lightweight MQTT broker that is compliant with the MQTT 3.1.1
standard. The AWS IoT Core MQTT broker and AWS IoT Device SDK are also compliant with the
MQTT 3.1.1 standard, so you can use these features to create an application that uses MQTT
3.1.1 across your devices and the AWS Cloud.

• MQTT 5 broker (EMQX) – aws.greengrass.clientdevices.mqtt.EMQX

Choose this option to use MQTT 5 features in communication between core devices and client
devices. This component uses more resources than the Moquette MQTT 3.1.1 broker, and on
Linux core devices, it requires Docker.

MQTT 5 is backward-compatible with MQTT 3.1.1, so you can connect client devices that use
MQTT 3.1.1 to this broker. If you run the Moquette MQTT 3.1.1 broker, you can replace it with
the EMQX MQTT 5 broker, and client devices can continue to connect and operate as usual.

• Implement a custom broker

Choose this option to create a custom local broker component to communicate with client
devices. You can create a custom local broker that uses a protocol other than MQTT. AWS IoT
Greengrass provides a component SDK that you can use to authenticate and authorize client
devices. For more information, see Use the AWS IoT Device SDK to communicate with the
Greengrass nucleus, other components, and AWS IoT Core and Authenticate and authorize client
devices.

Connecting client devices to an AWS IoT Greengrass Core device with
an MQTT broker

When you use an MQTT broker on your AWS IoT Greengrass Core device, the device uses a core
device certificate authority (CA) unique to the device to issue a certificate to the broker for making
mutual TLS connections with clients.

AWS IoT Greengrass will autogenerate a core device CA, or you can provide your own. The core
device CA is registered with AWS IoT Greengrass when the Client device auth component is
connected. The autogenerated core device CA is persistent, the device will continue to use the same
CA as long as the client device auth component is configured.

When the MQTT broker starts, it requests a certificate. The client device auth component issues an
X.509 certificate using the core device CA. The certificate is rotated when the broker starts, when

Connecting to an MQTT broker 1640

AWS IoT Greengrass Developer Guide, Version 2

the certificate expires, or when connectivity information such as the IP address changes. For more
information, see Certificate rotation on the local MQTT broker.

To connect a client to the MQTT broker, you need the following:

• The client device must have the AWS IoT Greengrass Core device CA. You can get this CA through
cloud discovery, or by providing the CA manually. For more information, see Using your own
certificate authority.

• The fully-qualified domain name (FQDN) or IP address of the core device must be present in the
broker certificate issued by the core device CA. You ensure this using the IP detector component
or manually configuring the IP address. For more information, see Manage core device endpoints.

• The client device auth component must give the client device permission to connect to the
Greengrass core device. For more information, see Client device auth.

Using your own certificate authority

If your client devices can't access the cloud to discover your core device, you can provide a core
device certificate authority (CA). Your Greengrass core device uses the core device CA to issue
certificates for your MQTT broker. Once you configure the core device and provision your client
device with its CA, your client devices can connect to the endpoint and verify the TLS handshake
using the core device CA (own provided CA or autogenerated).

To configure the Client device auth component to use your core device CA, set the
certificateAuthority configuration parameter when you deploy the component. You must
provide the following details during configuration:

• The location of a core device CA certificate.

• The private key of the core device CA certificate.

• (Optional) The certificate chain to the root certificate if the core device CA is an intermediate CA.

If you provide a core device CA, AWS IoT Greengrass registers the CA with the cloud.

You can store your certificates in a hardware security module or on the file system. The following
example shows a certificateAuthority configuration for a intermediate CA stored using HSM/
TPM. Note that the certificate chain can only be stored on disk.

 "certificateAuthority": {

Connecting to an MQTT broker 1641

AWS IoT Greengrass Developer Guide, Version 2

 "certificateUri": "pkcs11:object=CustomerIntermediateCA;type=cert",
 "privateKeyUri": "pkcs11:object=CustomerIntermediateCA;type=private"
 "certificateChainUri": "file:///home/ec2-user/creds/certificateChain.pem",
 }

In this example, the certificateAuthority configuration parameter configures the client
device auth component to use an intermediate CA from the file system:

 "certificateAuthority": {
 "certificateUri": "file:///home/ec2-user/creds/intermediateCA.pem",
 "privateKeyUri": "file:///home/ec2-user/creds/intermediateCA.privateKey.pem",
 "certificateChainUri": "file:///home/ec2-user/creds/certificateChain.pem",
 }

To connect the devices to your AWS IoT Greengrass Core device, do the following:

1. Create an intermediate certificate authority (CA) for the Greengrass core device using your
organization's root CA. We recommend that you use an intermediate CA as a security best
practice.

2. Provide the intermediate CA certificate, private key, and the certificate chain to your root CA to
the Greengrass core device. For more information, see Client device auth. The intermediate CA
becomes the core device CA for the Greengrass core device, and the device registers the CA with
AWS IoT Greengrass.

3. Register the client device as an AWS IoT thing. For more information, see Create a thing object
in the AWS IoT Core Developer Guide. Add the private key, public key, device certificate, and root
CA certificate to your client device. How you add the information depends on your device and
software.

Once you configure your device, you can use the certificate and public key chain to connect to the
Greengrass core device. Your software is responsible for finding the core device endpoints. You
can set the endpoint manually for the core device. For more information, see Manually manage
endpoints.

Test client device communications

Client devices can use the AWS IoT Device SDK to discover, connect, and communicate with a
core device. You can use the Greengrass discovery client in the AWS IoT Device SDK to use the
Greengrass discovery API, which returns information about core devices to which a client device

Test communications 1642

https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-resources.html#create-aws-thing

AWS IoT Greengrass Developer Guide, Version 2

can connect. The API response includes MQTT broker endpoints to connect and certificates to use
to verify the identity of each core device. Then, the client device can try each endpoint until it
successfully connects to a core device.

Client devices can discover only core devices to which you associate them. Before you test
communications between a client device and a core device, you must associate the client device to
the core device. For more information, see Associate client devices.

The Greengrass discovery API returns the core device MQTT broker endpoints that you specify.
You can use the IP detector component to manage these endpoints for you, or you can manually
manage them for each core device. For more information, see Manage core device endpoints.

Note

To use the Greengrass discovery API, a client device must have the
greengrass:Discover permission. For more information, see Minimal AWS IoT policy for
client devices.

The AWS IoT Device SDK is available in multiple programming languages. For more information,
see AWS IoT Device SDKs in the AWS IoT Core Developer Guide.

Topics

• Test communications (Python)

• Test communications (C++)

• Test communications (JavaScript)

• Test communications (Java)

Test communications (Python)

In this section, you use Greengrass discovery sample in the AWS IoT Device SDK v2 for Python to
test communications between a client device and a core device.

Important

To use the AWS IoT Device SDK v2 for Python, a device must run Python 3.6 or later.

Test communications 1643

https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html
https://github.com/aws/aws-iot-device-sdk-python-v2

AWS IoT Greengrass Developer Guide, Version 2

To test communications (AWS IoT Device SDK v2 for Python)

1. Download and install the AWS IoT Device SDK v2 for Python to the AWS IoT thing to connect
as a client device.

On the client device, do the following:

a. Clone the AWS IoT Device SDK v2 for Python repository to download it.

git clone https://github.com/aws/aws-iot-device-sdk-python-v2.git

b. Install the AWS IoT Device SDK v2 for Python.

python3 -m pip install --user ./aws-iot-device-sdk-python-v2

2. Change to the samples folder in the AWS IoT Device SDK v2 for Python.

cd aws-iot-device-sdk-python-v2/samples

3. Run the sample Greengrass discovery application. This application expects arguments that
specify the client device thing name, the MQTT topic and message to use, and the certificates
that authenticate and secure the connection. The following example sends a Hello World
message to the clients/MyClientDevice1/hello/world topic.

• Replace MyClientDevice1 with the client device's thing name.

• Replace ~/certs/AmazonRootCA1.pem with the path to the Amazon root CA certificate on
the client device.

• Replace ~/certs/device.pem.crt with the path to the device certificate on the client
device.

• Replace ~/certs/private.pem.key with the path to the private key file on the client
device.

• Replace us-east-1 with the AWS Region where your client device and core device operate.

python3 basic_discovery.py \\
 --thing_name MyClientDevice1 \\
 --topic 'clients/MyClientDevice1/hello/world' \\
 --message 'Hello World!' \\
 --ca_file ~/certs/AmazonRootCA1.pem \\
 --cert ~/certs/device.pem.crt \\

Test communications 1644

https://github.com/aws/aws-iot-device-sdk-python-v2

AWS IoT Greengrass Developer Guide, Version 2

 --key ~/certs/private.pem.key \\
 --region us-east-1 \\
 --verbosity Warn

The discovery sample application sends the message 10 times and disconnects. It also
subscribes to the same topic where it publishes messages. If the output indicates that
the application received MQTT messages on the topic, the client device can successfully
communicate with the core device.

Performing greengrass discovery...
awsiot.greengrass_discovery.DiscoverResponse(gg_groups=[awsiot.greengrass_discovery.GGGroup(gg_group_id='greengrassV2-
coreDevice-MyGreengrassCore',
 cores=[awsiot.greengrass_discovery.GGCore(thing_arn='arn:aws:iot:us-
east-1:123456789012:thing/MyGreengrassCore',
 connectivity=[awsiot.greengrass_discovery.ConnectivityInfo(id='203.0.113.0',
 host_address='203.0.113.0', metadata='', port=8883)])],
 certificate_authorities=['-----BEGIN CERTIFICATE-----\
MIICiT...EXAMPLE=\
-----END CERTIFICATE-----\
'])])
Trying core arn:aws:iot:us-east-1:123456789012:thing/MyGreengrassCore at host
 203.0.113.0 port 8883
Connected!
Published topic clients/MyClientDevice1/hello/world: {"message": "Hello World!",
 "sequence": 0}

Publish received on topic clients/MyClientDevice1/hello/world
b'{"message": "Hello World!", "sequence": 0}'
Published topic clients/MyClientDevice1/hello/world: {"message": "Hello World!",
 "sequence": 1}

Publish received on topic clients/MyClientDevice1/hello/world
b'{"message": "Hello World!", "sequence": 1}'

...

Published topic clients/MyClientDevice1/hello/world: {"message": "Hello World!",
 "sequence": 9}

Publish received on topic clients/MyClientDevice1/hello/world
b'{"message": "Hello World!", "sequence": 9}'

Test communications 1645

AWS IoT Greengrass Developer Guide, Version 2

If the application outputs an error instead, see Troubleshooting Greengrass discovery issues.

You can also view the Greengrass logs on the core device to verify if the client device
successfully connects and sends messages. For more information, see Monitor AWS IoT
Greengrass logs.

Test communications (C++)

In this section, you use Greengrass discovery sample in the AWS IoT Device SDK v2 for C++ to test
communications between a client device and a core device.

To build the AWS IoT Device SDK v2 for C++, a device must have the following tools:

• C++ 11 or later

• CMake 3.1 or later

• One of the following compilers:

• GCC 4.8 or later

• Clang 3.9 or later

• MSVC 2015 or later

To test communications (AWS IoT Device SDK v2 for C++)

1. Download and build the AWS IoT Device SDK v2 for C++ to the AWS IoT thing to connect as a
client device.

On the client device, do the following:

a. Create a folder for the AWS IoT Device SDK v2 for C++ workspace, and change to it.

cd
mkdir iot-device-sdk-cpp
cd iot-device-sdk-cpp

b. Clone the AWS IoT Device SDK v2 for C++ repository to download it. The --recursive
flag specifies to download submodules.

git clone --recursive https://github.com/aws/aws-iot-device-sdk-cpp-v2.git

Test communications 1646

https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2

AWS IoT Greengrass Developer Guide, Version 2

c. Create a folder for the AWS IoT Device SDK v2 for C++ build output, and change to it.

mkdir aws-iot-device-sdk-cpp-v2-build
cd aws-iot-device-sdk-cpp-v2-build

d. Build the AWS IoT Device SDK v2 for C++.

cmake -DCMAKE_INSTALL_PREFIX="~/iot-device-sdk-cpp" -
DCMAKE_BUILD_TYPE="Release" ../aws-iot-device-sdk-cpp-v2
cmake --build . --target install

2. Build the Greengrass discovery sample application in the AWS IoT Device SDK v2 for C++. Do
the following:

a. Change to the Greengrass discovery sample folder in the AWS IoT Device SDK v2 for C++.

cd ../aws-iot-device-sdk-cpp-v2/samples/greengrass/basic_discovery

b. Create a folder for the Greengrass discovery sample build output, and change to it.

mkdir build
cd build

c. Build the Greengrass discovery sample application.

cmake -DCMAKE_PREFIX_PATH="~/iot-device-sdk-cpp" -
DCMAKE_BUILD_TYPE="Release" ..
cmake --build . --config "Release"

3. Run the sample Greengrass discovery application. This application expects arguments
that specify the client device thing name, the MQTT topic to use, and the certificates
that authenticate and secure the connection. The following example subscribes to the
clients/MyClientDevice1/hello/world topic and publishes a message that you enter
on the command line to the same topic.

• Replace MyClientDevice1 with the client device's thing name.

• Replace ~/certs/AmazonRootCA1.pem with the path to the Amazon root CA certificate on
the client device.

• Replace ~/certs/device.pem.crt with the path to the device certificate on the client
device.

Test communications 1647

AWS IoT Greengrass Developer Guide, Version 2

• Replace ~/certs/private.pem.key with the path to the private key file on the client
device.

• Replace us-east-1 with the AWS Region where your client device and core device operate.

./basic-discovery \
 --thing_name MyClientDevice1 \
 --topic 'clients/MyClientDevice1/hello/world' \
 --ca_file ~/certs/AmazonRootCA1.pem \
 --cert ~/certs/device.pem.crt \
 --key ~/certs/private.pem.key \
 --region us-east-1

The discovery sample application subscribes to the topic and prompts you to enter a message
to publish.

Connecting to group greengrassV2-coreDevice-MyGreengrassCore with thing arn
 arn:aws:iot:us-east-1:123456789012:thing/MyGreengrassCore, using endpoint
 203.0.113.0:8883
Connected to group greengrassV2-coreDevice-MyGreengrassCore, using connection to
 203.0.113.0:8883
Successfully subscribed to clients/MyClientDevice1/hello/world
Enter the message you want to publish to topic clients/MyClientDevice1/hello/world
 and press enter. Enter 'exit' to exit this program.

If the application outputs an error instead, see Troubleshooting Greengrass discovery issues.

4. Enter a message, such as Hello World!.

Enter the message you want to publish to topic clients/MyClientDevice1/hello/world
 and press enter. Enter 'exit' to exit this program.
Hello World!

If the output indicates that the application received the MQTT message on the topic, the client
device can successfully communicate with the core device.

Operation on packetId 2 Succeeded
Publish received on topic clients/MyClientDevice1/hello/world
Message:
Hello World!

Test communications 1648

AWS IoT Greengrass Developer Guide, Version 2

You can also view the Greengrass logs on the core device to verify if the client device
successfully connects and sends messages. For more information, see Monitor AWS IoT
Greengrass logs.

Test communications (JavaScript)

In this section, you use Greengrass discovery sample in the AWS IoT Device SDK v2 for JavaScript to
test communications between a client device and a core device.

Important

To use the AWS IoT Device SDK v2 for JavaScript, a device must run Node v10.0 or later.

To test communications (AWS IoT Device SDK v2 for JavaScript)

1. Download and install the AWS IoT Device SDK v2 for JavaScript to the AWS IoT thing to
connect as a client device.

On the client device, do the following:

a. Clone the AWS IoT Device SDK v2 for JavaScript repository to download it.

git clone https://github.com/aws/aws-iot-device-sdk-js-v2.git

b. Install the AWS IoT Device SDK v2 for JavaScript.

cd aws-iot-device-sdk-js-v2
npm install

2. Change to the Greengrass discovery sample folder in the AWS IoT Device SDK v2 for
JavaScript.

cd samples/node/basic_discovery

3. Install the Greengrass discovery sample application.

npm install

Test communications 1649

https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2

AWS IoT Greengrass Developer Guide, Version 2

4. Run the sample Greengrass discovery application. This application expects arguments that
specify the client device thing name, the MQTT topic and message to use, and the certificates
that authenticate and secure the connection. The following example sends a Hello World
message to the clients/MyClientDevice1/hello/world topic.

• Replace MyClientDevice1 with the client device's thing name.

• Replace ~/certs/AmazonRootCA1.pem with the path to the Amazon root CA certificate on
the client device.

• Replace ~/certs/device.pem.crt with the path to the device certificate on the client
device.

• Replace ~/certs/private.pem.key with the path to the private key file on the client
device.

• Replace us-east-1 with the AWS Region where your client device and core device operate.

node dist/index.js \
 --thing_name MyClientDevice1 \
 --topic 'clients/MyClientDevice1/hello/world' \
 --message 'Hello World!' \
 --ca_file ~/certs/AmazonRootCA1.pem \
 --cert ~/certs/device.pem.crt \
 --key ~/certs/private.pem.key \
 --region us-east-1 \
 --verbose warn

The discovery sample application sends the message 10 times and disconnects. It also
subscribes to the same topic where it publishes messages. If the output indicates that
the application received MQTT messages on the topic, the client device can successfully
communicate with the core device.

Discovery Response:
{"gg_groups":[{"gg_group_id":"greengrassV2-coreDevice-
MyGreengrassCore","cores":[{"thing_arn":"arn:aws:iot:us-
east-1:123456789012:thing/MyGreengrassCore","connectivity":
[{"id":"203.0.113.0","host_address":"203.0.113.0","port":8883,"metadata":""}]}],"certificate_authorities":
["-----BEGIN CERTIFICATE-----\nMIICiT...EXAMPLE=\n-----END CERTIFICATE-----\n"]}]}
Trying
 endpoint={"id":"203.0.113.0","host_address":"203.0.113.0","port":8883,"metadata":""}

Test communications 1650

AWS IoT Greengrass Developer Guide, Version 2

[WARN] [2021-06-12T00:46:45Z] [00007f90c0e8d700] [socket] - id=0x7f90b8018710
 fd=26: setsockopt() for NO_SIGNAL failed with errno 92. If you are having SIGPIPE
 signals thrown, you may want to install a signal trap in your application layer.
Connected to
 endpoint={"id":"203.0.113.0","host_address":"203.0.113.0","port":8883,"metadata":""}
Publish received. topic:"clients/MyClientDevice1/hello/world" dup:false qos:0
 retain:false
{"message":"Hello World!","sequence":1}
Publish received. topic:"clients/MyClientDevice1/hello/world" dup:false qos:0
 retain:false
{"message":"Hello World!","sequence":2}
Publish received. topic:"clients/MyClientDevice1/hello/world" dup:false qos:0
 retain:false
{"message":"Hello World!","sequence":3}
Publish received. topic:"clients/MyClientDevice1/hello/world" dup:false qos:0
 retain:false
{"message":"Hello World!","sequence":4}
Publish received. topic:"clients/MyClientDevice1/hello/world" dup:false qos:0
 retain:false
{"message":"Hello World!","sequence":5}
Publish received. topic:"clients/MyClientDevice1/hello/world" dup:false qos:0
 retain:false
{"message":"Hello World!","sequence":6}
Publish received. topic:"clients/MyClientDevice1/hello/world" dup:false qos:0
 retain:false
{"message":"Hello World!","sequence":7}
Publish received. topic:"clients/MyClientDevice1/hello/world" dup:false qos:0
 retain:false
{"message":"Hello World!","sequence":8}
Publish received. topic:"clients/MyClientDevice1/hello/world" dup:false qos:0
 retain:false
{"message":"Hello World!","sequence":9}
Publish received. topic:"clients/MyClientDevice1/hello/world" dup:false qos:0
 retain:false
{"message":"Hello World!","sequence":10}
Complete!

If the application outputs an error instead, see Troubleshooting Greengrass discovery issues.

You can also view the Greengrass logs on the core device to verify if the client device
successfully connects and sends messages. For more information, see Monitor AWS IoT
Greengrass logs.

Test communications 1651

AWS IoT Greengrass Developer Guide, Version 2

Test communications (Java)

In this section, you use Greengrass discovery sample in the AWS IoT Device SDK v2 for Java to test
communications between a client device and a core device.

Important

To build the AWS IoT Device SDK v2 for Java, a device must have the following tools:

• Java 8 or later, with JAVA_HOME pointing to the Java folder.

• Apache Maven

To test communications (AWS IoT Device SDK v2 for Java)

1. Download and build the AWS IoT Device SDK v2 for Java to the AWS IoT thing to connect as a
client device.

On the client device, do the following:

a. Clone the AWS IoT Device SDK v2 for Java repository to download it.

git clone https://github.com/aws/aws-iot-device-sdk-java-v2.git

b. Change to the AWS IoT Device SDK v2 for Java folder.

c. Build the AWS IoT Device SDK v2 for Java.

cd aws-iot-device-sdk-java-v2
mvn versions:use-latest-versions -Dincludes="software.amazon.awssdk.crt*"
mvn clean install

2. Run the sample Greengrass discovery application. This application expects arguments
that specify the client device thing name, the MQTT topic to use, and the certificates
that authenticate and secure the connection. The following example subscribes to the
clients/MyClientDevice1/hello/world topic and publishes a message that you enter
on the command line to the same topic.

• Replace both instances of MyClientDevice1 with the client device's thing name.

• Replace $HOME/certs/AmazonRootCA1.pem with the path to the Amazon root CA
certificate on the client device.

Test communications 1652

https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2

AWS IoT Greengrass Developer Guide, Version 2

• Replace $HOME/certs/device.pem.crt with the path to the device certificate on the
client device.

• Replace $HOME/certs/private.pem.key with the path to the private key file on the
client device.

• Replace us-east-1 with the AWS Region where your client device and core device operate.

DISCOVERY_SAMPLE_ARGS="--thing_name MyClientDevice1 \
 --topic 'clients/MyClientDevice1/hello/world' \
 --ca_file $HOME/certs/AmazonRootCA1.pem \
 --cert $HOME/certs/device.pem.crt \
 --key $HOME/certs/private.pem.key \
 --region us-east-1"

mvn exec:java -pl samples/Greengrass \
 -Dexec.mainClass=greengrass.BasicDiscovery \
 -Dexec.args="$DISCOVERY_SAMPLE_ARGS"

The discovery sample application subscribes to the topic and prompts you to enter a message
to publish.

Connecting to group ID greengrassV2-coreDevice-MyGreengrassCore, with thing
 arn arn:aws:iot:us-east-1:123456789012:thing/MyGreengrassCore, using endpoint
 203.0.113.0:8883
Started a clean session
Enter the message you want to publish to topic clients/MyClientDevice1/hello/world
 and press Enter. Type 'exit' or 'quit' to exit this program:

If the application outputs an error instead, see Troubleshooting Greengrass discovery issues.

3. Enter a message, such as Hello World!.

Enter the message you want to publish to topic clients/MyClientDevice1/hello/world
 and press Enter. Type 'exit' or 'quit' to exit this program:
Hello World!

If the output indicates that the application received the MQTT message on the topic, the client
device can successfully communicate with the core device.

Test communications 1653

AWS IoT Greengrass Developer Guide, Version 2

Message received on topic clients/MyClientDevice1/hello/world: Hello World!

You can also view the Greengrass logs on the core device to verify if the client device
successfully connects and sends messages. For more information, see Monitor AWS IoT
Greengrass logs.

Greengrass discovery RESTful API

AWS IoT Greengrass provides the Discover API operation that client devices can use to identify
Greengrass core devices where they can connect. Client devices use this data plane operation to
retrieve information required to connect to Greengrass core devices where you associate them with
the BatchAssociateClientDeviceWithCoreDevice API operation. When a client device comes online,
it can connect to the AWS IoT Greengrass cloud service and use the discovery API to find:

• The IP address and port for each associated Greengrass core device.

• The core device CA certificate, which client devices can use to authenticate the Greengrass core
device.

Note

Client devices can also use the discovery client in the AWS IoT Device SDK to discover
connectivity information for Greengrass core devices. The discovery client uses the
discovery API. For more information, see the following:

• Test client device communications

• Greengrass Discovery RESTful API in the AWS IoT Greengrass Version 1 Developer Guide.

To use this API operation, send HTTP requests to the discovery API on the Greengrass data plane
endpoint. This API endpoint has the following format.

https://greengrass-ats.iot.region.amazonaws.com:port/greengrass/discover/thing/thing-
name

For a list of supported AWS Regions and endpoints for the AWS IoT Greengrass discovery API, see
AWS IoT Greengrass V2 endpoints and quotas in the AWS General Reference. This API operation is

Greengrass discovery RESTful API 1654

https://docs.aws.amazon.com/greengrass/v2/APIReference/API_BatchAssociateClientDeviceWithCoreDevice.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/gg-discover-api.html
https://docs.aws.amazon.com/general/latest/gr/greengrassv2.html

AWS IoT Greengrass Developer Guide, Version 2

available only on the Greengrass data plane endpoint. The control plane endpoint that you use to
manage components and deployments is different from the data plane endpoint.

Note

The discovery API is the same for AWS IoT Greengrass V1 and AWS IoT Greengrass V2. If
you have client devices that connect to an AWS IoT Greengrass V1 core, you can connect
them to AWS IoT Greengrass V2 core devices without changing the code on the client
devices. For more information, see Greengrass Discovery RESTful API in the AWS IoT
Greengrass Version 1 Developer Guide.

Topics

• Discovery authentication and authorization

• Request

• Response

• Test the discovery API with cURL

Discovery authentication and authorization

To use the discovery API to retrieve connectivity information, a client device must use TLS mutual
authentication with an X.509 client certificate to authenticate. For more information, see X.509
client certificates in the AWS IoT Core Developer Guide.

A client device must also have permission to perform the greengrass:Discover action. The
following example AWS IoT policy allows an AWS IoT thing named MyClientDevice1 to perform
Discover for itself.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "greengrass:Discover",
 "Resource": [
 "arn:aws:iot:us-west-2:123456789012:thing/MyClientDevice1"
]
 }

Greengrass discovery RESTful API 1655

https://docs.aws.amazon.com/greengrass/v1/developerguide/gg-discover-api.html
https://docs.aws.amazon.com/iot/latest/developerguide/x509-client-certs.html
https://docs.aws.amazon.com/iot/latest/developerguide/x509-client-certs.html

AWS IoT Greengrass Developer Guide, Version 2

]
}

Important

Thing policy variables (iot:Connection.Thing.*) aren't supported for in AWS
IoT policies for core devices or Greengrass data plane operations. Instead, you can
use a wildcard that matches multiple devices that have similar names. For example,
you can specify MyGreengrassDevice* to match MyGreengrassDevice1,
MyGreengrassDevice2, and so on.

For more information, see AWS IoT Core policies in the AWS IoT Core Developer Guide.

Request

The request contains the standard HTTP headers and is sent to the Greengrass discovery endpoint,
as shown in the following examples.

The port number depends on whether the core device is configured to send HTTPS traffic over port
8443 or port 443. For more information, see the section called “Connect on port 443 or through a
network proxy”.

Note

These examples use the Amazon Trust Services (ATS) endpoint, which works with the
recommended ATS root CA certificates. Endpoints must match the root CA certificate type.

Port 8443

HTTP GET https://greengrass-ats.iot.region.amazonaws.com:8443/greengrass/discover/
thing/thing-name

Port 443

HTTP GET https://greengrass-ats.iot.region.amazonaws.com:443/greengrass/discover/
thing/thing-name

Greengrass discovery RESTful API 1656

https://docs.aws.amazon.com/iot/latest/developerguide/thing-policy-variables.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-policies.html

AWS IoT Greengrass Developer Guide, Version 2

Note

Clients that connect on port 443 must implement the Application Layer Protocol
Negotiation (ALPN) TLS extension and pass x-amzn-http-ca as the ProtocolName in
the ProtocolNameList. For more information, see Protocols in the AWS IoT Developer
Guide.

Response

Upon success, the response header includes the HTTP 200 status code and the response body
contains the discover response document.

Note

Because AWS IoT Greengrass V2 uses the same discovery API as AWS IoT Greengrass V1,
the response organizes information according to AWS IoT Greengrass V1 concepts, such
as Greengrass groups. The response contains a list of Greengrass groups. In AWS IoT
Greengrass V2, each core device is in its own group, where the group contains only that
core device and its connectivity information.

Example discover response documents

The following document shows the response for a client device that is associated to one
Greengrass core device. The core device has one endpoint and one CA certificate.

{
 "GGGroups": [
 {
 "GGGroupId": "greengrassV2-coreDevice-core-device-01-thing-name",
 "Cores": [
 {
 "thingArn": "core-device-01-thing-arn",
 "Connectivity": [
 {
 "id": "core-device-01-connection-id",
 "hostAddress": "core-device-01-address",
 "portNumber": core-device-01-port,
 "metadata": "core-device-01-description"

Greengrass discovery RESTful API 1657

https://tools.ietf.org/html/rfc7301
https://tools.ietf.org/html/rfc7301
https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html

AWS IoT Greengrass Developer Guide, Version 2

 }
]
 }
],
 "CAs": [
 "-----BEGIN CERTIFICATE-----cert-contents-----END CERTIFICATE-----"
]
 }
]
}

The following document shows the response for a client device that is associated to two core
devices. The core devices have multiple endpoints and multiple group CA certificates.

{
 "GGGroups": [
 {
 "GGGroupId": "greengrassV2-coreDevice-core-device-01-thing-name",
 "Cores": [
 {
 "thingArn": "core-device-01-thing-arn",
 "Connectivity": [
 {
 "id": "core-device-01-connection-id",
 "hostAddress": "core-device-01-address",
 "portNumber": core-device-01-port,
 "metadata": "core-device-01-connection-1-description"
 },
 {
 "id": "core-device-01-connection-id-2",
 "hostAddress": "core-device-01-address-2",
 "portNumber": core-device-01-port-2,
 "metadata": "core-device-01-connection-2-description"
 }
]
 }
],
 "CAs": [
 "-----BEGIN CERTIFICATE-----cert-contents-----END CERTIFICATE-----",
 "-----BEGIN CERTIFICATE-----cert-contents-----END CERTIFICATE-----",
 "-----BEGIN CERTIFICATE-----cert-contents-----END CERTIFICATE-----"
]
 },

Greengrass discovery RESTful API 1658

AWS IoT Greengrass Developer Guide, Version 2

 {
 "GGGroupId": "greengrassV2-coreDevice-core-device-02-thing-name",
 "Cores": [
 {
 "thingArn":"core-device-02-thing-arn",
 "Connectivity" : [
 {
 "id": "core-device-02-connection-id",
 "hostAddress": "core-device-02-address",
 "portNumber": core-device-02-port,
 "metadata": "core-device-02-connection-1-description"
 }
]
 }
],
 "CAs": [
 "-----BEGIN CERTIFICATE-----cert-contents-----END CERTIFICATE-----",
 "-----BEGIN CERTIFICATE-----cert-contents-----END CERTIFICATE-----",
 "-----BEGIN CERTIFICATE-----cert-contents-----END CERTIFICATE-----"
]
 }
]
}

Test the discovery API with cURL

If you have cURL installed, you can test the discovery API. The following example specifies a client
device's certificates to authenticate a request to the Greengrass discovery API endpoint.

curl -i \
 --cert 1a23bc4d56.cert.pem \
 --key 1a23bc4d56.private.key \
 https://greengrass-ats.iot.us-west-2.amazonaws.com:8443/greengrass/discover/
thing/MyClientDevice1

Note

The -i argument specifies to output HTTP response headers. You can use this option to
help identify errors.

If the request succeeds, this command outputs a response similar to the following example.

Greengrass discovery RESTful API 1659

AWS IoT Greengrass Developer Guide, Version 2

{
 "GGGroups": [
 {
 "GGGroupId": "greengrassV2-coreDevice-MyGreengrassCore",
 "Cores": [
 {
 "thingArn": "arn:aws:iot:us-west-2:123456789012:thing/MyGreengrassCore",
 "Connectivity": [
 {
 "Id": "AUTOIP_192.168.1.4_1",
 "HostAddress": "192.168.1.5",
 "PortNumber": 8883,
 "Metadata": ""
 }
]
 }
],
 "CAs": [
 "-----BEGIN CERTIFICATE-----\ncert-contents\n-----END CERTIFICATE-----\n"
]
 }
]
}

If the command outputs an error, see Troubleshooting Greengrass discovery issues.

Relay MQTT messages between client devices and AWS IoT Core

You can relay MQTT messages and other data between client devices and AWS IoT Core. Client
devices connect to the MQTT broker component that runs on the core device. By default, core
devices don't relay MQTT messages or data between client devices and AWS IoT Core. Client
devices can communicate only with each other over MQTT by default.

To relay MQTT messages between client devices and AWS IoT Core, configure the MQTT bridge
component to do the following:

• Relay messages from client devices to AWS IoT Core.

• Relay messages from AWS IoT Core to client devices.

Relay MQTT messages between client devices and AWS IoT Core 1660

AWS IoT Greengrass Developer Guide, Version 2

Note

The MQTT bridge uses QoS 1 to publish and subscribe to AWS IoT Core, even when a client
device uses QoS 0 to publish and subscribe to the local MQTT broker. As a result, you might
observe additional latency when you relay MQTT messages from client devices on the local
MQTT broker to AWS IoT Core. For more information about MQTT configuration on core
devices, see Configure MQTT timeouts and cache settings.

Topics

• Configure and deploy the MQTT bridge component

• Relay MQTT messages

Configure and deploy the MQTT bridge component

The MQTT bridge component consumes a list of topic mappings that each specify a message
source and a message destination. To relay messages between client devices and AWS IoT
Core, deploy the MQTT bridge component, and specify each source and destination topic in the
component configuration.

To deploy the MQTT bridge component to a core device or group of core devices, create a
deployment that includes the aws.greengrass.clientdevices.mqtt.Bridge component.
Specify the topic mappings, mqttTopicMapping, in the MQTT bridge component configuration in
the deployment.

The following example defines a deployment that configures the MQTT bridge component to relay
messages on topics that match the clients/+/hello/world topic filter from client devices
to AWS IoT Core. The merge configuration update requires a serialized JSON object. For more
information, see Update component configurations.

Console

{
 "mqttTopicMapping": {
 "HelloWorldIotCore": {
 "topic": "clients/+/hello/world",
 "source": "LocalMqtt",
 "target": "IotCore"

Configure and deploy the MQTT bridge component 1661

AWS IoT Greengrass Developer Guide, Version 2

 }
 }
}

AWS CLI

{
 "components": {
 "aws.greengrass.clientdevices.mqtt.Bridge": {
 "version": "2.0.0",
 "configurationUpdate": {
 "merge": "{\"mqttTopicMapping\":{\"HelloWorldIotCore\":{\"topic"\:\"clients/
+/hello/world\",\"source\":\"LocalMqtt\",\"target\":\"IotCore\"}}}"
 }
 }
 ...
 }
}

Relay MQTT messages

To relay MQTT messages between client devices and AWS IoT Core, configure and deploy the MQTT
Bridge component and specify the topics to relay.

Example Example: Relay messages on a topic from client devices to AWS IoT Core

The following MQTT bridge component configuration specifies relaying messages on topics that
match the clients/+/hello/world/event topic filter from client devices to AWS IoT Core.

{
 "mqttTopicMapping": {
 "HelloWorldEvent": {
 "topic": "clients/+/hello/world/event",
 "source": "LocalMqtt",
 "target": "IotCore"
 }
 }
}

Relay MQTT messages 1662

AWS IoT Greengrass Developer Guide, Version 2

Example Example: Relay messages on a topic from AWS IoT Core to client devices

The following MQTT bridge component configuration specifies relaying messages on topics that
match the clients/+/hello/world/event/response topic filter from AWS IoT Core to client
devices.

{
 "mqttTopicMapping": {
 "HelloWorldEventConfirmation": {
 "topic": "clients/+/hello/world/event/response",
 "source": "IotCore",
 "target": "LocalMqtt"
 }
 }
}

Interact with client devices in components

You can develop custom Greengrass components that interact with client devices connected to a
core device. For example, you can develop components that do the following:

• Act on MQTT messages from client devices and send data to AWS Cloud destinations.

• Send MQTT messages to client devices to initiate actions.

Client devices connect to and communicate with a core device through the MQTT broker
component that runs on the core device. By default, client devices can communicate only with
each other over MQTT, and Greengrass components can't receive these MQTT messages or send
messages to client devices.

Greengrass components use the local publish/subscribe interface to communicate on a core
device. To communicate with client devices in Greengrass components, configure the MQTT bridge
component to do the following:

• Relay MQTT messages from client devices to local publish/subscribe.

• Relay MQTT messages from local publish/subscribe to client devices.

You can also interact with client device shadows in Greengrass components. For more information,
see Interact with and sync client device shadows.

Interact with client devices in components 1663

AWS IoT Greengrass Developer Guide, Version 2

Topics

• Configure and deploy the MQTT bridge component

• Receive MQTT messages from client devices

• Send MQTT messages to client devices

Configure and deploy the MQTT bridge component

The MQTT bridge component consumes a list of topic mappings that each specify a message
source and a message destination. To communicate with client devices, deploy the MQTT bridge
component, and specify each source and destination topic in the component configuration.

To deploy the MQTT bridge component to a core device or group of core devices, create a
deployment that includes the aws.greengrass.clientdevices.mqtt.Bridge component.
Specify the topic mappings, mqttTopicMapping, in the MQTT bridge component configuration in
the deployment.

The following example defines a deployment that configures the MQTT bridge component to
relay the clients/MyClientDevice1/hello/world topic from client devices to local publish/
subscribe broker. The merge configuration update requires a serialized JSON object. For more
information, see Update component configurations.

Console

{
 "mqttTopicMapping": {
 "HelloWorldPubsub": {
 "topic": "clients/MyClientDevice1/hello/world",
 "source": "LocalMqtt",
 "target": "Pubsub"
 }
 }
}

AWS CLI

{
 "components": {
 "aws.greengrass.clientdevices.mqtt.Bridge": {
 "version": "2.0.0",
 "configurationUpdate": {

Configure and deploy the MQTT bridge component 1664

AWS IoT Greengrass Developer Guide, Version 2

 "merge": "\"mqttTopicMapping\":{\"HelloWorldPubsub\":{\"topic\":\"clients/
MyClientDevice1/hello/world\",\"source\":\"LocalMqtt\",\"target\":\"Pubsub\"}}}"
 }
 }
 ...
 }
}

You can use MQTT topic wildcards to relay messages on topics that match a topic filter. If you
use MQTT bridge v2.2.0 or later, you can use MQTT topic wildcards in topic filters when the
source broker is local publish/subscribe. For more information, see MQTT bridge component
configuration.

Receive MQTT messages from client devices

You can subscribe to the local publish/subscribe topics that you configure for the MQTT bridge
component to receive messages from client devices.

To receive MQTT messages from client devices in custom components

1. Configure and deploy the MQTT bridge component to relay messages from an MQTT topic
where client devices publish to a local publish/subscribe topic.

2. Use the local publish/subscribe IPC interface to subscribe to the topic where the MQTT
bridge relays messages. For more information, see Publish/subscribe local messages and
SubscribeToTopic.

The Connect and test client devices tutorial includes a section where you develop a component
that subscribes to messages from a client device. For more information, see Step 4: Develop a
component that communicates with client devices.

Send MQTT messages to client devices

You can publish to the local publish/subscribe topics that you configure for the MQTT bridge
component to send messages to client devices.

To publish MQTT messages to client devices in custom components

1. Configure and deploy the MQTT bridge component to relay messages from a local publish/
subscribe topic to an MQTT topic where client devices subscribe.

Receive MQTT messages from client devices 1665

AWS IoT Greengrass Developer Guide, Version 2

2. Use the local publish/subscribe IPC interface to publish to the topic where the MQTT
bridge relays messages. For more information, see Publish/subscribe local messages and
PublishToTopic.

Interact with and sync client device shadows

You can use the shadow manager component to manage local shadows, including client device
shadows. You can use shadow manager to do the following:

• Interact with client device shadows in Greengrass components.

• Sync client device shadows with AWS IoT Core.

Note

The shadow manager component doesn't sync shadows with AWS IoT Core by default. You
must configure the shadow manager component to specify which client device shadows to
sync.

Topics

• Prerequisites

• Enable shadow manager to communicate with client devices

• Interact with client device shadows in components

• Sync client device shadows with AWS IoT Core

Prerequisites

To interact with client device shadows and sync client device shadows with AWS IoT Core, a core
device must meet the following requirements:

• The core device must run the following components, in addition to the Greengrass components
for client device support:

• Greengrass nucleus v2.6.0 or later

• Shadow manager v2.2.0 or later

• MQTT bridge v2.2.0 or later

Interact with and sync client device shadows 1666

AWS IoT Greengrass Developer Guide, Version 2

• The client device auth component must be configured to allow client devices to communicate on
device shadow topics.

Enable shadow manager to communicate with client devices

By default, the shadow manager component doesn't manage client device shadows. To enable
this feature, you must relay MQTT messages between client devices and the shadow manager
component. Client devices use MQTT messages to receive and send device shadow updates. The
shadow manager component subscribes to the local Greengrass publish/subscribe interface, so you
can configure the MQTT bridge component to relay MQTT messages on device shadow topics.

The MQTT bridge component consumes a list of topic mappings that each specify a message
source and a message destination. To enable the shadow manager component to manage client
device shadows, deploy the MQTT bridge component, and specify the shadow topics for the client
device shadows. You must configure the bridge to relay messages in both directions between local
MQTT and local publish/subscribe.

To deploy the MQTT bridge component to a core device or group of core devices, create a
deployment that includes the aws.greengrass.clientdevices.mqtt.Bridge component.
Specify the topic mappings, mqttTopicMapping, in the MQTT bridge component configuration in
the deployment.

Use the following examples to configure the MQTT bridge component to enable communication
between client devices and the shadow manager component.

Note

You can use these configuration examples in the AWS IoT Greengrass console. If you use
the AWS IoT Greengrass API, the merge configuration update requires a serialized JSON
object, so you must serialize the following JSON objects into strings. For more information,
see Update component configurations.

Example Example: Manage all client device shadows

The following MQTT bridge configuration example enables shadow manager to manage all
shadows for all client devices.

{

Enable shadow manager to communicate with client devices 1667

https://docs.aws.amazon.com/iot/latest/developerguide/reserved-topics.html#reserved-topics-shadow
https://docs.aws.amazon.com/iot/latest/developerguide/reserved-topics.html#reserved-topics-shadow

AWS IoT Greengrass Developer Guide, Version 2

 "mqttTopicMapping": {
 "ShadowsLocalMqttToPubsub": {
 "topic": "$aws/things/+/shadow/#",
 "source": "LocalMqtt",
 "target": "Pubsub"
 },
 "ShadowsPubsubToLocalMqtt": {
 "topic": "$aws/things/+/shadow/#",
 "source": "Pubsub",
 "target": "LocalMqtt"
 }
 }
}

Example Example: Manage shadows for a client device

The following MQTT bridge configuration example enables shadow manager to manage all
shadows for a client device named MyClientDevice.

{
 "mqttTopicMapping": {
 "ShadowsLocalMqttToPubsub": {
 "topic": "$aws/things/MyClientDevice/shadow/#",
 "source": "LocalMqtt",
 "target": "Pubsub"
 },
 "ShadowsPubsubToLocalMqtt": {
 "topic": "$aws/things/MyClientDevice/shadow/#",
 "source": "Pubsub",
 "target": "LocalMqtt"
 }
 }
}

Example Example: Manage a named shadow for all client devices

The following MQTT bridge configuration example enables shadow manager to manage a shadow
named DeviceConfiguration for all client devices.

{
 "mqttTopicMapping": {
 "ShadowsLocalMqttToPubsub": {
 "topic": "$aws/things/+/shadow/name/DeviceConfiguration/#",

Enable shadow manager to communicate with client devices 1668

AWS IoT Greengrass Developer Guide, Version 2

 "source": "LocalMqtt",
 "target": "Pubsub"
 },
 "ShadowsPubsubToLocalMqtt": {
 "topic": "$aws/things/+/shadow/name/DeviceConfiguration/#",
 "source": "Pubsub",
 "target": "LocalMqtt"
 }
 }
}

Example Example: Manage all client devices' unnamed shadows

The following MQTT bridge configuration example enables shadow manager to manage unnamed
shadows, but not named shadows, for all client devices.

{
 "mqttTopicMapping": {
 "DeleteShadowLocalMqttToPubsub": {
 "topic": "$aws/things/+/shadow/delete",
 "source": "LocalMqtt",
 "target": "Pubsub"
 },
 "DeleteShadowPubsubToLocalMqtt": {
 "topic": "$aws/things/+/shadow/delete/#",
 "source": "Pubsub",
 "target": "LocalMqtt"
 },
 "GetShadowLocalMqttToPubsub": {
 "topic": "$aws/things/+/shadow/get",
 "source": "LocalMqtt",
 "target": "Pubsub"
 },
 "GetShadowPubsubToLocalMqtt": {
 "topic": "$aws/things/+/shadow/get/#",
 "source": "Pubsub",
 "target": "LocalMqtt"
 },
 "UpdateShadowLocalMqttToPubsub": {
 "topic": "$aws/things/+/shadow/update",
 "source": "LocalMqtt",
 "target": "Pubsub"
 },

Enable shadow manager to communicate with client devices 1669

AWS IoT Greengrass Developer Guide, Version 2

 "UpdateShadowPubsubToLocalMqtt": {
 "topic": "$aws/things/+/shadow/update/#",
 "source": "Pubsub",
 "target": "LocalMqtt"
 }
 }
}

Interact with client device shadows in components

You can develop custom components that use the local shadow service to read and modify client
devices' local shadow documents. For more information, see Interact with shadows in components.

Sync client device shadows with AWS IoT Core

You can configure the shadow manager component to synchronize local client device shadow
states with AWS IoT Core. For more information, see Sync local device shadows with AWS IoT Core.

Use IPv6 for local messaging

You can configure the IP detector component to use IPv6 to send local messages.

Note

You must have IP detector v2.2.0 or later to use IPv6 to send local messages.

You can deploy the IP detector component to detect and use IPv6 addresses. You must update the
configuration of the IP detector component to use IPv6 instead of IPv4. For more information, see
Use IP detector to automatically manage endpoints.

Topics

• Configure IP detector to use IPv6

Configure IP detector to use IPv6

If you have a simple network setup, such as the client devices on the same network as the core
device, you can deploy the IP detector component to use IPv6 for local messaging.

The IP detector component overwrites endpoints that you set manually.

Interact with client device shadows in components 1670

AWS IoT Greengrass Developer Guide, Version 2

Important

The core device's AWS IoT policy must allow the
greengrass:UpdateConnectivityInfo permission to use the IP detector component.
For more information, see AWS IoT policies for data plane operations and Configure the
AWS IoT thing policy.

You can do either of the following to deploy the IP detector component:

• Use the Configure discovery page in the console. For more information, see Configure cloud
discovery (console).

• Create and revise deployments to include the IP detector. You can use the console, AWS CLI, or
AWS API to manage deployments. For more information, see Create deployments.

Deploy the IP detector component (console)

1. In the AWS IoT Greengrass console navigation menu, choose Components.

2. On the Components page, choose the Public components tab, and then choose
aws.greengrass.clientdevices.IPDetector.

3. On the aws.greengrass.clientdevices.IPDetector page, choose Deploy.

4. From Add to deployment, choose an existing deployment to revise, or choose to create a new
deployment, and then choose Next.

5. If you chose to create a new deployment, choose the target core device or thing group for the
deployment. On the Specify target page, under Deployment target, choose a core device or
thing group, and then choose Next.

6. On the Select components page, verify that the aws.greengrass.clientdevices.IPDetector
component is selected, choose Next.

7. On the Configure components page, select aws.greengrass.clientdevices.IPDetector, and
then do the following:

a. Choose Configure component.

b. In the Configure aws.greengrass.clientdevices.IPDetector modal, under Configuration
update, in Configuration to merge, you can enter a configuration update to configure the
IP detector component. You can specify any of the following configuration options. Set

Configure IP detector to use IPv6 1671

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

includeIPv4Addrs to false and includeIPv6Addrs to true. You can then update
the other IPv6 configuration options.

• defaultPort – (Optional) The MQTT broker port to report when this component
detects IP addresses. You must specify this parameter if you configure the MQTT broker
to use a different port than the default port 8883.

• includeIPv4LoopbackAddrs – (Optional) You can enable this option to detect and
report IPv4 loopback addresses. These are IP addresses, such as localhost, where a
device can communicate with itself. Use this option in test environments where the core
device and client device run on the same system.

• includeIPv4LinkLocalAddrs – (Optional) You can enable this option to detect and
report IPv4 link-local addresses. Use this option if the core device's network doesn't
have Dynamic Host Configuration Protocol (DHCP) or statically assigned IP addresses.

• includeIPv6LoopbackAddrs – (Optional) You can enable this option to detect and
report IPv6 loopback addresses. These are IP addresses, such as localhost, where a
device can communicate with itself. Use this option in test environments where the core
device and client device run on the same system. You must set includeIPv4Addrs to
false and includeIPv6Addrs to true to use this option. You must have IP detector
v2.2.0 or later to use this option.

• includeIPv6LinkLocalAddrs – (Optional) You can enable this option to detect and
report IPv6 link-local addresses. Use this option if the core device's network doesn't
have Dynamic Host Configuration Protocol (DHCP) or statically assigned IP addresses.
You must set includeIPv4Addrs to false and includeIPv6Addrs to true to use
this option. You must have IP detector v2.2.0 or later to use this option.

• includeIPv4Addrs – (Optional) The default is set to true. You can enable this option
to publish IPv4 addresses found on the core device. You must have IP detector v2.2.0 or
later to use this option.

• includeIPv6Addrs – (Optional) You can enable this option to publish IPv6 addresses
found on the core device. Set includeIPv4Addrs to false to use this option. You
must have IP detector v2.2.0 or later to use this option.

The configuration update might look similar to the following example.

{
 "defaultPort": "8883",
 "includeIPv4LoopbackAddrs": false,

Configure IP detector to use IPv6 1672

https://en.wikipedia.org/wiki/Link-local_address
https://en.wikipedia.org/wiki/Link-local_address

AWS IoT Greengrass Developer Guide, Version 2

 "includeIPv4LinkLocalAddrs": false,
 "includeIPv6LoopbackAddrs": true,
 "includeIPv6LinkLocalAddrs": true,
 "includeIPv4Addrs": false,
 "includeIPv6Addrs": true
}

c. Choose Confirm to close the modal, and then choose Next.

8. On the Configure advanced settings page, keep the default configuration settings, and
choose Next.

9. On the Review page, choose Deploy.

The deployment can take up to a minute to complete.

Deploy the IP detector component (AWS CLI)

To deploy the IP detector component, create a deployment document that includes
aws.greengrass.clientdevices.IPDetector in the components object, and specify the
configuration update for the component. Follow instructions in Create deployments to create a
new deployment or revise an existing deployment.

You can specify any of the following options to configure the IP detector component when you
create the deployment document:

• defaultPort – (Optional) The MQTT broker port to report when this component detects IP
addresses. You must specify this parameter if you configure the MQTT broker to use a different
port than the default port 8883.

• includeIPv4LoopbackAddrs – (Optional) You can enable this option to detect and report
IPv4 loopback addresses. These are IP addresses, such as localhost, where a device can
communicate with itself. Use this option in test environments where the core device and client
device run on the same system.

• includeIPv4LinkLocalAddrs – (Optional) You can enable this option to detect and report
IPv4 link-local addresses. Use this option if the core device's network doesn't have Dynamic Host
Configuration Protocol (DHCP) or statically assigned IP addresses.

• includeIPv6LoopbackAddrs – (Optional) You can enable this option to detect and report
IPv6 loopback addresses. These are IP addresses, such as localhost, where a device can
communicate with itself. Use this option in test environments where the core device and
client device run on the same system. You must set includeIPv4Addrs to false and

Configure IP detector to use IPv6 1673

https://en.wikipedia.org/wiki/Link-local_address

AWS IoT Greengrass Developer Guide, Version 2

includeIPv6Addrs to true to use this option. You must have IP detector v2.2.0 or later to use
this option.

• includeIPv6LinkLocalAddrs – (Optional) You can enable this option to detect and
report IPv6 link-local addresses. Use this option if the core device's network doesn't have
Dynamic Host Configuration Protocol (DHCP) or statically assigned IP addresses. You must set
includeIPv4Addrs to false and includeIPv6Addrs to true to use this option. You must
have IP detector v2.2.0 or later to use this option.

• includeIPv4Addrs – (Optional) The default is set to true. You can enable this option to publish
IPv4 addresses found on the core device. You must have IP detector v2.2.0 or later to use this
option.

• includeIPv6Addrs – (Optional) You can enable this option to publish IPv6 addresses found on
the core device. Set includeIPv4Addrs to false to use this option. You must have IP detector
v2.2.0 or later to use this option.

The following example partial deployment document specifies to use IPv6.

{
 ...,
 "components": {
 ...,
 "aws.greengrass.clientdevices.IPDetector": {
 "componentVersion": "2.1.1",
 "configurationUpdate": {
 "merge": "{\"defaultPort\":\"8883\",}"
 }
 }
 }
}

Troubleshooting client devices

Use the troubleshooting information and solutions in this section to help resolve issues with
Greengrass client devices and client device components.

Topics

• Greengrass discovery issues

• MQTT connection issues

Troubleshooting 1674

https://en.wikipedia.org/wiki/Link-local_address

AWS IoT Greengrass Developer Guide, Version 2

Greengrass discovery issues

Use the following information to troubleshoot issues with Greengrass discovery. These issues can
occur when client devices use the Greengrass discovery API to identify a Greengrass core device to
which they can connect.

Topics

• Greengrass discovery issues (HTTP API)

• Greengrass discovery issues (AWS IoT Device SDK v2 for Python)

• Greengrass discovery issues (AWS IoT Device SDK v2 for C++)

• Greengrass discovery issues (AWS IoT Device SDK v2 for JavaScript)

• Greengrass discovery issues (AWS IoT Device SDK v2 for Java)

Greengrass discovery issues (HTTP API)

Use the following information to troubleshoot issues with Greengrass discovery. You might see
these errors if you test the discovery API with cURL.

Topics

• curl: (52) Empty reply from server

• HTTP 403: {"message":null,"traceId":"a1b2c3d4-5678-90ab-cdef-11111EXAMPLE"}

• HTTP 404: {"errorMessage":"The thing provided for discovery was not found"}

curl: (52) Empty reply from server

You might see this error if you specify an inactive AWS IoT certificate in the request.

Check that the client device has an attached certificate, and that the certificate is active. For more
information, see Attach a thing or policy to a client certificate and Activate or deactivate a client
certificate in the AWS IoT Core Developer Guide.

HTTP 403: {"message":null,"traceId":"a1b2c3d4-5678-90ab-cdef-11111EXAMPLE"}

You might see this error if the client device doesn't have permission to call
greengrass:Discover for itself.

Greengrass discovery issues 1675

https://docs.aws.amazon.com/iot/latest/developerguide/attach-to-cert.html
https://docs.aws.amazon.com/iot/latest/developerguide/activate-or-deactivate-device-cert.html
https://docs.aws.amazon.com/iot/latest/developerguide/activate-or-deactivate-device-cert.html

AWS IoT Greengrass Developer Guide, Version 2

Check that the client device's certificate has a policy that allows greengrass:Discover. You
can't use thing policy variables (iot:Connection.Thing.*) in the Resource section for this
permission. For more information, see Discovery authentication and authorization.

HTTP 404: {"errorMessage":"The thing provided for discovery was not found"}

You might see this error in the following cases:

• The client device isn't associated to any Greengrass core devices or AWS IoT Greengrass V1
groups.

• None of the client device's associated Greengrass core devices or AWS IoT Greengrass V1 groups
have an MQTT broker endpoint.

• None of the client device's associated Greengrass core devices run the client device auth
component.

Check that the client device is associated to the core device to which you want it to connect. Then,
check that the core device runs the client device auth component and has at least one MQTT broker
endpoint. For more information, see the following:

• Associate client devices

• Manage core device endpoints

• Configure cloud discovery (console)

Greengrass discovery issues (AWS IoT Device SDK v2 for Python)

Use the following information to troubleshoot issues with Greengrass discovery in the AWS IoT
Device SDK v2 for Python.

Topics

• awscrt.exceptions.AwsCrtError: AWS_ERROR_HTTP_CONNECTION_CLOSED: The connection has
closed or is closing.

• awsiot.greengrass_discovery.DiscoveryException: ('Error during discover call:
response_code=403', 403)

• awsiot.greengrass_discovery.DiscoveryException: ('Error during discover call:
response_code=404', 404)

Greengrass discovery issues 1676

https://docs.aws.amazon.com/iot/latest/developerguide/thing-policy-variables.html
https://github.com/aws/aws-iot-device-sdk-python-v2
https://github.com/aws/aws-iot-device-sdk-python-v2

AWS IoT Greengrass Developer Guide, Version 2

awscrt.exceptions.AwsCrtError: AWS_ERROR_HTTP_CONNECTION_CLOSED: The connection has
closed or is closing.

You might see this error if you specify an inactive AWS IoT certificate in the request.

Check that the client device has an attached certificate, and that the certificate is active. For more
information, see Attach a thing or policy to a client certificate and Activate or deactivate a client
certificate in the AWS IoT Core Developer Guide.

awsiot.greengrass_discovery.DiscoveryException: ('Error during discover call:
response_code=403', 403)

You might see this error if the client device doesn't have permission to call
greengrass:Discover for itself.

Check that the client device's certificate has a policy that allows greengrass:Discover. You
can't use thing policy variables (iot:Connection.Thing.*) in the Resource section for this
permission. For more information, see Discovery authentication and authorization.

awsiot.greengrass_discovery.DiscoveryException: ('Error during discover call:
response_code=404', 404)

You might see this error in the following cases:

• The client device isn't associated to any Greengrass core devices or AWS IoT Greengrass V1
groups.

• None of the client device's associated Greengrass core devices or AWS IoT Greengrass V1 groups
have an MQTT broker endpoint.

• None of the client device's associated Greengrass core devices run the client device auth
component.

Check that the client device is associated to the core device to which you want it to connect. Then,
check that the core device runs the client device auth component and has at least one MQTT broker
endpoint. For more information, see the following:

• Associate client devices

• Manage core device endpoints

• Configure cloud discovery (console)

Greengrass discovery issues 1677

https://docs.aws.amazon.com/iot/latest/developerguide/attach-to-cert.html
https://docs.aws.amazon.com/iot/latest/developerguide/activate-or-deactivate-device-cert.html
https://docs.aws.amazon.com/iot/latest/developerguide/activate-or-deactivate-device-cert.html
https://docs.aws.amazon.com/iot/latest/developerguide/thing-policy-variables.html

AWS IoT Greengrass Developer Guide, Version 2

Greengrass discovery issues (AWS IoT Device SDK v2 for C++)

Use the following information to troubleshoot issues with Greengrass discovery in the AWS IoT
Device SDK v2 for C++.

Topics

• aws-c-http: AWS_ERROR_HTTP_CONNECTION_CLOSED, The connection has closed or is closing.

• aws-c-common: AWS_ERROR_UNKNOWN, Unknown error. (HTTP 403)

• aws-c-common: AWS_ERROR_UNKNOWN, Unknown error. (HTTP 404)

aws-c-http: AWS_ERROR_HTTP_CONNECTION_CLOSED, The connection has closed or is closing.

You might see this error if you specify an inactive AWS IoT certificate in the request.

Check that the client device has an attached certificate, and that the certificate is active. For more
information, see Attach a thing or policy to a client certificate and Activate or deactivate a client
certificate in the AWS IoT Core Developer Guide.

aws-c-common: AWS_ERROR_UNKNOWN, Unknown error. (HTTP 403)

You might see this error if the client device doesn't have permission to call
greengrass:Discover for itself.

Check that the client device's certificate has a policy that allows greengrass:Discover. You
can't use thing policy variables (iot:Connection.Thing.*) in the Resource section for this
permission. For more information, see Discovery authentication and authorization.

aws-c-common: AWS_ERROR_UNKNOWN, Unknown error. (HTTP 404)

You might see this error in the following cases:

• The client device isn't associated to any Greengrass core devices or AWS IoT Greengrass V1
groups.

• None of the client device's associated Greengrass core devices or AWS IoT Greengrass V1 groups
have an MQTT broker endpoint.

• None of the client device's associated Greengrass core devices run the client device auth
component.

Greengrass discovery issues 1678

https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://github.com/aws/aws-iot-device-sdk-cpp-v2
https://docs.aws.amazon.com/iot/latest/developerguide/attach-to-cert.html
https://docs.aws.amazon.com/iot/latest/developerguide/activate-or-deactivate-device-cert.html
https://docs.aws.amazon.com/iot/latest/developerguide/activate-or-deactivate-device-cert.html
https://docs.aws.amazon.com/iot/latest/developerguide/thing-policy-variables.html

AWS IoT Greengrass Developer Guide, Version 2

Check that the client device is associated to the core device to which you want it to connect. Then,
check that the core device runs the client device auth component and has at least one MQTT broker
endpoint. For more information, see the following:

• Associate client devices

• Manage core device endpoints

• Configure cloud discovery (console)

Greengrass discovery issues (AWS IoT Device SDK v2 for JavaScript)

Use the following information to troubleshoot issues with Greengrass discovery in the AWS IoT
Device SDK v2 for JavaScript.

Topics

• Error: aws-c-http: AWS_ERROR_HTTP_CONNECTION_CLOSED, The connection has closed or is
closing.

• Error: Discovery failed (headers: [object Object]) { response_code: 403 }

• Error: Discovery failed (headers: [object Object]) { response_code: 404 }

• Error: Discovery failed (headers: [object Object])

Error: aws-c-http: AWS_ERROR_HTTP_CONNECTION_CLOSED, The connection has closed or is
closing.

You might see this error if you specify an inactive AWS IoT certificate in the request.

Check that the client device has an attached certificate, and that the certificate is active. For more
information, see Attach a thing or policy to a client certificate and Activate or deactivate a client
certificate in the AWS IoT Core Developer Guide.

Error: Discovery failed (headers: [object Object]) { response_code: 403 }

You might see this error if the client device doesn't have permission to call
greengrass:Discover for itself.

Check that the client device's certificate has a policy that allows greengrass:Discover. You
can't use thing policy variables (iot:Connection.Thing.*) in the Resource section for this
permission. For more information, see Discovery authentication and authorization.

Greengrass discovery issues 1679

https://github.com/aws/aws-iot-device-sdk-js-v2
https://github.com/aws/aws-iot-device-sdk-js-v2
https://docs.aws.amazon.com/iot/latest/developerguide/attach-to-cert.html
https://docs.aws.amazon.com/iot/latest/developerguide/activate-or-deactivate-device-cert.html
https://docs.aws.amazon.com/iot/latest/developerguide/activate-or-deactivate-device-cert.html
https://docs.aws.amazon.com/iot/latest/developerguide/thing-policy-variables.html

AWS IoT Greengrass Developer Guide, Version 2

Error: Discovery failed (headers: [object Object]) { response_code: 404 }

You might see this error in the following cases:

• The client device isn't associated to any Greengrass core devices or AWS IoT Greengrass V1
groups.

• None of the client device's associated Greengrass core devices or AWS IoT Greengrass V1 groups
have an MQTT broker endpoint.

• None of the client device's associated Greengrass core devices run the client device auth
component.

Check that the client device is associated to the core device to which you want it to connect. Then,
check that the core device runs the client device auth component and has at least one MQTT broker
endpoint. For more information, see the following:

• Associate client devices

• Manage core device endpoints

• Configure cloud discovery (console)

Error: Discovery failed (headers: [object Object])

You might see this error (without an HTTP response code) when you run the Greengrass discovery
sample. This error can occur for multiple reasons.

• You might see this error if the client device doesn't have permission to call
greengrass:Discover for itself.

Check that the client device's certificate has a policy that allows greengrass:Discover. You
can't use thing policy variables (iot:Connection.Thing.*) in the Resource section for this
permission. For more information, see Discovery authentication and authorization.

• You might see this error in the following cases:

• The client device isn't associated to any Greengrass core devices or AWS IoT Greengrass V1
groups.

• None of the client device's associated Greengrass core devices or AWS IoT Greengrass V1
groups have an MQTT broker endpoint.

Greengrass discovery issues 1680

https://docs.aws.amazon.com/iot/latest/developerguide/thing-policy-variables.html

AWS IoT Greengrass Developer Guide, Version 2

• None of the client device's associated Greengrass core devices run the client device auth
component.

Check that the client device is associated to the core device to which you want it to connect.
Then, check that the core device runs the client device auth component and has at least one
MQTT broker endpoint. For more information, see the following:

• Associate client devices

• Manage core device endpoints

• Configure cloud discovery (console)

Greengrass discovery issues (AWS IoT Device SDK v2 for Java)

Use the following information to troubleshoot issues with Greengrass discovery in the AWS IoT
Device SDK v2 for Java.

Topics

• software.amazon.awssdk.crt.CrtRuntimeException: Error Getting Response Status Code from
HttpStream. (aws_last_error: AWS_ERROR_HTTP_DATA_NOT_AVAILABLE(2062), This data is not
yet available.)

• java.lang.RuntimeException: Error x-amzn-ErrorType(403)

• java.lang.RuntimeException: Error x-amzn-ErrorType(404)

software.amazon.awssdk.crt.CrtRuntimeException: Error Getting Response Status Code from
HttpStream. (aws_last_error: AWS_ERROR_HTTP_DATA_NOT_AVAILABLE(2062), This data is not
yet available.)

You might see this error if you specify an inactive AWS IoT certificate in the request.

Check that the client device has an attached certificate, and that the certificate is active. For more
information, see Attach a thing or policy to a client certificate and Activate or deactivate a client
certificate in the AWS IoT Core Developer Guide.

java.lang.RuntimeException: Error x-amzn-ErrorType(403)

You might see this error if the client device doesn't have permission to call
greengrass:Discover for itself.

Greengrass discovery issues 1681

https://github.com/aws/aws-iot-device-sdk-java-v2
https://github.com/aws/aws-iot-device-sdk-java-v2
https://docs.aws.amazon.com/iot/latest/developerguide/attach-to-cert.html
https://docs.aws.amazon.com/iot/latest/developerguide/activate-or-deactivate-device-cert.html
https://docs.aws.amazon.com/iot/latest/developerguide/activate-or-deactivate-device-cert.html

AWS IoT Greengrass Developer Guide, Version 2

Check that the client device's certificate has a policy that allows greengrass:Discover. You
can't use thing policy variables (iot:Connection.Thing.*) in the Resource section for this
permission. For more information, see Discovery authentication and authorization.

java.lang.RuntimeException: Error x-amzn-ErrorType(404)

You might see this error in the following cases:

• The client device isn't associated to any Greengrass core devices or AWS IoT Greengrass V1
groups.

• None of the client device's associated Greengrass core devices or AWS IoT Greengrass V1 groups
have an MQTT broker endpoint.

• None of the client device's associated Greengrass core devices run the client device auth
component.

Check that the client device is associated to the core device to which you want it to connect. Then,
check that the core device runs the client device auth component and has at least one MQTT broker
endpoint. For more information, see the following:

• Associate client devices

• Manage core device endpoints

• Configure cloud discovery (console)

MQTT connection issues

Use the following information to troubleshoot issues with client device MQTT connections. These
issues can occur when client devices try to connect to a core device over MQTT.

Topics

• io.moquette.broker.Authorizator: Client does not have read permissions on the topic

• MQTT connection issues (Python)

• MQTT connection issues (C++)

• MQTT connection issues (Java)

• MQTT connection issues (JavaScript)

MQTT connection issues 1682

https://docs.aws.amazon.com/iot/latest/developerguide/thing-policy-variables.html

AWS IoT Greengrass Developer Guide, Version 2

io.moquette.broker.Authorizator: Client does not have read permissions on the
topic

You might see this error in the Greengrass logs when a client device tries to subscribe to an MQTT
topic where it doesn't have permission. The error message includes the topic.

Check that the client device auth component' configuration includes the following:

• A device group that matches the client device.

• A client device authorization policy for that device group that grants the mqtt:subscribe
permission for the topic.

For more information about how to deploy and configure the client device auth component, see
the following:

• Configure cloud discovery (console)

• Client device auth

• Create deployments

MQTT connection issues (Python)

Use the following information to troubleshoot issues with client device MQTT connections when
you use the AWS IoT Device SDK v2 for Python.

Topics

• AWS_ERROR_MQTT_PROTOCOL_ERROR: Protocol error occurred

• AWS_ERROR_MQTT_UNEXPECTED_HANGUP: Unexpected hangup occurred

AWS_ERROR_MQTT_PROTOCOL_ERROR: Protocol error occurred

You might see this error if the client device auth component doesn't define a client device
authorization policy that grants the client device permission to connect.

Check that the client device auth component's configuration includes the following:

• A device group that matches the client device.

MQTT connection issues 1683

https://github.com/aws/aws-iot-device-sdk-python-v2

AWS IoT Greengrass Developer Guide, Version 2

• A client device authorization policy for that device group that grants the mqtt:connect
permission for the client device.

For more information about how to deploy and configure the client device auth component, see
the following:

• Configure cloud discovery (console)

• Client device auth

• Create deployments

AWS_ERROR_MQTT_UNEXPECTED_HANGUP: Unexpected hangup occurred

You might see this error if the client device auth component doesn't define a client device
authorization policy that grants the client device permission to connect.

Check that the client device auth component's configuration includes the following:

• A device group that matches the client device.

• A client device authorization policy for that device group that grants the mqtt:connect
permission for the client device.

For more information about how to deploy and configure the client device auth component, see
the following:

• Configure cloud discovery (console)

• Client device auth

• Create deployments

MQTT connection issues (C++)

Use the following information to troubleshoot issues with client device MQTT connections when
you use the AWS IoT Device SDK v2 for C++.

Topics

• AWS_ERROR_MQTT_PROTOCOL_ERROR: Protocol error occurred

• AWS_ERROR_MQTT_UNEXPECTED_HANGUP: Unexpected hangup occurred

MQTT connection issues 1684

https://github.com/aws/aws-iot-device-sdk-cpp-v2

AWS IoT Greengrass Developer Guide, Version 2

AWS_ERROR_MQTT_PROTOCOL_ERROR: Protocol error occurred

You might see this error if the client device auth component doesn't define a client device
authorization policy that grants the client device permission to connect.

Check that the client device auth component's configuration includes the following:

• A device group that matches the client device.

• A client device authorization policy for that device group that grants the mqtt:connect
permission for the client device.

For more information about how to deploy and configure the client device auth component, see
the following:

• Configure cloud discovery (console)

• Client device auth

• Create deployments

AWS_ERROR_MQTT_UNEXPECTED_HANGUP: Unexpected hangup occurred

You might see this error if the client device auth component doesn't define a client device
authorization policy that grants the client device permission to connect.

Check that the client device auth component's configuration includes the following:

• A device group that matches the client device.

• A client device authorization policy for that device group that grants the mqtt:connect
permission for the client device.

For more information about how to deploy and configure the client device auth component, see
the following:

• Configure cloud discovery (console)

• Client device auth

• Create deployments

MQTT connection issues 1685

AWS IoT Greengrass Developer Guide, Version 2

MQTT connection issues (Java)

Use the following information to troubleshoot issues with client device MQTT connections when
you use the AWS IoT Device SDK v2 for Java.

Topics

• software.amazon.awssdk.crt.mqtt.MqttException: Protocol error occurred

• AWS_ERROR_MQTT_UNEXPECTED_HANGUP: Unexpected hangup occurred

software.amazon.awssdk.crt.mqtt.MqttException: Protocol error occurred

You might see this error if the client device auth component doesn't define a client device
authorization policy that grants the client device permission to connect.

Check that the client device auth component's configuration includes the following:

• A device group that matches the client device.

• A client device authorization policy for that device group that grants the mqtt:connect
permission for the client device.

For more information about how to deploy and configure the client device auth component, see
the following:

• Configure cloud discovery (console)

• Client device auth

• Create deployments

AWS_ERROR_MQTT_UNEXPECTED_HANGUP: Unexpected hangup occurred

You might see this error if the client device auth component doesn't define a client device
authorization policy that grants the client device permission to connect.

Check that the client device auth component's configuration includes the following:

• A device group that matches the client device.

• A client device authorization policy for that device group that grants the mqtt:connect
permission for the client device.

MQTT connection issues 1686

https://github.com/aws/aws-iot-device-sdk-java-v2

AWS IoT Greengrass Developer Guide, Version 2

For more information about how to deploy and configure the client device auth component, see
the following:

• Configure cloud discovery (console)

• Client device auth

• Create deployments

MQTT connection issues (JavaScript)

Use the following information to troubleshoot issues with client device MQTT connections when
you use the AWS IoT Device SDK v2 for JavaScript.

Topics

• AWS_ERROR_MQTT_PROTOCOL_ERROR: Protocol error occurred

• AWS_ERROR_MQTT_UNEXPECTED_HANGUP: Unexpected hangup occurred

AWS_ERROR_MQTT_PROTOCOL_ERROR: Protocol error occurred

You might see this error if the client device auth component doesn't define a client device
authorization policy that grants the client device permission to connect.

Check that the client device auth component's configuration includes the following:

• A device group that matches the client device.

• A client device authorization policy for that device group that grants the mqtt:connect
permission for the client device.

For more information about how to deploy and configure the client device auth component, see
the following:

• Configure cloud discovery (console)

• Client device auth

• Create deployments

MQTT connection issues 1687

https://github.com/aws/aws-iot-device-sdk-js-v2

AWS IoT Greengrass Developer Guide, Version 2

AWS_ERROR_MQTT_UNEXPECTED_HANGUP: Unexpected hangup occurred

You might see this error if the client device auth component doesn't define a client device
authorization policy that grants the client device permission to connect.

Check that the client device auth component's configuration includes the following:

• A device group that matches the client device.

• A client device authorization policy for that device group that grants the mqtt:connect
permission for the client device.

For more information about how to deploy and configure the client device auth component, see
the following:

• Configure cloud discovery (console)

• Client device auth

• Create deployments

MQTT connection issues 1688

AWS IoT Greengrass Developer Guide, Version 2

Interact with device shadows

Greengrass core devices can interact with AWS IoT device shadows using components. A shadow
is a JSON document that stores the current or desired state information for an AWS IoT thing.
Shadows can make a device’s state available to other AWS IoT Greengrass components whether the
device is connected to AWS IoT or not. Each AWS IoT device has its own classic, unnamed shadow.
You can also create multiple named shadows for each device.

Devices and services can create, update, and delete cloud shadows by using MQTT and the reserved
MQTT shadow topics, HTTP using the Device Shadow REST API, and the AWS CLI for AWS IoT.

The shadow manager component enables your Greengrass components to create, update, and
delete local shadows by using the local shadow service and the local publish/subscribe shadow
topics. The shadow manager also manages the storage of these local shadow documents on your
core device, and handles the synchronization of shadow state information with cloud shadows.

You can also use the shadow manager component to manage local shadows for client devices
that connect to the core device. To enable shadow manager to manage client device shadows, you
configure the MQTT bridge component to relay messages between the local MQTT broker and
the local publish/subscribe service. For more information, see Interact with and sync client device
shadows.

For more information about AWS IoT device shadow concepts, see AWS IoT Device Shadow service
in the AWS IoT Developer Guide.

Topics

• Interact with shadows in components

• Sync local device shadows with AWS IoT Core

Interact with shadows in components

You can develop custom components, including Lambda function components, that use the local
shadow service to read and modify local shadow documents and client device shadow documents.

Custom components interact with the local shadow service using the AWS IoT Greengrass Core IPC
libraries in the AWS IoT Device SDK. The shadow manager component enables the local shadow
service on your core device.

Interact with shadows in components 1689

https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://docs.aws.amazon.com/iot/latest/developerguide/reserved-topics.html#reserved-topics-shadow
https://docs.aws.amazon.com/iot/latest/developerguide/reserved-topics.html#reserved-topics-shadow
https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-rest-api.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iot-data/index.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html

AWS IoT Greengrass Developer Guide, Version 2

To deploy the shadow manager component to a Greengrass core device, create a deployment that
includes the aws.greengrass.ShadowManager component.

Note

By default, deploying the shadow manager component enables local shadow operations
only. To enable AWS IoT Greengrass to sync shadow state information for core device
shadows or any shadows for client devices to the corresponding cloud shadow documents
in AWS IoT Core, you must create a configuration update for the shadow manager
component that includes the synchronize parameter. For more information, see Sync
local device shadows with AWS IoT Core.

Topics

• Retrieve and modify shadow states

• React to shadow state changes

Retrieve and modify shadow states

The shadow IPC operations retrieve and update state information in local shadow documents. The
shadow manager component handles the storage of these shadow documents on your core device.

To modify local shadow states

1. Add authorization policies to the recipe for your custom component to allow the component
to receive messages on local shadow topics.

For example authorization policies, see Local shadow IPC authorization policy examples.

2. Use the shadow IPC operations to retrieve and modify shadow state information. For more
information about using shadow IPC operations in component code, see Interact with local
shadows.

Retrieve and modify shadow states 1690

AWS IoT Greengrass Developer Guide, Version 2

Note

To enable a core device to interact with client device shadows, you must also configure and
deploy the MQTT bridge component. For more information, see Enable shadow manager to
communicate with client devices.

React to shadow state changes

Greengrass components use the local publish/subscribe interface to communicate on a core device.
To enable a custom component to react to shadow state changes, you can subscribe to the local
publish/subscribe topics. This allows the component to receive messages on the local shadow
topics, and then act on those messages.

Local shadow topics use the same format as the AWS IoT device shadow MQTT topics. For more
information about shadow topics, see Device Shadow MQTT topics in the AWS IoT Developer Guide.

To react to local shadow state changes

1. Add access control policies to the recipe for your custom component to allow the component
to receive messages on local shadow topics.

For example authorization policies, see Local shadow IPC authorization policy examples.

2. To initiate a custom action in a component, use SubscribeToTopic IPC operations to
subscribe to the shadow topics on which you want to receive messages. For more information
about using local publish/subscribe IPC operations in component code, see Publish/subscribe
local messages.

3. To invoke a Lambda function, use the event source configuration to provide the name of
the shadow topic and specify that it's a local publish/subscribe topic. For information about
creating Lambda function components, see Run AWS Lambda functions.

Note

To enable a core device to interact with client device shadows, you must also configure and
deploy the MQTT bridge component. For more information, see Enable shadow manager to
communicate with client devices.

React to shadow state changes 1691

https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html

AWS IoT Greengrass Developer Guide, Version 2

Sync local device shadows with AWS IoT Core

The shadow manager component enables AWS IoT Greengrass to sync local device shadow states
with AWS IoT Core. You must modify the configuration of the shadow manager component to
include the synchronization configuration parameter, and specify the AWS IoT thing names for
your devices, and the shadows that you want to sync.

When you configure shadow manager to sync shadows, it syncs all state changes for specified
shadows, regardless of whether the changes occur in local shadow documents or in cloud shadow
documents.

You can also specify whether the shadow manager component syncs shadows in real time or on
a periodic interval. By default, the shadow manager component syncs shadows in real time, so
the core device sends and receives shadow updates to and from AWS IoT Core when each update
occurs. You can configure periodic intervals to reduce bandwidth usage and charges.

Topics

• Prerequisites

• Configure the shadow manager component

• Sync local shadows

• Shadow merge conflict behavior

Prerequisites

To sync local shadows with AWS IoT Core, you must configure the Greengrass core device's AWS IoT
policy to allow the following AWS IoT Core shadow policy actions.

• iot:GetThingShadow

• iot:UpdateThingShadow

• iot:DeleteThingShadow

For more information, see the following:

• AWS IoT Core policy actions in the AWS IoT Developer Guide

• Minimal AWS IoT policy for AWS IoT Greengrass V2 core devices

• Update a core device's AWS IoT policy

Sync local device shadows with AWS IoT Core 1692

https://docs.aws.amazon.com/iot/latest/developerguide/iot-policy-actions.html

AWS IoT Greengrass Developer Guide, Version 2

Configure the shadow manager component

The shadow manager requires a list of shadow name mappings to sync shadow state information in
local shadow documents to cloud shadow documents in AWS IoT Core.

To sync shadow states, create a deployment that includes the aws.greengrass.ShadowManager
component, and specify the shadows that you want to sync in the synchronize configuration
parameter in the shadow manager configuration in the deployment.

Note

To enable a core device to interact with client device shadows, you must also configure and
deploy the MQTT bridge component. For more information, see Enable shadow manager to
communicate with client devices.

The following example configuration update instructs the shadow manager component to sync the
following shadows with AWS IoT Core:

• The classic shadow for the core device

• The named MyCoreShadow for the core device

• The classic shadow for an IoT thing named MyDevice2

• The named shadows MyShadowA and MyShadowB for a IoT thing named MyDevice1

This configuration update specifies to sync shadows with AWS IoT Core in real time. If you
use shadow manager v2.1.0 or later, you can configure the shadow manager component to
sync shadows on a periodic interval. To configure this feature, change the sync strategy to
periodic, and specify a delay in seconds for the interval. For more information, see the strategy
configuration parameter of the shadow manager component.

This configuration update specifies to sync shadows in both directions between AWS IoT Core
and the core device. If you use shadow manager v2.2.0 or later, you can configure the shadow
manager component to sync shadows in only one direction. To configure this feature, change the
sync direction to deviceToCloud or cloudToDevice. For more information, see the direction
configuration parameter of the shadow manager component.

{

Configure the shadow manager component 1693

AWS IoT Greengrass Developer Guide, Version 2

 "strategy": {
 "type": "realTime"
 },
 "synchronize": {
 "coreThing": {
 "classic": true,
 "namedShadows": [
 "MyCoreShadow"
]
 },
 "shadowDocuments": [
 {
 "thingName": "MyDevice1",
 "classic": false,
 "namedShadows": [
 "MyShadowA",
 "MyShadowB"
]
 },
 {
 "thingName": "MyDevice2",
 "classic": true,
 "namedShadows": []
 }
],
 "direction": "betweenDeviceAndCloud"
 }
}

Sync local shadows

When the Greengrass core device is connected to the AWS IoT cloud, the shadow manager
performs the following tasks for the shadows that you specify in the component configuration. The
behavior depends on the shadow sync direction configuration option that you specify. By default,
shadow manager uses the betweenDeviceAndCloud option to sync shadows in both directions. If
you use shadow manager v2.2.0 or later, you can configure the core device to sync shadows in only
one direction, which can be cloudToDevice or deviceToCloud.

• If the shadow sync direction configuration is betweenDeviceAndCloud or cloudToDevice,
shadow manager retrieves the reported state information from the cloud shadow document in
AWS IoT Core. Then, it updates locally stored shadow documents to synchronize the device state.

Sync local shadows 1694

AWS IoT Greengrass Developer Guide, Version 2

• If the shadow sync direction configuration is betweenDeviceAndCloud or deviceToCloud,
shadow manager publishes the device's current state to the cloud shadow document.

Shadow merge conflict behavior

In some cases, such as when the core device is disconnected from the internet, a shadow might
change in the local shadow service and in the AWS IoT cloud before the shadow manager
synchronizes the changes. As a result, the desired and reported states differ between the local
shadow service and the AWS IoT cloud

When the shadow manager synchronizes the shadow, it merges the changes according to the
following behavior:

• If you use a version of shadow manager earlier than v2.2.0, or when you specify the
betweenDeviceAndCloud shadow sync direction, the following behavior applies:

• When there's a merge conflict in a shadow's desired state, the shadow manager overwrites the
conflicting section of the local shadow document with the value from the AWS IoT cloud.

• When there's a merge conflict in a shadow's reported state, the shadow manager overwrites
the conflicting section of the shadow in the AWS IoT cloud with the value from the local
shadow document.

• When you specify the deviceToCloud shadow sync direction, the shadow manager overwrites
the conflicting section of the shadow in the AWS IoT cloud with the value from the local shadow
document.

• When you specify the cloudToDevice shadow sync direction, the shadow manager overwrites
the conflicting section of the local shadow document with the value from the AWS IoT cloud.

Shadow merge conflict behavior 1695

AWS IoT Greengrass Developer Guide, Version 2

Manage data streams on Greengrass core devices

AWS IoT Greengrass stream manager makes it more efficient and reliable to transfer high-
volume IoT data to the AWS Cloud. Stream manager processes data streams on the AWS IoT
Greengrass Core before it exports them to the AWS Cloud. Stream manager integrates with
common edge scenarios, such as machine learning (ML) inference, where the AWS IoT Greengrass
Core device processes and analyzes data before it exports the data to the AWS Cloud or local
storage destinations.

Stream manager provides a common interface to simplify custom component development so that
you don't need to build custom stream management functionality. Your components can use a
standardized mechanism to process high-volume streams and manage local data retention policies.
You can define policies for storage type, size, and data retention for each stream to control how
stream manager processes and exports data.

Stream manager works in environments with intermittent or limited connectivity. You can define
bandwidth use, timeout behavior, and how the AWS IoT Greengrass Core handles stream data
when it is connected or disconnected. You can also set priorities to control the order in which the
AWS IoT Greengrass Core exports streams to the AWS Cloud. This makes it possible for you to
handle critical data sooner than other data.

You can configure stream manager to automatically export data to the AWS Cloud for storage or
further processing and analysis. Stream manager supports exports to the following AWS Cloud
destinations:

• Channels in AWS IoT Analytics. AWS IoT Analytics lets you perform advanced analysis on
your data to help make business decisions and improve machine learning models. For more
information, see What is AWS IoT Analytics? in the AWS IoT Analytics User Guide.

• Streams in Amazon Kinesis Data Streams. You can use Kinesis Data Streams to aggregate high-
volume data and load it into a data warehouse or MapReduce cluster. For more information, see
What is Amazon Kinesis Data Streams? in the Amazon Kinesis Data Streams Developer Guide.

• Asset properties in AWS IoT SiteWise. AWS IoT SiteWise lets you collect, organize, and analyze
data from industrial equipment at scale. For more information, see What is AWS IoT SiteWise? in
the AWS IoT SiteWise User Guide.

• Objects in Amazon Simple Storage Service Amazon S3. You can use Amazon S3 to store and
retrieve large amounts of data. For more information, see What is Amazon S3? in the Amazon
Simple Storage Service Developer Guide.

1696

https://docs.aws.amazon.com/iotanalytics/latest/userguide/welcome.html
https://docs.aws.amazon.com/streams/latest/dev/what-is-this-service.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/what-is-sitewise.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html

AWS IoT Greengrass Developer Guide, Version 2

Stream management workflow

Your IoT applications interact with stream manager through the Stream Manager SDK.

In a simple workflow, a component on the AWS IoT Greengrass core consumes IoT data, such
as time-series temperature and pressure metrics. The component might filter or compress the
data, and then call the Stream Manager SDK to write the data to a stream in stream manager.
Stream manager can export the stream to the AWS Cloud automatically based on the policies that
you define for the stream. Components can also send data directly to local databases or storage
repositories.

Your IoT applications can include multiple custom components that read or write to streams.
These components can read and write to streams to filter, aggregate, and analyze data on the
AWS IoT Greengrass core device. This makes it possible to respond quickly to local events and
extract valuable information before the data transfers from the core to the AWS Cloud or local
destinations.

To get started, deploy the stream manager component to your AWS IoT Greengrass core device.
In the deployment, configure the stream manager component parameters to define settings that
apply to all streams on the Greengrass core device. Use these parameters to control how stream
manager stores, processes, and exports streams based on your business needs and environment
constraints.

After you configure stream manager, you can create and deploy your IoT applications. These are
typically custom components that use StreamManagerClient in the Stream Manager SDK to
create and interact with streams. When you create a stream, you can define per-stream policies,
such as export destinations, priority, and persistence.

Requirements

The following requirements apply for using stream manager:

• Stream manager requires a minimum of 70 MB RAM in addition to the AWS IoT Greengrass Core
software. Your total memory requirement depends on your workload.

• AWS IoT Greengrass components must use the Stream Manager SDK to interact with stream
manager. The Stream Manager SDK is available in the following languages :

• Stream Manager SDK for Java (v1.1.0 or later)

Stream management workflow 1697

https://github.com/aws-greengrass/aws-greengrass-stream-manager-sdk-java/

AWS IoT Greengrass Developer Guide, Version 2

• Stream Manager SDK for Node.js (v1.1.0 or later)

• Stream Manager SDK for Python (v1.1.0 or later)

• AWS IoT Greengrass components must specify the stream manager component
(aws.greengrass.StreamManager) as a dependency in their recipe to use stream manager.

Note

If you use stream manager to export data to the cloud, you can't upgrade version 2.0.7
of the stream manager component to a version between v2.0.8 and v2.0.11. If you are
deploying stream manager for the first time, we strongly recommend that you deploy
the latest version of the stream manager component.

• If you define AWS Cloud export destinations for a stream, you must create your export targets
and grant access permissions in the Greengrass device role. Depending on the destination, other
requirements might also apply. For more information, see:

• the section called “AWS IoT Analytics channels”

• the section called “Amazon Kinesis data streams”

• the section called “AWS IoT SiteWise asset properties”

• the section called “Amazon S3 objects”

You are responsible for maintaining these AWS Cloud resources.

Data security

When you use stream manager, be aware of the following security considerations.

Local data security

AWS IoT Greengrass does not encrypt stream data at rest or in transit between local components
on the core device.

• Data at rest. Stream data is stored locally in a storage directory. For data security, AWS IoT
Greengrass relies on file permissions and full-disk encryption, if enabled. You can use the
optional STREAM_MANAGER_STORE_ROOT_DIR parameter to specify the storage directory. If
you change this parameter later to use a different storage directory, AWS IoT Greengrass does
not delete the previous storage directory or its contents.

Data security 1698

https://github.com/aws-greengrass/aws-greengrass-stream-manager-sdk-js/
https://github.com/aws-greengrass/aws-greengrass-stream-manager-sdk-python/

AWS IoT Greengrass Developer Guide, Version 2

• Data in transit locally. AWS IoT Greengrass does not encrypt stream data in local transit
between data sources, AWS IoT Greengrass components, the Stream Manager SDK, and stream
manager.

• Data in transit to the AWS Cloud. Data streams exported by stream manager to the AWS Cloud
use standard AWS service client encryption with Transport Layer Security (TLS).

Client authentication

Stream manager clients use the Stream Manager SDK to communicate with stream manager. When
client authentication is enabled, only Greengrass components can interact with streams in stream
manager. When client authentication is disabled, any process running on the Greengrass core
device can interact with streams in stream manager. You should disable authentication only if your
business case requires it.

You use the STREAM_MANAGER_AUTHENTICATE_CLIENT parameter to set the client
authentication mode. You can configure this parameter when you deploy the stream manager
component to core devices.

 Enabled Disabled

Parameter value true (default and
recommended)

false

Allowed clients Greengrass components on
the core device

Greengrass components on
the core device

Other processes running on
the Greengrass core device

See also

• the section called “Configure stream manager”

• the section called “Use StreamManagerClient to work with streams”

• the section called “Export configurations for supported cloud destinations”

Client authentication 1699

AWS IoT Greengrass Developer Guide, Version 2

Configure AWS IoT Greengrass stream manager

On Greengrass core devices, stream manager can store, process, and export IoT device data. Stream
manager provides parameters that you use to configure runtime settings. These settings apply to
all streams on the Greengrass core device. You can use the AWS IoT Greengrass console or API to
configure stream manager settings when you deploy the component. Changes take effect after the
deployment completes.

Stream manager parameters

Stream manager provides the following parameters that you can configure when you deploy the
component to your core devices. All parameters are optional.

Storage directory

Parameter name: STREAM_MANAGER_STORE_ROOT_DIR

The absolute path of the local folder used to store streams. This value must start with a forward
slash (for example, /data).

You must specify an existing folder, and the system user who runs the stream manager
component must have permissions to read and write to this folder. For example, you can run
the following commands to create and configure a folder, /var/greengrass/streams, which
you specify as the stream manager root folder. These commands allow the default system user,
ggc_user, to read and write to this folder.

sudo mkdir /var/greengrass/streams
sudo chown ggc_user /var/greengrass/streams
sudo chmod 700 /var/greengrass/streams

For information about securing stream data, see the section called “Local data security”.

Default: /greengrass/v2/work/aws.greengrass.StreamManager

Server port

Parameter name: STREAM_MANAGER_SERVER_PORT

The local port number used to communicate with stream manager. The default is 8088.

Configure stream manager 1700

AWS IoT Greengrass Developer Guide, Version 2

You can specify 0 to use a random available port.

Authenticate client

Parameter name: STREAM_MANAGER_AUTHENTICATE_CLIENT

Indicates whether clients must be authenticated to interact with stream manager. All
interaction between clients and stream manager is controlled by the Stream Manager SDK. This
parameter determines which clients can call the Stream Manager SDK to work with streams. For
more information, see the section called “Client authentication”.

Valid values are true or false. The default is true (recommended).

• true. Allows only Greengrass components as clients. Components use internal AWS IoT
Greengrass Core protocols to authenticate with the Stream Manager SDK.

• false. Allows any process that runs on the AWS IoT Greengrass Core to be a client. Do not
set the value to false unless your business case requires it. For example, use false only
if non-component processes on the core device must communicate directly with stream
manager.

Maximum bandwidth

Parameter name: STREAM_MANAGER_EXPORTER_MAX_BANDWIDTH

The average maximum bandwidth (in kilobits per second) that can be used to export data. The
default allows unlimited use of available bandwidth.

Thread pool size

Parameter name: STREAM_MANAGER_EXPORTER_THREAD_POOL_SIZE

The maximum number of active threads that can be used to export data. The default is 5.

The optimal size depends on your hardware, stream volume, and planned number of export
streams. If your export speed is slow, you can adjust this setting to find the optimal size for your
hardware and business case. The CPU and memory of your core device hardware are limiting
factors. To start, you might try setting this value equal to the number of processor cores on the
device.

Be careful not to set a size that's higher than your hardware can support. Each stream consumes
hardware resources, so try to limit the number of export streams on constrained devices.

Stream manager parameters 1701

AWS IoT Greengrass Developer Guide, Version 2

JVM arguments

Parameter name: JVM_ARGS

Custom Java Virtual Machine arguments to pass to stream manager at startup. Multiple
arguments should be separated by spaces.

Use this parameter only when you must override the default settings used by the JVM. For
example, you might need to increase the default heap size if you plan to export a large number
of streams.

Logging level

Parameter name: LOG_LEVEL

The logging level for the component. Choose from the following log levels, listed here in level
order:

• TRACE

• DEBUG

• INFO

• WARN

• ERROR

Default: INFO

Minimum size for multipart upload

Parameter name:
STREAM_MANAGER_EXPORTER_S3_DESTINATION_MULTIPART_UPLOAD_MIN_PART_SIZE_BYTES

The minimum size (in bytes) of a part in a multipart upload to Amazon S3. Stream manager
uses this setting and the size of the input file to determine how to batch data in a multipart
PUT request. The default and minimum value is 5242880 bytes (5 MB).

Note

Stream manager uses the stream's sizeThresholdForMultipartUploadBytes
property to determine whether to export to Amazon S3 as a single or multipart upload.
User-defined Greengrass components set this threshold when they create a stream that
exports to Amazon S3. The default threshold is 5 MB.

Stream manager parameters 1702

AWS IoT Greengrass Developer Guide, Version 2

See also

• Manage data streams on Greengrass core devices

• Use StreamManagerClient to work with streams

• Export configurations for supported AWS Cloud destinations

Create custom components that use stream manager

Use stream manager in custom Greengrass components to store, process, and export IoT device
data. Use the procedures and examples in this section to create component recipes, artifacts, and
applications that work with stream manager. For more information about how to develop and test
components, see Create AWS IoT Greengrass components.

Topics

• Define component recipes that use stream manager

• Connect to stream manager in application code

Define component recipes that use stream manager

To use stream manager in a custom component, you must define the
aws.greengrass.StreamManager component as a dependency. You must also provide the
Stream Manager SDK. Complete the following tasks to download and use the Stream Manager SDK
in the language of your choice.

Use the Stream Manager SDK for Java

The Stream Manager SDK for Java is available as a JAR file that you can use to compile your
component. Then, you can create an application JAR that includes the Stream Manager SDK,
define the application JAR as a component artifact, and run the application JAR in the component
lifecycle.

To use the Stream Manager SDK for Java

1. Download the Stream Manager SDK for Java JAR file.

2. Do one of the following to create component artifacts from your Java application and the
Stream Manager SDK JAR file:

See also 1703

https://github.com/aws-greengrass/aws-greengrass-stream-manager-sdk-java/blob/main/sdk/aws-greengrass-stream-manager-sdk-java.jar

AWS IoT Greengrass Developer Guide, Version 2

• Build your application as a JAR file that includes the Stream Manager SDK JAR, and run
this JAR file in your component recipe.

• Define the Stream Manager SDK JAR as a component artifact. Add that artifact to the
classpath when you run your application in your component recipe.

Your component recipe might look like the following example. This component runs a
modified version of the StreamManagerS3.java example, where StreamManagerS3.jar
includes the Stream Manager SDK JAR.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.StreamManagerS3Java",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "Uses stream manager to upload a file to an S3
 bucket.",
 "ComponentPublisher": "Amazon",
 "ComponentDependencies": {
 "aws.greengrass.StreamManager": {
 "VersionRequirement": "^2.0.0"
 }
 },
 "Manifests": [
 {
 "Lifecycle": {
 "Run": "java -jar {artifacts:path}/StreamManagerS3.jar"
 },
 "Artifacts": [
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.StreamManagerS3Java/1.0.0/StreamManagerS3.jar"
 }
]
 }
]
}

YAML

Define component recipes that use stream manager 1704

https://github.com/aws-greengrass/aws-greengrass-stream-manager-sdk-java/blob/main/samples/StreamManagerS3/src/main/java/com/amazonaws/greengrass/examples/StreamManagerS3.java

AWS IoT Greengrass Developer Guide, Version 2

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.StreamManagerS3Java
ComponentVersion: 1.0.0
ComponentDescription: Uses stream manager to upload a file to an S3 bucket.
ComponentPublisher: Amazon
ComponentDependencies:
 aws.greengrass.StreamManager:
 VersionRequirement: "^2.0.0"
Manifests:
 - Lifecycle:
 Run: java -jar {artifacts:path}/StreamManagerS3.jar
 Artifacts:
 - URI: s3://amzn-s3-demo-bucket/artifacts/
com.example.StreamManagerS3Java/1.0.0/StreamManagerS3.jar

For more information about how to develop and test components, see Create AWS IoT
Greengrass components.

Use the Stream Manager SDK for Python

The Stream Manager SDK for Python is available as source code that you can include in your
component. Create a ZIP file of the Stream Manager SDK, define the ZIP file as a component
artifact, and install the SDK's requirements in the component lifecycle.

To use the Stream Manager SDK for Python

1. Clone or download the aws-greengrass-stream-manager-sdk-python repository.

git clone git@github.com:aws-greengrass/aws-greengrass-stream-manager-sdk-
python.git

2. Create a ZIP file that contains the stream_manager folder, which contains the source code
of the Stream Manager SDK for Python. You can provide this ZIP file as a component artifact
that the AWS IoT Greengrass Core software unzips when it installs your component. Do the
following:

a. Open the folder that contains the repository that you cloned or downloaded in the
previous step.

Define component recipes that use stream manager 1705

https://github.com/aws-greengrass/aws-greengrass-stream-manager-sdk-python

AWS IoT Greengrass Developer Guide, Version 2

cd aws-greengrass-stream-manager-sdk-python

b. Zip the stream_manager folder into a ZIP file named stream_manager_sdk.zip.

Linux or Unix

zip -rv stream_manager_sdk.zip stream_manager

Windows Command Prompt (CMD)

tar -acvf stream_manager_sdk.zip stream_manager

PowerShell

Compress-Archive stream_manager stream_manager_sdk.zip

c. Verify that the stream_manager_sdk.zip file contains the stream_manager folder
and its contents. Run the following command to list the contents of the ZIP file.

Linux or Unix

unzip -l stream_manager_sdk.zip

Windows Command Prompt (CMD)

tar -tf stream_manager_sdk.zip

The output should look similar to the following.

Archive: aws-greengrass-stream-manager-sdk-python/stream_manager.zip
 Length Date Time Name
--------- ---------- ----- ----
 0 02-24-2021 20:45 stream_manager/
 913 02-24-2021 20:45 stream_manager/__init__.py
 9719 02-24-2021 20:45 stream_manager/utilinternal.py
 1412 02-24-2021 20:45 stream_manager/exceptions.py
 1004 02-24-2021 20:45 stream_manager/util.py
 0 02-24-2021 20:45 stream_manager/data/
 254463 02-24-2021 20:45 stream_manager/data/__init__.py

Define component recipes that use stream manager 1706

AWS IoT Greengrass Developer Guide, Version 2

 26515 02-24-2021 20:45 stream_manager/streammanagerclient.py
--------- -------
 294026 8 files

3. Copy the Stream Manager SDK artifacts to your component's artifacts folder. In addition to
the Stream Manager SDK ZIP file, your component uses the SDK's requirements.txt file to
install the dependencies of the Stream Manager SDK. Replace ~/greengrass-components
with the path to the folder that you use for local development.

Linux or Unix

cp {stream_manager_sdk.zip,requirements.txt} ~/greengrass-components/artifacts/
com.example.StreamManagerS3Python/1.0.0/

Windows Command Prompt (CMD)

robocopy . %USERPROFILE%\greengrass-components\artifacts
\com.example.StreamManagerS3Python\1.0.0 stream_manager_sdk.zip
robocopy . %USERPROFILE%\greengrass-components\artifacts
\com.example.StreamManagerS3Python\1.0.0 requirements.txt

PowerShell

cp .\stream_manager_sdk.zip,.\requirements.txt ~\greengrass-components\artifacts
\com.example.StreamManagerS3Python\1.0.0\

4. Create your component recipe. In the recipe, do the following:

a. Define stream_manager_sdk.zip and requirements.txt as artifacts.

b. Define your Python application as an artifact.

c. In the install lifecycle, install the Stream Manager SDK requirements from
requirements.txt.

d. In the run lifecycle, append the Stream Manager SDK to PYTHONPATH, and run your
Python application.

Your component recipe might look like the following example. This component runs the
stream_manager_s3.py example.

Define component recipes that use stream manager 1707

https://github.com/aws-greengrass/aws-greengrass-stream-manager-sdk-python/blob/main/samples/stream_manager_s3.py

AWS IoT Greengrass Developer Guide, Version 2

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.StreamManagerS3Python",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "Uses stream manager to upload a file to an S3
 bucket.",
 "ComponentPublisher": "Amazon",
 "ComponentDependencies": {
 "aws.greengrass.StreamManager": {
 "VersionRequirement": "^2.0.0"
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "linux"
 },
 "Lifecycle": {
 "install": "pip3 install --user -r {artifacts:path}/requirements.txt",
 "Run": "export PYTHONPATH=$PYTHONPATH:{artifacts:decompressedPath}/
stream_manager_sdk; python3 {artifacts:path}/stream_manager_s3.py"
 },
 "Artifacts": [
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.StreamManagerS3Python/1.0.0/stream_manager_sdk.zip",
 "Unarchive": "ZIP"
 },
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.StreamManagerS3Python/1.0.0/stream_manager_s3.py"
 },
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.StreamManagerS3Python/1.0.0/requirements.txt"
 }
]
 },
 {
 "Platform": {
 "os": "windows"

Define component recipes that use stream manager 1708

AWS IoT Greengrass Developer Guide, Version 2

 },
 "Lifecycle": {
 "install": "pip3 install --user -r {artifacts:path}/requirements.txt",
 "Run": "set \"PYTHONPATH=%PYTHONPATH%;{artifacts:decompressedPath}/
stream_manager_sdk\" & py -3 {artifacts:path}/stream_manager_s3.py"
 },
 "Artifacts": [
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.StreamManagerS3Python/1.0.0/stream_manager_sdk.zip",
 "Unarchive": "ZIP"
 },
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.StreamManagerS3Python/1.0.0/stream_manager_s3.py"
 },
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.StreamManagerS3Python/1.0.0/requirements.txt"
 }
]
 }
]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.StreamManagerS3Python
ComponentVersion: 1.0.0
ComponentDescription: Uses stream manager to upload a file to an S3 bucket.
ComponentPublisher: Amazon
ComponentDependencies:
 aws.greengrass.StreamManager:
 VersionRequirement: "^2.0.0"
Manifests:
 - Platform:
 os: linux
 Lifecycle:
 install: pip3 install --user -r {artifacts:path}/requirements.txt
 Run: |

Define component recipes that use stream manager 1709

AWS IoT Greengrass Developer Guide, Version 2

 export PYTHONPATH=$PYTHONPATH:{artifacts:decompressedPath}/
stream_manager_sdk
 python3 {artifacts:path}/stream_manager_s3.py
 Artifacts:
 - URI: s3://amzn-s3-demo-bucket/artifacts/
com.example.StreamManagerS3Python/1.0.0/stream_manager_sdk.zip
 Unarchive: ZIP
 - URI: s3://amzn-s3-demo-bucket/artifacts/
com.example.StreamManagerS3Python/1.0.0/stream_manager_s3.py
 - URI: s3://amzn-s3-demo-bucket/artifacts/
com.example.StreamManagerS3Python/1.0.0/requirements.txt
 - Platform:
 os: windows
 Lifecycle:
 install: pip3 install --user -r {artifacts:path}/requirements.txt
 Run: |
 set "PYTHONPATH=%PYTHONPATH%;{artifacts:decompressedPath}/
stream_manager_sdk"
 py -3 {artifacts:path}/stream_manager_s3.py
 Artifacts:
 - URI: s3://amzn-s3-demo-bucket/artifacts/
com.example.StreamManagerS3Python/1.0.0/stream_manager_sdk.zip
 Unarchive: ZIP
 - URI: s3://amzn-s3-demo-bucket/artifacts/
com.example.StreamManagerS3Python/1.0.0/stream_manager_s3.py
 - URI: s3://amzn-s3-demo-bucket/artifacts/
com.example.StreamManagerS3Python/1.0.0/requirements.txt

For more information about how to develop and test components, see Create AWS IoT
Greengrass components.

Use the Stream Manager SDK for JavaScript

The Stream Manager SDK for JavaScript is available as source code that you can include in your
component. Create a ZIP file of the Stream Manager SDK, define the ZIP file as a component
artifact, and install the SDK in the component lifecycle.

To use the Stream Manager SDK for JavaScript

1. Clone or download the aws-greengrass-stream-manager-sdk-js repository.

Define component recipes that use stream manager 1710

https://github.com/aws-greengrass/aws-greengrass-stream-manager-sdk-js

AWS IoT Greengrass Developer Guide, Version 2

git clone git@github.com:aws-greengrass/aws-greengrass-stream-manager-sdk-js.git

2. Create a ZIP file that contains the aws-greengrass-stream-manager-sdk folder, which
contains the source code of the Stream Manager SDK for JavaScript. You can provide this ZIP
file as a component artifact that the AWS IoT Greengrass Core software unzips when it installs
your component. Do the following:

a. Open the folder that contains the repository that you cloned or downloaded in the
previous step.

cd aws-greengrass-stream-manager-sdk-js

b. Zip the aws-greengrass-stream-manager-sdk folder into a ZIP file named stream-
manager-sdk.zip.

Linux or Unix

zip -rv stream-manager-sdk.zip aws-greengrass-stream-manager-sdk

Windows Command Prompt (CMD)

tar -acvf stream-manager-sdk.zip aws-greengrass-stream-manager-sdk

PowerShell

Compress-Archive aws-greengrass-stream-manager-sdk stream-manager-sdk.zip

c. Verify that the stream-manager-sdk.zip file contains the aws-greengrass-
stream-manager-sdk folder and its contents. Run the following command to list the
contents of the ZIP file.

Linux or Unix

unzip -l stream-manager-sdk.zip

Windows Command Prompt (CMD)

tar -tf stream-manager-sdk.zip

Define component recipes that use stream manager 1711

AWS IoT Greengrass Developer Guide, Version 2

The output should look similar to the following.

Archive: stream-manager-sdk.zip
 Length Date Time Name
--------- ---------- ----- ----
 0 02-24-2021 22:36 aws-greengrass-stream-manager-sdk/
 369 02-24-2021 22:36 aws-greengrass-stream-manager-sdk/package.json
 1017 02-24-2021 22:36 aws-greengrass-stream-manager-sdk/util.js
 8374 02-24-2021 22:36 aws-greengrass-stream-manager-sdk/utilInternal.js
 1937 02-24-2021 22:36 aws-greengrass-stream-manager-sdk/exceptions.js
 0 02-24-2021 22:36 aws-greengrass-stream-manager-sdk/data/
 353343 02-24-2021 22:36 aws-greengrass-stream-manager-sdk/data/index.js
 22599 02-24-2021 22:36 aws-greengrass-stream-manager-sdk/client.js
 216 02-24-2021 22:36 aws-greengrass-stream-manager-sdk/index.js
--------- -------
 387855 9 files

3. Copy the Stream Manager SDK artifact to your component's artifacts folder. Replace ~/
greengrass-components with the path to the folder that you use for local development.

Linux or Unix

cp stream-manager-sdk.zip ~/greengrass-components/artifacts/
com.example.StreamManagerS3JS/1.0.0/

Windows Command Prompt (CMD)

robocopy . %USERPROFILE%\greengrass-components\artifacts
\com.example.StreamManagerS3JS\1.0.0 stream-manager-sdk.zip

PowerShell

cp .\stream-manager-sdk.zip ~\greengrass-components\artifacts
\com.example.StreamManagerS3JS\1.0.0\

4. Create your component recipe. In the recipe, do the following:

a. Define stream-manager-sdk.zip as an artifact.

b. Define your JavaScript application as an artifact.

Define component recipes that use stream manager 1712

AWS IoT Greengrass Developer Guide, Version 2

c. In the install lifecycle, install the Stream Manager SDK from the stream-manager-
sdk.zip artifact. This npm install command creates a node_modules folder that
contains the Stream Manager SDK and its dependencies.

d. In the run lifecycle, append the node_modules folder to NODE_PATH, and run your
JavaScript application.

Your component recipe might look like the following example. This component runs the
StreamManagerS3 example.

JSON

{
 "RecipeFormatVersion": "2020-01-25",
 "ComponentName": "com.example.StreamManagerS3JS",
 "ComponentVersion": "1.0.0",
 "ComponentDescription": "Uses stream manager to upload a file to an S3
 bucket.",
 "ComponentPublisher": "Amazon",
 "ComponentDependencies": {
 "aws.greengrass.StreamManager": {
 "VersionRequirement": "^2.0.0"
 }
 },
 "Manifests": [
 {
 "Platform": {
 "os": "linux"
 },
 "Lifecycle": {
 "install": "npm install {artifacts:decompressedPath}/stream-manager-sdk/
aws-greengrass-stream-manager-sdk",
 "Run": "export NODE_PATH=$NODE_PATH:{work:path}/node_modules; node
 {artifacts:path}/index.js"
 },
 "Artifacts": [
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.StreamManagerS3JS/1.0.0/stream-manager-sdk.zip",
 "Unarchive": "ZIP"
 },
 {

Define component recipes that use stream manager 1713

https://github.com/aws-greengrass/aws-greengrass-stream-manager-sdk-js/blob/main/samples/StreamManagerS3/index.js

AWS IoT Greengrass Developer Guide, Version 2

 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.StreamManagerS3JS/1.0.0/index.js"
 }
]
 },
 {
 "Platform": {
 "os": "windows"
 },
 "Lifecycle": {
 "install": "npm install {artifacts:decompressedPath}/stream-manager-sdk/
aws-greengrass-stream-manager-sdk",
 "Run": "set \"NODE_PATH=%NODE_PATH%;{work:path}/node_modules\" & node
 {artifacts:path}/index.js"
 },
 "Artifacts": [
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.StreamManagerS3JS/1.0.0/stream-manager-sdk.zip",
 "Unarchive": "ZIP"
 },
 {
 "URI": "s3://amzn-s3-demo-bucket/artifacts/
com.example.StreamManagerS3JS/1.0.0/index.js"
 }
]
 }
]
}

YAML

RecipeFormatVersion: '2020-01-25'
ComponentName: com.example.StreamManagerS3JS
ComponentVersion: 1.0.0
ComponentDescription: Uses stream manager to upload a file to an S3 bucket.
ComponentPublisher: Amazon
ComponentDependencies:
 aws.greengrass.StreamManager:
 VersionRequirement: "^2.0.0"
Manifests:
 - Platform:

Define component recipes that use stream manager 1714

AWS IoT Greengrass Developer Guide, Version 2

 os: linux
 Lifecycle:
 install: npm install {artifacts:decompressedPath}/stream-manager-sdk/aws-
greengrass-stream-manager-sdk
 Run: |
 export NODE_PATH=$NODE_PATH:{work:path}/node_modules
 node {artifacts:path}/index.js
 Artifacts:
 - URI: s3://DOC-EXAMPLE-BUCKET/artifacts/
com.example.StreamManagerS3JS/1.0.0/stream-manager-sdk.zip
 Unarchive: ZIP
 - URI: s3://DOC-EXAMPLE-BUCKET/artifacts/
com.example.StreamManagerS3JS/1.0.0/index.js
 - Platform:
 os: windows
 Lifecycle:
 install: npm install {artifacts:decompressedPath}/stream-manager-sdk/aws-
greengrass-stream-manager-sdk
 Run: |
 set "NODE_PATH=%NODE_PATH%;{work:path}/node_modules"
 node {artifacts:path}/index.js
 Artifacts:
 - URI: s3://DOC-EXAMPLE-BUCKET/artifacts/
com.example.StreamManagerS3JS/1.0.0/stream-manager-sdk.zip
 Unarchive: ZIP
 - URI: s3://DOC-EXAMPLE-BUCKET/artifacts/
com.example.StreamManagerS3JS/1.0.0/index.js

For more information about how to develop and test components, see Create AWS IoT
Greengrass components.

Connect to stream manager in application code

To connect to stream manager in your application, create an instance of StreamManagerClient
from the Stream Manager SDK. This client connects to the stream manager component on
its default port 8088, or the port that you specify. For more information about how to use
StreamManagerClient after you create an instance, see Use StreamManagerClient to work with
streams.

Connect to stream manager in application code 1715

AWS IoT Greengrass Developer Guide, Version 2

Example Example: Connect to stream manager with default port

Java

import com.amazonaws.greengrass.streammanager.client.StreamManagerClient;

public class MyStreamManagerComponent {

 void connectToStreamManagerWithDefaultPort() {
 StreamManagerClient client = StreamManagerClientFactory.standard().build();

 // Use the client.
 }
}

Python

from stream_manager import (
 StreamManagerClient
)

def connect_to_stream_manager_with_default_port():
 client = StreamManagerClient()

 # Use the client.

JavaScript

const {
 StreamManagerClient
} = require('aws-greengrass-stream-manager-sdk');

function connectToStreamManagerWithDefaultPort() {
 const client = new StreamManagerClient();

 // Use the client.
}

Connect to stream manager in application code 1716

AWS IoT Greengrass Developer Guide, Version 2

Example Example: Connect to stream manager with non-default port

If you configure stream manager with a port other than the default, you must use interprocess
communication to retrieve the port from the component configuration.

Note

The port configuration parameter contains the value that you specify in
STREAM_MANAGER_SERVER_PORT when you deploy stream manager.

Java

void connectToStreamManagerWithCustomPort() {
 EventStreamRPCConnection eventStreamRpcConnection =
 IPCUtils.getEventStreamRpcConnection();
 GreengrassCoreIPCClient greengrassCoreIPCClient = new
 GreengrassCoreIPCClient(eventStreamRpcConnection);
 List<String> keyPath = new ArrayList<>();
 keyPath.add("port");

 GetConfigurationRequest request = new GetConfigurationRequest();
 request.setComponentName("aws.greengrass.StreamManager");
 request.setKeyPath(keyPath);
 GetConfigurationResponse response =
 greengrassCoreIPCClient.getConfiguration(request,
 Optional.empty()).getResponse().get();
 String port = response.getValue().get("port").toString();
 System.out.print("Stream Manager is running on port: " + port);

 final StreamManagerClientConfig config = StreamManagerClientConfig.builder()

 .serverInfo(StreamManagerServerInfo.builder().port(Integer.parseInt(port)).build()).build();

 StreamManagerClient client =
 StreamManagerClientFactory.standard().withClientConfig(config).build();

 // Use the client.
}

Connect to stream manager in application code 1717

AWS IoT Greengrass Developer Guide, Version 2

Python

import awsiot.greengrasscoreipc
from awsiot.greengrasscoreipc.model import (
 GetConfigurationRequest
)
from stream_manager import (
 StreamManagerClient
)

TIMEOUT = 10

def connect_to_stream_manager_with_custom_port():
 # Use IPC to get the port from the stream manager component configuration.
 ipc_client = awsiot.greengrasscoreipc.connect()
 request = GetConfigurationRequest()
 request.component_name = "aws.greengrass.StreamManager"
 request.key_path = ["port"]
 operation = ipc_client.new_get_configuration()
 operation.activate(request)
 future_response = operation.get_response()
 response = future_response.result(TIMEOUT)
 stream_manager_port = str(response.value["port"])

 # Use port to create a stream manager client.
 stream_client = StreamManagerClient(port=stream_manager_port)

 # Use the client.

Use StreamManagerClient to work with streams

User-defined Greengrass components that run on the Greengrass core device can use the
StreamManagerClient object in the Stream Manager SDK to create streams in stream manager
and then interact with the streams. When a component creates a stream, it defines the AWS Cloud
destinations, prioritization, and other export and data retention policies for the stream. To send
data to stream manager, components append the data to the stream. If an export destination is
defined for the stream, stream manager exports the stream automatically.

Use StreamManagerClient to work with streams 1718

AWS IoT Greengrass Developer Guide, Version 2

Note

Typically, clients of stream manager are user-defined Greengrass components. If your
business case requires it, you can also allow non-component processes running on the
Greengrass core (for example, a Docker container) to interact with stream manager. For
more information, see the section called “Client authentication”.

The snippets in this topic show you how clients call StreamManagerClient methods to work with
streams. For implementation details about the methods and their arguments, use the links to the
SDK reference listed after each snippet.

If you use stream manager in a Lambda function, your Lambda function should instantiate
StreamManagerClient outside of the function handler. If instantiated in the handler, the
function creates a client and connection to stream manager every time that it's invoked.

Note

If you do instantiate StreamManagerClient in the handler, you must explicitly call the
close() method when the client completes its work. Otherwise, the client keeps the
connection open and another thread running until the script exits.

StreamManagerClient supports the following operations:

• the section called “Create message stream”

• the section called “Append message”

• the section called “Read messages”

• the section called “List streams”

• the section called “Describe message stream”

• the section called “Update message stream”

• the section called “Delete message stream”

Create message stream

To create a stream, a user-defined Greengrass component calls the create method and passes in
a MessageStreamDefinition object. This object specifies the unique name for the stream and

Create message stream 1719

AWS IoT Greengrass Developer Guide, Version 2

defines how stream manager should handle new data when the maximum stream size is reached.
You can use MessageStreamDefinition and its data types (such as ExportDefinition,
StrategyOnFull, and Persistence) to define other stream properties. These include:

• The target AWS IoT Analytics, Kinesis Data Streams, AWS IoT SiteWise, and Amazon S3
destinations for automatic exports. For more information, see the section called “Export
configurations for supported cloud destinations”.

• Export priority. Stream manager exports higher priority streams before lower priority streams.

• Maximum batch size and batch interval for AWS IoT Analytics, Kinesis Data Streams, and AWS IoT
SiteWise destinations. Stream manager exports messages when either condition is met.

• Time-to-live (TTL). The amount of time to guarantee that the stream data is available for
processing. You should make sure that the data can be consumed within this time period. This is
not a deletion policy. The data might not be deleted immediately after TTL period.

• Stream persistence. Choose to save streams to the file system to persist data across core restarts
or save streams in memory.

• Starting sequence number. Specify the sequence number of the message to use as the starting
message in the export.

For more information about MessageStreamDefinition, see the SDK reference for your target
language:

• MessageStreamDefinition in the Java SDK

• MessageStreamDefinition in the Node.js SDK

• MessageStreamDefinition in the Python SDK

Note

StreamManagerClient also provides a target destination you can use to export streams
to an HTTP server. This target is intended for testing purposes only. It is not stable or
supported for use in production environments.

After a stream is created, your Greengrass components can append messages to the stream to send
data for export and read messages from the stream for local processing. The number of streams
that you create depends on your hardware capabilities and business case. One strategy is to create

Create message stream 1720

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/model/MessageStreamDefinition.html
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.MessageStreamDefinition.html
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.data.html#stream_manager.data.MessageStreamDefinition

AWS IoT Greengrass Developer Guide, Version 2

a stream for each target channel in AWS IoT Analytics or Kinesis data stream, though you can
define multiple targets for a stream. A stream has a durable lifespan.

Requirements

This operation has the following requirements:

• Minimum Stream Manager SDK version: Python: 1.1.0 | Java: 1.1.0 | Node.js: 1.1.0

Examples

The following snippet creates a stream named StreamName. It defines stream properties in the
MessageStreamDefinition and subordinate data types.

Python

client = StreamManagerClient()

try:
 client.create_message_stream(MessageStreamDefinition(
 name="StreamName", # Required.
 max_size=268435456, # Default is 256 MB.
 stream_segment_size=16777216, # Default is 16 MB.
 time_to_live_millis=None, # By default, no TTL is enabled.
 strategy_on_full=StrategyOnFull.OverwriteOldestData, # Required.
 persistence=Persistence.File, # Default is File.
 flush_on_write=False, # Default is false.
 export_definition=ExportDefinition(# Optional. Choose where/how the
 stream is exported to the AWS Cloud.
 kinesis=None,
 iot_analytics=None,
 iot_sitewise=None,
 s3_task_executor=None
)
))
except StreamManagerException:
 pass
 # Properly handle errors.
except ConnectionError or asyncio.TimeoutError:
 pass
 # Properly handle errors.

Create message stream 1721

AWS IoT Greengrass Developer Guide, Version 2

Python SDK reference: create_message_stream | MessageStreamDefinition

Java

try (final StreamManagerClient client =
 StreamManagerClientFactory.standard().build()) {
 client.createMessageStream(
 new MessageStreamDefinition()
 .withName("StreamName") // Required.
 .withMaxSize(268435456L) // Default is 256 MB.
 .withStreamSegmentSize(16777216L) // Default is 16 MB.
 .withTimeToLiveMillis(null) // By default, no TTL is enabled.
 .withStrategyOnFull(StrategyOnFull.OverwriteOldestData) //
 Required.
 .withPersistence(Persistence.File) // Default is File.
 .withFlushOnWrite(false) // Default is false.
 .withExportDefinition(// Optional. Choose where/how the
 stream is exported to the AWS Cloud.
 new ExportDefinition()
 .withKinesis(null)
 .withIotAnalytics(null)
 .withIotSitewise(null)
 .withS3(null)
)

);
} catch (StreamManagerException e) {
 // Properly handle exception.
}

Java SDK reference: createMessageStream | MessageStreamDefinition

Node.js

const client = new StreamManagerClient();
client.onConnected(async () => {
 try {
 await client.createMessageStream(
 new MessageStreamDefinition()
 .withName("StreamName") // Required.
 .withMaxSize(268435456) // Default is 256 MB.
 .withStreamSegmentSize(16777216) // Default is 16 MB.
 .withTimeToLiveMillis(null) // By default, no TTL is enabled.
 .withStrategyOnFull(StrategyOnFull.OverwriteOldestData) // Required.

Create message stream 1722

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.streammanagerclient.html#stream_manager.streammanagerclient.StreamManagerClient.create_message_stream
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.data.html#stream_manager.data.MessageStreamDefinition
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html#createMessageStream-com.amazonaws.greengrass.streammanager.model.MessageStreamDefinition-
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/model/MessageStreamDefinition.html

AWS IoT Greengrass Developer Guide, Version 2

 .withPersistence(Persistence.File) // Default is File.
 .withFlushOnWrite(false) // Default is false.
 .withExportDefinition(// Optional. Choose where/how the stream is exported
 to the AWS Cloud.
 new ExportDefinition()
 .withKinesis(null)
 .withIotAnalytics(null)
 .withIotSiteWise(null)
 .withS3(null)
)
);
 } catch (e) {
 // Properly handle errors.
 }
});
client.onError((err) => {
 // Properly handle connection errors.
 // This is called only when the connection to the StreamManager server fails.
});

Node.js SDK reference: createMessageStream | MessageStreamDefinition

For more information about configuring export destinations, see the section called “Export
configurations for supported cloud destinations”.

Append message

To send data to stream manager for export, your Greengrass components append the data to the
target stream. The export destination determines the data type to pass to this method.

Requirements

This operation has the following requirements:

• Minimum Stream Manager SDK version: Python: 1.1.0 | Java: 1.1.0 | Node.js: 1.1.0

Append message 1723

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html#createMessageStream
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.MessageStreamDefinition.html

AWS IoT Greengrass Developer Guide, Version 2

Examples

AWS IoT Analytics or Kinesis Data Streams export destinations

The following snippet appends a message to the stream named StreamName. For AWS IoT
Analytics or Kinesis Data Streams destinations, your Greengrass components append a blob of
data.

This snippet has the following requirements:

• Minimum Stream Manager SDK version: Python: 1.1.0 | Java: 1.1.0 | Node.js: 1.1.0

Python

client = StreamManagerClient()

try:
 sequence_number = client.append_message(stream_name="StreamName",
 data=b'Arbitrary bytes data')
except StreamManagerException:
 pass
 # Properly handle errors.
except ConnectionError or asyncio.TimeoutError:
 pass
 # Properly handle errors.

Python SDK reference: append_message

Java

try (final StreamManagerClient client =
 StreamManagerClientFactory.standard().build()) {
 long sequenceNumber = client.appendMessage("StreamName", "Arbitrary byte
 array".getBytes());
} catch (StreamManagerException e) {
 // Properly handle exception.
}

Java SDK reference: appendMessage

Node.js

const client = new StreamManagerClient();

Append message 1724

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.streammanagerclient.html#stream_manager.streammanagerclient.StreamManagerClient.append_message
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html#appendMessage-java.lang.String-byte:A-

AWS IoT Greengrass Developer Guide, Version 2

client.onConnected(async () => {
 try {
 const sequenceNumber = await client.appendMessage("StreamName",
 Buffer.from("Arbitrary byte array"));
 } catch (e) {
 // Properly handle errors.
 }
});
client.onError((err) => {
 // Properly handle connection errors.
 // This is called only when the connection to the StreamManager server fails.
});

Node.js SDK reference: appendMessage

AWS IoT SiteWise export destinations

The following snippet appends a message to the stream named StreamName. For
AWS IoT SiteWise destinations, your Greengrass components append a serialized
PutAssetPropertyValueEntry object. For more information, see the section called “Exporting
to AWS IoT SiteWise”.

Note

When you send data to AWS IoT SiteWise, your data must meet the requirements
of the BatchPutAssetPropertyValue action. For more information, see
BatchPutAssetPropertyValue in the AWS IoT SiteWise API Reference.

This snippet has the following requirements:

• Minimum Stream Manager SDK version: Python: 1.1.0 | Java: 1.1.0 | Node.js: 1.1.0

Python

client = StreamManagerClient()

try:
 # SiteWise requires unique timestamps in all messages and also needs timestamps
 not earlier

Append message 1725

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html#appendMessage
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html

AWS IoT Greengrass Developer Guide, Version 2

 # than 10 minutes in the past. Add some randomness to time and offset.

 # Note: To create a new asset property data, you should use the classes defined
 in the
 # greengrasssdk.stream_manager module.

 time_in_nanos = TimeInNanos(
 time_in_seconds=calendar.timegm(time.gmtime()) - random.randint(0, 60),
 offset_in_nanos=random.randint(0, 10000)
)
 variant = Variant(double_value=random.random())
 asset = [AssetPropertyValue(value=variant, quality=Quality.GOOD,
 timestamp=time_in_nanos)]
 putAssetPropertyValueEntry =
 PutAssetPropertyValueEntry(entry_id=str(uuid.uuid4()),
 property_alias="PropertyAlias", property_values=asset)
 sequence_number = client.append_message(stream_name="StreamName",
 Util.validate_and_serialize_to_json_bytes(putAssetPropertyValueEntry))
except StreamManagerException:
 pass
 # Properly handle errors.
except ConnectionError or asyncio.TimeoutError:
 pass
 # Properly handle errors.

Python SDK reference: append_message | PutAssetPropertyValueEntry

Java

try (final StreamManagerClient client =
 GreengrassClientBuilder.streamManagerClient().build()) {
 Random rand = new Random();
 // Note: To create a new asset property data, you should use the classes defined
 in the
 // com.amazonaws.greengrass.streammanager.model.sitewise package.
 List<AssetPropertyValue> entries = new ArrayList<>() ;

 // IoTSiteWise requires unique timestamps in all messages and also needs
 timestamps not earlier
 // than 10 minutes in the past. Add some randomness to time and offset.
 final int maxTimeRandomness = 60;
 final int maxOffsetRandomness = 10000;
 double randomValue = rand.nextDouble();
 TimeInNanos timestamp = new TimeInNanos()

Append message 1726

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.streammanagerclient.html#stream_manager.streammanagerclient.StreamManagerClient.append_message
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.data.html#stream_manager.data.PutAssetPropertyValueEntry

AWS IoT Greengrass Developer Guide, Version 2

 .withTimeInSeconds(Instant.now().getEpochSecond() -
 rand.nextInt(maxTimeRandomness))
 .withOffsetInNanos((long) (rand.nextInt(maxOffsetRandomness)));
 AssetPropertyValue entry = new AssetPropertyValue()
 .withValue(new Variant().withDoubleValue(randomValue))
 .withQuality(Quality.GOOD)
 .withTimestamp(timestamp);
 entries.add(entry);

 PutAssetPropertyValueEntry putAssetPropertyValueEntry = new
 PutAssetPropertyValueEntry()
 .withEntryId(UUID.randomUUID().toString())
 .withPropertyAlias("PropertyAlias")
 .withPropertyValues(entries);
 long sequenceNumber = client.appendMessage("StreamName",
 ValidateAndSerialize.validateAndSerializeToJsonBytes(putAssetPropertyValueEntry));
} catch (StreamManagerException e) {
 // Properly handle exception.
}

Java SDK reference: appendMessage | PutAssetPropertyValueEntry

Node.js

const client = new StreamManagerClient();
client.onConnected(async () => {
 try {
 const maxTimeRandomness = 60;
 const maxOffsetRandomness = 10000;
 const randomValue = Math.random();
 // Note: To create a new asset property data, you should use the classes
 defined in the
 // aws-greengrass-core-sdk StreamManager module.
 const timestamp = new TimeInNanos()
 .withTimeInSeconds(Math.round(Date.now() / 1000) -
 Math.floor(Math.random() - maxTimeRandomness))
 .withOffsetInNanos(Math.floor(Math.random() * maxOffsetRandomness));
 const entry = new AssetPropertyValue()
 .withValue(new Variant().withDoubleValue(randomValue))
 .withQuality(Quality.GOOD)
 .withTimestamp(timestamp);

 const putAssetPropertyValueEntry = new PutAssetPropertyValueEntry()
 .withEntryId(`${ENTRY_ID_PREFIX}${i}`)

Append message 1727

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html#appendMessage-java.lang.String-byte:A-
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/model/sitewise/PutAssetPropertyValueEntry.html

AWS IoT Greengrass Developer Guide, Version 2

 .withPropertyAlias("PropertyAlias")
 .withPropertyValues([entry]);
 const sequenceNumber = await client.appendMessage("StreamName",
 util.validateAndSerializeToJsonBytes(putAssetPropertyValueEntry));
 } catch (e) {
 // Properly handle errors.
 }
});
client.onError((err) => {
 // Properly handle connection errors.
 // This is called only when the connection to the StreamManager server fails.
});

Node.js SDK reference: appendMessage | PutAssetPropertyValueEntry

Amazon S3 export destinations

The following snippet appends an export task to the stream named StreamName. For Amazon
S3 destinations, your Greengrass components append a serialized S3ExportTaskDefinition
object that contains information about the source input file and target Amazon S3 object. If the
specified object doesn't exist, Stream Manager creates it for you. For more information, see the
section called “Exporting to Amazon S3”.

This snippet has the following requirements:

• Minimum Stream Manager SDK version: Python: 1.1.0 | Java: 1.1.0 | Node.js: 1.1.0

Python

client = StreamManagerClient()

try:
 # Append an Amazon S3 Task definition and print the sequence number.
 s3_export_task_definition = S3ExportTaskDefinition(input_url="URLToFile",
 bucket="BucketName", key="KeyName")
 sequence_number = client.append_message(stream_name="StreamName",
 Util.validate_and_serialize_to_json_bytes(s3_export_task_definition))
except StreamManagerException:
 pass
 # Properly handle errors.
except ConnectionError or asyncio.TimeoutError:

Append message 1728

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html#appendMessage
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.PutAssetPropertyValueEntry.html

AWS IoT Greengrass Developer Guide, Version 2

 pass
 # Properly handle errors.

Python SDK reference: append_message | S3ExportTaskDefinition

Java

try (final StreamManagerClient client =
 GreengrassClientBuilder.streamManagerClient().build()) {
 // Append an Amazon S3 export task definition and print the sequence number.
 S3ExportTaskDefinition s3ExportTaskDefinition = new S3ExportTaskDefinition()
 .withBucket("BucketName")
 .withKey("KeyName")
 .withInputUrl("URLToFile");
 long sequenceNumber = client.appendMessage("StreamName",
 ValidateAndSerialize.validateAndSerializeToJsonBytes(s3ExportTaskDefinition));
} catch (StreamManagerException e) {
 // Properly handle exception.
}

Java SDK reference: appendMessage | S3ExportTaskDefinition

Node.js

const client = new StreamManagerClient();
client.onConnected(async () => {
 try {
 // Append an Amazon S3 export task definition and print the sequence number.
 const taskDefinition = new S3ExportTaskDefinition()
 .withBucket("BucketName")
 .withKey("KeyName")
 .withInputUrl("URLToFile");
 const sequenceNumber = await client.appendMessage("StreamName",
 util.validateAndSerializeToJsonBytes(taskDefinition)));
 } catch (e) {
 // Properly handle errors.
 }
});
client.onError((err) => {
 // Properly handle connection errors.
 // This is called only when the connection to the StreamManager server fails.
});

Node.js SDK reference: appendMessage | S3ExportTaskDefinition

Append message 1729

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.streammanagerclient.html#stream_manager.streammanagerclient.StreamManagerClient.append_message
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.data.html#stream_manager.data.S3ExportTaskDefinition
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html#appendMessage-java.lang.String-byte:A-
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/model/S3ExportTaskDefinition.html
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html#appendMessage
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.S3ExportTaskDefinition.html

AWS IoT Greengrass Developer Guide, Version 2

Read messages

Read messages from a stream.

Requirements

This operation has the following requirements:

• Minimum Stream Manager SDK version: Python: 1.1.0 | Java: 1.1.0 | Node.js: 1.1.0

Examples

The following snippet reads messages from the stream named StreamName. The read method
takes an optional ReadMessagesOptions object that specifies the sequence number to start
reading from, the minimum and maximum numbers to read, and a timeout for reading messages.

Python

client = StreamManagerClient()

try:
 message_list = client.read_messages(
 stream_name="StreamName",
 # By default, if no options are specified, it tries to read one message from
 the beginning of the stream.
 options=ReadMessagesOptions(
 desired_start_sequence_number=100,
 # Try to read from sequence number 100 or greater. By default, this is
 0.
 min_message_count=10,
 # Try to read 10 messages. If 10 messages are not available, then
 NotEnoughMessagesException is raised. By default, this is 1.
 max_message_count=100, # Accept up to 100 messages. By default this
 is 1.
 read_timeout_millis=5000
 # Try to wait at most 5 seconds for the min_messsage_count to be
 fulfilled. By default, this is 0, which immediately returns the messages or an
 exception.
)
)
except StreamManagerException:
 pass

Read messages 1730

AWS IoT Greengrass Developer Guide, Version 2

 # Properly handle errors.
except ConnectionError or asyncio.TimeoutError:
 pass
 # Properly handle errors.

Python SDK reference: read_messages | ReadMessagesOptions

Java

try (final StreamManagerClient client =
 StreamManagerClientFactory.standard().build()) {
 List<Message> messages = client.readMessages("StreamName",
 // By default, if no options are specified, it tries to read one message
 from the beginning of the stream.
 new ReadMessagesOptions()
 // Try to read from sequence number 100 or greater. By default
 this is 0.
 .withDesiredStartSequenceNumber(100L)
 // Try to read 10 messages. If 10 messages are not available,
 then NotEnoughMessagesException is raised. By default, this is 1.
 .withMinMessageCount(10L)
 // Accept up to 100 messages. By default this is 1.
 .withMaxMessageCount(100L)
 // Try to wait at most 5 seconds for the min_messsage_count to
 be fulfilled. By default, this is 0, which immediately returns the messages or an
 exception.
 .withReadTimeoutMillis(Duration.ofSeconds(5L).toMillis())
);
} catch (StreamManagerException e) {
 // Properly handle exception.
}

Java SDK reference: readMessages | ReadMessagesOptions

Node.js

const client = new StreamManagerClient();
client.onConnected(async () => {
 try {
 const messages = await client.readMessages("StreamName",
 // By default, if no options are specified, it tries to read one message
 from the beginning of the stream.
 new ReadMessagesOptions()

Read messages 1731

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.streammanagerclient.html#stream_manager.streammanagerclient.StreamManagerClient.read_messages
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.data.html#stream_manager.data.ReadMessagesOptions
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html#readMessages-java.lang.String-com.amazonaws.greengrass.streammanager.model.ReadMessagesOptions-
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/model/ReadMessagesOptions.html

AWS IoT Greengrass Developer Guide, Version 2

 // Try to read from sequence number 100 or greater. By default this
 is 0.
 .withDesiredStartSequenceNumber(100)
 // Try to read 10 messages. If 10 messages are not available, then
 NotEnoughMessagesException is thrown. By default, this is 1.
 .withMinMessageCount(10)
 // Accept up to 100 messages. By default this is 1.
 .withMaxMessageCount(100)
 // Try to wait at most 5 seconds for the minMessageCount to be
 fulfilled. By default, this is 0, which immediately returns the messages or an
 exception.
 .withReadTimeoutMillis(5 * 1000)
);
 } catch (e) {
 // Properly handle errors.
 }
});
client.onError((err) => {
 // Properly handle connection errors.
 // This is called only when the connection to the StreamManager server fails.
});

Node.js SDK reference: readMessages | ReadMessagesOptions

List streams

Get the list of streams in stream manager.

Requirements

This operation has the following requirements:

• Minimum Stream Manager SDK version: Python: 1.1.0 | Java: 1.1.0 | Node.js: 1.1.0

Examples

The following snippet gets a list of the streams (by name) in stream manager.

Python

client = StreamManagerClient()

List streams 1732

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html#readMessages
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.ReadMessagesOptions.html

AWS IoT Greengrass Developer Guide, Version 2

try:
 stream_names = client.list_streams()
except StreamManagerException:
 pass
 # Properly handle errors.
except ConnectionError or asyncio.TimeoutError:
 pass
 # Properly handle errors.

Python SDK reference: list_streams

Java

try (final StreamManagerClient client =
 StreamManagerClientFactory.standard().build()) {
 List<String> streamNames = client.listStreams();
} catch (StreamManagerException e) {
 // Properly handle exception.
}

Java SDK reference: listStreams

Node.js

const client = new StreamManagerClient();
client.onConnected(async () => {
 try {
 const streams = await client.listStreams();
 } catch (e) {
 // Properly handle errors.
 }
});
client.onError((err) => {
 // Properly handle connection errors.
 // This is called only when the connection to the StreamManager server fails.
});

Node.js SDK reference: listStreams

Describe message stream

Get metadata about a stream, including the stream definition, size, and export status.

Describe message stream 1733

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.streammanagerclient.html#stream_manager.streammanagerclient.StreamManagerClient.list_streams
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html#listStreams--
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html#listStreams

AWS IoT Greengrass Developer Guide, Version 2

Requirements

This operation has the following requirements:

• Minimum Stream Manager SDK version: Python: 1.1.0 | Java: 1.1.0 | Node.js: 1.1.0

Examples

The following snippet gets metadata about the stream named StreamName, including the stream's
definition, size, and exporter statuses.

Python

client = StreamManagerClient()

try:
 stream_description = client.describe_message_stream(stream_name="StreamName")
 if stream_description.export_statuses[0].error_message:
 # The last export of export destination 0 failed with some error
 # Here is the last sequence number that was successfully exported
 stream_description.export_statuses[0].last_exported_sequence_number

 if (stream_description.storage_status.newest_sequence_number >
 stream_description.export_statuses[0].last_exported_sequence_number):
 pass
 # The end of the stream is ahead of the last exported sequence number
except StreamManagerException:
 pass
 # Properly handle errors.
except ConnectionError or asyncio.TimeoutError:
 pass
 # Properly handle errors.

Python SDK reference: describe_message_stream

Java

try (final StreamManagerClient client =
 StreamManagerClientFactory.standard().build()) {
 MessageStreamInfo description = client.describeMessageStream("StreamName");
 String lastErrorMessage =
 description.getExportStatuses().get(0).getErrorMessage();

Describe message stream 1734

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.streammanagerclient.html#stream_manager.streammanagerclient.StreamManagerClient.describe_message_stream

AWS IoT Greengrass Developer Guide, Version 2

 if (lastErrorMessage != null && !lastErrorMessage.equals("")) {
 // The last export of export destination 0 failed with some error.
 // Here is the last sequence number that was successfully exported.
 description.getExportStatuses().get(0).getLastExportedSequenceNumber();
 }

 if (description.getStorageStatus().getNewestSequenceNumber() >
 description.getExportStatuses().get(0).getLastExportedSequenceNumber())
 {
 // The end of the stream is ahead of the last exported sequence number.
 }
} catch (StreamManagerException e) {
 // Properly handle exception.
}

Java SDK reference: describeMessageStream

Node.js

const client = new StreamManagerClient();
client.onConnected(async () => {
 try {
 const description = await client.describeMessageStream("StreamName");
 const lastErrorMessage = description.exportStatuses[0].errorMessage;
 if (lastErrorMessage) {
 // The last export of export destination 0 failed with some error.
 // Here is the last sequence number that was successfully exported.
 description.exportStatuses[0].lastExportedSequenceNumber;
 }

 if (description.storageStatus.newestSequenceNumber >
 description.exportStatuses[0].lastExportedSequenceNumber) {
 // The end of the stream is ahead of the last exported sequence number.
 }
 } catch (e) {
 // Properly handle errors.
 }
});
client.onError((err) => {
 // Properly handle connection errors.
 // This is called only when the connection to the StreamManager server fails.
});

Node.js SDK reference: describeMessageStream

Describe message stream 1735

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html#describeMessageStream-java.lang.String-
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html#describeMessageStream

AWS IoT Greengrass Developer Guide, Version 2

Update message stream

Update properties of an existing stream. You might want to update a stream if your requirements
change after the stream was created. For example:

• Add a new export configuration for an AWS Cloud destination.

• Increase the maximum size of a stream to change how data is exported or retained. For example,
the stream size in combination with your strategy on full settings might result in data being
deleted or rejected before stream manager can process it.

• Pause and resume exports; for example, if export tasks are long running and you want to ration
your upload data.

Your Greengrass components follow this high-level process to update a stream:

1. Get the description of the stream.

2. Update the target properties on the corresponding MessageStreamDefinition and
subordinate objects.

3. Pass in the updated MessageStreamDefinition. Make sure to include the complete object
definitions for the updated stream. Undefined properties revert to the default values.

You can specify the sequence number of the message to use as the starting message in the
export.

Requirements

This operation has the following requirements:

• Minimum Stream Manager SDK version: Python: 1.1.0 | Java: 1.1.0 | Node.js: 1.1.0

Examples

The following snippet updates the stream named StreamName. It updates multiple properties of a
stream that exports to Kinesis Data Streams.

Python

client = StreamManagerClient()

Update message stream 1736

AWS IoT Greengrass Developer Guide, Version 2

try:
 message_stream_info = client.describe_message_stream(STREAM_NAME)
 message_stream_info.definition.max_size=536870912
 message_stream_info.definition.stream_segment_size=33554432
 message_stream_info.definition.time_to_live_millis=3600000
 message_stream_info.definition.strategy_on_full=StrategyOnFull.RejectNewData
 message_stream_info.definition.persistence=Persistence.Memory
 message_stream_info.definition.flush_on_write=False
 message_stream_info.definition.export_definition.kinesis=
 [KinesisConfig(
 # Updating Export definition to add a Kinesis Stream configuration.
 identifier=str(uuid.uuid4()), kinesis_stream_name=str(uuid.uuid4()))]
 client.update_message_stream(message_stream_info.definition)
except StreamManagerException:
 pass
 # Properly handle errors.
except ConnectionError or asyncio.TimeoutError:
 pass
 # Properly handle errors.

Python SDK reference: updateMessageStream | MessageStreamDefinition

Java

try (final StreamManagerClient client =
 GreengrassClientBuilder.streamManagerClient().build()) {
 MessageStreamInfo messageStreamInfo = client.describeMessageStream(STREAM_NAME);
 // Update the message stream with new values.
 client.updateMessageStream(
 messageStreamInfo.getDefinition()
 .withStrategyOnFull(StrategyOnFull.RejectNewData) // Required. Updating
 Strategy on full to reject new data.
 // Max Size update should be greater than initial Max Size defined in
 Create Message Stream request
 .withMaxSize(536870912L) // Update Max Size to 512 MB.
 .withStreamSegmentSize(33554432L) // Update Segment Size to 32 MB.
 .withFlushOnWrite(true) // Update flush on write to true.
 .withPersistence(Persistence.Memory) // Update the persistence to
 Memory.
 .withTimeToLiveMillis(3600000L) // Update TTL to 1 hour.
 .withExportDefinition(
 // Optional. Choose where/how the stream is exported to the AWS
 Cloud.

Update message stream 1737

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.streammanagerclient.html#stream_manager.streammanagerclient.StreamManagerClient.update_message_stream
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.data.html#stream_manager.data.MessageStreamDefinition

AWS IoT Greengrass Developer Guide, Version 2

 messageStreamInfo.getDefinition().getExportDefinition().
 // Updating Export definition to add a Kinesis Stream
 configuration.
 .withKinesis(new ArrayList<KinesisConfig>() {{
 add(new KinesisConfig()
 .withIdentifier(EXPORT_IDENTIFIER)
 .withKinesisStreamName("test"));
 }})
);
} catch (StreamManagerException e) {
 // Properly handle exception.
}

Java SDK reference: update_message_stream | MessageStreamDefinition

Node.js

const client = new StreamManagerClient();
client.onConnected(async () => {
 try {
 const messageStreamInfo = await c.describeMessageStream(STREAM_NAME);
 await client.updateMessageStream(
 messageStreamInfo.definition
 // Max Size update should be greater than initial Max Size defined
 in Create Message Stream request
 .withMaxSize(536870912) // Default is 256 MB. Updating Max Size
 to 512 MB.
 .withStreamSegmentSize(33554432) // Default is 16 MB. Updating
 Segment Size to 32 MB.
 .withTimeToLiveMillis(3600000) // By default, no TTL is enabled.
 Update TTL to 1 hour.
 .withStrategyOnFull(StrategyOnFull.RejectNewData) // Required.
 Updating Strategy on full to reject new data.
 .withPersistence(Persistence.Memory) // Default is File. Update
 the persistence to Memory
 .withFlushOnWrite(true) // Default is false. Updating to true.
 .withExportDefinition(
 // Optional. Choose where/how the stream is exported to the AWS
 Cloud.
 messageStreamInfo.definition.exportDefinition
 // Updating Export definition to add a Kinesis Stream
 configuration.
 .withKinesis([new
 KinesisConfig().withIdentifier(uuidv4()).withKinesisStreamName(uuidv4())])

Update message stream 1738

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html#updateMessageStream-java.lang.String-
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/model/MessageStreamDefinition.html

AWS IoT Greengrass Developer Guide, Version 2

)
);
 } catch (e) {
 // Properly handle errors.
 }
});
client.onError((err) => {
 // Properly handle connection errors.
 // This is called only when the connection to the StreamManager server fails.
});

Node.js SDK reference: updateMessageStream | MessageStreamDefinition

Constraints for updating streams

The following constraints apply when updating streams. Unless noted in the following list, updates
take effect immediately.

• You can't update a stream's persistence. To change this behavior, delete the stream and create a
stream that defines the new persistence policy.

• You can update the maximum size of a stream only under the following conditions:

• The maximum size must be greater or equal to the current size of the stream. To find
this information, describe the stream and then check the storage status of the returned
MessageStreamInfo object.

• The maximum size must be greater than or equal to the stream's segment size.

• You can update the stream segment size to a value less than the maximum size of the stream.
The updated setting applies to new segments.

• Updates to the time to live (TTL) property apply to new append operations. If you decrease this
value, stream manager might also delete existing segments that exceed the TTL.

• Updates to the strategy on full property apply to new append operations. If you set the strategy
to overwrite the oldest data, stream manager might also overwrite existing segments based on
the new setting.

• Updates to the flush on write property apply to new messages.

• Updates to export configurations apply to new exports. The update request must include all
export configurations that you want to support. Otherwise, stream manager deletes them.

• When you update an export configuration, specify the identifier of the target export
configuration.

Update message stream 1739

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html#updateMessageStream
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.MessageStreamDefinition.html

AWS IoT Greengrass Developer Guide, Version 2

• To add an export configuration, specify a unique identifier for the new export configuration.

• To delete an export configuration, omit the export configuration.

• To update the starting sequence number of an export configuration in a stream, you must
specify a value that's less than the latest sequence number. To find this information, describe the
stream and then check the storage status of the returned MessageStreamInfo object.

Delete message stream

Deletes a stream. When you delete a stream, all of the stored data for the stream is deleted from
the disk.

Requirements

This operation has the following requirements:

• Minimum Stream Manager SDK version: Python: 1.1.0 | Java: 1.1.0 | Node.js: 1.1.0

Examples

The following snippet deletes the stream named StreamName.

Python

client = StreamManagerClient()

try:
 client.delete_message_stream(stream_name="StreamName")
except StreamManagerException:
 pass
 # Properly handle errors.
except ConnectionError or asyncio.TimeoutError:
 pass
 # Properly handle errors.

Python SDK reference: deleteMessageStream

Java

try (final StreamManagerClient client =
 StreamManagerClientFactory.standard().build()) {

Delete message stream 1740

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.streammanagerclient.html#stream_manager.streammanagerclient.StreamManagerClient.delete_message_stream

AWS IoT Greengrass Developer Guide, Version 2

 client.deleteMessageStream("StreamName");
} catch (StreamManagerException e) {
 // Properly handle exception.
}

Java SDK reference: delete_message_stream

Node.js

const client = new StreamManagerClient();
client.onConnected(async () => {
 try {
 await client.deleteMessageStream("StreamName");
 } catch (e) {
 // Properly handle errors.
 }
});
client.onError((err) => {
 // Properly handle connection errors.
 // This is called only when the connection to the StreamManager server fails.
});

Node.js SDK reference: deleteMessageStream

See also

• Manage data streams on Greengrass core devices

• Configure AWS IoT Greengrass stream manager

• Export configurations for supported AWS Cloud destinations

• StreamManagerClient in the Stream Manager SDK reference:

• Python

• Java

• Node.js

Export configurations for supported AWS Cloud destinations

User-defined Greengrass components use StreamManagerClient in the Stream Manager SDK to
interact with stream manager. When a component creates a stream or updates a stream, it passes

See also 1741

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html#deleteMessageStream-java.lang.String-
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html#deleteMessageStream
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.streammanagerclient.html
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html

AWS IoT Greengrass Developer Guide, Version 2

a MessageStreamDefinition object that represents stream properties, including the export
definition. The ExportDefinition object contains the export configurations defined for the
stream. Stream manager uses these export configurations to determine where and how to export
the stream.

You can define zero or more export configurations on a stream, including multiple export
configurations for a single destination type. For example, you can export a stream to two AWS IoT
Analytics channels and one Kinesis data stream.

For failed export attempts, stream manager continually retries exporting data to the AWS Cloud at
intervals of up to five minutes. The number of retry attempts doesn't have a maximum limit.

Note

StreamManagerClient also provides a target destination you can use to export streams
to an HTTP server. This target is intended for testing purposes only. It is not stable or
supported for use in production environments.

Supported AWS Cloud destinations

• AWS IoT Analytics channels

• Amazon Kinesis data streams

Export configurations for supported cloud destinations 1742

AWS IoT Greengrass Developer Guide, Version 2

• AWS IoT SiteWise asset properties

• Amazon S3 objects

You are responsible for maintaining these AWS Cloud resources.

AWS IoT Analytics channels

Stream manager supports automatic exports to AWS IoT Analytics. AWS IoT Analytics lets you
perform advanced analysis on your data to help make business decisions and improve machine
learning models. For more information, see What is AWS IoT Analytics? in the AWS IoT Analytics
User Guide.

In the Stream Manager SDK, your Greengrass components use the IoTAnalyticsConfig to
define the export configuration for this destination type. For more information, see the SDK
reference for your target language:

• IoTAnalyticsConfig in the Python SDK

• IoTAnalyticsConfig in the Java SDK

• IoTAnalyticsConfig in the Node.js SDK

Requirements

This export destination has the following requirements:

• Target channels in AWS IoT Analytics must be in the same AWS account and AWS Region as the
Greengrass core device.

• The Authorize core devices to interact with AWS services must allow the
iotanalytics:BatchPutMessage permission to target channels. For example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iotanalytics:BatchPutMessage"
],
 "Resource": [
 "arn:aws:iotanalytics:region:account-id:channel/channel_1_name",

Export configurations for supported cloud destinations 1743

https://docs.aws.amazon.com/iotanalytics/latest/userguide/welcome.html
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.data.html#stream_manager.data.IoTAnalyticsConfig
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/model/export/IoTAnalyticsConfig.html
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.IoTAnalyticsConfig.html

AWS IoT Greengrass Developer Guide, Version 2

 "arn:aws:iotanalytics:region:account-id:channel/channel_2_name"
]
 }
]
}

You can grant granular or conditional access to resources, for example, by using a wildcard *
naming scheme. For more information, see Adding and removing IAM policies in the IAM User
Guide.

Exporting to AWS IoT Analytics

To create a stream that exports to AWS IoT Analytics, your Greengrass components create a stream
with an export definition that includes one or more IoTAnalyticsConfig objects. This object
defines export settings, such as the target channel, batch size, batch interval, and priority.

When your Greengrass components receive data from devices, they append messages that contain
a blob of data to the target stream.

Then, stream manager exports the data based on the batch settings and priority defined in the
stream's export configurations.

Amazon Kinesis data streams

Stream manager supports automatic exports to Amazon Kinesis Data Streams. Kinesis Data
Streams is commonly used to aggregate high-volume data and load it into a data warehouse
or MapReduce cluster. For more information, see What is Amazon Kinesis Data Streams? in the
Amazon Kinesis Developer Guide.

In the Stream Manager SDK, your Greengrass components use the KinesisConfig to define the
export configuration for this destination type. For more information, see the SDK reference for
your target language:

• KinesisConfig in the Python SDK

• KinesisConfig in the Java SDK

• KinesisConfig in the Node.js SDK

Requirements

This export destination has the following requirements:

Export configurations for supported cloud destinations 1744

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/streams/latest/dev/what-is-this-service.html
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.data.html#stream_manager.data.KinesisConfig
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/model/export/KinesisConfig.html
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.KinesisConfig.html

AWS IoT Greengrass Developer Guide, Version 2

• Target streams in Kinesis Data Streams must be in the same AWS account and AWS Region as the
Greengrass core device.

• The Authorize core devices to interact with AWS services must allow the kinesis:PutRecords
permission to target data streams. For example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:PutRecords"
],
 "Resource": [
 "arn:aws:kinesis:region:account-id:stream/stream_1_name",
 "arn:aws:kinesis:region:account-id:stream/stream_2_name"
]
 }
]
}

You can grant granular or conditional access to resources, for example, by using a wildcard *
naming scheme. For more information, see Adding and removing IAM policies in the IAM User
Guide.

Exporting to Kinesis Data Streams

To create a stream that exports to Kinesis Data Streams, your Greengrass components create a
stream with an export definition that includes one or more KinesisConfig objects. This object
defines export settings, such as the target data stream, batch size, batch interval, and priority.

When your Greengrass components receive data from devices, they append messages that contain
a blob of data to the target stream. Then, stream manager exports the data based on the batch
settings and priority defined in the stream's export configurations.

Stream manager generates a unique, random UUID as a partition key for each record uploaded to
Amazon Kinesis.

Export configurations for supported cloud destinations 1745

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT SiteWise asset properties

Stream manager supports automatic exports to AWS IoT SiteWise. AWS IoT SiteWise lets you
collect, organize, and analyze data from industrial equipment at scale. For more information, see
What is AWS IoT SiteWise? in the AWS IoT SiteWise User Guide.

In the Stream Manager SDK, your Greengrass components use the IoTSiteWiseConfig to define
the export configuration for this destination type. For more information, see the SDK reference for
your target language:

• IoTSiteWiseConfig in the Python SDK

• IoTSiteWiseConfig in the Java SDK

• IoTSiteWiseConfig in the Node.js SDK

Note

AWS also provides AWS IoT SiteWise components, which offer a pre-built solution that you
can use to stream data from OPC-UA sources. For more information, see IoT SiteWise OPC
UA collector.

Requirements

This export destination has the following requirements:

• Target asset properties in AWS IoT SiteWise must be in the same AWS account and AWS Region
as the Greengrass core device.

Note

For the list of AWS Regions that AWS IoT SiteWise supports, see AWS IoT SiteWise
endpoints and quotas in the AWS General Reference.

• The Authorize core devices to interact with AWS services must allow the
iotsitewise:BatchPutAssetPropertyValue permission to target asset properties. The
following example policy uses the iotsitewise:assetHierarchyPath condition key to grant
access to a target root asset and its children. You can remove the Condition from the policy to
allow access to all of your AWS IoT SiteWise assets or specify ARNs of individual assets.

Export configurations for supported cloud destinations 1746

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/what-is-sitewise.html
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.data.html#stream_manager.data.IoTSiteWiseConfig
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/model/export/IoTSiteWiseConfig.html
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.IoTSiteWiseConfig.html
https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html#iot-sitewise_region
https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html#iot-sitewise_region

AWS IoT Greengrass Developer Guide, Version 2

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iotsitewise:BatchPutAssetPropertyValue",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iotsitewise:assetHierarchyPath": [
 "/root node asset ID",
 "/root node asset ID/*"
]
 }
 }
 }
]
}

You can grant granular or conditional access to resources, for example, by using a wildcard *
naming scheme. For more information, see Adding and removing IAM policies in the IAM User
Guide.

For important security information, see BatchPutAssetPropertyValue authorization in the AWS
IoT SiteWise User Guide.

Exporting to AWS IoT SiteWise

To create a stream that exports to AWS IoT SiteWise, your Greengrass components create a stream
with an export definition that includes one or more IoTSiteWiseConfig objects. This object
defines export settings, such as the batch size, batch interval, and priority.

When your Greengrass components receive asset property data from devices, they append
messages that contain the data to the target stream. Messages are JSON-serialized
PutAssetPropertyValueEntry objects that contain property values for one or more asset
properties. For more information, see Append message for AWS IoT SiteWise export destinations.

Export configurations for supported cloud destinations 1747

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/security_iam_service-with-iam.html#security_iam_service-with-iam-id-based-policies-batchputassetpropertyvalue-action

AWS IoT Greengrass Developer Guide, Version 2

Note

When you send data to AWS IoT SiteWise, your data must meet the requirements
of the BatchPutAssetPropertyValue action. For more information, see
BatchPutAssetPropertyValue in the AWS IoT SiteWise API Reference.

Then, stream manager exports the data based on the batch settings and priority defined in the
stream's export configurations.

You can adjust your stream manager settings and Greengrass component logic to design your
export strategy. For example:

• For near real time exports, set low batch size and interval settings and append the data to the
stream when it's received.

• To optimize batching, mitigate bandwidth constraints, or minimize cost, your Greengrass
components can pool the timestamp-quality-value (TQV) data points received for a single asset
property before appending the data to the stream. One strategy is to batch entries for up to 10
different property-asset combinations, or property aliases, in one message instead of sending
more than one entry for the same property. This helps stream manager to remain within AWS
IoT SiteWise quotas.

Amazon S3 objects

Stream manager supports automatic exports to Amazon S3. You can use Amazon S3 to store and
retrieve large amounts of data. For more information, see What is Amazon S3? in the Amazon
Simple Storage Service Developer Guide.

In the Stream Manager SDK, your Greengrass components use the
S3ExportTaskExecutorConfig to define the export configuration for this destination type. For
more information, see the SDK reference for your target language:

• S3ExportTaskExecutorConfig in the Python SDK

• S3ExportTaskExecutorConfig in the Java SDK

• S3ExportTaskExecutorConfig in the Node.js SDK

Export configurations for supported cloud destinations 1748

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/quotas.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/quotas.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.data.html#stream_manager.data.S3ExportTaskExecutorConfig
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/model/export/S3ExportTaskExecutorConfig.html
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.S3ExportTaskExecutorConfig.html

AWS IoT Greengrass Developer Guide, Version 2

Requirements

This export destination has the following requirements:

• Target Amazon S3 buckets must be in the same AWS account as the Greengrass core device.

• If a Lambda function that runs in Greengrass container mode writes input files to an input file
directory, you must mount the directory as a volume in the container with write permissions.
This ensures that the files are written to the root file system and visible to the stream manager
component, which runs outside the container.

• If a Docker container component writes input files to an input file directory, you must mount
the directory as a volume in the container with write permissions. This ensures that the files are
written to the root file system and visible to the stream manager component, which runs outside
the container.

• The Authorize core devices to interact with AWS services must allow the following permissions to
the target buckets. For example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:AbortMultipartUpload",
 "s3:ListMultipartUploadParts"
],
 "Resource": [
 "arn:aws:s3:::bucket-1-name/*",
 "arn:aws:s3:::bucket-2-name/*"
]
 }
]
}

You can grant granular or conditional access to resources, for example, by using a wildcard *
naming scheme. For more information, see Adding and removing IAM policies in the IAM User
Guide.

Export configurations for supported cloud destinations 1749

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

AWS IoT Greengrass Developer Guide, Version 2

Exporting to Amazon S3

To create a stream that exports to Amazon S3, your Greengrass components use the
S3ExportTaskExecutorConfig object to configure the export policy. The policy defines export
settings, such as the multipart upload threshold and priority. For Amazon S3 exports, stream
manager uploads data that it reads from local files on the core device. To initiate an upload, your
Greengrass components append an export task to the target stream. The export task contains
information about the input file and target Amazon S3 object. Stream manager runs tasks in the
sequence that they are appended to the stream.

Note

The target bucket must already exist in your AWS account. If an object for the specified key
doesn't exist, stream manager creates the object for you.

Stream manager uses the multipart upload threshold property, minimum part size setting, and size
of the input file to determine how to upload data. The multipart upload threshold must be greater
or equal to the minimum part size. If you want to upload data in parallel, you can create multiple
streams.

The keys that specify your target Amazon S3 objects can include valid Java DateTimeFormatter
strings in !{timestamp:value} placeholders. You can use these timestamp placeholders to
partition data in Amazon S3 based on the time that the input file data was uploaded. For example,
the following key name resolves to a value such as my-key/2020/12/31/data.txt.

my-key/!{timestamp:YYYY}/!{timestamp:MM}/!{timestamp:dd}/data.txt

Note

If you want to monitor the export status for a stream, first create a status stream and then
configure the export stream to use it. For more information, see the section called “Monitor
export tasks”.

Export configurations for supported cloud destinations 1750

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

AWS IoT Greengrass Developer Guide, Version 2

Manage input data

You can author code that IoT applications use to manage the lifecycle of the input data. The
following example workflow shows how you might use Greengrass components to manage this
data.

1. A local process receives data from devices or peripherals, and then writes the data to files in a
directory on the core device. These are the input files for stream manager.

2. A Greengrass component scans the directory and appends an export task to the target stream
when a new file is created. The task is a JSON-serialized S3ExportTaskDefinition object
that specifies the URL of the input file, the target Amazon S3 bucket and key, and optional user
metadata.

3. Stream manager reads the input file and exports the data to Amazon S3 in the order of
appended tasks. The target bucket must already exist in your AWS account. If an object for the
specified key doesn't exist, stream manager creates the object for you.

4. The Greengrass component reads messages from a status stream to monitor the export status.
After export tasks are completed, the Greengrass component can delete the corresponding input
files. For more information, see the section called “Monitor export tasks”.

Monitor export tasks

You can author code that IoT applications use to monitor the status of your Amazon S3 exports.
Your Greengrass components must create a status stream and then configure the export stream to
write status updates to the status stream. A single status stream can receive status updates from
multiple streams that export to Amazon S3.

First, create a stream to use as the status stream. You can configure the size and retention policies
for the stream to control the lifespan of the status messages. For example:

• Set Persistence to Memory if you don't want to store the status messages.

• Set StrategyOnFull to OverwriteOldestData so that new status messages are not lost.

Then, create or update the export stream to use the status stream. Specifically, set the status
configuration property of the stream’s S3ExportTaskExecutorConfig export configuration.
This setting tells stream manager to write status messages about the export tasks to the status
stream. In the StatusConfig object, specify the name of the status stream and the level of

Export configurations for supported cloud destinations 1751

AWS IoT Greengrass Developer Guide, Version 2

verbosity. The following supported values range from least verbose (ERROR) to most verbose
(TRACE). The default is INFO.

• ERROR

• WARN

• INFO

• DEBUG

• TRACE

The following example workflow shows how Greengrass components might use a status stream to
monitor export status.

1. As described in the previous workflow, a Greengrass component appends an export task to a
stream that's configured to write status messages about export tasks to a status stream. The
append operation return a sequence number that represents the task ID.

2. A Greengrass component reads messages sequentially from the status stream, and then filters
the messages based on the stream name and task ID or based on an export task property from
the message context. For example, the Greengrass component can filter by the input file URL of
the export task, which is represented by the S3ExportTaskDefinition object in the message
context.

The following status codes indicate that an export task has reached a completed state:

• Success. The upload was completed successfully.

• Failure. Stream manager encountered an error, for example, the specified bucket does not
exist. After resolving the issue, you can append the export task to the stream again.

• Canceled. The task was stopped because the stream or export definition was deleted, or the
time-to-live (TTL) period of the task expired.

Note

The task might also have a status of InProgress or Warning. Stream manager issues
warnings when an event returns an error that doesn't affect the execution of the task.
For example, a failure to clean up a partial upload returns a warning.

3. After export tasks are completed, the Greengrass component can delete the corresponding input
files.

Export configurations for supported cloud destinations 1752

AWS IoT Greengrass Developer Guide, Version 2

The following example shows how a Greengrass component might read and process status
messages.

Python

import time
from stream_manager import (
 ReadMessagesOptions,
 Status,
 StatusConfig,
 StatusLevel,
 StatusMessage,
 StreamManagerClient,
)
from stream_manager.util import Util

client = StreamManagerClient()

try:
 # Read the statuses from the export status stream
 is_file_uploaded_to_s3 = False
 while not is_file_uploaded_to_s3:
 try:
 messages_list = client.read_messages(
 "StatusStreamName", ReadMessagesOptions(min_message_count=1,
 read_timeout_millis=1000)
)
 for message in messages_list:
 # Deserialize the status message first.
 status_message = Util.deserialize_json_bytes_to_obj(message.payload,
 StatusMessage)

 # Check the status of the status message. If the status is
 "Success",
 # the file was successfully uploaded to S3.
 # If the status was either "Failure" or "Cancelled", the server was
 unable to upload the file to S3.
 # We will print the message for why the upload to S3 failed from the
 status message.
 # If the status was "InProgress", the status indicates that the
 server has started uploading
 # the S3 task.
 if status_message.status == Status.Success:

Export configurations for supported cloud destinations 1753

AWS IoT Greengrass Developer Guide, Version 2

 logger.info("Successfully uploaded file at path " + file_url + "
 to S3.")
 is_file_uploaded_to_s3 = True
 elif status_message.status == Status.Failure or
 status_message.status == Status.Canceled:
 logger.info(
 "Unable to upload file at path " + file_url + " to S3.
 Message: " + status_message.message
)
 is_file_uploaded_to_s3 = True
 time.sleep(5)
 except StreamManagerException:
 logger.exception("Exception while running")
except StreamManagerException:
 pass
 # Properly handle errors.
except ConnectionError or asyncio.TimeoutError:
 pass
 # Properly handle errors.

Python SDK reference: read_messages | StatusMessage

Java

import com.amazonaws.greengrass.streammanager.client.StreamManagerClient;
import com.amazonaws.greengrass.streammanager.client.StreamManagerClientFactory;
import com.amazonaws.greengrass.streammanager.client.utils.ValidateAndSerialize;
import com.amazonaws.greengrass.streammanager.model.ReadMessagesOptions;
import com.amazonaws.greengrass.streammanager.model.Status;
import com.amazonaws.greengrass.streammanager.model.StatusConfig;
import com.amazonaws.greengrass.streammanager.model.StatusLevel;
import com.amazonaws.greengrass.streammanager.model.StatusMessage;

 try (final StreamManagerClient client =
 StreamManagerClientFactory.standard().build()) {
 try {
 boolean isS3UploadComplete = false;
 while (!isS3UploadComplete) {
 try {
 // Read the statuses from the export status stream
 List<Message> messages = client.readMessages("StatusStreamName",
 new
 ReadMessagesOptions().withMinMessageCount(1L).withReadTimeoutMillis(1000L));
 for (Message message : messages) {

Export configurations for supported cloud destinations 1754

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.streammanagerclient.html#stream_manager.streammanagerclient.StreamManagerClient.read_messages
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-python/_apidoc/stream_manager.data.html#stream_manager.data.StatusMessage

AWS IoT Greengrass Developer Guide, Version 2

 // Deserialize the status message first.
 StatusMessage statusMessage =
 ValidateAndSerialize.deserializeJsonBytesToObj(message.getPayload(),
 StatusMessage.class);
 // Check the status of the status message. If the status is
 "Success", the file was successfully uploaded to S3.
 // If the status was either "Failure" or "Canceled", the server
 was unable to upload the file to S3.
 // We will print the message for why the upload to S3 failed
 from the status message.
 // If the status was "InProgress", the status indicates that the
 server has started uploading the S3 task.
 if (Status.Success.equals(statusMessage.getStatus())) {
 System.out.println("Successfully uploaded file at path " +
 FILE_URL + " to S3.");
 isS3UploadComplete = true;
 } else if (Status.Failure.equals(statusMessage.getStatus()) ||
 Status.Canceled.equals(statusMessage.getStatus())) {
 System.out.println(String.format("Unable to upload file at
 path %s to S3. Message %s",

 statusMessage.getStatusContext().getS3ExportTaskDefinition().getInputUrl(),
 statusMessage.getMessage()));
 sS3UploadComplete = true;
 }
 }
 } catch (StreamManagerException ignored) {
 } finally {
 // Sleep for sometime for the S3 upload task to complete before
 trying to read the status message.
 Thread.sleep(5000);
 }
 } catch (e) {
 // Properly handle errors.
 }
} catch (StreamManagerException e) {
 // Properly handle exception.
}

Java SDK reference: readMessages | StatusMessage

Node.js

const {

Export configurations for supported cloud destinations 1755

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/client/StreamManagerClient.html#readMessages-java.lang.String-com.amazonaws.greengrass.streammanager.model.ReadMessagesOptions-
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-java/com/amazonaws/greengrass/streammanager/model/StatusMessage.html

AWS IoT Greengrass Developer Guide, Version 2

 StreamManagerClient, ReadMessagesOptions,
 Status, StatusConfig, StatusLevel, StatusMessage,
 util,
} = require(*'aws-greengrass-stream-manager-sdk'*);

const client = new StreamManagerClient();
client.onConnected(async () => {
 try {
 let isS3UploadComplete = false;
 while (!isS3UploadComplete) {
 try {
 // Read the statuses from the export status stream
 const messages = await c.readMessages("StatusStreamName",
 new ReadMessagesOptions()
 .withMinMessageCount(1)
 .withReadTimeoutMillis(1000));

 messages.forEach((message) => {
 // Deserialize the status message first.
 const statusMessage =
 util.deserializeJsonBytesToObj(message.payload, StatusMessage);
 // Check the status of the status message. If the status is
 'Success', the file was successfully uploaded to S3.
 // If the status was either 'Failure' or 'Cancelled', the server
 was unable to upload the file to S3.
 // We will print the message for why the upload to S3 failed
 from the status message.
 // If the status was "InProgress", the status indicates that the
 server has started uploading the S3 task.
 if (statusMessage.status === Status.Success) {
 console.log(`Successfully uploaded file at path ${FILE_URL}
 to S3.`);
 isS3UploadComplete = true;
 } else if (statusMessage.status === Status.Failure ||
 statusMessage.status === Status.Canceled) {
 console.log(`Unable to upload file at path ${FILE_URL} to
 S3. Message: ${statusMessage.message}`);
 isS3UploadComplete = true;
 }
 });
 // Sleep for sometime for the S3 upload task to complete before
 trying to read the status message.
 await new Promise((r) => setTimeout(r, 5000));
 } catch (e) {

Export configurations for supported cloud destinations 1756

AWS IoT Greengrass Developer Guide, Version 2

 // Ignored
 }
 } catch (e) {
 // Properly handle errors.
 }
});
client.onError((err) => {
 // Properly handle connection errors.
 // This is called only when the connection to the StreamManager server fails.
});

Node.js SDK reference: readMessages | StatusMessage

Export configurations for supported cloud destinations 1757

https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.StreamManagerClient.html#readMessages
https://aws-greengrass.github.io/aws-greengrass-stream-manager-sdk-js/aws-greengrass-core-sdk.StreamManager.StatusMessage.html

AWS IoT Greengrass Developer Guide, Version 2

Perform machine learning inference

With AWS IoT Greengrass, you can perform machine learning (ML) inference on your edge devices
on locally generated data using cloud-trained models. You benefit from the low latency and cost
savings of running local inference, yet still take advantage of cloud computing power for training
models and complex processing.

AWS IoT Greengrass makes the steps required to perform inference more efficient. You can train
your inference models anywhere and deploy them locally as machine learning components. For
example, you can build and train deep-learning models in Amazon SageMaker AI or computer
vision models in Amazon Lookout for Vision. Then, you can store these models in an Amazon S3
bucket, so you can use these models as artifacts in your components to perform inference on your
core devices.

Topics

• How AWS IoT Greengrass ML inference works

• What's different in AWS IoT Greengrass Version 2?

• Requirements

• Supported model sources

• Supported machine learning runtimes

• AWS-provided machine learning components

• Use Amazon SageMaker AI Edge Manager on Greengrass core devices

• Use Amazon Lookout for Vision on Greengrass core devices

• Customize your machine learning components

• Troubleshooting machine learning inference

How AWS IoT Greengrass ML inference works

AWS provides machine learning components that you can use to create one-step deployments
to perform machine learning inference on your device. You can also use these components as
templates to create custom components to meet your specific requirements.

AWS provides the following categories of machine learning components:

• Model component—Contains machine learning models as Greengrass artifacts.

How AWS IoT Greengrass ML inference works 1758

https://console.aws.amazon.com/sagemaker
https://console.aws.amazon.com/lookoutvision
https://console.aws.amazon.com/s3

AWS IoT Greengrass Developer Guide, Version 2

• Runtime component—Contains the script that installs the machine learning framework and its
dependencies on the Greengrass core device.

• Inference component—Contains the inference code and includes component dependencies to
install the machine learning framework and download pre-trained machine learning models.

Each deployment that you create to perform machine learning inference consists of at least one
component that runs your inference application, installs the machine learning framework, and
downloads your machine learning models. To perform sample inference with AWS-provided
components, you deploy an inference component to your core device, which automatically
includes the corresponding model and runtime components as dependencies. To customize
your deployments, you can plug in or swap out the sample model components with custom
model components, or you can use the component recipes for the AWS-provided components as
templates to create your own custom inference, model, and runtime components.

To perform machine learning inference by using custom components:

1. Create a model component. This component contains the machine learning models that you
want to use to perform inference. AWS provides sample pre-trained DLR and TensorFlow Lite
models. To use a custom model, create your own model component.

2. Create a runtime component. This component contains the scripts required to install the
machine learning runtime for your models. AWS provides sample runtime components for
Deep Learning Runtime (DLR) and TensorFlow Lite. To use other runtimes with your custom
models and inference code, create your own runtime components.

3. Create an inference component. This component contains your inference code, and includes
your model and runtime components as dependencies. AWS provides sample inference
components for image classification and object detection using DLR and TensorFlow Lite. To
perform other types of inference, or to use custom models and runtimes, create your own
inference component.

4. Deploy the inference component. When you deploy this component, AWS IoT Greengrass also
automatically deploys the model and runtime component dependencies.

To get started with AWS-provided components, see the section called “Perform sample image
classification inference”.

For information about creating custom machine learning components, see Customize your machine
learning components.

How AWS IoT Greengrass ML inference works 1759

https://github.com/neo-ai/neo-ai-dlr
https://www.tensorflow.org/lite/guide/python

AWS IoT Greengrass Developer Guide, Version 2

What's different in AWS IoT Greengrass Version 2?

AWS IoT Greengrass consolidates functional units for machine learning—such as models, runtimes,
and inference code— into components that enable you to use a one-step process to install the
machine learning runtime, download your trained models, and perform inference on your device.

By using the AWS-provided machine learning components, you have the flexibility to start
performing machine learning inference with sample inference code and pre-trained models. You
can plug in custom model components to use your own custom-trained models with the inference
and runtime components that AWS provides. For a completely customized machine learning
solution, you can use the public components as templates to create custom components and use
any runtime, model, or inference type that you want.

Requirements

To create and use machine learning components, you must have the following:

• A Greengrass core device. If you don't have one, see Tutorial: Getting started with AWS IoT
Greengrass V2.

• Minimum 500 MB local storage space to use AWS-provided sample machine learning
components.

Supported model sources

AWS IoT Greengrass supports using custom-trained machine learning models that are stored in
Amazon S3. You can also use Amazon SageMaker AI edge packaging jobs to directly create model
components for your SageMaker AI Neo-compiled models. For information about using SageMaker
AI Edge Manager with AWS IoT Greengrass, see Use Amazon SageMaker AI Edge Manager on
Greengrass core devices. You can also use Amazon Lookout for Vision model packaging jobs to
create model components for your Lookout for Vision models. For more information about using
Lookout for Vision with AWS IoT Greengrass, see Use Amazon Lookout for Vision on Greengrass
core devices.

The S3 buckets that contain your models must meet the following requirements:

• They must not be encrypted using SSE-C. For buckets that use server-side encryption, AWS IoT
Greengrass machine learning inference currently supports the SSE-S3 or SSE-KMS encryption

What's different in AWS IoT Greengrass Version 2? 1760

AWS IoT Greengrass Developer Guide, Version 2

options only. For more information about server-side encryption options, see Protecting data
using server-side encryption in the Amazon Simple Storage Service User Guide.

• Their names must not include periods (.). For more information, see the rule about using virtual
hosted-style buckets with SSL in Rules for bucket naming in the Amazon Simple Storage Service
User Guide.

• The S3 buckets that store your model sources must be in the same AWS account and AWS Region
as your machine learning components.

• AWS IoT Greengrass must have read permission to the model source. To enable AWS IoT
Greengrass to access the S3 buckets, the Greengrass device role must allow the s3:GetObject
action. For more information about the device role, see Authorize core devices to interact with
AWS services.

Supported machine learning runtimes

AWS IoT Greengrass enables you to create custom components to use any machine learning
runtime of your choice to perform machine learning inference with your custom-trained models.
For information about creating custom machine learning components, see Customize your machine
learning components.

To make the process of getting started with machine learning more efficient, AWS IoT Greengrass
provides sample inference, model, and runtime components that use the following machine
learning runtimes:

• Deep Learning Runtime (DLR) v1.6.0 and v1.3.0

• TensorFlow Lite v2.5.0

AWS-provided machine learning components

The following table lists the AWS-provided components used for machine learning.

Note

Several AWS-provided components depend on specific minor versions of the Greengrass
nucleus. Because of this dependency, you need to update these components when
you update the Greengrass nucleus to a new minor version. For information about the
specific versions of the nucleus that each component depends on, see the corresponding

Supported runtimes 1761

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html#bucketnamingrules
https://github.com/neo-ai/neo-ai-dlr
https://www.tensorflow.org/lite/guide/python

AWS IoT Greengrass Developer Guide, Version 2

component topic. For more information about updating the nucleus, see Update the AWS
IoT Greengrass Core software (OTA).

Component Description Component
type

Supported
OS

Open
source

Lookout for Vision Edge Agent Deploys the
Amazon
Lookout
for Vision
runtime on
the Greengras
s core device,
so you can
use computer
vision to find
defects in
industrial
products.

Generic Linux No

SageMaker AI Edge Manager Deploys the
Amazon
SageMaker AI
Edge Manager
agent on the
Greengrass
core device.

Generic Linux,
Windows

No

DLR image classification Inference
component
that uses the
DLR image
classification
model store
and the DLR
runtime

Generic Linux,
Windows

No

Machine learning components 1762

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

component as
dependencies
to install DLR,
download
sample image
classification
models, and
perform
image
classification
inference on
supported
devices.

Machine learning components 1763

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

DLR object detection Inference
component
that uses the
DLR object
detection
model store
and the DLR
runtime
component as
dependencies
to install DLR,
download
sample object
detection
models, and
perform
object
detection
inference on
supported
devices.

Generic Linux,
Windows

No

DLR image classification model
store

Model
component
that contains
sample
ResNet-50
image classific
ation models
as Greengrass
artifacts.

Generic Linux,
Windows

No

Machine learning components 1764

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

DLR object detection model store Model
component
that contains
sample
YOLOv3
object
detection
models as
Greengrass
artifacts.

Generic Linux,
Windows

No

DLR runtime Runtime
component
that contains
an installation
script that is
used to install
DLR and its
dependenc
ies on the
Greengrass
core device.

Generic Linux,
Windows

No

Machine learning components 1765

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

TensorFlow Lite image classification Inference
component
that uses the
TensorFlow
Lite image
classific
ation model
store and the
TensorFlow
Lite runtime
component
as dependenc
ies to install
TensorFlow
Lite, download
sample image
classification
models, and
perform
image
classification
inference on
supported
devices.

Generic Linux,
Windows

No

Machine learning components 1766

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

TensorFlow Lite object detection Inference
component
that uses the
TensorFlow
Lite object
detection
model store
and the
TensorFlow
Lite runtime
component
as dependenc
ies to install
TensorFlow
Lite, download
sample object
detection
models, and
perform
object
detection
inference on
supported
devices.

Generic Linux,
Windows

No

TensorFlow Lite image classification
model store

Model
component
that contains
a sample
MobileNet v1
model as a
Greengrass
artifact.

Generic Linux,
Windows

No

Machine learning components 1767

AWS IoT Greengrass Developer Guide, Version 2

Component Description Component
type

Supported
OS

Open
source

TensorFlow Lite object detection
model store

Model
component
that contains
a sample
Single Shot
Detection
(SSD)
MobileNet
model as a
Greengrass
artifact.

Generic Linux,
Windows

No

TensorFlow Lite runtime Runtime
component
that contains
an installation
script that is
used to install
TensorFlow
Lite and its
dependenc
ies on the
Greengrass
core device.

Generic Linux,
Windows

No

Machine learning components 1768

AWS IoT Greengrass Developer Guide, Version 2

Use Amazon SageMaker AI Edge Manager on Greengrass core
devices

Important

SageMaker AI Edge Manager was discontinued on April 26th, 2024. For more information
about continuing to deploy your models to edge devices, see SageMaker AI Edge Manager
end of life.

Amazon SageMaker AI Edge Manager is a software agent that runs on edge devices. SageMaker
AI Edge Manager provides model management for edge devices so that you can package and
use Amazon SageMaker AI Neo-compiled models directly on Greengrass core devices. By using
SageMaker AI Edge Manager, you can also sample model input and output data from your core
devices, and send that data to the AWS Cloud for monitoring and analysis. Because SageMaker AI
Edge Manager uses SageMaker AI Neo to optimize your models for your target hardware, you don't
need to install the DLR runtime directly on your device. On Greengrass devices, SageMaker AI Edge
Manager doesn't load local AWS IoT certificates or call the AWS IoT credential provider endpoint
directly. Instead, SageMaker AI Edge Manager uses the token exchange service to fetch temporary
credential from a TES endpoint.

This section describes how SageMaker AI Edge Manager works on Greengrass core devices.

How SageMaker AI Edge Manager works on Greengrass devices

To deploy the SageMaker AI Edge Manager agent to your core devices, create a deployment
that includes the aws.greengrass.SageMakerEdgeManager component. AWS IoT
Greengrass manages the installation and lifecycle of the Edge Manager agent on your devices.
When a new version of the agent binary is available, deploy the updated version of the
aws.greengrass.SageMakerEdgeManager component to upgrade the version of the agent that
is installed on your device.

When you use SageMaker AI Edge Manager with AWS IoT Greengrass, your workflow includes the
following high-level steps:

1. Compile models with SageMaker AI Neo.

Use SageMaker AI Edge Manager 1769

https://docs.aws.amazon.com/sagemaker/latest/dg/edge-eol.html
https://docs.aws.amazon.com/sagemaker/latest/dg/edge-eol.html

AWS IoT Greengrass Developer Guide, Version 2

2. Package your SageMaker AI Neo-compiled models using SageMaker AI edge packaging jobs.
When you run an edge packaging job for your model, you can choose to create a model
component with the packaged model as an artifact that can be deployed to your Greengrass
core device.

3. Create a custom inference component. You use this inference component to interact with the
Edge Manager agent to perform inference on the core device. These operations include loading
models, invoke prediction requests to run inference, and unloading models when the component
shuts down.

4. Deploy the SageMaker AI Edge Manager component, the packaged model component, and the
inference component to run your model on the SageMaker AI inference engine (Edge Manager
agent) on your device.

For more information about creating edge packaging jobs and inference components that work
with SageMaker AI Edge Manager, see Deploy Model Package and Edge Manager Agent with AWS
IoT Greengrass in the Amazon SageMaker AI Developer Guide.

The Tutorial: Get started with SageMaker AI Edge Manager tutorial shows you how to set up and
use the SageMaker AI Edge Manager agent on an existing Greengrass core device, using AWS-
provided example code that you can use to create sample inference and model components.

When you use SageMaker AI Edge Manager on Greengrass core devices, you can also use the
capture data feature to upload sample data to the AWS Cloud. Capture data is a SageMaker AI
feature that you use to upload inference input, inference results, and additional inference data to
an S3 bucket or a local directory for future analysis. For more information about using capture data
with SageMaker AI Edge Manager, see Manage Model in the Amazon SageMaker AI Developer Guide.

Requirements

You must meet the following requirements to use the SageMaker AI Edge Manager agent on
Greengrass core devices.

• A Greengrass core device running on Amazon Linux 2, a Debian-based Linux platform (x86_64 or
Armv8), or Windows (x86_64). If you don't have one, see Tutorial: Getting started with AWS IoT
Greengrass V2.

• Python 3.6 or later, including pip for your version of Python, installed on your core device.

• The Greengrass device role configured with the following:

Requirements 1770

https://docs.aws.amazon.com/sagemaker/latest/dg/edge-greengrass.html
https://docs.aws.amazon.com/sagemaker/latest/dg/edge-greengrass.html
https://docs.aws.amazon.com/sagemaker/latest/dg/edge-manage-model.html#edge-manage-model-capturedata
https://www.python.org/downloads/

AWS IoT Greengrass Developer Guide, Version 2

• A trust relationship that allows credentials.iot.amazonaws.com and
sagemaker.amazonaws.com to assume the role, as shown in the following IAM policy
example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "credentials.iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "sagemaker.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

• The AmazonSageMakerEdgeDeviceFleetPolicy IAM managed policy.

• The s3:PutObject action, as shown in the following IAM policy example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "*"
],
 "Effect": "Allow"
 }
]
}

Requirements 1771

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AmazonSageMakerEdgeDeviceFleetPolicy

AWS IoT Greengrass Developer Guide, Version 2

• An Amazon S3 bucket created in the same AWS account and AWS Region as your Greengrass core
device. SageMaker AI Edge Manager requires an S3 bucket to create an edge device fleet, and
to store sample data from running inference on your device. For information about creating S3
buckets, see Getting started with Amazon S3.

• A SageMaker AI edge device fleet that uses the same AWS IoT role alias as your Greengrass core
device. For more information, see Create an edge device fleet.

• Your Greengrass core device registered as an edge device in your SageMaker AI Edge device
fleet. The edge device name must match the AWS IoT thing name for your core device. For more
information, see Register your Greengrass core device.

Get started with SageMaker AI Edge Manager

You can complete a tutorial to get started using SageMaker AI Edge Manager. The tutorial shows
you how to get started using SageMaker AI Edge Manager with AWS-provided sample components
on an existing core device. These sample components use the SageMaker AI Edge Manager
component as a dependency to deploy the Edge Manager agent, and perform inference using pre-
trained models that were compiled using SageMaker AI Neo. For more information, see Tutorial:
Get started with SageMaker AI Edge Manager.

Use Amazon Lookout for Vision on Greengrass core devices

Note

AWS IoT Greengrass doesn't currently support this feature on Windows core devices.

Amazon Lookout for Vision is an AWS service that you can use to find visual defects in industrial
products. It uses computer vision to identify missing components in an industrial product, damage
to vehicles or structures, irregularities in production lines, missing capacitors on printed circuit
boards, and defects in silicon wafers or any other physical item where quality is important. For
more information, see What is Amazon Lookout for Vision? in the Amazon Lookout for Vision
Developer Guide.

You can create Greengrass applications that use Lookout for Vision inference to find visual defects
on Greengrass core devices. After you deploy a Lookout for Vision workflow to a Greengrass core
device, you can perform computer vision without a connection to the Lookout for Vision service

Get started with SageMaker AI Edge Manager 1772

https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/what-is.html

AWS IoT Greengrass Developer Guide, Version 2

in the AWS Cloud. To create a Greengrass application that uses Lookout for Vision, you set up and
deploy the following Greengrass components:

• Lookout for Vision model components – Contains Lookout for Vision machine learning models
as Greengrass artifacts. You can use the Lookout for Vision console and API to generate model
components that package your pre-trained machine learning models. These components are
private Greengrass components in your AWS account. For more information, see Creating a
Lookout for Vision model and Packaging a Lookout for Vision model in the Amazon Lookout for
Vision Developer Guide.

• Lookout for Vision Edge Agent component – Provides a local Lookout for Vision runtime server
that uses computer vision to detect anomalies using machine learning models that you provide.
This component is an AWS-provided component. For more information, see the Lookout for
Vision Edge Agent component.

• Lookout for Vision client application component – Interacts with the Lookout for Vision Edge
Agent component to process images for anomalies. You can develop custom client application
components that send images and video streams to the local Lookout for Vision Edge Agent
and reports any anomalies that the machine learning models detect. For more information, see
Writing a client application component and Lookout for Vision Edge Agent API reference in the
Amazon Lookout for Vision Developer Guide.

For more information about how to create, configure, and use these components, see Using a
Lookout for Vision model on an edge device in the Amazon Lookout for Vision Developer Guide.

Customize your machine learning components

In AWS IoT Greengrass, you can configure sample machine learning components to customize how
you perform machine learning inference on your devices with the inference, model, and runtime
components as the building blocks. AWS IoT Greengrass also provides you the flexibility to use the
sample components as templates and create your own custom components as needed. You can mix
and match this modular approach to customize your machine learning inference components in the
following ways:

Using sample inference components

• Modify the configuration of inference components when you deploy them.

Customize your machine learning components 1773

https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/model.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/model.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/package-job.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/client-application-overview.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/edge-agent-reference.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/models-devices.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/models-devices.html

AWS IoT Greengrass Developer Guide, Version 2

• Use a custom model with the sample inference component by replacing the sample model
store component with a custom model component. Your custom model must be trained using
the same runtime as the sample model.

Using custom inference components

• Use custom inference code with the sample models and runtimes by adding public model
components and runtime components as dependencies of custom inference components.

• Create and add custom model components or runtime components as dependencies
of custom inference components. You must use custom components if you want to use
custom inference code or a runtime for which AWS IoT Greengrass doesn't provide a sample
component.

Topics

• Modify the configuration of a public inference component

• Use a custom model with the sample inference component

• Create custom machine learning components

• Create a custom inference component

Modify the configuration of a public inference component

In the AWS IoT Greengrass console, the component page displays the default configuration of that
component. For example, the default configuration of the TensorFlow Lite image classification
component looks like the following:

{
 "accessControl": {
 "aws.greengrass.ipc.mqttproxy": {
 "aws.greengrass.TensorFlowLiteImageClassification:mqttproxy:1": {
 "policyDescription": "Allows access to publish via topic ml/tflite/image-
classification.",
 "operations": [
 "aws.greengrass#PublishToIoTCore"
],
 "resources": [
 "ml/tflite/image-classification"
]
 }
 }

Modify the configuration of a public inference component 1774

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

 },
 "PublishResultsOnTopic": "ml/tflite/image-classification",
 "ImageName": "cat.jpeg",
 "InferenceInterval": 3600,
 "ModelResourceKey": {
 "model": "TensorFlowLite-Mobilenet"
 }
}

When you deploy a public inference component, you can modify the default configuration to
customize your deployment. For information about the available configuration parameters for
each public inference component, see the component topic in AWS-provided machine learning
components.

This section describes how to deploy a modified component from the AWS IoT Greengrass console.
For information about deploying components using the AWS CLI, see Create deployments.

To deploy a modified public inference component (console)

1. Sign in to the AWS IoT Greengrass console.

2. In the navigation menu, choose Components.

3. On the Components page, on the Public components tab, choose the component you want to
deploy.

4. On the component page, choose Deploy.

5. From Add to deployment, choose one of the following:

a. To merge this component to an existing deployment on your target device, choose Add to
existing deployment, and then select the deployment that you want to revise.

b. To create a new deployment on your target device, choose Create new deployment. If
you have an existing deployment on your device, choosing this step replaces the existing
deployment.

6. On the Specify target page, do the following:

a. Under Deployment information, enter or modify the friendly name for your deployment.

b. Under Deployment targets, select a target for your deployment, and choose Next. You
cannot change the deployment target if you are revising an existing deployment.

7. On the Select components page, under Public components verify that the inference
component with your modified configuration is selected, and choose Next.

Modify the configuration of a public inference component 1775

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

8. On the Configure components page, do the following:

a. Select the inference component, and choose Configure component.

b. Under Configuration update, enter the configuration values that you want to update. For
example, enter the following configuration update in the Configuration to merge box to
change the inference interval to 15 seconds, and instruct the component to look for the
image named custom.jpg in the /custom-ml-inference/images/ folder.

{
 "InferenceInterval": "15",
 "ImageName": "custom.jpg",
 "ImageDirectory": "/custom-ml-inference/images/"
}

To reset a component's entire configuration to its default values, specify a single empty
string "" in the Reset paths box.

c. Choose Confirm, and then choose Next.

9. On the Configure advanced setting page, keep the default configuration settings, and choose
Next.

10. On the Review page, choose Deploy

Use a custom model with the sample inference component

If you want to use the sample inference component with your own machine learning models for a
runtime for which AWS IoT Greengrass provides a sample runtime component, you must override
the public model components with components that use those models as artifacts. At a high-level
you complete the following steps to use a custom model with the sample inference component:

1. Create a model component that uses a custom model in an S3 bucket as an artifact. Your custom
model must be trained using the same runtime as the model that you want to replace.

2. Modify the ModelResourceKey configuration parameter in the inference component to use the
custom model. For information about updating the configuration of the inference component,
see Modify the configuration of a public inference component

Use a custom model with the sample inference component 1776

AWS IoT Greengrass Developer Guide, Version 2

When you deploy the inference component, AWS IoT Greengrass looks for the latest version of its
component dependencies. It overrides the dependent public model component if a later custom
version of the component exists in the same AWS account and AWS Region.

Create a custom model component (console)

1. Upload your model to an S3 bucket. For information about uploading your models to an S3
bucket, see Working with Amazon S3 Buckets in the Amazon Simple Storage Service User Guide.

Note

You must store your artifacts in S3 buckets that are in the same AWS account and AWS
Region as the components. To enable AWS IoT Greengrass to access these artifacts, the
Greengrass device role must allow the s3:GetObject action. For more information
about the device role, see Authorize core devices to interact with AWS services.

2. In the AWS IoT Greengrass console navigation menu, choose Components.

3. Retrieve the component recipe for the public model store component.

a. On the Components page, on the Public components tab, look for and choose the
public model component for which you want to create a new version. For example,
variant.DLR.ImageClassification.ModelStore.

b. On the component page, choose View recipe and copy the displayed JSON recipe.

4. On the Components page, on the My components tab, choose Create component.

5. On the Create component page, under Component information, select Enter recipe as JSON
as your component source.

6. In the Recipe box, paste the component recipe that you previously copied.

7. In the recipe, update the following values:

• ComponentVersion: Increment the minor version of the component.

When you create a custom component to override a public model component, you must
update only the minor version of the existing component version. For example, if the public
component version is 2.1.0, you can create a custom component with version 2.1.1.

• Manifests.Artifacts.Uri: Update each URI value to the Amazon S3 URI of the model
that you want to use.

Use a custom model with the sample inference component 1777

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Note

Do not change the name of the component.

8. Choose Create component.

Create a custom model component (AWS CLI)

1. Upload your model to an S3 bucket. For information about uploading your models to an S3
bucket, see Working with Amazon S3 Buckets in the Amazon Simple Storage Service User Guide.

Note

You must store your artifacts in S3 buckets that are in the same AWS account and AWS
Region as the components. To enable AWS IoT Greengrass to access these artifacts, the
Greengrass device role must allow the s3:GetObject action. For more information
about the device role, see Authorize core devices to interact with AWS services.

2. Run the following command to retrieve the component recipe of the public component. This
command writes the component recipe to the output file that you provide in your command.
Convert the retrieved base64-encoded string to JSON or YAML, as needed.

Linux, macOS, or Unix

aws greengrassv2 get-component \
 --arn <arn> \
 --recipe-output-format <recipe-format> \
 --query recipe \
 --output text | base64 --decode > <recipe-file>

Windows Command Prompt (CMD)

aws greengrassv2 get-component ^
 --arn <arn> ^
 --recipe-output-format <recipe-format> ^
 --query recipe ^
 --output text > <recipe-file>.base64

Use a custom model with the sample inference component 1778

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html

AWS IoT Greengrass Developer Guide, Version 2

certutil -decode <recipe-file>.base64 <recipe-file>

PowerShell

aws greengrassv2 get-component `
 --arn <arn> `
 --recipe-output-format <recipe-format> `
 --query recipe `
 --output text > <recipe-file>.base64

certutil -decode <recipe-file>.base64 <recipe-file>

3. Update the name of the recipe file to <component-name>-<component-version>,
where component version is the target version of the new component. For example,
variant.DLR.ImageClassification.ModelStore-2.1.1.yaml.

4. In the recipe, update the following values:

• ComponentVersion: Increment the minor version of the component.

When you create a custom component to override a public model component, you must
update only the minor version of the existing component version. For example, if the public
component version is 2.1.0, you can create a custom component with version 2.1.1.

• Manifests.Artifacts.Uri: Update each URI value to the Amazon S3 URI of the model
that you want to use.

Note

Do not change the name of the component.

5. Run the following command to create a new component using the recipe you retrieved and
modified.

aws greengrassv2 create-component-version \
 --inline-recipe fileb://path/to/component/recipe

Use a custom model with the sample inference component 1779

AWS IoT Greengrass Developer Guide, Version 2

Note

This step creates the component in the AWS IoT Greengrass service in the AWS
Cloud. You can use the Greengrass CLI to develop, test, and deploy your component
locally before you upload it to the cloud. For more information, see Develop AWS IoT
Greengrass components.

For more information about creating components, see Develop AWS IoT Greengrass components.

Create custom machine learning components

You must create custom components if you want to use custom inference code or a runtime
for which AWS IoT Greengrass doesn't provide a sample component. You can use your custom
inference code with the AWS-provided sample machine learning models and runtimes, or you
can develop a completely customized machine learning inference solution with your own models
and runtime. If your models use a runtime for which AWS IoT Greengrass provides a sample
runtime component, then you can use that runtime component, and you need to create custom
components only for your inference code and the models you want to use.

Topics

• Retrieve the recipe for a public component

• Retrieve sample component artifacts

• Upload component artifacts to an S3 bucket

• Create custom components

Retrieve the recipe for a public component

You can use the recipe of an existing public machine learning component as a template to create
a custom component. To view the component recipe for the latest version of a public component,
use the console or the AWS CLI as follows:

• Using the console

1. On the Components page, on the Public components tab, look for and choose the public
component.

Create custom machine learning components 1780

AWS IoT Greengrass Developer Guide, Version 2

2. On the component page, choose View recipe.

• Using AWS CLI

Run the following command to retrieve the component recipe of the public variant component.
This command writes the component recipe to the JSON or YAML recipe file that you provide in
your command.

Linux, macOS, or Unix

aws greengrassv2 get-component \
 --arn <arn> \
 --recipe-output-format <recipe-format> \
 --query recipe \
 --output text | base64 --decode > <recipe-file>

Windows Command Prompt (CMD)

aws greengrassv2 get-component ^
 --arn <arn> ^
 --recipe-output-format <recipe-format> ^
 --query recipe ^
 --output text > <recipe-file>.base64

certutil -decode <recipe-file>.base64 <recipe-file>

PowerShell

aws greengrassv2 get-component `
 --arn <arn> `
 --recipe-output-format <recipe-format> `
 --query recipe `
 --output text > <recipe-file>.base64

certutil -decode <recipe-file>.base64 <recipe-file>

Replace the values in your command as follows:

• <arn>. The Amazon Resource Name (ARN) of the public component.

• <recipe-format>. The format in which you want to create the recipe file. Supported values
are JSON and YAML.

Create custom machine learning components 1781

AWS IoT Greengrass Developer Guide, Version 2

• <recipe-file>. The name of the recipe in the format <component-name>-<component-
version>.

Retrieve sample component artifacts

You can use the artifacts used by the public machine learning components as templates to create
your custom component artifacts, such as inference code or runtime installation scripts.

To view the sample artifacts that are included in the public machine learning components, deploy
the public inference component and then view the artifacts on your device in the /greengrass/
v2/packages/artifacts-unarchived/component-name/component-version/ folder.

Upload component artifacts to an S3 bucket

Before you can create a custom component, you must upload the component artifacts to an S3
bucket and use the S3 URIs in your component recipe. For example, to use custom inference code
in your inference component, upload the code to an S3 bucket. You can then use the Amazon S3
URI of your inference code as an artifact in your component.

For information about uploading content to an S3 bucket, see Working with Amazon S3 Buckets in
the Amazon Simple Storage Service User Guide.

Note

You must store your artifacts in S3 buckets that are in the same AWS account and AWS
Region as the components. To enable AWS IoT Greengrass to access these artifacts, the
Greengrass device role must allow the s3:GetObject action. For more information about
the device role, see Authorize core devices to interact with AWS services.

Create custom components

You can use the artifacts and recipes that you retrieved to create your custom machine learning
components. For an example, see Create a custom inference component.

For detailed information about creating and deploying components to Greengrass devices, see
Develop AWS IoT Greengrass components and Deploy AWS IoT Greengrass components to devices.

Create custom machine learning components 1782

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html

AWS IoT Greengrass Developer Guide, Version 2

Create a custom inference component

This section shows you how to create a custom inference component using the DLR image
classification component as a template.

Topics

• Upload your inference code to an Amazon S3 bucket

• Create a recipe for your inference component

• Create the inference component

Upload your inference code to an Amazon S3 bucket

Create your inference code and then upload it to an S3 bucket. For information about uploading
content to an S3 bucket, see Working with Amazon S3 Buckets in the Amazon Simple Storage
Service User Guide.

Note

You must store your artifacts in S3 buckets that are in the same AWS account and AWS
Region as the components. To enable AWS IoT Greengrass to access these artifacts, the
Greengrass device role must allow the s3:GetObject action. For more information about
the device role, see Authorize core devices to interact with AWS services.

Create a recipe for your inference component

1. Run the following command to retrieve the component recipe of the DLR image classification
component. This command writes the component recipe to the JSON or YAML recipe file that
you provide in your command.

Linux, macOS, or Unix

aws greengrassv2 get-component \
 --arn
 arn:aws:greengrass:region:aws:components:aws.greengrass.DLRImageClassification:versions:version
 \
 --recipe-output-format JSON | YAML \
 --query recipe \

Create a custom inference component 1783

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html

AWS IoT Greengrass Developer Guide, Version 2

 --output text | base64 --decode > <recipe-file>

Windows Command Prompt (CMD)

aws greengrassv2 get-component ^
 --arn
 arn:aws:greengrass:region:aws:components:aws.greengrass.DLRImageClassification:versions:version
 ^
 --recipe-output-format JSON | YAML ^
 --query recipe ^
 --output text > <recipe-file>.base64

certutil -decode <recipe-file>.base64 <recipe-file>

PowerShell

aws greengrassv2 get-component `
 --arn
 arn:aws:greengrass:region:aws:components:aws.greengrass.DLRImageClassification:versions:version
 `
 --recipe-output-format JSON | YAML `
 --query recipe `
 --output text > <recipe-file>.base64

certutil -decode <recipe-file>.base64 <recipe-file>

Replace <recipe-file> with the name of the recipe in the format <component-
name>-<component-version>.

2. In the ComponentDependencies object in your recipe, do one or more of the following
depending on the model and runtime components that you want to use:

• Keep the DLR component dependency if you want to use DLR-compiled models. You
can also replace it with a dependency on a custom runtime component, as shown in the
following example.

Runtime component

JSON

{

Create a custom inference component 1784

AWS IoT Greengrass Developer Guide, Version 2

 "<runtime-component>": {
 "VersionRequirement": "<version>",
 "DependencyType": "HARD"
 }
}

YAML

<runtime-component>:
 VersionRequirement: "<version>"
 DependencyType: HARD

• Keep the DLR image classification model store dependency to use the pre-trained ResNet-50
models that AWS provides, or modify it to use a custom model component. When you
include a dependency for a public model component, if a later custom version of the
component exists in the same AWS account and AWS Region, then the inference component
uses that custom component. Specify the model component dependency as shown in the
following examples.

Public model component

JSON

{
 "variant.DLR.ImageClassification.ModelStore": {
 "VersionRequirement": "<version>",
 "DependencyType": "HARD"
 }
}

YAML

variant.DLR.ImageClassification.ModelStore:
 VersionRequirement: "<version>"
 DependencyType: HARD

Custom model component

JSON

{
 "<custom-model-component>": {

Create a custom inference component 1785

AWS IoT Greengrass Developer Guide, Version 2

 "VersionRequirement": "<version>",
 "DependencyType": "HARD"
 }
}

YAML

<custom-model-component>:
 VersionRequirement: "<version>"
 DependencyType: HARD

3. In the ComponentConfiguration object, add the default configuration for this component.
You can later modify this configuration when you deploy the component. The following
excerpt shows the component configuration for the DLR image classification component.

For example, if you use a custom model component as a dependency for your custom
inference component, then modify ModelResourceKey to provide the names of the models
that you are using.

JSON

{
 "accessControl": {
 "aws.greengrass.ipc.mqttproxy": {
 "aws.greengrass.ImageClassification:mqttproxy:1": {
 "policyDescription": "Allows access to publish via topic ml/dlr/image-
classification.",
 "operations": [
 "aws.greengrass#PublishToIoTCore"
],
 "resources": [
 "ml/dlr/image-classification"
]
 }
 }
 },
 "PublishResultsOnTopic": "ml/dlr/image-classification",
 "ImageName": "cat.jpeg",
 "InferenceInterval": 3600,
 "ModelResourceKey": {
 "armv7l": "DLR-resnet50-armv7l-cpu-ImageClassification",
 "x86_64": "DLR-resnet50-x86_64-cpu-ImageClassification",

Create a custom inference component 1786

AWS IoT Greengrass Developer Guide, Version 2

 "aarch64": "DLR-resnet50-aarch64-cpu-ImageClassification"
 }
}

YAML

accessControl:
 aws.greengrass.ipc.mqttproxy:
 'aws.greengrass.ImageClassification:mqttproxy:1':
 policyDescription: 'Allows access to publish via topic ml/dlr/image-
classification.'
 operations:
 - 'aws.greengrass#PublishToIoTCore'
 resources:
 - ml/dlr/image-classification
PublishResultsOnTopic: ml/dlr/image-classification
ImageName: cat.jpeg
InferenceInterval: 3600
ModelResourceKey:
 armv7l: "DLR-resnet50-armv7l-cpu-ImageClassification"
 x86_64: "DLR-resnet50-x86_64-cpu-ImageClassification"
 aarch64: "DLR-resnet50-aarch64-cpu-ImageClassification"

4. In the Manifests object, provide information about the artifacts and the configuration of
this component that are used when the component is deployed to different platforms and any
other information required to successfully run the component. The following excerpt shows
the configuration of the Manifests object for Linux platform in the DLR image classification
component.

JSON

{
 "Manifests": [
 {
 "Platform": {
 "os": "linux",
 "architecture": "arm"
 },
 "Name": "32-bit armv7l - Linux (raspberry pi)",
 "Artifacts": [
 {

Create a custom inference component 1787

AWS IoT Greengrass Developer Guide, Version 2

 "URI": "s3://SAMPLE-BUCKET/sample-artifacts-directory/
image_classification.zip",
 "Unarchive": "ZIP"
 }
],
 "Lifecycle": {
 "Setenv": {
 "DLR_IC_MODEL_DIR":
 "{variant.DLR.ImageClassification.ModelStore:artifacts:decompressedPath}/
{configuration:/ModelResourceKey/armv7l}",
 "DEFAULT_DLR_IC_IMAGE_DIR": "{artifacts:decompressedPath}/
image_classification/sample_images/"
 },
 "Run": {
 "RequiresPrivilege": true,
 "script": ". {variant.DLR:configuration:/MLRootPath}/
greengrass_ml_dlr_venv/bin/activate\npython3 {artifacts:decompressedPath}/
image_classification/inference.py"
 }
 }
 }
]
}

YAML

Manifests:
 - Platform:
 os: linux
 architecture: arm
 Name: 32-bit armv7l - Linux (raspberry pi)
 Artifacts:
 - URI: s3://SAMPLE-BUCKET/sample-artifacts-directory/
image_classification.zip
 Unarchive: ZIP
 Lifecycle:
 SetEnv:
 DLR_IC_MODEL_DIR:
 "{variant.DLR.ImageClassification.ModelStore:artifacts:decompressedPath}/
{configuration:/ModelResourceKey/armv7l}"
 DEFAULT_DLR_IC_IMAGE_DIR: "{artifacts:decompressedPath}/
image_classification/sample_images/"
 Run:

Create a custom inference component 1788

AWS IoT Greengrass Developer Guide, Version 2

 RequiresPrivilege: true
 script: |-
 . {variant.DLR:configuration:/MLRootPath}/greengrass_ml_dlr_venv/bin/
activate
 python3 {artifacts:decompressedPath}/image_classification/inference.py

For detailed information about creating component recipes, see AWS IoT Greengrass component
recipe reference.

Create the inference component

Use the AWS IoT Greengrass console or the AWS CLI to create a component using the recipe you
just defined. After you create the component, you can deploy it to perform inference on your
device. For an example of how to deploy an inference component, see Tutorial: Perform sample
image classification inference using TensorFlow Lite.

Create custom inference component (console)

1. Sign in to the AWS IoT Greengrass console.

2. In the navigation menu, choose Components.

3. On the Components page, on the My components tab, choose Create component.

4. On the Create component page, under Component information, select either Enter recipe as
JSON or Enter recipe as YAML as your component source.

5. In the Recipe box, enter the custom recipe that you created.

6. Click Create component.

Create custom inference component (AWS CLI)

Run the following command to create a new custom component using the recipe that you created.

aws greengrassv2 create-component-version \
 --inline-recipe fileb://path/to/recipe/file

Create a custom inference component 1789

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

Note

This step creates the component in the AWS IoT Greengrass service in the AWS Cloud. You
can use the Greengrass CLI to develop, test, and deploy your component locally before you
upload it to the cloud. For more information, see Develop AWS IoT Greengrass components.

Troubleshooting machine learning inference

Use the troubleshooting information and solutions in this section to help resolve issues with your
machine learning components. For the public machine learning inference components, see the
error messages in the following component logs:

Linux or Unix

• /greengrass/v2/logs/aws.greengrass.DLRImageClassification.log

• /greengrass/v2/logs/aws.greengrass.DLRObjectDetection.log

• /greengrass/v2/logs/
aws.greengrass.TensorFlowLiteImageClassification.log

• /greengrass/v2/logs/aws.greengrass.TensorFlowLiteObjectDetection.log

Windows

• C:\greengrass\v2\logs\aws.greengrass.DLRImageClassification.log

• C:\greengrass\v2\logs\aws.greengrass.DLRObjectDetection.log

• C:\greengrass\v2\logs
\aws.greengrass.TensorFlowLiteImageClassification.log

• C:\greengrass\v2\logs\aws.greengrass.TensorFlowLiteObjectDetection.log

If a component is installed correctly, then the component log contains the location of the library
that it uses for inference.

Issues

• Failed to fetch library

• Cannot open shared object file

Troubleshooting 1790

AWS IoT Greengrass Developer Guide, Version 2

• Error: ModuleNotFoundError: No module named '<library>'

• No CUDA-capable device is detected

• No such file or directory

• RuntimeError: module compiled against API version 0xf but this version of NumPy is <version>

• picamera.exc.PiCameraError: Camera is not enabled

• Memory errors

• Disk space errors

• Timeout errors

Failed to fetch library

The following error occurs when the installer script fails to download a required library during
deployment on a Raspberry Pi device.

Err:2 http://raspbian.raspberrypi.org/raspbian buster/main armhf python3.7-dev armhf
 3.7.3-2+deb10u1
404 Not Found [IP: 93.93.128.193 80]
E: Failed to fetch http://raspbian.raspberrypi.org/raspbian/pool/main/p/python3.7/
libpython3.7-dev_3.7.3-2+deb10u1_armhf.deb 404 Not Found [IP: 93.93.128.193 80]

Run sudo apt-get update and deploy your component again.

Cannot open shared object file

You might see errors similar to the following when the installer script fails to download a required
dependency for opencv-python during deployment on a Raspberry Pi device.

ImportError: libopenjp2.so.7: cannot open shared object file: No such file or directory

Run the following command to manually install the dependencies for opencv-python:

sudo apt-get install libopenjp2-7 libilmbase23 libopenexr-dev libavcodec-dev
 libavformat-dev libswscale-dev libv4l-dev libgtk-3-0 libwebp-dev

Failed to fetch library 1791

AWS IoT Greengrass Developer Guide, Version 2

Error: ModuleNotFoundError: No module named '<library>'

You might see this error in the ML runtime component logs (variant.DLR.log or
variant.TensorFlowLite.log) when the ML runtime library or its dependencies aren't
installed correctly. This error can occur in the following cases:

• If you use the UseInstaller option, which is enabled by default, this error indicates that the
ML runtime component failed to install the runtime or its dependencies. Do the following:

1. Configure the ML runtime component to disable the UseInstaller option.

2. Install the ML runtime and its dependencies, and make them available to the system user that
runs the ML components. For more information, see the following:

• DLR runtime UseInstaller option

• TensorFlow Lite runtime UseInstaller option

• If you don't use the UseInstaller option, this error indicates that the ML runtime or its
dependencies aren't installed for the system user that runs the ML components. Do the
following:

1. Check that the library is installed for the system user that runs the ML components. Replace
ggc_user with the name of the system user, and replace tflite_runtime with the name of
the library to check.

Linux or Unix

sudo -H -u ggc_user bash -c "python3 -c 'import tflite_runtime'"

Windows

runas /user:ggc_user "py -3 -c \"import tflite_runtime\""

2. If the library isn't installed, install it for that user. Replace ggc_user with the name of the
system user, and replace tflite_runtime with the name of the library.

Linux or Unix

sudo -H -u ggc_user bash -c "python3 -m pip install --user tflite_runtime"

Windows

runas /user:ggc_user "py -3 -m pip install --user tflite_runtime"

Error: ModuleNotFoundError: No module named '<library>' 1792

AWS IoT Greengrass Developer Guide, Version 2

For more information about the dependencies for each ML runtime, see the following:

• DLR runtime UseInstaller option

• TensorFlow Lite runtime UseInstaller option

3. If the issue persists, install the library for another user to confirm whether this device can
install the library. The user could be, for example, your user, the root user, or an administrator
user. If you can't install the library successfully for any user, your device might not support
the library. Consult the library's documentation to review requirements and troubleshoot
installation issues.

No CUDA-capable device is detected

You might see the following error when you use GPU acceleration. Run the following command to
enable GPU access for the Greengrass user.

sudo usermod -a -G video ggc_user

No such file or directory

The following errors indicate that the runtime component was unable to set up the virtual
environment correctly:

• MLRootPath/greengrass_ml_dlr_conda/bin/conda: No such file or directory

• MLRootPath/greengrass_ml_dlr_venv/bin/activate: No such file or directory

• MLRootPath/greengrass_ml_tflite_conda/bin/conda: No such file or
directory

• MLRootPath/greengrass_ml_tflite_venv/bin/activate: No such file or
directory

Check the logs to make sure that all runtime dependencies were installed correctly. For more
information about the libraries installed by the installer script, see the following topics:

• DLR runtime

• TensorFlow Lite runtime

No CUDA-capable device is detected 1793

AWS IoT Greengrass Developer Guide, Version 2

By default MLRootPath is set to /greengrass/v2/work/component-name/greengrass_ml.
To change this location, include the DLR runtime or TensorFlow Lite runtime runtime component
directly in your deployment, and specify a modified value for the MLRootPath parameter in a
configuration merge update. For more information about configuring component, see Update
component configurations.

Note

For the DLR component v1.3.x, you set the MLRootPath parameter in the configuration of
the inference component, and the default value is $HOME/greengrass_ml.

RuntimeError: module compiled against API version 0xf but this version
of NumPy is <version>

You might see the following errors when you run machine learning inference on a Raspberry Pi
running Raspberry Pi OS Bullseye.

RuntimeError: module compiled against API version 0xf but this version of numpy is 0xd
ImportError: numpy.core.multiarray failed to import

This error occurs because Raspberry Pi OS Bullseye includes an earlier version of NumPy than the
version that OpenCV requires. To fix this issue, run the following command to upgrade NumPy to
the latest version.

pip3 install --upgrade numpy

picamera.exc.PiCameraError: Camera is not enabled

You might see the following error when you run machine learning inference on a Raspberry Pi
running Raspberry Pi OS Bullseye.

picamera.exc.PiCameraError: Camera is not enabled. Try running 'sudo raspi-config' and
 ensure that the camera has been enabled.

This error occurs because Raspberry Pi OS Bullseye includes a new camera stack that isn't
compatible with the ML components. To fix this issue, enable the legacy camera stack.

RuntimeError: module compiled against API version 0xf but this version of NumPy is <version> 1794

AWS IoT Greengrass Developer Guide, Version 2

To enable the legacy camera stack

1. Run the following command to open the Raspberry Pi configuration tool.

sudo raspi-config

2. Select Interface Options.

3. Select Legacy camera to enable the legacy camera stack.

4. Reboot the Raspberry Pi.

Memory errors

The following errors typically occur when the device does not have enough memory and the
component process is interrupted.

• stderr. Killed.

• exitCode=137

We recommend a minimum of 500 MB of memory to deploy a public machine learning inference
component.

Disk space errors

The no space left on device error typically occurs when a device does not have enough
storage. Make sure that there is enough disk space available on your device before you deploy the
component again. We recommend a minimum of 500 MB of free disk space to deploy a public
machine learning inference component.

Timeout errors

The public machine learning components download large machine learning model files that are
larger than 200 MB. If the download times out during deployment, check your internet connection
speed and retry the deployment.

Memory errors 1795

AWS IoT Greengrass Developer Guide, Version 2

Manage Greengrass core devices with AWS Systems
Manager

Note

AWS IoT Greengrass doesn't currently support this feature on Windows core devices.

Systems Manager is an AWS service that you can use to view and control your infrastructure on
AWS, including Amazon EC2 instances, on-premises servers and virtual machines (VMs), and edge
devices. Systems Manager enables you to view operational data, automate operation tasks, and
maintain security and compliance. When you register a machine with Systems Manager, it's called
a managed node. For more information, see What is AWS Systems Manager? in the AWS Systems
Manager User Guide.

The AWS Systems Manager Agent (Systems Manager Agent) is software that you can install on
devices to enable Systems Manager to update, manage, and configure them. To install the Systems
Manager Agent on Greengrass core devices, deploy the Systems Manager Agent component. When
you deploy the Systems Manager Agent for the first time, it registers the core device as a Systems
Manager managed node. The Systems Manager Agent runs on the device to enable communication
with the Systems Manager service in the AWS Cloud. For more information about how to install
and configure the Systems Manager Agent component, see Install the AWS Systems Manager
Agent.

Systems Manager tools and features are called capabilities. Greengrass core devices support all
Systems Manager capabilities. For more information about these capabilities and how to use
Systems Manager to manage core devices, see Systems Manager capabilities in the AWS Systems
Manager User Guide.

AWS Systems Manager offers a standard-instances tier and an advanced-instances tier for Systems
Manager managed nodes. If you're using Systems Manager for the first time, you start on the
standard-instances tier. On the standard-instances tier, you can register up to 1,000 managed
nodes per AWS Region in your AWS account. If you need to register more than 1,000 managed
nodes in a single account and Region, or if you need to use the Session Manager capability, use the
advanced-instances tier. For more information, see Configuring instance tiers in the AWS Systems
Manager User Guide.

1796

https://docs.aws.amazon.com/systems-manager/latest/userguide/what-is-systems-manager.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/features.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-managed-instances-tiers.html

AWS IoT Greengrass Developer Guide, Version 2

Topics

• Install the AWS Systems Manager Agent

• Uninstall the AWS Systems Manager Agent

Install the AWS Systems Manager Agent

The AWS Systems Manager Agent (Systems Manager Agent) is Amazon software that you install
to enable Systems Manager to update, manage, and configure Greengrass core devices, Amazon
EC2 instances, and other resources. The agent processes and runs requests from the Systems
Manager service in the AWS Cloud. Then, the agent sends status and runtime information back to
the Systems Manager service. For more information, see About Systems Manager Agent in the AWS
Systems Manager User Guide.

AWS provides the Systems Manager Agent as a Greengrass component that you can deploy to
your Greengrass core devices to manage them with Systems Manager. The Systems Manager
Agent component installs the Systems Manager Agent software and registers the core device as a
managed node in Systems Manager. Follow the steps on this page to complete prerequisites and
deploy the Systems Manager Agent component to a core device or group of core devices.

Topics

• Step 1: Complete general Systems Manager setup steps

• Step 2: Create an IAM service role for Systems Manager

• Step 3: Add permissions to the token exchange role

• Step 4: Deploy the Systems Manager Agent component

• Step 5: Verify core device registration with Systems Manager

Step 1: Complete general Systems Manager setup steps

If you haven't already done so, complete general setup steps for AWS Systems Manager. For more
information, see Complete general Systems Manager setup steps in the AWS Systems Manager User
Guide.

Step 2: Create an IAM service role for Systems Manager

The Systems Manager Agent uses an AWS Identity and Access Management (IAM) service role to
communicate with AWS Systems Manager. Systems Manager assumes this role to enable Systems

Install the Systems Manager Agent 1797

https://docs.aws.amazon.com/systems-manager/latest/userguide/prereqs-ssm-agent.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-edge-devices-setup-general.html

AWS IoT Greengrass Developer Guide, Version 2

Manager capabilities on each core device. The Systems Manager Agent component also uses
this role to register the core device as a Systems Manager managed node when you deploy the
component. If you haven't already done so, create a Systems Manager service role for the Systems
Manager Agent component to use. For more information, see Create an IAM service role for edge
devices in the AWS Systems Manager User Guide.

Step 3: Add permissions to the token exchange role

Greengrass core devices use an IAM service role, called the token exchange role, to interact with
AWS services. Each core device has a token exchange role that you create when you install the AWS
IoT Greengrass Core software. Many Greengrass components, such as the Systems Manager Agent,
require additional permissions on this role. The Systems Manager agent component requires the
following permissions, which include permission to use the role that you created in Step 2: Create
an IAM service role for Systems Manager.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iam:PassRole"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:iam::account-id:role/SSMServiceRole"
]
 },
 {
 "Action": [
 "ssm:AddTagsToResource",
 "ssm:RegisterManagedInstance"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

If you haven't already done so, add these permissions to the core device's token exchange role to
allow the Systems Manager Agent to operate. You can add a new policy to the token exchange role
to grant this permission.

Step 3: Add permissions to the token exchange role 1798

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-setting-up-edge-devices.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-setting-up-edge-devices.html

AWS IoT Greengrass Developer Guide, Version 2

To add permissions to the token exchange role (console)

1. In the IAM console navigation menu, choose Roles.

2. Choose the IAM role that you set up as a token exchange role when you installed the
AWS IoT Greengrass Core software. If you didn't specify a name for the token exchange
role when you installed the AWS IoT Greengrass Core software, it created a role named
GreengrassV2TokenExchangeRole.

3. Under Permissions, choose Add permissions, and then choose Attach policies.

4. Choose Create policy. The Create policy page opens in a new browser tab.

5. On the Create policy page, do the following:

a. Choose JSON to open the JSON editor.

b. Paste the following policy into the JSON editor. Replace SSMServiceRole with the
name of the service role that you created in Step 2: Create an IAM service role for Systems
Manager.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iam:PassRole"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:iam::account-id:role/SSMServiceRole"
]
 },
 {
 "Action": [
 "ssm:AddTagsToResource",
 "ssm:RegisterManagedInstance"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

c. Choose Next: Tags.

Step 3: Add permissions to the token exchange role 1799

https://console.aws.amazon.com/iam

AWS IoT Greengrass Developer Guide, Version 2

d. Choose Next: Review.

e. Enter a Name for the policy, such as GreengrassSSMAgentComponentPolicy.

f. Choose Create policy.

g. Switch to the previous browser tab where you have the token exchange role open.

6. On the Add permissions page, choose the refresh button, and then select the Greengrass
Systems Manager agent policy that you created in the previous step.

7. Choose Attach policies.

The core devices that use this token exchange role now have permission to interact with the
Systems Manager service.

To add permissions to the token exchange role (AWS CLI)

To add a policy that grants permission to use Systems Manager

1. Create a file called ssm-agent-component-policy.json and copy the following JSON into
the file. Replace SSMServiceRole with the name of the service role that you created in Step
2: Create an IAM service role for Systems Manager.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iam:PassRole"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:iam::account-id:role/SSMServiceRole"
]
 },
 {
 "Action": [
 "ssm:AddTagsToResource",
 "ssm:RegisterManagedInstance"
],
 "Effect": "Allow",
 "Resource": "*"
 }

Step 3: Add permissions to the token exchange role 1800

AWS IoT Greengrass Developer Guide, Version 2

]
}

2. Run the following command to create the policy from the policy document in ssm-agent-
component-policy.json.

Linux or Unix

aws iam create-policy \
 --policy-name GreengrassSSMAgentComponentPolicy \
 --policy-document file://ssm-agent-component-policy.json

Windows Command Prompt (CMD)

aws iam create-policy ^
 --policy-name GreengrassSSMAgentComponentPolicy ^
 --policy-document file://ssm-agent-component-policy.json

PowerShell

aws iam create-policy `
 --policy-name GreengrassSSMAgentComponentPolicy `
 --policy-document file://ssm-agent-component-policy.json

Copy the policy Amazon Resource Name (ARN) from the policy metadata in the output. You
use this ARN to attach this policy to the core device role in the next step.

3. Run the following command to attach the policy to the token exchange role.

• Replace GreengrassV2TokenExchangeRole with the name of the token exchange role
that you specified when you installed the AWS IoT Greengrass Core software. If you didn't
specify a name for the token exchange role when you installed the AWS IoT Greengrass Core
software, it created a role named GreengrassV2TokenExchangeRole.

• Replace the policy ARN with the ARN from the previous step.

Linux or Unix

aws iam attach-role-policy \
 --role-name GreengrassV2TokenExchangeRole \

Step 3: Add permissions to the token exchange role 1801

AWS IoT Greengrass Developer Guide, Version 2

 --policy-arn
 arn:aws:iam::123456789012:policy/GreengrassSSMAgentComponentPolicy

Windows Command Prompt (CMD)

aws iam attach-role-policy ^
 --role-name GreengrassV2TokenExchangeRole ^
 --policy-arn
 arn:aws:iam::123456789012:policy/GreengrassSSMAgentComponentPolicy

PowerShell

aws iam attach-role-policy `
 --role-name GreengrassV2TokenExchangeRole `
 --policy-arn
 arn:aws:iam::123456789012:policy/GreengrassSSMAgentComponentPolicy

If the command has no output, it succeeded. The core devices that use this token exchange
role now have permission to interact with the Systems Manager service.

Step 4: Deploy the Systems Manager Agent component

Complete the following steps to deploy and configure the Systems Manager Agent component.
You can deploy the component to a single core device or to a group of core devices.

To deploy the Systems Manager Agent component (console)

1. In the AWS IoT Greengrass console navigation menu, choose Components.

2. On the Components page, choose the Public components tab, and then choose
aws.greengrass.SystemsManagerAgent.

3. On the aws.greengrass.SystemsManagerAgent page, choose Deploy.

4. From Add to deployment, choose an existing deployment to revise, or choose to create a new
deployment, and then choose Next.

5. If you chose to create a new deployment, choose the target core device or thing group for the
deployment. On the Specify target page, under Deployment target, choose a core device or
thing group, and then choose Next.

Step 4: Deploy the Systems Manager Agent component 1802

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

6. On the Select components page, verify that the aws.greengrass.SystemsManagerAgent
component is selected, choose Next.

7. On the Configure components page, select aws.greengrass.SystemsManagerAgent, and then
do the following:

a. Choose Configure component.

b. In the Configure aws.greengrass.SystemsManagerAgent modal, under Configuration
update, in Configuration to merge, enter the following configuration update. Replace
SSMServiceRole with the name of the service role that you created in Step 2: Create an
IAM service role for Systems Manager.

{
 "SSMRegistrationRole": "SSMServiceRole",
 "SSMOverrideExistingRegistration": false
}

Note

If the core device already runs the Systems Manager Agent registered with a
hybrid activation, change SSMOverrideExistingRegistration to true. This
parameter specifies whether the Systems Manager Agent component registers
the core device when the Systems Manager Agent is already running on the device
with a hybrid activation.
You can also specify tags (SSMResourceTags) to add to the Systems Manager
managed node that the Systems Manager Agent component creates for the
core device. For more information, see Systems Manager Agent component
configuration.

c. Choose Confirm to close the modal, and then choose Next.

8. On the Configure advanced settings page, keep the default configuration settings, and
choose Next.

9. On the Review page, choose Deploy.

The deployment can take up to a minute to complete.

Step 4: Deploy the Systems Manager Agent component 1803

AWS IoT Greengrass Developer Guide, Version 2

To deploy the Systems Manager Agent component (AWS CLI)

To deploy the Systems Manager Agent component, create a deployment document that includes
aws.greengrass.SystemsManagerAgent in the components object, and specify the
configuration update for the component. Follow instructions in Create deployments to create a
new deployment or revise an existing deployment.

The following example partial deployment document specifies to use a service role named
SSMServiceRole. Replace SSMServiceRole with the name of the service role that you created
in Step 2: Create an IAM service role for Systems Manager.

{
 ...,
 "components": {
 ...,
 "aws.greengrass.SystemsManagerAgent": {
 "componentVersion": "1.0.0",
 "configurationUpdate": {
 "merge": "{\"SSMRegistrationRole\":\"SSMServiceRole\",
\"SSMOverrideExistingRegistration\":false}"
 }
 }
 }
}

Note

If the core device already runs the Systems Manager Agent registered with a hybrid
activation, change SSMOverrideExistingRegistration to true. This parameter
specifies whether the Systems Manager Agent component registers the core device when
the Systems Manager Agent is already running on the device with a hybrid activation.
You can also specify tags (SSMResourceTags) to add to the Systems Manager managed
node that the Systems Manager Agent component creates for the core device. For more
information, see Systems Manager Agent component configuration.

The deployment can take several minutes to complete. You can use the AWS IoT Greengrass service
to check the status of the deployment, and you can check the AWS IoT Greengrass Core software
logs and Systems Manager Agent component logs to verify that the Systems Manager Agent runs
successfully. For more information, see the following:

Step 4: Deploy the Systems Manager Agent component 1804

AWS IoT Greengrass Developer Guide, Version 2

• Check deployment status

• Monitor AWS IoT Greengrass logs

• Viewing Systems Manager Agent logs in the AWS Systems Manager User Guide

If the deployment fails or the Systems Manager Agent doesn't run, you can troubleshoot the
deployment on each core device. For more information, see the following:

• Troubleshooting AWS IoT Greengrass V2

• Troubleshooting Systems Manager Agent in the AWS Systems Manager User Guide

Step 5: Verify core device registration with Systems Manager

When the Systems Manager Agent component runs, it registers the core device as a managed node
in Systems Manager. You can use the AWS IoT Greengrass console, Systems Manager console, and
Systems Manager API to verify that a core device is registered as a managed node. Managed nodes
are also called instances in parts of the AWS console and API.

To verify core device registration (AWS IoT Greengrass console)

1. In the AWS IoT Greengrass console navigation menu, choose Core devices.

2. Choose the core device to verify.

3. On the core device's details page, find the AWS Systems Manager instance property. If this
property is present and displays a link to the Systems Manager console, the core device is
registered as a managed node.

You can also find the AWS Systems Manager ping status property to check the status of the
Systems Manager Agent on the core device. When the status is Online, you can manage the
core device with Systems Manager.

To verify core device registration (Systems Manager console)

1. In the Systems Manager console navigation menu, choose Fleet Manager.

2. Under Managed nodes, do the following:

a. Add a filter where Source type is AWS::IoT::Thing.

b. Add a filter where Source ID is the name of the core device to verify.

Step 5: Verify core device registration with Systems Manager 1805

https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-agent-logs.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/troubleshooting-ssm-agent.html
https://console.aws.amazon.com/greengrass
https://console.aws.amazon.com/systems-manager

AWS IoT Greengrass Developer Guide, Version 2

3. Find the core device in the Managed nodes table. If the core device is in the table, it's
registered as a managed node.

You can also find the Systems Manager Agent ping status property to check the status of the
Systems Manager Agent on the core device. When the status is Online, you can manage the
core device with Systems Manager.

To verify core device registration (AWS CLI)

• Use the DescribeInstanceInformation operation to get the list of managed nodes that match a
filter that you specify. Run the following command to verify whether a core device is registered
as a managed node. Replace MyGreengrassCore with the name of the core device to verify.

aws ssm describe-instance-information --filter
 Key=SourceIds,Values=MyGreengrassCore Key=SourceTypes,Values=AWS::IoT::Thing

The response contains the list of managed nodes that match the filter. If the list contains
a managed node, the core device is registered as a managed node. You can also find other
information about the core device's managed node in the response. If the PingStatus
property is Online, you can manage the core device with Systems Manager.

After you verify that a core device is registered as a managed node in Systems Manager, you can
use the Systems Manager console and API to manage that core device. For more information about
the Systems Manager capabilities that you can use to manage Greengrass core devices, see Systems
Manager capabilities in the AWS Systems Manager User Guide.

Uninstall the AWS Systems Manager Agent

If you no longer want to manage a Greengrass core device with AWS Systems Manager, you can
deregister the core device from Systems Manager and uninstall the AWS Systems Manager Agent
(Systems Manager Agent) from the device.

You can reregister a core device again at any time. To do so, deploy the Systems Manager Agent
component again, which registers the core device with Systems Manager when it installs. Systems
Manager stores the command history for a deregistered core device for 30 days.

Topics

Uninstall the Systems Manager Agent 1806

https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_DescribeInstanceInformation.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/features.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/features.html

AWS IoT Greengrass Developer Guide, Version 2

• Step 1: Deregister the core device from Systems Manager

• Step 2: Uninstall the Systems Manager Agent component

• Step 3: Uninstall the Systems Manager Agent software

Step 1: Deregister the core device from Systems Manager

You can use the Systems Manager console or API to deregister the core device. For more
information, see Deregistering managed nodes in the AWS Systems Manager User Guide.

Step 2: Uninstall the Systems Manager Agent component

After you deregister the core device, uninstall the Systems Manager Agent component from
the device. To remove a component from a Greengrass core device, revise the deployment
that installed the component, and remove the component from the deployment. The AWS IoT
Greengrass Core software uninstalls a component when none of a core device's deployments
specify that component. For more information, see Deploy AWS IoT Greengrass components to
devices.

To uninstall the Systems Manager Agent component (console)

1. In the AWS IoT Greengrass console navigation menu, choose Core devices.

2. Choose the core device where you want to uninstall the Systems Manager Agent component.

3. On the core device details page, choose the Deployments tab.

4. Choose the deployment that deploys the Systems Manager Agent component to the core
device.

5. On the deployment details page, choose Revise.

6. In the Revise deployment modal, choose Revise deployment.

7. In Step 1: Specify target, choose Next.

8. In Step 2: Select components, clear the selection for the
aws.greengrass.SystemsManagerAgent component, and then choose Next.

9. In Step 3: Configure components, choose Next.

10. In Step 4: Configure advanced settings, choose Next.

11. In Step 5: Review, choose Deploy.

Step 1: Deregister the core device from Systems Manager 1807

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-managed-instances-advanced-deregister.html
https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

To uninstall the Systems Manager Agent component (CLI)

To uninstall the Systems Manager Agent component, revise the deployment that deploys it, and
remove it from the deployment. For more information, see Revise deployments.

The deployment can take several minutes to complete. You can use the AWS IoT Greengrass service
to check the status of the deployment. For more information, see Check deployment status.

Step 3: Uninstall the Systems Manager Agent software

The Systems Manager Agent software continues to run on the core device after you remove the
Systems Manager Agent component. To remove the Systems Manager Agent software, you can run
commands on the core device. For more information, see Uninstall Systems Manager Agent from
Linux instances in the AWS Systems Manager User Guide.

Step 3: Uninstall the Systems Manager Agent software 1808

https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-uninstall-agent.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-uninstall-agent.html

AWS IoT Greengrass Developer Guide, Version 2

Security in AWS IoT Greengrass

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely.
Third-party auditors regularly test and verify the effectiveness of our security as part of the
AWS Compliance Programs. To learn about the compliance programs that apply to AWS IoT
Greengrass, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors, including the sensitivity of your data, your company's
requirements, and applicable laws and regulations.

When you use AWS IoT Greengrass, you are also responsible for securing your devices, local
network connection, and private keys.

This documentation helps you understand how to apply the shared responsibility model when
using AWS IoT Greengrass. The following topics show you how to configure AWS IoT Greengrass to
meet your security and compliance objectives. You also learn how to use other AWS services that
help you to monitor and secure your AWS IoT Greengrass resources.

Topics

• Data protection in AWS IoT Greengrass

• Device authentication and authorization for AWS IoT Greengrass

• Identity and access management for AWS IoT Greengrass

• Allow device traffic through a proxy or firewall

• Compliance validation for AWS IoT Greengrass

• FIPS endpoints

• Resilience in AWS IoT Greengrass

• Infrastructure security in AWS IoT Greengrass

1809

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AWS IoT Greengrass Developer Guide, Version 2

• Configuration and vulnerability analysis in AWS IoT Greengrass

• Code integrity in AWS IoT Greengrass V2

• AWS IoT Greengrass and interface VPC endpoints (AWS PrivateLink)

• Security best practices for AWS IoT Greengrass

Data protection in AWS IoT Greengrass

The AWS shared responsibility model applies to data protection in AWS IoT Greengrass. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail. For information about using CloudTrail
trails to capture AWS activities, see Working with CloudTrail trails in the AWS CloudTrail User
Guide.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with AWS IoT Greengrass or other AWS services using the console, API, AWS CLI, or

Data protection 1810

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://aws.amazon.com/compliance/fips/

AWS IoT Greengrass Developer Guide, Version 2

AWS SDKs. Any data that you enter into tags or free-form text fields used for names may be used
for billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend
that you do not include credentials information in the URL to validate your request to that server.

For more information about protecting sensitive information in AWS IoT Greengrass, see the
section called “Don't log sensitive information”.

For more information about data protection, see the AWS Shared Responsibility Model and GDPR
blog post on the AWS Security Blog.

Topics

• Data encryption

• Hardware security integration

Data encryption

AWS IoT Greengrass uses encryption to protect data while in-transit (over the internet or local
network) and at rest (stored in the AWS Cloud).

Devices in a AWS IoT Greengrass environment often collect data that's sent to AWS services for
further processing. For more information about data encryption on other AWS services, see the
security documentation for that service.

Topics

• Encryption in transit

• Encryption at rest

• Key management for the Greengrass core device

Encryption in transit

AWS IoT Greengrass has two modes of communication where data is in transit:

• the section called “Data in transit over the internet”. Communication between a Greengrass core
and AWS IoT Greengrass over the internet is encrypted.

• the section called “Data on the core device”. Communication between components on the
Greengrass core device is not encrypted.

Data encryption 1811

https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

AWS IoT Greengrass Developer Guide, Version 2

Data in transit over the internet

AWS IoT Greengrass uses Transport Layer Security (TLS) to encrypt all communication over the
internet. All data sent to the AWS Cloud is sent over a TLS connection using MQTT or HTTPS
protocols, so it is secure by default. AWS IoT Greengrass uses the AWS IoT transport security model.
For more information, see Transport security in the AWS IoT Core Developer Guide.

Data on the core device

AWS IoT Greengrass doesn't encrypt data exchanged locally on the Greengrass core device because
the data doesn't leave the device. This includes communication between user-defined components,
the AWS IoT device SDK, and public components, such as stream manager.

Encryption at rest

AWS IoT Greengrass stores your data:

• the section called “Data at rest in the AWS Cloud”. This data is encrypted.

• the section called “Data at rest on the Greengrass core”. This data is not encrypted (except local
copies of your secrets).

Data at rest in the AWS Cloud

AWS IoT Greengrass encrypts customer data stored in the AWS Cloud. This data is protected using
AWS KMS keys that are managed by AWS IoT Greengrass.

Data at rest on the Greengrass core

AWS IoT Greengrass relies on Unix file permissions and full-disk encryption (if enabled) to protect
data at rest on the core. It is your responsibility to secure the file system and device.

However, AWS IoT Greengrass does encrypt local copies of your secrets retrieved from AWS Secrets
Manager. For more information, see the secret manager component.

Key management for the Greengrass core device

It's the responsibility of the customer to guarantee secure storage of cryptographic (public and
private) keys on the Greengrass core device. AWS IoT Greengrass uses public and private keys for
the following scenario:

Data encryption 1812

https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html

AWS IoT Greengrass Developer Guide, Version 2

• The IoT client key is used with the IoT certificate to authenticate the Transport Layer Security
(TLS) handshake when a Greengrass core connects to AWS IoT Core. For more information, see
the section called “Device authentication and authorization”.

Note

The key and certificate are also referred to as the core private key and the core device
certificate.

A Greengrass core device supports private key storage using file system permissions or a hardware
security module. If you use file system-based private keys, you are responsible for their secure
storage on the core device.

Hardware security integration

Note

This feature is available for v2.5.3 and later of the Greengrass nucleus component. AWS IoT
Greengrass doesn't currently support this feature on Windows core devices.

You can configure the AWS IoT Greengrass Core software to use a hardware security module (HSM)
through the PKCS#11 interface. This feature enables you to securely store the device's private key
and certificate so that they aren't exposed or duplicated in software. You can store the private key
and certificate on a hardware module such as an HSM or a Trusted Platform Module (TPM).

The AWS IoT Greengrass Core software uses a private key and X.509 certificate to authenticate
connections to the AWS IoT and AWS IoT Greengrass services. The secret manager component uses
this private key to securely encrypt and decrypt the secrets that you deploy to a Greengrass core
device. When you configure a core device to use an HSM, these components use the private key and
certificate that you store in the HSM.

The Moquette MQTT broker component also stores a private key for its local MQTT server
certificate. This component store the private key on the device's file system in the component's
work folder. Currently, AWS IoT Greengrass doesn't support storing this private key or certificate in
an HSM.

Hardware security integration 1813

https://en.wikipedia.org/wiki/PKCS_11

AWS IoT Greengrass Developer Guide, Version 2

Tip

Search for devices that support this feature in the AWS Partner Device Catalog.

Topics

• Requirements

• Hardware security best practices

• Install the AWS IoT Greengrass Core software with hardware security

• Configure hardware security on an existing core device

• Use hardware without PKCS#11 support

• See also

Requirements

You must meet the following requirements to use an HSM on a Greengrass core device:

• Greengrass nucleus v2.5.3 or later installed on the core device. You can choose a compatible
version when you install the AWS IoT Greengrass Core software on a core device.

• The PKCS#11 provider component installed on the core device. You can download and install this
component when you install the AWS IoT Greengrass Core software on a core device.

• A hardware security module that supports the PKCS#1 v1.5 signature scheme and RSA keys with
an RSA-2048 key size (or larger) or ECC keys.

Note

To use a hardware security module with ECC keys, you must use Greengrass nucleus
v2.5.6 or later.
To use a hardware security module and secret manager, you must use a hardware
security module with RSA keys.

• A PKCS#11 provider library that the AWS IoT Greengrass Core software can load at runtime
(using libdl) to invoke PKCS#11 functions. The PKCS#11 provider library must implement the
following PKCS#11 API operations:

• C_Initialize

Hardware security integration 1814

https://devices.amazonaws.com/search?kw=%22HSI%22&page=1
https://tools.ietf.org/html/rfc2313

AWS IoT Greengrass Developer Guide, Version 2

• C_Finalize

• C_GetSlotList

• C_GetSlotInfo

• C_GetTokenInfo

• C_OpenSession

• C_GetSessionInfo

• C_CloseSession

• C_Login

• C_Logout

• C_GetAttributeValue

• C_FindObjectsInit

• C_FindObjects

• C_FindObjectsFinal

• C_DecryptInit

• C_Decrypt

• C_DecryptUpdate

• C_DecryptFinal

• C_SignInit

• C_Sign

• C_SignUpdate

• C_SignFinal

• C_GetMechanismList

• C_GetMechanismInfo

• C_GetInfo

• C_GetFunctionList

• The hardware module must be resolvable by slot label, as defined in the PKCS#11 specification.

• You must store the private key and certificate in the HSM in the same slot, and they must use the
same object label and object ID, if the HSM supports object IDs.

• The certificate and private key must be resolvable by object labels.

• The private key must have the following permissions:
Hardware security integration 1815

AWS IoT Greengrass Developer Guide, Version 2

• sign

• decrypt

• (Optional) To use the secret manager component, you must use version 2.1.0 or later, and the
private key must have the following permissions:

• unwrap

• wrap

Hardware security best practices

Consider the following best practices when you configure hardware security on Greengrass core
devices.

• Generate private keys directly on the HSM by using the internal hardware random-number
generator. This approach is more secure than importing a private key that you generate
elsewhere, because the private key remains within the HSM.

• Configure private keys to be immutable and prohibit export.

• Use the provisioning tool that the HSM hardware vendor recommends to generate a certifacte
signing request (CSR) using the hardware-protected private key, and then use the AWS IoT
console or API to generate a client certificate.

Note

The security best practice to rotate keys doesn't apply when you generate private keys on
an HSM.

Install the AWS IoT Greengrass Core software with hardware security

When you install the AWS IoT Greengrass Core software, you can configure it to use a private key
that you generate in an HSM. This approach follows the security best practice to generate the
private key in the HSM, so the private key remains within the HSM.

To install the AWS IoT Greengrass Core software with hardware security, you do the following:

1. Generate a private key in the HSM.

2. Create a certificate signing request (CSR) from the private key.

Hardware security integration 1816

AWS IoT Greengrass Developer Guide, Version 2

3. Create a certificate from the CSR. You can create a certificate signed by AWS IoT or by another
root certificate authority (CA). For more information about how to use another root CA, see
Create your own client certificates in the AWS IoT Core Developer Guide.

4. Download the AWS IoT certificate and import it into the HSM.

5. Install the AWS IoT Greengrass Core software from a configuration file that specifies to use the
PKCS#11 provider component and the private key and certificate in the HSM.

You can choose one of the following installation options to install the AWS IoT Greengrass Core
software with hardware security:

• Manual installation

Choose this option to manually create the required AWS resources and configure hardware
security. For more information, see Install AWS IoT Greengrass Core software with manual
resource provisioning.

• Installation with custom provisioning

Choose this option to develop a custom Java application that automatically creates the required
AWS resources and configures hardware security. For more information, see Install AWS IoT
Greengrass Core software with custom resource provisioning.

Currently, AWS IoT Greengrass doesn't support installing the AWS IoT Greengrass Core software
with hardware security when you install with automatic resource provisioning or AWS IoT fleet
provisioning.

Configure hardware security on an existing core device

You can import a core device's private key and certificate to an HSM to configure hardware security.

Considerations

• You must have root access to the core device's file system.

• In this procedure, you shut down the AWS IoT Greengrass Core software, so the core
device is offline and unavailable while you configure hardware security.

To configure hardware security on an existing core device, you do the following:

Hardware security integration 1817

https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html

AWS IoT Greengrass Developer Guide, Version 2

1. Initialize the HSM.

2. Deploy the PKCS#11 provider component to the core device.

3. Stop the AWS IoT Greengrass Core software.

4. Import the core device's private key and certificate to the HSM.

5. Update the AWS IoT Greengrass Core software's configuration file to use the private key and
certificate in the HSM.

6. Start the AWS IoT Greengrass Core software.

Step 1: Initialize the hardware security module

Complete the following step to initialize the HSM on your core device.

To initialize the hardware security module

• Initialize an PKCS#11 token in the HSM, and save the slot ID and user PIN that for the token.
Check the documentation for your HSM to learn how to initialize a token. You use the slot ID
and user PIN later when you deploy and configure the PKCS#11 provider component.

Step 2: Deploy the PKCS#11 provider component

Complete the following steps to deploy and configure the PKCS#11 provider component. You can
deploy the component to one or more core devices.

To deploy the PKCS#11 provider component (console)

1. In the AWS IoT Greengrass console navigation menu, choose Components.

2. On the Components page, choose the Public components tab, and then choose
aws.greengrass.crypto.Pkcs11Provider.

3. On the aws.greengrass.crypto.Pkcs11Provider page, choose Deploy.

4. From Add to deployment, choose an existing deployment to revise, or choose to create a new
deployment, and then choose Next.

5. If you chose to create a new deployment, choose the target core device or thing group for the
deployment. On the Specify target page, under Deployment target, choose a core device or
thing group, and then choose Next.

6. On the Select components page, under Public components, select
aws.greengrass.crypto.Pkcs11Provider, and then choose Next.

Hardware security integration 1818

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

7. On the Configure components page, select aws.greengrass.crypto.Pkcs11Provider, and then
do the following:

a. Choose Configure component.

b. In the Configure aws.greengrass.crypto.Pkcs11Provider modal, under Configuration
update, in Configuration to merge, enter the following configuration update. Update
the following configuration parameters with values for the target core devices. Specify
the slot ID and user PIN where you initialized the PKCS#11 token earlier. You import the
private key and certificate into this slot in the HSM later.

name

A name for the PKCS#11 configuration.

library

The absolute file path to the PKCS#11 implementation's library that the AWS IoT
Greengrass Core software can load with libdl.

slot

The ID of the slot that contains the private key and device certificate. This value is
different than the slot index or slot label.

userPin

The user PIN to use to access the slot.

{
 "name": "softhsm_pkcs11",
 "library": "/usr/lib/softhsm/libsofthsm2.so",
 "slot": 1,
 "userPin": "1234"
}

c. Choose Confirm to close the modal, and then choose Next.

8. On the Configure advanced settings page, keep the default configuration settings, and
choose Next.

9. On the Review page, choose Deploy.

The deployment can take up to a minute to complete.
Hardware security integration 1819

AWS IoT Greengrass Developer Guide, Version 2

To deploy the PKCS#11 provider component (AWS CLI)

To deploy the PKCS#11 provider component, create a deployment document that includes
aws.greengrass.crypto.Pkcs11Provider in the components object, and specify the
configuration update for the component. Follow instructions in Create deployments to create a
new deployment or revise an existing deployment.

The following example partial deployment document specifies to deploy and configure the
PKCS#11 provider component. Update the following configuration parameters with values for the
target core devices. Save the slot ID and user PIN to use later when you import the private key and
certificate into the HSM.

name

A name for the PKCS#11 configuration.

library

The absolute file path to the PKCS#11 implementation's library that the AWS IoT Greengrass
Core software can load with libdl.

slot

The ID of the slot that contains the private key and device certificate. This value is different than
the slot index or slot label.

userPin

The user PIN to use to access the slot.

{
 "name": "softhsm_pkcs11",
 "library": "/usr/lib/softhsm/libsofthsm2.so",
 "slot": 1,
 "userPin": "1234"
}

{
 ...,
 "components": {
 ...,
 "aws.greengrass.crypto.Pkcs11Provider": {

Hardware security integration 1820

AWS IoT Greengrass Developer Guide, Version 2

 "componentVersion": "2.0.0",
 "configurationUpdate": {
 "merge": "{\"name\":\"softhsm_pkcs11\",\"library\":\"/usr/lib/softhsm/
libsofthsm2.so\",\"slot\":1,\"userPin\":\"1234\"}"
 }
 }
 }
}

The deployment can take several minutes to complete. You can use the AWS IoT Greengrass service
to check the status of the deployment. You can check the AWS IoT Greengrass Core software logs
to verify that the PKCS#11 provider component deploys successfully. For more information, see the
following:

• Check deployment status

• Monitor AWS IoT Greengrass logs

If the deployment fails, you can troubleshoot the deployment on each core device. For more
information, see Troubleshooting AWS IoT Greengrass V2.

Step 3: Update the configuration on the core device

The AWS IoT Greengrass Core software uses a configuration file that specifies how the device
operates. This configuration file includes where to find the private key and certificate that the
device uses to connect to the AWS Cloud. Complete the following steps to import the core device's
private key and certificate into the HSM and update the configuration file to use the HSM.

To update the configuration on the core device to use hardware security

1. Stop the AWS IoT Greengrass Core software. If you configured the AWS IoT Greengrass Core
software as a system service with systemd, you can run the following command to stop the
software.

sudo systemctl stop greengrass.service

2. Find the core device's private key and certificate files.

• If you installed the AWS IoT Greengrass Core software with automatic provisioning or fleet
provisioning, the private key exists at /greengrass/v2/privKey.key, and the certificate
exists at /greengrass/v2/thingCert.crt.

Hardware security integration 1821

AWS IoT Greengrass Developer Guide, Version 2

• If you installed the AWS IoT Greengrass Core software with manual provisioning, the private
key exists at /greengrass/v2/private.pem.key by default, and the certificate exists at
/greengrass/v2/device.pem.crt by default.

You can also check the system.privateKeyPath and system.certificateFilePath
properties in /greengrass/v2/config/effectiveConfig.yaml to find the location of
these files.

3. Import the private key and certificate into the HSM. Check the documentation for your HSM to
learn how to import private keys and certificates into it. Import the private key and certificate
using the slot ID and user PIN where you initialized the PKCS#11 token earlier. You must use
the same object label and object ID for the private key and the certificate. Save the object
label that you specify when you import each file. You use this label later when you update the
AWS IoT Greengrass Core software configuration to use the private key and certificate in the
HSM.

4. Update the AWS IoT Greengrass Core configuration to use the private key and certificate in the
HSM. To update the configuration, you modify the AWS IoT Greengrass Core configuration file
and run the AWS IoT Greengrass Core software with the updated configuration file to apply
the new configuration.

Do the following:

a. Create a back up of the AWS IoT Greengrass Core configuration file. You can use this back
up to restore the core device if you run into issues when you configure hardware security.

sudo cp /greengrass/v2/config/effectiveConfig.yaml ~/ggc-config-backup.yaml

b. Open the AWS IoT Greengrass Core configuration file in a text editor. For example, you can
run the following command to use GNU nano to edit the file. Replace /greengrass/v2
with the path to the Greengrass root folder.

sudo nano /greengrass/v2/config/effectiveConfig.yaml

c. Replace the value of the system.privateKeyPath with the PKCS#11 URI for the private
key in the HSM. Replace iotdevicekey with the object label where you imported the
private key and certificate earlier.

pkcs11:object=iotdevicekey;type=private

Hardware security integration 1822

AWS IoT Greengrass Developer Guide, Version 2

d. Replace the value of the system.certificateFilePath with the PKCS#11 URI for the
certificate in the HSM. Replace iotdevicekey with the object label where you imported
the private key and certificate earlier.

pkcs11:object=iotdevicekey;type=cert

After you finish these steps, the system property in the AWS IoT Greengrass Core
configuration file should look similar to the following example.

system:
 certificateFilePath: "pkcs11:object=iotdevicekey;type=cert"
 privateKeyPath: "pkcs11:object=iotdevicekey;type=private"
 rootCaPath: "/greengrass/v2/rootCA.pem"
 rootpath: "/greengrass/v2"
 thingName: "MyGreengrassCore"

5. Apply the configuration in the updated effectiveConfig.yaml file. Run Greengrass.jar
with the --init-config parameter to apply the configuration in effectiveConfig.yaml.
Replace /greengrass/v2 with the path to the Greengrass root folder.

sudo java -Droot="/greengrass/v2" \
 -jar /greengrass/v2/alts/current/distro/lib/Greengrass.jar \
 --start false \
 --init-config /greengrass/v2/config/effectiveConfig.yaml

6. Start the AWS IoT Greengrass Core software. If you configured the AWS IoT Greengrass Core
software as a system service with systemd, you can run the following command to start the
software.

sudo systemctl start greengrass.service

For more information, see Run the AWS IoT Greengrass Core software.

7. Check the AWS IoT Greengrass Core software logs to verify that the software starts and
connects to the AWS Cloud. The AWS IoT Greengrass Core software uses the private key and
certificate to connect to the AWS IoT and AWS IoT Greengrass services.

sudo tail -f /greengrass/v2/logs/greengrass.log

Hardware security integration 1823

AWS IoT Greengrass Developer Guide, Version 2

The following INFO-level log messages indicate that the AWS IoT Greengrass Core software
successfully connects to the AWS IoT and AWS IoT Greengrass services.

2021-12-06T22:47:53.702Z [INFO] (Thread-3)
 com.aws.greengrass.mqttclient.AwsIotMqttClient: Successfully connected to AWS IoT
 Core. {clientId=MyGreengrassCore5, sessionPresent=false}

8. (Optional) After you verify that the AWS IoT Greengrass Core software works with the private
key and certificate in the HSM, delete the private key and certificate files from the device's file
system. Run the following command, and replace the file paths with the paths to the private
key and certificate files.

sudo rm /greengrass/v2/privKey.key
sudo rm /greengrass/v2/thingCert.crt

Use hardware without PKCS#11 support

The PKCS#11 library is typically provided by the hardware vendor or is open source. For example,
with standards-compliant hardware (such as TPM1.2), it might be possible to use existing open
source software. However, if your hardware doesn't have a corresponding PKCS#11 library
implementation, or if you want to write a custom PKCS#11 provider, contact your Amazon Web
Services Enterprise Support representative with integration-related questions.

See also

• PKCS #11 Cryptographic Token Interface Usage Guide Version 2.4.0

• RFC 7512

• PKCS #1: RSA Encryption Version 1.5

Device authentication and authorization for AWS IoT
Greengrass

Devices in AWS IoT Greengrass environments use X.509 certificates for authentication and AWS
IoT policies for authorization. Certificates and policies allow devices to securely connect with each
other, AWS IoT Core, and AWS IoT Greengrass.

Device authentication and authorization 1824

http://docs.oasis-open.org/pkcs11/pkcs11-ug/v2.40/pkcs11-ug-v2.40.html
https://tools.ietf.org/html/rfc7512
https://tools.ietf.org/html/rfc2313

AWS IoT Greengrass Developer Guide, Version 2

X.509 certificates are digital certificates that use the X.509 public key infrastructure standard to
associate a public key with the identity contained in a certificate. X.509 certificates are issued by a
trusted entity called a certificate authority (CA). The CA maintains one or more special certificates
called CA certificates that it uses to issue X.509 certificates. Only the certificate authority has
access to CA certificates.

AWS IoT policies define the set of operations allowed for AWS IoT devices. Specifically, they
allow and deny access to AWS IoT Core and AWS IoT Greengrass data plane operations, such as
publishing MQTT messages and retrieving device shadows.

All devices require an entry in the AWS IoT Core registry and an activated X.509 certificate with an
attached AWS IoT policy. Devices fall into two categories:

• Greengrass core devices

Greengrass core devices use certificates and AWS IoT policies to connect to AWS IoT Core and
AWS IoT Greengrass. The certificates and policies also allow AWS IoT Greengrass to deploy
components and configurations to core devices.

• Client devices

MQTT client devices use certificates and policies to connect to AWS IoT Core and the AWS IoT
Greengrass service. This enables client devices to use the AWS IoT Greengrass cloud discovery to
find and connect to a Greengrass core device. A client device uses the same certificate to connect
to the AWS IoT Core cloud service and core devices. Client devices also use discovery information
for mutual authentication with the core device. For more information, see Interact with local IoT
devices.

X.509 certificates

Communication between core devices and client devices and between devices and AWS IoT Core
or AWS IoT Greengrass must be authenticated. This mutual authentication is based on registered
X.509 device certificates and cryptographic keys.

In an AWS IoT Greengrass environment, devices use certificates with public and private keys for the
following Transport Layer Security (TLS) connections:

• The AWS IoT client component on the Greengrass core device that connects to AWS IoT Core and
AWS IoT Greengrass over the internet.

• Client devices that connect to AWS IoT Greengrass over the internet to discover core devices.

X.509 certificates 1825

AWS IoT Greengrass Developer Guide, Version 2

• The MQTT broker component on the Greengrass core connecting to Greengrass devices in the
group over the local network.

AWS IoT Greengrass core devices store certificates in the Greengrass root folder.

Certificate authority (CA) certificates

Greengrass core devices and client devices download a root CA certificate used for authentication
with the AWS IoT Core and AWS IoT Greengrass services. We recommend that you use an Amazon
Trust Services (ATS) root CA certificate, such as Amazon Root CA 1. For more information, see CA
certificates for server authentication in the AWS IoT Core Developer Guide.

Client devices also download a Greengrass core device CA certificate. They use this certificate to
validate the MQTT server certificate on the core device during mutual authentication.

Certificate rotation on the local MQTT broker

When you enable client device support, Greengrass core devices generate a local MQTT server
certificate that client devices use for mutual authentication. This certificate is signed by the core
device CA certificate, which the core device stores in the AWS IoT Greengrass cloud. Client devices
retrieve the core device CA certificate when they discover the core device. They use the core device
CA certificate to verify the core device's MQTT server certificate when they connect to the core
device. The core device CA certificate expires after 5 years.

The MQTT server certificate expires every 7 days by default, and you can configure this duration
to between 2 and 10 days. This limited period is based on security best practices. This rotation
helps mitigate the threat of an attacker stealing the MQTT server certificate and private key to
impersonate the Greengrass core device.

The Greengrass core device rotates the MQTT server certificate 24 hours before it expires. The
Greengrass core device generates a new certificate and restarts the local MQTT broker. When this
happens, all client devices connected to the Greengrass core device are disconnected. Client devices
can reconnect to the Greengrass core device after a short period of time.

AWS IoT policies for data plane operations

Use AWS IoT policies to authorize access to the AWS IoT Core and AWS IoT Greengrass data planes.
The AWS IoT Core data plane provides operations for devices, users, and applications. These

AWS IoT policies 1826

https://www.amazontrust.com/repository/AmazonRootCA1.pem
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html#server-authentication-certs
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html#server-authentication-certs

AWS IoT Greengrass Developer Guide, Version 2

operations include the ability to connect to AWS IoT Core and subscribe to topics. The AWS IoT
Greengrass data plane provides operations for Greengrass devices. For more information, see
AWS IoT Greengrass V2 policy actions. These operations include the ability to resolve component
dependencies and download public component artifacts.

An AWS IoT policy is a JSON document that's similar to an IAM policy. It contains one or more
policy statements that specify the following properties:

• Effect. The access mode, which can be Allow or Deny.

• Action. The list of actions that are allowed or denied by the policy.

• Resource. The list of resources on which the action is allowed or denied.

AWS IoT policies support * as a wildcard character, and treat MQTT wildcard characters (+ and #) as
literal strings. For more information about the * wildcard, see Using wildcard in resource ARNs in
the AWS Identity and Access Management User Guide.

For more information, see AWS IoT policies and AWS IoT policy actions in the AWS IoT Core
Developer Guide.

Important

Thing policy variables (iot:Connection.Thing.*) aren't supported for in AWS
IoT policies for core devices or Greengrass data plane operations. Instead, you can
use a wildcard that matches multiple devices that have similar names. For example,
you can specify MyGreengrassDevice* to match MyGreengrassDevice1,
MyGreengrassDevice2, and so on.

Note

AWS IoT Core enables you to attach AWS IoT policies to thing groups to define permissions
for groups of devices. Thing group policies don't allow access to AWS IoT Greengrass data
plane operations. To allow a thing access to an AWS IoT Greengrass data plane operation,
add the permission to an AWS IoT policy that you attach to the thing's certificate.

AWS IoT policies 1827

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_grammar.html#policies-grammar-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_resource.html#reference_policies_elements_resource_wildcards
https://docs.aws.amazon.com/iot/latest/developerguide/iot-policies.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-policy-actions.html
https://docs.aws.amazon.com/iot/latest/developerguide/thing-policy-variables.html

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass V2 policy actions

AWS IoT Greengrass V2 defines the following policy actions that Greengrass core devices and client
devices can use in AWS IoT policies. To specify a resource for an policy action, you use the Amazon
Resource Name (ARN) of the resource.

Core device actions

greengrass:GetComponentVersionArtifact

Grants permission to get a presigned URL to download a public component artifact or a
Lambda component artifact.

This permission is evaluated when a core device receives a deployment that specifies a public
component or a Lambda that has artifacts. If the core device already has the artifact, it doesn't
download the artifact again.

Resource type: componentVersion

Resource ARN format: arn:aws:greengrass:region:account-
id:components:component-name:versions:component-version

greengrass:ResolveComponentCandidates

Grants permission to identify a list of components that meet the component, version, and
platform requirements for a deployment. If the requirements conflict, or no components exist
that meet the requirements, this operation returns an error and the deployment fails on the
device.

This permission is evaluated when a core device receives a deployment that specifies
components.

Resource type: None

Resource ARN format: *

greengrass:GetDeploymentConfiguration

Grants permission to get a presigned URL to download a large deployment document.

This permission is evaluated when a core device receives a deployment that specifies a
deployment document larger than 7 KB (if the deployment targets a thing) or 31 KB (if
the deployment targets a thing group). The deployment document includes component

AWS IoT policies 1828

AWS IoT Greengrass Developer Guide, Version 2

configurations, deployment policies, and deployment metadata. For more information, see
Deploy AWS IoT Greengrass components to devices.

This feature is available for v2.3.0 and later of the Greengrass nucleus component.

Resource type: None

Resource ARN format: *

greengrass:ListThingGroupsForCoreDevice

Grants permission to get a core device's thing group hierarchy.

This permission is checked when a core device receives a deployment from AWS IoT Greengrass.
The core device uses this action to identify whether it was removed from a thing group since
the last deployment. If the core device was removed from a thing group, and that thing group
is the target of a deployment to the core device, then the core device removes the components
installed by that deployment.

This feature is used by v2.5.0 and later of the Greengrass nucleus component.

Resource type: thing (core device)

Resource ARN format: arn:aws:iot:region:account-id:thing/core-device-thing-
name

greengrass:VerifyClientDeviceIdentity

Grants permission to verify the identity of a client device that connects to a core device.

This permission is evaluated when a core device runs the client device auth component and
receives an MQTT connection from a client device. The client device presents its AWS IoT device
certificate. Then, the core device sends the device certificate to the AWS IoT Greengrass cloud
service to verify the client device's identity. For more information, see Interact with local IoT
devices.

Resource type: None

Resource ARN format: *

greengrass:VerifyClientDeviceIoTCertificateAssociation

Grants permission to verify whether a client device is associated with an AWS IoT certificate.

AWS IoT policies 1829

AWS IoT Greengrass Developer Guide, Version 2

This permission is evaluated when a core device runs the client device auth component and
authorizes a client device to connect over MQTT. For more information, see Interact with local
IoT devices.

Note

For a core device to use this operation, the Greengrass service role must be associated
to your AWS account and allow the iot:DescribeCertificate permission.

Resource type: thing (client device)

Resource ARN format: arn:aws:iot:region:account-id:thing/client-device-
thing-name

greengrass:PutCertificateAuthorities

Grants permission to upload certificate authority (CA) certificates that client devices can
download to verify the core device.

This permission is evaluated when a core device installs and runs the client device auth
component. This component creates a local certificate authority and uses this operation to
upload its CA certificates. Client devices download these CA certificates when they use the
Discover operation to find core devices where they can connect. When client devices connect to
an MQTT broker on a core device, they use these CA certificates to verify the identity of the core
device. For more information, see Interact with local IoT devices.

Resource type: None

ARN format: *

greengrass:GetConnectivityInfo

Grants permission to get connectivity information for a core device. This information describes
how client devices can connect to the core device.

This permission is evaluated when a core device installs and runs the client device auth
component. This component uses the connectivity information to generate valid CA certificates
to upload to the AWS IoT Greengrass cloud service with the PutCertificateAuthories operation.
Client devices use these CA certificates to verify the identity of the core device. For more
information, see Interact with local IoT devices.

AWS IoT policies 1830

AWS IoT Greengrass Developer Guide, Version 2

You can also use this operation on the AWS IoT Greengrass control plane to view connectivity
information for a core device. For more information, see GetConnectivityInfo in the AWS IoT
Greengrass V1 API Reference.

Resource type: thing (core device)

Resource ARN format: arn:aws:iot:region:account-id:thing/core-device-thing-
name

greengrass:UpdateConnectivityInfo

Grants permission to update connectivity information for a core device. This information
describes how client devices can connect to the core device.

This permission is evaluated when a core device runs the IP detector component. This
component identifies the information that client devices require to connect to the core device
on the local network. Then, this component uses this operation to upload the connectivity
information to the AWS IoT Greengrass cloud service, so client devices can retrieve this
information with the Discover operation. For more information, see Interact with local IoT
devices.

You can also use this operation on the AWS IoT Greengrass control plane to manually update
connectivity information for a core device. For more information, see UpdateConnectivityInfo in
the AWS IoT Greengrass V1 API Reference.

Resource type: thing (core device)

Resource ARN format: arn:aws:iot:region:account-id:thing/core-device-thing-
name

Client device actions

greengrass:Discover

Grants permission to discover connectivity information for core devices where a client device
can connect. This information describes how the client device can connect to the core devices.
A client device can discover only the core devices that you have associated it with by using the
BatchAssociateClientDeviceWithCoreDevice operation. For more information, see Interact with
local IoT devices.

Resource type: thing (client device)

AWS IoT policies 1831

https://docs.aws.amazon.com/greengrass/v1/apireference/getconnectivityinfo-get.html
https://docs.aws.amazon.com/greengrass/v1/apireference/updateconnectivityinfo-put.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_BatchAssociateClientDeviceWithCoreDevice.html

AWS IoT Greengrass Developer Guide, Version 2

Resource ARN format: arn:aws:iot:region:account-id:thing/client-device-
thing-name

Update a core device's AWS IoT policy

You can use the AWS IoT Greengrass and AWS IoT consoles or the AWS IoT API to view and update
a core device's AWS IoT policy.

Note

If you used the AWS IoT Greengrass Core software installer to provision resources, your
core device has an AWS IoT policy that allows access to all AWS IoT Greengrass actions
(greengrass:*). You can follow these steps to restrict access to only the actions that a
core device uses.

Review and update a core device's AWS IoT policy (console)

1. In the AWS IoT Greengrass console navigation menu, choose Core devices.

2. On the Core devices page, choose the core device to update.

3. On the core device details page, choose the link to the core device's Thing. This link opens the
thing details page in the AWS IoT console.

4. On the thing details page, choose Certificates.

5. In the Certificates tab, choose the thing's active certificate.

6. On the certificate details page, choose Policies.

7. In the Policies tab, choose the AWS IoT policy to review and update. You can add the required
permissions to any policy that is attached to the core device's active certificate.

Note

If you used the AWS IoT Greengrass Core software installer to provision resources,
you have two AWS IoT policies. We recommend that you choose the policy named
GreengrassV2IoTThingPolicy, if it exists. Core devices that you create with the quick
installer use this policy name by default. If you add permissions to this policy, you are
also granting these permissions to other core devices that use this policy.

Update a core device's AWS IoT policy 1832

https://console.aws.amazon.com/greengrass

AWS IoT Greengrass Developer Guide, Version 2

8. In the policy overview, choose Edit active version.

9. Review the policy and add, remove, or edit permissions as needed.

10. To set a new policy version as the active version, under Policy version status, select Set the
edited version as the active version for this policy.

11. Choose Save as new version.

Review and update a core device's AWS IoT policy (AWS CLI)

1. List the principals for the core device's AWS IoT thing. Thing principals can be X.509 device
certificates or other identifies. Run the following command, and replace MyGreengrassCore
with the name of the core device.

aws iot list-thing-principals --thing-name MyGreengrassCore

The operation returns a response that lists the core device's thing principals.

{
 "principals": [
 "arn:aws:iot:us-west-2:123456789012:cert/certificateId"
]
}

2. Identify the core device's active certificate. Run the following command, and replace
certificateId with the ID of each certificate from the previous step until you find the active
certificate. The certificate ID is the hexadecimal string at the end of the certificate ARN. The --
query argument specifies to output only the certificate's status.

aws iot describe-certificate --certificate-id certificateId --query
 'certificateDescription.status'

The operation returns the certificate status as a string. For example, if the certificate is active,
this operation outputs "ACTIVE".

3. List the AWS IoT policies that are attached to the certificate. Run the following command, and
replace the certificate ARN with the ARN of the certificate.

aws iot list-principal-policies --principal arn:aws:iot:us-
west-2:123456789012:cert/certificateId

Update a core device's AWS IoT policy 1833

AWS IoT Greengrass Developer Guide, Version 2

The operation returns a response that lists the AWS IoT policies that are attached to the
certificate.

{
 "policies": [
 {
 "policyName":
 "GreengrassTESCertificatePolicyMyGreengrassCoreTokenExchangeRoleAlias",
 "policyArn": "arn:aws:iot:us-west-2:123456789012:policy/
GreengrassTESCertificatePolicyMyGreengrassCoreTokenExchangeRoleAlias"
 },
 {
 "policyName": "GreengrassV2IoTThingPolicy",
 "policyArn": "arn:aws:iot:us-west-2:123456789012:policy/
GreengrassV2IoTThingPolicy"
 }
]
}

4. Choose the policy to view and update.

Note

If you used the AWS IoT Greengrass Core software installer to provision resources,
you have two AWS IoT policies. We recommend that you choose the policy named
GreengrassV2IoTThingPolicy, if it exists. Core devices that you create with the quick
installer use this policy name by default. If you add permissions to this policy, you are
also granting these permissions to other core devices that use this policy.

5. Get the policy's document. Run the following command, and replace
GreengrassV2IoTThingPolicy with the name of the policy.

aws iot get-policy --policy-name GreengrassV2IoTThingPolicy

The operation returns a response that contains the policy's document and other information
about the policy. The policy document is a JSON object serialized as a string.

{
 "policyName": "GreengrassV2IoTThingPolicy",

Update a core device's AWS IoT policy 1834

AWS IoT Greengrass Developer Guide, Version 2

 "policyArn": "arn:aws:iot:us-west-2:123456789012:policy/
GreengrassV2IoTThingPolicy",
 "policyDocument": "{\
 \\"Version\\": \\"2012-10-17\\",\
 \\"Statement\\": [\
 {\
 \\"Effect\\": \\"Allow\\",\
 \\"Action\\": [\
 \\"iot:Connect\\",\
 \\"iot:Publish\\",\
 \\"iot:Subscribe\\",\
 \\"iot:Receive\\",\
 \\"greengrass:*\\"\
],\
 \\"Resource\\": \\"*\\"\
 }\
]\
}",
 "defaultVersionId": "1",
 "creationDate": "2021-02-05T16:03:14.098000-08:00",
 "lastModifiedDate": "2021-02-05T16:03:14.098000-08:00",
 "generationId":
 "f19144b798534f52c619d44f771a354f1b957dfa2b850625d9f1d0fde530e75f"
}

6. Use an online converter or other tool to convert the policy document string to a JSON object,
and then save it to a file named iot-policy.json.

For example, if you have the jq tool installed, you can run the following command to get the
policy document, convert it to a JSON object, and save the policy document as a JSON object.

aws iot get-policy --policy-name GreengrassV2IoTThingPolicy --query
 'policyDocument' | jq fromjson >> iot-policy.json

7. Review the policy document, and add, remove, or edit permissions as needed.

For example, on a Linux-based system, you can run the following command to use GNU nano
to open the file.

nano iot-policy.json

Update a core device's AWS IoT policy 1835

https://stedolan.github.io/jq/

AWS IoT Greengrass Developer Guide, Version 2

When you're done, the policy document might look similar to the minimal AWS IoT policy for
core devices.

8. Save the changes as a new version of the policy. Run the following command, and replace
GreengrassV2IoTThingPolicy with the name of the policy.

aws iot create-policy-version --policy-name GreengrassV2IoTThingPolicy --policy-
document file://iot-policy.json --set-as-default

The operation returns a response similar to the following example if it succeeds.

{
 "policyArn": "arn:aws:iot:us-west-2:123456789012:policy/
GreengrassV2IoTThingPolicy",
 "policyDocument": "{\
 \\"Version\\": \\"2012-10-17\\",\
 \\"Statement\\": [\
 {\
 \\"Effect\\": \\"Allow\\",\
 \\"Action\\": [\
\\t\\t\\"iot:Connect\\",\
\\t\\t\\"iot:Publish\\",\
\\t\\t\\"iot:Subscribe\\",\
\\t\\t\\"iot:Receive\\",\
\\t\\t\\"greengrass:*\\"\
],\
 \\"Resource\\": \\"*\\"\
 }\
]\
}",
 "policyVersionId": "2",
 "isDefaultVersion": true
}

Update a core device's AWS IoT policy 1836

AWS IoT Greengrass Developer Guide, Version 2

Minimal AWS IoT policy for AWS IoT Greengrass V2 core devices

Important

Later versions of the Greengrass nucleus component require additional permissions on the
minimal AWS IoT policy. You might need to update your core devices' AWS IoT policies to
grant additional permissions.

• Core devices that run Greengrass nucleus v2.5.0 and later use the
greengrass:ListThingGroupsForCoreDevice permission to uninstall components
when you remove a core device from a thing group.

• Core devices that run Greengrass nucleus v2.3.0 and later use the
greengrass:GetDeploymentConfiguration permission to support large
deployment configuration documents.

The following example policy includes the minimum set of actions required to support basic
Greengrass functionality for your core device.

• The Connect policy includes the * wildcard after the core device thing name (for example,
core-device-thing-name*). The core device uses the same device certificate to make
multiple concurrent subscriptions to AWS IoT Core, but the client ID in a connection might not
be an exact match of the core device thing name. After the first 50 subscriptions, the core device
uses core-device-thing-name#number as the client ID, where number increments for each
additional 50 subscriptions. For example, when a core device named MyCoreDevice creates 150
concurrent subscriptions, it uses the following client IDs:

• Subscriptions 1 to 50: MyCoreDevice

• Subscriptions 51 to 100: MyCoreDevice#2

• Subscriptions 101 to 150: MyCoreDevice#3

The wildcard allows the core device to connect when it uses these client IDs that have a suffix.

• The policy lists the MQTT topics and topic filters that the core device can publish messages
to, subscribe to, and receive messages on, including topics used for shadow state. To support
message exchange between AWS IoT Core, Greengrass components, and client devices, specify
the topics and topic filters that you want to allow. For more information, see Publish/Subscribe
policy examples in the AWS IoT Core Developer Guide.

Minimal AWS IoT policy 1837

https://docs.aws.amazon.com/iot/latest/developerguide/pub-sub-policy.html
https://docs.aws.amazon.com/iot/latest/developerguide/pub-sub-policy.html

AWS IoT Greengrass Developer Guide, Version 2

• The policy grants permission to publish to the following topic for telemetry data.

$aws/things/core-device-thing-name/greengrass/health/json

You can remove this permission for core devices where you disable telemetry. For more
information, see Gather system health telemetry data from AWS IoT Greengrass core devices.

• The policy grants permission to assume an IAM role through an AWS IoT role alias. The core
device uses this role, called the token exchange role, to acquire AWS credentials that it can use
to authenticate AWS requests. For more information, see Authorize core devices to interact with
AWS services.

When you install the AWS IoT Greengrass Core software, you create and attach a second AWS
IoT policy that includes only this permission. If you include this permission in your core device's
primary AWS IoT policy, you can detach and delete the other AWS IoT policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": "arn:aws:iot:region:account-id:client/core-device-thing-name*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive",
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:region:account-id:topic/$aws/things/core-device-thing-
name/greengrass/health/json",
 "arn:aws:iot:region:account-id:topic/$aws/things/core-device-thing-
name/greengrassv2/health/json",
 "arn:aws:iot:region:account-id:topic/$aws/things/core-device-thing-
name/jobs/*",
 "arn:aws:iot:region:account-id:topic/$aws/things/core-device-thing-
name/shadow/*"

Minimal AWS IoT policy 1838

AWS IoT Greengrass Developer Guide, Version 2

]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:region:account-id:topicfilter/$aws/things/core-device-
thing-name/jobs/*",
 "arn:aws:iot:region:account-id:topicfilter/$aws/things/core-device-
thing-name/shadow/*"
]
 },
 {
 "Effect": "Allow",
 "Action": "iot:AssumeRoleWithCertificate",
 "Resource": "arn:aws:iot:region:account-id:rolealias/token-exchange-role-
alias-name"
 },
 {
 "Effect": "Allow",
 "Action": [
 "greengrass:GetComponentVersionArtifact",
 "greengrass:ResolveComponentCandidates",
 "greengrass:GetDeploymentConfiguration",
 "greengrass:ListThingGroupsForCoreDevice"
],
 "Resource": "*"
 }
]
}

Minimal AWS IoT policy to support client devices

The following example policy includes the minimum set of actions required to support interaction
with client devices on a core device. To support client devices, a core device must have the
permissions in this AWS IoT policy in addition to the Minimal AWS IoT policy for basic operation.

• The policy allows the core device to update its own connectivity information. This permission
(greengrass:UpdateConnectivityInfo) is required only if you deploy the IP detector
component to the core device.

Minimal AWS IoT policy to support client devices 1839

AWS IoT Greengrass Developer Guide, Version 2

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:region:account-id:topic/$aws/things/core-device-thing-
name-gci/shadow/get"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [
 "arn:aws:iot:region:account-id:topicfilter/$aws/things/core-device-
thing-name-gci/shadow/update/delta",
 "arn:aws:iot:region:account-id:topicfilter/$aws/things/core-device-
thing-name-gci/shadow/get/accepted"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:region:account-id:topic/$aws/things/core-device-thing-
name-gci/shadow/update/delta",
 "arn:aws:iot:region:account-id:topic/$aws/things/core-device-thing-
name-gci/shadow/get/accepted"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "greengrass:PutCertificateAuthorities",
 "greengrass:VerifyClientDeviceIdentity"
],

Minimal AWS IoT policy to support client devices 1840

AWS IoT Greengrass Developer Guide, Version 2

 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "greengrass:VerifyClientDeviceIoTCertificateAssociation"
],
 "Resource": "arn:aws:iot:region:account-id:thing/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "greengrass:GetConnectivityInfo",
 "greengrass:UpdateConnectivityInfo"
],
 "Resource": [
 "arn:aws:iot:region:account-id:thing/core-device-thing-name"
]
 }
]
}

Minimal AWS IoT policy for client devices

The following example policy includes the minimum set of actions required for a client device
to discover core devices where they connect and communicate over MQTT. The client device's
AWS IoT policy must include the greengrass:Discover action to allow the device to discover
connectivity information for its associated Greengrass core devices. In the Resource section,
specify the Amazon Resource Name (ARN) of the client device, not the ARN of the Greengrass core
device.

• The policy allows communication on all MQTT topics. To follow best security practices, restrict
the iot:Publish, iot:Subscribe, and iot:Receive permissions to the minimal set of
topics that a client device requires for your use case.

• The policy allows the thing to discover core devices for all AWS IoT things. To follow best security
practices, restrict the greengrass:Discover permission to the client device's AWS IoT thing or
a wildcard that matches a set of AWS IoT things.

Minimal AWS IoT policy for client devices 1841

AWS IoT Greengrass Developer Guide, Version 2

Important

Thing policy variables (iot:Connection.Thing.*) aren't supported for in AWS
IoT policies for core devices or Greengrass data plane operations. Instead, you can
use a wildcard that matches multiple devices that have similar names. For example,
you can specify MyGreengrassDevice* to match MyGreengrassDevice1,
MyGreengrassDevice2, and so on.

• A client device's AWS IoT policy doesn't typically require permissions for iot:GetThingShadow,
iot:UpdateThingShadow, or iot:DeleteThingShadow actions, because the Greengrass core
device handles shadow sync operations for client devices. To enable the core device to handle
client device shadows, check that the core device's AWS IoT policy allows these actions, and that
the Resource section includes the ARNs of the client devices.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Connect"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish"
],
 "Resource": [
 "arn:aws:iot:region:account-id:topic/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Subscribe"
],
 "Resource": [

Minimal AWS IoT policy for client devices 1842

https://docs.aws.amazon.com/iot/latest/developerguide/thing-policy-variables.html

AWS IoT Greengrass Developer Guide, Version 2

 "arn:aws:iot:region:account-id:topicfilter/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:Receive"
],
 "Resource": [
 "arn:aws:iot:region:account-id:topic/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "greengrass:Discover"
],
 "Resource": [
 "arn:aws:iot:region:account-id:thing/*"
]
 }
]
}

Identity and access management for AWS IoT Greengrass

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS IoT Greengrass resources. IAM is an AWS service that
you can use with no additional charge.

Note

This topic describes IAM concepts and features. For information about IAM features
supported by AWS IoT Greengrass, see the section called “How AWS IoT Greengrass works
with IAM”.

Identity and access management 1843

AWS IoT Greengrass Developer Guide, Version 2

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AWS IoT Greengrass.

Service user – If you use the AWS IoT Greengrass service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more AWS IoT
Greengrass features to do your work, you might need additional permissions. Understanding how
access is managed can help you request the right permissions from your administrator. If you
cannot access a feature in AWS IoT Greengrass, see Troubleshooting identity and access issues for
AWS IoT Greengrass.

Service administrator – If you're in charge of AWS IoT Greengrass resources at your company,
you probably have full access to AWS IoT Greengrass. It's your job to determine which AWS IoT
Greengrass features and resources your service users should access. You must then submit requests
to your IAM administrator to change the permissions of your service users. Review the information
on this page to understand the basic concepts of IAM. To learn more about how your company can
use IAM with AWS IoT Greengrass, see How AWS IoT Greengrass works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to AWS IoT Greengrass. To view example AWS IoT Greengrass
identity-based policies that you can use in IAM, see Identity-based policy examples for AWS IoT
Greengrass.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

Audience 1844

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html

AWS IoT Greengrass Developer Guide, Version 2

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term

Authenticating with identities 1845

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html

AWS IoT Greengrass Developer Guide, Version 2

credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. To temporarily assume an IAM role in the
AWS Management Console, you can switch from a user to an IAM role (console). You can assume a
role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information
about methods for using roles, see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates
the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that

Authenticating with identities 1846

https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS IoT Greengrass Developer Guide, Version 2

requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the IAM User
Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

Managing access using policies 1847

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

AWS IoT Greengrass Developer Guide, Version 2

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choose between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Managing access using policies 1848

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html

AWS IoT Greengrass Developer Guide, Version 2

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached
to each resource that you own. The RCP limits permissions for resources in member accounts
and can impact the effective permissions for identities, including the AWS account root
user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control
policies (RCPs) in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Managing access using policies 1849

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

AWS IoT Greengrass Developer Guide, Version 2

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

See also

• the section called “How AWS IoT Greengrass works with IAM”

• the section called “Identity-based policy examples”

• the section called “Troubleshooting identity and access issues”

How AWS IoT Greengrass works with IAM

Before you use IAM to manage access to AWS IoT Greengrass, you should understand the IAM
features that you can use with AWS IoT Greengrass.

IAM feature Supported by Greengrass?

Identity-based policies with resource-level
permissions

Yes

Resource-based policies No

Access control lists (ACLs) No

Tags-based authorization Yes

Temporary credentials Yes

Service-linked roles No

Service roles Yes

For a high-level view of how other AWS services work with IAM, see AWS services that work with
IAM in the IAM User Guide.

See also 1850

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS IoT Greengrass Developer Guide, Version 2

Identity-based policies for AWS IoT Greengrass

With IAM identity-based policies, you can specify allowed or denied actions and resources and
the conditions under which actions are allowed or denied. AWS IoT Greengrass supports specific
actions, resources, and condition keys. To learn about all of the elements that you use in a policy,
see IAM JSON policy elements reference in the IAM User Guide.

Actions

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

Policy actions for AWS IoT Greengrass use the greengrass: prefix before the action. For example,
to allow someone to use the ListCoreDevices API operation to list the core devices in their AWS
account, you include the greengrass:ListCoreDevices action in their policy. Policy statements
must include either an Action or NotAction element. AWS IoT Greengrass defines its own set of
actions that describe tasks that you can perform with this service.

To specify multiple actions in a single statement, list them between brackets ([]) and separate
them with commas, as follows:

"Action": [
 "greengrass:action1",
 "greengrass:action2",
 "greengrass:action3"
]

You can use wildcards (*) to specify multiple actions. For example, to specify all actions that begin
with the word List, include the following action:

"Action": "greengrass:List*"

How AWS IoT Greengrass works with IAM 1851

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

AWS IoT Greengrass Developer Guide, Version 2

Note

We recommend that you avoid the use of wildcards to specify all available actions for a
service. As a best practice, you should grant least privilege and narrowly scope permissions
in a policy. For more information, see the section called “Grant minimum possible
permissions”.

For the complete list of AWS IoT Greengrass actions, see Actions Defined by AWS IoT Greengrass in
the IAM User Guide.

Resources

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

The following table contains the AWS IoT Greengrass resource ARNs that can be used in the
Resource element of a policy statement. For a mapping of supported resource-level permissions
for AWS IoT Greengrass actions, see Actions Defined by AWS IoT Greengrass in the IAM User Guide.

Some AWS IoT Greengrass actions (for example, some list operations), cannot be performed on a
specific resource. In those cases, you must use the wildcard alone.

"Resource": "*"

To specify multiple resource ARNs in a statement, list them between brackets ([]) and separate
them with commas, as follows:

"Resource": [
 "resource-arn1",

How AWS IoT Greengrass works with IAM 1852

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsiotgreengrass.html#awsiotgreengrass-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsiotgreengrass.html#awsiotgreengrass-actions-as-permissions

AWS IoT Greengrass Developer Guide, Version 2

 "resource-arn2",
 "resource-arn3"
]

For more information about ARN formats, see Amazon Resource Names (ARNs) and AWS service
namespaces in the Amazon Web Services General Reference.

Condition keys

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

Examples

To view examples of AWS IoT Greengrass identity-based policies, see the section called “Identity-
based policy examples”.

Resource-based policies for AWS IoT Greengrass

AWS IoT Greengrass does not support resource-based policies.

Access control lists (ACLs)

AWS IoT Greengrass does not support ACLs.

How AWS IoT Greengrass works with IAM 1853

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

AWS IoT Greengrass Developer Guide, Version 2

Authorization based on AWS IoT Greengrass tags

You can attach tags to supported AWS IoT Greengrass resources or pass tags in a request to AWS
IoT Greengrass. To control access based on tags, you provide tag information in the Condition
element of a policy using the aws:ResourceTag/${TagKey}, aws:RequestTag/${TagKey}, or
aws:TagKeys condition keys. For more information, see Tag your resources.

IAM roles for AWS IoT Greengrass

An IAM role is an entity within your AWS account that has specific permissions.

Using temporary credentials with AWS IoT Greengrass

Temporary credentials are used to sign in with federation, assume an IAM role, or to assume a
cross-account role. You obtain temporary security credentials by calling AWS STS API operations
such as AssumeRole or GetFederationToken.

On the Greengrass core, temporary credentials for the device role are made available to Greengrass
components. If your components use the AWS SDK, you don't need to add logic to obtain the
credentials because the AWS SDK does this for you.

Service-linked roles

AWS IoT Greengrass does not support service-linked roles.

Service roles

This feature allows a service to assume a service role on your behalf. This role allows the service to
access resources in other services to complete an action on your behalf. Service roles appear in your
IAM account and are owned by the account. This means that an IAM administrator can change the
permissions for this role. However, doing so might break the functionality of the service.

AWS IoT Greengrass core devices use a service role to allow Greengrass components and Lambda
functions to access some of your AWS resources on your behalf. For more information, see the
section called “Authorize core devices to interact with AWS services”.

AWS IoT Greengrass uses a service role to access some of your AWS resources on your behalf. For
more information, see Greengrass service role.

How AWS IoT Greengrass works with IAM 1854

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role

AWS IoT Greengrass Developer Guide, Version 2

Identity-based policy examples for AWS IoT Greengrass

By default, IAM users and roles don't have permission to create or modify AWS IoT Greengrass
resources. They also can't perform tasks using the AWS Management Console, AWS CLI, or AWS
API. An IAM administrator must create IAM policies that grant users and roles permission to
perform specific API operations on the specified resources they need. The administrator must then
attach those policies to the IAM users or groups that require those permissions.

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AWS IoT
Greengrass resources in your account. These actions can incur costs for your AWS account. When
you create or edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

Identity-based policy examples 1855

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html

AWS IoT Greengrass Developer Guide, Version 2

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API
operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Policy examples

The following example customer-defined policies grant permissions for common scenarios.

Examples

• Allow users to view their own permissions

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Creating policies on the JSON tab in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {

Identity-based policy examples 1856

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor

AWS IoT Greengrass Developer Guide, Version 2

 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Authorize core devices to interact with AWS services

AWS IoT Greengrass core devices use the AWS IoT Core credentials provider to authorize calls to
AWS services. The AWS IoT Core credentials provider enables devices to use their X.509 certificates
as the unique device identity to authenticate AWS requests. This eliminates the need to store
an AWS access key ID and secret access key on your AWS IoT Greengrass core devices. For more
information, see Authorizing direct calls to AWS services in the AWS IoT Core Developer Guide.

When you run the AWS IoT Greengrass Core software, you can choose to provision the AWS
resources that the core device requires. This includes the AWS Identity and Access Management
(IAM) role that your core device assumes through the AWS IoT Core credentials provider. Use the
--provision true argument to configure a role and policies that allow the core device to get
temporary AWS credentials. This argument also configures an AWS IoT role alias that points to this
IAM role. You can specify the name of the IAM role and AWS IoT role alias to use. If you specify --
provision true without these other name parameters, the Greengrass core device creates and
uses the following default resources:

• IAM role: GreengrassV2TokenExchangeRole

This role has a policy named GreengrassV2TokenExchangeRoleAccess and a trust
relationship that allows credentials.iot.amazonaws.com to assume the role. The policy
includes the minimum permissions for the core device.

Authorize core devices to interact with AWS services 1857

https://docs.aws.amazon.com/iot/latest/developerguide/authorizing-direct-aws.html

AWS IoT Greengrass Developer Guide, Version 2

Important

This policy doesn't include access to files in S3 buckets. You must add permissions to
the role to allow core devices to retrieve component artifacts from S3 buckets. For more
information, see Allow access to S3 buckets for component artifacts.

• AWS IoT role alias: GreengrassV2TokenExchangeRoleAlias

This role alias refers to the IAM role.

For more information, see Step 3: Install the AWS IoT Greengrass Core software.

You can also set the role alias for an existing core device. To do so, configure the iotRoleAlias
configuration parameter of the Greengrass nucleus component.

You can acquire temporary AWS credentials for this IAM role to perform AWS operations in your
custom components. For more information, see Interact with AWS services.

Topics

• Service role permissions for core devices

• Allow access to S3 buckets for component artifacts

Service role permissions for core devices

The role allows the following service to assume the role:

• credentials.iot.amazonaws.com

If you use the AWS IoT Greengrass Core software to create this role, it uses the following
permissions policy to allow core devices to connect and send logs to AWS. The policy's name
defaults to the name of the IAM role ending with Access. For example, if you use the default IAM
role name, then this policy's name is GreengrassV2TokenExchangeRoleAccess.

Greengrass nucleus v2.5.0 and later

{
 "Version": "2012-10-17",

Authorize core devices to interact with AWS services 1858

AWS IoT Greengrass Developer Guide, Version 2

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams",
 "s3:GetBucketLocation"
],
 "Resource": "*"
 }
]
}

v2.4.x

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:DescribeCertificate",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams",
 "s3:GetBucketLocation"
],
 "Resource": "*"
 }
]
}

Earlier than v2.4.0

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

Authorize core devices to interact with AWS services 1859

AWS IoT Greengrass Developer Guide, Version 2

 "iot:DescribeCertificate",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams",
 "iot:Connect",
 "iot:Publish",
 "iot:Subscribe",
 "iot:Receive",
 "s3:GetBucketLocation"
],
 "Resource": "*"
 }
]
}

Allow access to S3 buckets for component artifacts

The default core device role doesn't allow core devices to access S3 buckets. To deploy components
that have artifacts in S3 buckets, you must add the s3:GetObject permission to allow core
devices to download component artifacts. You can add a new policy to the core device role to grant
this permission.

To add a policy that allows access to component artifacts in Amazon S3

1. Create a file called component-artifact-policy.json and copy the following JSON into
the file. This policy allows access to all files in an S3 bucket. Replace amzn-s3-demo-bucket
with the name of the S3 bucket to allow the core device to access.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": "arn:aws:s3:::amzn-s3-demo-bucket/*"
 }
]
}

Authorize core devices to interact with AWS services 1860

AWS IoT Greengrass Developer Guide, Version 2

2. Run the following command to create the policy from the policy document in component-
artifact-policy.json.

Linux or Unix

aws iam create-policy \
 --policy-name MyGreengrassV2ComponentArtifactPolicy \
 --policy-document file://component-artifact-policy.json

Windows Command Prompt (CMD)

aws iam create-policy ^
 --policy-name MyGreengrassV2ComponentArtifactPolicy ^
 --policy-document file://component-artifact-policy.json

PowerShell

aws iam create-policy `
 --policy-name MyGreengrassV2ComponentArtifactPolicy `
 --policy-document file://component-artifact-policy.json

Copy the policy Amazon Resource Name (ARN) from the policy metadata in the output. You
use this ARN to attach this policy to the core device role in the next step.

3. Run the following command to attach the policy to the core device role. Replace
GreengrassV2TokenExchangeRole with the name of the role that you specified when you
ran the AWS IoT Greengrass Core software. Then, replace the policy ARN with the ARN from
the previous step.

Linux or Unix

aws iam attach-role-policy \
 --role-name GreengrassV2TokenExchangeRole \
 --policy-arn
 arn:aws:iam::123456789012:policy/MyGreengrassV2ComponentArtifactPolicy

Windows Command Prompt (CMD)

aws iam attach-role-policy ^

Authorize core devices to interact with AWS services 1861

AWS IoT Greengrass Developer Guide, Version 2

 --role-name GreengrassV2TokenExchangeRole ^
 --policy-arn
 arn:aws:iam::123456789012:policy/MyGreengrassV2ComponentArtifactPolicy

PowerShell

aws iam attach-role-policy `
 --role-name GreengrassV2TokenExchangeRole `
 --policy-arn
 arn:aws:iam::123456789012:policy/MyGreengrassV2ComponentArtifactPolicy

If the command has no output, it succeeded, and your core device can access artifacts that you
upload to this S3 bucket.

Minimal IAM policy for installer to provision resources

When you install the AWS IoT Greengrass Core software, you can provision required AWS resources,
such as an AWS IoT thing and an IAM role for your device. You can also deploy local development
tools to the device. The installer requires AWS credentials so that it can perform these actions in
your AWS account. For more information, see Install the AWS IoT Greengrass Core software.

The following example policy includes the minimum set of actions that the installer requires
to provision these resources. These permissions are required if you specify the --provision
argument for the installer. Replace account-id with your AWS account ID, and replace
GreengrassV2TokenExchangeRole with the name of the token exchange role that you specify
with the --tes-role-name installer argument.

Note

The DeployDevTools policy statement is required only if you specify the --deploy-
dev-tools argument for the installer.

Greengrass nucleus v2.5.0 and later

{
 "Version": "2012-10-17",
 "Statement": [

Minimal IAM policy for installer to provision resources 1862

AWS IoT Greengrass Developer Guide, Version 2

 {
 "Sid": "CreateTokenExchangeRole",
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:CreatePolicy",
 "iam:CreateRole",
 "iam:GetPolicy",
 "iam:GetRole",
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::account-id:role/GreengrassV2TokenExchangeRole",
 "arn:aws:iam::account-
id:policy/GreengrassV2TokenExchangeRoleAccess",
 "arn:aws:iam::aws:policy/GreengrassV2TokenExchangeRoleAccess"
]
 },
 {
 "Sid": "CreateIoTResources",
 "Effect": "Allow",
 "Action": [
 "iot:AddThingToThingGroup",
 "iot:AttachPolicy",
 "iot:AttachThingPrincipal",
 "iot:CreateKeysAndCertificate",
 "iot:CreatePolicy",
 "iot:CreateRoleAlias",
 "iot:CreateThing",
 "iot:CreateThingGroup",
 "iot:DescribeEndpoint",
 "iot:DescribeRoleAlias",
 "iot:DescribeThingGroup",
 "iot:GetPolicy"
],
 "Resource": "*"
 },
 {
 "Sid": "DeployDevTools",
 "Effect": "Allow",
 "Action": [
 "greengrass:CreateDeployment",
 "iot:CancelJob",
 "iot:CreateJob",

Minimal IAM policy for installer to provision resources 1863

AWS IoT Greengrass Developer Guide, Version 2

 "iot:DeleteThingShadow",
 "iot:DescribeJob",
 "iot:DescribeThing",
 "iot:DescribeThingGroup",
 "iot:GetThingShadow",
 "iot:UpdateJob",
 "iot:UpdateThingShadow"
],
 "Resource": "*"
 }
]
}

Earlier than v2.5.0

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateTokenExchangeRole",
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:CreatePolicy",
 "iam:CreateRole",
 "iam:GetPolicy",
 "iam:GetRole",
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::account-id:role/GreengrassV2TokenExchangeRole",
 "arn:aws:iam::account-
id:policy/GreengrassV2TokenExchangeRoleAccess",
 "arn:aws:iam::aws:policy/GreengrassV2TokenExchangeRoleAccess"
]
 },
 {
 "Sid": "CreateIoTResources",
 "Effect": "Allow",
 "Action": [
 "iot:AddThingToThingGroup",
 "iot:AttachPolicy",
 "iot:AttachThingPrincipal",

Minimal IAM policy for installer to provision resources 1864

AWS IoT Greengrass Developer Guide, Version 2

 "iot:CreateKeysAndCertificate",
 "iot:CreatePolicy",
 "iot:CreateRoleAlias",
 "iot:CreateThing",
 "iot:CreateThingGroup",
 "iot:DescribeEndpoint",
 "iot:DescribeRoleAlias",
 "iot:DescribeThingGroup",
 "iot:GetPolicy"
],
 "Resource": "*"
 },
 {
 "Sid": "DeployDevTools",
 "Effect": "Allow",
 "Action": [
 "greengrass:CreateDeployment",
 "iot:CancelJob",
 "iot:CreateJob",
 "iot:DeleteThingShadow",
 "iot:DescribeJob",
 "iot:DescribeThing",
 "iot:DescribeThingGroup",
 "iot:GetThingShadow",
 "iot:UpdateJob",
 "iot:UpdateThingShadow"
],
 "Resource": "*"
 }
]
}

Greengrass service role

The Greengrass service role is an AWS Identity and Access Management (IAM) service role that
authorizes AWS IoT Greengrass to access resources from AWS services on your behalf. This role
makes it possible for AWS IoT Greengrass to verify the identity of client devices and manage core
device connectivity information.

Greengrass service role 1865

AWS IoT Greengrass Developer Guide, Version 2

Note

AWS IoT Greengrass V1 also uses this role to perform essential tasks. For more information,
see Greengrass service role in the AWS IoT Greengrass V1 Developer Guide.

To allow AWS IoT Greengrass to access your resources, the Greengrass service role must
be associated with your AWS account and specify AWS IoT Greengrass as a trusted entity.
The role must include the AWSGreengrassResourceAccessRolePolicy managed policy or a
custom policy that defines equivalent permissions for the AWS IoT Greengrass features
that you use. AWS maintains this policy, which defines the set of permissions that AWS IoT
Greengrass uses to access your AWS resources. For more information, see AWS managed policy:
AWSGreengrassResourceAccessRolePolicy.

You can reuse the same Greengrass service role across AWS Regions, but you must associate it
with your account in every AWS Region where you use AWS IoT Greengrass. If the service role isn't
configured in the current AWS Region, core devices fail to verify client devices and fail to update
connectivity information.

The following sections describe how to create and manage the Greengrass service role with the
AWS Management Console or AWS CLI.

Topics

• Manage the Greengrass service role (console)

• Manage the Greengrass service role (CLI)

• See also

Note

In addition to the service role that authorizes service-level access, you assign a token
exchange role to Greengrass core devices. The token exchange role is a separate IAM role
that controls how Greengrass components and Lambda functions on the core device can
access AWS services. For more information, see Authorize core devices to interact with AWS
services.

Greengrass service role 1866

https://docs.aws.amazon.com/greengrass/v1/developerguide/service-role.html
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSGreengrassResourceAccessRolePolicy

AWS IoT Greengrass Developer Guide, Version 2

Manage the Greengrass service role (console)

The AWS IoT console makes it easy to manage your Greengrass service role. For example, when
you configure client device discovery for a core device, the console checks whether your AWS
account is attached to a Greengrass service role in the current AWS Region. If not, the console can
create and configure a service role for you. For more information, see the section called “Create the
Greengrass service role”.

You can use the console for the following role management tasks:

Topics

• Find your Greengrass service role (console)

• Create the Greengrass service role (console)

• Change the Greengrass service role (console)

• Detach the Greengrass service role (console)

Note

The user who is signed in to the console must have permissions to view, create, or change
the service role.

Find your Greengrass service role (console)

Use the following steps to find the service role that AWS IoT Greengrass uses in the current AWS
Region.

1. Navigate to the AWS IoT console.

2. In the navigation pane, choose Settings.

3. Scroll to the Greengrass service role section to see your service role and its policies.

If you don't see a service role, the console can create or configure one for you. For more
information, see Create the Greengrass service role.

Greengrass service role 1867

https://console.aws.amazon.com/iot

AWS IoT Greengrass Developer Guide, Version 2

Create the Greengrass service role (console)

The console can create and configure a default Greengrass service role for you. This role has the
following properties.

Property Value

Name Greengrass_ServiceRole

Trusted entity AWS service: greengrass

Policy AWSGreengrassResourceAccessRolePolicy

Note

If you create this role with the AWS IoT Greengrass V1 device setup script, the role name is
GreengrassServiceRole_random-string.

When you configure client device discovery for a core device, the console checks whether a
Greengrass service role is associated with your AWS account in the current AWS Region. If not,
the console prompts you to allow AWS IoT Greengrass to read and write to AWS services on your
behalf.

If you grant permission, the console checks whether a role named Greengrass_ServiceRole
exists in your AWS account.

• If the role exists, the console attaches the service role to your AWS account in the current AWS
Region.

• If the role doesn't exist, the console creates a default Greengrass service role and attaches it to
your AWS account in the current AWS Region.

Note

If you want to create a service role with custom role policies, use the IAM console to create
or modify the role. For more information, see Creating a role to delegate permissions to
an AWS service or Modifying a role in the IAM User Guide. Make sure that the role grants

Greengrass service role 1868

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSGreengrassResourceAccessRolePolicy
https://docs.aws.amazon.com/greengrass/v1/developerguide/quick-start.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html

AWS IoT Greengrass Developer Guide, Version 2

permissions that are equivalent to the AWSGreengrassResourceAccessRolePolicy
managed policy for the features and resources that you use. We recommend that you also
include the aws:SourceArn and aws:SourceAccount global condition context keys
in your trust policy to help prevent the confused deputy security problem. The condition
context keys restrict access to allow only those requests that come from the specified
account and Greengrass workspace. For more information about the confused deputy
problem, see Cross-service confused deputy prevention.
If you create a service role, return to the AWS IoT console and attach the role to your AWS
account. You can do this under Greengrass service role on the Settings page.

Change the Greengrass service role (console)

Use the following procedure to choose a different Greengrass service role to attach to your AWS
account in the AWS Region currently selected in the console.

1. Navigate to the AWS IoT console.

2. In the navigation pane, choose Settings.

3. Under Greengrass service role, choose Change role.

The Update Greengrass service role dialog box opens and shows the IAM roles in your AWS
account that define AWS IoT Greengrass as a trusted entity.

4. Choose the Greengrass service role to attach.

5. Choose Attach role.

Detach the Greengrass service role (console)

Use the following procedure to detach the Greengrass service role from your AWS account in the
current AWS Region. This revokes permissions for AWS IoT Greengrass to access AWS services in the
current AWS Region.

Important

Detaching the service role might interrupt active operations.

1. Navigate to the AWS IoT console.

Greengrass service role 1869

https://console.aws.amazon.com/iot
https://console.aws.amazon.com/iot

AWS IoT Greengrass Developer Guide, Version 2

2. In the navigation pane, choose Settings.

3. Under Greengrass service role, choose Detach role.

4. In the confirmation dialog box, choose Detach.

Note

If you no longer need the role, you can delete it in the IAM console. For more information,
see Deleting roles or instance profiles in the IAM User Guide.
Other roles might allow AWS IoT Greengrass to access your resources. To find all roles that
allow AWS IoT Greengrass to assume permissions on your behalf, in the IAM console, on
the Roles page, look for roles that include AWS service: greengrass in the Trusted entities
column.

Manage the Greengrass service role (CLI)

In the following procedures, we assume that the AWS Command Line Interface is installed
and configured to use your AWS account. For more information, see Installing, updating, and
uninstalling the AWS CLI and Configuring the AWS CLI in the AWS Command Line Interface User
Guide.

You can use the AWS CLI for the following role management tasks:

Topics

• Get the Greengrass service role (CLI)

• Create the Greengrass service role (CLI)

• Remove the Greengrass service role (CLI)

Get the Greengrass service role (CLI)

Use the following procedure to find out if a Greengrass service role is associated with your AWS
account in an AWS Region.

• Get the service role. Replace region with your AWS Region (for example, us-west-2).

aws greengrassv2 get-service-role-for-account --region region

Greengrass service role 1870

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

AWS IoT Greengrass Developer Guide, Version 2

If a Greengrass service role is already associated with your account, the request returns the
following role metadata.

{
 "associatedAt": "timestamp",
 "roleArn": "arn:aws:iam::account-id:role/path/role-name"
}

If the request doesn't return role metadata, then you must create the service role (if it doesn't
exist) and associate it with your account in the AWS Region.

Create the Greengrass service role (CLI)

Use the following steps to create a role and associate it with your AWS account.

To create the service role using IAM

1. Create a role with a trust policy that allows AWS IoT Greengrass to assume the role. This
example creates a role named Greengrass_ServiceRole, but you can use a different
name. We recommend that you also include the aws:SourceArn and aws:SourceAccount
global condition context keys in your trust policy to help prevent the confused deputy security
problem. The condition context keys restrict access to allow only those requests that come
from the specified account and Greengrass workspace. For more information about the
confused deputy problem, see Cross-service confused deputy prevention.

Linux or Unix

aws iam create-role --role-name Greengrass_ServiceRole --assume-role-policy-
document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "greengrass.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:greengrass:region:account-id:*"

Greengrass service role 1871

AWS IoT Greengrass Developer Guide, Version 2

 },
 "StringEquals": {
 "aws:SourceAccount": "account-id"
 }
 }
 }
]
}'

Windows Command Prompt (CMD)

aws iam create-role --role-name Greengrass_ServiceRole --assume-role-
policy-document "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Effect
\":\"Allow\",\"Principal\":{\"Service\":\"greengrass.amazonaws.com\"},
\"Action\":\"sts:AssumeRole\",\"Condition\":{\"ArnLike\":{\"aws:SourceArn
\":\"arn:aws:greengrass:region:account-id:*\"},\"StringEquals\":
{\"aws:SourceAccount\":\"account-id\"}}}]}"

PowerShell

aws iam create-role --role-name Greengrass_ServiceRole --assume-role-policy-
document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "greengrass.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:greengrass:region:account-id:*"
 },
 "StringEquals": {
 "aws:SourceAccount": "account-id"
 }
 }
 }
]
}'

Greengrass service role 1872

AWS IoT Greengrass Developer Guide, Version 2

2. Copy the role ARN from the role metadata in the output. You use the ARN to associate the role
with your account.

3. Attach the AWSGreengrassResourceAccessRolePolicy policy to the role.

aws iam attach-role-policy --role-name Greengrass_ServiceRole --policy-arn
 arn:aws:iam::aws:policy/service-role/AWSGreengrassResourceAccessRolePolicy

To associate the service role with your AWS account

• Associate the role with your account. Replace role-arn with the service role ARN and region
with your AWS Region (for example, us-west-2).

aws greengrassv2 associate-service-role-to-account --role-arn role-arn --
region region

If successful, the request returns the following response.

{
 "associatedAt": "timestamp"
}

Remove the Greengrass service role (CLI)

Use the following steps to disassociate the Greengrass service role from your AWS account.

• Disassociate the service role from your account. Replace region with your AWS Region (for
example, us-west-2).

aws greengrassv2 disassociate-service-role-from-account --region region

If successful, the following response is returned.

{
 "disassociatedAt": "timestamp"
}

Greengrass service role 1873

AWS IoT Greengrass Developer Guide, Version 2

Note

You should delete the service role if you're not using it in any AWS Region. First use
delete-role-policy to detach the AWSGreengrassResourceAccessRolePolicy
managed policy from the role, and then use delete-role to delete the role. For more
information, see Deleting roles or instance profiles in the IAM User Guide.

See also

• Creating a role to delegate permissions to an AWS service in the IAM User Guide

• Modifying a role in the IAM User Guide

• Deleting roles or instance profiles in the IAM User Guide

• AWS IoT Greengrass commands in the AWS CLI Command Reference

• associate-service-role-to-account

• disassociate-service-role-from-account

• get-service-role-for-account

• IAM commands in the AWS CLI Command Reference

• attach-role-policy

• create-role

• delete-role

• delete-role-policy

AWS managed policies for AWS IoT Greengrass

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

AWS managed policies 1874

https://docs.aws.amazon.com/cli/latest/reference/iam/delete-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-role.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html
https://docs.aws.amazon.com/cli/latest/reference/greengrassv2/associate-service-role-to-account.html
https://docs.aws.amazon.com/cli/latest/reference/greengrassv2/disassociate-service-role-from-account.html
https://docs.aws.amazon.com/cli/latest/reference/greengrassv2/get-service-role-for-account.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-role-policy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies

AWS IoT Greengrass Developer Guide, Version 2

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

Topics

• AWS managed policy: AWSGreengrassFullAccess

• AWS managed policy: AWSGreengrassReadOnlyAccess

• AWS managed policy: AWSGreengrassResourceAccessRolePolicy

• AWS IoT Greengrass updates to AWS managed policies

AWS managed policy: AWSGreengrassFullAccess

You can attach the AWSGreengrassFullAccess policy to your IAM identities.

This policy grants administrative permissions that allow a principal full access to all AWS IoT
Greengrass actions.

Permissions details

This policy includes the following permissions:

• greengrass – Allows principals full access to all AWS IoT Greengrass actions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "greengrass:*"
],
 "Resource": "*"
 }
]
}

AWS managed policies 1875

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

AWS IoT Greengrass Developer Guide, Version 2

AWS managed policy: AWSGreengrassReadOnlyAccess

You can attach the AWSGreengrassReadOnlyAccess policy to your IAM identities.

This policy grants read-only permissions that allow a principal to view, but not modify, information
in AWS IoT Greengrass. For example, principals with these permissions can view the list of
components deployed to a Greengrass core device, but can't create a deployment to change the
components that run on that device.

Permissions details

This policy includes the following permissions:

• greengrass – Allows principals to perform actions that return either a list of items or details
about an item. This includes API operations that start with List or Get.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "greengrass:List*",
 "greengrass:Get*"
],
 "Resource": "*"
 }
]
}

AWS managed policy: AWSGreengrassResourceAccessRolePolicy

You can attach the AWSGreengrassResourceAccessRolePolicy policy to your IAM entities.
AWS IoT Greengrass also attaches this policy to a service role that allows AWS IoT Greengrass to
perform actions on your behalf. For more information, see Greengrass service role.

This policy grants administrative permissions that allow AWS IoT Greengrass to perform essential
tasks, such as retrieving your Lambda functions, managing AWS IoT device shadows, and verifying
Greengrass client devices.

Permissions details

AWS managed policies 1876

AWS IoT Greengrass Developer Guide, Version 2

This policy includes the following permissions.

• greengrass – Manage Greengrass resources.

• iot (*Shadow) – Manage AWS IoT shadows that have the following special identifiers in their
names. These permissions are required so that AWS IoT Greengrass can communicate with core
devices.

• *-gci – AWS IoT Greengrass uses this shadow to store core device connectivity information,
so client devices can discover and connect to core devices.

• *-gcm – AWS IoT Greengrass V1 uses this shadow to notify the core device that the Greengrass
group's certificate authority (CA) certificate has rotated.

• *-gda – AWS IoT Greengrass V1 uses this shadow to notify the core device of a deployment.

• GG_* – Unused.

• iot (DescribeThing and DescribeCertificate) – Retrieve information about AWS IoT
things and certificates. These permissions are required so that AWS IoT Greengrass can verify
client devices that connect to a core device. For more information, see Interact with local IoT
devices.

• lambda – Retrieve information about AWS Lambda functions. This permission is required so that
AWS IoT Greengrass V1 can deploy Lambda functions to Greengrass cores. For more information,
see Run Lambda function on the AWS IoT Greengrass core in the AWS IoT Greengrass V1
Developer Guide.

• secretsmanager – Retrieve the value of AWS Secrets Manager secrets whose names start with
greengrass-. This permission is required so that AWS IoT Greengrass V1 can deploy Secrets
Manager secrets to Greengrass cores. For more information, see Deploy secrets to the AWS IoT
Greengrass core in the AWS IoT Greengrass V1 Developer Guide.

• s3 – Retrieve files objects from S3 buckets whose names contain greengrass or sagemaker.
These permissions are required so that AWS IoT Greengrass V1 can deploy machine learning
resources that you store in S3 buckets. For more information, see Machine learning resources in
the AWS IoT Greengrass V1 Developer Guide.

• sagemaker – Retrieve information about Amazon SageMaker AI machine learning inference
models. This permission is required so that AWS IoT Greengrass V1 can deploy ML models to
Greengrass cores. For more information, see Perform machine learning inference in the AWS IoT
Greengrass V1 Developer Guide.

{

AWS managed policies 1877

https://docs.aws.amazon.com/greengrass/v1/developerguide/lambda-functions.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/secrets.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/secrets.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/ml-inference.html#ml-resources
https://docs.aws.amazon.com/greengrass/v1/developerguide/ml-inference.html

AWS IoT Greengrass Developer Guide, Version 2

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowGreengrassAccessToShadows",
 "Action": [
 "iot:DeleteThingShadow",
 "iot:GetThingShadow",
 "iot:UpdateThingShadow"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:iot:*:*:thing/GG_*",
 "arn:aws:iot:*:*:thing/*-gcm",
 "arn:aws:iot:*:*:thing/*-gda",
 "arn:aws:iot:*:*:thing/*-gci"
]
 },
 {
 "Sid": "AllowGreengrassToDescribeThings",
 "Action": [
 "iot:DescribeThing"
],
 "Effect": "Allow",
 "Resource": "arn:aws:iot:*:*:thing/*"
 },
 {
 "Sid": "AllowGreengrassToDescribeCertificates",
 "Action": [
 "iot:DescribeCertificate"
],
 "Effect": "Allow",
 "Resource": "arn:aws:iot:*:*:cert/*"
 },
 {
 "Sid": "AllowGreengrassToCallGreengrassServices",
 "Action": [
 "greengrass:*"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Sid": "AllowGreengrassToGetLambdaFunctions",
 "Action": [

AWS managed policies 1878

AWS IoT Greengrass Developer Guide, Version 2

 "lambda:GetFunction",
 "lambda:GetFunctionConfiguration"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Sid": "AllowGreengrassToGetGreengrassSecrets",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Effect": "Allow",
 "Resource": "arn:aws:secretsmanager:*:*:secret:greengrass-*"
 },
 {
 "Sid": "AllowGreengrassAccessToS3Objects",
 "Action": [
 "s3:GetObject"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::*Greengrass*",
 "arn:aws:s3:::*GreenGrass*",
 "arn:aws:s3:::*greengrass*",
 "arn:aws:s3:::*Sagemaker*",
 "arn:aws:s3:::*SageMaker*",
 "arn:aws:s3:::*sagemaker*"
]
 },
 {
 "Sid": "AllowGreengrassAccessToS3BucketLocation",
 "Action": [
 "s3:GetBucketLocation"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Sid": "AllowGreengrassAccessToSageMakerTrainingJobs",
 "Action": [
 "sagemaker:DescribeTrainingJob"
],
 "Effect": "Allow",
 "Resource": [

AWS managed policies 1879

AWS IoT Greengrass Developer Guide, Version 2

 "arn:aws:sagemaker:*:*:training-job/*"
]
 }
]
}

AWS IoT Greengrass updates to AWS managed policies

You can view details about updates to AWS managed policies for AWS IoT Greengrass from the
time this service began tracking these changes. For automatic alerts about changes to this page,
subscribe to the RSS feed on the AWS IoT Greengrass V2 document history page.

Change Description Date

AWS IoT Greengrass started
tracking changes

AWS IoT Greengrass started
tracking changes for its AWS
managed policies.

July 2, 2021

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource policies to limit the permissions that AWS IoT Greengrass gives another service to
the resource. If you use both global condition context keys, the aws:SourceAccount value and
the account in the aws:SourceArn value must use the same account ID when used in the same
policy statement.

The value of aws:SourceArn must be the Greengrass customer resource that is associated with
the sts:AssumeRole request.

Cross-service confused deputy prevention 1880

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

AWS IoT Greengrass Developer Guide, Version 2

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global context condition key with wildcards (*) for the unknown portions of the ARN. For example,
arn:aws:greengrass::account-id:*.

For an example of a policy that uses the aws:SourceArn and aws:SourceAccount global
condition context keys, see Create the Greengrass service role.

Troubleshooting identity and access issues for AWS IoT Greengrass

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AWS IoT Greengrass and IAM.

Issues

• I'm not authorized to perform an action in AWS IoT Greengrass

• I'm not authorized to perform iam:PassRole

• I'm an administrator and want to allow others to access AWS IoT Greengrass

• I want to allow people outside of my AWS account to access my AWS IoT Greengrass resources

For general troubleshooting help, see Troubleshooting.

I'm not authorized to perform an action in AWS IoT Greengrass

If you receive an error that states you're not authorized to perform an action, you must contact
your administrator for assistance. Your administrator is the person who provided you with your
user name and password.

The following example error occurs when the mateojackson IAM user tries to view details about a
core device, but does not have greengrass:GetCoreDevice permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to
 perform: greengrass:GetCoreDevice on resource: arn:aws:greengrass:us-
west-2:123456789012:coreDevices/MyGreengrassCore

In this case, Mateo asks his administrator to update his policies to allow him to access the
arn:aws:greengrass:us-west-2:123456789012:coreDevices/MyGreengrassCore
resource using the greengrass:GetCoreDevice action.

Troubleshooting identity and access issues 1881

AWS IoT Greengrass Developer Guide, Version 2

The following are general IAM issues that you might encounter when working with AWS IoT
Greengrass.

I'm not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to AWS IoT Greengrass.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in AWS IoT Greengrass. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I'm an administrator and want to allow others to access AWS IoT Greengrass

To allow others to access AWS IoT Greengrass, you must grant permission to the people or
applications that need access. If you are using AWS IAM Identity Center to manage people
and applications, you assign permission sets to users or groups to define their level of access.
Permission sets automatically create and assign IAM policies to IAM roles that are associated with
the person or application. For more information, see Permission sets in the AWS IAM Identity Center
User Guide.

If you are not using IAM Identity Center, you must create IAM entities (users or roles) for the people
or applications that need access. You must then attach a policy to the entity that grants them
the correct permissions in AWS IoT Greengrass. After the permissions are granted, provide the
credentials to the user or application developer. They will use those credentials to access AWS.
To learn more about creating IAM users, groups, policies, and permissions, see IAM Identities and
Policies and permissions in IAM in the IAM User Guide.

Troubleshooting identity and access issues 1882

https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

AWS IoT Greengrass Developer Guide, Version 2

I want to allow people outside of my AWS account to access my AWS IoT
Greengrass resources

You can create an IAM role that users in other accounts or people outside of your organization
can use to access your AWS resources. You can specify the who is trusted to assume the role. For
more information, see Providing access to an IAM user in another AWS account that you own and
Providing access to AWS accounts owned by third parties in the IAM User Guide.

AWS IoT Greengrass doesn't support cross-account access based on resource-based policies or
access control lists (ACLs).

Allow device traffic through a proxy or firewall

Greengrass core devices and Greengrass components perform outbound requests to AWS services
and other websites. As a security measure, you might limit outbound traffic to a small range of
endpoints and ports. You can use the following information about endpoints and ports to limit
device traffic through a proxy, firewall, or Amazon VPC security group. For more information about
how to configure a core device to use a proxy, see Connect on port 443 or through a network proxy.

Topics

• Endpoints for basic operation

• Endpoints for installation with automatic provisioning

• Endpoints for AWS-provided components

Endpoints for basic operation

Greengrass core devices use the following endpoints and ports for basic operation.

Retrieve AWS IoT endpoints

Get the AWS IoT endpoints for your AWS account, and save them to use later. Your device uses
these endpoints to connect to AWS IoT. Do the following:

1. Get the AWS IoT data endpoint for your AWS account.

aws iot describe-endpoint --endpoint-type iot:Data-ATS

The response looks similar to the following example, if the request succeeds.

Allow device traffic through a proxy or firewall 1883

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

AWS IoT Greengrass Developer Guide, Version 2

{
 "endpointAddress": "device-data-prefix-ats.iot.us-west-2.amazonaws.com"
}

2. Get the AWS IoT credentials endpoint for your AWS account.

aws iot describe-endpoint --endpoint-type iot:CredentialProvider

The response looks similar to the following example, if the request succeeds.

{
 "endpointAddress": "device-credentials-prefix.credentials.iot.us-
west-2.amazonaws.com"
}

Endpoint Port Required Descripti
on

greengrass-ats.iot
. region.amazonaws.com

8443 or 443 Yes Used for
data plane
operation
s, such as
installing
deploymen
ts and
working
with client
devices.

device-data-prefix -ats.iot.
region.amazonaws.com

MQTT: 8883 or 443

HTTPS: 8443 or 443

Yes Used for
data plane
operations
for device
managemen
t, such
as MQTT

Endpoints for basic operation 1884

AWS IoT Greengrass Developer Guide, Version 2

Endpoint Port Required Descripti
on

communica
tion and
shadow
sync with
AWS IoT
Core.

device-credentials
-prefix .credenti
als.iot. region.amazonaw
s.com

443 Yes Used to
acquire
AWS
credentia
ls, which
the core
device
uses to
download
component
artifacts
from
Amazon
S3 and
perform
other
operation
s. For more
informati
on, see
Authorize
core
devices to
interact
with AWS
services.

Endpoints for basic operation 1885

AWS IoT Greengrass Developer Guide, Version 2

Endpoint Port Required Descripti
on

*.s3.amazonaws.com

*.s3.region.amazonaws.com

443 Yes Used for
deploymen
ts. This
format
includes
the *
character
, because
endpoint
prefixes
are
controlled
internally
and might
change at
any time.

Endpoints for basic operation 1886

AWS IoT Greengrass Developer Guide, Version 2

Endpoint Port Required Descripti
on

data.iot. region.amazonaw
s.com

443 No Required
if the core
device runs
a version
of the
Greengras
s nucleus
earlier
than v2.4.0
and is
configure
d to use a
network
proxy. The
core device
uses this
endpoint
for MQTT
communica
tion with
AWS IoT
Core when
behind
a proxy.
For more
informati
on, see
Configure
a network
proxy.

Endpoints for basic operation 1887

AWS IoT Greengrass Developer Guide, Version 2

Endpoints for installation with automatic provisioning

Greengrass core devices use the following endpoints and ports when you install the AWS IoT
Greengrass Core software with automatic resource provisioning.

Endpoint Port Required Descripti
on

iot.region.amazonaws.com 443 Yes Used to
create
AWS IoT
resources
and
retrieve
informati
on about
existing
AWS IoT
resources.

iam.amazonaws.com 443 Yes Used to
create IAM
resources
and
retrieve
informati
on about
existing
IAM
resources.

sts.region.amazonaws.com 443 Yes Used to
get the
ID of
your AWS
account.

Endpoints for installation with automatic provisioning 1888

AWS IoT Greengrass Developer Guide, Version 2

Endpoint Port Required Descripti
on

greengrass. region.amazonaw
s.com

443 No Required
if you use
the --
deploy-
dev-
tools
argument
to deploy
the
Greengras
s CLI
component
to the core
device.

Endpoints for AWS-provided components

Greengrass core devices use additional endpoints depending on which software components they
run. You can find the endpoints that each AWS-provided component requires in the Requirements
section on each component's page in this developer guide. For more information, see AWS-
provided components.

Compliance validation for AWS IoT Greengrass

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

Endpoints for AWS-provided components 1889

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html

AWS IoT Greengrass Developer Guide, Version 2

• Security Compliance & Governance – These solution implementation guides discuss architectural
considerations and provide steps for deploying security and compliance features.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

FIPS endpoints

AWS IoT Greengrass supports the use of FIPS (Federal Information Processing Standard (FIPS)
140-2) endpoints. When FIPS mode is enabled, all data transmissions, including both HTTP

FIPS endpoints 1890

https://aws.amazon.com/solutions/security/security-compliance-governance/
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/compliance/fips/
https://aws.amazon.com/compliance/fips/

AWS IoT Greengrass Developer Guide, Version 2

and MQTT protocols, to AWS Cloud services should invoke and establish connections with the
corresponding FIPS-compliant endpoints (FIPS - Amazon Web Services (AWS)).

MQTT communications to AWS IoT utilize the IoT dataplane FIPS endpoint (Connecting to AWS IoT
FIPS endpoints - AWS IoT Core) and the AWS-developed FIPS-compliant cryptographic library aws-
lc.

For HTTP communications in Greengrass:

• For nucleus and plugin components, all SDK HTTP clients are configured with FIPS endpoints by
setting the system property AWS_USE_FIPS_ENDPOINT to true;

• For generic components, all components start with the system property
AWS_USE_FIPS_ENDPOINT set to true. This process ensures that the SDK HTTP clients used by
these generic components send requests to FIPS-compliant endpoints.

Note

In the case of Stream manager, Nucleus passes the environment variable
AWS_GG_FIPS_MODE. This environment variable allows the HTTP clients utilized within the
Stream Manager to identify and connect to the corresponding FIPS-compliant endpoint.

AWS IoT Greengrass offers two methods to enable FIPS mode: provisioning and deployment.
To activate the FIPS mode, you have to set the configuration parameter fipsMode to true,
Nucleus then sets the system property AWS_USE_FIPS_ENDPOINT to true and propagate it as an
environment variable to all other components. Additionally, AWS IoT Greengrass will download
a root CA certificate (CA3) and append it to the existing rootCA.pem (or AmazonRootCA1.pem)
file. If you enable FIPS through a new deployment, Nucleus will restart to ensure that the system
property takes effect after enabling FIPS mode.

Apart from configuring the fipsMode parameter, you must also configure the iotDataEndpoint,
iotCredEndpoint and greengrassDataEndpoint parameters. For more information, see the
relevant document below.

FIPS endpoints 1891

https://aws.amazon.com/compliance/fips/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-connect-fips.html#iot-connect-fips-data
https://docs.aws.amazon.com/iot/latest/developerguide/iot-connect-fips.html#iot-connect-fips-data

AWS IoT Greengrass Developer Guide, Version 2

Enable FIPS endpoints with deployment

Get the AWS IoT endpoints for your AWS account, and save them to use later. Your device uses
these endpoints to connect to AWS IoT. There are two endpoints required, the iotDataEndpoint
and the iotCredEndpoint. Do the following:

1. Get the FIPS data endpoint for your region in the AWS IoT Core FIPS data plane endpoints.
The FIPS data endpoint for your AWS account should look like this: data.iot-fips.us-
west-2.amazonaws.com

2. Get the FIPS credentials endpoint for your region in the AWS IoT Core FIPS data plane
endpoints. The FIPS credentials endpoint for your AWS account should look like this:
data.credentials.iot-fips.us-west-2.amazonaws.com

Then, to enable FIPS with a deployment, you need to apply the following configuration to Nucleus.
The configuration to merge on the deployment is as follows.

Console

Configuration to merge

{
 "fipsMode": "true",
 "iotDataEndpoint": "data.iot-fips.us-west-2.amazonaws.com",
 "greengrassDataPlaneEndpoint": "iotData",
 "iotCredEndpoint": "data.credentials.iot-fips.us-west-2.amazonaws.com"
}

AWS CLI

The following command creates a deployment to a core device.

aws greengrassv2 create-deployment --cli-input-json file://dashboard-deployment.json

The dashboard-deployment.json file contains the following JSON document.

{
 "targetArn": "arn:aws:iot:us-west-2:123456789012:thing/MyGreengrassCore",
 "deploymentName": "Deployment for MyGreengrassCore",

Enable FIPS endpoints with deployment 1892

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#iot-core-data-plane-endpoints
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#iot-core-data-plane-endpoints
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#iot-core-data-plane-endpoints

AWS IoT Greengrass Developer Guide, Version 2

 "components": {
 "aws.greengrass.Nucleus": {
 "componentVersion": "2.13.0",
 "configurationUpdate": {
 "merge":{\"fipsMode\":\"true\",\"iotDataEndpoint\":\"data.iot-fips.us-
west-2.amazonaws.com\",\"greengrassDataPlaneEndpoint\":\"iotData\",\"iotCredEndpoint
\":\"data.credentials.iot-fips.us-west-2.amazonaws.com\"}"
 }
 }
 }
}

Greengrass CLI

The following Greengrass CLI command creates a local deployment on a core device.

sudo greengrass-cli deployment create \
 --recipeDir recipes \
 --artifactDir artifacts \
 --merge "aws.greengrass.Nucleus=2.13.0" \
 --update-config dashboard-configuration.json

The dashboard-configuration.json file contains the following JSON document.

{
 "aws.greengrass.Nucleus": {
 "MERGE": {
 "fipsMode": "true",
 "iotDataEndpoint": "data.iot-fips.us-west-2.amazonaws.com",
 "greengrassDataPlaneEndpoint": "iotData",
 "iotCredEndpoint": "data.credentials.iot-fips.us-west-2.amazonaws.com"

 }
 }
}

Install Nucleus with FIPS endpoints with manual resource provisioning

Manually provision AWS resources for AWS IoT Greengrass V2 core devices with FIPS endpoints

Install Nucleus with FIPS endpoints with manual resource provisioning 1893

AWS IoT Greengrass Developer Guide, Version 2

Important

Before you download the AWS IoT Greengrass Core software, check that your core device
meets the requirements to install and run the AWS IoT Greengrass Core software v2.0.

Topics

• Retrieve AWS IoT endpoints

• Create an AWS IoT thing

• Create the thing certificate

• Configure the thing certificate

• Create a token exchange role

• Download certificates to the device

• Set up the device environment

• Download the AWS IoT Greengrass Core software

• Install the AWS IoT Greengrass Core software

Retrieve AWS IoT endpoints

Get the AWS IoT endpoints for your AWS account, and save them to use later. Your device uses
these endpoints to connect to AWS IoT. There are two endpoints required, the iotDataEndpoint
and the iotCredEndpoint. Do the following:

1. Get the FIPS data endpoint for your region in the AWS IoT Core FIPS data plane endpoints.
The FIPS data endpoint for your AWS account should look like this: data.iot-fips.us-
west-2.amazonaws.com

2. Get the FIPS credentials endpoint for your region in the AWS IoT Core FIPS data plane
endpoints. The FIPS credentials endpoint for your AWS account should look like this:
data.credentials.iot-fips.us-west-2.amazonaws.com

Create an AWS IoT thing

AWS IoT things represent devices and logical entities that connect to AWS IoT. Greengrass core
devices are AWS IoT things. When you register a device as an AWS IoT thing, that device can use a
digital certificate to authenticate with AWS.

Install Nucleus with FIPS endpoints with manual resource provisioning 1894

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#iot-core-data-plane-endpoints
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#iot-core-data-plane-endpoints
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#iot-core-data-plane-endpoints

AWS IoT Greengrass Developer Guide, Version 2

In this section, you create an AWS IoT thing that represents your device.

To create an AWS IoT thing

1. Create an AWS IoT thing for your device. On your development computer, run the following
command.

• Replace MyGreengrassCore with the thing name to use. This name is also the name of
your Greengrass core device.

Note

The thing name can't contain colon (:) characters.

aws iot create-thing --thing-name MyGreengrassCore

The response looks similar to the following example, if the request succeeds.

{
 "thingName": "MyGreengrassCore",
 "thingArn": "arn:aws:iot:us-west-2:123456789012:thing/MyGreengrassCore",
 "thingId": "8cb4b6cd-268e-495d-b5b9-1713d71dbf42"
}

2. (Optional) Add the AWS IoT thing to a new or existing thing group. You use thing groups to
manage fleets of Greengrass core devices. When you deploy software components to your
devices, you can target individual devices or groups of devices. You can add a device to a
thing group with an active Greengrass deployment to deploy that thing group's software
components to the device. Do the following:

a. (Optional) Create an AWS IoT thing group.

• Replace MyGreengrassCoreGroup with the name of the thing group to create.

Note

The thing group name can't contain colon (:) characters.

Install Nucleus with FIPS endpoints with manual resource provisioning 1895

AWS IoT Greengrass Developer Guide, Version 2

aws iot create-thing-group --thing-group-name MyGreengrassCoreGroup

The response looks similar to the following example, if the request succeeds.

{
 "thingGroupName": "MyGreengrassCoreGroup",
 "thingGroupArn": "arn:aws:iot:us-west-2:123456789012:thinggroup/
MyGreengrassCoreGroup",
 "thingGroupId": "4df721e1-ff9f-4f97-92dd-02db4e3f03aa"
}

b. Add the AWS IoT thing to a thing group.

• Replace MyGreengrassCore with the name of your AWS IoT thing.

• Replace MyGreengrassCoreGroup with the name of the thing group.

aws iot add-thing-to-thing-group --thing-name MyGreengrassCore --thing-group-
name MyGreengrassCoreGroup

The command doesn't have any output if the request succeeds.

Create the thing certificate

When you register a device as an AWS IoT thing, that device can use a digital certificate to
authenticate with AWS. This certificate allows the device to communicate with AWS IoT and AWS
IoT Greengrass.

In this section, you create and download certificates that your device can use to connect to AWS.

If you want to configure the AWS IoT Greengrass Core software to use a hardware security module
(HSM) to securely store the private key and certificate, follow the steps to create the certificate
from a private key in an HSM. Otherwise, follow the steps to create the certificate and private key
in the AWS IoT service. The hardware security feature is available on Linux devices only. For more
information about hardware security and requirements to use it, see Hardware security integration.

Install Nucleus with FIPS endpoints with manual resource provisioning 1896

AWS IoT Greengrass Developer Guide, Version 2

Create the certificate and private key in the AWS IoT service

To create the thing certificate

1. Create a folder where you download the certificates for the AWS IoT thing.

mkdir greengrass-v2-certs

2. Create and download the certificates for the AWS IoT thing.

aws iot create-keys-and-certificate --set-as-active --certificate-pem-outfile
 greengrass-v2-certs/device.pem.crt --public-key-outfile greengrass-v2-certs/
public.pem.key --private-key-outfile greengrass-v2-certs/private.pem.key

The response looks similar to the following example, if the request succeeds.

{
 "certificateArn": "arn:aws:iot:us-west-2:123456789012:cert/
aa0b7958770878eabe251d8a7ddd547f4889c524c9b574ab9fbf65f32248b1d4",
 "certificateId":
 "aa0b7958770878eabe251d8a7ddd547f4889c524c9b574ab9fbf65f32248b1d4",
 "certificatePem": "-----BEGIN CERTIFICATE-----
MIICiTCCAfICCQD6m7oRw0uXOjANBgkqhkiG9w
 0BAQUFADCBiDELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAldBMRAwDgYDVQQHEwdTZ
 WF0dGxlMQ8wDQYDVQQKEwZBbWF6b24xFDASBgNVBAsTC0lBTSBDb25zb2xlMRIw
 EAYDVQQDEwlUZXN0Q2lsYWMxHzAdBgkqhkiG9w0BCQEWEG5vb25lQGFtYXpvbi5
 jb20wHhcNMTEwNDI1MjA0NTIxWhcNMTIwNDI0MjA0NTIxWjCBiDELMAkGA1UEBh
 MCVVMxCzAJBgNVBAgTAldBMRAwDgYDVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBb
 WF6b24xFDASBgNVBAsTC0lBTSBDb25zb2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMx
 HzAdBgkqhkiG9w0BCQEWEG5vb25lQGFtYXpvbi5jb20wgZ8wDQYJKoZIhvcNAQE
 BBQADgY0AMIGJAoGBAMaK0dn+a4GmWIWJ21uUSfwfEvySWtC2XADZ4nB+BLYgVI
 k60CpiwsZ3G93vUEIO3IyNoH/f0wYK8m9TrDHudUZg3qX4waLG5M43q7Wgc/MbQ
 ITxOUSQv7c7ugFFDzQGBzZswY6786m86gpEIbb3OhjZnzcvQAaRHhdlQWIMm2nr
 AgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAtCu4nUhVVxYUntneD9+h8Mg9q6q+auN
 KyExzyLwaxlAoo7TJHidbtS4J5iNmZgXL0FkbFFBjvSfpJIlJ00zbhNYS5f6Guo
 EDmFJl0ZxBHjJnyp378OD8uTs7fLvjx79LjSTbNYiytVbZPQUQ5Yaxu2jXnimvw
 3rrszlaEXAMPLE=
-----END CERTIFICATE-----",
 "keyPair": {
 "PublicKey": "-----BEGIN PUBLIC KEY-----\
MIIBIjANBgkqhkEXAMPLEQEFAAOCAQ8AMIIBCgKCAQEAEXAMPLE1nnyJwKSMHw4h\
MMEXAMPLEuuN/dMAS3fyce8DW/4+EXAMPLEyjmoF/YVF/gHr99VEEXAMPLE5VF13\

Install Nucleus with FIPS endpoints with manual resource provisioning 1897

AWS IoT Greengrass Developer Guide, Version 2

59VK7cEXAMPLE67GK+y+jikqXOgHh/xJTwo
+sGpWEXAMPLEDz18xOd2ka4tCzuWEXAMPLEahJbYkCPUBSU8opVkR7qkEXAMPLE1DR6sx2HocliOOLtu6Fkw91swQWEXAMPLE
\\GB3ZPrNh0PzQYvjUStZeccyNCx2EXAMPLEvp9mQOUXP6plfgxwKRX2fEXAMPLEDa\
hJLXkX3rHU2xbxJSq7D+XEXAMPLEcw+LyFhI5mgFRl88eGdsAEXAMPLElnI9EesG\
FQIDAQAB\
-----END PUBLIC KEY-----\
",
 "PrivateKey": "-----BEGIN RSA PRIVATE KEY-----\
key omitted for security reasons\
-----END RSA PRIVATE KEY-----\
"
 }
}

Save the certificate's Amazon Resource Name (ARN) to use to configure the certificate later.

Create the certificate from a private key in an HSM

Note

This feature is available for v2.5.3 and later of the Greengrass nucleus component. AWS IoT
Greengrass doesn't currently support this feature on Windows core devices.

To create the thing certificate

1. On the core device, initialize a PKCS#11 token in the HSM, and generate a private key. The
private key must be an RSA key with an RSA-2048 key size (or larger) or an ECC key.

Note

To use a hardware security module with ECC keys, you must use Greengrass nucleus
v2.5.6 or later.
To use a hardware security module and secret manager, you must use a hardware
security module with RSA keys.

Check the documentation for your HSM to learn how to initialize the token and generate
the private key. If your HSM supports object IDs, specify an object ID when you generate the

Install Nucleus with FIPS endpoints with manual resource provisioning 1898

AWS IoT Greengrass Developer Guide, Version 2

private key. Save the slot ID, user PIN, object label, object ID (if your HSM uses one) that you
specify when you initialize the token and generate the private key. You use these values later
when you import the thing certificate to the HSM and configure the AWS IoT Greengrass Core
software.

2. Create a certificate signing request (CSR) from the private key. AWS IoT uses this CSR to create
a thing certificate for the private key that you generated in the HSM. For information about
how to create a CSR from the private key, see the documentation for your HSM. The CSR is a
file, such as iotdevicekey.csr.

3. Copy the CSR from the device to your development computer. If SSH and SCP are enabled
on the development computer and the device, you can use the scp command on your
development computer to transfer the CSR. Replace device-ip-address with the IP address
of your device, and replace ~/iotdevicekey.csr with the path to the CSR file on the device.

scp device-ip-address:~/iotdevicekey.csr iotdevicekey.csr

4. On your development computer, create a folder where you download the certificate for the
AWS IoT thing.

mkdir greengrass-v2-certs

5. Use the CSR file to create and download the certificate for the AWS IoT thing to your
development computer.

aws iot create-certificate-from-csr --set-as-active --certificate-signing-
request=file://iotdevicekey.csr --certificate-pem-outfile greengrass-v2-certs/
device.pem.crt

The response looks similar to the following example, if the request succeeds.

{
 "certificateArn": "arn:aws:iot:us-west-2:123456789012:cert/
aa0b7958770878eabe251d8a7ddd547f4889c524c9b574ab9fbf65f32248b1d4",
 "certificateId":
 "aa0b7958770878eabe251d8a7ddd547f4889c524c9b574ab9fbf65f32248b1d4",
 "certificatePem": "-----BEGIN CERTIFICATE-----
MIICiTCCAfICCQD6m7oRw0uXOjANBgkqhkiG9w
 0BAQUFADCBiDELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAldBMRAwDgYDVQQHEwdTZ
 WF0dGxlMQ8wDQYDVQQKEwZBbWF6b24xFDASBgNVBAsTC0lBTSBDb25zb2xlMRIw
 EAYDVQQDEwlUZXN0Q2lsYWMxHzAdBgkqhkiG9w0BCQEWEG5vb25lQGFtYXpvbi5

Install Nucleus with FIPS endpoints with manual resource provisioning 1899

AWS IoT Greengrass Developer Guide, Version 2

 jb20wHhcNMTEwNDI1MjA0NTIxWhcNMTIwNDI0MjA0NTIxWjCBiDELMAkGA1UEBh
 MCVVMxCzAJBgNVBAgTAldBMRAwDgYDVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBb
 WF6b24xFDASBgNVBAsTC0lBTSBDb25zb2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMx
 HzAdBgkqhkiG9w0BCQEWEG5vb25lQGFtYXpvbi5jb20wgZ8wDQYJKoZIhvcNAQE
 BBQADgY0AMIGJAoGBAMaK0dn+a4GmWIWJ21uUSfwfEvySWtC2XADZ4nB+BLYgVI
 k60CpiwsZ3G93vUEIO3IyNoH/f0wYK8m9TrDHudUZg3qX4waLG5M43q7Wgc/MbQ
 ITxOUSQv7c7ugFFDzQGBzZswY6786m86gpEIbb3OhjZnzcvQAaRHhdlQWIMm2nr
 AgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAtCu4nUhVVxYUntneD9+h8Mg9q6q+auN
 KyExzyLwaxlAoo7TJHidbtS4J5iNmZgXL0FkbFFBjvSfpJIlJ00zbhNYS5f6Guo
 EDmFJl0ZxBHjJnyp378OD8uTs7fLvjx79LjSTbNYiytVbZPQUQ5Yaxu2jXnimvw
 3rrszlaEXAMPLE=
-----END CERTIFICATE-----"
}

Save the certificate's ARN to use to configure the certificate later.

Configure the thing certificate

Attach the thing certificate to the AWS IoT thing that you created earlier, and add an AWS IoT
policy to the certificate to define the AWS IoT permissions for the core device.

To configure the thing's certificate

1. Attach the certificate to the AWS IoT thing.

• Replace MyGreengrassCore with the name of your AWS IoT thing.

• Replace the certificate Amazon Resource Name (ARN) with the ARN of the certificate that
you created in the previous step.

aws iot attach-thing-principal --thing-name MyGreengrassCore
 --principal arn:aws:iot:us-west-2:123456789012:cert/
aa0b7958770878eabe251d8a7ddd547f4889c524c9b574ab9fbf65f32248b1d4

The command doesn't have any output if the request succeeds.

2. Create and attach an AWS IoT policy that defines the AWS IoT permissions for your Greengrass
core device. The following policy allows access to all MQTT topics and Greengrass operations,
so your device works with custom applications and future changes that require new Greengrass
operations. You can restrict this policy down based on your use case. For more information, see
Minimal AWS IoT policy for AWS IoT Greengrass V2 core devices.

Install Nucleus with FIPS endpoints with manual resource provisioning 1900

AWS IoT Greengrass Developer Guide, Version 2

If you have set up a Greengrass core device before, you can attach its AWS IoT policy instead of
creating a new one.

Do the following:

a. Create a file that contains the AWS IoT policy document that Greengrass core devices
require.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano greengrass-v2-iot-policy.json

Copy the following JSON into the file.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot:Publish",
 "iot:Subscribe",
 "iot:Receive",
 "iot:Connect",
 "greengrass:*"
],
 "Resource": [
 "*"
]
 }
]
}

b. Create an AWS IoT policy from the policy document.

• Replace GreengrassV2IoTThingPolicy with the name of the policy to create.

aws iot create-policy --policy-name GreengrassV2IoTThingPolicy --policy-
document file://greengrass-v2-iot-policy.json

Install Nucleus with FIPS endpoints with manual resource provisioning 1901

AWS IoT Greengrass Developer Guide, Version 2

The response looks similar to the following example, if the request succeeds.

{
 "policyName": "GreengrassV2IoTThingPolicy",
 "policyArn": "arn:aws:iot:us-west-2:123456789012:policy/
GreengrassV2IoTThingPolicy",
 "policyDocument": "{
 \\"Version\\": \\"2012-10-17\\",
 \\"Statement\\": [
 {
 \\"Effect\\": \\"Allow\\",
 \\"Action\\": [
 \\"iot:Publish\\",
 \\"iot:Subscribe\\",
 \\"iot:Receive\\",
 \\"iot:Connect\\",
 \\"greengrass:*\\"
],
 \\"Resource\\": [
 \\"*\\"
]
 }
]
 }",
 "policyVersionId": "1"
}

c. Attach the AWS IoT policy to the AWS IoT thing's certificate.

• Replace GreengrassV2IoTThingPolicy with the name of the policy to attach.

• Replace the target ARN with the ARN of the certificate for your AWS IoT thing.

aws iot attach-policy --policy-name GreengrassV2IoTThingPolicy
 --target arn:aws:iot:us-west-2:123456789012:cert/
aa0b7958770878eabe251d8a7ddd547f4889c524c9b574ab9fbf65f32248b1d4

The command doesn't have any output if the request succeeds.

Install Nucleus with FIPS endpoints with manual resource provisioning 1902

AWS IoT Greengrass Developer Guide, Version 2

Create a token exchange role

Greengrass core devices use an IAM service role, called the token exchange role, to authorize calls to
AWS services. The device uses the AWS IoT credentials provider to get temporary AWS credentials
for this role, which allows the device to interact with AWS IoT, send logs to Amazon CloudWatch
Logs, and download custom component artifacts from Amazon S3. For more information, see
Authorize core devices to interact with AWS services.

You use an AWS IoT role alias to configure the token exchange role for Greengrass core devices.
Role aliases enable you to change the token exchange role for a device but keep the device
configuration the same. For more information, see Authorizing direct calls to AWS services in the
AWS IoT Core Developer Guide.

In this section, you create a token exchange IAM role and an AWS IoT role alias that points to the
role. If you have already set up a Greengrass core device, you can use its token exchange role and
role alias instead of creating new ones. Then, you configure your device's AWS IoT thing to use that
role and alias.

To create a token exchange IAM role

1. Create an IAM role that your device can use as a token exchange role. Do the following:

a. Create a file that contains the trust policy document that the token exchange role
requires.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano device-role-trust-policy.json

Copy the following JSON into the file.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "credentials.iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"

Install Nucleus with FIPS endpoints with manual resource provisioning 1903

https://docs.aws.amazon.com/iot/latest/developerguide/authorizing-direct-aws.html

AWS IoT Greengrass Developer Guide, Version 2

 }
]
}

b. Create the token exchange role with the trust policy document.

• Replace GreengrassV2TokenExchangeRole with the name of the IAM role to create.

aws iam create-role --role-name GreengrassV2TokenExchangeRole --assume-role-
policy-document file://device-role-trust-policy.json

The response looks similar to the following example, if the request succeeds.

{
 "Role": {
 "Path": "/",
 "RoleName": "GreengrassV2TokenExchangeRole",
 "RoleId": "AROAZ2YMUHYHK5OKM77FB",
 "Arn": "arn:aws:iam::123456789012:role/GreengrassV2TokenExchangeRole",
 "CreateDate": "2021-02-06T00:13:29+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "credentials.iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
 }

c. Create a file that contains the access policy document that the token exchange role
requires.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano device-role-access-policy.json

Install Nucleus with FIPS endpoints with manual resource provisioning 1904

AWS IoT Greengrass Developer Guide, Version 2

Copy the following JSON into the file.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams",
 "s3:GetBucketLocation"
],
 "Resource": "*"
 }
]
}

Note

This access policy doesn't allow access to component artifacts in S3 buckets. To
deploy custom components that define artifacts in Amazon S3, you must add
permissions to the role to allow your core device to retrieve component artifacts.
For more information, see Allow access to S3 buckets for component artifacts.
If you don't yet have an S3 bucket for component artifacts, you can add these
permissions later after you create a bucket.

d. Create the IAM policy from the policy document.

• Replace GreengrassV2TokenExchangeRoleAccess with the name of the IAM policy
to create.

aws iam create-policy --policy-name GreengrassV2TokenExchangeRoleAccess --
policy-document file://device-role-access-policy.json

The response looks similar to the following example, if the request succeeds.

Install Nucleus with FIPS endpoints with manual resource provisioning 1905

AWS IoT Greengrass Developer Guide, Version 2

{
 "Policy": {
 "PolicyName": "GreengrassV2TokenExchangeRoleAccess",
 "PolicyId": "ANPAZ2YMUHYHACI7C5Z66",
 "Arn": "arn:aws:iam::123456789012:policy/
GreengrassV2TokenExchangeRoleAccess",
 "Path": "/",
 "DefaultVersionId": "v1",
 "AttachmentCount": 0,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "CreateDate": "2021-02-06T00:37:17+00:00",
 "UpdateDate": "2021-02-06T00:37:17+00:00"
 }
}

e. Attach the IAM policy to the token exchange role.

• Replace GreengrassV2TokenExchangeRole with the name of the IAM role.

• Replace the policy ARN with the ARN of the IAM policy that you created in the previous
step.

aws iam attach-role-policy --role-name GreengrassV2TokenExchangeRole --policy-
arn arn:aws:iam::123456789012:policy/GreengrassV2TokenExchangeRoleAccess

The command doesn't have any output if the request succeeds.

2. Create an AWS IoT role alias that points to the token exchange role.

• Replace GreengrassCoreTokenExchangeRoleAlias with the name of the role alias to
create.

• Replace the role ARN with the ARN of the IAM role that you created in the previous step.

aws iot create-role-alias --role-alias GreengrassCoreTokenExchangeRoleAlias --role-
arn arn:aws:iam::123456789012:role/GreengrassV2TokenExchangeRole

The response looks similar to the following example, if the request succeeds.

Install Nucleus with FIPS endpoints with manual resource provisioning 1906

AWS IoT Greengrass Developer Guide, Version 2

{
 "roleAlias": "GreengrassCoreTokenExchangeRoleAlias",
 "roleAliasArn": "arn:aws:iot:us-west-2:123456789012:rolealias/
GreengrassCoreTokenExchangeRoleAlias"
}

Note

To create a role alias, you must have permission to pass the token exchange IAM
role to AWS IoT. If you receive an error message when you try to create a role alias,
check that your AWS user has this permission. For more information, see Granting
a user permissions to pass a role to an AWS service in the AWS Identity and Access
Management User Guide.

3. Create and attach an AWS IoT policy that allows your Greengrass core device to use the role
alias to assume the token exchange role. If you have set up a Greengrass core device before,
you can attach its role alias AWS IoT policy instead of creating a new one. Do the following:

a. (Optional) Create a file that contains the AWS IoT policy document that the role alias
requires.

For example, on a Linux-based system, you can run the following command to use GNU
nano to create the file.

nano greengrass-v2-iot-role-alias-policy.json

Copy the following JSON into the file.

• Replace the resource ARN with the ARN of your role alias.

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iot:AssumeRoleWithCertificate",
 "Resource": "arn:aws:iot:us-west-2:123456789012:rolealias/
GreengrassCoreTokenExchangeRoleAlias"

Install Nucleus with FIPS endpoints with manual resource provisioning 1907

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html

AWS IoT Greengrass Developer Guide, Version 2

 }
]
}

b. Create an AWS IoT policy from the policy document.

• Replace GreengrassCoreTokenExchangeRoleAliasPolicy with the name of the
AWS IoT policy to create.

aws iot create-policy --policy-name GreengrassCoreTokenExchangeRoleAliasPolicy
 --policy-document file://greengrass-v2-iot-role-alias-policy.json

The response looks similar to the following example, if the request succeeds.

{
 "policyName": "GreengrassCoreTokenExchangeRoleAliasPolicy",
 "policyArn": "arn:aws:iot:us-west-2:123456789012:policy/
GreengrassCoreTokenExchangeRoleAliasPolicy",
 "policyDocument": "{
 \\"Version\\":\\"2012-10-17\\",
 \\"Statement\\": [
 {
 \\"Effect\\": \\"Allow\\",
 \\"Action\\": \\"iot:AssumeRoleWithCertificate\\",
 \\"Resource\\": \\"arn:aws:iot:us-west-2:123456789012:rolealias/
GreengrassCoreTokenExchangeRoleAlias\\"
 }
]
 }",
 "policyVersionId": "1"
}

c. Attach the AWS IoT policy to the AWS IoT thing's certificate.

• Replace GreengrassCoreTokenExchangeRoleAliasPolicy with the name of the
role alias AWS IoT policy.

• Replace the target ARN with the ARN of the certificate for your AWS IoT thing.

Install Nucleus with FIPS endpoints with manual resource provisioning 1908

AWS IoT Greengrass Developer Guide, Version 2

aws iot attach-policy --policy-name GreengrassCoreTokenExchangeRoleAliasPolicy
 --target arn:aws:iot:us-west-2:123456789012:cert/
aa0b7958770878eabe251d8a7ddd547f4889c524c9b574ab9fbf65f32248b1d4

The command doesn't have any output if the request succeeds.

Download certificates to the device

Earlier, you downloaded your device's certificate to your development computer. In this section,
you copy the certificate to your core device to set up the device with the certificates that it uses to
connect to AWS IoT. You also download the Amazon root certificate authority (CA) certificate. If you
use an HSM, you also import the certificate file into the HSM in this section.

• If you created the thing certificate and private key in the AWS IoT service earlier, follow the steps
to download the certificates with private key and certificate files.

• If you created the thing certificate from a private key in a hardware security module (HSM)
earlier, follow the steps to download the certificates with the private key and certificate in an
HSM.

Download certificates with private key and certificate files

To download certificates to the device

1. Copy the AWS IoT thing certificate from your development computer to the device. If SSH and
SCP are enabled on the development computer and the device, you can use the scp command
on your development computer to transfer the certificate. Replace device-ip-address with
the IP address of your device.

scp -r greengrass-v2-certs/ device-ip-address:~

2. Create the Greengrass root folder on the device. You'll later install the AWS IoT Greengrass
Core software to this folder.

Install Nucleus with FIPS endpoints with manual resource provisioning 1909

AWS IoT Greengrass Developer Guide, Version 2

Note

Windows has a path length limitation of 260 characters. If you are using Windows, use
a root folder like C:\greengrass\v2 or D:\greengrass\v2 to keep the Greengrass
components paths under the 260 character limit.

Linux or Unix

• Replace /greengrass/v2 with the folder to use.

sudo mkdir -p /greengrass/v2

Windows Command Prompt

• Replace C:\greengrass\v2 with the folder to use.

mkdir C:\greengrass\v2

PowerShell

• Replace C:\greengrass\v2 with the folder to use.

mkdir C:\greengrass\v2

3. (Linux only) Set the permissions of the parent of the Greengrass root folder.

• Replace /greengrass with the parent of the root folder.

sudo chmod 755 /greengrass

4. Copy the AWS IoT thing certificates to the Greengrass root folder.

Linux or Unix

• Replace /greengrass/v2 with the Greengrass root folder.

Install Nucleus with FIPS endpoints with manual resource provisioning 1910

AWS IoT Greengrass Developer Guide, Version 2

sudo cp -R ~/greengrass-v2-certs/* /greengrass/v2

Windows Command Prompt

• Replace C:\greengrass\v2 with the folder to use.

robocopy %USERPROFILE%\greengrass-v2-certs C:\greengrass\v2 /E

PowerShell

• Replace C:\greengrass\v2 with the folder to use.

cp -Path ~\greengrass-v2-certs* -Destination C:\greengrass\v2

5. Download the Amazon root certificate authority (CA) certificate. AWS IoT certificates are
associated with Amazon's root CA certificate by default. Download the CA1 certificate and the
CA3 certificate.

Linux or Unix

• Replace /greengrass/v2 or C:\greengrass\v2 with the Greengrass root folder.

sudo curl -o /greengrass/v2/AmazonRootCA1.pem https://www.amazontrust.com/
repository/AmazonRootCA1.pem
sudo curl -o - https://www.amazontrust.com/repository/AmazonRootCA3.pem >> /
greengrass/v2/AmazonRootCA1.pem

Windows Command Prompt (CMD)

curl -o C:\greengrass\v2\\AmazonRootCA1.pem https://www.amazontrust.com/
repository/AmazonRootCA1.pem

Install Nucleus with FIPS endpoints with manual resource provisioning 1911

https://www.amazontrust.com/repository/

AWS IoT Greengrass Developer Guide, Version 2

PowerShell

iwr -Uri https://www.amazontrust.com/repository/AmazonRootCA1.pem -OutFile C:
\greengrass\v2\\AmazonRootCA1.pem

Download certificates with the private key and certificate in an HSM

Note

This feature is available for v2.5.3 and later of the Greengrass nucleus component. AWS IoT
Greengrass doesn't currently support this feature on Windows core devices.

To download certificates to the device

1. Copy the AWS IoT thing certificate from your development computer to the device. If SSH and
SCP are enabled on the development computer and the device, you can use the scp command
on your development computer to transfer the certificate. Replace device-ip-address with
the IP address of your device.

scp -r greengrass-v2-certs/ device-ip-address:~

2. Create the Greengrass root folder on the device. You'll later install the AWS IoT Greengrass
Core software to this folder.

Note

Windows has a path length limitation of 260 characters. If you are using Windows, use
a root folder like C:\greengrass\v2 or D:\greengrass\v2 to keep the Greengrass
components paths under the 260 character limit.

Linux or Unix

• Replace /greengrass/v2 with the folder to use.

Install Nucleus with FIPS endpoints with manual resource provisioning 1912

AWS IoT Greengrass Developer Guide, Version 2

sudo mkdir -p /greengrass/v2

Windows Command Prompt

• Replace C:\greengrass\v2 with the folder to use.

mkdir C:\greengrass\v2

PowerShell

• Replace C:\greengrass\v2 with the folder to use.

mkdir C:\greengrass\v2

3. (Linux only) Set the permissions of the parent of the Greengrass root folder.

• Replace /greengrass with the parent of the root folder.

sudo chmod 755 /greengrass

4. Import the thing certificate file, ~/greengrass-v2-certs/device.pem.crt, into the HSM.
Check the documentation for your HSM to learn how to import certificates into it. Import the
certificate using the same token, slot ID, user PIN, object label, and object ID (if your HSM uses
one) where you generated the private key in the HSM earlier.

Note

If you generated the private key earlier without an object ID, and the certificate has
an object ID, set the private key's object ID to the same value as the certificate. Check
the documentation for your HSM to learn how to set the object ID for the private key
object.

5. (Optional) Delete the thing certificate file, so that it exists only in the HSM.

rm ~/greengrass-v2-certs/device.pem.crt

Install Nucleus with FIPS endpoints with manual resource provisioning 1913

AWS IoT Greengrass Developer Guide, Version 2

6. Download the Amazon root certificate authority (CA) certificate. AWS IoT certificates are
associated with Amazon's root CA certificate by default. Download both the CA1 and the CA3
certificate.

Linux or Unix

• Replace /greengrass/v2 or C:\greengrass\v2 with the Greengrass root folder.

sudo curl -o /greengrass/v2/AmazonRootCA1.pem https://www.amazontrust.com/
repository/AmazonRootCA1.pem
sudo curl -o - https://www.amazontrust.com/repository/AmazonRootCA3.pem >> /
greengrass/v2/AmazonRootCA1.pem

Windows Command Prompt (CMD)

curl -o C:\greengrass\v2\\AmazonRootCA1.pem https://www.amazontrust.com/
repository/AmazonRootCA1.pem

PowerShell

iwr -Uri https://www.amazontrust.com/repository/AmazonRootCA1.pem -OutFile C:
\greengrass\v2\\AmazonRootCA1.pem

Set up the device environment

Follow the steps in this section to set up a Linux or Windows device to use as your AWS IoT
Greengrass core device.

Set up a Linux device

To set up a Linux device for AWS IoT Greengrass V2

1. Install the Java runtime, which AWS IoT Greengrass Core software requires to run. We
recommend that you use Amazon Corretto or OpenJDK long-term support versions. Version
8 or higher is required. The following commands show you how to install OpenJDK on your
device.

• For Debian-based or Ubuntu-based distributions:

Install Nucleus with FIPS endpoints with manual resource provisioning 1914

https://www.amazontrust.com/repository/
https://www.amazontrust.com/repository/
https://aws.amazon.com/corretto/
https://openjdk.java.net/

AWS IoT Greengrass Developer Guide, Version 2

sudo apt install default-jdk

• For Red Hat-based distributions:

sudo yum install java-11-openjdk-devel

• For Amazon Linux 2:

sudo amazon-linux-extras install java-openjdk11

• For Amazon Linux 2023:

sudo dnf install java-11-amazon-corretto -y

When the installation completes, run the following command to verify that Java runs on your
Linux device.

java -version

The command prints the version of Java that runs on the device. For example, on a Debian-
based distribution, the output might look similar to the following sample.

openjdk version "11.0.9.1" 2020-11-04
OpenJDK Runtime Environment (build 11.0.9.1+1-post-Debian-1deb10u2)
OpenJDK 64-Bit Server VM (build 11.0.9.1+1-post-Debian-1deb10u2, mixed mode)

2. (Optional) Create the default system user and group that runs components on the device. You
can also choose to let the AWS IoT Greengrass Core software installer create this user and
group during installation with the --component-default-user installer argument. For
more information, see Installer arguments.

sudo useradd --system --create-home ggc_user
sudo groupadd --system ggc_group

3. Verify that the user that runs the AWS IoT Greengrass Core software (typically root), has
permission to run sudo with any user and any group.

a. Run the following command to open the /etc/sudoers file.

Install Nucleus with FIPS endpoints with manual resource provisioning 1915

AWS IoT Greengrass Developer Guide, Version 2

sudo visudo

b. Verify that the permission for the user looks like the following example.

root ALL=(ALL:ALL) ALL

4. (Optional) To run containerized Lambda functions, you must enable cgroups v1, and you must
enable and mount the memory and devices cgroups. If you don't plan to run containerized
Lambda functions, you can skip this step.

To enable these cgroups options, boot the device with the following Linux kernel parameters.

cgroup_enable=memory cgroup_memory=1 systemd.unified_cgroup_hierarchy=0

For information about viewing and setting kernel parameters for your device, see the
documentation for your operating system and boot loader. Follow the instructions to
permanently set the kernel parameters.

5. Install all other required dependencies on your device as indicated by the list of requirements
in Device requirements.

Set up a Windows device

Note

This feature is available for v2.5.0 and later of the Greengrass nucleus component.

To set up a Windows device for AWS IoT Greengrass V2

1. Install the Java runtime, which AWS IoT Greengrass Core software requires to run. We
recommend that you use Amazon Corretto or OpenJDK long-term support versions. Version 8
or higher is required.

2. Check whether Java is available on the PATH system variable, and add it if not. The
LocalSystem account runs the AWS IoT Greengrass Core software, so you must add Java to the
PATH system variable instead of the PATH user variable for your user. Do the following:

a. Press the Windows key to open the start menu.

Install Nucleus with FIPS endpoints with manual resource provisioning 1916

https://en.wikipedia.org/wiki/Cgroups
https://aws.amazon.com/corretto/
https://openjdk.java.net/
https://en.wikipedia.org/wiki/PATH_(variable)

AWS IoT Greengrass Developer Guide, Version 2

b. Type environment variables to search for the system options from the start menu.

c. In the start menu search results, choose Edit the system environment variables to open
the System properties window.

d. Choose Environment variables... to open the Environment Variables window.

e. Under System variables, select Path, and then choose Edit. In the Edit environment
variable window, you can view each path on a separate line.

f. Check if the path to the Java installation's bin folder is present. The path might look
similar to the following example.

C:\\Program Files\\Amazon Corretto\\jdk11.0.13_8\\bin

g. If the Java installation's bin folder is missing from Path, choose New to add it, and then
choose OK.

3. Open the Windows Command Prompt (cmd.exe) as an administrator.

4. Create the default user in the LocalSystem account on the Windows device. Replace password
with a secure password.

net user /add ggc_user password

Tip

Depending on your Windows configuration, the user's password might be set to expire
at a date in the future. To ensure your Greengrass applications continue to operate,
track when the password expires, and update it before it expires. You can also set the
user's password to never expire.

• To check when a user and its password expire, run the following command.

net user ggc_user | findstr /C:expires

• To set a user's password to never expire, run the following command.

wmic UserAccount where "Name='ggc_user'" set PasswordExpires=False

• If you’re using Windows 10 or later where the wmic command is deprecated, run the
following PowerShell command.

Install Nucleus with FIPS endpoints with manual resource provisioning 1917

https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmic

AWS IoT Greengrass Developer Guide, Version 2

Get-CimInstance -Query "SELECT * from Win32_UserAccount WHERE name =
 'ggc_user'" | Set-CimInstance -Property @{PasswordExpires="False"}

5. Download and install the PsExec utility from Microsoft on the device.

6. Use the PsExec utility to store the user name and password for the default user in the
Credential Manager instance for the LocalSystem account. Replace password with the user's
password that you set earlier.

psexec -s cmd /c cmdkey /generic:ggc_user /user:ggc_user /pass:password

If the PsExec License Agreement opens, choose Accept to agree to the license and run the
command.

Note

On Windows devices, the LocalSystem account runs the Greengrass nucleus, and you
must use the PsExec utility to store the default user information in the LocalSystem
account. Using the Credential Manager application stores this information in the
Windows account of the currently logged on user, instead of the LocalSystem account.

Download the AWS IoT Greengrass Core software

You can download the latest version of the AWS IoT Greengrass Core software from the following
location:

• https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-latest.zip

Note

You can download a specific version of the AWS IoT Greengrass Core software from the
following location. Replace version with the version to download.

https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-version.zip

Install Nucleus with FIPS endpoints with manual resource provisioning 1918

https://docs.microsoft.com/en-us/sysinternals/downloads/psexec
https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-latest.zip

AWS IoT Greengrass Developer Guide, Version 2

To download the AWS IoT Greengrass Core software

1. On your core device, download the AWS IoT Greengrass Core software to a file named
greengrass-nucleus-latest.zip.

Linux or Unix

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip > greengrass-nucleus-latest.zip

Windows Command Prompt (CMD)

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip > greengrass-nucleus-latest.zip

PowerShell

iwr -Uri https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip -OutFile greengrass-nucleus-latest.zip

By downloading this software, you agree to the Greengrass Core Software License Agreement.

2. (Optional) To verify the Greengrass nucleus software signature

Note

This feature is available with Greengrass nucleus version 2.9.5 and later.

a. Use the following command to verify your Greengrass nucleus artifact's signature:

Linux or Unix

jarsigner -verify -certs -verbose greengrass-nucleus-latest.zip

Windows Command Prompt (CMD)

The file name might look different depending on the JDK version you install. Replace
jdk17.0.6_10 with the JDK version you installed.

Install Nucleus with FIPS endpoints with manual resource provisioning 1919

https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 2

"C:\\Program Files\\Amazon Corretto\\jdk17.0.6_10\\bin\\jarsigner.exe" -
verify -certs -verbose greengrass-nucleus-latest.zip

PowerShell

The file name might look different depending on the JDK version you install. Replace
jdk17.0.6_10 with the JDK version you installed.

'C:\\Program Files\\Amazon Corretto\\jdk17.0.6_10\\bin\\jarsigner.exe' -
verify -certs -verbose greengrass-nucleus-latest.zip

b. The jarsigner invocation yields output that indicates the results of the verification.

i. If the Greengrass nucleus zip file is signed, the output contains the following
statement:

jar verified.

ii. If the Greengrass nucleus zip file isn't signed, the output contains the following
statement:

jar is unsigned.

c. If you provided the Jarsigner -certs option along with -verify and -verbose options,
the output also includes detailed signer certificate information.

3. Unzip the AWS IoT Greengrass Core software to a folder on your device. Replace
GreengrassInstaller with the folder that you want to use.

Linux or Unix

unzip greengrass-nucleus-latest.zip -d GreengrassInstaller && rm greengrass-
nucleus-latest.zip

Windows Command Prompt (CMD)

mkdir GreengrassInstaller && tar -xf greengrass-nucleus-latest.zip -
C GreengrassInstaller && del greengrass-nucleus-latest.zip

Install Nucleus with FIPS endpoints with manual resource provisioning 1920

AWS IoT Greengrass Developer Guide, Version 2

PowerShell

Expand-Archive -Path greengrass-nucleus-latest.zip -DestinationPath .\
\GreengrassInstaller
rm greengrass-nucleus-latest.zip

4. (Optional) Run the following command to see the version of the AWS IoT Greengrass Core
software.

java -jar ./GreengrassInstaller/lib/Greengrass.jar --version

Important

If you install a version of the Greengrass nucleus earlier than v2.4.0, don't remove this
folder after you install the AWS IoT Greengrass Core software. The AWS IoT Greengrass
Core software uses the files in this folder to run.
If you downloaded the latest version of the software, you install v2.4.0 or later, and you can
remove this folder after you install the AWS IoT Greengrass Core software.

Install the AWS IoT Greengrass Core software

Run the installer with arguments that specify the following actions:

• Install from a partial configuration file that specifies to use the AWS resources and certificates
that you created earlier. The AWS IoT Greengrass Core software uses a configuration file that
specifies the configuration of every Greengrass component on the device. The installer creates a
complete configuration file from the partial configuration file that you provide.

• Specify to use the ggc_user system user to run software components on the core device. On
Linux devices, this command also specifies to use the ggc_group system group, and the installer
creates the system user and group for you.

• Set up the AWS IoT Greengrass Core software as a system service that runs at boot. On Linux
devices, this requires the Systemd init system.

Install Nucleus with FIPS endpoints with manual resource provisioning 1921

https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 2

Important

On Windows core devices, you must set up the AWS IoT Greengrass Core software as a
system service.

For more information about the arguments that you can specify, see Installer arguments.

Note

If you are running AWS IoT Greengrass on a device with limited memory, you can control
the amount of memory that AWS IoT Greengrass Core software uses. To control memory
allocation, you can set JVM heap size options in the jvmOptions configuration parameter
in your nucleus component. For more information, see Control memory allocation with JVM
options.

• If you created the thing certificate and private key in the AWS IoT service earlier, follow the steps
to install the AWS IoT Greengrass Core software with private key and certificate files.

• If you created the thing certificate from a private key in a hardware security module (HSM)
earlier, follow the steps to install the AWS IoT Greengrass Core software with the private key and
certificate in an HSM.

Install the AWS IoT Greengrass Core software with private key and certificate files

To install the AWS IoT Greengrass Core software

1. Check the version of the AWS IoT Greengrass Core software.

• Replace GreengrassInstaller with the path to the folder that contains the software.

java -jar ./GreengrassInstaller/lib/Greengrass.jar --version

2. Use a text editor to create a configuration file named config.yaml to provide to the installer.

For example, on a Linux-based system, you can run the following command to use GNU nano
to create the file.

Install Nucleus with FIPS endpoints with manual resource provisioning 1922

AWS IoT Greengrass Developer Guide, Version 2

nano GreengrassInstaller/config.yaml

Copy the following YAML content into the file. This partial configuration file specifies system
parameters and Greengrass nucleus parameters.

system:
 certificateFilePath: "/greengrass/v2/device.pem.crt"
 privateKeyPath: "/greengrass/v2/private.pem.key"
 rootCaPath: "/greengrass/v2/AmazonRootCA1.pem"
 rootpath: "/greengrass/v2"
 thingName: "MyGreengrassCore"
services:
 aws.greengrass.Nucleus:
 componentType: "NUCLEUS"
 version: "2.14.0"
 configuration:
 awsRegion: "us-west-2"
 iotRoleAlias: "GreengrassCoreTokenExchangeRoleAlias"
 fipsMode: "true"
 iotDataEndpoint: "data.iot-fips.us-west-2.amazonaws.com"
 greengrassDataPlaneEndpoint: "iotData"
 iotCredEndpoint: "data.credentials.iot-fips.us-west-2.amazonaws.com"

Then, do the following:

• Replace each instance of /greengrass/v2 with the Greengrass root folder.

• Replace MyGreengrassCore with the name of the AWS IoT thing.

• Replace 2.14.0 with the version of the AWS IoT Greengrass Core software.

• Replace us-west-2 with the AWS Region where you created the resources.

• Replace GreengrassCoreTokenExchangeRoleAlias with the name of the token
exchange role alias.

• Replace the iotDataEndpoint with your AWS IoT data endpoint.

• Replace the iotCredEndpoint with your AWS IoT credentials endpoint.

3. Run the installer, and specify --init-config to provide the configuration file.

• Replace /greengrass/v2 or C:\greengrass\v2 with the Greengrass root folder.

Install Nucleus with FIPS endpoints with manual resource provisioning 1923

AWS IoT Greengrass Developer Guide, Version 2

• Replace each instance of GreengrassInstaller with the folder where you unpacked the
installer.

Linux or Unix

sudo -E java -Droot="/greengrass/v2" -Dlog.store=FILE \
 -jar ./GreengrassInstaller/lib/Greengrass.jar \
 --init-config ./GreengrassInstaller/config.yaml \
 --component-default-user ggc_user:ggc_group \
 --setup-system-service true

Windows Command Prompt (CMD)

java -Droot="C:\greengrass\v2" "-Dlog.store=FILE" ^
 -jar ./GreengrassInstaller/lib/Greengrass.jar ^
 --init-config ./GreengrassInstaller/config.yaml ^
 --component-default-user ggc_user ^
 --setup-system-service true

PowerShell

java -Droot="C:\greengrass\v2" "-Dlog.store=FILE" `
 -jar ./GreengrassInstaller/lib/Greengrass.jar `
 --init-config ./GreengrassInstaller/config.yaml `
 --component-default-user ggc_user `
 --setup-system-service true

Important

On Windows core devices, you must specify --setup-system-service true to set
up the AWS IoT Greengrass Core software as a system service.

If you specify --setup-system-service true, the installer prints Successfully set
up Nucleus as a system service if it set up and ran the software as a system service.
Otherwise, the installer doesn't output any message if it installs the software successfully.

Install Nucleus with FIPS endpoints with manual resource provisioning 1924

AWS IoT Greengrass Developer Guide, Version 2

Note

You can't use the deploy-dev-tools argument to deploy local development
tools when you run the installer without the --provision true argument.
For information about deploying the Greengrass CLI directly on your device, see
Greengrass Command Line Interface.

4. Verify the installation by viewing the files in the root folder.

Linux or Unix

ls /greengrass/v2

Windows Command Prompt (CMD)

dir C:\greengrass\v2

PowerShell

ls C:\greengrass\v2

If the installation succeeded, the root folder contains several folders, such as config,
packages, and logs.

Install the AWS IoT Greengrass Core software with the private key and certificate in an HSM

Note

This feature is available for v2.5.3 and later of the Greengrass nucleus component. AWS IoT
Greengrass doesn't currently support this feature on Windows core devices.

To install the AWS IoT Greengrass Core software

1. Check the version of the AWS IoT Greengrass Core software.

• Replace GreengrassInstaller with the path to the folder that contains the software.

Install Nucleus with FIPS endpoints with manual resource provisioning 1925

AWS IoT Greengrass Developer Guide, Version 2

java -jar ./GreengrassInstaller/lib/Greengrass.jar --version

2. To enable the AWS IoT Greengrass Core software to use the private key and certificate in
the HSM, install the PKCS#11 provider component when you install the AWS IoT Greengrass
Core software. The PKCS#11 provider component is a plugin that you can configure during
installation. You can download the latest version of the PKCS#11 provider component from
the following location:

• https://d2s8p88vqu9w66.cloudfront.net/releases/Pkcs11Provider/
aws.greengrass.crypto.Pkcs11Provider-latest.jar

Download the PKCS#11 provider plugin to a file named
aws.greengrass.crypto.Pkcs11Provider.jar. Replace GreengrassInstaller with
the folder that you want to use.

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/Pkcs11Provider/
aws.greengrass.crypto.Pkcs11Provider-latest.jar > GreengrassInstaller/
aws.greengrass.crypto.Pkcs11Provider.jar

By downloading this software, you agree to the Greengrass Core Software License Agreement.

3. Use a text editor to create a configuration file named config.yaml to provide to the installer.

For example, on a Linux-based system, you can run the following command to use GNU nano
to create the file.

nano GreengrassInstaller/config.yaml

Copy the following YAML content into the file. This partial configuration file specifies system
parameters, Greengrass nucleus parameters, and PKCS#11 provider parameters.

system:
 certificateFilePath: "/greengrass/v2/device.pem.crt"
 privateKeyPath: "/greengrass/v2/private.pem.key"
 rootCaPath: "/greengrass/v2/AmazonRootCA1.pem"
 rootpath: "/greengrass/v2"
 thingName: "MyGreengrassCore"

Install Nucleus with FIPS endpoints with manual resource provisioning 1926

https://d2s8p88vqu9w66.cloudfront.net/releases/Pkcs11Provider/aws.greengrass.crypto.Pkcs11Provider-latest.jar
https://d2s8p88vqu9w66.cloudfront.net/releases/Pkcs11Provider/aws.greengrass.crypto.Pkcs11Provider-latest.jar
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 2

services:
 aws.greengrass.Nucleus:
 componentType: "NUCLEUS"
 version: "2.14.0"
 configuration:
 awsRegion: "us-west-2"
 iotRoleAlias: "GreengrassCoreTokenExchangeRoleAlias"
 fipsMode: "true"
 iotDataEndpoint: "data.iot-fips.us-west-2.amazonaws.com"
 greengrassDataPlaneEndpoint: "iotData"
 iotCredEndpoint: "data.credentials.iot-fips.us-west-2.amazonaws.com"

Then, do the following:

• Replace each instance of iotdevicekey in the PKCS#11 URIs with the object label where
you created the private key and imported the certificate.

• Replace each instance of /greengrass/v2 with the Greengrass root folder.

• Replace MyGreengrassCore with the name of the AWS IoT thing.

• Replace 2.14.0 with the version of the AWS IoT Greengrass Core software.

• Replace us-west-2 with the AWS Region where you created the resources.

• Replace GreengrassCoreTokenExchangeRoleAlias with the name of the token
exchange role alias.

• Replace the iotDataEndpoint with your AWS IoT data endpoint.

• Replace the iotCredEndpoint with your AWS IoT credentials endpoint.

• Replace the configuration parameters for the
aws.greengrass.crypto.Pkcs11Provider component with the values for the HSM
configuration on the core device.

4. Run the installer, and specify --init-config to provide the configuration file.

• Replace /greengrass/v2 with the Greengrass root folder.

• Replace each instance of GreengrassInstaller with the folder where you unpacked the
installer.

sudo -E java -Droot="/greengrass/v2" -Dlog.store=FILE \
 -jar ./GreengrassInstaller/lib/Greengrass.jar \
 --trusted-plugin ./GreengrassInstaller/aws.greengrass.crypto.Pkcs11Provider.jar \
 --init-config ./GreengrassInstaller/config.yaml \

Install Nucleus with FIPS endpoints with manual resource provisioning 1927

AWS IoT Greengrass Developer Guide, Version 2

 --component-default-user ggc_user:ggc_group \
 --setup-system-service true

Important

On Windows core devices, you must specify --setup-system-service true to set
up the AWS IoT Greengrass Core software as a system service.

If you specify --setup-system-service true, the installer prints Successfully set
up Nucleus as a system service if it set up and ran the software as a system service.
Otherwise, the installer doesn't output any message if it installs the software successfully.

Note

You can't use the deploy-dev-tools argument to deploy local development
tools when you run the installer without the --provision true argument.
For information about deploying the Greengrass CLI directly on your device, see
Greengrass Command Line Interface.

5. Verify the installation by viewing the files in the root folder.

Linux or Unix

ls /greengrass/v2

Windows Command Prompt (CMD)

dir C:\greengrass\v2

PowerShell

ls C:\greengrass\v2

If the installation succeeded, the root folder contains several folders, such as config,
packages, and logs.

Install Nucleus with FIPS endpoints with manual resource provisioning 1928

AWS IoT Greengrass Developer Guide, Version 2

If you installed the AWS IoT Greengrass Core software as a system service, the installer runs the
software for you. Otherwise, you must run the software manually. For more information, see Run
the AWS IoT Greengrass Core software.

For more information about how to configure and use the software and AWS IoT Greengrass, see
the following:

• Configure the AWS IoT Greengrass Core software

• Develop AWS IoT Greengrass components

• Deploy AWS IoT Greengrass components to devices

• Greengrass Command Line Interface

Install FIPS endpoints with fleet provisioning

This feature is available for v2.4.0 and later of the Greengrass nucleus component.

Install FIPS endpoints on your AWS IoT Greengrass Core software with AWS IoT fleet provisioning
for your core devices.

Note

The fleet provisioning plugin doesn't currently support storing private key and certificate
files in a hardware security module (HSM). To use an HSM, install the AWS IoT Greengrass
Core software with manual provisioning.

To install the AWS IoT Greengrass Core software with AWS IoT fleet provisioning, you must set
up resources in your AWS account that AWS IoT uses to provision Greengrass core devices. These
resources include a provisioning template, claim certificates, and a token exchange IAM role. After
you create these resources, you can reuse them to provision multiple core devices in a fleet. For
more information, see Set up AWS IoT fleet provisioning for Greengrass core devices.

Important

Before you download the AWS IoT Greengrass Core software, check that your core device
meets the requirements to install and run the AWS IoT Greengrass Core software v2.0.

Install FIPS endpoints with fleet provisioning 1929

AWS IoT Greengrass Developer Guide, Version 2

Topics

• Prerequisites

• Retrieve AWS IoT endpoints

• Download certificates to the device

• Set up the device environment

• Download the AWS IoT Greengrass Core software

• Download the AWS IoT fleet provisioning plugin

• Install the AWS IoT Greengrass Core software

Prerequisites

To install the AWS IoT Greengrass Core software with AWS IoT fleet provisioning, you must first set
up AWS IoT fleet provisioning for Greengrass core devices. After you complete these steps once,
you can use fleet provisioning to install the AWS IoT Greengrass Core software on any number of
devices.

Retrieve AWS IoT endpoints

Get the FIPS endpoints for your AWS account, and save them to use later. Your device uses these
endpoints to connect to AWS IoT. Do the following:

1. Get the FIPS data endpoint for your region in the AWS IoT Core FIPS data plane endpoints.
The FIPS data endpoint for your AWS account should look like this: data.iot-fips.us-
west-2.amazonaws.com

2. Get the FIPS credentials endpoint for your region in the AWS IoT Core FIPS data plane
endpoints. The FIPS credentials endpoint for your AWS account should look like this:
data.credentials.iot-fips.us-west-2.amazonaws.com

Download certificates to the device

The device uses a claim certificate and private key to authenticate its request to provision AWS
resources and acquire an X.509 device certificate. You can embed the claim certificate and private
key into the device during manufacturing, or copy the certificate and key to the device during
installation. In this section, you copy the claim certificate and private key to the device. You also
download the Amazon Root certificate authority (CA) certificate to the device.

Install FIPS endpoints with fleet provisioning 1930

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#iot-core-data-plane-endpoints
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#iot-core-data-plane-endpoints
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#iot-core-data-plane-endpoints

AWS IoT Greengrass Developer Guide, Version 2

Important

Provisioning claim private keys should be secured at all times, including on Greengrass core
devices. We recommend that you use Amazon CloudWatch metrics and logs to monitor for
indications of misuse, such as unauthorized use of the claim certificate to provision devices.
If you detect misuse, disable the provisioning claim certificate so that it can't be used for
device provisioning. For more information, see Monitoring AWS IoT in the AWS IoT Core
Developer Guide.
To help you better manage the number of devices, and which devices, that register
themselves in your AWS account, you can specify a pre-provisioning hook when you create
a fleet provisioning template. A pre-provisioning hook is an AWS Lambda function that
validates template parameters that devices provide during registration. For example, you
might create a pre-provisioning hook that checks a device ID against a database to verify
that the device has permission to provision. For more information, see Pre-provisioning
hooks in the AWS IoT Core Developer Guide.

To download claim certificates to the device

1. Copy the claim certificate and private key to the device. If SSH and SCP are enabled on the
development computer and the device, you can use the scp command on your development
computer to transfer the claim certificate and private key. The following example command
transfers these files a folder named claim-certs on your development computer to the
device. Replace device-ip-address with the IP address of your device.

scp -r claim-certs/ device-ip-address:~

2. Create the Greengrass root folder on the device. You'll later install the AWS IoT Greengrass
Core software to this folder.

Note

Windows has a path length limitation of 260 characters. If you are using Windows, use
a root folder like C:\greengrass\v2 or D:\greengrass\v2 to keep the Greengrass
components paths under the 260 character limit.

Install FIPS endpoints with fleet provisioning 1931

https://docs.aws.amazon.com/iot/latest/developerguide/monitoring_overview.html
https://docs.aws.amazon.com/iot/latest/developerguide/pre-provisioning-hook.html
https://docs.aws.amazon.com/iot/latest/developerguide/pre-provisioning-hook.html

AWS IoT Greengrass Developer Guide, Version 2

Linux or Unix

• Replace /greengrass/v2 with the folder to use.

sudo mkdir -p /greengrass/v2

Windows Command Prompt

• Replace C:\greengrass\v2 with the folder to use.

mkdir C:\greengrass\v2

PowerShell

• Replace C:\greengrass\v2 with the folder to use.

mkdir C:\greengrass\v2

3. (Linux only) Set the permissions of the parent of the Greengrass root folder.

• Replace /greengrass with the parent of the root folder.

sudo chmod 755 /greengrass

4. Move the claim certificates to the Greengrass root folder.

• Replace /greengrass/v2 or C:\greengrass\v2 with the Greengrass root folder.

Linux or Unix

sudo mv ~/claim-certs /greengrass/v2

Install FIPS endpoints with fleet provisioning 1932

AWS IoT Greengrass Developer Guide, Version 2

Windows Command Prompt (CMD)

move %USERPROFILE%\claim-certs C:\greengrass\v2

PowerShell

mv -Path ~\claim-certs -Destination C:\greengrass\v2

5. Download both the CA1 certificate and the CA3 certificate.

Linux or Unix

sudo curl -o - https://www.amazontrust.com/repository/AmazonRootCA3.pem >> /
greengrass/v2/AmazonRootCA1.pem

Windows Command Prompt (CMD)

curl -o C:\greengrass\v2\\AmazonRootCA1.pem https://www.amazontrust.com/
repository/AmazonRootCA1.pem

PowerShell

iwr -Uri https://www.amazontrust.com/repository/AmazonRootCA1.pem -OutFile C:
\greengrass\v2\\AmazonRootCA1.pem

Set up the device environment

Follow the steps in this section to set up a Linux or Windows device to use as your AWS IoT
Greengrass core device.

Set up a Linux device

To set up a Linux device for AWS IoT Greengrass V2

1. Install the Java runtime, which AWS IoT Greengrass Core software requires to run. We
recommend that you use Amazon Corretto or OpenJDK long-term support versions. Version
8 or higher is required. The following commands show you how to install OpenJDK on your
device.

Install FIPS endpoints with fleet provisioning 1933

https://www.amazontrust.com/repository/
https://aws.amazon.com/corretto/
https://openjdk.java.net/

AWS IoT Greengrass Developer Guide, Version 2

• For Debian-based or Ubuntu-based distributions:

sudo apt install default-jdk

• For Red Hat-based distributions:

sudo yum install java-11-openjdk-devel

• For Amazon Linux 2:

sudo amazon-linux-extras install java-openjdk11

• For Amazon Linux 2023:

sudo dnf install java-11-amazon-corretto -y

When the installation completes, run the following command to verify that Java runs on your
Linux device.

java -version

The command prints the version of Java that runs on the device. For example, on a Debian-
based distribution, the output might look similar to the following sample.

openjdk version "11.0.9.1" 2020-11-04
OpenJDK Runtime Environment (build 11.0.9.1+1-post-Debian-1deb10u2)
OpenJDK 64-Bit Server VM (build 11.0.9.1+1-post-Debian-1deb10u2, mixed mode)

2. (Optional) Create the default system user and group that runs components on the device. You
can also choose to let the AWS IoT Greengrass Core software installer create this user and
group during installation with the --component-default-user installer argument. For
more information, see Installer arguments.

sudo useradd --system --create-home ggc_user
sudo groupadd --system ggc_group

3. Verify that the user that runs the AWS IoT Greengrass Core software (typically root), has
permission to run sudo with any user and any group.

Install FIPS endpoints with fleet provisioning 1934

AWS IoT Greengrass Developer Guide, Version 2

a. Run the following command to open the /etc/sudoers file.

sudo visudo

b. Verify that the permission for the user looks like the following example.

root ALL=(ALL:ALL) ALL

4. (Optional) To run containerized Lambda functions, you must enable cgroups v1, and you must
enable and mount the memory and devices cgroups. If you don't plan to run containerized
Lambda functions, you can skip this step.

To enable these cgroups options, boot the device with the following Linux kernel parameters.

cgroup_enable=memory cgroup_memory=1 systemd.unified_cgroup_hierarchy=0

For information about viewing and setting kernel parameters for your device, see the
documentation for your operating system and boot loader. Follow the instructions to
permanently set the kernel parameters.

5. Install all other required dependencies on your device as indicated by the list of requirements
in Device requirements.

Set up a Windows device

Note

This feature is available for v2.5.0 and later of the Greengrass nucleus component.

To set up a Windows device for AWS IoT Greengrass V2

1. Install the Java runtime, which AWS IoT Greengrass Core software requires to run. We
recommend that you use Amazon Corretto or OpenJDK long-term support versions. Version 8
or higher is required.

2. Check whether Java is available on the PATH system variable, and add it if not. The
LocalSystem account runs the AWS IoT Greengrass Core software, so you must add Java to the
PATH system variable instead of the PATH user variable for your user. Do the following:

Install FIPS endpoints with fleet provisioning 1935

https://en.wikipedia.org/wiki/Cgroups
https://aws.amazon.com/corretto/
https://openjdk.java.net/
https://en.wikipedia.org/wiki/PATH_(variable)

AWS IoT Greengrass Developer Guide, Version 2

a. Press the Windows key to open the start menu.

b. Type environment variables to search for the system options from the start menu.

c. In the start menu search results, choose Edit the system environment variables to open
the System properties window.

d. Choose Environment variables... to open the Environment Variables window.

e. Under System variables, select Path, and then choose Edit. In the Edit environment
variable window, you can view each path on a separate line.

f. Check if the path to the Java installation's bin folder is present. The path might look
similar to the following example.

C:\\Program Files\\Amazon Corretto\\jdk11.0.13_8\\bin

g. If the Java installation's bin folder is missing from Path, choose New to add it, and then
choose OK.

3. Open the Windows Command Prompt (cmd.exe) as an administrator.

4. Create the default user in the LocalSystem account on the Windows device. Replace password
with a secure password.

net user /add ggc_user password

Tip

Depending on your Windows configuration, the user's password might be set to expire
at a date in the future. To ensure your Greengrass applications continue to operate,
track when the password expires, and update it before it expires. You can also set the
user's password to never expire.

• To check when a user and its password expire, run the following command.

net user ggc_user | findstr /C:expires

• To set a user's password to never expire, run the following command.

wmic UserAccount where "Name='ggc_user'" set PasswordExpires=False

Install FIPS endpoints with fleet provisioning 1936

AWS IoT Greengrass Developer Guide, Version 2

• If you’re using Windows 10 or later where the wmic command is deprecated, run the
following PowerShell command.

Get-CimInstance -Query "SELECT * from Win32_UserAccount WHERE name =
 'ggc_user'" | Set-CimInstance -Property @{PasswordExpires="False"}

5. Download and install the PsExec utility from Microsoft on the device.

6. Use the PsExec utility to store the user name and password for the default user in the
Credential Manager instance for the LocalSystem account. Replace password with the user's
password that you set earlier.

psexec -s cmd /c cmdkey /generic:ggc_user /user:ggc_user /pass:password

If the PsExec License Agreement opens, choose Accept to agree to the license and run the
command.

Note

On Windows devices, the LocalSystem account runs the Greengrass nucleus, and you
must use the PsExec utility to store the default user information in the LocalSystem
account. Using the Credential Manager application stores this information in the
Windows account of the currently logged on user, instead of the LocalSystem account.

Download the AWS IoT Greengrass Core software

You can download the latest version of the AWS IoT Greengrass Core software from the following
location:

• https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-latest.zip

Note

You can download a specific version of the AWS IoT Greengrass Core software from the
following location. Replace version with the version to download.

Install FIPS endpoints with fleet provisioning 1937

https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmic
https://docs.microsoft.com/en-us/sysinternals/downloads/psexec
https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-latest.zip

AWS IoT Greengrass Developer Guide, Version 2

https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-version.zip

To download the AWS IoT Greengrass Core software

1. On your core device, download the AWS IoT Greengrass Core software to a file named
greengrass-nucleus-latest.zip.

Linux or Unix

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip > greengrass-nucleus-latest.zip

Windows Command Prompt (CMD)

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip > greengrass-nucleus-latest.zip

PowerShell

iwr -Uri https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip -OutFile greengrass-nucleus-latest.zip

By downloading this software, you agree to the Greengrass Core Software License Agreement.

2. (Optional) To verify the Greengrass nucleus software signature

Note

This feature is available with Greengrass nucleus version 2.9.5 and later.

a. Use the following command to verify your Greengrass nucleus artifact's signature:

Linux or Unix

jarsigner -verify -certs -verbose greengrass-nucleus-latest.zip

Install FIPS endpoints with fleet provisioning 1938

https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 2

Windows Command Prompt (CMD)

The file name might look different depending on the JDK version you install. Replace
jdk17.0.6_10 with the JDK version you installed.

"C:\\Program Files\\Amazon Corretto\\jdk17.0.6_10\\bin\\jarsigner.exe" -
verify -certs -verbose greengrass-nucleus-latest.zip

PowerShell

The file name might look different depending on the JDK version you install. Replace
jdk17.0.6_10 with the JDK version you installed.

'C:\\Program Files\\Amazon Corretto\\jdk17.0.6_10\\bin\\jarsigner.exe' -
verify -certs -verbose greengrass-nucleus-latest.zip

b. The jarsigner invocation yields output that indicates the results of the verification.

i. If the Greengrass nucleus zip file is signed, the output contains the following
statement:

jar verified.

ii. If the Greengrass nucleus zip file isn't signed, the output contains the following
statement:

jar is unsigned.

c. If you provided the Jarsigner -certs option along with -verify and -verbose options,
the output also includes detailed signer certificate information.

3. Unzip the AWS IoT Greengrass Core software to a folder on your device. Replace
GreengrassInstaller with the folder that you want to use.

Linux or Unix

unzip greengrass-nucleus-latest.zip -d GreengrassInstaller && rm greengrass-
nucleus-latest.zip

Install FIPS endpoints with fleet provisioning 1939

AWS IoT Greengrass Developer Guide, Version 2

Windows Command Prompt (CMD)

mkdir GreengrassInstaller && tar -xf greengrass-nucleus-latest.zip -
C GreengrassInstaller && del greengrass-nucleus-latest.zip

PowerShell

Expand-Archive -Path greengrass-nucleus-latest.zip -DestinationPath .\
\GreengrassInstaller
rm greengrass-nucleus-latest.zip

4. (Optional) Run the following command to see the version of the AWS IoT Greengrass Core
software.

java -jar ./GreengrassInstaller/lib/Greengrass.jar --version

Important

If you install a version of the Greengrass nucleus earlier than v2.4.0, don't remove this
folder after you install the AWS IoT Greengrass Core software. The AWS IoT Greengrass
Core software uses the files in this folder to run.
If you downloaded the latest version of the software, you install v2.4.0 or later, and you can
remove this folder after you install the AWS IoT Greengrass Core software.

Download the AWS IoT fleet provisioning plugin

You can download the latest version of the AWS IoT fleet provisioning plugin from the following
location:

• https://d2s8p88vqu9w66.cloudfront.net/releases/aws-greengrass-FleetProvisioningByClaim/
fleetprovisioningbyclaim-latest.jar

Note

You can download a specific version of the AWS IoT fleet provisioning plugin from the
following location. Replace version with the version to download. For more information

Install FIPS endpoints with fleet provisioning 1940

https://d2s8p88vqu9w66.cloudfront.net/releases/aws-greengrass-FleetProvisioningByClaim/fleetprovisioningbyclaim-latest.jar
https://d2s8p88vqu9w66.cloudfront.net/releases/aws-greengrass-FleetProvisioningByClaim/fleetprovisioningbyclaim-latest.jar

AWS IoT Greengrass Developer Guide, Version 2

about each version of the fleet provisioning plugin, see AWS IoT fleet provisioning plugin
changelog.

https://d2s8p88vqu9w66.cloudfront.net/releases/aws-greengrass-
FleetProvisioningByClaim/fleetprovisioningbyclaim-version.jar

The fleet provisioning plugin is open source. To view its source code, see the AWS IoT fleet
provisioning plugin on GitHub.

To download the AWS IoT fleet provisioning plugin

• On your device, download the AWS IoT fleet provisioning plugin to a file named
aws.greengrass.FleetProvisioningByClaim.jar. Replace GreengrassInstaller
with the folder that you want to use.

Linux or Unix

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/aws-greengrass-
FleetProvisioningByClaim/fleetprovisioningbyclaim-latest.jar
 > GreengrassInstaller/aws.greengrass.FleetProvisioningByClaim.jar

Windows Command Prompt (CMD)

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/aws-greengrass-
FleetProvisioningByClaim/fleetprovisioningbyclaim-latest.jar
 > GreengrassInstaller/aws.greengrass.FleetProvisioningByClaim.jar

PowerShell

iwr -Uri https://d2s8p88vqu9w66.cloudfront.net/releases/aws-greengrass-
FleetProvisioningByClaim/fleetprovisioningbyclaim-latest.jar -
OutFile GreengrassInstaller/aws.greengrass.FleetProvisioningByClaim.jar

By downloading this software, you agree to the Greengrass Core Software License Agreement.

Install FIPS endpoints with fleet provisioning 1941

https://github.com/aws-greengrass/aws-greengrass-fleet-provisioning-by-claim
https://github.com/aws-greengrass/aws-greengrass-fleet-provisioning-by-claim
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 2

Install the AWS IoT Greengrass Core software

Run the installer with arguments that specify the following actions:

• Install from a partial configuration file that specifies to use the fleet provisioning plugin to
provision AWS resources. The AWS IoT Greengrass Core software uses a configuration file that
specifies the configuration of every Greengrass component on the device. The installer creates
a complete configuration file from the partial configuration file that you provide and the AWS
resources that the fleet provisioning plugin creates.

• Specify to use the ggc_user system user to run software components on the core device. On
Linux devices, this command also specifies to use the ggc_group system group, and the installer
creates the system user and group for you.

• Set up the AWS IoT Greengrass Core software as a system service that runs at boot. On Linux
devices, this requires the Systemd init system.

Important

On Windows core devices, you must set up the AWS IoT Greengrass Core software as a
system service.

For more information about the arguments that you can specify, see Installer arguments.

Note

If you are running AWS IoT Greengrass on a device with limited memory, you can control
the amount of memory that AWS IoT Greengrass Core software uses. To control memory
allocation, you can set JVM heap size options in the jvmOptions configuration parameter
in your nucleus component. For more information, see Control memory allocation with JVM
options.

To install the AWS IoT Greengrass Core software

1. Check the version of the AWS IoT Greengrass Core software.

• Replace GreengrassInstaller with the path to the folder that contains the software.

Install FIPS endpoints with fleet provisioning 1942

https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 2

java -jar ./GreengrassInstaller/lib/Greengrass.jar --version

2. Use a text editor to create a configuration file named config.yaml to provide to the installer.

For example, on a Linux-based system, you can run the following command to use GNU nano
to create the file.

nano GreengrassInstaller/config.yaml

Copy the following YAML content into the file. This partial configuration file specifies
parameters for the fleet provisioning plugin. For more information about the options that you
can specify, see Configure the AWS IoT fleet provisioning plugin.

Linux or Unix

services:
 aws.greengrass.Nucleus:
 version: "2.14.0"
 configuration:
 fipsMode: "true"
 greengrassDataPlaneEndpoint: "iotData"
 aws.greengrass.FleetProvisioningByClaim:
 configuration:
 rootPath: "/greengrass/v2"
 awsRegion: "us-west-2"
 iotDataEndpoint: "data.iot-fips.us-west-2.amazonaws.com"
 iotCredEndpoint: "data.credentials.iot-fips.us-west-2.amazonaws.com"
 iotRoleAlias: "GreengrassCoreTokenExchangeRoleAlias"
 provisioningTemplate: "GreengrassFleetProvisioningTemplate"
 claimCertificatePath: "/greengrass/v2/claim-certs/claim.pem.crt"
 claimCertificatePrivateKeyPath: "/greengrass/v2/claim-certs/
claim.private.pem.key"
 rootCaPath: "/greengrass/v2/AmazonRootCA1.pem"
 templateParameters:
 ThingName: "MyGreengrassCore"
 ThingGroupName: "MyGreengrassCoreGroup"

Install FIPS endpoints with fleet provisioning 1943

AWS IoT Greengrass Developer Guide, Version 2

Windows

services:
 aws.greengrass.Nucleus:
 version: "2.14.0"
 aws.greengrass.FleetProvisioningByClaim:
 configuration:
 rootPath: "C:\\greengrass\\v2"
 awsRegion: "us-west-2"
 iotDataEndpoint: "device-data-prefix-ats.iot.us-west-2.amazonaws.com"
 iotCredentialEndpoint: "device-credentials-prefix.credentials.iot.us-
west-2.amazonaws.com"
 iotRoleAlias: "GreengrassCoreTokenExchangeRoleAlias"
 provisioningTemplate: "GreengrassFleetProvisioningTemplate"
 claimCertificatePath: "C:\\greengrass\\v2\\claim-certs\\claim.pem.crt"
 claimCertificatePrivateKeyPath: "C:\\greengrass\\v2\\claim-certs\
\claim.private.pem.key"
 rootCaPath: "C:\\greengrass\\v2\\AmazonRootCA1.pem"
 templateParameters:
 ThingName: "MyGreengrassCore"
 ThingGroupName: "MyGreengrassCoreGroup"

Then, do the following:

• Replace 2.14.0 with the version of the AWS IoT Greengrass Core software.

• Replace each instance of /greengrass/v2 or C:\greengrass\v2 with the Greengrass
root folder.

Note

On Windows devices, you must specify path separators as double backslashes (\\),
such as C:\\greengrass\\v2.

• Replace us-west-2 with the AWS Region where you created the provisioning template and
other resources.

• Replace the iotDataEndpoint with your AWS IoT data endpoint.

• Replace the iotCredentialEndpoint with your AWS IoT credentials endpoint.

Install FIPS endpoints with fleet provisioning 1944

AWS IoT Greengrass Developer Guide, Version 2

• Replace GreengrassCoreTokenExchangeRoleAlias with the name of the token
exchange role alias.

• Replace GreengrassFleetProvisioningTemplate with the name of the fleet
provisioning template.

• Replace the claimCertificatePath with the path to the claim certificate on the device.

• Replace the claimCertificatePrivateKeyPath with the path to the claim certificate
private key on the device.

• Replace the template parameters (templateParameters) with the values to use to
provision the device. This example refers to the example template that defines ThingName
and ThingGroupName parameters.

3. Run the installer. Specify --trusted-plugin to provide the fleet provisioning plugin, and
specify --init-config to provide the configuration file.

• Replace /greengrass/v2 with the Greengrass root folder.

• Replace each instance of GreengrassInstaller with the folder where you unpacked the
installer.

Linux or Unix

sudo -E java -Droot="/greengrass/v2" -Dlog.store=FILE \
 -jar ./GreengrassInstaller/lib/Greengrass.jar \
 --trusted-plugin ./GreengrassInstaller/
aws.greengrass.FleetProvisioningByClaim.jar \
 --init-config ./GreengrassInstaller/config.yaml \
 --component-default-user ggc_user:ggc_group \
 --setup-system-service true

Windows Command Prompt (CMD)

java -Droot="C:\greengrass\v2" "-Dlog.store=FILE" ^
 -jar ./GreengrassInstaller/lib/Greengrass.jar ^
 --trusted-plugin ./GreengrassInstaller/
aws.greengrass.FleetProvisioningByClaim.jar ^
 --init-config ./GreengrassInstaller/config.yaml ^
 --component-default-user ggc_user ^
 --setup-system-service true

Install FIPS endpoints with fleet provisioning 1945

AWS IoT Greengrass Developer Guide, Version 2

PowerShell

java -Droot="C:\greengrass\v2" "-Dlog.store=FILE" `
 -jar ./GreengrassInstaller/lib/Greengrass.jar `
 --trusted-plugin ./GreengrassInstaller/
aws.greengrass.FleetProvisioningByClaim.jar `
 --init-config ./GreengrassInstaller/config.yaml `
 --component-default-user ggc_user `
 --setup-system-service true

Important

On Windows core devices, you must specify --setup-system-service true to set
up the AWS IoT Greengrass Core software as a system service.

If you specify --setup-system-service true, the installer prints Successfully set
up Nucleus as a system service if it set up and ran the software as a system service.
Otherwise, the installer doesn't output any message if it installs the software successfully.

Note

You can't use the deploy-dev-tools argument to deploy local development
tools when you run the installer without the --provision true argument.
For information about deploying the Greengrass CLI directly on your device, see
Greengrass Command Line Interface.

4. Verify the installation by viewing the files in the root folder.

Linux or Unix

ls /greengrass/v2

Windows Command Prompt (CMD)

dir C:\greengrass\v2

Install FIPS endpoints with fleet provisioning 1946

AWS IoT Greengrass Developer Guide, Version 2

PowerShell

ls C:\greengrass\v2

If the installation succeeded, the root folder contains several folders, such as config,
packages, and logs.

If you installed the AWS IoT Greengrass Core software as a system service, the installer runs the
software for you. Otherwise, you must run the software manually. For more information, see Run
the AWS IoT Greengrass Core software.

For more information about how to configure and use the software and AWS IoT Greengrass, see
the following:

• Configure the AWS IoT Greengrass Core software

• Develop AWS IoT Greengrass components

• Deploy AWS IoT Greengrass components to devices

• Greengrass Command Line Interface

Install FIPS endpoints with auto resource provisioning

The AWS IoT Greengrass Core software includes an installer that sets up your device as a
Greengrass core device. To set up a device quickly, the installer can provision the AWS IoT thing,
AWS IoT thing group, IAM role, and AWS IoT role alias that the core device requires to operate.
The installer can also deploy the local development tools to the core device, so you can use the
device to develop and test custom software components. The installer requires AWS credentials to
provision these resources and create the deployment.

If you can't provide AWS credentials to the device, you can provision the AWS resources that the
core device requires to operate. You can also deploy the development tools to a core device to use
as a development device. This enables you to provide fewer permissions to the device when you
run the installer. For more information, see Install AWS IoT Greengrass Core software with manual
resource provisioning.

Install FIPS endpoints with auto resource provisioning 1947

AWS IoT Greengrass Developer Guide, Version 2

Important

Before you download the AWS IoT Greengrass Core software, check that your core device
meets the requirements to install and run the AWS IoT Greengrass Core software v2.0.

Topics

• Set up the device environment

• Provide AWS credentials to the device

• Download the AWS IoT Greengrass Core software

• Install the AWS IoT Greengrass Core software

Set up the device environment

Follow the steps in this section to set up a Linux or Windows device to use as your AWS IoT
Greengrass core device.

Set up a Linux device

To set up a Linux device for AWS IoT Greengrass V2

1. Install the Java runtime, which AWS IoT Greengrass Core software requires to run. We
recommend that you use Amazon Corretto or OpenJDK long-term support versions. Version
8 or higher is required. The following commands show you how to install OpenJDK on your
device.

• For Debian-based or Ubuntu-based distributions:

sudo apt install default-jdk

• For Red Hat-based distributions:

sudo yum install java-11-openjdk-devel

• For Amazon Linux 2:

sudo amazon-linux-extras install java-openjdk11

• For Amazon Linux 2023:

Install FIPS endpoints with auto resource provisioning 1948

https://aws.amazon.com/corretto/
https://openjdk.java.net/

AWS IoT Greengrass Developer Guide, Version 2

sudo dnf install java-11-amazon-corretto -y

When the installation completes, run the following command to verify that Java runs on your
Linux device.

java -version

The command prints the version of Java that runs on the device. For example, on a Debian-
based distribution, the output might look similar to the following sample.

openjdk version "11.0.9.1" 2020-11-04
OpenJDK Runtime Environment (build 11.0.9.1+1-post-Debian-1deb10u2)
OpenJDK 64-Bit Server VM (build 11.0.9.1+1-post-Debian-1deb10u2, mixed mode)

2. (Optional) Create the default system user and group that runs components on the device. You
can also choose to let the AWS IoT Greengrass Core software installer create this user and
group during installation with the --component-default-user installer argument. For
more information, see Installer arguments.

sudo useradd --system --create-home ggc_user
sudo groupadd --system ggc_group

3. Verify that the user that runs the AWS IoT Greengrass Core software (typically root), has
permission to run sudo with any user and any group.

a. Run the following command to open the /etc/sudoers file.

sudo visudo

b. Verify that the permission for the user looks like the following example.

root ALL=(ALL:ALL) ALL

4. (Optional) To run containerized Lambda functions, you must enable cgroups v1, and you must
enable and mount the memory and devices cgroups. If you don't plan to run containerized
Lambda functions, you can skip this step.

To enable these cgroups options, boot the device with the following Linux kernel parameters.

Install FIPS endpoints with auto resource provisioning 1949

https://en.wikipedia.org/wiki/Cgroups

AWS IoT Greengrass Developer Guide, Version 2

cgroup_enable=memory cgroup_memory=1 systemd.unified_cgroup_hierarchy=0

For information about viewing and setting kernel parameters for your device, see the
documentation for your operating system and boot loader. Follow the instructions to
permanently set the kernel parameters.

5. Install all other required dependencies on your device as indicated by the list of requirements
in Device requirements.

Set up a Windows device

Note

This feature is available for v2.5.0 and later of the Greengrass nucleus component.

To set up a Windows device for AWS IoT Greengrass V2

1. Install the Java runtime, which AWS IoT Greengrass Core software requires to run. We
recommend that you use Amazon Corretto or OpenJDK long-term support versions. Version 8
or higher is required.

2. Check whether Java is available on the PATH system variable, and add it if not. The
LocalSystem account runs the AWS IoT Greengrass Core software, so you must add Java to the
PATH system variable instead of the PATH user variable for your user. Do the following:

a. Press the Windows key to open the start menu.

b. Type environment variables to search for the system options from the start menu.

c. In the start menu search results, choose Edit the system environment variables to open
the System properties window.

d. Choose Environment variables... to open the Environment Variables window.

e. Under System variables, select Path, and then choose Edit. In the Edit environment
variable window, you can view each path on a separate line.

f. Check if the path to the Java installation's bin folder is present. The path might look
similar to the following example.

C:\\Program Files\\Amazon Corretto\\jdk11.0.13_8\\bin

Install FIPS endpoints with auto resource provisioning 1950

https://aws.amazon.com/corretto/
https://openjdk.java.net/
https://en.wikipedia.org/wiki/PATH_(variable)

AWS IoT Greengrass Developer Guide, Version 2

g. If the Java installation's bin folder is missing from Path, choose New to add it, and then
choose OK.

3. Open the Windows Command Prompt (cmd.exe) as an administrator.

4. Create the default user in the LocalSystem account on the Windows device. Replace password
with a secure password.

net user /add ggc_user password

Tip

Depending on your Windows configuration, the user's password might be set to expire
at a date in the future. To ensure your Greengrass applications continue to operate,
track when the password expires, and update it before it expires. You can also set the
user's password to never expire.

• To check when a user and its password expire, run the following command.

net user ggc_user | findstr /C:expires

• To set a user's password to never expire, run the following command.

wmic UserAccount where "Name='ggc_user'" set PasswordExpires=False

• If you’re using Windows 10 or later where the wmic command is deprecated, run the
following PowerShell command.

Get-CimInstance -Query "SELECT * from Win32_UserAccount WHERE name =
 'ggc_user'" | Set-CimInstance -Property @{PasswordExpires="False"}

5. Download and install the PsExec utility from Microsoft on the device.

6. Use the PsExec utility to store the user name and password for the default user in the
Credential Manager instance for the LocalSystem account. Replace password with the user's
password that you set earlier.

psexec -s cmd /c cmdkey /generic:ggc_user /user:ggc_user /pass:password

Install FIPS endpoints with auto resource provisioning 1951

https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmic
https://docs.microsoft.com/en-us/sysinternals/downloads/psexec

AWS IoT Greengrass Developer Guide, Version 2

If the PsExec License Agreement opens, choose Accept to agree to the license and run the
command.

Note

On Windows devices, the LocalSystem account runs the Greengrass nucleus, and you
must use the PsExec utility to store the default user information in the LocalSystem
account. Using the Credential Manager application stores this information in the
Windows account of the currently logged on user, instead of the LocalSystem account.

Provide AWS credentials to the device

Provide your AWS credentials to your device so that the installer can provision the required AWS
resources. For more information about the required permissions, see Minimal IAM policy for
installer to provision resources.

To provide AWS credentials to the device

• Provide your AWS credentials to the device so that the installer can provision the AWS IoT
and IAM resources for your core device. To increase security, we recommend that you get
temporary credentials for an IAM role that allows only the minimum permissions necessary to
provision. For more information, see Minimal IAM policy for installer to provision resources.

Note

The installer doesn't save or store your credentials.

On your device, do one of the following to retrieve credentials and make them available to the
AWS IoT Greengrass Core software installer:

• (Recommended) Use temporary credentials from AWS IAM Identity Center

a. Provide the access key ID, secret access key, and session token from the IAM Identity
Center. For more information, see Manual credential refresh in Getting and
refreshing temporary credentials in the IAM Identity Center user guide.

Install FIPS endpoints with auto resource provisioning 1952

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html#how-to-get-temp-credentials
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html#how-to-get-temp-credentials

AWS IoT Greengrass Developer Guide, Version 2

b. Run the following commands to provide the credentials to the AWS IoT Greengrass
Core software.

Linux or Unix

export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
export AWS_SESSION_TOKEN=AQoDYXdzEJr1K...o5OytwEXAMPLE=

Windows Command Prompt (CMD)

set AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
set AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
set AWS_SESSION_TOKEN=AQoDYXdzEJr1K...o5OytwEXAMPLE=

PowerShell

$env:AWS_ACCESS_KEY_ID="AKIAIOSFODNN7EXAMPLE"
$env:AWS_SECRET_ACCESS_KEY="wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"
$env:AWS_SESSION_TOKEN="AQoDYXdzEJr1K...o5OytwEXAMPLE="

• Use temporary security credentials from an IAM role:

a. Provide the access key ID, secret access key, and session token from an IAM role
that you assume. For more information about how to retrieve these credentials, see
Requesting temporary security credentials in the IAM User Guide.

b. Run the following commands to provide the credentials to the AWS IoT Greengrass
Core software.

Linux or Unix

export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
export AWS_SESSION_TOKEN=AQoDYXdzEJr1K...o5OytwEXAMPLE=

Windows Command Prompt (CMD)

set AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
set AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Install FIPS endpoints with auto resource provisioning 1953

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html

AWS IoT Greengrass Developer Guide, Version 2

set AWS_SESSION_TOKEN=AQoDYXdzEJr1K...o5OytwEXAMPLE=

PowerShell

$env:AWS_ACCESS_KEY_ID="AKIAIOSFODNN7EXAMPLE"
$env:AWS_SECRET_ACCESS_KEY="wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"
$env:AWS_SESSION_TOKEN="AQoDYXdzEJr1K...o5OytwEXAMPLE="

• Use long-term credentials from an IAM user:

a. Provide the access key ID and secret access key for your IAM user. You can create an
IAM user for provisioning that you later delete. For the IAM policy to give the user, see
Minimal IAM policy for installer to provision resources. For more information about
how to retrieve long-term credentials, see Managing access keys for IAM users in the
IAM User Guide.

b. Run the following commands to provide the credentials to the AWS IoT Greengrass
Core software.

Linux or Unix

export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Windows Command Prompt (CMD)

set AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
set AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

PowerShell

$env:AWS_ACCESS_KEY_ID="AKIAIOSFODNN7EXAMPLE"
$env:AWS_SECRET_ACCESS_KEY="wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"

c. (Optional) If you created an IAM user to provision your Greengrass device, delete the
user.

d. (Optional) If you used the access key ID and secret access key from an existing
IAM user, update the keys for the user so that they are no longer valid. For more
information, see Updating access keys in the AWS Identity and Access Management
user guide.

Install FIPS endpoints with auto resource provisioning 1954

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_RotateAccessKey

AWS IoT Greengrass Developer Guide, Version 2

Download the AWS IoT Greengrass Core software

You can download the latest version of the AWS IoT Greengrass Core software from the following
location:

• https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-latest.zip

Note

You can download a specific version of the AWS IoT Greengrass Core software from the
following location. Replace version with the version to download.

https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-version.zip

To download the AWS IoT Greengrass Core software

1. On your core device, download the AWS IoT Greengrass Core software to a file named
greengrass-nucleus-latest.zip.

Linux or Unix

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip > greengrass-nucleus-latest.zip

Windows Command Prompt (CMD)

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip > greengrass-nucleus-latest.zip

PowerShell

iwr -Uri https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-
latest.zip -OutFile greengrass-nucleus-latest.zip

By downloading this software, you agree to the Greengrass Core Software License Agreement.

2. (Optional) To verify the Greengrass nucleus software signature

Install FIPS endpoints with auto resource provisioning 1955

https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-nucleus-latest.zip
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 2

Note

This feature is available with Greengrass nucleus version 2.9.5 and later.

a. Use the following command to verify your Greengrass nucleus artifact's signature:

Linux or Unix

jarsigner -verify -certs -verbose greengrass-nucleus-latest.zip

Windows Command Prompt (CMD)

The file name might look different depending on the JDK version you install. Replace
jdk17.0.6_10 with the JDK version you installed.

"C:\\Program Files\\Amazon Corretto\\jdk17.0.6_10\\bin\\jarsigner.exe" -
verify -certs -verbose greengrass-nucleus-latest.zip

PowerShell

The file name might look different depending on the JDK version you install. Replace
jdk17.0.6_10 with the JDK version you installed.

'C:\\Program Files\\Amazon Corretto\\jdk17.0.6_10\\bin\\jarsigner.exe' -
verify -certs -verbose greengrass-nucleus-latest.zip

b. The jarsigner invocation yields output that indicates the results of the verification.

i. If the Greengrass nucleus zip file is signed, the output contains the following
statement:

jar verified.

ii. If the Greengrass nucleus zip file isn't signed, the output contains the following
statement:

jar is unsigned.

Install FIPS endpoints with auto resource provisioning 1956

AWS IoT Greengrass Developer Guide, Version 2

c. If you provided the Jarsigner -certs option along with -verify and -verbose options,
the output also includes detailed signer certificate information.

3. Unzip the AWS IoT Greengrass Core software to a folder on your device. Replace
GreengrassInstaller with the folder that you want to use.

Linux or Unix

unzip greengrass-nucleus-latest.zip -d GreengrassInstaller && rm greengrass-
nucleus-latest.zip

Windows Command Prompt (CMD)

mkdir GreengrassInstaller && tar -xf greengrass-nucleus-latest.zip -
C GreengrassInstaller && del greengrass-nucleus-latest.zip

PowerShell

Expand-Archive -Path greengrass-nucleus-latest.zip -DestinationPath .\
\GreengrassInstaller
rm greengrass-nucleus-latest.zip

4. (Optional) Run the following command to see the version of the AWS IoT Greengrass Core
software.

java -jar ./GreengrassInstaller/lib/Greengrass.jar --version

Important

If you install a version of the Greengrass nucleus earlier than v2.4.0, don't remove this
folder after you install the AWS IoT Greengrass Core software. The AWS IoT Greengrass
Core software uses the files in this folder to run.
If you downloaded the latest version of the software, you install v2.4.0 or later, and you can
remove this folder after you install the AWS IoT Greengrass Core software.

Install the AWS IoT Greengrass Core software

Run the installer with arguments that specify to do the following:

Install FIPS endpoints with auto resource provisioning 1957

AWS IoT Greengrass Developer Guide, Version 2

• Create the AWS resources that the core device requires to operate.

• Specify to use the ggc_user system user to run software components on the core device. On
Linux devices, this command also specifies to use the ggc_group system group, and the installer
creates the system user and group for you.

• Set up the AWS IoT Greengrass Core software as a system service that runs at boot. On Linux
devices, this requires the Systemd init system.

Important

On Windows core devices, you must set up the AWS IoT Greengrass Core software as a
system service.

To set up a development device with local development tools, specify the --deploy-dev-
tools true argument. The local development tools can take up to a minute to deploy after the
installation completes.

For more information about the arguments that you can specify, see Installer arguments.

Note

If you are running AWS IoT Greengrass on a device with limited memory, you can control
the amount of memory that AWS IoT Greengrass Core software uses. To control memory
allocation, you can set JVM heap size options in the jvmOptions configuration parameter
in your nucleus component. For more information, see Control memory allocation with JVM
options.

To install the AWS IoT Greengrass Core software

1. Use a text editor to create a configuration file named config.yaml to provide to the installer.

For example, on a Linux-based system, you can run the following command to use GNU nano
to create the file.

nano GreengrassInstaller/config.yaml

Install FIPS endpoints with auto resource provisioning 1958

https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 2

Copy the following YAML content into the file. This partial configuration file specifies system
parameters and Greengrass nucleus parameters.

services:
 aws.greengrass.Nucleus:
 configuration:
 fipsMode: "true"
 iotDataEndpoint: "data.iot-fips.us-west-2.amazonaws.com"
 iotCredEndpoint: "data.credentials.iot-fips.us-west-2.amazonaws.com"
 greengrassDataPlaneEndpoint: "iotData"

• Replace us-west-2 with the AWS Region where you created the resources.

• Replace the iotDataEndpoint with your AWS IoT data endpoint.

• Replace the iotCredEndpoint with your AWS IoT credentials endpoint.

2. Run the AWS IoT Greengrass Core installer. Replace argument values in your command as
follows.

Note

Windows has a path length limitation of 260 characters. If you are using Windows, use
a root folder like C:\greengrass\v2 or D:\greengrass\v2 to keep the Greengrass
components paths under the 260 character limit.

a. /greengrass/v2 or C:\greengrass\v2: The path to the root folder to use to install
the AWS IoT Greengrass Core software.

b. GreengrassInstaller. The path to the folder where you unpacked the AWS IoT
Greengrass Core software installer.

c. region. The AWS Region in which to find or create resources.

d. MyGreengrassCore. The name of the AWS IoT thing for your Greengrass core device. If
the thing doesn't exist, the installer creates it. The installer downloads the certificates to
authenticate as the AWS IoT thing. For more information, see Device authentication and
authorization for AWS IoT Greengrass.

Install FIPS endpoints with auto resource provisioning 1959

AWS IoT Greengrass Developer Guide, Version 2

Note

The thing name can't contain colon (:) characters.

e. MyGreengrassCoreGroup. The name of AWS IoT thing group for your Greengrass core
device. If the thing group doesn't exist, the installer creates it and adds the thing to it. If
the thing group exists and has an active deployment, the core device downloads and runs
the software that the deployment specifies.

Note

The thing group name can't contain colon (:) characters.

f. GreengrassV2IoTThingPolicy. The name of the AWS IoT policy that allows the
Greengrass core devices to communicate with AWS IoT and AWS IoT Greengrass. If the
AWS IoT policy doesn't exist, the installer creates a permissive AWS IoT policy with this
name. You can restrict this policy's permissions for you use case. For more information, see
Minimal AWS IoT policy for AWS IoT Greengrass V2 core devices.

g. GreengrassV2TokenExchangeRole. The name of the IAM role that allows
the Greengrass core device to get temporary AWS credentials. If the role
doesn't exist, the installer creates it and creates and attaches a policy named
GreengrassV2TokenExchangeRoleAccess. For more information, see Authorize core
devices to interact with AWS services.

h. GreengrassCoreTokenExchangeRoleAlias. The alias to the IAM role that allows the
Greengrass core device to get temporary credentials later. If the role alias doesn't exist,
the installer creates it and points it to the IAM role that you specify. For more information,
see Authorize core devices to interact with AWS services.

Linux or Unix

sudo -E java -Droot="/greengrass/v2" -Dlog.store=FILE \
 -jar ./GreengrassInstaller/lib/Greengrass.jar \
 --aws-region region \
 --thing-name MyGreengrassCore \
 --thing-group-name MyGreengrassCoreGroup \
 --thing-policy-name GreengrassV2IoTThingPolicy \
 --tes-role-name GreengrassV2TokenExchangeRole \

Install FIPS endpoints with auto resource provisioning 1960

AWS IoT Greengrass Developer Guide, Version 2

 --tes-role-alias-name GreengrassCoreTokenExchangeRoleAlias \
 --component-default-user ggc_user:ggc_group \
 --provision true \
 --init-config ./GreengrassInstaller/config.yaml \
 --setup-system-service true

Windows Command Prompt (CMD)

java -Droot="C:\greengrass\v2" "-Dlog.store=FILE" ^
 -jar ./GreengrassInstaller/lib/Greengrass.jar ^
 --aws-region region ^
 --thing-name MyGreengrassCore ^
 --thing-group-name MyGreengrassCoreGroup ^
 --thing-policy-name GreengrassV2IoTThingPolicy ^
 --tes-role-name GreengrassV2TokenExchangeRole ^
 --tes-role-alias-name GreengrassCoreTokenExchangeRoleAlias ^
 --component-default-user ggc_user ^
 --provision true ^
 --setup-system-service true

PowerShell

java -Droot="C:\greengrass\v2" "-Dlog.store=FILE" `
 -jar ./GreengrassInstaller/lib/Greengrass.jar `
 --aws-region region `
 --thing-name MyGreengrassCore `
 --thing-group-name MyGreengrassCoreGroup `
 --thing-policy-name GreengrassV2IoTThingPolicy `
 --tes-role-name GreengrassV2TokenExchangeRole `
 --tes-role-alias-name GreengrassCoreTokenExchangeRoleAlias `
 --component-default-user ggc_user `
 --provision true `
 --setup-system-service true

Important

On Windows core devices, you must specify --setup-system-service true to set
up the AWS IoT Greengrass Core software as a system service.

Install FIPS endpoints with auto resource provisioning 1961

AWS IoT Greengrass Developer Guide, Version 2

The installer prints the following messages if it succeeds:

• If you specify --provision, the installer prints Successfully configured Nucleus
with provisioned resource details if it configured the resources successfully.

• If you specify --deploy-dev-tools, the installer prints Configured Nucleus to
deploy aws.greengrass.Cli component if it created the deployment successfully.

• If you specify --setup-system-service true, the installer prints Successfully set
up Nucleus as a system service if it set up and ran the software as a service.

• If you don't specify --setup-system-service true, the installer prints Launched
Nucleus successfully if it succeeded and ran the software.

3. Skip this step if you installed Greengrass nucleus v2.0.4 or later. If you downloaded the latest
version of the software, you installed v2.0.4 or later.

Run the following command to set the required file permissions for your AWS IoT Greengrass
Core software root folder. Replace /greengrass/v2 with the root folder that you specified
in your installation command, and replace /greengrass with the parent folder for your root
folder.

sudo chmod 755 /greengrass/v2 && sudo chmod 755 /greengrass

If you installed the AWS IoT Greengrass Core software as a system service, the installer runs the
software for you. Otherwise, you must run the software manually. For more information, see Run
the AWS IoT Greengrass Core software.

Note

By default, the IAM role that the installer creates doesn't allow access to component
artifacts in S3 buckets. To deploy custom components that define artifacts in Amazon
S3, you must add permissions to the role to allow your core device to retrieve component
artifacts. For more information, see Allow access to S3 buckets for component artifacts.
If you don't yet have an S3 bucket for component artifacts, you can add these permissions
later after you create a bucket.

Install FIPS endpoints with auto resource provisioning 1962

AWS IoT Greengrass Developer Guide, Version 2

For more information about how to configure and use the software and AWS IoT Greengrass, see
the following:

• Configure the AWS IoT Greengrass Core software

• Develop AWS IoT Greengrass components

• Deploy AWS IoT Greengrass components to devices

• Greengrass Command Line Interface

FIPS compliance first party components

aws.greengrass.Nucleus data.iot-fips. us-east-1 .amazonaw
s.com

 greengrass-fips. us-east-1
.amazonaws.com

 data.credentials.iot-fips. us-
east-1 .amazonaws.com

aws.greengrass.TokenExchang
eService

data.credentials.iot-fips. us-
east-1 .amazonaws.com

aws.greengrass.Cli

aws.greengrass.StreamManager • kinesis-fips. us-east-1 .amazonaw
s.com

• data.iotsitewise-fips. us-east-1
.amazonaws.com

• s3-fips.us-east-1 .amazonaws.com

FIPS compliance first party components 1963

AWS IoT Greengrass Developer Guide, Version 2

Note

Stream manager does not support
AWS IoT Analytics FIPS endpoint

aws.greengrass.LogManager logs-fips.us-east-1 .amazonaws.com

aws.greengrass.crypto.Pkcs1
1Provider

aws.greengrass.ShadowManager

aws.greengrass.DockerApplic
ationManager

ecr-fips.us-east-1 .amazonaws.com

aws.greengrass.SecretManager secretsmanager-fips.us-east-1 .amazonaw
s.com

aws.greengrass.telemetry.Nu
cleusEmitter

aws.greengrass.clientdevice
s.IPDetector

aws.greengrass.DiskSpooler

Resilience in AWS IoT Greengrass

The AWS global infrastructure is built around Amazon Web Services Regions and Availability Zones.
Each AWS Region provides multiple physically separated and isolated Availability Zones, which are
connected with low-latency, high-throughput, and highly redundant networking. With Availability
Zones, you can design and operate applications and databases that automatically fail over between
zones without interruption. Availability Zones are more highly available, fault tolerant, and scalable
than traditional single or multiple data center infrastructures.

For more information, see AWS Global Infrastructure.

Resilience 1964

https://aws.amazon.com/about-aws/global-infrastructure/

AWS IoT Greengrass Developer Guide, Version 2

In addition to the AWS global infrastructure, AWS IoT Greengrass offers several features to help
support your data resiliency and backup needs.

• You can configure a Greengrass core device to write logs to the local file system and to
CloudWatch Logs. If the core device loses connectivity, it can continue to log messages on
the file system. When it reconnects, it writes the log messages to CloudWatch Logs. For more
information, see Monitor AWS IoT Greengrass logs.

• If a core device loses power during a deployment, it resumes the deployment after the AWS IoT
Greengrass Core software starts again.

• If a core device loses internet connectivity, Greengrass client devices can continue to
communicate over the local network.

• You can author Greengrass components that read stream manager streams and send the data to
local storage destinations.

Infrastructure security in AWS IoT Greengrass

As a managed service, AWS IoT Greengrass is protected by the AWS global network security
procedures that are described in the Amazon Web Services: Overview of Security Processes
whitepaper.

You use AWS published API calls to access AWS IoT Greengrass through the network. Clients must
support Transport Layer Security (TLS) 1.2 or later. We recommend TLS 1.3 or later. Clients must
also support cipher suites with perfect forward secrecy (PFS), such as Ephemeral Diffie-Hellman
(DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7
and later support these modes.

Requests must be signed by using an access key ID and a secret access key that is associated with
an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to generate temporary
security credentials to sign requests.

In an AWS IoT Greengrass environment, devices use X.509 certificates and cryptographic keys to
connect and authenticate to the AWS Cloud. For more information, see the section called “Device
authentication and authorization”.

Infrastructure security 1965

https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

AWS IoT Greengrass Developer Guide, Version 2

Configuration and vulnerability analysis in AWS IoT Greengrass

IoT environments can consist of large numbers of devices that have diverse capabilities, are long-
lived, and are geographically distributed. These characteristics make device setup complex and
error-prone. And because devices are often constrained in computational power, memory, and
storage capabilities, this limits the use of encryption and other forms of security on the devices
themselves. Also, devices often use software with known vulnerabilities. These factors make IoT
devices an attractive target for hackers and make it difficult to secure them on an ongoing basis.

AWS IoT Device Defender addresses these challenges by providing tools to identify security issues
and deviations from best practices. You can use AWS IoT Device Defender to analyze, audit, and
monitor connected devices to detect abnormal behavior, and mitigate security risks. AWS IoT
Device Defender can audit devices to ensure they adhere to security best practices and detect
abnormal behavior on devices. This makes it possible to enforce consistent security policies across
your devices and respond quickly when devices are compromised. IFor more information, see the
following topics:

• The Device Defender component

• AWS IoT Device Defender in the AWS IoT Core Developer Guide.

In AWS IoT Greengrass environments, you should be aware of the following considerations:

• It's your reponsibility to secure your physical devices, the file system on your devices, and the
local network.

• AWS IoT Greengrass doesn't enforce network isolation for user-defined Greengrass components,
whether or not they run in a Greengrass container. Therefore, it's possible for Greengrass
components to communicate with any other process running in the system or outside over
network.

Code integrity in AWS IoT Greengrass V2

AWS IoT Greengrass deploys software components from the AWS Cloud to devices that run
the AWS IoT Greengrass Core software. These software components include AWS-provided
components and custom components that you upload to your AWS account. Every component is
composed of a recipe. The recipe defines the component's metadata, and any number of artifacts,

Configuration and vulnerability analysis 1966

https://docs.aws.amazon.com/iot/latest/developerguide/device-defender.html

AWS IoT Greengrass Developer Guide, Version 2

which are component binaries, such as compiled code and static resources. Component artifacts are
stored in Amazon S3.

As you develop and deploy Greengrass components, you follow these basic steps that work with
component artifacts in your AWS account and on your devices:

1. Create and upload artifacts to S3 buckets.

2. Create a component from a recipe and artifacts in the AWS IoT Greengrass service, which
calculates a cryptographic hash of each artifact.

3. Deploy a component to Greengrass core devices, which download and verify the integrity of
each artifact.

AWS is responsible for maintaining the integrity of artifacts after you upload artifacts to S3
buckets, including when you deploy components to Greengrass core devices. You are responsible
for securing software artifacts before you upload the artifacts to S3 buckets. You are also
responsible for securing access to resources in your AWS account, including the S3 buckets where
you upload component artifacts.

Note

Amazon S3 provides a feature called S3 Object Lock that you can use to protect against
changes to component artifacts in S3 buckets your AWS account. You can use S3 Object
Lock to prevent component artifacts from being deleted or overwritten. For more
information, see Using S3 Object Lock in the Amazon Simple Storage Service User Guide.

When AWS publishes a public component, and when you upload a custom component, AWS IoT
Greengrass calculates a cryptographic digest for each component artifact. AWS IoT Greengrass
updates the component recipe to include each artifact's digest and the hash algorithm used to
calculate that digest. This digest guarantees the integrity of the artifact, because if the artifact
changes in the AWS Cloud or during download, its file digest won't match the digest that AWS IoT
Greengrass stores in the component recipe. For more information, see Artifacts in the component
recipe reference.

When you deploy a component to a core device, the AWS IoT Greengrass Core software downloads
the component recipe and each component artifact that the recipe defines. The AWS IoT
Greengrass Core software calculates the digest of each downloaded artifact file and compares it

Code integrity 1967

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lock.html

AWS IoT Greengrass Developer Guide, Version 2

with that artifact's digest in the recipe. If the digests don't match, the deployment fails, and the
AWS IoT Greengrass Core software deletes the downloaded artifacts from the device's file system.
For more information about how connections between core devices and AWS IoT Greengrass are
secured, see Encryption in transit.

You are responsible for securing component artifact files on your core devices' file systems. The
AWS IoT Greengrass Core software saves artifacts to the packages folder in the Greengrass root
folder. You can use AWS IoT Device Defender to analyze, audit, and monitor core devices. For more
information, see Configuration and vulnerability analysis in AWS IoT Greengrass.

AWS IoT Greengrass and interface VPC endpoints (AWS
PrivateLink)

You can establish a private connection between your VPC and the AWS IoT Greengrass control
plane by creating an interface VPC endpoint. You can use this endpoint to manage components,
deployments, and core devices in the AWS IoT Greengrass service. Interface endpoints are powered
by AWS PrivateLink, a technology that enables you to access AWS IoT Greengrass APIs privately
without an internet gateway, NAT device, VPN connection, or AWS Direct Connect connection.
Instances in your VPC don't need public IP addresses to communicate with AWS IoT Greengrass
APIs. Traffic between your VPC and AWS IoT Greengrass does not leave the Amazon network.

Each interface endpoint is represented by one or more Elastic Network Interfaces in your subnets.

For more information, see Interface VPC endpoints (AWS PrivateLink) in the Amazon VPC User
Guide.

Topics

• Considerations for AWS IoT Greengrass VPC endpoints

• Create an interface VPC endpoint for AWS IoT Greengrass control plane operations

• Creating a VPC endpoint policy for AWS IoT Greengrass

• Operate an AWS IoT Greengrass core device in VPC

Considerations for AWS IoT Greengrass VPC endpoints

Before you set up an interface VPC endpoint for AWS IoT Greengrass, review Interface endpoint
properties and limitations in the Amazon VPC User Guide. Additionally, be aware of the following
considerations:

VPC endpoints (AWS PrivateLink) 1968

https://aws.amazon.com/privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-interface-limitations

AWS IoT Greengrass Developer Guide, Version 2

• AWS IoT Greengrass supports making calls to all of its control plane API actions from your VPC.
The control plane includes operations such as CreateDeployment and ListEffectiveDeployments.
The control plane does not include operations such as ResolveComponentCandidates and
Discover, which are data plane operations.

• VPC endpoints for AWS IoT Greengrass are currently not supported in AWS China Regions.

Create an interface VPC endpoint for AWS IoT Greengrass control plane
operations

You can create a VPC endpoint for the AWS IoT Greengrass control plane using either the Amazon
VPC console or the AWS Command Line Interface (AWS CLI). For more information, see Creating an
interface endpoint in the Amazon VPC User Guide.

Create a VPC endpoint for AWS IoT Greengrass using the following service name:

• com.amazonaws.region.greengrass

If you enable private DNS for the endpoint, you can make API requests to AWS IoT
Greengrass using its default DNS name for the Region, for example, greengrass.us-
east-1.amazonaws.com. Private DNS is enabled by default.

For more information, see Accessing a service through an interface endpoint in the Amazon VPC
User Guide.

Creating a VPC endpoint policy for AWS IoT Greengrass

You can attach an endpoint policy to your VPC endpoint that controls access to AWS IoT
Greengrass control plane operations. The policy specifies the following information:

• The principal that can perform actions.

• The actions that the principal can perform.

• The resources that the principal can perform actions on.

For more information, see Controlling access to services with VPC endpoints in the Amazon VPC
User Guide.

Create an interface VPC endpoint for AWS IoT Greengrass control plane operations 1969

https://docs.aws.amazon.com/greengrass/v2/APIReference/API_CreateDeployment.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_ListEffectiveDeployments.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

AWS IoT Greengrass Developer Guide, Version 2

Example Example: VPC endpoint policy for AWS IoT Greengrass actions

The following is an example of an endpoint policy for AWS IoT Greengrass. When attached to an
endpoint, this policy grants access to the listed AWS IoT Greengrass actions for all principals on all
resources.

{
 "Statement": [
 {
 "Principal": "*",
 "Effect": "Allow",
 "Action": [
 "greengrass:CreateDeployment",
 "greengrass:ListEffectiveDeployments"
],
 "Resource": "*"
 }
]
}

Operate an AWS IoT Greengrass core device in VPC

You can operate a Greengrass core device and perform deployments in VPC without public internet
access. At a minimum, you must set up the following VPC endpoints with the corresponding
DNS aliases. For more information about how to create and use VPC endpoints, see Create a VPC
endpoint in the Amazon VPC User Guide.

Note

The VPC feature for automatically creating a DNS record is disabled for AWS IoT data and
AWS IoT Credentials. To connect these endpoints, you must manually create a Private
DNS record. For more information, see Private DNS for interface endpoints. For more
information about AWS IoT Core VPC limitations, see Limitations of VPC endpoints.

Prerequisites

• You must install the AWS IoT Greengrass Core software using the manual provisioning steps.
For more information, see Install AWS IoT Greengrass Core software with manual resource
provisioning.

Operate an AWS IoT Greengrass core device in VPC 1970

https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#vpce-private-dns
https://docs.aws.amazon.com/iot/latest/developerguide/IoTCore-VPC.html#VPC-limitations

AWS IoT Greengrass Developer Guide, Version 2

Limitations

• Operating a Greengrass core device in VPC is not supported in China Regions and AWS GovCloud
(US) Regions.

• For more information about limitations of AWS IoT data and AWS IoT credential provider VPC
endpoints, see Limitations.

Set up your Greengrass core device to operate in VPC

1. Get the AWS IoT endpoints for your AWS account, and save them to use later. Your device uses
these endpoints to connect to AWS IoT. Do the following:

a. Get the AWS IoT data endpoint for your AWS account.

aws iot describe-endpoint --endpoint-type iot:Data-ATS

The response looks similar to the following example, if the request succeeds.

{
 "endpointAddress": "device-data-prefix-ats.iot.us-west-2.amazonaws.com"
}

b. Get the AWS IoT credentials endpoint for your AWS account.

aws iot describe-endpoint --endpoint-type iot:CredentialProvider

The response looks similar to the following example, if the request succeeds.

{
 "endpointAddress": "device-credentials-prefix.credentials.iot.us-
west-2.amazonaws.com"
}

2. Create an Amazon VPC interface for AWS IoT data and AWS IoT credentials endpoints:

a. Navigate to the VPC Endpoints console, under Virtual private cloud on the left menu,
choose Endpoints then Create Endpoint.

b. In the Create endpoint page, specify the following information.
Operate an AWS IoT Greengrass core device in VPC 1971

https://docs.aws.amazon.com/iot/latest/developerguide/IoTCore-VPC.html#VPC-limitations
https://console.aws.amazon.com/vpc/home#/endpoints

AWS IoT Greengrass Developer Guide, Version 2

• Choose AWS services for Service category.

• For Service Name, search by entering the keyword iot. In the list of iot services
displayed, choose the endpoint.

If you create a VPC endpoint for AWS IoT Core data plane, choose the AWS IoT
Core data plane API endpoint for your Region. The endpoint will be of the format
com.amazonaws.region.iot.data.

If you create a VPC endpoint for AWS IoT Core credential provider, choose the AWS IoT
Core credential provider endpoint for your Region. The endpoint will be of the format
com.amazonaws.region.iot.credentials.

Note

The service name for AWS IoT Core data plane in China Region will be of the
format cn.com.amazonaws.region.iot.data. Creating VPC endpoints for
AWS IoT Core credential provider is not supported in China Region.

• For VPC and Subnets, choose the VPC where you want to create the endpoint, and the
Availability Zones (AZs) in which you want to create the endpoint network.

• For Enable DNS name, make sure that Enable for this endpoint is not selected. Neither
AWS IoT Core data plane nor AWS IoT Core credential provider supports private DNS
names yet.

• For Security group, choose the security groups you want to associate with the endpoint
network interfaces.

• Optionally, you can add or remove tags. Tags are name-value pairs that you use to
associate with your endpoint.

c. To create your VPC endpoint, choose Create endpoint.

3. After you create the AWS PrivateLink endpoint, in the Details tab of your endpoint, you'll
see a list of DNS names. You can use one of these DNS names you created in this section to
configure your private hosted zone.

4. Create an Amazon S3 endpoint. For more information, see Create a VPC endpoint for Amazon
S3.

5. If you are using AWS-provided Greengrass components, additional endpoints and
configurations may be required. To view the endpoints requirements, select the component

Operate an AWS IoT Greengrass core device in VPC 1972

https://docs.aws.amazon.com/iot/latest/developerguide/IoTCore-VPC.html#connect-iot-core-create-phz-lns
https://docs.aws.amazon.com/AmazonS3/latest/userguide/privatelink-interface-endpoints.html#s3-creating-vpc
https://docs.aws.amazon.com/AmazonS3/latest/userguide/privatelink-interface-endpoints.html#s3-creating-vpc
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html

AWS IoT Greengrass Developer Guide, Version 2

from the list of AWS-provided components and look at the Requirements section. For example,
the log manager component requirements advise that this component must be able to
perform outbound requests to the endpoint logs.region.amazonaws.com.

If you are using your own component, you may need to review the dependencies and perform
additional testing to determine if any additional endpoints are required.

6. In Greengrass nucleus configuration, greengrassDataPlaneEndpoint must be set to
iotdata. For more information, see Greengrass nucleus configuration.

7. If you are in the us-east-1 region, set the configuration parameter s3EndpointType to
REGIONAL in the Greengrass nucleus configuration. This feature is available for Greengrass
nucleus versions 2.11.3 or later.

Example Example: Component configuration

{
"aws.greengrass.Nucleus": {
 "configuration": {
 "awsRegion": "us-east-1",
 "iotCredEndpoint": "xxxxxx.credentials.iot.region.amazonaws.com",
 "iotDataEndpoint": "xxxxxx-ats.iot.region.amazonaws.com",
 "greengrassDataPlaneEndpoint": "iotdata",
 "s3EndpointType": "REGIONAL"
 ...
 }
 }
}

The following table gives information about the corresponding custom private DNS aliases.

Service VPC endpoint service
name

VPC
endpoint
type

Custom
private
DNS
alias

Notes

AWS IoT data com.amazo
naws. region.iot.data

Interface prefix-
ats.iot.
region.amazonaw

s.com

The
private
DNS
record

Operate an AWS IoT Greengrass core device in VPC 1973

AWS IoT Greengrass Developer Guide, Version 2

Service VPC endpoint service
name

VPC
endpoint
type

Custom
private
DNS
alias

Notes

should
match
your
account's
AWS
IoT data
endpoint:
 aws
iot
describe–
endpoint
––
endpoin
t–type
iot:Data-
ATS .

Operate an AWS IoT Greengrass core device in VPC 1974

AWS IoT Greengrass Developer Guide, Version 2

Service VPC endpoint service
name

VPC
endpoint
type

Custom
private
DNS
alias

Notes

AWS IoT Credentials com.amazo
naws. region.iot.cred
entials

Interface prefix.credenti
als.iot. region.amazonaw
s.com

The
private
DNS
record
should
match
your
account
AWS IoT
Credentia
ls
endpoint:
aws iot
describe–
endpoint
––
endpoin
t–type
iot:Crede
ntialProv
ider .

Amazon S3 com.amazo
naws. region.s3

Interface The DNS
record is
automatic
ally
created.

Security best practices for AWS IoT Greengrass

This topic contains security best practices for AWS IoT Greengrass.

Security best practices 1975

AWS IoT Greengrass Developer Guide, Version 2

Grant minimum possible permissions

Follow the principle of least privilege for your components by running them as unprivileged users.
Components should not run as root unless it is absolutely necessary.

Use the minimum set of permissions in IAM roles. Limit the use of the * wildcard for the Action
and Resource properties in your IAM policies. Instead, declare a finite set of actions and resources
when possible. For more information about least privilege and other policy best practices, see the
section called “Policy best practices”.

The least privilege best practice also applies to AWS IoT policies you attach to your Greengrass
core.

Don't hardcode credentials in Greengrass components

Don't hardcode credentials in your user-defined Greengrass components. To better protect your
credentials:

• To interact with AWS services, define permissions for specific actions and resources in the
Greengrass core device service role.

• Use the secret manager component to store your credentials. Or, if the function uses the AWS
SDK, use credentials from the default credential provider chain.

Don't log sensitive information

You should prevent the logging of credentials and other personally identifiable information (PII).
We recommend that you implement the following safeguards even though access to local logs on a
core device requires root privileges and access to CloudWatch Logs requires IAM permissions.

• Don't use sensitive information in MQTT topic paths.

• Don't use sensitive information in device (thing) names, types, and attributes in the AWS IoT Core
registry.

• Don't log sensitive information in your user-defined Greengrass components or Lambda
functions.

• Don't use sensitive information in the names and IDs of Greengrass resources:

• Core devices

• Components

Grant minimum possible permissions 1976

AWS IoT Greengrass Developer Guide, Version 2

• Deployments

• Loggers

Keep your device clock in sync

It's important to have an accurate time on your device. X.509 certificates have an expiry date and
time. The clock on your device is used to verify that a server certificate is still valid. Device clocks
can drift over time or batteries can get discharged.

For more information, see the Keep your device's clock in sync best practice in the AWS IoT Core
Developer Guide.

Cipher Suite Recommendations

Greengrass default selects the latest TLS Cipher Suites available on the device. Consider disabling
the use of legacy cipher suites on the device. For example, CBC cipher suites.

For more information, see the Java Cryptography Configuration.

See also

• Security best practices in AWS IoT Core in the AWS IoT Developer Guide

• Ten security golden rules for Industrial IoT solutions on the Internet of Things on AWS Official
Blog

Keep your device clock in sync 1977

https://docs.aws.amazon.com/iot/latest/developerguide/security-best-practices.html#device-clock
https://www.java.com/configure_crypto.html
https://docs.aws.amazon.com/iot/latest/developerguide/security-best-practices.html
https://aws.amazon.com/blogs/iot/ten-security-golden-rules-for-industrial-iot-solutions/

AWS IoT Greengrass Developer Guide, Version 2

Using AWS IoT Device Tester for AWS IoT Greengrass V2

AWS IoT Device Tester (IDT) is a downloadable testing framework that lets you validate IoT devices.
You can use IDT for AWS IoT Greengrass to run the AWS IoT Greengrass qualification suite, and
create and run custom test suites for your devices.

IDT for AWS IoT Greengrass runs on your host computer (Windows, macOS, or Linux) connected
to the device to be tested. It runs tests and aggregates results. It also provides a command line
interface to manage the testing process.

AWS IoT Greengrass qualification suite

Use AWS IoT Device Tester for AWS IoT Greengrass V2 to verify that the AWS IoT Greengrass Core
software runs on your hardware and can communicate with the AWS Cloud. It also performs end-
to-end tests with AWS IoT Core. For example, it verifies that your device can deploy components
and upgrade them.

If you want to add your hardware to the AWS Partner Device Catalog, run the AWS IoT Greengrass
qualification suite to generate test reports that you can submit to AWS IoT. For more information,
see AWS Device Qualification Program.

IDT for AWS IoT Greengrass V2 organizes tests using the concepts of test suites and test groups.

• A test suite is the set of test groups used to verify that a device works with particular versions of
AWS IoT Greengrass.

AWS IoT Greengrass qualification suite 1978

https://aws.amazon.com/partners/dqp/

AWS IoT Greengrass Developer Guide, Version 2

• A test group is the set of individual tests related to a particular feature, such as component
deployments.

For more information, see Use IDT to run the AWS IoT Greengrass qualification suite.

Custom test suites

Starting in IDT v4.0.1, IDT for AWS IoT Greengrass V2 combines a standardized configuration setup
and result format with a test suite environment that enables you to develop custom test suites
for your devices and device software. You can add custom tests for your own internal validation or
provide them to your customers for device verification.

How a test writer configures a custom test suite determines the settings configurations that are
required to run custom test suites. For more information, see Use IDT to develop and run your own
test suites.

Supported versions of AWS IoT Device Tester for AWS IoT
Greengrass V2

This topic lists supported versions of IDT for AWS IoT Greengrass V2. As a best practice, we
recommend that you use the latest version of IDT for AWS IoT Greengrass V2 that supports your
target version of AWS IoT Greengrass V2. New releases of AWS IoT Greengrass might require you
to download a new version of IDT for AWS IoT Greengrass V2. You receive a notification when you
start a test run if IDT for AWS IoT Greengrass V2 is not compatible with the version of AWS IoT
Greengrass you are using.

By downloading the software, you agree to the AWS IoT Device Tester License Agreement.

Note

IDT does not support being run by multiple users from a shared location, such as an NFS
directory or a Windows network shared folder. We recommend that you extract the IDT
package to a local drive and run the IDT binary on your local workstation.

Custom test suites 1979

https://docs.aws.amazon.com/greengrass/v2/developerguide/idt-license.html

AWS IoT Greengrass Developer Guide, Version 2

Latest IDT version for AWS IoT Greengrass V2

You can use this version of IDT for AWS IoT Greengrass V2 with the AWS IoT Greengrass version
listed here.

IDT v4.9.4 for AWS IoT Greengrass

Supported AWS IoT Greengrass versions:

• Greengrass nucleus v2.12.0, v2.11.0, v2.10.0, and v2.9.5

IDT software downloads:

• IDT v4.9.4 with test suite GGV2Q_2.5.4 for Linux

• IDT v4.9.4 with test suite GGV2Q_2.5.4 for macOS

• IDT v4.9.4 with test suite GGV2Q_2.5.4 for Windows

Release notes:

• Enables device validation and qualification for devices running AWS IoT Greengrass Core
software versions 2.12.0, 2.11.0, 2.10.0, and 2.9.5.

• Removes stream manager and machine learning test groups.

Additional notes:

• If your device uses a HSM and you are using nucleus 2.10.x, migrate to Greengrass nucleus
version 2.11.0 or later.

Test suite version:

GGV2Q_2.5.4

• Released 2024.05.03

Earlier IDT versions for AWS IoT Greengrass

The following earlier versions of IDT for AWS IoT Greengrass V2 are also supported.

IDT v4.9.3 for AWS IoT Greengrass

Supported AWS IoT Greengrass versions:

• Greengrass nucleus v2.12.0, v2.11.0, v2.10.0, and v2.9.5

IDT software downloads:

• IDT v4.9.3 with test suite GGV2Q_2.5.3 for Linux

Latest IDT version for AWS IoT Greengrass V2 1980

https://docs.aws.amazon.com/greengrass/v2/developerguide/devicetester_greengrass_v2_4.9.4_testsuite_2.5.4_linux.zip
https://docs.aws.amazon.com/greengrass/v2/developerguide/devicetester_greengrass_v2_4.9.4_testsuite_2.5.4_mac.zip
https://docs.aws.amazon.com/greengrass/v2/developerguide/devicetester_greengrass_v2_4.9.4_testsuite_2.5.4_win.zip
https://docs.aws.amazon.com/greengrass/v2/developerguide/devicetester_greengrass_v2_4.9.3_testsuite_2.5.3_linux.zip

AWS IoT Greengrass Developer Guide, Version 2

• IDT v4.9.3 with test suite GGV2Q_2.5.3 for macOS

• IDT v4.9.3 with test suite GGV2Q_2.5.3 for Windows

Release notes:

• Fixes an issue in the component tests when testing a Linux device from a Windows host or
vice versa.

• Removes the localcomponent test case from the component test group. This test case
is no longer required for qualification.

Additional notes:

• If your device uses a HSM and you are using nucleus 2.10.x, migrate to Greengrass nucleus
version 2.11.0 or later.

Test suite version:

GGV2Q_2.5.3

• Released 2024.04.05

Unsupported versions of AWS IoT Device Tester for AWS IoT Greengrass
V2

This topic lists unsupported versions of IDT for AWS IoT Greengrass V2. Unsupported versions do
not receive bug fixes or updates. For more information, see the section called “Support policy for
AWS IoT Device Tester for AWS IoT Greengrass”.

IDT v4.9.2 for AWS IoT Greengrass

Release notes:

• Fixes an issue where the Lambda test suite fails due to Java 8 being deprecated.

Test suite version:

GGV2Q_2.5.2

• Released 2024.03.18

IDT v4.9.1 for AWS IoT Greengrass

Release notes:

• Enables you to validate and qualify devices running AWS IoT Greengrass Core software
versions 2.12.0, 2.11.0, 2.10.0, and 2.9.5.

Unsupported versions of AWS IoT Device Tester for AWS IoT Greengrass V2 1981

https://docs.aws.amazon.com/greengrass/v2/developerguide/devicetester_greengrass_v2_4.9.3_testsuite_2.5.3_mac.zip
https://docs.aws.amazon.com/greengrass/v2/developerguide/devicetester_greengrass_v2_4.9.3_testsuite_2.5.3_win.zip

AWS IoT Greengrass Developer Guide, Version 2

• Minor bug fixes.

Test suite version:

GGV2Q_2.5.1

• Released 2023.10.05

IDT v4.7.0 for AWS IoT Greengrass

Supported AWS IoT Greengrass versions:

• Greengrass nucleus v2.11.0, v2.10.0, and v2.9.5

Release notes:

• Enables you to validate and qualify devices running AWS IoT Greengrass Core software
versions 2.11.0, 2.10.0, and 2.9.5.

• Adds support to store IDT userdata values in AWS Systems Manager Parameter Store and
fetch them into configuration using placeholder syntax.

• Minor bug fixes.

Test suite version:

GGV2Q_2.5.0

• Released 2022.12.13

IDT v4.5.11 for AWS IoT Greengrass

Release notes:

• Enables you to validate and qualify devices running AWS IoT Greengrass Core software
versions 2.9.1, 2.9.0, 2.8.1, 2.8.0, 2.7.0, and 2.6.0.

• Adds support to test PreInstalled Greengrass on a core device.

• Minor bug fixes.

Test suite version:

GGV2Q_2.4.1

• Released 2022.10.13

IDT v4.5.8 for AWS IoT Greengrass

Release notes:

• Enables you to validate and qualify devices running AWS IoT Greengrass Core software
versions 2.7.0, 2.6.0, and 2.5.6.

• Enables you to test with PreInstalled Greengrass on a core device.

Unsupported versions of AWS IoT Device Tester for AWS IoT Greengrass V2 1982

AWS IoT Greengrass Developer Guide, Version 2

• Minor bug fixes.

Test suite version:

GGV2Q_2.4.0

• Released 2022.08.12

IDT v4.5.3 for AWS IoT Greengrass

Release notes:

• Enables you to validate and qualify devices running AWS IoT Greengrass Core software
versions 2.7.0, 2.6.0, 2.5.6, 2.5.5, 2.5.4, and 2.5.3.

• Updates DockerApplicationManager test to use an ECR-based docker image.

• Minor bug fixes.

Test suite version:

GGV2Q_2.3.1

• Released 2022.04.15

IDT v4.5.1 for AWS IoT Greengrass

Release notes:

• Enables you to validate and qualify devices running AWS IoT Greengrass Core software
v2.5.3.

• Adds support for validating and qualifying Linux-based devices that use a hardware
security module (HSM) to store the private key and certificate that are used by AWS IoT
Greengrass Core software.

• Implements the new IDT test orchestrator for configuring custom test suites. For more
information, see Configure the IDT test orchestrator.

• Additional minor bug fixes.

Test suite version:

GGV2Q_2.3.0

• Released 2022.01.11

IDT v4.4.1 for AWS IoT Greengrass

Release notes:

• Enables you to validate and qualify devices running AWS IoT Greengrass Core software
v2.5.2.

Unsupported versions of AWS IoT Device Tester for AWS IoT Greengrass V2 1983

AWS IoT Greengrass Developer Guide, Version 2

• Adds support for using a user-defined IAM role as the token exchange role that the device
under test assumes to interact with AWS resources.

You can specify the IAM role in the userdata.json file. If you specify a custom role, IDT
uses that role instead of creating the default token exchange role during the test run.

• Additional minor bug fixes.

Test suite version:

GGV2Q_2.2.1

• Released 2021.12.12

IDT v4.4.0 for AWS IoT Greengrass

Release notes:

• Enables you to validate and qualify devices running AWS IoT Greengrass Core software
v2.5.0.

• Adds support for validating and qualifying devices running AWS IoT Greengrass Core
software on Windows.

• Supports the use of public key validation for secure shell (SSH) device connections.

• Improves the IDT permissions IAM policy with security best practices.

• Additional minor bug fixes.

Test suite version:

GGV2Q_2.1.0

• Released 2021.11.19

IDT v4.2.0 for AWS IoT Greengrass

Release notes:

• Includes support for qualification of the following features on devices running AWS IoT
Greengrass Core software v2.2.0 and later versions:

• Docker—Validates that devices can download a Docker container image from Amazon
Elastic Container Registry (Amazon ECR).

• Machine learning—Validates that devices can perform machine learning (ML) inference
using the Deep Learning Runtime or TensorFlow Lite ML frameworks.

• Stream manager—Validates that devices can download, install, and run the AWS IoT
Greengrass stream manager.

Unsupported versions of AWS IoT Device Tester for AWS IoT Greengrass V2 1984

https://github.com/neo-ai/neo-ai-dlr
https://www.tensorflow.org/lite/guide/python

AWS IoT Greengrass Developer Guide, Version 2

• Enables you to validate and qualify devices running AWS IoT Greengrass Core software
v2.4.0, v2.3.0, v2.2.0, and v2.1.0.

• Groups the test logs for each test case in a separate <test-case-id> folder within the
<device-tester-extract-location>/results/<execution-id>/logs/<test-
group-id> directory.

• Additional minor bug fixes.

Test suite version:

GGV2Q_2.0.1

• Released 2021.08.31

IDT v4.1.0 for AWS IoT Greengrass

Release notes:

• Enables you to validate and qualify devices running AWS IoT Greengrass Core software
v2.3.0, v2.2.0, v2.1.0, and v2.0.5.

• Improves the userdata.json configuration by removing the requirement to specify the
GreengrassNucleusVersion and GreengrassCLIVersion properties.

• Includes support for Lambda and MQTT feature qualification for AWS IoT Greengrass Core
software v2.1.0 and later versions. You can now use IDT for AWS IoT Greengrass V2 to
validate that your core device can run Lambda functions and that the device can publish
and subscribe to AWS IoT Core MQTT topics.

• Improves logging capabilities.

• Additional minor bug fixes.

Test suite version:

GGV2Q_1.1.1

• Released 2021.06.18

IDT v4.0.2 for AWS IoT Greengrass

Release notes:

• Enables you to validate and qualify devices running AWS IoT Greengrass Core software
v2.1.0.

• Adds support for Lambda and MQTT feature qualification for AWS IoT Greengrass Core
software v2.1.0 and later versions. You can now use IDT for AWS IoT Greengrass V2 to
validate that your core device can run Lambda functions and that the device can publish
and subscribe to AWS IoT Core MQTT topics.

Unsupported versions of AWS IoT Device Tester for AWS IoT Greengrass V2 1985

AWS IoT Greengrass Developer Guide, Version 2

• Improves logging capabilities.

• Additional minor bug fixes.

Test suite version:

GGV2Q_1.1.1

• Released 2021.05.05

IDT v4.0.1 for AWS IoT Greengrass

Release notes:

• Enables you to validate and qualify devices running AWS IoT Greengrass Version 2
software.

• Enables you to develop and run your custom test suites using AWS IoT Device Tester for
AWS IoT Greengrass. For more information, see Use IDT to develop and run your own test
suites.

• Provides code signed IDT applications for macOS and Windows. On macOS, you might
need to grant a security exception for IDT. For more information, see Security exception on
macOS.

Test suite version:

GGV2Q_1.0.0

• Released 2020.12.22

• The test suite runs only required tests for qualification, unless you set the
corresponding value in the features array to yes.

Download IDT for AWS IoT Greengrass V2

This topic describes the options to download AWS IoT Device Tester for AWS IoT Greengrass V2.
You can either use one of the following software download links or you can follow instructions to
programmatically download IDT.

Topics

• Download IDT manually

• Download IDT programmatically

By downloading the software, you agree to the AWS IoT Device Tester License Agreement.

Download IDT for AWS IoT Greengrass V2 1986

https://docs.aws.amazon.com/greengrass/v2/developerguide/idt-license.html

AWS IoT Greengrass Developer Guide, Version 2

Note

IDT does not support being run by multiple users from a shared location, such as an NFS
directory or a Windows network shared folder. We recommend that you extract the IDT
package to a local drive and run the IDT binary on your local workstation.

Download IDT manually

This topic lists supported versions of IDT for AWS IoT Greengrass V2. As a best practice, we
recommend that you use the latest version of IDT for AWS IoT Greengrass V2 that supports your
target version of AWS IoT Greengrass V2. New releases of AWS IoT Greengrass might require you
to download a new version of IDT for AWS IoT Greengrass V2. You receive a notification when you
start a test run if IDT for AWS IoT Greengrass V2 is not compatible with the version of AWS IoT
Greengrass you are using.

IDT v4.9.4 for AWS IoT Greengrass

Supported AWS IoT Greengrass versions:

• Greengrass nucleus v2.12.0, v2.11.0, v2.10.0, and v2.9.5

IDT software downloads:

• IDT v4.9.4 with test suite GGV2Q_2.5.4 for Linux

• IDT v4.9.4 with test suite GGV2Q_2.5.4 for macOS

• IDT v4.9.4 with test suite GGV2Q_2.5.4 for Windows

Release notes:

• Enables device validation and qualification for devices running AWS IoT Greengrass
Core software versions 2.12.0, 2.11.0, 2.10.0, and 2.9.5.

• Removes stream manager and machine learning test groups.

Additional notes:

• If your device uses a HSM and you are using nucleus 2.10.x, migrate to Greengrass
nucleus version 2.11.0 or later.

Test suite version:

GGV2Q_2.5.4

• Released 2024.05.03

Download IDT manually 1987

https://docs.aws.amazon.com/greengrass/v2/developerguide/devicetester_greengrass_v2_4.9.4_testsuite_2.5.4_linux.zip
https://docs.aws.amazon.com/greengrass/v2/developerguide/devicetester_greengrass_v2_4.9.4_testsuite_2.5.4_mac.zip
https://docs.aws.amazon.com/greengrass/v2/developerguide/devicetester_greengrass_v2_4.9.4_testsuite_2.5.4_win.zip

AWS IoT Greengrass Developer Guide, Version 2

Download IDT programmatically

IDT provides an API operation that you can use to retrieve a URL where you can download IDT
programmatically. You can also use this API operation to check if you have the latest version of IDT.
This API operation has the following endpoint.

https://download.devicetester.iotdevicesecosystem.amazonaws.com/latestidt

To call this API operation, you must have permission to perform the iot-device-
tester:LatestIdt action. Include your AWS signature and use iot-device-tester as the
service name.

API request

HostOs – The operating system of the host machine. Choose from the following options:

• mac

• linux

• windows

TestSuiteType – The type of the test suite. Choose the following option:

GGV2 – IDT for AWS IoT Greengrass V2

ProductVersion

(Optional) The version of the Greengrass nucleus. The service returns the latest compatible
version of IDT for that version of the Greengrass nucleus. If you don't specify this option, the
service returns the latest version of IDT.

API response

The API response has the following format. The DownloadURL includes a zip file.

{
 "Success": True or False,
 "Message": Message,
 "LatestBk": {
 "Version": The version of the IDT binary,
 "TestSuiteVersion": The version of the test suite,

Download IDT programmatically 1988

AWS IoT Greengrass Developer Guide, Version 2

 "DownloadURL": The URL to download the IDT Bundle, valid for one hour
 }
 }

Examples

You can reference the following examples to programmatically download IDT. These examples
use credentials that you store in the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY
environment variables. To follow best security practices, don't store your credentials in your code.

Example Example: Download using cURL version 7.75.0 or later (Mac and Linux)

If you have cURL version 7.75.0 or later, you can use the aws-sigv4 flag to sign the API request.
This example uses jq to parse the download URL from the response.

Warning

The aws-sigv4 flag requires the query parameters of the curl GET request be in the order
of HostOs/ProductVersion/TestSuiteType or HostOs/TestSuiteType. Orders that do not
conform, will result in an error of getting mismatched signatures for the Canonical String
from the API Gateway.
If the optional parameter ProductVersion is included, you must use a supported product
version as documented in Supported versions of AWS IoT Device Tester for AWS IoT
Greengrass V2.

• Replace us-west-2 with your AWS Region. For the list of Region codes, see Regional endpoints.

• Replace linux with your host machine's operating system.

• Replace 2.5.3 with your version of AWS IoT Greengrass nucleus.

url=$(curl --request GET "https://
download.devicetester.iotdevicesecosystem.amazonaws.com/latestidt?
HostOs=linux&ProductVersion=2.5.3&TestSuiteType=GGV2" \
--user $AWS_ACCESS_KEY_ID:$AWS_SECRET_ACCESS_KEY \
--aws-sigv4 "aws:amz:us-west-2:iot-device-tester" \
| jq -r '.LatestBk["DownloadURL"]')

curl $url --output devicetester.zip

Download IDT programmatically 1989

https://stedolan.github.io/jq/
https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS IoT Greengrass Developer Guide, Version 2

Example Example: Download using an earlier version of cURL (Mac and Linux)

You can use the following cURL command with an AWS signature that you sign and calculate.
For more information about how to sign and calculate an AWS signature, see Signing AWS API
requests.

• Replace linux with your host machine's operating system.

• Replace Timestamp with the date and time, such as 20220210T004606Z.

• Replace Date with the date, such as 20220210.

• Replace AWSRegion with your AWS Region. For the list of Region codes, see Regional endpoints.

• Replace AWSSignature with the AWS signature that you generate.

curl --location --request GET 'https://
download.devicetester.iotdevicesecosystem.amazonaws.com/latestidt?
HostOs=linux&TestSuiteType=GGV2' \
--header 'X-Amz-Date: Timestamp \
--header 'Authorization: AWS4-HMAC-SHA256 Credential=$AWS_ACCESS_KEY_ID/Date/AWSRegion/
iot-device-tester/aws4_request, SignedHeaders=host;x-amz-date, Signature=AWSSignature'

Example Example: Download using a Python script

This example uses the Python requests library. This example is adapted from the Python example
to Sign an AWS API request in the AWS General Reference.

• Replace us-west-2 with your Region. For the list of Region codes, see Regional endpoints.

• Replace linux with your host machine's operating system.

Copyright 2010-2022 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
This file is licensed under the Apache License, Version 2.0 (the "License").
You may not use this file except in compliance with the License. A copy of the
#License is located at
#
http://aws.amazon.com/apache2.0/
#
This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

Download IDT programmatically 1990

https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://pypi.org/project/requests/
https://docs.aws.amazon.com/general/latest/gr/sigv4-signed-request-examples.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS IoT Greengrass Developer Guide, Version 2

See: http://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
This version makes a GET request and passes the signature
in the Authorization header.
import sys, os, base64, datetime, hashlib, hmac
import requests # pip install requests
************* REQUEST VALUES *************
method = 'GET'
service = 'iot-device-tester'
host = 'download.devicetester.iotdevicesecosystem.amazonaws.com'
region = 'us-west-2'
endpoint = 'https://download.devicetester.iotdevicesecosystem.amazonaws.com/latestidt'
request_parameters = 'HostOs=linux&TestSuiteType=GGV2'

Key derivation functions. See:
http://docs.aws.amazon.com/general/latest/gr/signature-v4-examples.html#signature-v4-
examples-python
def sign(key, msg):
 return hmac.new(key, msg.encode('utf-8'), hashlib.sha256).digest()

def getSignatureKey(key, dateStamp, regionName, serviceName):
 kDate = sign(('AWS4' + key).encode('utf-8'), dateStamp)
 kRegion = sign(kDate, regionName)
 kService = sign(kRegion, serviceName)
 kSigning = sign(kService, 'aws4_request')
 return kSigning

Read AWS access key from env. variables or configuration file. Best practice is NOT
to embed credentials in code.
access_key = os.environ.get('AWS_ACCESS_KEY_ID')
secret_key = os.environ.get('AWS_SECRET_ACCESS_KEY')
if access_key is None or secret_key is None:
 print('No access key is available.')
 sys.exit()

Create a date for headers and the credential string
t = datetime.datetime.utcnow()
amzdate = t.strftime('%Y%m%dT%H%M%SZ')
datestamp = t.strftime('%Y%m%d') # Date w/o time, used in credential scope

************* TASK 1: CREATE A CANONICAL REQUEST *************
http://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
Step 1 is to define the verb (GET, POST, etc.)--already done.
Step 2: Create canonical URI--the part of the URI from domain to query

Download IDT programmatically 1991

AWS IoT Greengrass Developer Guide, Version 2

string (use '/' if no path)
canonical_uri = '/latestidt'
Step 3: Create the canonical query string. In this example (a GET request),
request parameters are in the query string. Query string values must
be URL-encoded (space=%20). The parameters must be sorted by name.
For this example, the query string is pre-formatted in the request_parameters
 variable.
canonical_querystring = request_parameters
Step 4: Create the canonical headers and signed headers. Header names
must be trimmed and lowercase, and sorted in code point order from
low to high. Note that there is a trailing \n.
canonical_headers = 'host:' + host + '\n' + 'x-amz-date:' + amzdate + '\n'
Step 5: Create the list of signed headers. This lists the headers
in the canonical_headers list, delimited with ";" and in alpha order.
Note: The request can include any headers; canonical_headers and
signed_headers lists those that you want to be included in the
hash of the request. "Host" and "x-amz-date" are always required.
signed_headers = 'host;x-amz-date'
Step 6: Create payload hash (hash of the request body content). For GET
requests, the payload is an empty string ("").
payload_hash = hashlib.sha256(('').encode('utf-8')).hexdigest()
Step 7: Combine elements to create canonical request
canonical_request = method + '\n' + canonical_uri + '\n' + canonical_querystring + '\n'
 + canonical_headers + '\n' + signed_headers + '\n' + payload_hash

************* TASK 2: CREATE THE STRING TO SIGN*************
Match the algorithm to the hashing algorithm you use, either SHA-1 or
SHA-256 (recommended)
algorithm = 'AWS4-HMAC-SHA256'
credential_scope = datestamp + '/' + region + '/' + service + '/' + 'aws4_request'
string_to_sign = algorithm + '\n' + amzdate + '\n' + credential_scope + '\n' +
 hashlib.sha256(canonical_request.encode('utf-8')).hexdigest()
************* TASK 3: CALCULATE THE SIGNATURE *************
Create the signing key using the function defined above.
signing_key = getSignatureKey(secret_key, datestamp, region, service)
Sign the string_to_sign using the signing_key
signature = hmac.new(signing_key, (string_to_sign).encode('utf-8'),
 hashlib.sha256).hexdigest()

************* TASK 4: ADD SIGNING INFORMATION TO THE REQUEST *************
The signing information can be either in a query string value or in
a header named Authorization. This code shows how to use a header.
Create authorization header and add to request headers

Download IDT programmatically 1992

AWS IoT Greengrass Developer Guide, Version 2

authorization_header = algorithm + ' ' + 'Credential=' + access_key + '/' +
 credential_scope + ', ' + 'SignedHeaders=' + signed_headers + ', ' + 'Signature=' +
 signature
The request can include any headers, but MUST include "host", "x-amz-date",
and (for this scenario) "Authorization". "host" and "x-amz-date" must
be included in the canonical_headers and signed_headers, as noted
earlier. Order here is not significant.
Python note: The 'host' header is added automatically by the Python 'requests'
 library.
headers = {'x-amz-date':amzdate, 'Authorization':authorization_header}

************* SEND THE REQUEST *************
request_url = endpoint + '?' + canonical_querystring
print('\nBEGIN REQUEST++++++++++++++++++++++++++++++++++++')
print('Request URL = ' + request_url)
response = requests.get(request_url, headers=headers)
print('\nRESPONSE++++++++++++++++++++++++++++++++++++')
print('Response code: %d\n' % response.status_code)
print(response.text)

download_url = response.json()["LatestBk"]["DownloadURL"]
r = requests.get(download_url)
open('devicetester.zip', 'wb').write(r.content)

Use IDT to run the AWS IoT Greengrass qualification suite

You can use AWS IoT Device Tester for AWS IoT Greengrass V2 to verify that the AWS IoT
Greengrass Core software runs on your hardware and can communicate with the AWS Cloud. It also
performs end-to-end tests with AWS IoT Core. For example, it verifies that your device can deploy
components and upgrade them.

In addition to testing devices, IDT for AWS IoT Greengrass V2 creates resources (for example, AWS
IoT things, groups, and so on) in your AWS account to facilitate the qualification process.

To create these resources, IDT for AWS IoT Greengrass V2 uses the AWS credentials configured in
the config.json file to make API calls on your behalf. These resources are provisioned at various
times during a test.

When you use IDT for AWS IoT Greengrass V2 to run the AWS IoT Greengrass qualification suite, it
performs the following steps:

1. Loads and validates your device and credentials configuration.

Use IDT to run the AWS IoT Greengrass qualification suite 1993

AWS IoT Greengrass Developer Guide, Version 2

2. Performs selected tests with the required local and cloud resources.

3. Cleans up local and cloud resources.

4. Generates tests reports that indicate if your board passed the tests required for qualification.

Test suite versions

IDT for AWS IoT Greengrass V2 organizes tests into test suites and test groups.

• A test suite is the set of test groups used to verify that a device works with particular versions of
AWS IoT Greengrass.

• A test group is the set of individual tests related to a particular feature, such as component
deployments.

Test suites are versioned using a major.minor.patch format, for example GGV2Q_1.0.0. When
you download IDT, the package includes the latest Greengrass qualification suite version.

Important

Tests from unsupported test suite versions are not valid for device qualification. IDT doesn't
print qualification reports for unsupported versions. For more information, see the section
called “Support policy for AWS IoT Device Tester for AWS IoT Greengrass”.
You can run list-supported-products to list the versions of AWS IoT Greengrass and
test suites that are supported by your current version of IDT.

Test group descriptions

Required Test Groups for Core Qualification

These test groups are required to qualify your AWS IoT Greengrass V2 device for the AWS
Partner Device Catalog.

Core Dependencies

Validates that the device meets all software and hardware requirements for the AWS IoT
Greengrass Core software. This test group includes the following test case:

Test suite versions 1994

AWS IoT Greengrass Developer Guide, Version 2

Java Version

Checks that the required Java version is installed on the device under test. AWS IoT
Greengrass requires Java 8 or later.

PreTest Validation

Checks that the device meets the software requirements to run tests.

• For Linux-based devices, this test checks if the device can run the following Linux
commands:

chmod, cp, echo, grep, kill, ln, mkinfo, ps, rm, sh, uname

• For Windows-based devices, this test checks if the device has the following Microsoft
software installed:

Powershell v5.1 or later, .NET v4.6.1 or later, Visual C++ 2017 or later, PsExec utility

Version Checker

Checks that the version of AWS IoT Greengrass provided is compatible with the AWS IoT
Device Tester version you are using.

Component

Validates that the device can deploy components and upgrade them. This test group
includes the following tests:

Cloud Component

Validates device capability for cloud components.

Local Component

Validates device capability for local components.

Lambda

This test is not applicable for Windows-based devices.

Validates that the device can deploy Lambda function components that use the Java
runtime, and that the Lambda functions can use AWS IoT Core MQTT topics as event sources
for work messages.

MQTT

Validates that the device can subscribe and publish to AWS IoT Core MQTT topics.

Test group descriptions 1995

https://learn.microsoft.com/en-us/powershell/?view=powershell-7.1
https://learn.microsoft.com/en-us/dotnet/
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://learn.microsoft.com/en-us/sysinternals/downloads/psexec

AWS IoT Greengrass Developer Guide, Version 2

Optional Test Groups

Note

These test groups are optional, and used only for qualifying Linux-based Greengrass
core devices. If you choose to qualify for optional tests, your device is listed with
additional capabilities in the AWS Partner Device Catalog.

Docker dependencies

Validates that the device meets all required technical dependencies to use the AWS-
provided Docker application manager (aws.greengrass.DockerApplicationManager)
component.

Docker Application Manager Qualification

Validates that the device can download a Docker container image from Amazon ECR .

Machine Learning Dependencies

Note

The machine learning optional test group is supported only in IDT v4.9.3.

Validates that the device meets all of the required technical dependencies to use the AWS-
provided machine learning (ML) components.

Machine Learning Inference Tests

Note

The machine learning optional test group is supported only in IDT v4.9.3.

Validates that the device can perform ML inference using the Deep Learning Runtime and
TensorFlow Lite ML frameworks.

Test group descriptions 1996

https://github.com/neo-ai/neo-ai-dlr
https://www.tensorflow.org/lite/guide/python

AWS IoT Greengrass Developer Guide, Version 2

Stream Manager Dependencies

Note

The stream manager optional test group is supported only in IDT v4.9.3.

Validates that the device can download, install, and run the AWS IoT Greengrass stream
manager.

Hardware Security Integration (HSI)

Note

This test is available in IDT v4.9.3 and later for Linux-based devices only. AWS IoT
Greengrass doesn't currently support hardware security integration for Windows
devices.

Validates that the device can authenticate connections to the AWS IoT and AWS IoT
Greengrass services using a private key and certificate that are stored in a hardware security
module (HSM). This test also verifies that the AWS-provided PKCS#11 provider component
can interface with the HSM using a vendor-provided PKCS#11 library. For more information,
see Hardware security integration.

Prerequisites for running the AWS IoT Greengrass qualification suite

This section describes the prerequisites for using AWS IoT Device Tester (IDT) for AWS IoT
Greengrass.

Download the latest version of AWS IoT Device Tester for AWS IoT Greengrass

Download the latest version of IDT and extract the software into a location (<device-tester-
extract-location>) on your file system where you have read/write permissions.

Note

IDT does not support being run by multiple users from a shared location, such as an NFS
directory or a Windows network shared folder. We recommend that you extract the IDT
package to a local drive and run the IDT binary on your local workstation.

Prerequisites 1997

AWS IoT Greengrass Developer Guide, Version 2

Windows has a path length limitation of 260 characters. If you are using Windows, extract
IDT to a root directory like C:\ or D:\ to keep your paths under the 260 character limit.

Download the AWS IoT Greengrass software

IDT for AWS IoT Greengrass V2 tests your device for compatibility with a specific version of AWS
IoT Greengrass. Run the following command to download the AWS IoT Greengrass Core software
to a file named aws.greengrass.nucleus.zip. Replace version with a supported nucleus
component version for your IDT version.

Linux or Unix

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-version.zip >
 aws.greengrass.nucleus.zip

Windows Command Prompt (CMD)

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-version.zip >
 aws.greengrass.nucleus.zip

PowerShell

iwr -Uri https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-version.zip -
OutFile aws.greengrass.nucleus.zip

Place the downloaded aws.greengrass.nucleus.zip file in the <device-tester-extract-
location>/products/ folder.

Note

Do not place multiple files in this directory for the same operating system and architecture.

Create and configure an AWS account

Before you can use AWS IoT Device Tester for AWS IoT Greengrass V2, you must perform the
following steps:

Prerequisites 1998

AWS IoT Greengrass Developer Guide, Version 2

1. Set up an AWS account. If you already have an AWS account, skip to step 2.

2. Configure permissions for IDT.

These account permissions allow IDT to access AWS services and create AWS resources, such as
AWS IoT things and AWS IoT Greengrass components, on your behalf.

To create these resources, IDT for AWS IoT Greengrass V2 uses the AWS credentials configured in
the config.json file to make API calls on your behalf. These resources are provisioned at various
times during a test.

Note

Although most tests qualify for AWS Free Tier, you must provide a credit card when you
sign up for an AWS account. For more information, see Why do I need a payment method if
my account is covered by the Free Tier?.

Step 1: Set up an AWS account

In this step, create and configure an AWS account. If you already have an AWS account, skip to the
section called “Step 2: Configure permissions for IDT”.

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

To create an administrator user, choose one of the following options.

Prerequisites 1999

https://aws.amazon.com/free
https://aws.amazon.com/premiumsupport/knowledge-center/free-tier-payment-method/
https://aws.amazon.com/premiumsupport/knowledge-center/free-tier-payment-method/
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

AWS IoT Greengrass Developer Guide, Version 2

Choose
one
way to
manage
your
administr
ator

To By You can also

In IAM
Identity
Center

(Recommen
ded)

Use short-term
credentials to access
AWS.

This aligns with the
security best practices
. For information
about best practices
, see Security best
practices in IAM in the
IAM User Guide.

Following the instructions
in Getting started in the
AWS IAM Identity Center
User Guide.

Configure programmatic
access by Configuring the
AWS CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface User
Guide.

In IAM

(Not
recommend
ed)

Use long-term
credentials to access
AWS.

Following the instructions
in Create an IAM user for
emergency access in the
IAM User Guide.

Configure programmatic
access by Manage access keys
for IAM users in the IAM User
Guide.

Step 2: Configure permissions for IDT

In this step, configure the permissions that IDT for AWS IoT Greengrass V2 uses to run tests
and collect IDT usage data. You can use the AWS Management Console or AWS Command Line
Interface (AWS CLI) to create an IAM policy and a test user for IDT, and then attach policies to the
user. If you already created a test user for IDT, skip to Configure your device to run IDT tests.

To configure permissions for IDT (console)

1. Sign in to the IAM console.

2. Create a customer managed policy that grants permissions to create roles with specific
permissions.

Prerequisites 2000

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started-emergency-iam-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started-emergency-iam-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://console.aws.amazon.com/iam

AWS IoT Greengrass Developer Guide, Version 2

a. In the navigation pane, choose Policies, and then choose Create policy.

b. If you are not using PreInstalled, on the JSON tab, replace the placeholder content with
the following policy. If you are using PreInstalled, proceed to the following step.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"passRoleForResources",
 "Effect":"Allow",
 "Action":"iam:PassRole",
 "Resource":"arn:aws:iam::*:role/idt-*",
 "Condition":{
 "StringEquals":{
 "iam:PassedToService":[
 "iot.amazonaws.com",
 "lambda.amazonaws.com",
 "greengrass.amazonaws.com"
]
 }
 }
 },
 {
 "Sid":"lambdaResources",
 "Effect":"Allow",
 "Action":[
 "lambda:CreateFunction",
 "lambda:PublishVersion",
 "lambda:DeleteFunction",
 "lambda:GetFunction"
],
 "Resource":[
 "arn:aws:lambda:*:*:function:idt-*"
]
 },
 {
 "Sid":"iotResources",
 "Effect":"Allow",
 "Action":[
 "iot:CreateThing",
 "iot:DeleteThing",
 "iot:DescribeThing",

Prerequisites 2001

AWS IoT Greengrass Developer Guide, Version 2

 "iot:CreateThingGroup",
 "iot:DeleteThingGroup",
 "iot:DescribeThingGroup",
 "iot:AddThingToThingGroup",
 "iot:RemoveThingFromThingGroup",
 "iot:AttachThingPrincipal",
 "iot:DetachThingPrincipal",
 "iot:UpdateCertificate",
 "iot:DeleteCertificate",
 "iot:CreatePolicy",
 "iot:AttachPolicy",
 "iot:DetachPolicy",
 "iot:DeletePolicy",
 "iot:GetPolicy",
 "iot:Publish",
 "iot:TagResource",
 "iot:ListThingPrincipals",
 "iot:ListAttachedPolicies",
 "iot:ListTargetsForPolicy",
 "iot:ListThingGroupsForThing",
 "iot:ListThingsInThingGroup",
 "iot:CreateJob",
 "iot:DescribeJob",
 "iot:DescribeJobExecution",
 "iot:CancelJob"
],
 "Resource":[
 "arn:aws:iot:*:*:thing/idt-*",
 "arn:aws:iot:*:*:thinggroup/idt-*",
 "arn:aws:iot:*:*:policy/idt-*",
 "arn:aws:iot:*:*:cert/*",
 "arn:aws:iot:*:*:topic/idt-*",
 "arn:aws:iot:*:*:job/*"
]
 },
 {
 "Sid":"s3Resources",
 "Effect":"Allow",
 "Action":[
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObjectVersion",
 "s3:DeleteObject",
 "s3:CreateBucket",

Prerequisites 2002

AWS IoT Greengrass Developer Guide, Version 2

 "s3:ListBucket",
 "s3:ListBucketVersions",
 "s3:DeleteBucket",
 "s3:PutObjectTagging",
 "s3:PutBucketTagging"
],
 "Resource":"arn:aws:s3::*:idt-*"
 },
 {
 "Sid":"roleAliasResources",
 "Effect":"Allow",
 "Action":[
 "iot:CreateRoleAlias",
 "iot:DescribeRoleAlias",
 "iot:DeleteRoleAlias",
 "iot:TagResource",
 "iam:GetRole"
],
 "Resource":[
 "arn:aws:iot:*:*:rolealias/idt-*",
 "arn:aws:iam::*:role/idt-*"
]
 },
 {
 "Sid":"idtExecuteAndCollectMetrics",
 "Effect":"Allow",
 "Action":[
 "iot-device-tester:SendMetrics",
 "iot-device-tester:SupportedVersion",
 "iot-device-tester:LatestIdt",
 "iot-device-tester:CheckVersion",
 "iot-device-tester:DownloadTestSuite"
],
 "Resource":"*"
 },
 {
 "Sid":"genericResources",
 "Effect":"Allow",
 "Action":[
 "greengrass:*",
 "iot:GetThingShadow",
 "iot:UpdateThingShadow",
 "iot:ListThings",
 "iot:DescribeEndpoint",

Prerequisites 2003

AWS IoT Greengrass Developer Guide, Version 2

 "iot:CreateKeysAndCertificate"
],
 "Resource":"*"
 },
 {
 "Sid":"iamResourcesUpdate",
 "Effect":"Allow",
 "Action":[
 "iam:CreateRole",
 "iam:DeleteRole",
 "iam:CreatePolicy",
 "iam:DeletePolicy",
 "iam:AttachRolePolicy",
 "iam:DetachRolePolicy",
 "iam:TagRole",
 "iam:TagPolicy",
 "iam:GetPolicy",
 "iam:ListAttachedRolePolicies",
 "iam:ListEntitiesForPolicy"
],
 "Resource":[
 "arn:aws:iam::*:role/idt-*",
 "arn:aws:iam::*:policy/idt-*"
]
 }
]
}

c. If you are using PreInstalled, on the JSON tab, replace the placeholder content with the
following policy. Make sure you:

• Replace thingName and thingGroup in the iotResources statement with the thing
name and thing group that were created during the Greengrass installation on your
device under test (DUT) to add permissions.

• Replace the passRole and roleAlias in the roleAliasResources statement and
the passRoleForResources statement with the roles that were created during the
Greengrass installation on your DUT.

{
 "Version":"2012-10-17",
 "Statement":[

Prerequisites 2004

AWS IoT Greengrass Developer Guide, Version 2

 {
 "Sid":"passRoleForResources",
 "Effect":"Allow",
 "Action":"iam:PassRole",
 "Resource":"arn:aws:iam::*:role/passRole",
 "Condition":{
 "StringEquals":{
 "iam:PassedToService":[
 "iot.amazonaws.com",
 "lambda.amazonaws.com",
 "greengrass.amazonaws.com"
]
 }
 }
 },
 {
 "Sid":"lambdaResources",
 "Effect":"Allow",
 "Action":[
 "lambda:CreateFunction",
 "lambda:PublishVersion",
 "lambda:DeleteFunction",
 "lambda:GetFunction"
],
 "Resource":[
 "arn:aws:lambda:*:*:function:idt-*"
]
 },
 {
 "Sid":"iotResources",
 "Effect":"Allow",
 "Action":[
 "iot:CreateThing",
 "iot:DeleteThing",
 "iot:DescribeThing",
 "iot:CreateThingGroup",
 "iot:DeleteThingGroup",
 "iot:DescribeThingGroup",
 "iot:AddThingToThingGroup",
 "iot:RemoveThingFromThingGroup",
 "iot:AttachThingPrincipal",
 "iot:DetachThingPrincipal",
 "iot:UpdateCertificate",
 "iot:DeleteCertificate",

Prerequisites 2005

AWS IoT Greengrass Developer Guide, Version 2

 "iot:CreatePolicy",
 "iot:AttachPolicy",
 "iot:DetachPolicy",
 "iot:DeletePolicy",
 "iot:GetPolicy",
 "iot:Publish",
 "iot:TagResource",
 "iot:ListThingPrincipals",
 "iot:ListAttachedPolicies",
 "iot:ListTargetsForPolicy",
 "iot:ListThingGroupsForThing",
 "iot:ListThingsInThingGroup",
 "iot:CreateJob",
 "iot:DescribeJob",
 "iot:DescribeJobExecution",
 "iot:CancelJob"
],
 "Resource":[
 "arn:aws:iot:*:*:thing/thingName",
 "arn:aws:iot:*:*:thinggroup/thingGroup",
 "arn:aws:iot:*:*:policy/idt-*",
 "arn:aws:iot:*:*:cert/*",
 "arn:aws:iot:*:*:topic/idt-*",
 "arn:aws:iot:*:*:job/*"
]
 },
 {
 "Sid":"s3Resources",
 "Effect":"Allow",
 "Action":[
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObjectVersion",
 "s3:DeleteObject",
 "s3:CreateBucket",
 "s3:ListBucket",
 "s3:ListBucketVersions",
 "s3:DeleteBucket",
 "s3:PutObjectTagging",
 "s3:PutBucketTagging"
],
 "Resource":"arn:aws:s3::*:idt-*"
 },
 {

Prerequisites 2006

AWS IoT Greengrass Developer Guide, Version 2

 "Sid":"roleAliasResources",
 "Effect":"Allow",
 "Action":[
 "iot:CreateRoleAlias",
 "iot:DescribeRoleAlias",
 "iot:DeleteRoleAlias",
 "iot:TagResource",
 "iam:GetRole"
],
 "Resource":[
 "arn:aws:iot:*:*:rolealias/roleAlias",
 "arn:aws:iam::*:role/idt-*"
]
 },
 {
 "Sid":"idtExecuteAndCollectMetrics",
 "Effect":"Allow",
 "Action":[
 "iot-device-tester:SendMetrics",
 "iot-device-tester:SupportedVersion",
 "iot-device-tester:LatestIdt",
 "iot-device-tester:CheckVersion",
 "iot-device-tester:DownloadTestSuite"
],
 "Resource":"*"
 },
 {
 "Sid":"genericResources",
 "Effect":"Allow",
 "Action":[
 "greengrass:*",
 "iot:GetThingShadow",
 "iot:UpdateThingShadow",
 "iot:ListThings",
 "iot:DescribeEndpoint",
 "iot:CreateKeysAndCertificate"
],
 "Resource":"*"
 },
 {
 "Sid":"iamResourcesUpdate",
 "Effect":"Allow",
 "Action":[
 "iam:CreateRole",

Prerequisites 2007

AWS IoT Greengrass Developer Guide, Version 2

 "iam:DeleteRole",
 "iam:CreatePolicy",
 "iam:DeletePolicy",
 "iam:AttachRolePolicy",
 "iam:DetachRolePolicy",
 "iam:TagRole",
 "iam:TagPolicy",
 "iam:GetPolicy",
 "iam:ListAttachedRolePolicies",
 "iam:ListEntitiesForPolicy"
],
 "Resource":[
 "arn:aws:iam::*:role/idt-*",
 "arn:aws:iam::*:policy/idt-*"
]
 }
]
}

Note

If you want to use a custom IAM role as the token exchange role for your device
under test, make sure you update the roleAliasResources statement and the
passRoleForResources statement in your policy to allow your custom IAM role
resource.

d. Choose Review policy.

e. For Name, enter IDTGreengrassIAMPermissions. Under Summary, review the
permissions granted by your policy.

f. Choose Create policy.

3. Create an IAM user and attach the permissions required by IDT for AWS IoT Greengrass.

a. Create an IAM user. Follow steps 1 through 5 in Creating IAM users (console) in the IAM
User Guide.

b. Attach the permissions to your IAM user:

i. On the Set permissions page, choose Attach existing policies to user directly.

ii. Search for the IDTGreengrassIAMPermissions policy that you created in the previous
step. Select the check box.

Prerequisites 2008

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console

AWS IoT Greengrass Developer Guide, Version 2

c. Choose Next: Tags.

d. Choose Next: Review to view a summary of your choices.

e. Choose Create user.

f. To view the user's access keys (access key IDs and secret access keys), choose Show next to
the password and access key. To save the access keys, choose Download.csv and save the
file to a secure location. You use this information later to configure your AWS credentials
file.

4. Next step: Configure your physical device.

To configure permissions for IDT (AWS CLI)

1. On your computer, install and configure the AWS CLI if it's not already installed. Follow the
steps in Installing the AWS CLI in the AWS Command Line Interface User Guide.

Note

The AWS CLI is an open source tool that you can use to interact with AWS services from
your command-line shell.

2. Create a customer managed policy that grants permissions to manage IDT and AWS IoT
Greengrass roles.

a. If you are not using PreInstalled, open a text editor and save the following policy contents
in a JSON file. If you are using PreInstalled, proceed to the following step.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"passRoleForResources",
 "Effect":"Allow",
 "Action":"iam:PassRole",
 "Resource":"arn:aws:iam::*:role/idt-*",
 "Condition":{
 "StringEquals":{
 "iam:PassedToService":[
 "iot.amazonaws.com",
 "lambda.amazonaws.com",
 "greengrass.amazonaws.com"

Prerequisites 2009

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

AWS IoT Greengrass Developer Guide, Version 2

]
 }
 }
 },
 {
 "Sid":"lambdaResources",
 "Effect":"Allow",
 "Action":[
 "lambda:CreateFunction",
 "lambda:PublishVersion",
 "lambda:DeleteFunction",
 "lambda:GetFunction"
],
 "Resource":[
 "arn:aws:lambda:*:*:function:idt-*"
]
 },
 {
 "Sid":"iotResources",
 "Effect":"Allow",
 "Action":[
 "iot:CreateThing",
 "iot:DeleteThing",
 "iot:DescribeThing",
 "iot:CreateThingGroup",
 "iot:DeleteThingGroup",
 "iot:DescribeThingGroup",
 "iot:AddThingToThingGroup",
 "iot:RemoveThingFromThingGroup",
 "iot:AttachThingPrincipal",
 "iot:DetachThingPrincipal",
 "iot:UpdateCertificate",
 "iot:DeleteCertificate",
 "iot:CreatePolicy",
 "iot:AttachPolicy",
 "iot:DetachPolicy",
 "iot:DeletePolicy",
 "iot:GetPolicy",
 "iot:Publish",
 "iot:TagResource",
 "iot:ListThingPrincipals",
 "iot:ListAttachedPolicies",
 "iot:ListTargetsForPolicy",
 "iot:ListThingGroupsForThing",

Prerequisites 2010

AWS IoT Greengrass Developer Guide, Version 2

 "iot:ListThingsInThingGroup",
 "iot:CreateJob",
 "iot:DescribeJob",
 "iot:DescribeJobExecution",
 "iot:CancelJob"
],
 "Resource":[
 "arn:aws:iot:*:*:thing/idt-*",
 "arn:aws:iot:*:*:thinggroup/idt-*",
 "arn:aws:iot:*:*:policy/idt-*",
 "arn:aws:iot:*:*:cert/*",
 "arn:aws:iot:*:*:topic/idt-*",
 "arn:aws:iot:*:*:job/*"
]
 },
 {
 "Sid":"s3Resources",
 "Effect":"Allow",
 "Action":[
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObjectVersion",
 "s3:DeleteObject",
 "s3:CreateBucket",
 "s3:ListBucket",
 "s3:ListBucketVersions",
 "s3:DeleteBucket",
 "s3:PutObjectTagging",
 "s3:PutBucketTagging"
],
 "Resource":"arn:aws:s3::*:idt-*"
 },
 {
 "Sid":"roleAliasResources",
 "Effect":"Allow",
 "Action":[
 "iot:CreateRoleAlias",
 "iot:DescribeRoleAlias",
 "iot:DeleteRoleAlias",
 "iot:TagResource",
 "iam:GetRole"
],
 "Resource":[
 "arn:aws:iot:*:*:rolealias/idt-*",

Prerequisites 2011

AWS IoT Greengrass Developer Guide, Version 2

 "arn:aws:iam::*:role/idt-*"
]
 },
 {
 "Sid":"idtExecuteAndCollectMetrics",
 "Effect":"Allow",
 "Action":[
 "iot-device-tester:SendMetrics",
 "iot-device-tester:SupportedVersion",
 "iot-device-tester:LatestIdt",
 "iot-device-tester:CheckVersion",
 "iot-device-tester:DownloadTestSuite"
],
 "Resource":"*"
 },
 {
 "Sid":"genericResources",
 "Effect":"Allow",
 "Action":[
 "greengrass:*",
 "iot:GetThingShadow",
 "iot:UpdateThingShadow",
 "iot:ListThings",
 "iot:DescribeEndpoint",
 "iot:CreateKeysAndCertificate"
],
 "Resource":"*"
 },
 {
 "Sid":"iamResourcesUpdate",
 "Effect":"Allow",
 "Action":[
 "iam:CreateRole",
 "iam:DeleteRole",
 "iam:CreatePolicy",
 "iam:DeletePolicy",
 "iam:AttachRolePolicy",
 "iam:DetachRolePolicy",
 "iam:TagRole",
 "iam:TagPolicy",
 "iam:GetPolicy",
 "iam:ListAttachedRolePolicies",
 "iam:ListEntitiesForPolicy"
],

Prerequisites 2012

AWS IoT Greengrass Developer Guide, Version 2

 "Resource":[
 "arn:aws:iam::*:role/idt-*",
 "arn:aws:iam::*:policy/idt-*"
]
 }
]
}

b. If you are using PreInstalled, open a text editor and save the following policy contents in a
JSON file. Make sure you:

• Replace thingName and thingGroup in the iotResources statement that were
created during the Greengrass installation on your device under test (DUT) to add
permissions.

• Replace the passRole and roleAlias in the roleAliasResources statement and
the passRoleForResources statement with the roles that were created during the
Greengrass installation on your DUT.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"passRoleForResources",
 "Effect":"Allow",
 "Action":"iam:PassRole",
 "Resource":"arn:aws:iam::*:role/passRole",
 "Condition":{
 "StringEquals":{
 "iam:PassedToService":[
 "iot.amazonaws.com",
 "lambda.amazonaws.com",
 "greengrass.amazonaws.com"
]
 }
 }
 },
 {
 "Sid":"lambdaResources",
 "Effect":"Allow",
 "Action":[
 "lambda:CreateFunction",

Prerequisites 2013

AWS IoT Greengrass Developer Guide, Version 2

 "lambda:PublishVersion",
 "lambda:DeleteFunction",
 "lambda:GetFunction"
],
 "Resource":[
 "arn:aws:lambda:*:*:function:idt-*"
]
 },
 {
 "Sid":"iotResources",
 "Effect":"Allow",
 "Action":[
 "iot:CreateThing",
 "iot:DeleteThing",
 "iot:DescribeThing",
 "iot:CreateThingGroup",
 "iot:DeleteThingGroup",
 "iot:DescribeThingGroup",
 "iot:AddThingToThingGroup",
 "iot:RemoveThingFromThingGroup",
 "iot:AttachThingPrincipal",
 "iot:DetachThingPrincipal",
 "iot:UpdateCertificate",
 "iot:DeleteCertificate",
 "iot:CreatePolicy",
 "iot:AttachPolicy",
 "iot:DetachPolicy",
 "iot:DeletePolicy",
 "iot:GetPolicy",
 "iot:Publish",
 "iot:TagResource",
 "iot:ListThingPrincipals",
 "iot:ListAttachedPolicies",
 "iot:ListTargetsForPolicy",
 "iot:ListThingGroupsForThing",
 "iot:ListThingsInThingGroup",
 "iot:CreateJob",
 "iot:DescribeJob",
 "iot:DescribeJobExecution",
 "iot:CancelJob"
],
 "Resource":[
 "arn:aws:iot:*:*:thing/thingName",
 "arn:aws:iot:*:*:thinggroup/thingGroup",

Prerequisites 2014

AWS IoT Greengrass Developer Guide, Version 2

 "arn:aws:iot:*:*:policy/idt-*",
 "arn:aws:iot:*:*:cert/*",
 "arn:aws:iot:*:*:topic/idt-*",
 "arn:aws:iot:*:*:job/*"
]
 },
 {
 "Sid":"s3Resources",
 "Effect":"Allow",
 "Action":[
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObjectVersion",
 "s3:DeleteObject",
 "s3:CreateBucket",
 "s3:ListBucket",
 "s3:ListBucketVersions",
 "s3:DeleteBucket",
 "s3:PutObjectTagging",
 "s3:PutBucketTagging"
],
 "Resource":"arn:aws:s3::*:idt-*"
 },
 {
 "Sid":"roleAliasResources",
 "Effect":"Allow",
 "Action":[
 "iot:CreateRoleAlias",
 "iot:DescribeRoleAlias",
 "iot:DeleteRoleAlias",
 "iot:TagResource",
 "iam:GetRole"
],
 "Resource":[
 "arn:aws:iot:*:*:rolealias/roleAlias",
 "arn:aws:iam::*:role/idt-*"
]
 },
 {
 "Sid":"idtExecuteAndCollectMetrics",
 "Effect":"Allow",
 "Action":[
 "iot-device-tester:SendMetrics",
 "iot-device-tester:SupportedVersion",

Prerequisites 2015

AWS IoT Greengrass Developer Guide, Version 2

 "iot-device-tester:LatestIdt",
 "iot-device-tester:CheckVersion",
 "iot-device-tester:DownloadTestSuite"
],
 "Resource":"*"
 },
 {
 "Sid":"genericResources",
 "Effect":"Allow",
 "Action":[
 "greengrass:*",
 "iot:GetThingShadow",
 "iot:UpdateThingShadow",
 "iot:ListThings",
 "iot:DescribeEndpoint",
 "iot:CreateKeysAndCertificate"
],
 "Resource":"*"
 },
 {
 "Sid":"iamResourcesUpdate",
 "Effect":"Allow",
 "Action":[
 "iam:CreateRole",
 "iam:DeleteRole",
 "iam:CreatePolicy",
 "iam:DeletePolicy",
 "iam:AttachRolePolicy",
 "iam:DetachRolePolicy",
 "iam:TagRole",
 "iam:TagPolicy",
 "iam:GetPolicy",
 "iam:ListAttachedRolePolicies",
 "iam:ListEntitiesForPolicy"
],
 "Resource":[
 "arn:aws:iam::*:role/idt-*",
 "arn:aws:iam::*:policy/idt-*"
]
 }
]
}

Prerequisites 2016

AWS IoT Greengrass Developer Guide, Version 2

Note

If you want to use a custom IAM role as the token exchange role for your device
under test, make sure you update the roleAliasResources statement and the
passRoleForResources statement in your policy to allow your custom IAM role
resource.

c. Run the following command to create a customer managed policy named
IDTGreengrassIAMPermissions. Replace policy.json with the full path to the JSON
file that you created in the previous step.

aws iam create-policy --policy-name IDTGreengrassIAMPermissions --policy-
document file://policy.json

3. Create an IAM user and attach the permissions required by IDT for AWS IoT Greengrass.

a. Create an IAM user. In this example setup, the user is named IDTGreengrassUser.

aws iam create-user --user-name IDTGreengrassUser

b. Attach the IDTGreengrassIAMPermissions policy you created in step 2 to your IAM
user. Replace <account-id> in the command with the ID of your AWS account.

aws iam attach-user-policy --user-name IDTGreengrassUser --policy-arn
 arn:aws:iam::<account-id>:policy/IDTGreengrassIAMPermissions

4. Create a secret access key for the user.

aws iam create-access-key --user-name IDTGreengrassUser

Store the output in a secure location. You use this information later to configure your AWS
credentials file.

5. Next step: Configure your physical device.

AWS IoT Device Tester permissions

The following policies describe AWS IoT Device Tester permissions.

Prerequisites 2017

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Device Tester requires these permissions for version checking and auto-update features.

• iot-device-tester:SupportedVersion

Grants AWS IoT Device Tester permission to fetch the list of supported products, test suites and
IDT versions.

• iot-device-tester:LatestIdt

Grants AWS IoT Device Tester permission to fetch the latest IDT version available for download.

• iot-device-tester:CheckVersion

Grants AWS IoT Device Tester permission to check version compatibility for IDT, test suites and
products.

• iot-device-tester:DownloadTestSuite

Grants AWS IoT Device Tester permission to download test suites updates.

AWS IoT Device Tester also uses the following permission for optional metrics reporting:

• iot-device-tester:SendMetrics

Grants permission to AWS to collect metrics about AWS IoT Device Tester internal usage. If this
permission is omitted, these metrics will not be collected.

Configure your device to run IDT tests

To enable IDT to run tests for device qualification, you must configure your host computer to access
your device, and configure user permissions on your device.

Install Java on the host computer

Starting with IDT v4.2.0, the optional qualification tests for AWS IoT Greengrass require Java to
run.

You can use Java version 8 or greater. We recommend that you use Amazon Corretto or OpenJDK
long-term support versions. Version 8 or higher is required..

Configure your device to run IDT tests 2018

https://aws.amazon.com/corretto/
https://openjdk.java.net/

AWS IoT Greengrass Developer Guide, Version 2

Configure your host computer to access your device under test

IDT runs on your host computer and must be able to use SSH to connect to your device. There are
two options to allow IDT to gain SSH access to your devices under test:

1. Follow the instructions here to create an SSH key pair and authorize your key to sign in to your
device under test without specifying a password.

2. Provide a user name and password for each device in the device.json file. For more
information, see Configure device.json.

You can use any SSL implementation to create an SSH key. The following instructions show
you how to use SSH-KEYGEN or PuTTYgen (for Windows). If you are using another SSL
implementation, refer to the documentation for that implementation.

IDT uses SSH keys to authenticate with your device under test.

To create an SSH key with SSH-KEYGEN

1. Create an SSH key.

You can use the Open SSH ssh-keygen command to create an SSH key pair. If you already have
an SSH key pair on your host computer, it is a best practice to create a SSH key pair specifically
for IDT. This way, after you have completed testing, your host computer can no longer connect
to your device without entering a password. It also allows you to restrict access to the remote
device to only those who need it.

Note

Windows does not have an installed SSH client. For information about installing an
SSH client on Windows, see Download SSH Client Software.

The ssh-keygen command prompts you for a name and path to store the key pair. By default,
the key pair files are named id_rsa (private key) and id_rsa.pub (public key). On macOS
and Linux, the default location of these files is ~/.ssh/. On Windows, the default location is
C:\Users\<user-name>\.ssh.

When prompted, enter a key phrase to protect your SSH key. For more information, see
Generate a New SSH key.

Configure your device to run IDT tests 2019

https://www.ssh.com/ssh/keygen/
https://www.ssh.com/ssh/putty/windows/puttygen
https://www.ssh.com/ssh/#sec-Download-client-software
https://www.ssh.com/ssh/keygen/

AWS IoT Greengrass Developer Guide, Version 2

2. Add authorized SSH keys to your device under test.

IDT must use your SSH private key to sign in to your device under test. To authorize your SSH
private key to sign in to your device under test, use the ssh-copy-id command from your host
computer. This command adds your public key into the ~/.ssh/authorized_keys file on
your device under test. For example:

$ ssh-copy-id <remote-ssh-user>@<remote-device-ip>

Where remote-ssh-user is the user name used to sign in to your device under test and
remote-device-ip is the IP address of the device under test to run tests against. For
example:

ssh-copy-id pi@192.168.1.5

When prompted, enter the password for the user name you specified in the ssh-copy-id
command.

ssh-copy-id assumes the public key is named id_rsa.pub and is stored the default location
(on macOS and Linux, ~/.ssh/ and on Windows, C:\Users\<user-name>\.ssh). If you
gave the public key a different name or stored it in a different location, you must specify the
fully qualified path to your SSH public key using the -i option to ssh-copy-id (for example,
ssh-copy-id -i ~/my/path/myKey.pub). For more information about creating SSH keys and
copying public keys, see SSH-COPY-ID.

To create an SSH key using PuTTYgen (Windows only)

1. Make sure you have the OpenSSH server and client installed on your device under test. For
more information, see OpenSSH.

2. Install PuTTYgen on your device under test.

3. Open PuTTYgen.

4. Choose Generate and move your mouse cursor inside the box to generate a private key.

5. From the Conversions menu, choose Export OpenSSH key, and save the private key with a
.pem file extension.

6. Add the public key to the /home/<user>/.ssh/authorized_keys file on device under test.

a. Copy the public key text from the PuTTYgen window.

b. Use PuTTY to create a session on your device under test.

Configure your device to run IDT tests 2020

https://www.ssh.com/ssh/copy-id
https://www.openssh.com/
https://www.puttygen.com/

AWS IoT Greengrass Developer Guide, Version 2

i. From a command prompt or Windows Powershell window, run the following
command:

C:/<path-to-putty>/putty.exe -ssh <user>@<dut-ip-address>

ii. When prompted, enter your device's password.

iii. Use vi or another text editor to append the public key to the /home/<user>/.ssh/
authorized_keys file on your device under test.

7. Update your device.json file with your user name, the IP address, and path to the private
key file that you just saved on your host computer for each device under test. For more
information, see the section called “Configure device.json”. Make sure you provide the full path
and file name to the private key and use forward slashes ('/'). For example, for the Windows
path C:\DT\privatekey.pem, use C:/DT/privatekey.pem in the device.json file.

Configure user credentials for Windows devices

To qualify a Windows-based device, you must configure user credentials in the LocalSystem
account on the device under test for the following users:

• The default Greengrass user (ggc_user).

• The user that you use to connect to the device under test. You configure this user in the
device.json file.

You must create each user in the LocalSystem account on the device under test, and then store
the user name and password for the user in the Credential Manager instance for the LocalSystem
account.

To configure users on Windows devices

1. Open the Windows Command Prompt (cmd.exe) as an administrator.

2. Create the users in the LocalSystem account on the Windows device. Run the following
command for each user that you want to create. For the default Greengrass user, replace
user-name with ggc_user. Replace password with a secure password.

net user /add user-name password

3. Download and install the PsExec utility from Microsoft on the device.

Configure your device to run IDT tests 2021

https://docs.microsoft.com/en-us/sysinternals/downloads/psexec

AWS IoT Greengrass Developer Guide, Version 2

4. Use the PsExec utility to store the user name and password for the default user in the
Credential Manager instance for the LocalSystem account.

Run the following command for each user that you want to configure in Credential Manager.
For the default Greengrass user, replace user-name with ggc_user. Replace password with
the user's password that you set earlier.

psexec -s cmd /c cmdkey /generic:user-name /user:user-name /pass:password

If the PsExec License Agreement opens, choose Accept to agree to the license and run the
command.

Note

On Windows devices, the LocalSystem account runs the Greengrass nucleus, and you
must use the PsExec utility to store user information in the LocalSystem account. Using
the Credential Manager application stores this information in the Windows account of
the currently logged on user, instead of the LocalSystem account.

Configure user permissions on your device

IDT performs operations on various directories and files in a device under test. Some of these
operations require elevated permissions (using sudo). To automate these operations, IDT for
AWS IoT Greengrass V2 must be able to run commands with sudo without being prompted for a
password.

Follow these steps on the device under test to allow sudo access without being prompted for a
password.

Note

username refers to the SSH user used by IDT to access the device under test.

To add the user to the sudo group

1. On the device under test, run sudo usermod -aG sudo <username>.

2. Sign out and then sign back in for changes to take effect.

Configure your device to run IDT tests 2022

AWS IoT Greengrass Developer Guide, Version 2

3. To verify your user name was added successfully, run sudo echo test. If you are not prompted
for a password, your user is configured correctly.

4. Open the /etc/sudoers file and add the following line to the end of the file:

<ssh-username> ALL=(ALL) NOPASSWD: ALL

Configure a custom token exchange role

You can choose to use a custom IAM role as the token exchange role that the device under test
assumes to interact with AWS resources. For information about creating an IAM role, see Creating
IAM roles in the IAM User Guide.

You must meet the following requirements to allow IDT to use your custom IAM role. We strongly
recommend that you add only the minimum required policy actions to this role.

• The userdata.json configuration file must be updated to set the
GreengrassV2TokenExchangeRole parameter to true.

• The custom IAM role must be configured with the following minimum trust policy:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":[
 "credentials.iot.amazonaws.com",
 "lambda.amazonaws.com",
 "sagemaker.amazonaws.com"
]
 },
 "Action":"sts:AssumeRole"
 }
]
}

• The custom IAM role must be configured with the following minimum permissions policy:

{
 "Version":"2012-10-17",
 "Statement":[

Configure your device to run IDT tests 2023

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html

AWS IoT Greengrass Developer Guide, Version 2

 {
 "Effect":"Allow",
 "Action":[
 "iot:DescribeCertificate",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams",
 "iot:Connect",
 "iot:Publish",
 "iot:Subscribe",
 "iot:Receive",
 "iot:ListThingPrincipals",
 "iot:GetThingShadow",
 "iot:UpdateThingShadow",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:PutObject",
 "s3:AbortMultipartUpload",
 "s3:ListMultipartUploadParts"
],
 "Resource":"*"
 }
]
}

• The name of the custom IAM role must match the IAM role resource that you specify in the IAM
permissions for the test user. By default, the test user policy allows access to IAM roles that
have the idt- prefix in their role names. If your IAM role name doesn't use this prefix, add the
arn:aws:iam::*:role/custom-iam-role-name resource to the roleAliasResources
statement and the passRoleForResources statement in your test user policy, as shown in the
following examples:

Example passRoleForResources statement

{
 "Sid":"passRoleForResources",
 "Effect":"Allow",
 "Action":"iam:PassRole",
 "Resource":"arn:aws:iam::*:role/custom-iam-role-name",
 "Condition":{
 "StringEquals":{

Configure your device to run IDT tests 2024

AWS IoT Greengrass Developer Guide, Version 2

 "iam:PassedToService":[
 "iot.amazonaws.com",
 "lambda.amazonaws.com",
 "greengrass.amazonaws.com"
]
 }
 }
}

Example roleAliasResources statement

{
 "Sid":"roleAliasResources",
 "Effect":"Allow",
 "Action":[
 "iot:CreateRoleAlias",
 "iot:DescribeRoleAlias",
 "iot:DeleteRoleAlias",
 "iot:TagResource",
 "iam:GetRole"
],
 "Resource":[
 "arn:aws:iot:*:*:rolealias/idt-*",
 "arn:aws:iam::*:role/custom-iam-role-name"
]
}

Configure your device to test optional features

This section describes the device requirements to run IDT tests for optional Docker and machine
learning (ML) features. The ML features are supported only in IDT v4.9.3. You must make sure your
device meets these requirements only if you want to test these features. Otherwise, continue to the
section called “Configure IDT settings”.

Topics

• Docker qualification requirements

• ML qualification requirements

• HSM qualification requirements

Configure your device to run IDT tests 2025

AWS IoT Greengrass Developer Guide, Version 2

Docker qualification requirements

IDT for AWS IoT Greengrass V2 provides Docker qualification tests to validate that your devices
can use the AWS-provided Docker application manager component to download Docker container
images that you can run using custom Docker container components. For information about
creating custom Docker components, see Run a Docker container.

To run Docker qualification tests, your devices under test must meet the following requirements to
deploy the Docker application manager component.

• Docker Engine 1.9.1 or later installed on the Greengrass core device. Version 20.10 is the latest
version that is verified to work with the AWS IoT Greengrass Core software. You must install
Docker directly on the core device before you deploy components that run Docker containers.

• The Docker daemon started and running on the core device before you deploy this component.

• The system user that runs a Docker container component must have root or administrator
permissions, or you must configure Docker to run it as a non-root or non-admistrator user.

• On Linux devices, you can add a user to the docker group to call docker commands without
sudo.

• On Windows devices, you can add a user to the docker-users group to call docker
commands without adminstrator privileges.

Linux or Unix

To add ggc_user, or the non-root user that you use to run Docker container components, to
the docker group, run the following command.

sudo usermod -aG docker ggc_user

For more information, see Manage Docker as a non-root user.

Windows Command Prompt (CMD)

To add ggc_user, or the user that you use to run Docker container components, to the
docker-users group, run the following command as an administrator.

net localgroup docker-users ggc_user /add

Configure your device to run IDT tests 2026

https://docs.docker.com/engine/
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user

AWS IoT Greengrass Developer Guide, Version 2

Windows PowerShell

To add ggc_user, or the user that you use to run Docker container components, to the
docker-users group, run the following command as an administrator.

Add-LocalGroupMember -Group docker-users -Member ggc_user

ML qualification requirements

Note

The machine learning feature is supported only in IDT v4.9.3.

IDT for AWS IoT Greengrass V2 provides ML qualification tests to validate that your devices can
use the AWS-provided machine learning components to perform ML inference locally using the
Deep Learning Runtime or TensorFlow Lite ML frameworks. For more information about running
ML inference on Greengrass devices, see Perform machine learning inference.

To run ML qualification tests, your devices under test must meet the following requirements to
deploy the machine learning components.

• On Greengrass core devices running Amazon Linux 2 or Ubuntu 18.04, GNU C Library (glibc)
version 2.27 or later installed on the device.

• On Armv7l devices, such as Raspberry Pi, dependencies for OpenCV-Python installed on the
device. Run the following command to install the dependencies.

sudo apt-get install libopenjp2-7 libilmbase23 libopenexr-dev libavcodec-dev
 libavformat-dev libswscale-dev libv4l-dev libgtk-3-0 libwebp-dev

• Raspberry Pi devices that run Raspberry Pi OS Bullseye must meet the following requirements:

• NumPy 1.22.4 or later installed on the device. Raspberry Pi OS Bullseye includes an earlier
version of NumPy, so you can run the following command to upgrade NumPy on the device.

pip3 install --upgrade numpy

Configure your device to run IDT tests 2027

https://github.com/neo-ai/neo-ai-dlr
https://www.tensorflow.org/lite/guide/python
https://www.gnu.org/software/libc/

AWS IoT Greengrass Developer Guide, Version 2

• The legacy camera stack enabled on the device. Raspberry Pi OS Bullseye includes a new
camera stack that is enabled by default and isn't compatible, so you must enable the legacy
camera stack.

To enable the legacy camera stack

1. Run the following command to open the Raspberry Pi configuration tool.

sudo raspi-config

2. Select Interface Options.

3. Select Legacy camera to enable the legacy camera stack.

4. Reboot the Raspberry Pi.

HSM qualification requirements

AWS IoT Greengrass provides PKCS#11 provider component to integrate with the PKCS Hardware
Security Module (HSM) on the device. The HSM setup depends on your device and the HSM module
that you have chosen. As long as the expected HSM configuration, as documented in the IDT
configuration settings, is provided, IDT will have the information required to run this optional
feature qualification test.

Configure IDT settings to run the AWS IoT Greengrass qualification
suite

Before you run tests, you must configure settings for AWS credentials and devices on your host
computer.

Configure AWS credentials in config.json

You must configure your IAM user credentials in the <device_tester_extract_location>/
configs/config.json file. Use the credentials for the IDT for AWS IoT Greengrass V2 user
created in the section called “Create and configure an AWS account”. You can specify your
credentials in one of two ways:

• In a credentials file

• As environment variables

Configure IDT settings 2028

AWS IoT Greengrass Developer Guide, Version 2

Configure AWS credentials with a credentials file

IDT uses the same credentials file as the AWS CLI. For more information, see Configuration and
credential files.

The location of the credentials file varies, depending on the operating system you are using:

• macOS, Linux: ~/.aws/credentials

• Windows: C:\Users\UserName\.aws\credentials

Add your AWS credentials to the credentials file in the following format:

[default]
aws_access_key_id = <your_access_key_id>
aws_secret_access_key = <your_secret_access_key>

To configure IDT for AWS IoT Greengrass V2 to use AWS credentials from your credentials file,
edit your config.json file as follows:

{
 "awsRegion": "region",
 "auth": {
 "method": "file",
 "credentials": {
 "profile": "default"
 }
 }
}

Note

If you do not use the default AWS profile, be sure to change the profile name in your
config.json file. For more information, see Named profiles.

Configure AWS credentials with environment variables

Environment variables are variables maintained by the operating system and used by system
commands. They are not saved if you close the SSH session. IDT for AWS IoT Greengrass V2 can use

Configure IDT settings 2029

https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-profiles.html

AWS IoT Greengrass Developer Guide, Version 2

the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables to store your
AWS credentials.

To set these variables on Linux, macOS, or Unix, use export:

export AWS_ACCESS_KEY_ID=<your_access_key_id>
export AWS_SECRET_ACCESS_KEY=<your_secret_access_key>

To set these variables on Windows, use set:

set AWS_ACCESS_KEY_ID=<your_access_key_id>
set AWS_SECRET_ACCESS_KEY=<your_secret_access_key>

To configure IDT to use the environment variables, edit the auth section in your config.json file.
Here is an example:

{
 "awsRegion": "region",
 "auth": {
 "method": "environment"
 }
}

Configure device.json

Note

IDT v4.9.3 supports testing the ml, docker, and streamManagement features. IDT v4.9.4
and later versions support testing docker. If you don't want to test these features, set the
corresponding value to no.

In addition to AWS credentials, IDT for AWS IoT Greengrass V2 needs information about the devices
that tests are run on. Example information would be IP address, login information, operating
system, and CPU architecture.

You must provide this information using the device.json template located in
<device_tester_extract_location>/configs/device.json:

Configure IDT settings 2030

AWS IoT Greengrass Developer Guide, Version 2

IDT v4.9.3

[
 {
 "id": "<pool-id>",
 "sku": "<sku>",
 "features": [
 {
 "name": "arch",
 "value": "x86_64 | armv6l | armv7l | aarch64"
 },
 {
 "name": "ml",
 "value": "dlr | tensorflowlite | dlr,tensorflowlite | no"
 },
 {
 "name": "docker",
 "value": "yes | no"
 },
 {
 "name": "streamManagement",
 "value": "yes | no"
 },
 {
 "name": "hsi",
 "value": "hsm | no"
 }
],
 "devices": [
 {
 "id": "<device-id>",
 "operatingSystem": "Linux | Windows",
 "connectivity": {
 "protocol": "ssh",
 "ip": "<ip-address>",
 "port": 22,
 "publicKeyPath": "<public-key-path>",
 "auth": {
 "method": "pki | password",
 "credentials": {
 "user": "<user-name>",
 "privKeyPath": "/path/to/private/key",
 "password": "<password>"
 }

Configure IDT settings 2031

AWS IoT Greengrass Developer Guide, Version 2

 }
 }
 }
]
 }
]

Note

Specify privKeyPath only if method is set to pki.
Specify password only if method is set to password.

All properties that contain values are required, as described here:

id

A user-defined alphanumeric ID that uniquely identifies a collection of devices called a
device pool. Devices that belong to a pool must have identical hardware. When you run a
suite of tests, devices in the pool are used to parallelize the workload. Multiple devices are
used to run different tests.

sku

An alphanumeric value that uniquely identifies the device under test. The SKU is used to
track qualified boards.

Note

If you want to list your device in the AWS Partner Device Catalog, the SKU you
specify here must match the SKU that you use in the listing process.

features

An array that contains the device's supported features. All features are required.

arch

The supported operating system architectures that the test run validates. Valid values
are:

Configure IDT settings 2032

AWS IoT Greengrass Developer Guide, Version 2

• x86_64

• armv6l

• armv7l

• aarch64

ml

Validates that the device meets all of the required technical dependencies to use the
AWS-provided machine learning (ML) components.

Enabling this feature also validates that the device can perform ML inference using the
Deep Learning Runtime and TensorFlow Lite ML frameworks. .

Valid values are any combination of dlr and tensorflowlite, or no.

docker

Validates that the device meets all required technical dependencies
to use the AWS-provided Docker application manager
(aws.greengrass.DockerApplicationManager) component.

Enabling this feature also validates that the device can download a Docker container
image from Amazon ECR . .

Valid values are any combination of yes or no.

streamManagement

Validates that the device can download, install, and run the AWS IoT Greengrass stream
manager.

Valid values are any combination of yes or no.

hsi

Validates that the device can authenticate connections to the AWS IoT and AWS IoT
Greengrass services using a private key and certificate that are stored in a hardware
security module (HSM). This test also verifies that the AWS-provided PKCS#11 provider
component can interface with the HSM using a vendor-provided PKCS#11 library. For
more information, see Hardware security integration.

Valid values are hsm or no.

Configure IDT settings 2033

https://github.com/neo-ai/neo-ai-dlr
https://www.tensorflow.org/lite/guide/python

AWS IoT Greengrass Developer Guide, Version 2

Note

Testing the hsi is available only with IDT v4.9.3 and later versions.

devices.id

A user-defined unique identifier for the device being tested.

devices.operatingSystem

The device operating system. Supported values are Linux and Windows.

connectivity.protocol

The communication protocol used to communicate with this device. Currently, the only
supported value is ssh for physical devices.

connectivity.ip

The IP address of the device being tested.

This property applies only if connectivity.protocol is set to ssh.

connectivity.port

Optional. The port number to use for SSH connections.

The default value is 22.

This property applies only if connectivity.protocol is set to ssh.

connectivity.publicKeyPath

Optional. The full path to the public key used to authenticate connections to the device
under test.

When you specify the publicKeyPath, IDT validates the device’s public key when it
establishes an SSH connection to the device under test. If this value is not specified, IDT
creates an SSH connection, but doesn’t validate the device’s public key.

We strongly recommend that you specify the path to the public key, and that you use a
secure method to fetch this public key. For standard command line-based SSH clients, the
public key is provided in the known_hosts file. If you specify a separate public key file, this
file must use the same format as the known_hosts file, that is, ip-address key-type

Configure IDT settings 2034

AWS IoT Greengrass Developer Guide, Version 2

public-key. If there are multiple entries with the same ip-address, the entry for the key-
type used by IDT must be before the other entries in the file.

connectivity.auth

Authentication information for the connection.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth.method

The authentication method used to access a device over the given connectivity protocol.

Supported values are:

• pki

• password

connectivity.auth.credentials

The credentials used for authentication.

connectivity.auth.credentials.password

The password used for signing in to the device being tested.

This value applies only if connectivity.auth.method is set to password.

connectivity.auth.credentials.privKeyPath

The full path to the private key used to sign in to the device under test.

This value applies only if connectivity.auth.method is set to pki.

connectivity.auth.credentials.user

The user name for signing in to the device being tested.

IDT v4.9.4

[
 {
 "id": "<pool-id>",
 "sku": "<sku>",
 "features": [
 {

Configure IDT settings 2035

AWS IoT Greengrass Developer Guide, Version 2

 "name": "arch",
 "value": "x86_64 | armv6l | armv7l | aarch64"
 },
 {
 "name": "docker",
 "value": "yes | no"
 },
 {
 "name": "hsi",
 "value": "hsm | no"
 }
],
 "devices": [
 {
 "id": "<device-id>",
 "operatingSystem": "Linux | Windows",
 "connectivity": {
 "protocol": "ssh",
 "ip": "<ip-address>",
 "port": 22,
 "publicKeyPath": "<public-key-path>",
 "auth": {
 "method": "pki | password",
 "credentials": {
 "user": "<user-name>",
 "privKeyPath": "/path/to/private/key",
 "password": "<password>"
 }
 }
 }
 }
]
 }
]

Note

Specify privKeyPath only if method is set to pki.
Specify password only if method is set to password.

All properties that contain values are required, as described here:

Configure IDT settings 2036

AWS IoT Greengrass Developer Guide, Version 2

id

A user-defined alphanumeric ID that uniquely identifies a collection of devices called a
device pool. Devices that belong to a pool must have identical hardware. When you run a
suite of tests, devices in the pool are used to parallelize the workload. Multiple devices are
used to run different tests.

sku

An alphanumeric value that uniquely identifies the device under test. The SKU is used to
track qualified boards.

Note

If you want to list your device in the AWS Partner Device Catalog, the SKU you
specify here must match the SKU that you use in the listing process.

features

An array that contains the device's supported features. All features are required.

arch

The supported operating system architectures that the test run validates. Valid values
are:

• x86_64

• armv6l

• armv7l

• aarch64

docker

Validates that the device meets all required technical dependencies
to use the AWS-provided Docker application manager
(aws.greengrass.DockerApplicationManager) component.

Enabling this feature also validates that the device can download a Docker container
image from Amazon ECR . .

Configure IDT settings 2037

AWS IoT Greengrass Developer Guide, Version 2

Valid values are any combination of yes or no.

hsi

Validates that the device can authenticate connections to the AWS IoT and AWS IoT
Greengrass services using a private key and certificate that are stored in a hardware
security module (HSM). This test also verifies that the AWS-provided PKCS#11 provider
component can interface with the HSM using a vendor-provided PKCS#11 library. For
more information, see Hardware security integration.

Valid values are hsm or no.

Note

Testing the hsi is available only with IDT v4.9.3 and later versions.

devices.id

A user-defined unique identifier for the device being tested.

devices.operatingSystem

The device operating system. Supported values are Linux and Windows.

connectivity.protocol

The communication protocol used to communicate with this device. Currently, the only
supported value is ssh for physical devices.

connectivity.ip

The IP address of the device being tested.

This property applies only if connectivity.protocol is set to ssh.

connectivity.port

Optional. The port number to use for SSH connections.

The default value is 22.

This property applies only if connectivity.protocol is set to ssh.

Configure IDT settings 2038

AWS IoT Greengrass Developer Guide, Version 2

connectivity.publicKeyPath

Optional. The full path to the public key used to authenticate connections to the device
under test.

When you specify the publicKeyPath, IDT validates the device’s public key when it
establishes an SSH connection to the device under test. If this value is not specified, IDT
creates an SSH connection, but doesn’t validate the device’s public key.

We strongly recommend that you specify the path to the public key, and that you use a
secure method to fetch this public key. For standard command line-based SSH clients, the
public key is provided in the known_hosts file. If you specify a separate public key file, this
file must use the same format as the known_hosts file, that is, ip-address key-type
public-key. If there are multiple entries with the same ip-address, the entry for the key-
type used by IDT must be before the other entries in the file.

connectivity.auth

Authentication information for the connection.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth.method

The authentication method used to access a device over the given connectivity protocol.

Supported values are:

• pki

• password

connectivity.auth.credentials

The credentials used for authentication.

connectivity.auth.credentials.password

The password used for signing in to the device being tested.

This value applies only if connectivity.auth.method is set to password.

connectivity.auth.credentials.privKeyPath

The full path to the private key used to sign in to the device under test.

This value applies only if connectivity.auth.method is set to pki.

Configure IDT settings 2039

AWS IoT Greengrass Developer Guide, Version 2

connectivity.auth.credentials.user

The user name for signing in to the device being tested.

Configure userdata.json

IDT for AWS IoT Greengrass V2 also needs additional information about the location of test
artifacts and AWS IoT Greengrass software.

You must provide this information using the userdata.json template located in
<device_tester_extract_location>/configs/userdata.json:

{
 "TempResourcesDirOnDevice": "/path/to/temp/folder",
 "InstallationDirRootOnDevice": "/path/to/installation/folder",
 "GreengrassNucleusZip": "/path/to/aws.greengrass.nucleus.zip",
 "PreInstalled": "yes/no",
 "GreengrassV2TokenExchangeRole": "custom-iam-role-name",
 "hsm": {
 "greengrassPkcsPluginJar": "/path/to/aws.greengrass.crypto.Pkcs11Provider-
latest.jar",
 "pkcs11ProviderLibrary": "/path/to/pkcs11-vendor-library",
 "slotId": "slot-id",
 "slotLabel": "slot-label",
 "slotUserPin": "slot-pin",
 "keyLabel": "key-label",
 "preloadedCertificateArn": "certificate-arn"
 "rootCA": "path/to/root-ca"
 }
}

All properties that contain values are required as described here:

TempResourcesDirOnDevice

The full path to a temporary folder on the device under test in which to store test artifacts.
Make sure that sudo permissions are not required to write to this directory.

Note

IDT deletes the contents of this folder when it finishes running a test.

Configure IDT settings 2040

AWS IoT Greengrass Developer Guide, Version 2

InstallationDirRootOnDevice

The full path to a folder on the device in which to install AWS IoT Greengrass. For PreInstalled
Greengrass, this is the path to the Greengrass installation directory.

You must set the required file permissions for this folder. Run the following command for each
folder in the installation path.

sudo chmod 755 folder-name

GreengrassNucleusZip

The full path to the Greengrass nucleus ZIP (greengrass-nucleus-latest.zip) file on your
host computer. This field is not required for testing with PreInstalled Greengrass.

Note

For information about the supported versions of the Greengrass nucleus for IDT for AWS
IoT Greengrass, see Latest IDT version for AWS IoT Greengrass V2. To download the
latest Greengrass software, see Download the AWS IoT Greengrass software.

PreInstalled

This feature is available for IDT v4.5.8 and later versions on Linux devices only.

(Optional) When the value is yes, IDT will assume the path mentioned in
InstallationDirRootOnDevice to be the directory where Greengrass is installed.

For more information about how to install Greengrass on your device, see Install AWS IoT
Greengrass Core software with automatic resource provisioning. If installing with manual
provisioning, include the “Add the AWS IoT thing to a new or existing thing group” step
when creating an AWS IoT thing manually. IDT assumes that the thing and thing group
are created during installation setup. Make sure that these values are reflected in the
effectiveConfig.yaml file. IDT checks for the file effectiveConfig.yaml under
<InstallationDirRootOnDevice>/config/effectiveConfig.yaml.

For running tests with HSM, make sure that the aws.greengrass.crypto.Pkcs11Provider
field is updated in effectiveConfig.yaml.

Configure IDT settings 2041

https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-tst-prereqs.html#config-gg
https://docs.aws.amazon.com/greengrass/v2/developerguide/manual-installation.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/manual-installation.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/manual-installation.html#create-iot-thing

AWS IoT Greengrass Developer Guide, Version 2

 GreengrassV2TokenExchangeRole

(Optional) The custom IAM role that you want to use as the token exchange role that the device
under test assumes to interact with AWS resources.

Note

IDT uses this custom IAM role instead of creating the default token exchange role during
the test run. If you use a custom role, you can update the IAM permissions for the test
user to exclude the iamResourcesUpdate statement that allows the user to create
and delete IAM roles and policies.

For more information about creating a custom IAM role as your token exchange role, see
Configure a custom token exchange role.

hsm

This feature is available for IDT v4.5.1 and later.

(Optional) The configuration information for testing with an AWS IoT Greengrass Hardware
Security Module (HSM). Otherwise, the hsm property should be omitted. For more information,
see Hardware security integration.

This property applies only if connectivity.protocol is set to ssh.

Warning

The HSM configuration may be considered sensitive data if the hardware security
module is shared between IDT and another system. In this situation, you may avoid
securing these configuration values in plaintext by storing them in an AWS Parameter
Store SecureString parameter and configuring IDT to fetch them during test execution.
For more information, see ???

hsm.greengrassPkcsPluginJar

The full path to the PKCS#11 provider component that you download to the IDT host
machine. AWS IoT Greengrass provides this component as JAR file that you can download

Configure IDT settings 2042

AWS IoT Greengrass Developer Guide, Version 2

to specify as a provisioning plugin during installation. You can download the latest version
of the component's JAR file as the following URL: https://d2s8p88vqu9w66.cloudfront.net/
releases/Pkcs11Provider/aws.greengrass.crypto.Pkcs11Provider-latest.jar.

hsm.pkcs11ProviderLibrary

The full path to the PKCS#11 library that is provided by the hardware security module (HSM)
vendor to interact with the HSM.

hsm.slotId

The slot ID that is used to identify the HSM slot to which you load the key and certificate.

hsm.slotLabel

The slot label that is used to identify the HSM slot to which you load the key and certificate.

hsm.slotUserPin

The user PIN that IDT uses to authenticate AWS IoT Greengrass Core software to the HSM.

Note

As a security best practice, don't use the same user PIN on production devices.

hsm.keyLabel

The label used to identify the key in the hardware module. Both the key and the certificate
must use the same key label.

hsm.preloadedCertificateArn

The Amazon Resource Name (ARN) of the uploaded device certificate in the AWS IoT cloud.

You must have previously generated this certificate using the key in the HSM, imported it
into your HSM, and uploaded it to the AWS IoT cloud. For information about generating and
importing the certificate, see the documentation for your HSM.

You must upload the certificate to the same account and Region that you provide in
config.json.. For more information about uploading your certificate to AWS IoT, see Register
a client certificate manually in the AWS IoT Developer Guide.

Configure IDT settings 2043

https://d2s8p88vqu9w66.cloudfront.net/releases/Pkcs11Provider/aws.greengrass.crypto.Pkcs11Provider-latest.jar
https://d2s8p88vqu9w66.cloudfront.net/releases/Pkcs11Provider/aws.greengrass.crypto.Pkcs11Provider-latest.jar
https://docs.aws.amazon.com/iot/latest/developerguide/manual-cert-registration.html
https://docs.aws.amazon.com/iot/latest/developerguide/manual-cert-registration.html

AWS IoT Greengrass Developer Guide, Version 2

hsm.rootCAPath

(Optional) The full path on the IDT host machine to the root certificate authority (CA) that
signed your certificate. This is required if the certificate in your HSM created is not signed by
the Amazon root CA.

Fetch configuration from AWS Parameter Store

AWS IoT Device Tester (IDT) includes an optional feature to fetch configuration values from the
AWS Systems Manager Parameter Store. AWS Parameter Store allows for secure and encrypted
storage of configurations. When configured, IDT can fetch parameters from AWS Parameter Store
in place of storing parameters in plaintext inside the userdata.json file. This is useful for any
sensitive data that should be stored encrypted, such as: passwords, pins, and other secrets.

1. To use this feature, you must update the permissions used in creating your IDT user to allow
the GetParameter action on the parameters that IDT is configured to use. The below is an
example of a permission statement that can be added to the IDT user. For more information,
see AWS Systems Manager userguide.

{
 "Sid":"parameterStoreResources",
 "Effect": "Allow",
 "Action": [
 "ssm:GetParameter"
],
 "Resource": "arn:aws:ssm:*:*:parameter/IDT*"
}

The above permission is configured to allow fetching all parameters with a name beginning
with IDT, by using the wildcard character *. You should customize this to your needs so IDT
has access to fetch any configured parameters based on the naming of the parameters you are
using.

2. You need to store your configuration values inside AWS Paramater Store. This can be done
from the AWS console or from the AWS CLI. AWS Parameter Store allows you to choose
encrypted or unencrypted storage. For storage of sensitive values like secrets, passwords,
and pins, you should use the encrypted option which is a parameter type of SecureString. To
upload a parameter using the AWS CLI, you can use the following command:

Configure IDT settings 2044

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-tst-prereqs.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-access.html

AWS IoT Greengrass Developer Guide, Version 2

aws ssm put-parameter --name IDT-example-name --value IDT-example-value --type
 SecureString

You can verify that a parameter is stored using the following command. (Optional) Use the --
with-decryption flag to fetch a decrypted SecureString parameter.

aws ssm get-parameter --name IDT-example-name

Using the AWS CLI will upload the parameter in the AWS region of the current CLI user and IDT
will fetch parameters from the region configured in config.json. To check your region from
the AWS CLI, use the following:

aws configure get region

3. Once you have a configuration value in the AWS Cloud, you can update any value inside the
IDT configuration to fetch from the AWS Cloud. To do so, you use a placeholder in your IDT
configuration of the form {{AWS.Parameter.parameter_name}} to fetch the parameter by
that name from the AWS Parameter Store.

For example, suppose you want to use the IDT-example-name parameter from Step 2 as the
HSM keyLabel in your HSM configuration. To do this, you can update your userdata.json as
follows:

"hsm": {
 "keyLabel": "{{AWS.Parameter.IDT-example-name}}",
 [...]
 }

IDT will fetch the value of this parameter at runtime that was set to IDT-example-value in
Step 2. This configuration is similar to setting "keyLabel": "IDT-example-value" but,
instead, that value is store as encrypted in the AWS Cloud.

Run the AWS IoT Greengrass qualification suite

After you set the required configuration, you can start the tests. The runtime of the full test suite
depends on your hardware. For reference, it takes approximately 30 minutes to complete the full
test suite on a Raspberry Pi 3B.

Run the AWS IoT Greengrass qualification suite 2045

AWS IoT Greengrass Developer Guide, Version 2

Use the following run-suite command to run a suite of tests.

devicetester_[linux | mac | win]_x86-64 run-suite \\
 --suite-id suite-id \\
 --group-id group-id \\
 --pool-id your-device-pool \\
 --test-id test-id \\
 --update-idt y|n \\
 --userdata userdata.json

All options are optional. For example, you can omit pool-id if you have only one device pool,
which is a set of identical devices, defined in your device.json file. Or, you can omit suite-id if
you want to run the latest test suite version in the tests folder.

Note

IDT prompts you if a newer test suite version is available online. For more information, see
the section called “Test suite versions”.

Example commands to run the qualification suite

The following command line examples show you how to run the qualification tests for a device
pool. For more information about run-suite and other IDT commands, see the section called “IDT
commands”.

Use the following command to run all test groups in a specified test suite. The list-suites
command lists the test suites that are in the tests folder.

devicetester_[linux | mac | win]_x86-64 run-suite \
 --suite-id GGV2Q_1.0.0 \
 --pool-id <pool-id> \
 --userdata userdata.json

Use the following command to run a specific test group in a test suite. The list-groups
command lists the test groups in a test suite.

devicetester_[linux | mac | win]_x86-64 run-suite \
 --suite-id GGV2Q_1.0.0 \
 --group-id <group-id> \

Run the AWS IoT Greengrass qualification suite 2046

AWS IoT Greengrass Developer Guide, Version 2

 --pool-id <pool-id> \
 --userdata userdata.json

Use the following command to run a specific test case in a test group.

devicetester_[linux | mac | win]_x86-64 run-suite \
 --group-id <group-id> \
 --test-id <test-id> \
 --userdata userdata.json

Use the following command to run multiple test cases in a test group.

devicetester_[linux | mac | win]_x86-64 run-suite \
 --group-id <group-id> \
 --test-id <test-id1>,<test-id2>
 --userdata userdata.json

Use the following command to list all of the test cases in a test group.

devicetester_[linux | mac | win]_x86-64 list-test-cases --group-id <group-id>

We recommend that you run the full qualification test suite, which runs test group dependencies
in the correct order. If you choose to run specific test groups, we recommend that you first run the
dependency checker test group to make sure all Greengrass dependencies are installed before you
run related test groups. For example:

• Run coredependencies before running core qualification test groups.

IDT for AWS IoT Greengrass V2 commands

The IDT commands are located in the <device-tester-extract-location>/bin directory. To
run a test suite, you provide the command in the following format:

help

Lists information about the specified command.

list-groups

Lists the groups in a given test suite.

Run the AWS IoT Greengrass qualification suite 2047

AWS IoT Greengrass Developer Guide, Version 2

list-suites

Lists the available test suites.

list-supported-products

Lists the supported products, in this case AWS IoT Greengrass versions, and test suite versions
for the current IDT version.

list-test-cases

Lists the test cases in a given test group. The following option is supported:

• group-id. The test group to search for. This option is required and must specify a single
group.

run-suite

Runs a suite of tests on a pool of devices. The following are some supported options:

• suite-id. The test suite version to run. If not specified, IDT uses the latest version in the
tests folder.

• group-id. The test groups to run, as a comma-separated list. If not specified, IDT runs
all appropriate test groups in the test suite depending on the configured settings in
device.json. IDT doesn't run any test groups that the device doesn't support based on your
configured settings, even if those test groups are specified in the group-id list.

• test-id. The test cases to run, as a comma-separated list. When specified, group-id must
specify a single group.

• pool-id. The device pool to test. You must specify a pool if you have multiple device pools
defined in your device.json file.

• stop-on-first-failure. Configures IDT to stop running on the first failure. Use this
option with group-id when you want to debug the specified test groups. Do not use this
option when running a full test-suite to generate a qualification report.

• update-idt. Sets the response for the prompt to update IDT. The Y response stops the test
execution if IDT detects there is a newer version. The N response continues the test execution.

• userdata. The full path to the userdata.json file that contains information about test
artifact paths. This option is required for the run-suite command. The userdata.json file
must be located in the devicetester_extract_location/devicetester_ggv2_[win|mac|
linux]/configs/ directory.

For more information about run-suite options, use the help option:

Run the AWS IoT Greengrass qualification suite 2048

AWS IoT Greengrass Developer Guide, Version 2

devicetester_[linux | mac | win]_x86-64 run-suite -h

Understanding results and logs

This section describes how to view and interpret IDT result reports and logs.

To troubleshoot errors, see Troubleshooting IDT for AWS IoT Greengrass V2.

Viewing results

While running, IDT writes errors to the console, log files, and test reports. After IDT completes
the qualification test suite, it generates two test reports. These reports are located in <device-
tester-extract-location>/results/<execution-id>/. Both reports capture the results
from running the qualification test suite.

The awsiotdevicetester_report.xml is the qualification test report that you submit to AWS
to list your device in the AWS Partner Device Catalog. The report contains the following elements:

• The IDT version.

• The AWS IoT Greengrass version that was tested.

• The SKU and the device pool name specified in the device.json file.

• The features of the device pool specified in the device.json file.

• The aggregate summary of test results.

• A breakdown of test results by libraries that were tested based on the device features, such as
local resource access, shadow, and MQTT.

The GGV2Q_Result.xml report is in JUnit XML format. You can integrate it into continuous
integration and deployment platforms like Jenkins, Bamboo, and so on. The report contains the
following elements:

• Aggregate summary of test results.

• Breakdown of test results by the AWS IoT Greengrass functionality that was tested.

Understanding results and logs 2049

https://llg.cubic.org/docs/junit/
https://jenkins.io/
https://www.atlassian.com/software/bamboo

AWS IoT Greengrass Developer Guide, Version 2

Interpreting AWS IoT Device Tester results

The report section in awsiotdevicetester_report.xml or
awsiotdevicetester_report.xml lists the tests that were run and the results.

The first XML tag <testsuites> contains the summary of the test run. For example:

<testsuites name="GGQ results" time="2299" tests="28" failures="0" errors="0"
 disabled="0">

Attributes used in the <testsuites> tag

name

The name of the test suite.

time

The time, in seconds, that it took to run the qualification suite.

tests

The number of tests that were run.

failures

The number of tests that were run, but did not pass.

errors

The number of tests that IDT couldn't run.

disabled

Ignore this attribute. It is not used.

The awsiotdevicetester_report.xml file contains an <awsproduct> tag that contains
information about the product being tested and the product features that were validated after
running a suite of tests.

Attributes used in the <awsproduct> tag

name

The name of the product being tested.

Understanding results and logs 2050

AWS IoT Greengrass Developer Guide, Version 2

version

The version of the product being tested.

features

The features validated. Features marked as required are required to submit your board
for qualification. The following snippet shows how this information appears in the
awsiotdevicetester_report.xml file.

<name="aws-iot-greengrass-v2-core" value="supported" type="required"></feature>

If there are no test failures or errors for the required features, your device meets the technical
requirements to run AWS IoT Greengrass and can interoperate with AWS IoT services. If you want
to list your device in the AWS Partner Device Catalog, you can use this report as qualification
evidence.

In the event of test failures or errors, you can identify the test that failed by reviewing the
<testsuites> XML tags. The <testsuite> XML tags inside the <testsuites> tag show the
test result summary for a test group. For example:

<testsuite name="combination" package="" tests="1" failures="0" time="161" disabled="0"
 errors="0" skipped="0">

The format is similar to the <testsuites> tag, but with a skipped attribute that is not used and
can be ignored. Inside each <testsuite> XML tag, there are <testcase> tags for each test that
was run for a test group. For example:

<testcase classname="Security Combination (IPD + DCM) Test Context" name="Security
 Combination IP Change Tests sec4_test_1: Should rotate server cert when IPD disabled
 and following changes are made:Add CIS conn info and Add another CIS conn info"
 attempts="1"></testcase>>

Attributes used in the <testcase> tag

name

The name of the test.

Understanding results and logs 2051

AWS IoT Greengrass Developer Guide, Version 2

attempts

The number of times IDT ran the test case.

When a test fails or an error occurs, <failure> or <error> tags are added to the <testcase>
tag with information for troubleshooting. For example:

<testcase classname="mcu.Full_MQTT" name="AFQP_MQTT_Connect_HappyCase" attempts="1">
 <failure type="Failure">Reason for the test failure</failure>
 <error>Reason for the test execution error</error>
</testcase>

Viewing logs

IDT generates logs from test runs in <devicetester-extract-location>/
results/<execution-id>/logs. Two sets of logs are generated:

test_manager.log

Logs generated from the Test Manager component of AWS IoT Device Tester (for example, logs
related to configuration, test sequencing, and report generation).

<test-case-id>.log (for example, lambdaDeploymentTest.log)

Logs of the test case within the test group, including logs from the device under test. Starting
with IDT v4.2.0, IDT groups the test logs for each test case in a separate <test-case-id>
folder within the <devicetester-extract-location>/results/<execution-id>/
logs/<test-group-id>/ directory.

Use IDT to develop and run your own test suites

Starting in IDT v4.0.1, IDT for AWS IoT Greengrass V2 combines a standardized configuration setup
and result format with a test suite environment that enables you to develop custom test suites
for your devices and device software. You can add custom tests for your own internal validation or
provide them to your customers for device verification.

Use IDT to develop and run custom test suites, as follows:

To develop custom test suites

• Create test suites with custom test logic for the Greengrass device that you want to test.

Use IDT to develop and run your own test suites 2052

AWS IoT Greengrass Developer Guide, Version 2

• Provide IDT with your custom test suites to test runners. Include information about specific
settings configurations for your test suites.

To run custom test suites

• Set up the device that you want to test.

• Implement the settings configurations as required by the test suites that you want to use.

• Use IDT to run your custom test suites.

• View the test results and execution logs for the tests run by IDT.

Download the latest version of AWS IoT Device Tester for AWS IoT
Greengrass

Download the latest version of IDT and extract the software into a location (<device-tester-
extract-location>) on your file system where you have read/write permissions.

Note

IDT does not support being run by multiple users from a shared location, such as an NFS
directory or a Windows network shared folder. We recommend that you extract the IDT
package to a local drive and run the IDT binary on your local workstation.
Windows has a path length limitation of 260 characters. If you are using Windows, extract
IDT to a root directory like C:\ or D:\ to keep your paths under the 260 character limit.

Test suite creation workflow

Test suites are composed of three types of files:

• Configuration files that provide IDT with information about how to run the test suite.

• Test executable files that IDT uses to run test cases.

• Additional files required to run tests.

Complete the following basic steps to create custom IDT tests:

1. Create configuration files for your test suite.

2. Create test case executables that contain the test logic for your test suite.

Download the latest version of IDT for AWS IoT Greengrass 2053

AWS IoT Greengrass Developer Guide, Version 2

3. Verify and document the configuration information required for test runners to run the test
suite.

4. Verify that IDT can run your test suite and produce test results as expected.

To quickly build a sample custom suite and run it, follow the instructions in Tutorial: Build and run
the sample IDT test suite.

To get started creating a custom test suite in Python, see Tutorial: Develop a simple IDT test suite.

Tutorial: Build and run the sample IDT test suite

The AWS IoT Device Tester download includes the source code for a sample test suite. You can
complete this tutorial to build and run the sample test suite to understand how you can use IDT for
AWS IoT Greengrass to run custom test suites.

In this tutorial, you will complete the following steps:

1. Build the sample test suite

2. Use IDT to run the sample test suite

Prerequisites

To complete this tutorial, you need the following:

• Host computer requirements

• Latest version of AWS IoT Device Tester

• Python 3.7 or later

To check the version of Python installed on your computer, run the following command:

python3 --version

On Windows, if using this command returns an error, then use python --version instead. If
the returned version number is 3.7 or greater, then run the following command in a Powershell
terminal to set python3 as an alias for your python command.

Set-Alias -Name "python3" -Value "python"

Tutorial: Build and run the sample IDT test suite 2054

https://www.python.org/downloads/

AWS IoT Greengrass Developer Guide, Version 2

If no version information is returned or if the version number is less than 3.7, follow the
instructions in Downloading Python to install Python 3.7+. For more information, see the
Python documentation.

• urllib3

To verify that urllib3 is installed correctly, run the following command:

python3 -c 'import urllib3'

If urllib3 is not installed, run the following command to install it:

python3 -m pip install urllib3

• Device requirements

• A device with a Linux operating system and a network connection to the same network as your
host computer.

We recommend that you use a Raspberry Pi with Raspberry Pi OS. Make sure you set up SSH
on your Raspberry Pi to remotely connect to it.

Configure device information for IDT

Configure your device information for IDT to run the test. You must update the device.json
template located in the <device-tester-extract-location>/configs folder with the
following information.

[
 {
 "id": "pool",
 "sku": "N/A",
 "devices": [
 {
 "id": "<device-id>",
 "connectivity": {
 "protocol": "ssh",
 "ip": "<ip-address>",
 "port": "<port>",
 "auth": {
 "method": "pki | password",

Tutorial: Build and run the sample IDT test suite 2055

https://wiki.python.org/moin/BeginnersGuide/Download
https://docs.python.org
https://urllib3.readthedocs.io/en/latest/
https://www.raspberrypi.org/
https://www.raspberrypi.org/documentation/remote-access/ssh/

AWS IoT Greengrass Developer Guide, Version 2

 "credentials": {
 "user": "<user-name>",
 "privKeyPath": "/path/to/private/key",
 "password": "<password>"
 }
 }
 }
 }
]
 }
]

In the devices object, provide the following information:

id

A user-defined unique identifier for your device.

connectivity.ip

The IP address of your device.

connectivity.port

Optional. The port number to use for SSH connections to your device.

connectivity.auth

Authentication information for the connection.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth.method

The authentication method used to access a device over the given connectivity protocol.

Supported values are:

• pki

• password

connectivity.auth.credentials

The credentials used for authentication.

connectivity.auth.credentials.user

The user name used to sign in to your device.

Tutorial: Build and run the sample IDT test suite 2056

AWS IoT Greengrass Developer Guide, Version 2

connectivity.auth.credentials.privKeyPath

The full path to the private key used to sign in to your device.

This value applies only if connectivity.auth.method is set to pki.

devices.connectivity.auth.credentials.password

The password used for signing in to your device.

This value applies only if connectivity.auth.method is set to password.

Note

Specify privKeyPath only if method is set to pki.
Specify password only if method is set to password.

Build the sample test suite

The <device-tester-extract-location>/samples/python folder contains sample
configuration files, source code, and the IDT Client SDK that you can combine into a test suite using
the provided build scripts. The following directory tree shows the location of these sample files:

<device-tester-extract-location>
...
tests
samples
...
python
configuration
src
build-scripts
build.sh
build.ps1
sdks
 ### ...
 ### python
 ### idt_client

To build the test suite, run the following commands on your host computer:

Tutorial: Build and run the sample IDT test suite 2057

AWS IoT Greengrass Developer Guide, Version 2

Windows

cd <device-tester-extract-location>/samples/python/build-scripts
./build.ps1

Linux, macOS, or UNIX

cd <device-tester-extract-location>/samples/python/build-scripts
./build.sh

This creates the sample test suite in the IDTSampleSuitePython_1.0.0 folder within
the <device-tester-extract-location>/tests folder. Review the files in the
IDTSampleSuitePython_1.0.0 folder to understand how the sample test suite is structured,
and to see various examples of test case executables and test configuration JSON files.

Note

The sample test suite includes python source code. Do not include sensitive information in
your test suite code.

Next step: Use IDT to run the sample test suite that you created.

Use IDT to run the sample test suite

To run the sample test suite, run the following commands on your host computer:

cd <device-tester-extract-location>/bin
./devicetester_[linux | mac | win_x86-64] run-suite --suite-id IDTSampleSuitePython

IDT runs the sample test suite and streams the results to the console. When the test has finished
running, you see the following information:

========== Test Summary ==========
Execution Time: 5s
Tests Completed: 4
Tests Passed: 4
Tests Failed: 0

Tutorial: Build and run the sample IDT test suite 2058

AWS IoT Greengrass Developer Guide, Version 2

Tests Skipped: 0

Test Groups:
 sample_group: PASSED

Path to IoT Device Tester Report: /path/to/devicetester/
results/87e673c6-1226-11eb-9269-8c8590419f30/awsiotdevicetester_report.xml
Path to Test Execution Logs: /path/to/devicetester/
results/87e673c6-1226-11eb-9269-8c8590419f30/logs
Path to Aggregated JUnit Report: /path/to/devicetester/
results/87e673c6-1226-11eb-9269-8c8590419f30/IDTSampleSuitePython_Report.xml

Troubleshooting

Use the following information to help resolve any issues with completing the tutorial.

Test case does not run successfully

If the test does not run successfully, IDT streams the error logs to the console that can help you
troubleshoot the test run. Make sure that you meet all the prerequisites for this tutorial.

Cannot connect to the device under test

Verify the following:

• Your device.json file contains the correct IP address, port, and authentication information.

• You can connect to your device over SSH from your host computer.

Tutorial: Develop a simple IDT test suite

A test suite combines the following:

• Test executables that contain the test logic

• Configuration files that describe the test suite

This tutorial shows you how to use IDT for AWS IoT Greengrass to develop a Python test suite that
contains a single test case. In this tutorial, you will complete the following steps:

1. Create a test suite directory

2. Create configuration files

Tutorial: Develop a simple IDT test suite 2059

AWS IoT Greengrass Developer Guide, Version 2

3. Create the test case executable

4. Run the test suite

Prerequisites

To complete this tutorial, you need the following:

• Host computer requirements

• Latest version of AWS IoT Device Tester

• Python 3.7 or later

To check the version of Python installed on your computer, run the following command:

python3 --version

On Windows, if using this command returns an error, then use python --version instead. If
the returned version number is 3.7 or greater, then run the following command in a Powershell
terminal to set python3 as an alias for your python command.

Set-Alias -Name "python3" -Value "python"

If no version information is returned or if the version number is less than 3.7, follow the
instructions in Downloading Python to install Python 3.7+. For more information, see the
Python documentation.

• urllib3

To verify that urllib3 is installed correctly, run the following command:

python3 -c 'import urllib3'

If urllib3 is not installed, run the following command to install it:

python3 -m pip install urllib3

• Device requirements

• A device with a Linux operating system and a network connection to the same network as your
host computer.

Tutorial: Develop a simple IDT test suite 2060

https://www.python.org/downloads/
https://wiki.python.org/moin/BeginnersGuide/Download
https://docs.python.org
https://urllib3.readthedocs.io/en/latest/

AWS IoT Greengrass Developer Guide, Version 2

We recommend that you use a Raspberry Pi with Raspberry Pi OS. Make sure you set up SSH
on your Raspberry Pi to remotely connect to it.

Create a test suite directory

IDT logically separates test cases into test groups within each test suite. Each test case must be
inside a test group. For this tutorial, create a folder called MyTestSuite_1.0.0 and create the
following directory tree within this folder:

MyTestSuite_1.0.0
suite
 ### myTestGroup
 ### myTestCase

Create configuration files

Your test suite must contain the following required configuration files:

Required configuration files

suite.json

Contains information about the test suite. See Configure suite.json.

group.json

Contains information about a test group. You must create a group.json file for each test
group in your test suite. See Configure group.json.

test.json

Contains information about a test case. You must create a test.json file for each test case in
your test suite. See Configure test.json.

1. In the MyTestSuite_1.0.0/suite folder, create a suite.json file with the following
structure:

{
 "id": "MyTestSuite_1.0.0",

Tutorial: Develop a simple IDT test suite 2061

https://www.raspberrypi.org/
https://www.raspberrypi.org/documentation/remote-access/ssh/

AWS IoT Greengrass Developer Guide, Version 2

 "title": "My Test Suite",
 "details": "This is my test suite.",
 "userDataRequired": false
}

2. In the MyTestSuite_1.0.0/myTestGroup folder, create a group.json file with the
following structure:

{
 "id": "MyTestGroup",
 "title": "My Test Group",
 "details": "This is my test group.",
 "optional": false
}

3. In the MyTestSuite_1.0.0/myTestGroup/myTestCase folder, create a test.json file
with the following structure:

{
 "id": "MyTestCase",
 "title": "My Test Case",
 "details": "This is my test case.",
 "execution": {
 "timeout": 300000,
 "linux": {
 "cmd": "python3",
 "args": [
 "myTestCase.py"
]
 },
 "mac": {
 "cmd": "python3",
 "args": [
 "myTestCase.py"
]
 },
 "win": {
 "cmd": "python3",
 "args": [
 "myTestCase.py"
]
 }
 }

Tutorial: Develop a simple IDT test suite 2062

AWS IoT Greengrass Developer Guide, Version 2

}

The directory tree for your MyTestSuite_1.0.0 folder should now look like the following:

MyTestSuite_1.0.0
suite
 ### suite.json
 ### myTestGroup
 ### group.json
 ### myTestCase
 ### test.json

Get the IDT client SDK

You use the IDT client SDK to enable IDT to interact with the device under test and to report test
results. For this tutorial, you will use the Python version of the SDK.

From the <device-tester-extract-location>/sdks/python/ folder, copy the idt_client
folder to your MyTestSuite_1.0.0/suite/myTestGroup/myTestCase folder.

To verify that the SDK was successfully copied, run the following command.

cd MyTestSuite_1.0.0/suite/myTestGroup/myTestCase
python3 -c 'import idt_client'

Create the test case executable

Test case executables contain the test logic that you want to run. A test suite can contain multiple
test case executables. For this tutorial, you will create only one test case executable.

1. Create the test suite file.

In the MyTestSuite_1.0.0/suite/myTestGroup/myTestCase folder, create a
myTestCase.py file with the following content:

from idt_client import *

def main():
 # Use the client SDK to communicate with IDT
 client = Client()

Tutorial: Develop a simple IDT test suite 2063

AWS IoT Greengrass Developer Guide, Version 2

if __name__ == "__main__":
 main()

2. Use client SDK functions to add the following test logic to your myTestCase.py file:

a. Run an SSH command on the device under test.

from idt_client import *

def main():
 # Use the client SDK to communicate with IDT
 client = Client()

 # Create an execute on device request
 exec_req = ExecuteOnDeviceRequest(ExecuteOnDeviceCommand("echo 'hello
 world'"))

 # Run the command
 exec_resp = client.execute_on_device(exec_req)

 # Print the standard output
 print(exec_resp.stdout)

if __name__ == "__main__":
 main()

b. Send the test result to IDT.

from idt_client import *

def main():
 # Use the client SDK to communicate with IDT
 client = Client()

 # Create an execute on device request
 exec_req = ExecuteOnDeviceRequest(ExecuteOnDeviceCommand("echo 'hello
 world'"))

 # Run the command
 exec_resp = client.execute_on_device(exec_req)

 # Print the standard output

Tutorial: Develop a simple IDT test suite 2064

AWS IoT Greengrass Developer Guide, Version 2

 print(exec_resp.stdout)

 # Create a send result request
 sr_req = SendResultRequest(TestResult(passed=True))

 # Send the result
 client.send_result(sr_req)

if __name__ == "__main__":
 main()

Configure device information for IDT

Configure your device information for IDT to run the test. You must update the device.json
template located in the <device-tester-extract-location>/configs folder with the
following information.

[
 {
 "id": "pool",
 "sku": "N/A",
 "devices": [
 {
 "id": "<device-id>",
 "connectivity": {
 "protocol": "ssh",
 "ip": "<ip-address>",
 "port": "<port>",
 "auth": {
 "method": "pki | password",
 "credentials": {
 "user": "<user-name>",
 "privKeyPath": "/path/to/private/key",
 "password": "<password>"
 }
 }
 }
 }
]
 }
]

Tutorial: Develop a simple IDT test suite 2065

AWS IoT Greengrass Developer Guide, Version 2

In the devices object, provide the following information:

id

A user-defined unique identifier for your device.

connectivity.ip

The IP address of your device.

connectivity.port

Optional. The port number to use for SSH connections to your device.

connectivity.auth

Authentication information for the connection.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth.method

The authentication method used to access a device over the given connectivity protocol.

Supported values are:

• pki

• password

connectivity.auth.credentials

The credentials used for authentication.

connectivity.auth.credentials.user

The user name used to sign in to your device.

connectivity.auth.credentials.privKeyPath

The full path to the private key used to sign in to your device.

This value applies only if connectivity.auth.method is set to pki.

devices.connectivity.auth.credentials.password

The password used for signing in to your device.

Tutorial: Develop a simple IDT test suite 2066

AWS IoT Greengrass Developer Guide, Version 2

This value applies only if connectivity.auth.method is set to password.

Note

Specify privKeyPath only if method is set to pki.
Specify password only if method is set to password.

Run the test suite

After you create your test suite, you want to make sure that it functions as expected. Complete the
following steps to run the test suite with your existing device pool to do so.

1. Copy your MyTestSuite_1.0.0 folder into <device-tester-extract-location>/
tests.

2. Run the following commands:

cd <device-tester-extract-location>/bin
./devicetester_[linux | mac | win_x86-64] run-suite --suite-id MyTestSuite

IDT runs your test suite and streams the results to the console. When the test has finished running,
you see the following information:

time="2020-10-19T09:24:47-07:00" level=info msg=Using pool: pool
time="2020-10-19T09:24:47-07:00" level=info msg=Using test suite "MyTestSuite_1.0.0"
 for execution
time="2020-10-19T09:24:47-07:00" level=info msg=b'hello world\n'
 suiteId=MyTestSuite groupId=myTestGroup testCaseId=myTestCase deviceId=my-device
 executionId=9a52f362-1227-11eb-86c9-8c8590419f30
time="2020-10-19T09:24:47-07:00" level=info msg=All tests finished.
 executionId=9a52f362-1227-11eb-86c9-8c8590419f30
time="2020-10-19T09:24:48-07:00" level=info msg=

========== Test Summary ==========
Execution Time: 1s
Tests Completed: 1
Tests Passed: 1
Tests Failed: 0
Tests Skipped: 0

Tutorial: Develop a simple IDT test suite 2067

AWS IoT Greengrass Developer Guide, Version 2

Test Groups:
 myTestGroup: PASSED

Path to IoT Device Tester Report: /path/to/devicetester/
results/9a52f362-1227-11eb-86c9-8c8590419f30/awsiotdevicetester_report.xml
Path to Test Execution Logs: /path/to/devicetester/
results/9a52f362-1227-11eb-86c9-8c8590419f30/logs
Path to Aggregated JUnit Report: /path/to/devicetester/
results/9a52f362-1227-11eb-86c9-8c8590419f30/MyTestSuite_Report.xml

Troubleshooting

Use the following information to help resolve any issues with completing the tutorial.

Test case does not run successfully

If the test does not run successfully, IDT streams the error logs to the console that can help you
troubleshoot the test run. Before you check the error logs, verify the following:

• The IDT client SDK is in the correct folder as described in this step.

• You meet all the prerequisites for this tutorial.

Cannot connect to the device under test

Verify the following:

• Your device.json file contains the correct IP address, port, and authentication information.

• You can connect to your device over SSH from your host computer.

Create IDT test suite configuration files

This section describes the formats in which you create configuration files that you include when
you write a custom test suite.

Required configuration files

suite.json

Contains information about the test suite. See Configure suite.json.

Create IDT test suite configuration files 2068

AWS IoT Greengrass Developer Guide, Version 2

group.json

Contains information about a test group. You must create a group.json file for each test
group in your test suite. See Configure group.json.

test.json

Contains information about a test case. You must create a test.json file for each test case in
your test suite. See Configure test.json.

Optional configuration files

test_orchestrator.yaml or state_machine.json

Defines how tests are run when IDT runs the test suite. SSe Configure test_orchestrator.yaml.

Note

Starting in IDT v4.5.1, you use the test_orchestrator.yaml file to define the test
workflow. In previous versions of IDT, you use the state_machine.json file. For
information about the state machine, see Configure the IDT state machine.

userdata_schema.json

Defines the schema for the userdata.json file that test runners can include in their setting
configuration. The userdata.json file is used for any additional configuration information
that is required to run the test but is not present in the device.json file. See Configure
userdata_schema.json.

Configuration files are placed in your <custom-test-suite-folder> as shown here.

<custom-test-suite-folder>
suite
 ### suite.json
 ### test_orchestrator.yaml
 ### userdata_schema.json
 ### <test-group-folder>
 ### group.json
 ### <test-case-folder>

Create IDT test suite configuration files 2069

AWS IoT Greengrass Developer Guide, Version 2

 ### test.json

Configure suite.json

The suite.json file sets environment variables and determines whether user data is required
to run the test suite. Use the following template to configure your <custom-test-suite-
folder>/suite/suite.json file:

{
 "id": "<suite-name>_<suite-version>",
 "title": "<suite-title>",
 "details": "<suite-details>",
 "userDataRequired": true | false,
 "environmentVariables": [
 {
 "key": "<name>",
 "value": "<value>",
 },
 ...
 {
 "key": "<name>",
 "value": "<value>",
 }
]
}

All fields that contain values are required as described here:

id

A unique user-defined ID for the test suite. The value of id must match the name of the test
suite folder in which the suite.json file is located. The suite name and suite version must also
meet the following requirements:

• <suite-name> cannot contain underscores.

• <suite-version> is denoted as x.x.x, where x is a number.

The ID is shown in IDT-generated test reports.

title

A user-defined name for the product or feature being tested by this test suite. The name is
displayed in the IDT CLI for test runners.

Create IDT test suite configuration files 2070

AWS IoT Greengrass Developer Guide, Version 2

details

A short description of the purpose of the test suite.

userDataRequired

Defines whether test runners need to include custom information in a userdata.json file. If
you set this value to true, you must also include the userdata_schema.json file in your test
suite folder.

environmentVariables

Optional. An array of environment variables to set for this test suite.

environmentVariables.key

The name of the environment variable.

environmentVariables.value

The value of the environment variable.

Configure group.json

The group.json file defines whether a test group is required or optional. Use the following
template to configure your <custom-test-suite-folder>/suite/<test-group>/
group.json file:

{
 "id": "<group-id>",
 "title": "<group-title>",
 "details": "<group-details>",
 "optional": true | false,
}

All fields that contain values are required as described here:

id

A unique user-defined ID for the test group. The value of id must match the name of the test
group folder in which the group.json file is located, and can't contain underscores (_). The ID
is used in IDT-generated test reports.

Create IDT test suite configuration files 2071

AWS IoT Greengrass Developer Guide, Version 2

title

A descriptive name for the test group. The name is displayed in the IDT CLI for test runners.

details

A short description of the purpose of the test group.

optional

Optional. Set to true to display this test group as an optional group after IDT finishes running
required tests. Default value is false.

Configure test.json

The test.json file determines the test case executables and the environment variables that are
used by a test case. For more information about creating test case executables, see Create IDT test
case executables.

Use the following template to configure your <custom-test-suite-folder>/suite/<test-
group>/<test-case>/test.json file:

{
 "id": "<test-id>",
 "title": "<test-title>",
 "details": "<test-details>",
 "requireDUT": true | false,
 "requiredResources": [
 {
 "name": "<resource-name>",
 "features": [
 {
 "name": "<feature-name>",
 "version": "<feature-version>",
 "jobSlots": <job-slots>
 }
]
 }
],
 "execution": {
 "timeout": <timeout>,
 "mac": {
 "cmd": "/path/to/executable",
 "args": [

Create IDT test suite configuration files 2072

AWS IoT Greengrass Developer Guide, Version 2

 "<argument>"
],
 },
 "linux": {
 "cmd": "/path/to/executable",
 "args": [
 "<argument>"
],
 },
 "win": {
 "cmd": "/path/to/executable",
 "args": [
 "<argument>"
]
 }
 },
 "environmentVariables": [
 {
 "key": "<name>",
 "value": "<value>",
 }
]
}

All fields that contain values are required as described here:

id

A unique user-defined ID for the test case. The value of id must match the name of the test
case folder in which the test.json file is located, and can't contain underscores (_). The ID is
used in IDT-generated test reports. .

title

A descriptive name for the test case. The name is displayed in the IDT CLI for test runners.

details

A short description of the purpose of the test case.

requireDUT

Optional. Set to true if a device is required to run this test, otherwise set to false. Default
value is true. Test runners will configure the devices they will use to run the test in their
device.json file.

Create IDT test suite configuration files 2073

AWS IoT Greengrass Developer Guide, Version 2

requiredResources

Optional. An array that provides information about resource devices needed to run this test.

requiredResources.name

The unique name to give the resource device when this test is running.

requiredResources.features

An array of user-defined resource device features.

requiredResources.features.name

The name of the feature. The device feature for which you want to use this device.
This name is matched against the feature name provided by the test runner in the
resource.json file.

requiredResources.features.version

Optional. The version of the feature. This value is matched against the feature version
provided by the test runner in the resource.json file. If a version is not provided, then
the feature is not checked. If a version number is not required for the feature, leave this
field blank.

requiredResources.features.jobSlots

Optional. The number of simultaneous tests that this feature can support. The default
value is 1. If you want IDT to use distinct devices for individual features, then we
recommend that you set this value to 1.

execution.timeout

The amount of time (in milliseconds) that IDT waits for the test to finish running. For more
information about setting this value, see Create IDT test case executables.

execution.os

The test case executables to run based on the operating system of the host computer that runs
IDT. Supported values are linux, mac, and win.

execution.os.cmd

The path to the test case executable that you want to run for the specified operating system.
This location must be in the system path.

Create IDT test suite configuration files 2074

AWS IoT Greengrass Developer Guide, Version 2

execution.os.args

Optional. The arguments to provide to run the test case executable.

environmentVariables

Optional. An array of environment variables set for this test case.

environmentVariables.key

The name of the environment variable.

environmentVariables.value

The value of the environment variable.

Note

If you specify the same environment variable in the test.json file and in the
suite.json file, the value in the test.json file takes precedence.

Configure test_orchestrator.yaml

A test orchestrator is a construct that controls the test suite execution flow. It determines the
starting state of a test suite, manages state transitions based on user-defined rules, and continues
to transition through those states until it reaches the end state.

If your test suite doesn't include a user-defined test orchestrator, IDT will generate a test
orchestrator for you.

The default test orchestrator performs the following functions:

• Provides test runners with the ability to select and run specific test groups, instead of the entire
test suite.

• If specific test groups are not selected, runs every test group in the test suite in a random order.

• Generates reports and prints a console summary that shows the test results for each test group
and test case.

For more information about how the IDT test orchestrator functions, see Configure the IDT test
orchestrator.

Create IDT test suite configuration files 2075

AWS IoT Greengrass Developer Guide, Version 2

Configure userdata_schema.json

The userdata_schema.json file determines the schema in which test runners provide user
data. User data is required if your test suite requires information that is not present in the
device.json file. For example, your tests might need Wi-Fi network credentials, specific open
ports, or certificates that a user must provide. This information can be provided to IDT as an input
parameter called userdata, the value for which is a userdata.json file, that users create in their
<device-tester-extract-location>/config folder. The format of the userdata.json file
is based on the userdata_schema.json file that you include in the test suite.

To indicate that test runners must provide a userdata.json file:

1. In the suite.json file, set userDataRequired to true.

2. In your <custom-test-suite-folder>, create a userdata_schema.json file.

3. Edit the userdata_schema.json file to create a valid IETF Draft v4 JSON Schema.

When IDT runs your test suite, it automatically reads the schema and uses it to validate the
userdata.json file provided by the test runner. If valid, the contents of the userdata.json file
are available in both the IDT context and in the test orchestrator context.

Configure the IDT test orchestrator

Starting in IDT v4.5.1, IDT includes a new test orchestrator component. The test orchestrator is an
IDT component that controls the test suite execution flow, and generates the test report after IDT
finishes running all tests. The test orchestrator determines test selection and the order in which
tests are run based on user-defined rules.

If your test suite doesn't include a user-defined test orchestrator, IDT will generate a test
orchestrator for you.

The default test orchestrator performs the following functions:

• Provides test runners with the ability to select and run specific test groups, instead of the entire
test suite.

• If specific test groups are not selected, runs every test group in the test suite in a random order.

• Generates reports and prints a console summary that shows the test results for each test group
and test case.

Configure the IDT test orchestrator 2076

https://json-schema.org/specification-links.html#draft-4

AWS IoT Greengrass Developer Guide, Version 2

The test orchestrator replaces the IDT test orchestrator. We strongly recommend that you use
the test orchestrator to develop your test suites instead of the IDT test orchestrator. The test
orchestrator provides the following improved features:

• Uses a declarative format compared to the imperative format that the IDT state machine uses.
This allows you to specify which tests you want to run and when you want to run them.

• Manages specific group handling, report generation, error handling, and result tracking so that
you aren't required to manually manage these actions.

• Uses the YAML format, which supports comments by default.

• Requires 80 percent less disk space than the test orchestrator to define the same workflow.

• Adds pre-test validation to verify that your workflow definition doesn't contain incorrect test IDs
or circular dependencies.

Test orchestrator format

You can use the following template to configure your own <custom-test-suite-folder>/
suite/test_orchestrator.yaml file:

Aliases:
 string: context-expression

ConditionalTests:
 - Condition: context-expression
 Tests:
 - test-descriptor

Order:
 - - group-descriptor
 - group-descriptor

Features:
 - Name: feature-name
 Value: support-description
 Condition: context-expression
 Tests:
 - test-descriptor
 OneOfTests:
 - test-descriptor
 IsRequired: boolean

Configure the IDT test orchestrator 2077

AWS IoT Greengrass Developer Guide, Version 2

All fields that contain values are required as described here:

Aliases

Optional. User-defined strings that map to context expressions. Aliases allow you to generate
friendly names to identify context expressions in your test orchestrator configuration. This is
especially useful if you're creating complex context expressions or expressions that you use in
multiple places.

You can use context expressions to store context queries that allow you to access data from
other IDT configurations. For more information, see Access data in the context.

Example Example

Aliases:
 FizzChosen: "'{{$pool.features[?(@.name == 'Fizz')].value[0]}}' == 'yes'"
 BuzzChosen: "'{{$pool.features[?(@.name == 'Buzz')].value[0]}}' == 'yes'"
 FizzBuzzChosen: "'{{$aliases.FizzChosen}}' && '{{$aliases.BuzzChosen}}'"

ConditionalTests

Optional. A list of conditions, and the corresponding test cases that are run when each
condition is satisfied. Each condition can have multiple test cases; however, you can assign a
given test case to only one condition.

By default, IDT runs any test case that isn't assigned to a condition in this list. If you don't
specify this section, IDT runs all test groups in the test suite.

Each item in the ConditionalTests list includes the following parameters:

Condition

A context expression that evaluates to a Boolean value. If the evaluated value is true, IDT
runs the test cases that are specified in the Tests parameter.

Tests

The list of test descriptors.

Each test descriptor uses the test group ID and one or more test case IDs to identify the
individual tests to run from a specific test group. The test descriptor uses the following
format:

Configure the IDT test orchestrator 2078

AWS IoT Greengrass Developer Guide, Version 2

GroupId: group-id
CaseIds: [test-id, test-id] # optional

Example Example

The following example uses generic context expressions that you can define as Aliases.

ConditionalTests:
 - Condition: "{{$aliases.Condition1}}"
 Tests:
 - GroupId: A
 - GroupId: B
 - Condition: "{{$aliases.Condition2}}"
 Tests:
 - GroupId: D
 - Condition: "{{$aliases.Condition1}} || {{$aliases.Condition2}}"
 Tests:
 - GroupId: C

Based on the defined conditions, IDT selects test groups as follows:

• If Condition1 is true, IDT runs the tests in test groups A, B, and C.

• If Condition2 is true, IDT runs the tests in test groups C and D.

Order

Optional. The order in which to run tests. You specify the test order at the test group level. If
you don't specify this section, IDT runs all applicable test groups in a random order. The value of
Order is a list of group descriptor lists. Any test group that you don't list in Order, can be run
in parallel with any other listed test group.

Each group descriptor list contains one of more group descriptors, and identifies the order in
which to run the groups that are specified in each descriptor. You can use the following formats
to define individual group descriptors:

• group-id—The group ID of an existing test group.

• [group-id, group-id]—List of test groups that can be run in any order relative to each
other.

• "*"—Wildcard. This is equivalent to the list of all test groups that are not already specified in
the current group descriptor list.

The value for Order must also meet the following requirements:

Configure the IDT test orchestrator 2079

AWS IoT Greengrass Developer Guide, Version 2

• Test group IDs that you specify in a group descriptor must exist in your test suite.

• Each group descriptor list must include at least one test group.

• Each group descriptor list must contain unique group IDs. You cannot repeat a test group ID
within individual group descriptors.

• A group descriptor list can have at most one wildcard group descriptor. The wildcard group
descriptor must be the first or the last item in the list.

Example Examples

For a test suite that contains test groups A, B, C, D, and E, the following list of examples shows
different ways to specify that IDT should first run test group A, then run test group B, and then
run test groups C, D, and E in any order.

• Order:
 - - A
 - B
 - [C, D, E]

• Order:
 - - A
 - B
 - "*"

• Order:
 - - A
 - B

 - - B
 - C

 - - B
 - D

 - - B
 - E

Features

Optional. The list of product features that you want IDT to add to the
awsiotdevicetester_report.xml file. If you don't specify this section, IDT won't add any
product features to the report.

Configure the IDT test orchestrator 2080

AWS IoT Greengrass Developer Guide, Version 2

A product feature is user-defined information about specific criteria that a device might
meet. For example, the MQTT product feature can designate that the device publishes MQTT
messages properly. In awsiotdevicetester_report.xml, product features are set as
supported, not-supported, or a custom user-defined value, based on whether specified
tests passed.

Each item in the Features list consists of the following parameters:

Name

The name of the feature.

Value

Optional. The custom value that you want to use in the report instead of supported. If
this value is not specified, then based IDT sets the feature value to supported or not-
supported based on test results. If you test the same feature with different conditions,
you can use a custom value for each instance of that feature in the Features list, and IDT
concatenates the feature values for supported conditions. For more information, see

Condition

A context expression that evaluates to a Boolean value. If the evaluated value is true, IDT
adds the feature to the test report after it finishes running the test suite. If the evaluated
value is false, the test is not included in the report.

Tests

Optional. The list of test descriptors. All of the tests that are specified in this list must pass
for the feature to be supported.

Each test descriptor in this list uses the test group ID and one or more test case IDs to
identify the individual tests to run from a specific test group. The test descriptor uses the
following format:

GroupId: group-id
CaseIds: [test-id, test-id] # optional

You must specify either Tests or OneOfTests for each feature in the Features list.

OneOfTests

Optional. The list of test descriptors. At least one of the tests that are specified in this list
must pass for the feature to be supported.

Configure the IDT test orchestrator 2081

AWS IoT Greengrass Developer Guide, Version 2

Each test descriptor in this list uses the test group ID and one or more test case IDs to
identify the individual tests to run from a specific test group. The test descriptor uses the
following format:

GroupId: group-id
CaseIds: [test-id, test-id] # optional

You must specify either Tests or OneOfTests for each feature in the Features list.

IsRequired

The boolean value that defines whether the feature is required in the test report. The
default value is false.

Example

Test orchestrator context

The test orchestrator context is a read-only JSON document that contains data that is available
to the test orchestrator during execution. The test orchestrator context is accessible only from the
test orchestrator, and contains information that determines the test flow. For example, you can use
information configured by test runners in the userdata.json file to determine whether a specific
test is required to run.

The test orchestrator context uses the following format:

{
 "pool": {
 <device-json-pool-element>
 },
 "userData": {
 <userdata-json-content>
 },
 "config": {
 <config-json-content>
 }
}

Configure the IDT test orchestrator 2082

AWS IoT Greengrass Developer Guide, Version 2

pool

Information about the device pool selected for the test run. For a selected device pool, this
information is retrieved from the corresponding top-level device pool array element defined in
the device.json file.

userData

Information in the userdata.json file.

config

Information in the config.json file.

You can query the context using JSONPath notation. The syntax for JSONPath queries in state
definitions is {{query}}. When you access data from the test orchestrator context, make sure that
each value evaluates to a string, a number, or a Boolean.

For more information about using JSONPath notation to access data from the context, see Use the
IDT context.

Configure the IDT state machine

Important

Starting in IDT v4.5.1, this state machine is deprecated. We strongly recommend that
you use the new test orchestrator. For more information, see Configure the IDT test
orchestrator.

A state machine is a construct that controls the test suite execution flow. It determines the starting
state of a test suite, manages state transitions based on user-defined rules, and continues to
transition through those states until it reaches the end state.

If your test suite doesn't include a user-defined state machine, IDT will generate a state machine
for you. The default state machine performs the following functions:

• Provides test runners with the ability to select and run specific test groups, instead of the entire
test suite.

• If specific test groups are not selected, runs every test group in the test suite in a random order.

Configure the IDT state machine 2083

AWS IoT Greengrass Developer Guide, Version 2

• Generates reports and prints a console summary that shows the test results for each test group
and test case.

The state machine for an IDT test suite must meet the following criteria:

• Each state corresponds to an action for IDT to take, such as to run a test group or product a
report file.

• Transitioning to a state executes the action associated with the state.

• Each state defines the transition rule for the next state.

• The end state must be either Succeed or Fail.

State machine format

You can use the following template to configure your own <custom-test-suite-folder>/
suite/state_machine.json file:

{
 "Comment": "<description>",
 "StartAt": "<state-name>",
 "States": {
 "<state-name>": {
 "Type": "<state-type>",
 // Additional state configuration
 }

 // Required states
 "Succeed": {
 "Type": "Succeed"
 },
 "Fail": {
 "Type": "Fail"
 }
 }
}

All fields that contain values are required as described here:

Comment

A description of the state machine.

Configure the IDT state machine 2084

AWS IoT Greengrass Developer Guide, Version 2

StartAt

The name of the state at which IDT starts running the test suite. The value of StartAt must be
set to one of the states listed in the States object.

States

An object that maps user-defined state names to valid IDT states. Each States.state-name
object contains the definition of a valid state mapped to the state-name.

The States object must include the Succeed and Fail states. For information about valid
states, see Valid states and state definitions.

Valid states and state definitions

This section describes the state definitions of all of the valid states that can be used in the IDT
state machine. Some of the following states support configurations at the test case level. However,
we recommend that you configure state transition rules at the test group level instead of the test
case level unless absolutely necessary.

State definitions

• RunTask

• Choice

• Parallel

• AddProductFeatures

• Report

• LogMessage

• SelectGroup

• Fail

• Succeed

RunTask

The RunTask state runs test cases from a test group defined in the test suite.

{

Configure the IDT state machine 2085

AWS IoT Greengrass Developer Guide, Version 2

 "Type": "RunTask",
 "Next": "<state-name>",
 "TestGroup": "<group-id>",
 "TestCases": [
 "<test-id>"
],
 "ResultVar": "<result-name>"
}

All fields that contain values are required as described here:

Next

The name of the state to transition to after executing the actions in the current state.

TestGroup

Optional. The ID of the test group to run. If this value is not specified, then IDT runs the test
group that the test runner selects.

TestCases

Optional. An array of test case IDs from the group specified in TestGroup. Based on the values
of TestGroup and TestCases, IDT determines the test execution behavior as follows:

• When both TestGroup and TestCases are specified, IDT runs the specified test cases from
the test group.

• When TestCases are specified but TestGroup is not specified, IDT runs the specified test
cases.

• When TestGroup is specified, but TestCases is not specified, IDT runs all of the test cases
within the specified test group.

• When neither TestGroup or TestCases is specified, IDT runs all test cases from the test
group that the test runner selects from the IDT CLI. To enable group selection for test
runners, you must include both RunTask and Choice states in your state_machine.json
file. For an example of how this works, see Example state machine: Run user-selected test
groups.

For more information about enabling IDT CLI commands for test runners, see the section
called “Enable IDT CLI commands”.

Configure the IDT state machine 2086

AWS IoT Greengrass Developer Guide, Version 2

ResultVar

The name of the context variable to set with the results of the test run. Do not specify this
value if you did not specify a value for TestGroup. IDT sets the value of the variable that you
define in ResultVar to true or false based on the following:

• If the variable name is of the form text_text_passed, then the value is set to whether all
tests in the first test group passed or were skipped.

• In all other cases, the value is set to whether all tests in all test groups passed or were
skipped.

Typically, you will use RunTask state to specify a test group ID without specifying individual test
case IDs, so that IDT will run all of the test cases in the specified test group. All test cases that are
run by this state run in parallel, in a random order. However, if all of the test cases require a device
to run, and only a single device is available, then the test cases will run sequentially instead.

Error handling

If any of the specified test groups or test case IDs are not valid, then this state issues the
RunTaskError execution error. If the state encounters an execution error, then it also sets the
hasExecutionError variable in the state machine context to true.

Choice

The Choice state lets you dynamically set the next state to transition to based on user-defined
conditions.

{
 "Type": "Choice",
 "Default": "<state-name>",
 "FallthroughOnError": true | false,
 "Choices": [
 {
 "Expression": "<expression>",
 "Next": "<state-name>"
 }
]
}

All fields that contain values are required as described here:

Configure the IDT state machine 2087

AWS IoT Greengrass Developer Guide, Version 2

Default

The default state to transition to if none of the expressions defined in Choices can be
evaluated to true.

FallthroughOnError

Optional. Specifies the behavior when the state encounters an error in evaluating expressions.
Set to true if you want to skip an expression if the evaluation results in an error. If
no expressions match, then the state machine transitions to the Default state. If the
FallthroughOnError value is not specified, it defaults to false.

Choices

An array of expressions and states to determine which state to transition to after executing the
actions in the current state.

Choices.Expression

An expression string that evaluates to a boolean value. If the expression evaluates to true,
then the state machine transitions to the state defined in Choices.Next. Expression strings
retrieve values from the state machine context and then perform operations on them to
arrive at a boolean value. For information about accesing the state machine context, see
State machine context.

Choices.Next

The name of the state to transition to if the expression defined in Choices.Expression
evaluates to true.

Error handling

The Choice state can require error handling in the following cases:

• Some variables in the choice expressions don’t exist in the state machine context.

• The result of an expression is not a boolean value.

• The result of a JSON lookup is not a string, number, or boolean.

You cannot use a Catch block to handle errors in this state. If you want to stop executing the state
machine when it encounters an error, you must set FallthroughOnError to false. However, we

Configure the IDT state machine 2088

AWS IoT Greengrass Developer Guide, Version 2

recommend that you set FallthroughOnError to true, and depending on your use case, do one
of the following:

• If a variable you are accessing is expected to not exist in some cases, then use the value of
Default and additional Choices blocks to specify the next state.

• If a variable that you are accessing should always exist, then set the Default state to Fail.

Parallel

The Parallel state lets you define and run new state machines in parallel with each other.

{
 "Type": "Parallel",
 "Next": "<state-name>",
 "Branches": [
 <state-machine-definition>
]
}

All fields that contain values are required as described here:

Next

The name of the state to transition to after executing the actions in the current state.

Branches

An array of state machine definitions to run. Each state machine definition must contain its
own StartAt, Succeed, and Fail states. The state machine definitions in this array cannot
reference states outside of their own definition.

Note

Because each branch state machine shares the same state machine context, setting
variables in one branch and then reading those variables from another branch might
result in unexpected behavior.

The Parallel state moves to the next state only after it runs all of the branch state machines.
Each state that requires a device will wait to run until the device is available. If multiple devices

Configure the IDT state machine 2089

AWS IoT Greengrass Developer Guide, Version 2

are available, this state runs test cases from multiple groups in parallel. If enough devices are not
available, then test cases will run sequentially. Because test cases are run in a random order when
they run in parallel, different devices might be used to run tests from the same test group.

Error handling

Make sure that both the branch state machine and the parent state machine transition to the Fail
state to handle execution errors.

Because branch state machines do not transmit execution errors to the parent state machine, you
cannot use a Catch block to handle execution errors in branch state machines. Instead, use the
hasExecutionErrors value in the shared state machine context. For an example of how this
works, see Example state machine: Run two test groups in parallel.

AddProductFeatures

The AddProductFeatures state lets you add product features to the
awsiotdevicetester_report.xml file generated by IDT.

A product feature is user-defined information about specific criteria that a device might meet.
For example, the MQTT product feature can designate that the device publishes MQTT messages
properly. In the report, product features are set as supported, not-supported, or a custom
value, based on whether specified tests passed.

Note

The AddProductFeatures state does not generate reports by itself. This state must
transition to the Report state to generate reports.

{
 "Type": "Parallel",
 "Next": "<state-name>",
 "Features": [
 {
 "Feature": "<feature-name>",
 "Groups": [
 "<group-id>"
],

Configure the IDT state machine 2090

AWS IoT Greengrass Developer Guide, Version 2

 "OneOfGroups": [
 "<group-id>"
],
 "TestCases": [
 "<test-id>"
],
 "IsRequired": true | false,
 "ExecutionMethods": [
 "<execution-method>"
]
 }
]
}

All fields that contain values are required as described here:

Next

The name of the state to transition to after executing the actions in the current state.

Features

An array of product features to show in the awsiotdevicetester_report.xml file.

Feature

The name of the feature

FeatureValue

Optional. The custom value to use in the report instead of supported. If this value is
not specified, then based on test results, the feature value is set to supported or not-
supported.

If you use a custom value for FeatureValue, you can test the same feature with different
conditions, and IDT concatenates the feature values for the supported conditions. For
example, the following excerpt shows the MyFeature feature with two separate feature
values:

...
{
 "Feature": "MyFeature",
 "FeatureValue": "first-feature-supported",
 "Groups": ["first-feature-group"]

Configure the IDT state machine 2091

AWS IoT Greengrass Developer Guide, Version 2

},
{
 "Feature": "MyFeature",
 "FeatureValue": "second-feature-supported",
 "Groups": ["second-feature-group"]
},
...

If both test groups pass, then the feature value is set to first-feature-supported,
second-feature-supported.

Groups

Optional. An array of test group IDs. All tests within each specified test group must pass for
the feature to be supported.

OneOfGroups

Optional. An array of test group IDs. All tests within at least one of the specified test groups
must pass for the feature to be supported.

TestCases

Optional. An array of test case IDs. If you specify this value, then the following apply:

• All of the specified test cases must pass for the feature to be supported.

• Groups must contain only one test group ID.

• OneOfGroups must not be specified.

IsRequired

Optional. Set to false to mark this feature as an optional feature in the report. The default
value is true.

ExecutionMethods

Optional. An array of execution methods that match the protocol value specified in the
device.json file. If this value is specified, then test runners must specify a protocol
value that matches one of the values in this array to include the feature in the report. If this
value is not specified, then the feature will always be included in the report.

To use the AddProductFeatures state, you must set the value of ResultVar in the RunTask
state to one of the following values:

Configure the IDT state machine 2092

AWS IoT Greengrass Developer Guide, Version 2

• If you specified individual test case IDs, then set ResultVar to group-id_test-id_passed.

• If you did not specify individual test case IDs, then set ResultVar to group-id_passed.

The AddProductFeatures state checks for test results in the following manner:

• If you did not specify any test case IDs, then the result for each test group is determined from
the value of the group-id_passed variable in the state machine context.

• If you did specify test case IDs, then the result for each of the tests is determined from the value
of the group-id_test-id_passed variable in the state machine context.

Error handling

If a group ID provided in this state is not a valid group ID, then this state results in the
AddProductFeaturesError execution error. If the state encounters an execution error, then it
also sets the hasExecutionErrors variable in the state machine context to true.

Report

The Report state generates the suite-name_Report.xml and
awsiotdevicetester_report.xml files. This state also streams the report to the console.

{
 "Type": "Report",
 "Next": "<state-name>"
}

All fields that contain values are required as described here:

Next

The name of the state to transition to after executing the actions in the current state.

You should always transition to the Report state towards the end of the test execution flow so
that test runners can view test results. Typically, the next state after this state is Succeed.

Error handling

If this state encounters issues with generating the reports, then it issues the ReportError
execution error.

Configure the IDT state machine 2093

AWS IoT Greengrass Developer Guide, Version 2

LogMessage

The LogMessage state generates the test_manager.log file and streams the log message to the
console.

{
 "Type": "LogMessage",
 "Next": "<state-name>"
 "Level": "info | warn | error"
 "Message": "<message>"
}

All fields that contain values are required as described here:

Next

The name of the state to transition to after executing the actions in the current state.

Level

The error level at which to create the log message. If you specify a level that is not valid, this
state generates an error message and discards it.

Message

The message to log.

SelectGroup

The SelectGroup state updates the state machine context to indicate which groups are selected.
The values set by this state are used by any subsequent Choice states.

{
 "Type": "SelectGroup",
 "Next": "<state-name>"
 "TestGroups": [
 <group-id>"
]
}

All fields that contain values are required as described here:

Configure the IDT state machine 2094

AWS IoT Greengrass Developer Guide, Version 2

Next

The name of the state to transition to after executing the actions in the current state.

TestGroups

An array of test groups that will be marked as selected. For each test group ID in this array, the
group-id_selected variable is set to true in the context. Make sure that you provide valid
test group IDs because IDT does not validate whether the specified groups exist.

Fail

The Fail state indicates that the state machine did not execute correctly. This is an end state for
the state machine, and each state machine definition must include this state.

{
 "Type": "Fail"
}

Succeed

The Succeed state indicates that the state machine executed correctly. This is an end state for the
state machine, and each state machine definition must include this state.

{
 "Type": "Succeed"
}

State machine context

The state machine context is a read-only JSON document that contains data that is available
to the state machine during execution. The state machine context is accessible only from the
state machine, and contains information that determines the test flow. For example, you can use
information configured by test runners in the userdata.json file to determine whether a specific
test is required to run.

The state machine context uses the following format:

{
 "pool": {
 <device-json-pool-element>

Configure the IDT state machine 2095

AWS IoT Greengrass Developer Guide, Version 2

 },
 "userData": {
 <userdata-json-content>
 },
 "config": {
 <config-json-content>
 },
 "suiteFailed": true | false,
 "specificTestGroups": [
 "<group-id>"
],
 "specificTestCases": [
 "<test-id>"
],
 "hasExecutionErrors": true
}

pool

Information about the device pool selected for the test run. For a selected device pool, this
information is retrieved from the corresponding top-level device pool array element defined in
the device.json file.

userData

Information in the userdata.json file.

config

Information pin the config.json file.

suiteFailed

The value is set to false when the state machine starts. If a test group fails in a RunTask
state, then this value is set to true for the remaining duration of the state machine execution.

specificTestGroups

If the test runner selects specific test groups to run instead of the entire test suite, this key is
created and contains the list of specific test group IDs.

specificTestCases

If the test runner selects specific test cases to run instead of the entire test suite, this key is
created and contains the list of specific test case IDs.

Configure the IDT state machine 2096

AWS IoT Greengrass Developer Guide, Version 2

hasExecutionErrors

Does not exit when the state machine starts. If any state encounters an execution errors, this
variable is created and set to true for the remaining duration of the state machine execution.

You can query the context using JSONPath notation. The syntax for JSONPath queries in state
definitions is {{$.query}}. You can use JSONPath queries as placeholder strings within some
states. IDT replaces the placeholder strings with the value of the evaluated JSONPath query from
the context. You can use placeholders for the following values:

• The TestCases value in RunTask states.

• The Expression value Choice state.

When you access data from the state machine context, make sure the following conditions are met:

• Your JSON paths must begin with $.

• Each value must evaluate to a string, a number, or a boolean.

For more information about using JSONPath notation to access data from the context, see Use the
IDT context.

Execution errors

Execution errors are errors in the state machine definition that the state machine encounters
when executing a state. IDT logs information about each error in the test_manager.log file and
streams the log message to the console.

You can use the following methods to handle execution errors:

• Add a Catch block in the state definition.

• Check the value of the hasExecutionErrors value in the state machine context.

Catch

To use Catch, add the following to your state definition:

"Catch": [
 {

Configure the IDT state machine 2097

AWS IoT Greengrass Developer Guide, Version 2

 "ErrorEquals": [
 "<error-type>"
]
 "Next": "<state-name>"
 }
]

All fields that contain values are required as described here:

Catch.ErrorEquals

An array of the error types to catch. If an execution error matches one of the specified values,
then the state machine transitions to the state specified in Catch.Next. See each state
definition for information about the type of error it produces.

Catch.Next

The next state to transition to if the current state encounters an execution error that matches
one of the values specified in Catch.ErrorEquals .

Catch blocks are handled sequentially until one matches. If the no errors match the ones listed
in the Catch blocks, then the state machines continues to execute. Because execution errors are
a result of incorrect state definitions, we recommend that you transition to the Fail state when a
state encounters an execution error.

hasExecutionError

When some states encounter execution errors, in addition to issuing the error, they also set the
hasExecutionError value to true in the state machine context. You can use this value to detect
when an error occurs, and then use a Choice state to transition the state machine to the Fail
state.

This method has the following characteristics.

• The state machine does not start with any value assigned to hasExecutionError, and this
value is not available until a particular state sets it. This means that you must explicitly set the
FallthroughOnError to false for the Choice states that access this value to prevent the
state machine from stopping if no execution errors occur.

• Once it is set to true, hasExecutionError is never set to false or removed from the
context. This means that this value is useful only the first time that it is set to true, and for all
subsequent states, it does not provide a meaningful value.

Configure the IDT state machine 2098

AWS IoT Greengrass Developer Guide, Version 2

• The hasExecutionError value is shared with all branch state machines in the Parallel state,
which can result in unexpected results depending on the order in which it is accessed.

Because of these characteristics, we do not recommend that you use this method if you can use a
Catch block instead.

Example state machines

This section provides some example state machine configurations.

Examples

• Example state machine: Run a single test group

• Example state machine: Run user-selected test groups

• Example state machine: Run a single test group with product features

• Example state machine: Run two test groups in parallel

Example state machine: Run a single test group

This state machine:

• Runs the test group with id GroupA, which must be present in the suite in a group.json file.

• Checks for execution errors and transitions to Fail if any are found.

• Generates a report and transitions to Succeed if there are no errors, and Fail otherwise.

{
 "Comment": "Runs a single group and then generates a report.",
 "StartAt": "RunGroupA",
 "States": {
 "RunGroupA": {
 "Type": "RunTask",
 "Next": "Report",
 "TestGroup": "GroupA",
 "Catch": [
 {
 "ErrorEquals": [
 "RunTaskError"
],
 "Next": "Fail"

Configure the IDT state machine 2099

AWS IoT Greengrass Developer Guide, Version 2

 }
]
 },
 "Report": {
 "Type": "Report",
 "Next": "Succeed",
 "Catch": [
 {
 "ErrorEquals": [
 "ReportError"
],
 "Next": "Fail"
 }
]
 },
 "Succeed": {
 "Type": "Succeed"
 },
 "Fail": {
 "Type": "Fail"
 }
 }
}

Example state machine: Run user-selected test groups

This state machine:

• Checks if the test runner selected specific test groups. The state machine does not check for
specific test cases because test runners cannot select test cases without also selecting a test
group.

• If test groups are selected:

• Runs the test cases within the selected test groups. To do so, the state machine does not
explicitly specify any test groups or test cases in the RunTask state.

• Generates a report after running all tests and exits.

• If test groups are not selected:

• Runs tests in test group GroupA.

• Generates reports and exits.

Configure the IDT state machine 2100

AWS IoT Greengrass Developer Guide, Version 2

{
 "Comment": "Runs specific groups if the test runner chose to do that, otherwise
 runs GroupA.",
 "StartAt": "SpecificGroupsCheck",
 "States": {
 "SpecificGroupsCheck": {
 "Type": "Choice",
 "Default": "RunGroupA",
 "FallthroughOnError": true,
 "Choices": [
 {
 "Expression": "{{$.specificTestGroups[0]}} != ''",
 "Next": "RunSpecificGroups"
 }
]
 },
 "RunSpecificGroups": {
 "Type": "RunTask",
 "Next": "Report",
 "Catch": [
 {
 "ErrorEquals": [
 "RunTaskError"
],
 "Next": "Fail"
 }
]
 },
 "RunGroupA": {
 "Type": "RunTask",
 "Next": "Report",
 "TestGroup": "GroupA",
 "Catch": [
 {
 "ErrorEquals": [
 "RunTaskError"
],
 "Next": "Fail"
 }
]
 },
 "Report": {
 "Type": "Report",

Configure the IDT state machine 2101

AWS IoT Greengrass Developer Guide, Version 2

 "Next": "Succeed",
 "Catch": [
 {
 "ErrorEquals": [
 "ReportError"
],
 "Next": "Fail"
 }
]
 },
 "Succeed": {
 "Type": "Succeed"
 },
 "Fail": {
 "Type": "Fail"
 }
 }
}

Example state machine: Run a single test group with product features

This state machine:

• Runs the test group GroupA.

• Checks for execution errors and transitions to Fail if any are found.

• Adds the FeatureThatDependsOnGroupA feature to the
awsiotdevicetester_report.xml file:

• If GroupA passes, the feature is set to supported.

• The feature is not marked optional in the report.

• Generates a report and transitions to Succeed if there are no errors, and Fail otherwise

{
 "Comment": "Runs GroupA and adds product features based on GroupA",
 "StartAt": "RunGroupA",
 "States": {
 "RunGroupA": {
 "Type": "RunTask",
 "Next": "AddProductFeatures",
 "TestGroup": "GroupA",
 "ResultVar": "GroupA_passed",

Configure the IDT state machine 2102

AWS IoT Greengrass Developer Guide, Version 2

 "Catch": [
 {
 "ErrorEquals": [
 "RunTaskError"
],
 "Next": "Fail"
 }
]
 },
 "AddProductFeatures": {
 "Type": "AddProductFeatures",
 "Next": "Report",
 "Features": [
 {
 "Feature": "FeatureThatDependsOnGroupA",
 "Groups": [
 "GroupA"
],
 "IsRequired": true
 }
]
 },
 "Report": {
 "Type": "Report",
 "Next": "Succeed",
 "Catch": [
 {
 "ErrorEquals": [
 "ReportError"
],
 "Next": "Fail"
 }
]
 },
 "Succeed": {
 "Type": "Succeed"
 },
 "Fail": {
 "Type": "Fail"
 }
 }
}

Configure the IDT state machine 2103

AWS IoT Greengrass Developer Guide, Version 2

Example state machine: Run two test groups in parallel

This state machine:

• Runs the GroupA and GroupB test groups in parallel. The ResultVar variables stored in
the context by the RunTask states in the branch state machines by are available to the
AddProductFeatures state.

• Checks for execution errors and transitions to Fail if any are found. This state machine does
not use a Catch block because that method does not detect execution errors in branch state
machines.

• Adds features to the awsiotdevicetester_report.xml file based on the groups that pass

• If GroupA passes, the feature is set to supported.

• The feature is not marked optional in the report.

• Generates a report and transitions to Succeed if there are no errors, and Fail otherwise

If two devices are configured in the device pool, both GroupA and GroupB can run at the same
time. However, if either GroupA or GroupB has multiple tests in it, then both devices may be
allocated to those tests. If only one device is configured, the test groups will run sequentially.

{
 "Comment": "Runs GroupA and GroupB in parallel",
 "StartAt": "RunGroupAAndB",
 "States": {
 "RunGroupAAndB": {
 "Type": "Parallel",
 "Next": "CheckForErrors",
 "Branches": [
 {
 "Comment": "Run GroupA state machine",
 "StartAt": "RunGroupA",
 "States": {
 "RunGroupA": {
 "Type": "RunTask",
 "Next": "Succeed",
 "TestGroup": "GroupA",
 "ResultVar": "GroupA_passed",
 "Catch": [
 {
 "ErrorEquals": [

Configure the IDT state machine 2104

AWS IoT Greengrass Developer Guide, Version 2

 "RunTaskError"
],
 "Next": "Fail"
 }
]
 },
 "Succeed": {
 "Type": "Succeed"
 },
 "Fail": {
 "Type": "Fail"
 }
 }
 },
 {
 "Comment": "Run GroupB state machine",
 "StartAt": "RunGroupB",
 "States": {
 "RunGroupA": {
 "Type": "RunTask",
 "Next": "Succeed",
 "TestGroup": "GroupB",
 "ResultVar": "GroupB_passed",
 "Catch": [
 {
 "ErrorEquals": [
 "RunTaskError"
],
 "Next": "Fail"
 }
]
 },
 "Succeed": {
 "Type": "Succeed"
 },
 "Fail": {
 "Type": "Fail"
 }
 }
 }
]
 },
 "CheckForErrors": {
 "Type": "Choice",

Configure the IDT state machine 2105

AWS IoT Greengrass Developer Guide, Version 2

 "Default": "AddProductFeatures",
 "FallthroughOnError": true,
 "Choices": [
 {
 "Expression": "{{$.hasExecutionErrors}} == true",
 "Next": "Fail"
 }
]
 },
 "AddProductFeatures": {
 "Type": "AddProductFeatures",
 "Next": "Report",
 "Features": [
 {
 "Feature": "FeatureThatDependsOnGroupA",
 "Groups": [
 "GroupA"
],
 "IsRequired": true
 },
 {
 "Feature": "FeatureThatDependsOnGroupB",
 "Groups": [
 "GroupB"
],
 "IsRequired": true
 }
]
 },
 "Report": {
 "Type": "Report",
 "Next": "Succeed",
 "Catch": [
 {
 "ErrorEquals": [
 "ReportError"
],
 "Next": "Fail"
 }
]
 },
 "Succeed": {
 "Type": "Succeed"
 },

Configure the IDT state machine 2106

AWS IoT Greengrass Developer Guide, Version 2

 "Fail": {
 "Type": "Fail"
 }
 }
}

Create IDT test case executables

You can create and place test case executables in a test suite folder in the following ways:

• For test suites that use arguments or environment variables from the test.json files to
determine which tests to run, you can create a single test case executable for the entire test
suite, or a test executable for each test group in the test suite.

• For a test suite where you want to run specific tests based on specified commands, you create
one test case executable for each test case in the test suite.

As a test writer, you can determine which approach is appropriate for your use case and structure
your test case executable accordingly. Make sure that you provide the correct test case executable
path in each test.json file, and that the specified executable runs correctly.

When all devices are ready for a test case to run, IDT reads the following files:

• The test.json for the selected test case determines the processes to start and the
environment variables to set.

• The suite.json for the test suite determines the environment variables to set.

IDT starts the required test executable process based on the commands and arguments specified in
the test.json file, and passes the required environment variables to the process.

Use the IDT Client SDK

The IDT Client SDKs let you simplify how you write test logic in your test executable with API
commands that you can use interact with IDT and your devices under test. IDT currently provides
the following SDKs:

• IDT Client SDK for Python

• IDT Client SDK for Go

• IDT Client SDK for Java

Create IDT test case executables 2107

AWS IoT Greengrass Developer Guide, Version 2

These SDKs are located in the <device-tester-extract-location>/sdks folder. When you
create a new test case executable, you must copy the SDK that you want to use to the folder that
contains your test case executable and reference the SDK in your code. This section provides a brief
description of the available API commands that you can use in your test case executables.

In this section

• Device interaction

• IDT interaction

• Host interaction

Device interaction

The following commands enable you to communicate with the device under test without having to
implement any additional device interaction and connectivity management functions.

ExecuteOnDevice

Allows test suites to run shell commands on a device that support SSH or Docker shell
connections.

CopyToDevice

Allows test suites to copy a local file from the host machine that runs IDT to a specified location
on a device that supports SSH or Docker shell connections.

ReadFromDevice

Allows test suites to read from the serial port of devices that support UART connections.

Note

Because IDT does not manage direct connections to devices that are made using device
access information from the context, we recommend using these device interaction API
commands in your test case executables. However, if these commands do not meet your
test case requirements, then you can retrieve device access information from the IDT
context and use it to make a direct connection to the device from the test suite.
To make a direct connection, retrieve the information in the device.connectivity and
the resource.devices.connectivity fields for your device under test and for resource

Create IDT test case executables 2108

AWS IoT Greengrass Developer Guide, Version 2

devices, respectively. For more information about using the IDT context, see Use the IDT
context.

IDT interaction

The following commands enable your test suites to communicate with IDT.

PollForNotifications

Allows test suites to check for notifications from IDT.

GetContextValue and GetContextString

Allows test suites to retrieve values from the IDT context. For more information, see Use the IDT
context.

SendResult

Allows test suites to report test case results to IDT. This command must be called at the end of
each test case in a test suite.

Host interaction

The following command enable your test suites to communicate with the host machine.

PollForNotifications

Allows test suites to check for notifications from IDT.

GetContextValue and GetContextString

Allows test suites to retrieve values from the IDT context. For more information, see Use the IDT
context.

ExecuteOnHost

Allows test suites to run commands on the local machine and lets IDT manage the test case
executable lifecycle.

Enable IDT CLI commands

The run-suite command IDT CLI provides several options that let test runner customize test
execution. To allow test runners to use these options to run your custom test suite, you implement

Create IDT test case executables 2109

AWS IoT Greengrass Developer Guide, Version 2

support for the IDT CLI. If you do not implement support, test runners will still be able to run
tests, but some CLI options will not function correctly. To provide an ideal customer experience,
we recommend that you implement support for the following arguments for the run-suite
command in the IDT CLI:

timeout-multiplier

Specifies a value greater than 1.0 that will be applied to all timeouts while running tests.

Test runners can use this argument to increase the timeout for the test cases that they
want to run. When a test runner specifies this argument in their run-suite command, IDT
uses it to calculate the value of the IDT_TEST_TIMEOUT environment variable and sets the
config.timeoutMultiplier field in the IDT context. To support this argument, you must do
the following:

• Instead of directly using the timeout value from the test.json file, read the
IDT_TEST_TIMEOUT environment variable to obtain the correctly calculated timeout value.

• Retrieve the config.timeoutMultiplier value from the IDT context and apply it to long
running timeouts.

For more information about exiting early because of timeout events, see Specify exit behavior.

stop-on-first-failure

Specifies that IDT should stop running all tests if it encounters a failure.

When a test runner specifies this argument in their run-suite command, IDT will stop running
tests as soon as it encounters a failure. However, if test cases are running in parallel, then this
can lead to unexpected results. To implement support, make sure that if IDT encounters this
event, your test logic instructs all running test cases to stop, clean up temporary resources, and
report a test result to IDT. For more information about exiting early on failures, see Specify exit
behavior.

group-id and test-id

Specifies that IDT should run only the selected test groups or test cases.

Test runners can use these arguments with their run-suite command to specify the following
test execution behavior:

• Run all tests inside the specified test groups.

• Run a selection of tests from within a specified test group.

Create IDT test case executables 2110

AWS IoT Greengrass Developer Guide, Version 2

To support these arguments, the test orchestrator for your test suite must include a specific set
of RunTask and Choice states in your test orchestrator. If you are not using a custom state
machine, then the default IDT test orchestrator includes the required states for you and you
do not need to take additional action. However, if you are using a custom test orchestrator,
then use Example state machine: Run user-selected test groups as a sample to add the required
states in your test orchestrator.

For more information about IDT CLI commands, see Debug and run custom test suites.

Write event logs

While the test is running, you send data to stdout and stderr to write event logs and error
messages to the console. For information about the format of console messages, see Console
message format.

When the IDT finishes running the test suite, this information is also available in the
test_manager.log file located in the <devicetester-extract-location>/
results/<execution-id>/logs folder.

You can configure each test case to write the logs from its test run, including logs from the device
under test, to the <group-id>_<test-id> file located in the <device-tester-extract-
location>/results/execution-id/logs folder. To do this, retrieve the path to the log file
from the IDT context with the testData.logFilePath query, create a file at that path, and write
the content that you want to it. IDT automatically updates the path based on the test case that is
running. If you choose not to create the log file for a test case, then no file is generated for that
test case.

You can also set up your text executable to create additional log files as needed in the <device-
tester-extract-location>/logs folder. We recommend that you specify unique prefixes for
log file names so your files don't get overwritten.

Report results to IDT

IDT writes test results to the awsiotdevicetester_report.xml and the suite-
name_report.xml files. These report files are located in <device-tester-extract-
location>/results/<execution-id>/. Both reports capture the results from the test suite
execution. For more information about the schemas that IDT uses for these reports, see Review IDT
test results and logs

Create IDT test case executables 2111

AWS IoT Greengrass Developer Guide, Version 2

To populate the contents of the suite-name_report.xml file, you must use the SendResult
command to report test results to IDT before the test execution finishes. If IDT cannot locate
the results of a test, it issues an error for the test case. The following Python excerpt shows the
commands to send a test result to IDT:

request-variable = SendResultRequest(TestResult(result))
client.send_result(request-variable)

If you do not report results through the API, IDT looks for test results in the test artifacts folder.
The path to this folder is stored in the testData.testArtifactsPath filed in the IDT context. In
this folder, IDT uses the first alphabetically sorted XML file it locates as the test result.

If your test logic produces JUnit XML results, you can write the test results to an XML file in the
artifacts folder to directly provide the results to IDT instead of parsing the results and then using
the API to submit them to IDT.

If you use this method, make sure that your test logic accurately summarizes the test results and
format your result file in the same format as the suite-name_report.xml file. IDT does not
perform any validation of the data that you provide, with the following exceptions:

• IDT ignores all properties of the testsuites tag. Instead, it calculates the tag properties from
other reported test group results.

• At least one testsuite tag must exist within testsuites.

Because IDT uses the same artifacts folder for all test cases and does not delete result files
between test runs, this method might also lead to erroneous reporting if IDT reads the incorrect
file. We recommend that you use the same name for the generated XML results file across all test
cases to overwrite the results for each test case and make sure that the correct results are available
for IDT to use. Although you can use a mixed approach to reporting in your test suite, that is, use
an XML result file for some test cases and submit results through the API for others, we do not
recommend this approach.

Specify exit behavior

Configure your text executable to always exit with an exit code of 0, even if a test case reports a
failure or an error result. Use non-zero exit codes only to indicate that a test case did not run or if
the test case executable could not communicate any results to IDT. When IDT receives a non-zero
exit code, it marks the test case has having encountered an error that prevented it from running.

Create IDT test case executables 2112

AWS IoT Greengrass Developer Guide, Version 2

IDT might request or expect a test case to stop running before it has finished in the following
events. Use this information to configure your test case executable to detect each of these events
from the test case:

Timeout

Occurs when a test case runs for longer than the timeout value specified in the test.json file.
If the test runner used the timeout-multiplier argument to specify a timeout multiplier,
then IDT calculates the timeout value with the multiplier.

To detect this event, use the IDT_TEST_TIMEOUT environment variable. When a test runner
launches a test, IDT sets the value of the IDT_TEST_TIMEOUT environment variable to the
calculated timeout value (in seconds) and passes the variable to the test case executable. You
can read the variable value to set an appropriate timer.

Interrupt

Occurs when the test runner interrupts IDT. For example, by pressing Ctrl+C.

Because terminals propagate signals to all child processes, you can simply configure a signal
handler in your test cases to detect interrupt signals.

Alternatively, you can periodically poll the API to check the value of the
CancellationRequested boolean in the PollForNotifications API response. When
IDT receives an interrupt signal, it sets the value of the CancellationRequested boolean to
true.

Stop on first failure

Occurs when a test case that is running in parallel with the current test case fails and the test
runner used the stop-on-first-failure argument to specify that IDT should stop when it
encounters any failure.

To detect this event, you can periodically poll the API to check the value of the
CancellationRequested boolean in the PollForNotifications API response. When
IDT encounters a failure and is configured to stop on first failure, it sets the value of the
CancellationRequested boolean to true.

When any of these events occur, IDT waits for 5 minutes for any currently running test cases
to finish running. If all running test cases do not exit within 5 minutes, IDT forces each of their

Create IDT test case executables 2113

AWS IoT Greengrass Developer Guide, Version 2

processes to stop. If IDT has not received test results before the processes end, it will mark the test
cases as having timed out. As a best practice, you should ensure that your test cases perform the
following actions when they encounter one of the events:

1. Stop running normal test logic.

2. Clean up any temporary resources, such as test artifacts on the device under test.

3. Report a test result to IDT, such as a test failure or an error.

4. Exit.

Use the IDT context

When IDT runs a test suite, the test suite can access a set of data that can be used to determine
how each test runs. This data is called the IDT context. For example, user data configuration
provided by test runners in a userdata.json file is made available to test suites in the IDT
context.

The IDT context can be considered a read-only JSON document. Test suites can retrieve data from
and write data to the context using standard JSON data types like objects, arrays, numbers and so
on.

Context schema

The IDT context uses the following format:

{
 "config": {
 <config-json-content>
 "timeoutMultiplier": timeout-multiplier
 },
 "device": {
 <device-json-device-element>
 },
 "devicePool": {
 <device-json-pool-element>
 },
 "resource": {
 "devices": [
 {
 <resource-json-device-element>
 "name": "<resource-name>"

Use the IDT context 2114

AWS IoT Greengrass Developer Guide, Version 2

 }
]
 },
 "testData": {
 "awsCredentials": {
 "awsAccessKeyId": "<access-key-id>",
 "awsSecretAccessKey": "<secret-access-key>",
 "awsSessionToken": "<session-token>"
 },
 "logFilePath": "/path/to/log/file"
 },
 "userData": {
 <userdata-json-content>
 }
}

config

Information from the config.json file. The config field also contains the following
additional field:

config.timeoutMultiplier

The multiplier for the any timeout value used by the test suite. This value is specified by the
test runner from the IDT CLI. The default value is 1.

device

Information about the device selected for the test run. This information is equivalent to the
devices array element in the device.json file for the selected device.

devicePool

Information about the device pool selected for the test run. This information is equivalent to
the top-level device pool array element defined in the device.json file for the selected device
pool.

resource

Information about resource devices from the resource.json file.

resource.devices

This information is equivalent to the devices array defined in the resource.json file.
Each devices element includes the following additional field:

Use the IDT context 2115

AWS IoT Greengrass Developer Guide, Version 2

resource.device.name

The name of the resource device. This value is set to the requiredResource.name
value in the test.json file.

testData.awsCredentials

The AWS credentials used by the test to connect to the AWS cloud. This information is obtained
from the config.json file.

testData.logFilePath

The path to the log file to which the test case writes log messages. The test suite creates this
file if it doesn't exist.

userData

Information provided by the test runner in the userdata.json file.

Access data in the context

You can query the context using JSONPath notation from your JSON files and from your text
executable with the GetContextValue and GetContextString APIs. The syntax for JSONPath
strings to access the IDT context varies as follows:

• In suite.json and test.json, you use {{query}}. That is, do not use the root element $. to
start your expression.

• In test_orchestrator.yaml, you use {{query}}.

If you use the deprecated state machine, then in state_machine.json, you use {{$.query}}.

• In API commands, you use query or {{$.query}}, depending on the command. For more
information, see the inline documentation in the SDKs.

The following table describes the operators in a typical JSONPath expression:

Operator Description

$ The root element. Because the top-level
context value for IDT is an object, you will
typically use $. to start your queries.

Use the IDT context 2116

AWS IoT Greengrass Developer Guide, Version 2

Operator Description

.childName Accesses the child element with name
childName from an object. If applied to an
array, yields a new array with this operator
applied to each element. The element name
is case sensitive. For example, the query to
access the awsRegion value in the config
object is $.config.awsRegion .

[start:end] Filters elements from an array, retrieving items
beginning from the start index and going up
to the end index, both inclusive.

[index1, index2, ... , indexN] Filters elements from an array, retrieving items
from only the specified indices.

[?(expr)] Filters elements from an array using the expr
expression. This expression must evaluate to a
boolean value.

To create filter expressions, use the following syntax:

<jsonpath> | <value> operator <jsonpath> | <value>

In this syntax:

• jsonpath is a JSONPath that uses standard JSON syntax.

• value is any custom value that uses standard JSON syntax.

• operator is one of the following operators:

• < (Less than)

• <= (Less than or equal to)

• == (Equal to)

If the JSONPath or value in your expression is an array, boolean, or object value, then this is
the only supported binary operator that you can use.

Use the IDT context 2117

AWS IoT Greengrass Developer Guide, Version 2

• >= (Greater than or equal to)

• > (Greater than)

• =~ (Regular expression match). To use this operator in a filter expression, the JSONPath or
value on the left side of your expression must evaluate to a string and the right side must be a
pattern value that follows the RE2 syntax.

You can use JSONPath queries in the form {{query}} as placeholder strings within the args and
environmentVariables fields in test.json files and within the environmentVariables
fields in suite.json files. IDT performs a context lookup and populates the fields with the
evaluated value of the query. For example, in the suite.json file, you can use placeholder strings
to specify environment variable values that change with each test case and IDT will populate
the environment variables with the correct value for each test case. However, when you use
placeholder strings in test.json and suite.json files, the following considerations apply for
your queries:

• You must each occurrence of the devicePool key in your query in all lower case. That is, use
devicepool instead.

• For arrays, you can use only arrays of strings. In addition, arrays use a non-standard item1,
item2,...,itemN format. If the array contains only one element, then it is serialized as item,
making it indistinguishable from a string field.

• You cannot use placeholders to retrieve objects from the context.

Because of these considerations, we recommend that whenever possible, you use the API to access
the context in your test logic instead of placeholder strings in test.json and suite.json files.
However, in some cases it might be more convenient to use JSONPath placeholders to retrieve
single strings to set as environment variables.

Configure settings for test runners

To run custom test suites, test runners must configure their settings based on the test suite that
they want to run. Settings are specified based on configuration file templates located in the
<device-tester-extract-location>/configs/ folder. If required, test runners must also set
up AWS credentials that IDT will use to connect to the AWS cloud.

Configure settings for test runners 2118

https://github.com/google/re2/wiki/Syntax

AWS IoT Greengrass Developer Guide, Version 2

As a test writer, you will need to configure these files to debug your test suite. You must provide
instructions to test runners so that they can configure the following settings as needed to run your
test suites.

Configure device.json

The device.json file contains information about the devices that tests are run on (for example,
IP address, login information, operating system, and CPU architecture).

Test runners can provide this information using the following template device.json file located
in the <device-tester-extract-location>/configs/ folder.

[
 {
 "id": "<pool-id>",
 "sku": "<pool-sku>",
 "features": [
 {
 "name": "<feature-name>",
 "value": "<feature-value>",
 "configs": [
 {
 "name": "<config-name>",
 "value": "<config-value>"
 }
],
 }
],
 "devices": [
 {
 "id": "<device-id>",
 "connectivity": {
 "protocol": "ssh | uart | docker",
 // ssh
 "ip": "<ip-address>",
 "port": <port-number>,
 "auth": {
 "method": "pki | password",
 "credentials": {
 "user": "<user-name>",
 // pki
 "privKeyPath": "/path/to/private/key",

Configure settings for test runners 2119

AWS IoT Greengrass Developer Guide, Version 2

 // password
 "password": "<password>",
 }
 },

 // uart
 "serialPort": "<serial-port>",

 // docker
 "containerId": "<container-id>",
 "containerUser": "<container-user-name>",
 }
 }
]
 }
]

All fields that contain values are required as described here:

id

A user-defined alphanumeric ID that uniquely identifies a collection of devices called a device
pool. Devices that belong to a pool must have identical hardware. When you run a suite of
tests, devices in the pool are used to parallelize the workload. Multiple devices are used to run
different tests.

sku

An alphanumeric value that uniquely identifies the device under test. The SKU is used to track
qualified devices.

Note

If you want to list your board in the AWS Partner Device Catalog, the SKU you specify
here must match the SKU that you use in the listing process.

features

Optional. An array that contains the device's supported features. Device features are user-
defined values that you configure in your test suite. You must provide your test runners with
information about the feature names and values to include in the device.json file. For

Configure settings for test runners 2120

AWS IoT Greengrass Developer Guide, Version 2

example, if you want to test a device that functions as an MQTT server for other devices, then
you can configure your test logic to validate specific supported levels for a feature named
MQTT_QOS. Test runners provide this feature name and set the feature value to the QOS levels
supported by their device. You can retrieve the provided information from the IDT context
with the devicePool.features query, or from the test orchestrator context with the
pool.features query.

features.name

The name of the feature.

features.value

The supported feature values.

features.configs

Configuration settings, if needed, for the feature.

features.config.name

The name of the configuration setting.

features.config.value

The supported setting values.

devices

An array of devices in the pool to be tested. At least one device is required.

devices.id

A user-defined unique identifier for the device being tested.

connectivity.protocol

The communication protocol used to communicate with this device. Each device in a pool
must use the same protocol.

Currently, the only supported values are ssh and uart for physical devices, and docker for
Docker containers.

connectivity.ip

The IP address of the device being tested.

Configure settings for test runners 2121

AWS IoT Greengrass Developer Guide, Version 2

This property applies only if connectivity.protocol is set to ssh.

connectivity.port

Optional. The port number to use for SSH connections.

The default value is 22.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth

Authentication information for the connection.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth.method

The authentication method used to access a device over the given connectivity protocol.

Supported values are:

• pki

• password

connectivity.auth.credentials

The credentials used for authentication.

connectivity.auth.credentials.password

The password used for signing in to the device being tested.

This value applies only if connectivity.auth.method is set to password.

connectivity.auth.credentials.privKeyPath

The full path to the private key used to sign in to the device under test.

This value applies only if connectivity.auth.method is set to pki.

connectivity.auth.credentials.user

The user name for signing in to the device being tested.

connectivity.serialPort

Optional. The serial port to which the device is connected.

Configure settings for test runners 2122

AWS IoT Greengrass Developer Guide, Version 2

This property applies only if connectivity.protocol is set to uart.

connectivity.containerId

The container ID or name of the Docker container being tested.

This property applies only if connectivity.protocol is set to ssh.

connectivity.containerUser

Optional. The name of the user to user inside the container. The default value is the user
provided in the Dockerfile.

The default value is 22.

This property applies only if connectivity.protocol is set to ssh.

Note

To check if test runners configure the incorrect device connection for a test, you can
retrieve pool.Devices[0].Connectivity.Protocol from the test orchestrator
context and compare it to the expected value in a Choice state. If an incorrect protocol
is used, then print a message using the LogMessage state and transition to the Fail
state.
Alternatively, you can use error handling code to report a test failure for incorrect device
types.

(Optional) Configure userdata.json

The userdata.json file contains any additional information that is required by a test
suite but is not specified in the device.json file. The format of this file depends on the
userdata_scheme.json file that is defined in the test suite. If you are a test writer, make sure
you provide this information to users who will run the test suites that you write.

(Optional) Configure resource.json

The resource.json file contains information about any devices that will be used as resource
devices. Resource devices are devices that are required to test certain capabilities of a device under
test. For example, to test a device's Bluetooth capability, you might use a resource device to test
that your device can connect to it successfully. Resource devices are optional, and you can require

Configure settings for test runners 2123

AWS IoT Greengrass Developer Guide, Version 2

as many resources devices as you need. As a test writer, you use the test.json file to define the
resource device features that are required for a test. Test runners then use the resource.json file
to provide a pool of resource devices that have the required features. Make sure you provide this
information to users who will run the test suites that you write.

Test runners can provide this information using the following template resource.json file
located in the <device-tester-extract-location>/configs/ folder.

[
 {
 "id": "<pool-id>",
 "features": [
 {
 "name": "<feature-name>",
 "version": "<feature-version>",
 "jobSlots": <job-slots>
 }
],
 "devices": [
 {
 "id": "<device-id>",
 "connectivity": {
 "protocol": "ssh | uart | docker",
 // ssh
 "ip": "<ip-address>",
 "port": <port-number>,
 "auth": {
 "method": "pki | password",
 "credentials": {
 "user": "<user-name>",
 // pki
 "privKeyPath": "/path/to/private/key",

 // password
 "password": "<password>",
 }
 },

 // uart
 "serialPort": "<serial-port>",

 // docker
 "containerId": "<container-id>",

Configure settings for test runners 2124

AWS IoT Greengrass Developer Guide, Version 2

 "containerUser": "<container-user-name>",
 }
 }
]
 }
]

All fields that contain values are required as described here:

id

A user-defined alphanumeric ID that uniquely identifies a collection of devices called a device
pool. Devices that belong to a pool must have identical hardware. When you run a suite of
tests, devices in the pool are used to parallelize the workload. Multiple devices are used to run
different tests.

features

Optional. An array that contains the device's supported features. The information required
in this field is defined in the test.json files in the test suite and determines which tests to run
and how to run those tests. If the test suite does not require any features, then this field is not
required.

features.name

The name of the feature.

features.version

The feature version.

features.jobSlots

Setting to indicate how many tests can concurrently use the device. The default value is 1.

devices

An array of devices in the pool to be tested. At least one device is required.

devices.id

A user-defined unique identifier for the device being tested.

connectivity.protocol

The communication protocol used to communicate with this device. Each device in a pool
must use the same protocol.

Configure settings for test runners 2125

AWS IoT Greengrass Developer Guide, Version 2

Currently, the only supported values are ssh and uart for physical devices, and docker for
Docker containers.

connectivity.ip

The IP address of the device being tested.

This property applies only if connectivity.protocol is set to ssh.

connectivity.port

Optional. The port number to use for SSH connections.

The default value is 22.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth

Authentication information for the connection.

This property applies only if connectivity.protocol is set to ssh.

connectivity.auth.method

The authentication method used to access a device over the given connectivity protocol.

Supported values are:

• pki

• password

connectivity.auth.credentials

The credentials used for authentication.

connectivity.auth.credentials.password

The password used for signing in to the device being tested.

This value applies only if connectivity.auth.method is set to password.

connectivity.auth.credentials.privKeyPath

The full path to the private key used to sign in to the device under test.

Configure settings for test runners 2126

AWS IoT Greengrass Developer Guide, Version 2

This value applies only if connectivity.auth.method is set to pki.

connectivity.auth.credentials.user

The user name for signing in to the device being tested.

connectivity.serialPort

Optional. The serial port to which the device is connected.

This property applies only if connectivity.protocol is set to uart.

connectivity.containerId

The container ID or name of the Docker container being tested.

This property applies only if connectivity.protocol is set to ssh.

connectivity.containerUser

Optional. The name of the user to user inside the container. The default value is the user
provided in the Dockerfile.

The default value is 22.

This property applies only if connectivity.protocol is set to ssh.

(Optional) Configure config.json

The config.json file contains configuration information for IDT. Typically, test runners will not
need to modify this file except to provide their AWS user credentials for IDT, and optionally, an
AWS region. If AWS credentials with required permissions are provided AWS IoT Device Tester
collects and submits usage metrics to AWS. This is an opt-in feature and is used to improve IDT
functionality. For more information, see IDT usage metrics.

Test runners can configure their AWS credentials in one of the following ways:

• Credentials file

IDT uses the same credentials file as the AWS CLI. For more information, see Configuration and
credential files.

The location of the credentials file varies, depending on the operating system you are using:

Configure settings for test runners 2127

https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html

AWS IoT Greengrass Developer Guide, Version 2

• macOS, Linux: ~/.aws/credentials

• Windows: C:\Users\UserName\.aws\credentials

• Environment variables

Environment variables are variables maintained by the operating system and used by system
commands. Variables defined during an SSH session are not available after that session is closed.
IDT can use the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables to
store AWS credentials

To set these variables on Linux, macOS, or Unix, use export:

export AWS_ACCESS_KEY_ID=<your_access_key_id>
export AWS_SECRET_ACCESS_KEY=<your_secret_access_key>

To set these variables on Windows, use set:

set AWS_ACCESS_KEY_ID=<your_access_key_id>
set AWS_SECRET_ACCESS_KEY=<your_secret_access_key>

To configure AWS credentials for IDT, test runners edit the auth section in the config.json file
located in the <device-tester-extract-location>/configs/ folder.

{
 "log": {
 "location": "logs"
 },
 "configFiles": {
 "root": "configs",
 "device": "configs/device.json"
 },
 "testPath": "tests",
 "reportPath": "results",
 "awsRegion": "<region>",
 "auth": {
 "method": "file | environment",
 "credentials": {
 "profile": "<profile-name>"
 }
 }

Configure settings for test runners 2128

AWS IoT Greengrass Developer Guide, Version 2

}
]

All fields that contain values are required as described here:

Note

All paths in this file are defined relative to the <device-tester-extract-location>.

log.location

The path to the logs folder in the <device-tester-extract-location>.

configFiles.root

The path to the folder that contains the configuration files.

configFiles.device

The path to the device.json file.

testPath

The path to the folder that contains test suites.

reportPath

The path to the folder that will contain test results after IDT runs a test suite.

awsRegion

Optional. The AWS region that test suites will use. If not set, then test suites will use the default
region specified in each test suite.

auth.method

The method IDT uses to retrieve AWS credentials. Supported values are file to retrieve
credentials from a credentials file, and environment to retrieve credentials using environment
variables.

auth.credentials.profile

The credentials profile to use from the credentials file. This property applies only if
auth.method is set to file.

Configure settings for test runners 2129

AWS IoT Greengrass Developer Guide, Version 2

Debug and run custom test suites

After the required configuration is set, IDT can run your test suite. The runtime of the full test
suite depends on the hardware and the composition of the test suite. For reference, it takes
approximately 30 minutes to complete the full AWS IoT Greengrass qualification test suite on a
Raspberry Pi 3B.

As you write your test suite, you can use IDT to run the test suite in debug mode to check your code
before you run it or provide it to test runners.

Run IDT in debug mode

Because test suites depend on IDT to interact with devices, provide the context, and receive results,
you cannot simply debug your test suites in an IDE without any IDT interaction. To do so, the IDT
CLI provides the debug-test-suite command that lets you run IDT in debug mode. Run the
following command to view the available options for debug-test-suite:

devicetester_[linux | mac | win_x86-64] debug-test-suite -h

When you run IDT in debug mode, IDT does not actually launch the test suite or run the test
orchestrator; instead, it interacts with your IDE to responds to requests made from the test suite
running in the IDE and prints the logs to the console. IDT does not time out and waits to exit
until manually interrupted. In debug mode, IDT also does not run the test orchestrator and will
not generate any report files. To debug your test suite, you must use your IDE to provide some
information that IDT usually obtains from the configuration JSON files. Make sure you provide the
following information:

• Environment variables and arguments for each test. IDT will not read this information from
test.json or suite.json.

• Arguments to select resource devices. IDT will not read this information from test.json.

To debug your test suites, complete the following steps:

1. Create the setting configuration files that are required to run the test suite. For example, if
your test suite requires the device.json, resource.json, and user data.json, make
sure you configure all of them as needed.

2. Run the following command to place IDT in debug mode and select any devices that are
required to run the test.

Debug and run custom test suites 2130

AWS IoT Greengrass Developer Guide, Version 2

devicetester_[linux | mac | win_x86-64] debug-test-suite [options]

After you run this command, IDT waits for requests from the test suite and then responds to
them. IDT also generates the environment variables that are required for the case process for
the IDT Client SDK.

3. In your IDE, use the run or debug configuration to do the following:

a. Set the values of the IDT-generated environment variables.

b. Set the value of any environment variables or arguments that you specified in your
test.json and suite.json file.

c. Set breakpoints as needed.

4. Run the test suite in your IDE.

You can debug and re-run the test suite as many times as needed. IDT does not time out in
debug mode.

5. After you complete debugging, interrupt IDT to exit debug mode.

IDT CLI commands to run tests

The following section describes the IDT CLI commands:

IDT v4.0.0

help

Lists information about the specified command.

list-groups

Lists the groups in a given test suite.

list-suites

Lists the available test suites.

list-supported-products

Lists the supported products for your version of IDT, in this case AWS IoT Greengrass
versions, and AWS IoT Greengrass qualification test suite versions available for the current
IDT version.

Debug and run custom test suites 2131

AWS IoT Greengrass Developer Guide, Version 2

list-test-cases

Lists the test cases in a given test group. The following option is supported:

• group-id. The test group to search for. This option is required and must specify a single
group.

run-suite

Runs a suite of tests on a pool of devices. The following are some commonly used options:

• suite-id. The test suite version to run. If not specified, IDT uses the latest version in the
tests folder.

• group-id. The test groups to run, as a comma-separated list. If not specified, IDT runs all
test groups in the test suite.

• test-id. The test cases to run, as a comma-separated list. When specified, group-id
must specify a single group.

• pool-id. The device pool to test. Test runners must specify a pool if they have multiple
device pools defined in your device.json file.

• timeout-multiplier. Configures IDT to modify the test execution timeout specified in
the test.json file for a test with a user-defined multiplier.

• stop-on-first-failure. Configures IDT to stop execution on the first failure. This
option should be used with group-id to debug the specified test groups.

• userdata. Sets the file that contains user data information required to run the test suite.
This is required only if userdataRequired is set to true in the suite.json file for the
test suite.

For more information about run-suite options, use the help option:

devicetester_[linux | mac | win_x86-64] run-suite -h

debug-test-suite

Run the test suite in debug mode. For more information, see Run IDT in debug mode.

Review IDT test results and logs

This section describes the format in which IDT generates console logs and test reports.

Review IDT test results and logs 2132

AWS IoT Greengrass Developer Guide, Version 2

Console message format

AWS IoT Device Tester uses a standard format for printing messages to the console when it starts a
test suite. The following excerpt shows an example of a console message generated by IDT.

time="2000-01-02T03:04:05-07:00" level=info msg=Using suite: MyTestSuite_1.0.0
executionId=9a52f362-1227-11eb-86c9-8c8590419f30

Most console messages consist of the following fields:

time

A full ISO 8601 timestamp for the logged event.

level

The message level for the logged event. Typically, the logged message level is one of info,
warn, or error. IDT issues a fatal or panic message if it encounters an expected event that
causes it to exit early.

msg

The logged message.

executionId

A unique ID string for the current IDT process. This ID is used to differentiate between individual
IDT runs.

Console messages generated from a test suite provide additional information about the device
under test and the test suite, test group, and test cases that IDT runs. The following excerpt shows
an example of a console message generated from a test suite.

time="2000-01-02T03:04:05-07:00" level=info msg=Hello world! suiteId=MyTestSuite
groupId=myTestGroup testCaseId=myTestCase deviceId=my-device
executionId=9a52f362-1227-11eb-86c9-8c8590419f30

The test-suite specific part of the console message contains the following fields:

suiteId

The name of the test suite currently running.

Review IDT test results and logs 2133

AWS IoT Greengrass Developer Guide, Version 2

groupId

The ID of the test group currently running.

testCaseId

The ID of the test case current running.

deviceId

A ID of the device under test that the current test case is using.

To print a test summary to the console when a IDT finishes running a test, you must include a
Report state in your test orchestrator. The test summary contains information about the test
suite, the test results for each group that was run, and the locations of the generated logs and
report files. The following example shows a test summary message.

========== Test Summary ==========
Execution Time: 5m00s
Tests Completed: 4
Tests Passed: 3
Tests Failed: 1
Tests Skipped: 0

Test Groups:
 GroupA: PASSED
 GroupB: FAILED

Failed Tests:
 Group Name: GroupB
 Test Name: TestB1
 Reason: Something bad happened

Path to IoT Device Tester Report: /path/to/awsiotdevicetester_report.xml
Path to Test Execution Logs: /path/to/logs
Path to Aggregated JUnit Report: /path/to/MyTestSuite_Report.xml

AWS IoT Device Tester report schema

awsiotdevicetester_report.xml is a signed report that contains the following information:

• The IDT version.

Review IDT test results and logs 2134

AWS IoT Greengrass Developer Guide, Version 2

• The test suite version.

• The report signature and key used to sign the report.

• The device SKU and the device pool name specified in the device.json file.

• The product version and the device features that were tested.

• The aggregate summary of test results. This information is the same as that contained in the
suite-name_report.xml file.

<apnreport>
 <awsiotdevicetesterversion>idt-version</awsiotdevicetesterversion>
 <testsuiteversion>test-suite-version</testsuiteversion>
 <signature>signature</signature>
 <keyname>keyname</keyname>
 <session>
 <testsession>execution-id</testsession>
 <starttime>start-time</starttime>
 <endtime>end-time</endtime>
 </session>
 <awsproduct>
 <name>product-name</name>
 <version>product-version</version>
 <features>
 <feature name="<feature-name>" value="supported | not-supported | <feature-
value>" type="optional | required"/>
 </features>
 </awsproduct>
 <device>
 <sku>device-sku</sku>
 <name>device-name</name>
 <features>
 <feature name="<feature-name>" value="<feature-value>"/>
 </features>
 <executionMethod>ssh | uart | docker</executionMethod>
 </device>
 <devenvironment>
 <os name="<os-name>"/>
 </devenvironment>
 <report>
 <suite-name-report-contents>
 </report>
</apnreport>

Review IDT test results and logs 2135

AWS IoT Greengrass Developer Guide, Version 2

The awsiotdevicetester_report.xml file contains an <awsproduct> tag that contains
information about the product being tested and the product features that were validated after
running a suite of tests.

Attributes used in the <awsproduct> tag

name

The name of the product being tested.

version

The version of the product being tested.

features

The features validated. Features marked as required are required for the test suite to
validate the device. The following snippet shows how this information appears in the
awsiotdevicetester_report.xml file.

<feature name="ssh" value="supported" type="required"></feature>

Features marked as optional are not required for validation. The following snippets show
optional features.

<feature name="hsi" value="supported" type="optional"></feature>

<feature name="mqtt" value="not-supported" type="optional"></feature>

Test suite report schema

The suite-name_Result.xml report is in JUnit XML format. You can integrate it into continuous
integration and deployment platforms like Jenkins, Bamboo, and so on. The report contains an
aggregate summary of test results.

<testsuites name="<suite-name> results" time="<run-duration>" tests="<number-of-test>"
 failures="<number-of-tests>" skipped="<number-of-tests>" errors="<number-of-tests>"
 disabled="0">
 <testsuite name="<test-group-id>" package="" tests="<number-of-tests>"
 failures="<number-of-tests>" skipped="<number-of-tests>" errors="<number-of-tests>"
 disabled="0">

Review IDT test results and logs 2136

https://llg.cubic.org/docs/junit/
https://jenkins.io/
https://www.atlassian.com/software/bamboo

AWS IoT Greengrass Developer Guide, Version 2

 <!--success-->
 <testcase classname="<classname>" name="<name>" time="<run-duration>"/>
 <!--failure-->
 <testcase classname="<classname>" name="<name>" time="<run-duration>">
 <failure type="<failure-type>">
 reason
 </failure>
 </testcase>
 <!--skipped-->
 <testcase classname="<classname>" name="<name>" time="<run-duration>">
 <skipped>
 reason
 </skipped>
 </testcase>
 <!--error-->
 <testcase classname="<classname>" name="<name>" time="<run-duration>">
 <error>
 reason
 </error>
 </testcase>
 </testsuite>
</testsuites>

The report section in both the awsiotdevicetester_report.xml or suite-
name_report.xml lists the tests that were run and the results.

The first XML tag <testsuites> contains the summary of the test execution. For example:

<testsuites name="MyTestSuite results" time="2299" tests="28" failures="0" errors="0"
 disabled="0">

Attributes used in the <testsuites> tag

name

The name of the test suite.

time

The time, in seconds, it took to run the test suite.

tests

The number of tests executed.

Review IDT test results and logs 2137

AWS IoT Greengrass Developer Guide, Version 2

failures

The number of tests that were run, but did not pass.

errors

The number of tests that IDT couldn't execute.

disabled

This attribute is not used and can be ignored.

In the event of test failures or errors, you can identify the test that failed by reviewing the
<testsuites> XML tags. The <testsuite> XML tags inside the <testsuites> tag show the
test result summary for a test group. For example:

<testsuite name="combination" package="" tests="1" failures="0" time="161" disabled="0"
 errors="0" skipped="0">

The format is similar to the <testsuites> tag, but with a skipped attribute that is not used and
can be ignored. Inside each <testsuite> XML tag, there are <testcase> tags for each executed
test for a test group. For example:

<testcase classname="Security Test" name="IP Change Tests" attempts="1"></testcase>>

Attributes used in the <testcase> tag

name

The name of the test.

attempts

The number of times IDT executed the test case.

When a test fails or an error occurs, <failure> or <error> tags are added to the <testcase>
tag with information for troubleshooting. For example:

<testcase classname="mcu.Full_MQTT" name="MQTT_TestCase" attempts="1">
 <failure type="Failure">Reason for the test failure</failure>
 <error>Reason for the test execution error</error>
</testcase>

Review IDT test results and logs 2138

AWS IoT Greengrass Developer Guide, Version 2

IDT usage metrics

If you provide AWS credentials with required permissions, AWS IoT Device Tester collects and
submits usage metrics to AWS. This is an opt-in feature and is used to improve IDT functionality.
IDT collects information such as the following:

• The AWS account ID used to run IDT

• The IDT AWS CLI commands used to run tests

• The test suites that are run

• The test suites in the <device-tester-extract-location> folder

• The number of devices configured in the device pool

• Test case names and run times

• Test result information, such as whether tests passed, failed, encountered errors, or were skipped

• Product features tested

• IDT exit behavior, such as unexpected or early exits

All of the information that IDT sends is also logged to a metrics.log file in the <device-
tester-extract-location>/results/<execution-id>/ folder. You can view the log file to
see the information that was collected during a test run. This file is generated only if you choose to
collect usage metrics.

To disable metrics collection, you do not need to take additional action. Simply do not store your
AWS credentials, and if you do have stored AWS credentials, do not configure the config.json
file to access them.

Configure your AWS credentials

If you do not already have an AWS account, you must create one. If you already have an AWS
account, you simply need to configure the required permissions for your account that allow IDT to
send usage metrics to AWS on your behalf.

Step 1: Create an AWS account

In this step, create and configure an AWS account. If you already have an AWS account, skip to the
section called “Step 2: Configure permissions for IDT”.

If you do not have an AWS account, complete the following steps to create one.

IDT usage metrics 2139

AWS IoT Greengrass Developer Guide, Version 2

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

To create an administrator user, choose one of the following options.

Choose
one
way to
manage
your
administr
ator

To By You can also

In IAM
Identity
Center

(Recommen
ded)

Use short-term
credentials to access
AWS.

This aligns with the
security best practices
. For information
about best practices
, see Security best
practices in IAM in the
IAM User Guide.

Following the instructions
in Getting started in the
AWS IAM Identity Center
User Guide.

Configure programmatic
access by Configuring the
AWS CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface User
Guide.

In IAM Use long-term
credentials to access
AWS.

Following the instructions
in Create an IAM user for

Configure programmatic
access by Manage access keys

IDT usage metrics 2140

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started-emergency-iam-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

AWS IoT Greengrass Developer Guide, Version 2

Choose
one
way to
manage
your
administr
ator

To By You can also

(Not
recommend
ed)

emergency access in the
IAM User Guide.

for IAM users in the IAM User
Guide.

Step 2: Configure permissions for IDT

In this step, configure the permissions that IDT uses to run tests and collect IDT usage data. You
can use the AWS Management Console or AWS Command Line Interface (AWS CLI) to create an IAM
policy and a user for IDT, and then attach policies to the user.

• To Configure Permissions for IDT (Console)

• To Configure Permissions for IDT (AWS CLI)

To configure permissions for IDT (console)

Follow these steps to use the console to configure permissions for IDT for AWS IoT Greengrass.

1. Sign in to the IAM console.

2. Create a customer managed policy that grants permissions to create roles with specific
permissions.

a. In the navigation pane, choose Policies, and then choose Create policy.

b. On the JSON tab, replace the placeholder content with the following policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

IDT usage metrics 2141

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started-emergency-iam-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://console.aws.amazon.com/iam

AWS IoT Greengrass Developer Guide, Version 2

 "iot-device-tester:SendMetrics"
],
 "Resource": "*"
 }
]
}

c. Choose Review policy.

d. For Name, enter IDTUsageMetricsIAMPermissions. Under Summary, review the
permissions granted by your policy.

e. Choose Create policy.

3. Create an IAM user and attach permissions to the user.

a. Create an IAM user. Follow steps 1 through 5 in Creating IAM users (console) in the IAM
User Guide. If you already created an IAM user, skip to the next step.

b. Attach the permissions to your IAM user:

i. On the Set permissions page, choose Attach existing policies to user directly.

ii. Search for the IDTUsageMetricsIAMPermissions policy that you created in the
previous step. Select the check box.

c. Choose Next: Tags.

d. Choose Next: Review to view a summary of your choices.

e. Choose Create user.

f. To view the user's access keys (access key IDs and secret access keys), choose Show next to
the password and access key. To save the access keys, choose Download.csv and save the
file to a secure location. You use this information later to configure your AWS credentials
file.

To configure permissions for IDT (AWS CLI)

Follow these steps to use the AWS CLI to configure permissions for IDT for AWS IoT Greengrass.

1. On your computer, install and configure the AWS CLI if it's not already installed. Follow the
steps in Installing the AWS CLI in the AWS Command Line Interface User Guide.

IDT usage metrics 2142

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

AWS IoT Greengrass Developer Guide, Version 2

Note

The AWS CLI is an open source tool that you can use to interact with AWS services from
your command-line shell.

2. Create the following customer managed policy that grants permissions to manage IDT and
AWS IoT Greengrass roles.

Linux or Unix

aws iam create-policy --policy-name IDTUsageMetricsIAMPermissions --policy-
document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot-device-tester:SendMetrics"
],
 "Resource": "*"
 }
]
}'

Windows command prompt

aws iam create-policy --policy-name IDTUsageMetricsIAMPermissions --policy-
document
 '{\"Version\": \"2012-10-17\",
 \"Statement\": [{\"Effect\": \"Allow\", \"Action\": [\"iot-device-
tester:SendMetrics\"], \"Resource": \"*\"}]}'

Note

This step includes a Windows command prompt example because it uses a different
JSON syntax than Linux, macOS, or Unix terminal commands.

IDT usage metrics 2143

AWS IoT Greengrass Developer Guide, Version 2

PowerShell

aws iam create-policy --policy-name IDTUsageMetricsIAMPermissions --policy-
document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iot-device-tester:SendMetrics"
],
 "Resource": "*"
 }
]
}'

3. Create an IAM user and attach the permissions required by IDT for AWS IoT Greengrass.

a. Create an IAM user.

aws iam create-user --user-name user-name

b. Attach the IDTUsageMetricsIAMPermissions policy you created to your IAM user.
Replace user-name with your IAM user name and <account-id> in the command with
the ID of your AWS account.

aws iam attach-user-policy --user-name user-name --policy-arn
 arn:aws:iam::<account-id>:policy/IDTGreengrassIAMPermissions

4. Create a secret access key for the user.

aws iam create-access-key --user-name user-name

Store the output in a secure location. You use this information later to configure your AWS
credentials file.

Provide AWS credentials to IDT

To allow IDT to access your AWS credentials and submit metrics to AWS, do the following:

IDT usage metrics 2144

AWS IoT Greengrass Developer Guide, Version 2

1. Store the AWS credentials for your IAM user as environment variables or in a credentials file:

a. To use environment variables, run the following commands.

Linux or Unix

export AWS_ACCESS_KEY_ID=access-key
export AWS_SECRET_ACCESS_KEY=secret-access-key

Windows Command Prompt (CMD)

set AWS_ACCESS_KEY_ID=access-key
set AWS_SECRET_ACCESS_KEY=secret-access-key

PowerShell

$env:AWS_ACCESS_KEY_ID="access-key"
$env:AWS_SECRET_ACCESS_KEY="secret-access-key"

b. To use the credentials file, add the following information to the ~/.aws/credentials
file.

[profile-name]
aws_access_key_id=access-key
aws_secret_access_key=secret-access-key

2. Configure the auth section of the config.json file. For more information, see (Optional)
Configure config.json.

Troubleshooting IDT for AWS IoT Greengrass V2

IDT for AWS IoT Greengrass V2 writes errors to various locations based on the type of errors. IDT
writes errors to the console, log files, and test reports.

Where to look for errors

High-level errors are displayed on the console while the test is running, and a summary of the
failed tests displays when all tests are complete. awsiotdevicetester_report.xml contains

Troubleshooting IDT for AWS IoT Greengrass V2 2145

AWS IoT Greengrass Developer Guide, Version 2

a summary of all the errors that caused a test to fail. IDT stores the log files for each test run in a
directory with a UUID for the test execution, displayed on the console during the test run.

The IDT test logs directory is <device-tester-extract-location>/results/<execution-
id>/logs/. This directory contains the following files displayed in the table. This is useful for
debugging.

File Description

test_manager.log The logs written to the console while the test
was running. The summary of the results at
the end of this file includes a list of which
tests failed.

The warning and error logs in this file can give
you some information about the failures.

test-group-id /test-case-id /test-
name .log

Detailed logs for the specific test in a test
group. For tests that deploy Greengrass
components, the test case log file is called
 greengrass-test-run.log .

test-group-id /test-case-id /
greengrass.log

Detailed logs for AWS IoT Greengrass Core
software. IDT copies this file from the device
under test when it runs tests that install AWS
IoT Greengrass Core software on the device.
For more information about the messages
in this log file, see Troubleshooting AWS IoT
Greengrass V2.

test-group-id /test-case-
id/component-name .log

Detailed logs for Greengrass components
that are deployed during test runs. IDT copies
 component log files from the device under
test when it runs tests that deploys specific
components. The name of each component
log file corresponds to the name of the
deployed component. For more informati

Where to look for errors 2146

AWS IoT Greengrass Developer Guide, Version 2

File Description

on about the messages in this log file, see
 Troubleshooting AWS IoT Greengrass V2.

Resolving IDT for AWS IoT Greengrass V2 errors

Before you run IDT for AWS IoT Greengrass, get the correct configuration files in place. If you
receive parsing and configuration errors, your first step is to locate and use a configuration
template appropriate for your environment.

If you are still having issues, see the following debugging process.

Topics

• Alias resolution errors

• Conflict errors

• Could not start test error

• Docker qualification image exists errors

• Failed to read credential

• Guice errors with PreInstalled Greengrass

• Invalid signature exception

• Machine learning qualification errors

• Open Test Framework (OTF) failed deployments

• Parsing errors

• Permission denied errors

• Qualification report generation error

• Required parameter missing error

• Security exception on macOS

• SSH connection errors

• Stream manager qualification errors

• Timeout errors

• Version check errors

Resolving IDT for AWS IoT Greengrass V2 errors 2147

AWS IoT Greengrass Developer Guide, Version 2

Alias resolution errors

When you run custom test suites, you might see the following error in the console and in the
test_manager.log.

Couldn't resolve placeholders: couldn't do a json lookup: index out of range

This error can occur when the aliases configured in the IDT test orchestrator don't resolve correctly
or if the resolved values aren't present in the configuration files. To resolve this error, make sure
that your device.json and userdata.json contain the correct information required for your
test suite. For information about the configuration required for AWS IoT Greengrass qualification,
see Configure IDT settings to run the AWS IoT Greengrass qualification suite.

Conflict errors

You might see the following error when you run the AWS IoT Greengrass qualification suite
concurrently on more than one device.

ConflictException: Component [com.example.IDTHelloWorld : 1.0.0] for account [account-
id] already exists with state: [DEPLOYABLE] { RespMetadata: { StatusCode: 409,
 RequestID: “id” }, Message_: “Component [com.example.IDTHelloWorld : 1.0.0] for
 account [account-id] already exists with state: [DEPLOYABLE]” }

Concurrent test execution isn't yet supported for the AWS IoT Greengrass qualification suite. Run
the qualification suite sequentially for each device.

Could not start test error

You might encounter errors that point to failures that occurred when the test was attempting to
start. There are several possible causes, so do the following:

• Make sure that the pool name in your execution command actually exists. IDT references the pool
name directly from your device.json file.

• Make sure that the devices in your pool have correct configuration parameters.

Docker qualification image exists errors

The Docker application manager qualification tests use the amazon/amazon-ec2-metadata-
mock container image in Amazon ECR to qualify the device under test.

Resolving IDT for AWS IoT Greengrass V2 errors 2148

AWS IoT Greengrass Developer Guide, Version 2

You might receive the following error if the image is already present in a Docker container on the
device under test.

The Docker image amazon/amazon-ec2-metadata-mock:version already exists on the device.

If you previously downloaded this image and ran the amazon/amazon-ec2-metadata-mock
container on your device, make sure you remove this image from the device under test before you
run the qualification tests.

Failed to read credential

When testing Windows devices, you might encounter the Failed to read credential error in
the greengrass.log file if the user that you use to connect to the device under test is not set up
in the credential manager on that device.

To resolve this error, configure the user and password for the IDT user in the credential manager on
the device under test.

For more information, see Configure user credentials for Windows devices.

Guice errors with PreInstalled Greengrass

While running IDT with PreInstalled Greengrass, if you encounter an error of
Guice or ErrorInCustomProvider, check if the file userdata.json has the
InstalledDirRootOnDevice set to the Greengrass installation folder. IDT checks for
the file effectiveConfig.yaml under <InstallationDirRootOnDevice>/config/
effectiveConfig.yaml.

For more information, see Configure user credentials for Windows devices.

Invalid signature exception

When you run Lambda qualification tests, you might encounter the
invalidsignatureexception error if your IDT host machine experiences network access issues.
Reset your router and run the tests again.

Machine learning qualification errors

When you run machine learning (ML) qualification tests, you might encounter qualification failures
if your device doesn't meet the requirements to deploy the AWS-provided ML components. To
troubleshoot ML qualification errors, do the following:

Resolving IDT for AWS IoT Greengrass V2 errors 2149

AWS IoT Greengrass Developer Guide, Version 2

• Look for error details in the component logs for the components that were deployed during
the test run. Component logs are located in the <device-tester-extract-location>/
results/<execution-id>/logs/<test-group-id> directory.

• Add the -Dgg.persist=installed.software argument to the test.json file for the failing
test case. The test.json file is located in the <device-tester-extract-location>/
tests/GGV2Q_version directory.

Open Test Framework (OTF) failed deployments

If OTF tests fail to complete the deployment, a likely cause may be the permissions set for the
parent folder of TempResourcesDirOnDevice and InstallationDirRootOnDevice. To set
this folder's permissions correctly, run the following command. Replace folder-name with the
name of the parent folder.

sudo chmod 755 folder-name

Parsing errors

Typos in a JSON configuration can lead to parsing errors. Most of the time, the issue is a result of
omitting a bracket, comma, or quotation mark from your JSON file. IDT performs JSON validation
and prints debugging information. It prints the line where the error occurred, the line number,
and the column number of the syntax error. This information should be enough to help you fix the
error, but if you still can't locate the error, you can perform validation manually in your IDE, a text
editor such as Atom or Sublime, or through an online tool like JSONLint.

Permission denied errors

IDT performs operations on various directories and files in a device under test. Some of these
operations require root access. To automate these operations, IDT must be able to run commands
with sudo without typing a password.

Follow these steps to allow sudo access without typing a password.

Note

user and username refer to the SSH user used by IDT to access the device under test.

1. Use sudo usermod -aG sudo <ssh-username> to add your SSH user to the sudo group.

Resolving IDT for AWS IoT Greengrass V2 errors 2150

AWS IoT Greengrass Developer Guide, Version 2

2. Sign out and then sign in for changes to take effect.

3. Open /etc/sudoers file and add the following line to the end of the file: <ssh-username>
ALL=(ALL) NOPASSWD: ALL

Note

As a best practice, we recommend that you use sudo visudo when you edit /etc/
sudoers.

Qualification report generation error

IDT supports the four latest major.minor versions of the AWS IoT Greengrass V2 qualification
suite (GGV2Q) to generate qualification reports that you can submit to AWS Partner Network to
include your devices in the AWS Partner Device Catalog. Earlier versions of the qualification suite
don’t generate qualification reports.

If you have questions about the support policy, contact AWS Support.

Required parameter missing error

When IDT adds new features, it might introduce changes to the configuration files. Using an old
configuration file might break your configuration. If this happens, the <test_case_id>.log file
under /results/<execution-id>/logs explicitly lists all missing parameters. IDT also validates
your JSON configuration file schemas to verify that you are using the latest supported version.

Security exception on macOS

When you run IDT on a macOS host computer, it blocks IDT from running. To run IDT, grant a
security exception to the executables that is part of IDT runtime functionality. When you see the
warning message display on your host computer, do the following for each of the applicable
executables:

To grant a security exception to IDT executables

1. On the macOS computer, on the Apple menu, open System Preferences.

2. Choose Security & Privacy, then on the General tab, choose the lock icon to make changes to
security settings.

Resolving IDT for AWS IoT Greengrass V2 errors 2151

https://aws.amazon.com/contact-us/

AWS IoT Greengrass Developer Guide, Version 2

3. In case of blocked devicetester_mac_x86-64, look for the message
"devicetester_mac_x86-64" was blocked from use because it is not from
an identified developer. and choose Allow Anyway.

4. Resume IDT testing, until you get through all executables involved.

SSH connection errors

When IDT can't connect to a device under test, it logs connection failures in /
results/<execution-id>/logs/<test-case-id>.log. SSH messages appear at the top
of this log file because connecting to a device under test is one of the first operations that IDT
performs.

Most Windows configurations use the PuTTy terminal application to connect to Linux hosts. This
application requires that you convert standard PEM private key files into a proprietary Windows
format called PPK. If you configure SSH in your device.json file, use PEM files. If you use a PPK
file, IDT can't create an SSH connection with the AWS IoT Greengrass device and can't run tests.

Starting with IDT v4.4.0, if you haven't enabled SFTP on your device under test, then you might see
the following error in the log file.

SSH connection failed with EOF

To resolve this error, enable SFTP on your device.

Stream manager qualification errors

When you run stream manager qualification tests, you might see the following error in the
com.aws.StreamManagerExport.log file.

Failed to upload data to S3

This error can occur when stream manager uses the AWS credentials in the ~/root/.aws/
credentials file on your device instead of using the environment credentials that IDT exports to
the device under test. To prevent this issue, delete the credentials file on your device, and re-
run the qualification test.

Resolving IDT for AWS IoT Greengrass V2 errors 2152

AWS IoT Greengrass Developer Guide, Version 2

Timeout errors

You can increase the timeout for each test by specifying a timeout multiplier applied to the default
value of each test's timeout. Any value configured for this flag must be greater than or equal to
1.0.

To use the timeout multiplier, use the flag --timeout-multiplier when running the tests. For
example:

./devicetester_linux run-suite --suite-id GGV2Q_1.0.0 --pool-id DevicePool1 --timeout-
multiplier 2.5

For more information, run run-suite --help.

Some timeout errors occur when IDT test cases can’t be completed because of configuration issues.
You can’t resolve these errors by increasing the timeout multiplier. Use the logs from the test run
to troubleshoot the underlying configuration issues.

• If the MQTT or Lambda component logs contain Access denied errors, your Greengrass
installation folder might not have the correct file permissions. Run the following command for
each folder in the installation path that you defined in your userdata.json file.

sudo chmod 755 folder-name

• If the Greengrass logs indicate that the Greengrass CLI deployment isn't complete, do the
following:

• Verify that bash is installed on the device under test.

• If your userdata.json file includes the GreengrassCliVersion configuration parameter,
remove it. This parameter is deprecated in IDT v4.1.0 and later versions. For more information,
see Configure userdata.json.

• If the Lambda deployment test failed with an error message of "Validating Lambda publish:
time out" and you receive an error in the test log file (idt-gg2-lambda-function-
idt-<resource-id>.log) that says Error: Could not find or load main class
com.amazonaws.greengrass.runtime.LambdaRuntime., do the following:

• Verify what folder was used for InstallationDirRootOnDevice in the userdata.json
file.

• Make sure the correct user permissions are set up on your device. For more details, see
Configure user permissions on your device.

Resolving IDT for AWS IoT Greengrass V2 errors 2153

https://docs.aws.amazon.com/greengrass/v2/developerguide/device-config-setup.html#root-access

AWS IoT Greengrass Developer Guide, Version 2

Version check errors

IDT issues the following error when the AWS user credentials for the IDT user don't have the
required IAM permissions.

Failed to check version compatibility

The AWS user that doesn't have the required IAM permissions.

Support policy for AWS IoT Device Tester for AWS IoT
Greengrass

AWS IoT Device Tester for AWS IoT Greengrass is a test automation tool used to validate and
qualify your AWS IoT Greengrass devices for inclusion in the AWS Partner Device Catalog. We
recommend that you use the most recent version of AWS IoT Greengrass and AWS IoT Device
Tester to test or qualify your devices.

At least one version of AWS IoT Device Tester is available for each supported version of AWS IoT
Greengrass. For supported versions of AWS IoT Greengrass, see Greengrass nucleus versions. For
supported versions of AWS IoT Device Tester, see Supported versions of AWS IoT Device Tester for
AWS IoT Greengrass V2.

You can also use any of the supported versions of AWS IoT Greengrass and AWS IoT Device Tester
to test or qualify your devices. Although you can continue to use unsupported versions of AWS IoT
Device Tester, those versions do not receive bug fixes or updates. If you have questions about the
support policy, contact AWS Support.

Support policy for AWS IoT Device Tester for AWS IoT Greengrass 2154

https://aws.amazon.com/partners/dqp/
https://devices.amazonaws.com/
https://aws.amazon.com/contact-us/

AWS IoT Greengrass Developer Guide, Version 2

Greengrass based IoT solutions

Eurotech's Everyware GreenEdge is in a preview release for AWS IoT Greengrass and is subject
to change. This solution is not supported by AWS. You must contact Eurotech for any issues with
this device.

AWS IoT Greengrass offers solutions from Partners to optimize your experience installing
Greengrass. The following is a solution that AWS has partnered with Eurotech to offer. This
solution comes with AWS IoT Greengrass Core edge runtime and additional capabilities pre-
installed.

Eurotech

AWS has partnered with Eurotech to offer an IoT solution for customers who are looking for a
device that comes with AWS IoT Greengrass Core software pre-installed. Eurotech's Everyware
GreenEdge is an IoT edge software that is pre-configured and pre-qualified by AWS. This solution
merges the capabilities of Greengrass and the Eurotech Everyware Software Framework (ESF) to
offer customers extensive southbound connectivity through protocol adapters like: Modbus, OPC-
UA Client/Server, S7, TwinCAT, J1939, DNP3 Master/Outstation, and more. With this solution, you
can also send data to the AWS Cloud and connect to all northbound AWS services (such as AWS
IoT Core, AWS IoT SiteWise, AWS IoT Analytics, Amazon S3, and Amazon Kinesis Video Streams).
Combined with Everyware Cloud, Eurotech's device management solution, this solution introduces
a novel Zero-Touch Provisioning service, which simplifies device onboarding and mass deployment.

For more information about Eurotech, see Eurotech.

Eurotech 2155

https://www.eurotech.com/

AWS IoT Greengrass Developer Guide, Version 2

Troubleshooting AWS IoT Greengrass V2

Use the troubleshooting information and solutions in this section to help resolve issues with AWS
IoT Greengrass Version 2.

Topics

• View AWS IoT Greengrass Core software and component logs

• AWS IoT Greengrass Core software issues

• AWS IoT Greengrass cloud issues

• Core device deployment issues

• Core device component issues

• Core device Lambda function component issues

• Component version discontinued

• Greengrass Command Line Interface issues

• AWS Command Line Interface issues

• Detailed deployment error codes

• Detailed component status codes

View AWS IoT Greengrass Core software and component logs

The AWS IoT Greengrass Core software writes logs to the local file system that you can use to view
real-time information about the core device. You can also configure core devices to write logs to
CloudWatch Logs, so you can remotely troubleshoot core devices. These logs can help you identify
issues with components, deployments, and core devices. For more information, see Monitor AWS
IoT Greengrass logs.

AWS IoT Greengrass Core software issues

Troubleshoot AWS IoT Greengrass Core software issues.

Topics

• ThrottlingException from ListDeployments API

• Unable to set up core device

View AWS IoT Greengrass Core software and component logs 2156

AWS IoT Greengrass Developer Guide, Version 2

• Unable to start the AWS IoT Greengrass Core software as a system service

• Unable to set up nucleus as a system service

• Unable to connect to AWS IoT Core

• Out of memory error

• Unable to install Greengrass CLI

• User root is not allowed to execute

• com.aws.greengrass.lifecyclemanager.GenericExternalService: Could not determine user/group
to run with

• Failed to map segment from shared object: operation not permitted

• Failed to set up Windows service

• com.aws.greengrass.util.exceptions.TLSAuthException: Failed to get trust manager

• com.aws.greengrass.deployment.IotJobsHelper: No connection available during subscribing to
Iot Jobs descriptions topic. Will retry in sometime

• software.amazon.awssdk.services.iam.model.IamException: The security token included in the
request is invalid

• software.amazon.awssdk.services.iot.model.IotException: User: <user> is not authorized to
perform: iot:GetPolicy

• Error: com.aws.greengrass.shadowmanager.sync.model.FullShadowSyncRequest: Could not
execute cloud shadow get request

• Operation aws.greengrass#<operation> is not supported by Greengrass

• java.io.FileNotFoundException: <stream-manager-store-root-dir>/
stream_manager_metadata_store (Permission denied)

• com.aws.greengrass.security.provider.pkcs11.PKCS11CryptoKeyService: Private key or certificate
with label <label> does not exist

• software.amazon.awssdk.services.secretsmanager.model.SecretsManagerException: User: <user>
is not authorized to perform: secretsmanager:GetSecretValue on resource: <arn>

• software.amazon.awssdk.services.secretsmanager.model.SecretsManagerException: Access to
KMS is not allowed

• java.lang.NoClassDefFoundError: com/aws/greengrass/security/CryptoKeySpi

• com.aws.greengrass.security.provider.pkcs11.PKCS11CryptoKeyService:
CKR_OPERATION_NOT_INITIALIZED

• Greengrass core device stuck on nucleus v2.12.3

AWS IoT Greengrass Core software issues 2157

AWS IoT Greengrass Developer Guide, Version 2

ThrottlingException from ListDeployments API

ThrottlingException from ListDeployments API: You might see this when you have a large
number of deployments in account.

To solve this, do one of following:

• If you use SDK, please specify MaxResult parameter. For example, for JavaSDK with a small value
(e.g. 5).

• You can use AWS Service Quotas to request a limit increase of the rate limit of theDescribeJob
API. You can go to the Service quota console, select quotas of AWS IoT and the limit name is
DescribeJob throttle limit. You can increase it from 10 to 50.

Unable to set up core device

If the AWS IoT Greengrass Core software installer fails and you aren't able to set up a core device,
you might need to uninstall the software and try again. For more information, see Uninstall the
AWS IoT Greengrass Core software.

Unable to start the AWS IoT Greengrass Core software as a system
service

If the AWS IoT Greengrass Core software fails to start, check the system service logs to identify the
issue. One common issue is where Java isn't available on the PATH environment variable (Linux) or
PATH system variable (Windows).

Unable to set up nucleus as a system service

You might see this error when the AWS IoT Greengrass Core software installer fails to set up AWS
IoT Greengrass as a system service. On Linux devices, this error typically occurs if the core device
doesn't have the systemd init system. The installer can successfully set up the AWS IoT Greengrass
Core software even if it fails to set up the system service.

Do one of the following:

• Configure and run the AWS IoT Greengrass Core software as a system service. You must
configure the software as a system service to use all of the features of AWS IoT Greengrass.
You can install systemd or use a different init system. For more information, see Configure the
Greengrass nucleus as a system service.

ThrottlingException from ListDeployments API 2158

https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/greengrassv2/model/ListDeploymentsRequest.html#maxResults
https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html
https://en.wikipedia.org/wiki/Systemd
https://en.wikipedia.org/wiki/Systemd

AWS IoT Greengrass Developer Guide, Version 2

• Run the AWS IoT Greengrass Core software without a system service. You can run the
software using a loader script that the installer sets up in the Greengrass root folder. For more
information, see Run the AWS IoT Greengrass Core software without a system service.

Unable to connect to AWS IoT Core

You might see this error when the AWS IoT Greengrass Core software can't connect to AWS IoT
Core to retrieve deployment jobs, for example. Do the following:

• Check that your core device can connect to the internet and AWS IoT Core. For more information
about the AWS IoT Core endpoint to which your device connects, see Configure the AWS IoT
Greengrass Core software.

• Check that your core device's AWS IoT thing uses a certificate that allows the iot:Connect,
iot:Publish, iot:Receive, and iot:Subscribe permissions.

• If your core device uses a network proxy, check that your core device has a device role and
that its role allows the iot:Connect, iot:Publish, iot:Receive, and iot:Subscribe
permissions.

Out of memory error

This error typically occurs if your device doesn't have sufficient memory to allocate an object in
the Java heap. On devices with limited memory, you might need to specify a maximum heap size
to control memory allocation. For more information, see Control memory allocation with JVM
options.

Unable to install Greengrass CLI

You might see the following console message when you use the --deploy-dev-tools argument
in your installation command for AWS IoT Greengrass Core.

Thing group exists, it could have existing deployment and devices, hence NOT creating
 deployment for Greengrass first party dev tools, please manually create a deployment
 if you wish to

This occurs when the Greengrass CLI component is not installed because your core device is
a member of a thing group that has an existing deployment. If you see this message, you can

Unable to connect to AWS IoT Core 2159

AWS IoT Greengrass Developer Guide, Version 2

manually deploy the Greengrass CLI component (aws.greengrass.Cli) to the device to install
the Greengrass CLI. For more information, see Install the Greengrass CLI.

User root is not allowed to execute

You might see this error when the user that runs the AWS IoT Greengrass Core software (typically
root) doesn't have permission to run sudo with any user and any group. For the default ggc_user
system user, this error looks like the following:

Sorry, user root is not allowed to execute <command> as ggc_user:ggc_group.

Check that your /etc/sudoers file gives the user permission to run sudo as other groups. The
permission for the user in /etc/sudoers should look like the following example.

root ALL=(ALL:ALL) ALL

com.aws.greengrass.lifecyclemanager.GenericExternalService: Could
not determine user/group to run with

You might see this error when the core device tries to run a component, and the Greengrass
nucleus doesn't specify a default system user to use to run components.

To fix this issue, configure the Greengrass nucleus to specify the default system user that runs
components. For more information, see Configure the user that runs components and Configure
the default component user.

Failed to map segment from shared object: operation not permitted

You might see this error when the AWS IoT Greengrass Core software fails to start because the /
tmp folder is mounted with noexec permissions. The AWS Common Runtime (CRT) library uses the
/tmp folder by default.

Do one of the following:

• Run the following command to remount the /tmp folder with exec permissions and try again.

sudo mount -o remount,exec /tmp

• If you run Greengrass nucleus v2.5.0 or later, you can set a JVM option to change the folder that
the AWS CRT library uses. You can specify the jvmOptions parameter in the Greengrass nucleus

User root is not allowed to execute 2160

https://github.com/awslabs/aws-crt-java

AWS IoT Greengrass Developer Guide, Version 2

component configuration in a deployment or when you install the AWS IoT Greengrass Core
software. Replace /path/to/use with the path to a folder that the AWS CRT library can use.

{
 "jvmOptions": "-Daws.crt.lib.dir=\"/path/to/use\""
}

Failed to set up Windows service

You might see this error if you install the AWS IoT Greengrass Core software on a Microsoft
Windows 2016 device. The AWS IoT Greengrass Core software is not supported on Windows 2016,
for a list of supported operating systems, see Supported platforms.

If you must use Windows 2016, you can do the following:

1. Unzip the downloaded AWS IoT Greengrass Core installation archive

2. In the Greengrass directory open the bin/greengrass.xml.template file.

3. Add the <autoRefresh> tag to the end of the file just before the </service> tag.

 </log>
 <autoRefresh>false</autoRefresh>
</service>

com.aws.greengrass.util.exceptions.TLSAuthException: Failed to get
trust manager

You might see this error when you install the AWS IoT Greengrass Core software without a root
certificate authority (CA) file.

2022-06-05T10:00:39.556Z [INFO] (main) com.aws.greengrass.lifecyclemanager.Kernel:
 service-loaded. {serviceName=DeploymentService}
2022-06-05T10:00:39.943Z [WARN] (main)
 com.aws.greengrass.componentmanager.ClientConfigurationUtils: configure-greengrass-
mutual-auth. Error during configure greengrass client mutual auth. {}
com.aws.greengrass.util.exceptions.TLSAuthException: Failed to get trust manager

Failed to set up Windows service 2161

AWS IoT Greengrass Developer Guide, Version 2

Check that you specify a valid root CA file with the rootCaPath parameter in the configuration
file that you provide to the installer. For more information, see Install the AWS IoT Greengrass Core
software.

com.aws.greengrass.deployment.IotJobsHelper: No connection
available during subscribing to Iot Jobs descriptions topic. Will retry in
sometime

You might see this warning message when the core device can't connect to AWS IoT Core to
subscribe to deployment job notifications. Do the following:

• Check that the core device is connected to the internet and can reach the AWS IoT data endpoint
that you configured. For more information about endpoints that core devices use, see Allow
device traffic through a proxy or firewall.

• Check the Greengrass logs for other errors that reveal other root causes.

software.amazon.awssdk.services.iam.model.IamException: The
security token included in the request is invalid

You might see this error when you install the AWS IoT Greengrass Core software with automatic
provisioning, and the installer uses an AWS session token that isn't valid. Do the following:

• If you use temporary security credentials, check that the session token is correct and that you are
copying and pasting the complete session token.

• If you use long-term security credentials, check that the device doesn't have a session token from
a time where you previously used temporary credentials. Do the following:

1. Run the following command to unset the session token environment variable.

Linux or Unix

unset AWS_SESSION_TOKEN

Windows Command Prompt (CMD)

set AWS_SESSION_TOKEN=

com.aws.greengrass.deployment.IotJobsHelper: No connection available during subscribing to Iot Jobs
descriptions topic. Will retry in sometime

2162

AWS IoT Greengrass Developer Guide, Version 2

PowerShell

Remove-Item Env:\AWS_SESSION_TOKEN

2. Check if the AWS credentials file, ~/.aws/credentials, contains a session token,
aws_session_token. If so, remove that line from the file.

aws_session_token = AQoEXAMPLEH4aoAH0gNCAPyJxz4BlCFFxWNE1OPTgk5TthT
+FvwqnKwRcOIfrRh3c/LTo6UDdyJwOOvEVPvLXCrrrUtdnniCEXAMPLE/
IvU1dYUg2RVAJBanLiHb4IgRmpRV3zrkuWJOgQs8IZZaIv2BXIa2R4Olgk

You can also install the AWS IoT Greengrass Core software without providing AWS credentials. For
more information, see Install AWS IoT Greengrass Core software with manual resource provisioning
or Install AWS IoT Greengrass Core software with AWS IoT fleet provisioning.

software.amazon.awssdk.services.iot.model.IotException: User: <user>
is not authorized to perform: iot:GetPolicy

You might see this error when you install the AWS IoT Greengrass Core software with automatic
provisioning, and the installer uses AWS credentials that don't have the required permissions. For
more information about the permissions that are required, see Minimal IAM policy for installer to
provision resources.

Check the permissions for the credentials' IAM identity, and grant the IAM identity any required
permissions that are missing.

Error:
com.aws.greengrass.shadowmanager.sync.model.FullShadowSyncRequest:
Could not execute cloud shadow get request

You might see this error when you use the shadow manager component to sync device shadows
with AWS IoT Core. The HTTP 403 status code indicates that this error occurred because the core
device's AWS IoT policy doesn't grant permission to call GetThingShadow.

com.aws.greengrass.shadowmanager.sync.model.FullShadowSyncRequest: Could not execute
 cloud shadow get request. {thing name=MyGreengrassCore, shadow name=MyShadow}

software.amazon.awssdk.services.iot.model.IotException: User: <user> is not authorized to perform:
iot:GetPolicy

2163

AWS IoT Greengrass Developer Guide, Version 2

2021-07-14T21:09:02.456Z [ERROR] (pool-2-thread-109)
 com.aws.greengrass.shadowmanager.sync.SyncHandler: sync. Skipping sync request. {thing
 name=MyGreengrassCore, shadow name=MyShadow}
com.aws.greengrass.shadowmanager.exception.SkipSyncRequestException:
 software.amazon.awssdk.services.iotdataplane.model.IotDataPlaneException:
 null (Service: IotDataPlane, Status Code: 403, Request ID:
 f6e713ba-1b01-414c-7b78-5beb3f3ad8f6, Extended Request ID: null)

To sync local shadows with AWS IoT Core, the core device's AWS IoT policy must grant the
following permissions:

• iot:GetThingShadow

• iot:UpdateThingShadow

• iot:DeleteThingShadow

Check the core device's AWS IoT policy, and add any required permissions that are missing. For
more information, see the following:

• AWS IoT Core policy actions in the AWS IoT Developer Guide

• Update a core device's AWS IoT policy

Operation aws.greengrass#<operation> is not supported by Greengrass

You might see this error when you use an interprocess communication (IPC) operation in a custom
Greengrass component, and the required AWS-provided component isn't installed on the core
device.

To fix this issue, add the required component as a dependency in your component recipe, so
the AWS IoT Greengrass Core software installed the required component when you deploy your
component.

• Retrieve secret values – aws.greengrass.SecretManager

• Interact with local shadows – aws.greengrass.ShadowManager

• Manage local deployments and components – aws.greengrass.Cli v2.6.0 or later

• Authenticate and authorize client devices – aws.greengrass.clientdevices.Auth v2.2.0 or
later

Operation aws.greengrass#<operation> is not supported by Greengrass 2164

https://docs.aws.amazon.com/iot/latest/developerguide/iot-policy-actions.html

AWS IoT Greengrass Developer Guide, Version 2

java.io.FileNotFoundException: <stream-manager-store-root-dir>/
stream_manager_metadata_store (Permission denied)

You might see this error in the stream manager log file (aws.greengrass.StreamManager.log)
when you configure stream manager to use a root folder that doesn't exist or have the correct
permissions. For more information about how to configure this folder, see stream manager
configuration.

com.aws.greengrass.security.provider.pkcs11.PKCS11CryptoKeyService:
Private key or certificate with label <label> does not exist

This error occurs when the PKCS#11 provider component can't find or load the private key or
certificate that you specify when you configure the AWS IoT Greengrass Core software to use a
hardware security module (HSM). Do the following:

• Check that the private key and certificate are stored in the HSM using the slot, user PIN, and
object label that you configure the AWS IoT Greengrass Core software to use.

• Check that the private key and certificate use the same object label in the HSM.

• If your HSM supports object IDs, check that the private key and certificate use the same object ID
in the HSM.

Check the documentation for your HSM to learn how to query details about the security tokens in
the HSM. If you need to change the slot, object label, or object ID for a security token, check the
documentation for your HSM to learn how to do so.

software.amazon.awssdk.services.secretsmanager.model.SecretsManagerException:
User: <user> is not authorized to perform:
secretsmanager:GetSecretValue on resource: <arn>

This error can occur when you use the secret manager component to deploy an AWS Secrets
Manager secret. If the core device's token exchange IAM role doesn't grant permission to get the
secret, the deployment fails and the Greengrass logs include this error.

To authorize a core device to download a secret

1. Add the secretsmanager:GetSecretValue permission to the core device's token exchange
role. The following example policy statement grants permission to get the value of a secret.

java.io.FileNotFoundException: <stream-manager-store-root-dir>/stream_manager_metadata_store
(Permission denied)

2165

AWS IoT Greengrass Developer Guide, Version 2

{
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "arn:aws:secretsmanager:us-west-2:123456789012:secret:MyGreengrassSecret-
abcdef"
]
}

For more information, see Authorize core devices to interact with AWS services.

2. Reapply the deployment to the core device. Do one of the following:

• Revise the deployment without any changes. The core device tries to download the
secret again when it receives the revised deployment. For more information, see Revise
deployments.

• Restart the AWS IoT Greengrass Core software to retry the deployment. For more
information, see Run the AWS IoT Greengrass Core software

The deployment succeeds if secret manager downloads the secret successfully.

software.amazon.awssdk.services.secretsmanager.model.SecretsManagerException:
Access to KMS is not allowed

This error can occur when you use the secret manager component to deploy an AWS Secrets
Manager secret that is encrypted by an AWS Key Management Service key. If the core device's
token exchange IAM role doesn't grant permission to decrypt the secret, the deployment fails and
the Greengrass logs include this error.

To fix the issue, add the kms:Decrypt permission to the core device's token exchange role. For
more information, see the following:

• Secret encryption and decryption in the AWS Secrets Manager User Guide

• Authorize core devices to interact with AWS services

software.amazon.awssdk.services.secretsmanager.model.SecretsManagerException: Access to KMS is
not allowed

2166

https://docs.aws.amazon.com/secretsmanager/latest/userguide/security-encryption.html

AWS IoT Greengrass Developer Guide, Version 2

java.lang.NoClassDefFoundError: com/aws/greengrass/security/
CryptoKeySpi

You might see this error when you try to install the AWS IoT Greengrass Core software with
hardware security and you use an earlier Greengrass nucleus version that doesn't support hardware
security integration. To use hardware security integration, you must use Greengrass nucleus v2.5.3
or later.

com.aws.greengrass.security.provider.pkcs11.PKCS11CryptoKeyService:
CKR_OPERATION_NOT_INITIALIZED

You might see this error when you use the TPM2 library when running AWS IoT Greengrass Core as
a system service.

This error indicates that you need to add an environment variable that provides the location of the
PKCS#11 store in the AWS IoT Greengrass Core systemd service file.

For more information, see the Requirements section of the PKCS#11 provider component
documentation.

Greengrass core device stuck on nucleus v2.12.3

If your Greengrass core device won't revise your deployment from nucleus version 2.12.3, you
might need to download and replace the Greengrass.jar file with Greengrass nucleus version
2.12.2. Do the following:

1. On your Greengrass core device, run the following command to stop the Greengrass Core
software.

Linux or Unix

sudo systemctl stop greengrass

Windows Command Prompt (CMD)

sc stop "greengrass"

java.lang.NoClassDefFoundError: com/aws/greengrass/security/CryptoKeySpi 2167

AWS IoT Greengrass Developer Guide, Version 2

PowerShell

Stop-Service -Name "greengrass"

2. On your core device, download the AWS IoT Greengrass software to a file named
greengrass-2.12.2.zip.

Linux or Unix

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-2.12.2.zip >
 greengrass-2.12.2.zip

Windows Command Prompt (CMD)

curl -s https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-2.12.2.zip >
 greengrass-2.12.2.zip

PowerShell

iwr -Uri https://d2s8p88vqu9w66.cloudfront.net/releases/greengrass-2.12.2.zip -
OutFile greengrass-2.12.2.zip

3. Unzip the AWS IoT Greengrass Core software to a folder on your device. Replace
GreengrassInstaller with the folder that you want to use.

Linux or Unix

unzip greengrass-2.12.2.zip -d GreengrassInstaller && rm greengrass-2.12.2.zip

Windows Command Prompt (CMD)

mkdir GreengrassInstaller && tar -xf greengrass-2.12.2.zip -
C GreengrassInstaller && del greengrass-2.12.2.zip

PowerShell

Expand-Archive -Path greengrass-2.12.2.zip -DestinationPath .\
\GreengrassInstaller
rm greengrass-2.12.2.zip

Greengrass core device stuck on nucleus v2.12.3 2168

AWS IoT Greengrass Developer Guide, Version 2

4. Run the following command to override the nucleus version 2.12.3 Greengrass JAR file with
the nucleus version 2.12.2 Greengrass JAR file.

Linux or Unix

sudo cp ./GreengrassInstaller/lib/Greengrass.jar /greengrass/v2/packages/
artifacts-unarchived/aws.greengrass.Nucleus/2.12.3/aws.greengrass.nucleus/lib

Windows Command Prompt (CMD)

robocopy ./GreengrassInstaller/lib/Greengrass.jar /greengrass/v2/packages/
artifacts-unarchived/aws.greengrass.Nucleus/2.12.3/aws.greengrass.nucleus/lib /E

PowerShell

cp -Path ./GreengrassInstaller/lib/Greengrass.jar -Destination /
greengrass/v2/packages/artifacts-unarchived/aws.greengrass.Nucleus/2.12.3/
aws.greengrass.nucleus/lib

5. Run the following command to start the Greengrass Core software.

Linux or Unix

sudo systemctl start greengrass

Windows Command Prompt (CMD)

sc start "greengrass"

PowerShell

Start-Service -Name "greengrass"

AWS IoT Greengrass cloud issues

Use the following information to troubleshoot issues with the AWS IoT Greengrass console and API.
Each entry corresponds to an error message that you might see when you perform an action.

AWS IoT Greengrass cloud issues 2169

AWS IoT Greengrass Developer Guide, Version 2

An error occurred (AccessDeniedException) when
calling the CreateComponentVersion operation: User:
arn:aws:iam::123456789012:user/<username> is not authorized to
perform: null

You might see this error when you create a component version from the AWS IoT Greengrass
console or with the CreateComponentVersion operation.

This error indicates that your recipe isn't valid JSON or YAML. Check the syntax of your recipe, fix
any syntax issues, and try again. You can use an online JSON or YAML syntax checker to identify
syntax issues in your recipe.

Invalid Input: Encountered following errors in Artifacts:
{<s3ArtifactUri> = Specified artifact resource cannot be accessed}

You might see this error when you create a component version from the AWS IoT Greengrass
console or with the CreateComponentVersion operation. This error indicates that an S3 artifact in
the component recipe isn't valid.

Do the following:

• Check that the S3 bucket is in the same AWS Region where you create the component. AWS IoT
Greengrass doesn't support cross-Region requests for component artifacts.

• Check that the artifact URI is a valid S3 object URL, and check the artifact exists at that S3 object
URL.

• Check that your AWS account has permission to access the artifact at its S3 object URL.

INACTIVE deployment status

You might get an INACTIVE deployment status when you call the ListDeployments API without
the required dependent AWS IoT policies. You must have the necessary permissions in order to
get an accurate deployment status. You can find the dependent actions by looking in the Actions
defined by AWS IoT Greengrass V2 and following the permissions needed for ListDeployments.
Without the required dependent AWS IoT permissions, you will still see the deployment status but
you might see an inaccurate deployment status of INACTIVE.

An error occurred (AccessDeniedException) when calling the CreateComponentVersion operation: User:
arn:aws:iam::123456789012:user/<username> is not authorized to perform: null

2170

https://docs.aws.amazon.com/greengrass/v2/APIReference/API_CreateComponentVersion.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_CreateComponentVersion.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_ListDeployments.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotgreengrassv2.html#awsiotgreengrassv2-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotgreengrassv2.html#awsiotgreengrassv2-actions-as-permissions

AWS IoT Greengrass Developer Guide, Version 2

Core device deployment issues

Troubleshoot deployment issues on Greengrass core devices. Each entry corresponds to a log
message that you might see on your core device.

Topics

• Error: com.aws.greengrass.componentmanager.exceptions.PackageDownloadException: Failed to
download artifact

• Error: com.aws.greengrass.componentmanager.exceptions.ArtifactChecksumMismatchException:
Integrity check for downloaded artifact failed. Probably due to file corruption.

• Error:
com.aws.greengrass.componentmanager.exceptions.NoAvailableComponentVersionException:
Failed to negotiate component <name> version with cloud and no local applicable version
satisfying requirement <requirements>

• software.amazon.awssdk.services.greengrassv2data.model.ResourceNotFoundException: The
latest version of Component <componentName> doesn't claim platform <coreDevicePlatform>
compatibility

• com.aws.greengrass.componentmanager.exceptions.PackagingException: The
deployment attempts to update the nucleus from aws.greengrass.Nucleus-<version> to
aws.greengrass.Nucleus-<version> but no component of type nucleus was included as target
component

• Error: com.aws.greengrass.deployment.exceptions.DeploymentException: Unable to process
deployment. Greengrass launch directory is not set up or Greengrass is not set up as a system
service

• Info:
com.aws.greengrass.deployment.exceptions.RetryableDeploymentDocumentDownloadException:
Greengrass Cloud Service returned an error when getting full deployment configuration

• Warn: com.aws.greengrass.deployment.DeploymentService: Failed to get thing group hierarchy

• Info: com.aws.greengrass.deployment.DeploymentDocumentDownloader: Calling Greengrass
cloud to get full deployment configuration

• Caused by:
software.amazon.awssdk.services.greengrassv2data.model.GreengrassV2DataException: null
(Service: GreengrassV2Data, Status Code: 403, Request ID: <some_request_id>, Extended
Request ID: null)

Core device deployment issues 2171

AWS IoT Greengrass Developer Guide, Version 2

Error:
com.aws.greengrass.componentmanager.exceptions.PackageDownloadException:
Failed to download artifact

You might see this error when the AWS IoT Greengrass Core software fails to download a
component artifact when the core device applies a deployment. The deployment fails as a result of
this error.

When you receive this error, the log also includes a stack trace that you can use to identify the
specific issue. Each of the following entries corresponds to a message that you might see in the
stack trace of the Failed to download artifact error message.

Topics

• software.amazon.awssdk.services.s3.model.S3Exception: null (Service: S3, Status Code: 403,
Request ID: null, ...)

• software.amazon.awssdk.services.s3.model.S3Exception: Access Denied (Service: S3, Status Code:
403, Request ID: <requestID>

software.amazon.awssdk.services.s3.model.S3Exception: null (Service: S3, Status
Code: 403, Request ID: null, ...)

The PackageDownloadException error might include this stack trace in the following cases:

• The component artifact isn't available at the S3 object URL that you specify in the component's
recipe. Check that you uploaded the artifact to the S3 bucket and that the artifact URI matches
the S3 object URL of the artifact in the bucket.

• The core device's token exchange role doesn't allow the AWS IoT Greengrass Core software to
download the component artifact from the S3 object URL that you specify in the component's
recipe. Check that the token exchange role allows s3:GetObject for the S3 object URL where
the artifact is available.

Error: com.aws.greengrass.componentmanager.exceptions.PackageDownloadException: Failed to
download artifact

2172

AWS IoT Greengrass Developer Guide, Version 2

software.amazon.awssdk.services.s3.model.S3Exception: Access Denied (Service:
S3, Status Code: 403, Request ID: <requestID>

The PackageDownloadException error might include this stack trace when the core device doesn't
have permission to call s3:GetBucketLocation. The error message also includes the following
message.

reason: Failed to determine S3 bucket location

Check that the core device's token exchange role allows s3:GetBucketLocation for the S3
bucket where the artifact is available.

Error:
com.aws.greengrass.componentmanager.exceptions.ArtifactChecksumMismatchException:
Integrity check for downloaded artifact failed. Probably due to file
corruption.

You might see this error when the AWS IoT Greengrass Core software fails to download a
component artifact when the core device applies a deployment. The deployment fails because
the downloaded artifact file's checksum doesn't match the checksum that AWS IoT Greengrass
calculated when you created the component.

Do the following:

• Check if the artifact file changed in the S3 bucket where you host it. If the file changed since
you created the component, restore it to the previous version that the core device expects. If
you can't restore the file to its previous version, or if you want to use the new version of the file,
create a new version of the component with the artifact file.

• Check your core device's internet connection. This error can occur if the artifact file becomes
corrupted while it downloads. Create a new deployment and try again.

Error: com.aws.greengrass.componentmanager.exceptions.ArtifactChecksumMismatchException:
Integrity check for downloaded artifact failed. Probably due to file corruption.

2173

AWS IoT Greengrass Developer Guide, Version 2

Error:
com.aws.greengrass.componentmanager.exceptions.NoAvailableComponentVersionException:
Failed to negotiate component <name> version with cloud and no local
applicable version satisfying requirement <requirements>

You might see this error when a core device can't find a component version that meets the
requirements of the deployments for that core device. The core device checks for the component
in the AWS IoT Greengrass service and on the local device. The error message includes each
deployment's target and that deployment's version requirements for the component. The
deployment target can be a thing, a thing group, or LOCAL_DEPLOYMENT, which represents the
local deployment on the core device.

This issue can occur in the following cases:

• The core device is the target of multiple deployments that have conflicting component version
requirements. For example, the core device might be the target of multiple deployments that
include a com.example.HelloWorld component, where one deployment requires version
1.0.0 and the other requires version 1.0.1. It's impossible to have a component that meets both
requirements, so the deployment fails.

• The component version doesn't exist in the AWS IoT Greengrass service or on the local device.
The component might have been deleted, for example.

• There exists component versions that meet the version requirements, but none are compatible
with the core device's platform.

• The core device's AWS IoT policy doesn't grant the
greengrass:ResolveComponentCandidates permission. Look for Status
Code: 403 in the error log to identify this issue. To resolve this issue, add the
greengrass:ResolveComponentCandidates permission to the core device's AWS IoT policy.
For more information, see Minimal AWS IoT policy for AWS IoT Greengrass V2 core devices.

To resolve this issue, revise the deployments to include compatible component versions or remove
incompatible ones. For more information about how to revise cloud deployments, see Revise
deployments. For more information about how to revise local deployments, see the AWS IoT
Greengrass CLI deployment create command.

Error: com.aws.greengrass.componentmanager.exceptions.NoAvailableComponentVersionException:
Failed to negotiate component <name> version with cloud and no local applicable version satisfying
requirement <requirements>

2174

AWS IoT Greengrass Developer Guide, Version 2

software.amazon.awssdk.services.greengrassv2data.model.ResourceNotFoundException:
The latest version of Component <componentName> doesn't claim
platform <coreDevicePlatform> compatibility

You might see this error when you deploy a component to a core device, and the component
doesn't list a platform that is compatible with the core device's platform. Do one of the following:

• If the component is a custom Greengrass component, you can update the component to be
compatible with the core device. Add a new manifest that matches the core device's platform, or
update an existing manifest to match the core device's platform. For more information, see AWS
IoT Greengrass component recipe reference.

• If the component is provided by AWS, check if another version of the component is compatible
with the core device. If no version is compatible, contact us on AWS re:Post using the AWS IoT
Greengrass tag, or contact Support.

com.aws.greengrass.componentmanager.exceptions.PackagingException:
The deployment attempts to update the nucleus from
aws.greengrass.Nucleus-<version> to aws.greengrass.Nucleus-
<version> but no component of type nucleus was included as target
component

You might see this error when you deploy a component that depends on the Greengrass nucleus,
and the core device runs an earlier Greengrass nucleus version than the latest minor version
available. This error occurs because the AWS IoT Greengrass Core software tries to automatically
update components to the latest compatible version. However, the AWS IoT Greengrass Core
software prevents the Greengrass nucleus from updating to a new minor version, because several
AWS-provided components depend on specific minor versions of the Greengrass nucleus. For more
information, see Greengrass nucleus update behavior.

You must revise the deployment to specify the Greengrass nucleus version that you want to use. Do
one of the following:

• Revise the deployment to specify the Greengrass nucleus version that the core device currently
runs.

software.amazon.awssdk.services.greengrassv2data.model.ResourceNotFoundException: The latest
version of Component <componentName> doesn't claim platform <coreDevicePlatform> compatibility

2175

https://repost.aws/
https://repost.aws/tags/TA4ckIed1sR4enZBey29rKTg/aws-io-t-greengrass
https://repost.aws/tags/TA4ckIed1sR4enZBey29rKTg/aws-io-t-greengrass
https://aws.amazon.com/contact-us/

AWS IoT Greengrass Developer Guide, Version 2

• Revise the deployment to specify a later minor version of the Greengrass nucleus. If you choose
this option, you must also update the versions of all AWS-provided components that depend
on specific minor versions of the Greengrass nucleus. For more information, see AWS-provided
components.

Error:
com.aws.greengrass.deployment.exceptions.DeploymentException:
Unable to process deployment. Greengrass launch directory is not set
up or Greengrass is not set up as a system service

You might see this error when you move a Greengrass device from one thing group to another, and
then back to the original group with deployments that require Greengrass to restart.

To resolve this issue, recreate the launch directory for the device. We also strongly recommend
upgrading to version 2.9.6 or later of the Greengrass nucleus.

The following is a Linux script to recreate the launch directory. Save the script in a file called
fix_directory.sh.

#!/bin/bash

set -e

GG_ROOT=$1
GG_VERSION=$2

CURRENT="$GG_ROOT/alts/current"

if [! -L "$CURRENT"]; then
 mkdir -p $GG_ROOT/alts/directory_fix
 echo "Relinking $GG_ROOT/alts/directory_fix to $CURRENT"
 ln -sf $GG_ROOT/alts/directory_fix $CURRENT
fi

TARGET=$(readlink $CURRENT)

if [[! -d "$TARGET"]]; then
 echo "Creating directory: $TARGET"
 mkdir -p "$TARGET"
fi

Error: com.aws.greengrass.deployment.exceptions.DeploymentException: Unable to process
deployment. Greengrass launch directory is not set up or Greengrass is not set up as a system service

2176

AWS IoT Greengrass Developer Guide, Version 2

DISTRO_LINK="$TARGET/distro"
DISTRO="$GG_ROOT/packages/artifacts-unarchived/aws.greengrass.Nucleus/$GG_VERSION/
aws.greengrass.nucleus/"
echo "Relinking Nucleus artifacts to $DISTRO_LINK"
ln -sf $DISTRO $DISTRO_LINK

To run the script, execute the following command:

[root@ip-172-31-27-165 ~]# ./fix_directory.sh /greengrass/v2 2.9.5
Relinking /greengrass/v2/alts/directory_fix to /greengrass/v2/alts/current
Relinking Nucleus artifacts to /greengrass/v2/alts/directory_fix/distro

Info:
com.aws.greengrass.deployment.exceptions.RetryableDeploymentDocumentDownloadException:
Greengrass Cloud Service returned an error when getting full
deployment configuration

You might see this error when the core device receives a large deployment document, which
is a deployment document larger than 7 KB (for deployments that target things) or 31 KB (for
deployments that target thing groups). To retrieve a large deployment document, a core device's
AWS IoT policy must allow the greengrass:GetDeploymentConfiguration permission. This
error can occur when the core device doesn't have this permission. When this error occurs, the
deployment retries indefinitely, and its status is In progress (IN_PROGRESS).

To resolve this issue, add the greengrass:GetDeploymentConfiguration permission to the
core device's AWS IoT policy. For more information, see Update a core device's AWS IoT policy.

Warn: com.aws.greengrass.deployment.DeploymentService: Failed to
get thing group hierarchy

You might see this warning when the core device receives a deployment and the core device's
AWS IoT policy doesn't allow the greengrass:ListThingGroupsForCoreDevice permission.
When you create a deployment, the core device uses this permission to identify its thing groups
and remove components for any thing groups from which you removed the core device. If the core
device runs Greengrass nucleus v2.5.0, the deployment fails. If the core device runs Greengrass
nucleus v2.5.1 or later, the deployment proceeds but doesn't remove components. For more

Info: com.aws.greengrass.deployment.exceptions.RetryableDeploymentDocumentDownloadException:
Greengrass Cloud Service returned an error when getting full deployment configuration

2177

AWS IoT Greengrass Developer Guide, Version 2

information about thing group removal behavior, see Deploy AWS IoT Greengrass components to
devices.

To update the core device's behavior to remove components for thing groups from which you
remove the core device, add the greengrass:ListThingGroupsForCoreDevice permission to
the core device's AWS IoT policy. For more information, see Update a core device's AWS IoT policy.

Info:
com.aws.greengrass.deployment.DeploymentDocumentDownloader:
Calling Greengrass cloud to get full deployment configuration

You might see this information message printed multiple times without an error, because the core
device logs the error at the DEBUG log level. This issue can occur when the core device receives a
large deployment document. When this issue occurs, the deployment retries indefinitely, and its
status is In progress (IN_PROGRESS). For more information about how to resolve this issue, see
this troubleshooting entry.

Caused by:
software.amazon.awssdk.services.greengrassv2data.model.GreengrassV2DataException:
null (Service: GreengrassV2Data, Status Code: 403, Request ID:
<some_request_id>, Extended Request ID: null)

You might see this error when a dataplane API doesn't have iot:Connect permission. If you
don't have the correct policy, you'll receive a GreengrassV2DataException: 403. To create a
permission policy, follow these instructions: Create an AWS IoT policy.

Core device component issues

Troubleshoot Greengrass component issues on core devices.

Topics

• Warn: '<command>' is not recognized as an internal or external command

• Python script doesn't log messages

• Component configuration doesn't update when changing default configuration

• awsiot.greengrasscoreipc.model.UnauthorizedError

Info: com.aws.greengrass.deployment.DeploymentDocumentDownloader: Calling Greengrass cloud to
get full deployment configuration

2178

AWS IoT Greengrass Developer Guide, Version 2

• com.aws.greengrass.authorization.exceptions.AuthorizationException: Duplicate policy ID "<id>"
for principal "<componentList>"

• com.aws.greengrass.tes.CredentialRequestHandler: Error in retrieving AwsCredentials from TES
(HTTP 400)

• com.aws.greengrass.tes.CredentialRequestHandler: Error in retrieving AwsCredentials from TES
(HTTP 403)

• com.aws.greengrass.tes.CredentialsProviderError: Could not load credentials from any providers

• Received error when attempting to retrieve ECS metadata: Could not connect to the endpoint
URL: "<tokenExchangeServiceEndpoint>"

• copyFrom: <configurationPath> is already a container, not a leaf

• com.aws.greengrass.componentmanager.plugins.docker.exceptions.DockerLoginException: Error
logging into the registry using credentials - 'The stub received bad data.'

• java.io.IOException: Cannot run program "cmd" ...: [LogonUser] The password for this account has
expired.

• aws.greengrass.StreamManager: Instant exceeds minimum or maximum instant

Warn: '<command>' is not recognized as an internal or external
command

You might see this error in a Greengrass component's logs when the AWS IoT Greengrass Core
software fails to run a command in the component's lifecycle script. The component's state
becomes BROKEN as a result of this error. This error can occur if the system user that runs the
component, such as ggc_user, can't find the command's executable in the folders in the PATH.

On Windows devices, check that the folder that contains the executable is in the PATH for the
system user that runs the component. If it's missing from the PATH, do one of the following:

• Add the executable's folder to the PATH system variable, which is available to all users. Then,
restart the component.

If you run Greengrass nucleus 2.5.0, after you update the PATH system variable, you must restart
the AWS IoT Greengrass Core software to run components with the updated PATH. If the AWS
IoT Greengrass Core software doesn't use the updated PATH after you restart the software,
restart the device and try again. For more information, see Run the AWS IoT Greengrass Core
software.

Warn: '<command>' is not recognized as an internal or external command 2179

https://en.wikipedia.org/wiki/PATH_(variable)

AWS IoT Greengrass Developer Guide, Version 2

• Add the executable's folder to the PATH user variable for the system user that runs the
component.

Python script doesn't log messages

Greengrass core devices collect logs that you can use to identify issues with components. If your
Python script's stdout and stderr messages don't appear in your component logs, you might
need to flush the buffer or disable buffering for these standard output streams in Python. Do any
of the following:

• Run Python with the -u argument to disable buffering on stdout and stderr.

Linux or Unix

python3 -u hello_world.py

Windows

py -3 -u hello_world.py

• Use Setenv in your component's recipe to set the PYTHONUNBUFFERED environment variable to
a non-empty string. This environment variable disables buffering on stdout and stderr.

• Flush the buffer for the stdout or stderr streams. Do one of the following:

• Flush a message when you print.

import sys

print('Hello, error!', file=sys.stderr, flush=True)

• Flush a message after you print. You can send multiple messages before you flush the stream.

import sys

print('Hello, error!', file=sys.stderr)
sys.stderr.flush()

For more information about how to verify that your Python script outputs log messages, see
Monitor AWS IoT Greengrass logs.

Python script doesn't log messages 2180

https://docs.python.org/3/using/cmdline.html#cmdoption-u
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONUNBUFFERED

AWS IoT Greengrass Developer Guide, Version 2

Component configuration doesn't update when changing default
configuration

When you change the DefaultConfiguration in a component's recipe, the new default
configuration won't replace the component's existing configuration during a deployment. To
apply the new default configuration, you must reset the component's configuration to its default
settings. When you deploy the component, specify a single empty string as the reset update.

Console

Reset paths

[""]

AWS CLI

The following command creates a deployment to a core device.

aws greengrassv2 create-deployment --cli-input-json file://reset-configuration-
deployment.json

The reset-configuration-deployment.json file contains the following JSON document.

{
 "targetArn": "arn:aws:iot:us-west-2:123456789012:thing/MyGreengrassCore",
 "deploymentName": "Deployment for MyGreengrassCore",
 "components": {
 "com.example.HelloWorld": {
 "componentVersion": "1.0.0",
 "configurationUpdate": {,
 "reset": [""]
 }
 }
 }
}

Greengrass CLI

The following Greengrass CLI command creates a local deployment on a core device.

Component configuration doesn't update when changing default configuration 2181

AWS IoT Greengrass Developer Guide, Version 2

sudo greengrass-cli deployment create \
 --recipeDir recipes \
 --artifactDir artifacts \
 --merge "com.example.HelloWorld=1.0.0" \
 --update-config reset-configuration-deployment.json

The reset-configuration-deployment.json file contains the following JSON document.

{
 "com.example.HelloWorld": {
 "RESET": [""]
 }
}

awsiot.greengrasscoreipc.model.UnauthorizedError

You might see this error in a Greengrass component's logs when the component doesn't have
permission to perform an IPC operation on a resource. To grant a component permission to call
an IPC operation, define an IPC authorization policy in the component's configuration. For more
information, see Authorize components to perform IPC operations.

Tip

If you change the DefaultConfiguration in a component's recipe, you must reset
the component's configuration to its new default configuration. When you deploy the
component, specify a single empty string as the reset update. For more information, see
Component configuration doesn't update when changing default configuration.

com.aws.greengrass.authorization.exceptions.AuthorizationException:
Duplicate policy ID "<id>" for principal "<componentList>"

You might see this error if multiple IPC authorization policies, including across all components on
the core device, use the same policy ID.

Check your components' IPC authorization policies, fix any duplicates, and try again. To create
unique policy IDs, we recommend that you combine the component name, IPC service name, and a
counter. For more information, see Authorize components to perform IPC operations.

awsiot.greengrasscoreipc.model.UnauthorizedError 2182

AWS IoT Greengrass Developer Guide, Version 2

Tip

If you change the DefaultConfiguration in a component's recipe, you must reset
the component's configuration to its new default configuration. When you deploy the
component, specify a single empty string as the reset update. For more information, see
Component configuration doesn't update when changing default configuration.

com.aws.greengrass.tes.CredentialRequestHandler: Error in retrieving
AwsCredentials from TES (HTTP 400)

You might see this error when a core device can't get AWS credentials from the token exchange
service. The HTTP 400 status code indicates that this error occurred because the core device's
token exchange IAM role doesn't exist or doesn't have a trust relationship that allows the AWS IoT
credentials provider to assume it.

Do the following:

1. Identify the token exchange role that the core device uses. The error message
includes the core device's AWS IoT role alias, which points to the token exchange
role. Run the following command on your development computer, and replace
MyGreengrassCoreTokenExchangeRoleAlias with the name of the AWS IoT role alias
from the error message.

aws iot describe-role-alias --role-alias MyGreengrassCoreTokenExchangeRoleAlias

The response includes the Amazon Resource Name (ARN) of the token exchange IAM role.

{
 "roleAliasDescription": {
 "roleAlias": "MyGreengrassCoreTokenExchangeRoleAlias",
 "roleAliasArn": "arn:aws:iot:us-west-2:123456789012:rolealias/
MyGreengrassCoreTokenExchangeRoleAlias",
 "roleArn": "arn:aws:iam::123456789012:role/MyGreengrassV2TokenExchangeRole",
 "owner": "123456789012",
 "credentialDurationSeconds": 3600,
 "creationDate": "2021-02-05T16:46:18.042000-08:00",
 "lastModifiedDate": "2021-02-05T16:46:18.042000-08:00"
 }

com.aws.greengrass.tes.CredentialRequestHandler: Error in retrieving AwsCredentials from TES (HTTP
400)

2183

AWS IoT Greengrass Developer Guide, Version 2

}

2. Check that the role exists. Run the following command, and replace
MyGreengrassV2TokenExchangeRole with the name of the token exchange role.

aws iam get-role --role-name MyGreengrassV2TokenExchangeRole

If the command returns a NoSuchEntity error, the role doesn't exist, and you must create it.
For more information about how to create and configure this role, see Authorize core devices
to interact with AWS services.

3. Check that the role has a trust relationship that allows the AWS IoT credentials provider to
assume it. The response from the previous step contains an AssumeRolePolicyDocument,
which defines the role's trust relationships. The role must define a trust relationship that
allows credentials.iot.amazonaws.com to assume it. This document should look similar
to the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "credentials.iot.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

If the role's trust relationships don't allow credentials.iot.amazonaws.com to assume it,
you must add this trust relationship to the role. For more information, see Modifying a role in
the AWS Identity and Access Management User Guide.

com.aws.greengrass.tes.CredentialRequestHandler: Error in retrieving
AwsCredentials from TES (HTTP 403)

You might see this error when a core device can't get AWS credentials from the token exchange
service. The HTTP 403 status code indicates that this error occurred because the core device's AWS

com.aws.greengrass.tes.CredentialRequestHandler: Error in retrieving AwsCredentials from TES (HTTP
403)

2184

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html

AWS IoT Greengrass Developer Guide, Version 2

IoT policies don't grant the iot:AssumeRoleWithCertificate permission for the core device's
AWS IoT role alias.

Review the core device's AWS IoT policies, and add the iot:AssumeRoleWithCertificate
permission for the core device's AWS IoT role alias. The error message includes the core device's
current AWS IoT role alias. For more information about this permission and how to update the core
device's AWS IoT policies, see Minimal AWS IoT policy for AWS IoT Greengrass V2 core devices and
Update a core device's AWS IoT policy.

com.aws.greengrass.tes.CredentialsProviderError: Could not load
credentials from any providers

You might see this error when the component tries to request AWS credentials and can't connect to
the token exchange service.

Do the following:

• Check that the component declares a dependency on the token exchange service component,
aws.greengrass.TokenExchangeService. If it doesn't, add the dependency and redeploy
the component.

• If the component runs in docker, ensure that you apply the right network settings and
environment variables, according to Use AWS credentials in Docker container components
(Linux).

• If the component is written in NodeJS, set dns.setDefaultResultOrder to ipv4first.

• Inspect /etc/hosts for an entry that starts with ::1 and contains localhost. Remove the
entry to see if it caused the component to connect to the token exchange service at the wrong
address.

Received error when attempting to retrieve ECS metadata: Could not
connect to the endpoint URL: "<tokenExchangeServiceEndpoint>"

You might see this error when the component doesn't run the token exchange service and a
component tries to request AWS credentials.

Do the following:

com.aws.greengrass.tes.CredentialsProviderError: Could not load credentials from any providers 2185

https://nodejs.org/docs/latest/api/dns.html#dnssetdefaultresultorderorder

AWS IoT Greengrass Developer Guide, Version 2

• Check that the component declares a dependency on the token exchange service component,
aws.greengrass.TokenExchangeService. If it doesn't, add the dependency and redeploy
the component.

• Check whether the component uses AWS credentials in its install lifecycle. AWS IoT
Greengrass doesn't guarantee the availability of the token exchange service during the install
lifecycle. Update the component to move the code that uses AWS credentials into the startup
or run lifecycle, then redeploy the component.

copyFrom: <configurationPath> is already a container, not a leaf

You might see this error when you change a configuration value from a container type (a list or
object) to a non-container type (a string, number, or Boolean). Do the following:

1. Check the component's recipe to see whether its default configuration sets that configuration
value to a list or an object. If so, remove or change that configuration value.

2. Create a deployment to reset that configuration value to its default value. For more information,
see Create deployments and Update component configurations.

Then, you can set that configuration value to a string, number, or Boolean.

com.aws.greengrass.componentmanager.plugins.docker.exceptions.DockerLoginException:
Error logging into the registry using credentials - 'The stub received
bad data.'

You might see this error in the Greengrass nucleus logs when the Docker application manager
component tries to download a Docker image from a private repository in Amazon Elastic
Container Registry (Amazon ECR). This error occurs if you use the wincred Docker credential
helper (docker-credential-wincred). As a result, Amazon ECR is unable to store the login
credentials.

Take one of the following actions:

• If you don't use the wincred Docker credential helper, remove the docker-credential-
wincred program from the core device.

• If you use the wincred Docker credential helper, do the following:

copyFrom: <configurationPath> is already a container, not a leaf 2186

https://github.com/docker/docker-credential-helpers
https://github.com/docker/docker-credential-helpers

AWS IoT Greengrass Developer Guide, Version 2

1. Rename the docker-credential-wincred program on the core device. Replace wincred
with a new name for the Windows Docker credential helper. For example, you can rename it to
docker-credential-wincredreal.

2. Update the credsStore option in the Docker configuration file (.docker/config.json)
to use the new name for the Windows Docker credential helper. For example, if you renamed
the program to docker-credential-wincredreal, update the credsStore option to
wincredreal.

{
 "credsStore": "wincredreal"
}

java.io.IOException: Cannot run program "cmd" ...: [LogonUser] The
password for this account has expired.

You might see this error on a Windows core device when the system user that runs the
component's processes, such as ggc_user, has an expired password. As a result, the AWS IoT
Greengrass Core software is unable to run component processes as that system user.

To update a Greengrass system user's password

1. Run the following command as an administrator to set the user's password. Replace ggc_user
with the system user, and replace password with the password to set.

net user ggc_user password

2. Use the PsExec utility to store the user's new password in the Credential Manager instance for
the LocalSystem account. Replace password with the user's password that you set.

psexec -s cmd /c cmdkey /generic:ggc_user /user:ggc_user /pass:password

Tip

Depending on your Windows configuration, the user's password might be set to expire at a
date in the future. To ensure your Greengrass applications continue to operate, track when

java.io.IOException: Cannot run program "cmd" ...: [LogonUser] The password for this account has
expired.

2187

https://docs.microsoft.com/en-us/sysinternals/downloads/psexec

AWS IoT Greengrass Developer Guide, Version 2

the password expires, and update it before it expires. You can also set the user's password
to never expire.

• To check when a user and its password expire, run the following command.

net user ggc_user | findstr /C:expires

• To set a user's password to never expire, run the following command.

wmic UserAccount where "Name='ggc_user'" set PasswordExpires=False

• If you’re using Windows 10 or later where the wmic command is deprecated, run the
following PowerShell command.

Get-CimInstance -Query "SELECT * from Win32_UserAccount WHERE name =
 'ggc_user'" | Set-CimInstance -Property @{PasswordExpires="False"}

aws.greengrass.StreamManager: Instant exceeds minimum or
maximum instant

When you upgrade stream manager v2.0.7 to a version between v2.0.8 and v2.0.11, you might see
the following error in the stream manager component's logs if the component fails to start.

2021-07-16T00:54:58.568Z [INFO] (Copier) aws.greengrass.StreamManager:
 stdout. Caused by: com.fasterxml.jackson.databind.JsonMappingException:
 Instant exceeds minimum or maximum instant (through reference chain:
 com.amazonaws.iot.greengrass.streammanager.export.PersistedSuccessExportStatesV1["lastExportTime"]).
 {scriptName=services.aws.greengrass.StreamManager.lifecycle.startup.script,
 serviceName=aws.greengrass.StreamManager, currentState=STARTING}
2021-07-16T00:54:58.579Z [INFO] (Copier) aws.greengrass.StreamManager: stdout.
 Caused by: java.time.DateTimeException: Instant exceeds minimum or maximum instant.
 {scriptName=services.aws.greengrass.StreamManager.lifecycle.startup.script,
 serviceName=aws.greengrass.StreamManager, currentState=STARTING}

If you deployed stream manager v2.0.7 and you want to upgrade to a later version, you must
upgrade to stream manager v2.0.12 directly. For more information about the stream manager
component, see Stream manager.

aws.greengrass.StreamManager: Instant exceeds minimum or maximum instant 2188

https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmic

AWS IoT Greengrass Developer Guide, Version 2

Core device Lambda function component issues

Troubleshoot Lambda function component issues on core devices.

Topics

• The following cgroup subsystems are not mounted: devices, memory

• ipc_client.py:64,HTTP Error 400:Bad Request, b'No subscription exists for the source <label-or-
lambda-arn> and subject <label-or-lambda-arn>

The following cgroup subsystems are not mounted: devices, memory

You might see this error when you run a containerized Lambda function in the following cases:

• The core device doesn't have cgroup v1 enabled for the memory or device cgroups.

• The core device has cgroups v2 enabled. Greengrass Lambda functions require cgroups v1, and
cgroups v1 and v2 are mutually exclusive.

To enable cgroups v1, boot the device with the following Linux kernel parameters.

cgroup_enable=memory cgroup_memory=1 systemd.unified_cgroup_hierarchy=0

Tip

On a Raspberry Pi, edit the /boot/cmdline.txt file to set the device's kernel parameters.

ipc_client.py:64,HTTP Error 400:Bad Request, b'No subscription exists
for the source <label-or-lambda-arn> and subject <label-or-lambda-
arn>

You might see this error when you run a V1 Lambda function, which uses the AWS IoT Greengrass
Core SDK, on a V2 core device without specifying a subscription in the legacy subscription router
component. To fix this issue, deploy and configure the legacy subscription router to specify the
required subscriptions. For more information, see Import V1 Lambda functions.

Core device Lambda function component issues 2189

AWS IoT Greengrass Developer Guide, Version 2

Component version discontinued

You might see a notification on your Personal Health Dashboard (PHD) when a component version
on your core device is discontinued. The component version sends this notification to your PHD
within 60 minutes of being discontinued.

To see which deployments you need to revise, do the following using the AWS Command Line
Interface:

1. Run the following command to get a list of your core devices.

aws greengrassv2 list-core-devices

2. Run the following command to retrieve the status of the components on each core device from
Step 1. Replace coreDeviceName with the name of each core device to query.

aws greengrassv2 list-installed-components --core-device-thing-name coreDeviceName

3. Gather the core devices with the discontinued component version installed from the previous
steps.

4. Run the following command to retrieve the status of all deployment jobs for each core device
from Step 3. Replace coreDeviceName with the name of the core device to query.

aws greengrassv2 list-effective-deployments --core-device-thing-name coreDeviceName

The response contains the list of deployment jobs for the core device. You can revise the
deployment to choose another component version. For more information about how to revise
a deployment, see Revise deployments.

Greengrass Command Line Interface issues

Troubleshoot issues with the Greengrass CLI.

Topics

• java.lang.RuntimeException: Unable to create ipc client

Component version discontinued 2190

https://docs.aws.amazon.com/greengrass/v2/developerguide/revise-deployments.html

AWS IoT Greengrass Developer Guide, Version 2

java.lang.RuntimeException: Unable to create ipc client

You might see this error when you run a Greengrass CLI command and you specify a different root
folder than where the AWS IoT Greengrass Core software is installed.

Do one of the following to set the root path, and replace /greengrass/v2 with the path to your
AWS IoT Greengrass Core software installation:

• Set the GGC_ROOT_PATH environment variable to /greengrass/v2.

• Add the --ggcRootPath /greengrass/v2 argument to your command as shown in the
following example.

greengrass-cli --ggcRootPath /greengrass/v2 <command> <subcommand> [arguments]

AWS Command Line Interface issues

Troubleshoot AWS CLI issues for AWS IoT Greengrass V2.

Topics

• Error: Invalid choice: 'greengrassv2'

Error: Invalid choice: 'greengrassv2'

You might see this error when you run an AWS IoT Greengrass V2 command with the AWS CLI (for
example, aws greengrassv2 list-core-devices).

This error indicates that you have a version of the AWS CLI that doesn't support AWS IoT
Greengrass V2. To use AWS IoT Greengrass V2 with the AWS CLI, you must have one of the
following versions or later:

• Minimum AWS CLI V1 version: v1.18.197

• Minimum AWS CLI V2 version: v2.1.11

Tip

You can run the following command to check the version of the AWS CLI that you have.

java.lang.RuntimeException: Unable to create ipc client 2191

AWS IoT Greengrass Developer Guide, Version 2

aws --version

To resolve this issue, update the AWS CLI to a later version that supports AWS IoT Greengrass V2.
For more information, see Installing, updating, and uninstalling the AWS CLI in the AWS Command
Line Interface User Guide.

Detailed deployment error codes

Use the error codes and solutions in these sections to help resolve issues with component
deployment when using the Greengrass nucleus version 2.8.0 or later.

The Greengrass nucleus reports deployment errors as a hierarchy from least specific to the most
specific code available. You can use this hierarchy to help pinpoint the reason for a deployment
error. For example, the following is a possible error hierarchy:

• DEPLOYMENT_FAILURE

• ARTIFACT_DOWNLOAD_ERROR

• IO_ERROR

• DISK_SPACE_CRITICAL

The error codes are organized into types. Each type represents a class of errors that can occur. AWS
IoT Greengrass reports these errors types in the console, the API, and AWS CLI. There can be more
than one error type, depending on the errors reported in the error hierarchy. For the preceding
example, the error type returned is DEVICE_ERROR.

The types are:

• PERMISSION_ERROR – Access to an operation that requires permission was denied.

• REQUEST_ERROR – An error occurred due to an issue in the deployment document.

• COMPONENT_RECIPE_ERROR – An error occurred due to an issue in a component recipe.

• AWS_COMPONENT_ERROR – An error occurred when starting or removing an AWS provided
component.

• USER_COMPONENT_ERROR – An error occurred when starting or removing a user component.

Detailed deployment error codes 2192

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

AWS IoT Greengrass Developer Guide, Version 2

• COMPONENT_ERROR – An error occurred when starting or removing a component, but the
Greengrass nucleus couldn't determine if the component is an AWS provided component or a
user component.

• DEVICE_ERROR – An error occurred with local I/O or another device error occurred.

• DEPENDENCY_ERROR – A deployment failed to download an artifact from Amazon S3 or to pull
an image from an ECR registry.

• HTTP_ERROR – An error occurred with an HTTP request.

• NETWORK_ERROR – An error occurred with the device network.

• NUCLEUS_ERROR – The Greengrass nucleus could not locate a component or could not find the
active nucleus version.

• SERVER_ERROR – A server returned a 500 error in response to a request.

• CLOUD_SERVICE_ERROR – An error occurred with the AWS IoT Greengrass cloud service.

• UNKNOWN_ERROR – An unchecked exception was thrown by the component.

Many of the errors in this section report additional information in the AWS IoT Greengrass Core
logs. These logs are stored on the core device's local file system. There are logs for the AWS IoT
Greengrass Core core software and for each individual component. For information on accessing
the logs, see Access file system logs.

Permission error

ACCESS_DENIED

You might get this error when an AWS service operation returns a 403 error because
permissions are not set up correctly. Check the more specific error code for details.

GET_DEPLOYMENT_CONFIGURATION_ACCESS_DENIED

You might get this error when the AWS IoT policy doesn't allow permission
to call the GetDeploymentConfiguration operation. Add the
greengrass::GetDeploymentConfiguration permission to the core device's policy.

GET_COMPONENT_VERSION_ARTIFACT_ACCESS_DENIED

You might get this error when the core device AWS IoT policy doesn't allow the
greengrass:GetComponentVersionArtifact permission. Add the permission to the core
device's policy.

Permission error 2193

AWS IoT Greengrass Developer Guide, Version 2

RESOLVE_COMPONENT_CANDIDATES_ACCESS_DENIED

You might get this error when the core device AWS IoT policy doesn't allow the
greengrass:ResolveComponentCandidates permission. Add the permission to the core
device's policy.

GET_ECR_CREDENTIAL_ERROR

You might get this error when the deployment couldn't authenticate with a private registry in
ECR. Check the log for a specific error and then try the deployment again.

USER_NOT_AUTHORIZED_FOR_DOCKER

You might get this error when the Greengrass user is not authorized to use Docker. Make sure
that you are running Greengrass as root or that the user is added to the docker group. Then try
the deployment again.

S3_ACCESS_DENIED

You might get this error when an Amazon S3 operation returns a 403 error. Check any
additional error codes or logs for details.

S3_HEAD_OBJECT_ACCESS_DENIED

You might get this error either when the device's token exchange role doesn't allow the AWS IoT
Greengrass Core software to download the component artifact from the S3 object URL that you
specify in the component's recipe or that the component artifact isn't available. Check that the
token exchange role allows s3:GetObject for the S3 object URL where the artifact is available
and that the artifact is present.

S3_GET_BUCKET_LOCATION_ACCESS_DENIED

You might get this error when the device's token exchange role doesn't allow the
s3:GetBucketLocation permission for the Amazon S3 bucket where the artifact is available.
Check that the device's allows the permission then try the deployment again.

S3_GET_OBJECT_ACCESS_DENIED

You might get this error either when the device's token exchange role doesn't allow the AWS IoT
Greengrass Core software to download the component artifact from the S3 object URL that you
specify in the component's recipe or that the component artifact isn't available. Check that the
token exchange role allows s3:GetObject for the S3 object URL where the artifact is available
and that the artifact is present.

Permission error 2194

AWS IoT Greengrass Developer Guide, Version 2

Request error

NUCLEUS_MISSING_REQUIRED_CAPABILITIES

You might get this error when the nucleus version in the deployment isn't capable a requested
operation, such as downloading a large configuration or setting Linux resource limits. Retry the
deployment with a nucleus version that supports the operation.

MULTIPLE_NUCLEUS_RESOLVED_ERROR

You might get this error when a deployment attempts to deploy multiple nucleus components.
Check the log to see what caused the error, then check the nucleus software update page to see
if the issue has been corrected in a later version of the nucleus, or contact Support.

COMPONENT_CIRCULAR_DEPENDENCY_ERROR

You might get this error when two components in your deployment depend on each other.
Revise the component setup so that the components in your deployment don't rely on each
other.

UNAUTHORIZED_NUCLEUS_MINOR_VERSION_UPDATE

You might get this error when a component in your deployment requires a nucleus minor
version update, but that version isn't specified in the deployment. This helps to reduce
accidental minor version updates for components that depend on a different version. Include
the new minor nucleus version in the deployment.

MISSING_DOCKER_APPLICATION_MANAGER

You might get this error when you deploy a Docker component without deploying the Docker
application manager. Make sure that your deployment includes the Docker application manager.

MISSING_TOKEN_EXCHANGE_SERVICE

You might get this error when the deployment wants to download a Docker image artifact
from a private ECR registry without deploying the token exchange service. Make sure that your
deployment includes the token exchange service.

COMPONENT_VERSION_REQUIREMENTS_NOT_MET

You might get this error when there is a version constraint conflict or
a component version does not exist. For more information, see Error:
com.aws.greengrass.componentmanager.exceptions.NoAvailableComponentVersionException:
Failed to negotiate component <name> version with cloud and no local applicable version
satisfying requirement <requirements>.

Request error 2195

AWS IoT Greengrass Developer Guide, Version 2

THROTTLING_ERROR

You might get this error when an AWS service operation exceeded a rate quota. Retry the
deployment.

CONFLICTED_REQUEST

You might get this error when an AWS service operation returns a 409 error because you
deployment is trying to perform more than one operation at a time. Retry the deployment.

RESOURCE_NOT_FOUND

You might get this error when an AWS service operation returns a 404 error because a resource
couldn't be found. Check the log for the missing resource.

RUN_WITH_CONFIG_NOT_VALID

You might get this error when the posixUser, posixGroup, or windowsUser information
specified to run the component isn't valid. Check that the user is valid and then retry the
deployment.

UNSUPPORTED_REGION

You might get this error when the Region specified for the deployment isn't supported by AWS
IoT Greengrass. Check the Region and try the deployment again.

IOT_CRED_ENDPOINT_NOT_VALID

You might get this error when the AWS IoT credential endpoint specified in the configuration
isn't valid. Check the endpoint and try your request again.

IOT_DATA_ENDPOINT_NOT_VALID

You might get this error when the AWS IoT data endpoint specified in the configuration isn't
valid. Check the endpoint and try your request again.

S3_HEAD_OBJECT_RESOURCE_NOT_FOUND

You might get this error when the component artifact isn't available at the S3 object URL that
you specify in the component's recipe. Check that you uploaded the artifact to the S3 bucket
and that the artifact URI matches the S3 object URL of the artifact in the bucket.

S3_GET_BUCKET_LOCATION_RESOURCE_NOT_FOUND

You might get this error when the Amazon S3 bucket isn't found. Check that the bucket exists
and try the deployment again.

Request error 2196

AWS IoT Greengrass Developer Guide, Version 2

S3_GET_OBJECT_RESOURCE_NOT_FOUND

You might get this error when the component artifact isn't available at the S3 object URL that
you specify in the component's recipe. Check that you uploaded the artifact to the S3 bucket
and that the artifact URI matches the S3 object URL of the artifact in the bucket.

IO_MAPPING_ERROR

You might get this error when an I/O error occurs when parsing deployment document or
recipe. Check any additional error codes or logs for details.

Component recipe error

RECIPE_PARSE_ERROR

You might get this error when the deployment recipe couldn't be parsed because there is an
error in the structure of the recipe. Check that the recipe is correctly formatted and try the
deployment again.

RECIPE_METADATA_PARSE_ERROR

You might get this error when the deployment recipe metadata downloaded from the cloud
couldn't be parsed. Contact Support.

ARTIFACT_URI_NOT_VALID

You might get this error when an artifact URI in a recipe isn't formatted correctly. Check the log
for the URI that isn't valid, update the URI in the recipe, then try the deployment again.

S3_ARTIFACT_URI_NOT_VALID

You might get this error when the Amazon S3 URI of an artifact in a recipe isn't valid. Check the
log for the URI that isn't valid, update the URI in the recipe, then try the deployment again.

DOCKER_ARTIFACT_URI_NOT_VALID

You might get this error when the Docker URI of an artifact in a recipe isn't valid. Check the log
for the URI that isn't valid, update the URI in the recipe, then try the deployment again.

EMPTY_ARTIFACT_URI

You might get this error when the URI of an artifact is not specified in a recipe. Check the log
for the artifact that is missing a URI, update the URI in the recipe, then try the deployment
again.

Component recipe error 2197

AWS IoT Greengrass Developer Guide, Version 2

EMPTY_ARTIFACT_SCHEME

You might get this error when a URI scheme is not defined for an artifact. Check the log for the
URI that isn't valid, update the URI in the recipe, then try the deployment again.

UNSUPPORTED_ARTIFACT_SCHEME

You might get this error when a URI scheme isn't supported by the running nucleus version.
Either a URI isn't valid or you need to update the nucleus version. If the URI isn't valid, check the
log for the URI that isn't valid, update the URI in the recipe, then try the deployment again.

RECIPE_MISSING_MANIFEST

You might get this error when the manifest section isn't included in the recipe. Add the
manifest to the recipe and try the deployment again.

RECIPE_MISSING_ARTIFACT_HASH_ALGORITHM

You might get this error when an artifact that is not local is specified inside a recipe without a
hash algorithm. Add the algorithm to the artifact and then try the request again.

ARTIFACT_CHECKSUM_MISMATCH

You might get this error when a downloaded artifact has a different digest than
the one specified in the recipe. Make sure that the recipe contains the correct
digest and then try the deployment again. For more information see Error:
com.aws.greengrass.componentmanager.exceptions.ArtifactChecksumMismatchException:
Integrity check for downloaded artifact failed. Probably due to file corruption..

COMPONENT_DEPENDENCY_NOT_VALID

You might get this error when the dependency type specified in a deployment recipe isn't valid.
Check the recipe and then try your request again.

CONFIG_INTERPOLATE_ERROR

You might get this error when interpolating a recipe variable. Check the log for details.

IO_MAPPING_ERROR

You might get this error when an I/O error occurs when parsing deployment document or
recipe. Check any additional error codes or logs for details.

Component recipe error 2198

AWS IoT Greengrass Developer Guide, Version 2

AWS component error, user component error, component error

The following error codes are returned when there is a problem with a component. The
actual error type reported depends on the specific component that raised the error. If the
Greengrass nucleus identifies the component as one provided by AWS IoT Greengrass, it returns
AWS_COMPONENT_ERROR. If the component is identified as a user component, the Greengrass
nucleus returns USER_COMPONENT_ERROR. If the Greengrass nucleus can't tell, it returns
COMPONENT_ERROR.

COMPONENT_UPDATE_ERROR

You might get this error when a component doesn't update during a deployment. Check any
additional error codes or check the log to see what caused the error.

COMPONENT_BROKEN

You might get this error when a component is broken during a deployment. Check the
component log for error details and then try the deployment again.

REMOVE_COMPONENT_ERROR

You might get this error when the nucleus can't remove a component during a deployment.
Check the log for error details and then try the deployment again.

COMPONENT_BOOTSTRAP_TIMEOUT

You might get this error when a component's bootstrap task took longer than the configured
timeout. Increase the timeout or reduce the execution time of the bootstrap task, then try the
deployment again.

COMPONENT_BOOTSTRAP_ERROR

You might get this error when a component's bootstrap task has an error. Check the log for
error details, then try the deployment again.

COMPONENT_CONFIGURATION_NOT_VALID

You might get this error when the nucleus can't validate the deployed configuration for the
component. Check the log for error details, then try the deployment again.

AWS component error, user component error, component error 2199

AWS IoT Greengrass Developer Guide, Version 2

Device error

IO_WRITE_ERROR

You might get this error when writing to a file. Check the log for details.

IO_READ_ERROR

You might get this error when reading from a file. Check the log for details.

DISK_SPACE_CRITICAL

You might get this error when there is not enough disk space to complete a deployment
request. You must have at least 20 Mb of available space, or enough to hold a larger artifact.
Free up some disk space and then retry the deployment.

IO_FILE_ATTRIBUTE_ERROR

You might get this error when the existing file size can't be retrieved from the file system. Check
the log for details.

SET_PERMISSION_ERROR

You might get this error when the permissions can't be set on a downloaded artifact or artifact
directory. Check the log for details.

IO_UNZIP_ERROR

You might get this error when an artifact can't be unzipped. Check the log for details.

LOCAL_RECIPE_NOT_FOUND

You might get this error when the local copy of a recipe file couldn't be found. Try the
deployment again.

LOCAL_RECIPE_CORRUPTED

You might get this error when the local copy of the recipe has changed since it was
downloaded. Delete the existing copy of the recipe and try the deployment again.

LOCAL_RECIPE_METADATA_NOT_FOUND

You might get this error when the local copy of the recipe metadata file couldn't be found. Try
the deployment again.

Device error 2200

AWS IoT Greengrass Developer Guide, Version 2

LAUNCH_DIRECTORY_CORRUPTED

You might get this error when the directory used to launch the Greengrass nucleus (/
greengrass/v2/alts/current) has been modified since the last time the nucleus was
started. Restart the nucleus and then retry the deployment.

HASHING_ALGORITHM_UNAVAILABLE

You might get this error when the device's Java distribution doesn't support the required
hashing algorithm or when the hash algorithm specified in a component recipe isn't valid.

DEVICE_CONFIG_NOT_VALID_FOR_ARTIFACT_DOWNLOAD

You might get this error when there is an error in the device configuration that prevented the
deployment from downloading the artifact from Amazon S3 or the Greengrass cloud. Check the
log for a specific configuration error and then retry the deployment.

Dependency error

DOCKER_ERROR

You might get this error when pulling a Docker image. Check any additional error codes or logs
for details.

DOCKER_SERVICE_UNAVAILABLE

You might get this error when Greengrass couldn't log into the Docker registry. Check the log
for a specific error and then try the deployment again.

DOCKER_LOGIN_ERROR

You might get this error when an unexpected error occurs when logging in to Docker. Check the
log for a specific error and then try the deployment again.

DOCKER_PULL_ERROR

You might get this error when an unexpected error occurs when pulling a Docker image from
the registry. Check the log for a specific error and then try the deployment again.

DOCKER_IMAGE_NOT_VALID

You might get this error when the requested Docker image doesn't exist. Check the log for a
specific error and try the deployment again.

Dependency error 2201

AWS IoT Greengrass Developer Guide, Version 2

DOCKER_IMAGE_QUERY_ERROR

You might get this error when an unexpected failure occurs when querying Docker for available
images. Check the log for the specific error and try the deployment again.

S3_ERROR

You might get this error when downloading an Amazon S3 artifact. Check any additional error
codes or logs for details.

S3_RESOURCE_NOT_FOUND

You might get this error when an Amazon S3 operation returns a 404 error. Check any
additional error codes or logs for details.

S3_BAD_REQUEST

You might get this error when an Amazon S3 operation returns a 400 error. Check the log for a
specific error and try the request again.

HTTP error

HTTP_REQUEST_ERROR

You might get this error when an error occurred when making an HTTP request. Check the log
for the specific error.

DOWNLOAD_DEPLOYMENT_DOCUMENT_ERROR

You might get this error when an HTTP error occurred when downloading the deployment
document. Check the log for the specific HTTP error.

GET_GREENGRASS_ARTIFACT_SIZE_ERROR

You might get this error when an HTTP error occurred when getting the size of a public
component artifact. Check the log for the specific HTTP error.

DOWNLOAD_GREENGRASS_ARTIFACT_ERROR

You might get this error when an HTTP error occurred when downloading a public component
artifact. Check the log for the specific HTTP error.

HTTP error 2202

AWS IoT Greengrass Developer Guide, Version 2

Network error

NETWORK_ERROR

You might get this error when there is a connection issue during a deployment. Check the
connection of the device to the Internet and try the deployment again.

Nucleus error

BAD_REQUEST

You might get this error when an AWS cloud operation returns a 400 error. Check the log to see
which API caused the error, then check the nucleus software update page to see if the issue has
been corrected in a later version of the nucleus, or contact Support.

NUCLEUS_VERSION_NOT_FOUND

You might get this error when a core device can't find the version of the active nucleus. Check
the log to see what caused the error, then check the nucleus software update page to see if the
issue has been corrected in a later version of the nucleus, or contact Support.

NUCLEUS_RESTART_FAILURE

You might get this error when the nucleus doesn't restart during any deployment that requires
a nucleus restart. Check the loader log to see what caused the error, then check the nucleus
software update page to see if the issue has been corrected in a later version of the nucleus, or
contact Support.

INSTALLED_COMPONENT_NOT_FOUND

You might get this error when the nucleus can't locate an installed component. Check the log to
see what caused the error, then check the nucleus software update page to see if the issue has
been corrected in a later version of the nucleus, or contact Support.

DEPLOYMENT_DOCUMENT_NOT_VALID

You might get this error when the device receives deployment document that isn't valid. Check
any additional error codes or check the log to see what caused the error.

Network error 2203

AWS IoT Greengrass Developer Guide, Version 2

EMPTY_DEPLOYMENT_REQUEST

You might get this error when a device receives an empty deployment request. Check the log to
see what caused the error, then check the nucleus software update page to see if the issue has
been corrected in a later version of the nucleus, or contact Support.

DEPLOYMENT_DOCUMENT_PARSE_ERROR

You might get this error when the deployment request format doesn't match the expected
format. Check the log to see what caused the error, then check the nucleus software update
page to see if the issue has been corrected in a later version of the nucleus, or contact Support.

COMPONENT_METADATA_NOT_VALID_IN_DEPLOYMENT

You might get this error when the deployment request contains component metadata that isn't
valid. Check the log to see what caused the error, then check the nucleus software update page
to see if the issue has been corrected in a later version of the nucleus, or contact Support.

LAUNCH_DIRECTORY_CORRUPTED

You might get this error when you move a Greengrass device from one thing group to another,
and then back to the original group with deployments that require Greengrass to restart. To
resolve the error, recreate the launch directory for Greengrass on the device.

For more information, see Error:
com.aws.greengrass.deployment.exceptions.DeploymentException: Unable to process
deployment. Greengrass launch directory is not set up or Greengrass is not set up as a system
service.

Server error

SERVER_ERROR

You might get this error when an AWS service operation returns a 500 error because the service
can't process the request right now. Retry the deployment later.

S3_SERVER_ERROR

You might get this error when an Amazon S3 operation returns a 500 error. Check any
additional error codes or logs for details.

Server error 2204

AWS IoT Greengrass Developer Guide, Version 2

Cloud service error

RESOLVE_COMPONENT_CANDIDATES_BAD_RESPONSE

You might get this error when the Greengrass cloud service sends an incompatible response to
the ResolveComponentCandidates operation. Check the log to see what caused the error,
then check the nucleus software update page to see if the issue has been corrected in a later
version of the nucleus, or contact Support.

DEPLOYMENT_DOCUMENT_SIZE_EXCEEDED

You might get this error when the requested deployment document exceeded the maximum
size quota. Reduce the size of the deployment document and try the deployment again.

GREENGRASS_ARTIFACT_SIZE_NOT_FOUND

You might get this error when Greengrass can't get the size of a public component artifact.
Check the log to see what caused the error, then check the nucleus software update page to see
if the issue has been corrected in a later version of the nucleus, or contact Support.

DEPLOYMENT_DOCUMENT_NOT_VALID

You might get this error when the device receives deployment document that isn't valid. Check
any additional error codes or check the log to see what caused the error.

EMPTY_DEPLOYMENT_REQUEST

You might get this error when a device receives an empty deployment request. Check the log to
see what caused the error, then check the nucleus software update page to see if the issue has
been corrected in a later version of the nucleus, or contact Support.

DEPLOYMENT_DOCUMENT_PARSE_ERROR

You might get this error when the deployment request format doesn't match the expected
format. Check the log to see what caused the error, then check the nucleus software update
page to see if the issue has been corrected in a later version of the nucleus, or contact Support.

COMPONENT_METADATA_NOT_VALID_IN_DEPLOYMENT

You might get this error when the deployment request contains component metadata that isn't
valid. Check the log to see what caused the error, then check the nucleus software update page
to see if the issue has been corrected in a later version of the nucleus, or contact Support.

Cloud service error 2205

AWS IoT Greengrass Developer Guide, Version 2

Generic errors

These generic errors do not have an associated error type.

DEPLOYMENT_INTERRUPTED

You might get this error when a deployment can't be completed because of a nucleus shutdown
or other external event. Check any additional error codes or logs for details.

ARTIFACT_DOWNLOAD_ERROR

You might get this error when there is a problem downloading an artifact. Check any additional
error codes or logs for details.

NO_AVAILABLE_COMPONENT_VERSION

You might get this error when a component version doesn't exist in the cloud or locally, or if
there is a dependency resolution conflict. Check any additional error codes or logs for details.

COMPONENT_PACKAGE_LOADING_ERROR

You might get this error when an error processing the downloaded artifacts. Check any
additional error codes or logs for details.

CLOUD_API_ERROR

You might get this error when an error occurred calling an AWS service API. Check any
additional error codes or logs for details.

IO_ERROR

You might get this error when an I/O error occurs during a deployment. Check any additional
error codes or logs for details.

COMPONENT_UPDATE_ERROR

You might get this error when a component doesn't update during a deployment. Check any
additional error codes or check the log to see what caused the error.

Generic errors 2206

AWS IoT Greengrass Developer Guide, Version 2

Unknown error

DEPLOYMENT_FAILURE

You might get this error when a deployment fails because an unchecked exception was thrown.
Check the log to see what caused the error, then check the nucleus software update page to see
if the issue has been corrected in a later version of the nucleus, or contact Support.

DEPLOYMENT_TYPE_NOT_VALID

You might get this error when the deployment type isn't valid. Check the log to see what caused
the error, then check the nucleus software update page to see if the issue has been corrected in
a later version of the nucleus, or contact Support.

Detailed component status codes

Use the status codes and solutions in these sections to help resolve issues with components when
using the Greengrass nucleus version 2.8.0 or later.

Many of the statuses in this topic report additional information in the AWS IoT Greengrass Core
logs. These logs are stored on the core device's local file system. There are logs for each individual
component. For information on accessing the logs, see Access file system logs.

INSTALL_ERROR

You might get this when an error occurs while running an installation script. The error code
is reported in the component log. Check the installation script for errors and deploy your
component again.

INSTALL_CONFIG_NOT_VALID

You might get this error when installation of a component couldn't be completed because the
install section of the recipe isn't valid. Check the installation section of your recipe for errors
and try the deployment again.

INSTALL_IO_ERROR

You might get this when an I/O error occurred during installation of a component. Check the
component error log for details about the error.

Unknown error 2207

AWS IoT Greengrass Developer Guide, Version 2

INSTALL_MISSING_DEFAULT_RUNWITH

You might get this error when AWS IoT Greengrass can't determine the user or group to use
when installing a component. Check to make sure that the runWith section of your installation
recipe includes a valid user or group.

INSTALL_TIMEOUT

You might get this error when the installation script did not finish within the configured
timeout period. Either increase the Timeout period specified in the recipe's install section or
modify your installation script to finish within the configured timeout.

STARTUP_ERROR

You might get this when an error occurs while running a startup script. The error code is
reported in the component log. Check the installation script for errors and deploy your
component again.

STARTUP_CONFIG_NOT_VALID

You might get this error when installation of a component couldn't be completed because the
startup section of the recipe isn't valid. Check the startup section of your recipe for errors and
try the deployment again.

STARTUP_IO_ERROR

You might get this when an I/O error occurred during startup of a component. Check the
component error log for details about the error.

STARTUP_MISSING_DEFAULT_RUNWITH

You might get this error when AWS IoT Greengrass can't determine the user or group to use
when running a component. Check to make sure that the runWith section of your startup
recipe includes a valid user or group.

STARTUP_TIMEOUT

You might get this error when the startup script did not finish within the configured timeout
period. Either increase the Timeout period specified in the recipe's startup section or modify
your startup script to finish within the configured timeout.

RUN_ERROR

You might get this when an error occurs while running a component script. The error code is
reported in the component log. Check the run script for errors and deploy your component
again.

Detailed component status codes 2208

AWS IoT Greengrass Developer Guide, Version 2

RUN_MISSING_DEFAULT_RUNWITH

You might get this error when AWS IoT Greengrass can't determine the user or group to use
when running a component. Check to make sure that the runWith section of your run recipe
includes a valid user or group.

RUN_CONFIG_NOT_VALID

You might get this error when a component couldn't be run because the run section of the
recipe isn't valid. Check the run section of your recipe for errors and try the deployment again.

RUN_IO_ERROR

You might get this when an I/O error occurred while the component is running. Check the
component error log for details about the error.

RUN_TIMEOUT

You might get this error when the run script did not finish within the configured timeout period.
Either increase the Timeout period specified in the recipe's run section or modify your run
script to finish within the configured timeout.

SHUTDOWN_ERROR

You might get this when an error occurs while shutting down a component script. The error
code is reported in the component log. Check the shutdown script for errors and deploy your
component again.

SHUTDOWN_TIMEOUT

You might get this error when the shutdown script did not finish within the configured timeout
period. Either increase the Timeout period specified in the recipe's shutdown section or modify
your run script to finish within the configured timeout.

Detailed component status codes 2209

AWS IoT Greengrass Developer Guide, Version 2

Tag your AWS IoT Greengrass Version 2 resources

With tags, you can organize and manage your resources in AWS IoT Greengrass. You can use tags to
assign metadata to your resources, and you can use tags in IAM policies to define conditional access
to your resources.

Note

Currently, Greengrass resource tags are not supported for AWS IoT billing groups or cost
allocation reports.

Using tags in AWS IoT Greengrass V2

You can use tags to categorize your AWS IoT Greengrass resources by purpose, owner, environment,
or any other classification for your use case. When you have many resources of the same type, tags
help you more readily identify a specific resource.

Each tag consists of a key and an optional value, both of which you define. For example, you could
define a set of tags for your core devices that helps you track them by the customers who own the
devices. We recommend that you create a set of tag keys that meets your needs for each kind of
resource. By using a consistent set of tag keys, you can more easily manage your resources.

Tag with the AWS Management Console

The Tag Editor in the AWS Management Console provides a central, unified way for you to create
and manage your tags for resources from all AWS services. For more information, see Tag Editor in
the AWS Resource Groups User Guide.

Tag with the AWS IoT Greengrass V2 API

You can also use the AWS IoT Greengrass V2 API to work with tags. Before you create tags, be
aware of tagging restrictions. For more information, see Tag naming and usage conventions in the
AWS General Reference.

• To add tags when you create a resource, define them in the tags property of the resource.

• To add tags to an existing resource, or to update tag values, use the TagResource operation.

• To remove tags from a resource, use the UntagResource operation.

Using tags in AWS IoT Greengrass V2 2210

https://docs.aws.amazon.com/ARG/latest/userguide/tag-editor.html
https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html#tag-conventions
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_TagResource.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_UntagResource.html

AWS IoT Greengrass Developer Guide, Version 2

• To retrieve the tags that are associated with a resource, use the ListTagsForResource operation,
or describe the resource and inspect its tags property.

The following table lists resources that you can tag using the AWS IoT Greengrass V2 API and their
corresponding Create and Describe or Get operations.

Taggable AWS IoT Greengrass V2 resources

Resource Create operation Describe or get operation

Core device None. Run the AWS IoT
Greengrass Core software
on a device to create a core
device.

GetCoreDevice

Component CreateComponentVersion DescribeComponent,
GetComponent

Deployment CreateDeployment GetDeployment

Use the following operations to view and manage tags for resources that support tagging:

• TagResource – Adds tags to a resource, or updates an existing tag's value.

• ListTagsForResource – Lists the tags for a resource.

• UntagResource – Removes tags from a resource.

You can add or remove tags for a resource at any time. To change the value of a tag key, add a tag
to the resource that defines the same key and the new value. The new value replaces the previous
value. You can set a value to an empty string, but you can't set a value to null.

When you delete a resource, tags that are associated with that resource are also deleted.

Using tags with IAM policies

In your IAM policies, you can use resource tags to control user access and permissions. For example,
policies can allow users to create only those resources that have a specific tag. Policies can also
restrict users from creating or modifying resources that have certain tags.

Using tags with IAM policies 2211

https://docs.aws.amazon.com/greengrass/v2/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_GetCoreDevice.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_CreateComponentVersion.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_DescribeComponent.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_GetComponent.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_CreateDeployment.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_GetDeployment.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_TagResource.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/greengrass/v2/APIReference/API_UntagResource.html

AWS IoT Greengrass Developer Guide, Version 2

Note

If you use tags to allow or deny users' access to resources, you should deny users the ability
to add or remove those tags for the same resources. Otherwise, a user could circumvent
your restrictions and gain access to a resource by modifying its tags.

You can use the following condition context keys and values in the Condition element, also called
the Condition block, of a policy statement.

greengrassv2:ResourceTag/tag-key: tag-value

Allow or deny actions on resources with specific tags.

aws:RequestTag/tag-key: tag-value

Require that a specific tag be used, or not used, when creating or modifying a taggable
resource.

aws:TagKeys: [tag-key, ...]

Require that a specific set of tag keys be used, or not used, when creating or modifying a
taggable resource.

Note

The condition context keys and values in an IAM policy apply only to actions that have a
taggable resource as a required parameter. For example, you can set tag-based conditional
access for ListCoreDevices.

For more information, see Controlling access to AWS resources using resource tags and IAM JSON
policy reference in the IAM User Guide.

Using tags with IAM policies 2212

https://docs.aws.amazon.com/greengrass/v2/APIReference/API_ListCoreDevices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

AWS IoT Greengrass Developer Guide, Version 2

Creating AWS IoT Greengrass resources with AWS
CloudFormation

AWS IoT Greengrass is integrated with AWS CloudFormation, a service that helps you to model and
set up your AWS resources so that you can spend less time creating and managing your resources
and infrastructure. You create a template that describes all the AWS resources that you want (such
as component versions and deployments), and AWS CloudFormation provisions and configures
those resources for you.

When you use AWS CloudFormation, you can reuse your template to set up your AWS IoT
Greengrass resources consistently and repeatedly. Describe your resources once, and then provision
the same resources over and over in multiple AWS accounts and Regions.

AWS IoT Greengrass and AWS CloudFormation templates

To provision and configure resources for AWS IoT Greengrass and related services, you must
understand AWS CloudFormation templates. Templates are formatted text files in JSON or YAML.
These templates describe the resources that you want to provision in your AWS CloudFormation
stacks. If you're unfamiliar with JSON or YAML, you can use AWS CloudFormation Designer to help
you get started with AWS CloudFormation templates. For more information, see What is AWS
CloudFormation Designer? in the AWS CloudFormation User Guide.

AWS IoT Greengrass supports creating component versions and deployments in AWS
CloudFormation. For more information, including examples of JSON and YAML templates for
component versions and deployments, see the AWS IoT Greengrass resource type reference in the
AWS CloudFormation User Guide.

ComponentVersion template example

The following is the YAML template for a version of a simple component. The JSON recipe includes
line breaks for readability.

Parameters:
 ComponentVersion:
 Type: String
Resources:
 TestSimpleComponentVersion:

AWS IoT Greengrass and AWS CloudFormation templates 2213

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_GreengrassV2.html

AWS IoT Greengrass Developer Guide, Version 2

 Type: AWS::GreengrassV2::ComponentVersion
 Properties:
 InlineRecipe: !Sub
 - "{\n
 \"RecipeFormatVersion\": \"2020-01-25\",\n
 \"ComponentName\": \"component1\",\n
 \"ComponentVersion\": \"${ComponentVersion}\",\n
 \"ComponentType\": \"aws.greengrass.generic\",\n
 \"ComponentDescription\": \"This\",\n
 \"ComponentPublisher\": \"You\",\n
 \"Manifests\": [\n
 {\n
 \"Platform\": {\n
 \"os\": \"darwin\"\n
 },\n
 \"Lifecycle\": {},\n
 \"Artifacts\": []\n
 },\n
 {\n
 \"Lifecycle\": {},\n
 \"Artifacts\": []\n
 }\n
],\n
 \"Lifecycle\": {\n
 \"install\": {\n
 \"script\": \"yuminstallpython\"\n
 }\n
 }\n
 }"
 - { ComponentVersion: !Ref ComponentVersion }

Deployment template example

The following is a YAML file defining a simple template for a deployment.

Parameters:
 ComponentVersion:
 Type: String
 TargetArn:
 Type: String
Resources:
 TestDeployment:
 Type: AWS::GreengrassV2::Deployment

Deployment template example 2214

AWS IoT Greengrass Developer Guide, Version 2

 Properties:
 Components:
 component1:
 ComponentVersion: !Ref ComponentVersion
 TargetArn: !Ref TargetArn
 DeploymentName: CloudFormationIntegrationTest
 DeploymentPolicies:
 FailureHandlingPolicy: DO_NOTHING
 ComponentUpdatePolicy:
 TimeoutInSeconds: 5000
 Action: SKIP_NOTIFY_COMPONENTS
 ConfigurationValidationPolicy:
 TimeoutInSeconds: 30000
Outputs:
 TestDeploymentArn:
 Value: !Sub
 - arn:${AWS::Partition}:greengrass:${AWS::Region}:${AWS::AccountId}:deployments:
${DeploymentId}
 - DeploymentId: !GetAtt TestDeployment.DeploymentId

Learn more about AWS CloudFormation

To learn more about AWS CloudFormation, see the following resources:

• AWS CloudFormation

• AWS CloudFormation User Guide

• AWS CloudFormation API Reference

• AWS CloudFormation Command Line Interface User Guide

Learn more about AWS CloudFormation 2215

https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html

AWS IoT Greengrass Developer Guide, Version 2

Open source AWS IoT Greengrass Core software

The AWS IoT Greengrass Version 2 edge runtime (nucleus) and other components of the AWS
IoT Greengrass Core software are open source. This means that you can review the code to
troubleshoot interactions with your applications. You can also customize and extend the AWS IoT
Greengrass Core software to meet your specific software and hardware needs.

For information about the open source repositories for the AWS IoT Greengrass Core software, see
the aws-greengrass organization on GitHub. Your use of open source software is governed by the
open source license in the corresponding GitHub repository.

Your use of the AWS IoT Greengrass Core software and components not subject to an open source
license is governed by the AWS Greengrass Core Software License.

2216

https://github.com/aws-greengrass
https://github.com/search?q=org%3Aaws-greengrass++path%3A**%2FLicense+%2F%5Cw%2B%2F&type=code
https://greengrass-release-license.s3.us-west-2.amazonaws.com/greengrass-license-v1.pdf

AWS IoT Greengrass Developer Guide, Version 2

Document history for the AWS IoT Greengrass V2
Developer Guide

The following table describes the documentation for this release of AWS IoT Greengrass Version 2.

• API version: 2020-11-30

Change Description Date

Greengrass CLI v2.14.0
released

Greengrass CLI component
v2.14.0 is available.

December 24, 2024

Stream manager v2.2.0
released

Stream manager v2.2.0 is now
available.

December 16, 2024

Shadow manager v2.3.10
released

Shadow manager v2.3.10 is
available.

December 16, 2024

Secure tunneling v1.1.0
released

Secure tunneling v1.1.0 is
available. This version adds
recipe supports for Greengras
s nucleus lite.

December 16, 2024

New nucleus telemetry
emitter component

Version 1.0.10 of the nucleus
telemetry emitter component
is available.

December 16, 2024

Modbus-RTU protocol
adapter v2.1.10 released

Modbus-RTU protocol
adapter component v2.1.10 is
available.

December 16, 2024

Log manager v2.3.9 released Log manager component
v2.3.9 is available.

December 16, 2024

Local debug console v2.4.4
released

Local debug console
component v2.4.4 is available

December 16, 2024

2217

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-cli-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-cli-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/secure-tunneling-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/secure-tunneling-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/nucleus-emitter-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/nucleus-emitter-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/modbus-rtu-protocol-adapter-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/modbus-rtu-protocol-adapter-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/log-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/local-debug-console-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/local-debug-console-component.html

AWS IoT Greengrass Developer Guide, Version 2

. This version includes general
bug fixes and improvements.

Lambda manager v2.3.5
released

Lambda manager component
v2.3.5 is available.

December 16, 2024

IP detector v2.2.1 released IP detector component v2.2.1
is available.

December 16, 2024

Disk spooler v1.0.5 released Disk spooler component
v1.0.5 is available.

December 16, 2024

Client device auth component
v2.5.2 released

Client device auth component
v2.5.2 is available.

December 16, 2024

2218

https://docs.aws.amazon.com/greengrass/v2/developerguide/lambda-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lambda-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/ip-detector-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/disk-spooler-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-device-auth-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-device-auth-component.html

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass Core
v2.14.0 software update

This release provides version
2.14.0 of the Greengrass
nucleus component, and new
AWS IoT Greengrass nucleus
lite updates. The AWS IoT
Greengrass nucleus lite is a
new runtime, available for
AWS IoT Greengrass version
2. It provides a reduced
memory footprint alternati
ve. This is a good option for
resource-constrained devices.
It implements a subset of
the nucleus functionality
with increased featured
compatibility planned for
future releases. The source
code is available now on
Github. With the nucleus lite
runtime you can:

• Deploy components to
Greengrass core devices.
Use the same recipe format,
though some advanced
features may not be
available yet.

• Applications deployed as
Greengrass components
can use the device SDKs
to access the supported
Greengrass IPC APIs, such
as: AWS IoT Core MQTT
access, local pub/sub, and
Greengrass configuration
access. See the compatibi

December 16, 2024

2219

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2024-12-16.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2024-12-16.html
https://github.com/aws-greengrass/aws-greengrass-lite

AWS IoT Greengrass Developer Guide, Version 2

lity chart for the list of
supported IPC APIs.

• Some AWS managed
components have been
updated for nucleus lite
support. See the AWS-
provided components for a
list of existing compatible
components.

New features:

• Uses less memory and disk
space (less than 5MB of
RAM and less than 5MB of
storage).

• Components integrate with
the host system’s service
manager (systemd for
currently supported Linux
platforms).

Things to watch out for:

• AWS IoT Greengrass
nucleus lite recipes are
case-sensitive. Ensure
the correct (keys) casing
is used as in the https://
docs.aws.amazon.com/
greengrass/v2/develope
rguide/component-recipe-
reference.htmlrecipe
reference.

• The nucleus lite runtime
supports thing group

2220

https://docs.aws.amazon.com/greengrass/v2/developerguide/choosing-your-runtime.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/component-recipe-reference.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/component-recipe-reference.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/component-recipe-reference.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/component-recipe-reference.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/component-recipe-reference.html

AWS IoT Greengrass Developer Guide, Version 2

deployments, and does not
yet support the (single)
Core device deployment
target type. To deploy to a
single Greengrass device,
use a thing group with only
that one device in it.

• The nucleus lite runtime
uses bounded memory
resources; functionality
which scales according
to usage on the classic
runtime may fail due
to exceeding resources
 available on lite. This
includes a current limitatio
n on max of 50 MQTT
subscriptions at a time, and
maximum limits on recipe
file sizes and deploymen
ts. Some of these limits are
configurable at compile
time if compiling the lite
runtime yourself.

• The nucleus lite runtime
does not ship with Java. To
use components requiring
 Java, the system will need
Java already installed, or a
component may be used to
install Java.

• We recommend compiling
the nucleus lite runtime
from source and using
your own build tailored
for your system. For Yocto

2221

AWS IoT Greengrass Developer Guide, Version 2

systems, a layer is available
to integrate the nucleus lite
runtime into your system
image.

• Currently the nucleus
lite assumes a Linux
system using systemd, or
a container image using
systemd.

• While you can manage
Docker containers with
recipe scripts, Greengras
s managed container
artifacts are not yet
available.

• The nucleus lite runtime
does not yet have support
for keys stored in a PKCS11
module. If your use case
requires keys stored on
a secure element, the
classic runtime can support
this use case currently.
To prevent leaks of your
device credentials, ensure
production devices are
using full disk encryption.

Alongside the introduction
of nucleus lite, we are also
releasing nucleus v2.14.0.
This update brings significant
enhancements to the existing
Greengrass nucleus.

2222

AWS IoT Greengrass Developer Guide, Version 2

Key features and improveme
nts:

• New dual-stack endpoint
support enables IPv6
network communication.

• Enhanced resilience against
nucleus restart failures and
directory corruption.

• Fixed memory leaks in
IPC PubSub subscription
closures.

Stream manager v2.1.13
released

Stream manager v2.1.13 is
now available. This release
adds support for FIPS
endpoint for AWS IoT
SiteWise

August 26, 2024

Shadow manager v2.3.9
released

Shadow manager v2.3.9 is
available.

August 26, 2024

Modbus-RTU protocol
adapter v2.1.9 released

Modbus-RTU protocol adapter
component v2.1.9 is available.

August 26, 2024

Log manager v2.3.8 released Log manager component
v2.3.8 is available.

August 26, 2024

Local debug console v2.4.3
released

Local debug console
component v2.4.3 is available
. This version includes general
bug fixes and improvements.

August 26, 2024

Disk spooler v1.0.4 released Disk spooler component
v1.0.4 is available.

August 26, 2024

2223

https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/modbus-rtu-protocol-adapter-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/modbus-rtu-protocol-adapter-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/log-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/local-debug-console-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/local-debug-console-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/disk-spooler-component.html

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass Core
v2.13.0 software update

This release provides version
2.13.0 of the Greengrass
nucleus component.

August 26, 2024

New nucleus telemetry
emitter component

Version 1.0.9 of the nucleus
telemetry emitter component
is available.

August 23, 2024

Lambda manager v2.3.4
released

Lambda manager component
v2.3.4 is available.

August 23, 2024

Greengrass CLI v2.13.0
released

Greengrass CLI component
v2.13.0 is available.

August 23, 2024

Client device auth component
v2.5.1 released

Client device auth component
v2.5.0 is available. This
release adds support for FIPS
endpoint.

August 23, 2024

Recipe validation Added a recipe validation
feature that will validate
a component recipe when
creating a component version.

August 15, 2024

IP detector v2.2.0 released IP detector component v2.2.0
is available. This release adds
support for IPv6. You can now
use IPv6 for local messaging.

July 29, 2024

Shadow manager v2.3.8
released

Shadow manager v2.3.8 is
available. This release fixes an
issue where shadow manager
creates a deadlock situation
during the MQTT client
connection.

June 5, 2024

Greengrass CLI v2.12.6
released

Greengrass CLI component
v2.12.6 is available.

May 24, 2024

2224

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2024-08-26.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2024-08-26.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/nucleus-emitter-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/nucleus-emitter-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lambda-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lambda-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-cli-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-cli-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-device-auth-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-device-auth-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/component-recipe-reference.html#recipe-validation
https://docs.aws.amazon.com/greengrass/v2/developerguide/ip-detector-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-cli-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-cli-component.html

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass Core
v2.12.6 software update

This release provides version
2.12.6 of the Greengrass
nucleus component and
updates AWS-provided
components.

May 24, 2024

AWS IoT Device Tester v4.9.4
with GGV2Q v2.5.4 released

Version 4.9.4 of IDT for AWS
IoT Greengrass V2 is available.
This release includes the AWS
IoT Greengrass V2 qualificat
ion suite (GGV2Q) v2.5.4,
and supports Greengrass
nucleus versions 2.12.0, 2.11.
0, 2.10.0, 2.9.5.

May 3, 2024

Secure tunneling v1.0.19
released

Secure tunneling v1.0.19
is available. This version
upgrades the underlying AWS
IoT Device Client invoked by
the component from version
1.8.0 to version 1.9.0. Secure
tunneling v1.0.19 increases
the concurrent tunnel limit to
20 tunnels on a component
 level. This new version also
increases AWS IoT Greengras
s Core IPC timeout from 3
seconds to 10 seconds.

May 1, 2024

Edge connector for Kinesis
Video Streams component
v1.0.5 released

Version 1.0.5 of the edge
connector for Kinesis Video
Streams component is
available. This version
includes general bug fixes and
improvements.

April 29, 2024

2225

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2024-05-24.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2024-05-24.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/secure-tunneling-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/secure-tunneling-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/kvs-edge-connector-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/kvs-edge-connector-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/kvs-edge-connector-component.html

AWS IoT Greengrass Developer Guide, Version 2

Greengrass CLI v2.12.5
released

Greengrass CLI component
v2.12.5 is available.

April 25, 2024

Client device auth component
v2.5.0 released

Client device auth component
v2.5.0 is available. This
release adds policy variable
support for thing names. This
release also allows policy
resources with wildcards.

April 25, 2024

AWS IoT Greengrass Core
v2.12.5 software update

This release provides version
2.12.5 of the Greengrass
nucleus component and
updates AWS-provided
components.

April 25, 2024

AWS IoT Device Tester v4.9.3
with GGV2Q v2.5.3 released

Version 4.9.3 of IDT for AWS
IoT Greengrass V2 is available.
This release includes the AWS
IoT Greengrass V2 qualificat
ion suite (GGV2Q) v2.5.3,
and supports Greengrass
nucleus versions 2.12.0, 2.11.
0, 2.10.0, 2.9.5.

April 5, 2024

Greengrass CLI v2.12.4
released

Greengrass CLI component
v2.12.4 is available.

April 2, 2024

AWS IoT Greengrass Core
v2.12.4 software update

This release provides version
2.12.4 of the Greengrass
nucleus component and
updates AWS-provided
components.

April 2, 2024

2226

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-cli-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-cli-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-device-auth-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-device-auth-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2024-04-25.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2024-04-25.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-cli-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-cli-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2024-04-02.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2024-04-02.html

AWS IoT Greengrass Developer Guide, Version 2

Shadow manager v2.3.7
released

Shadow manager v2.3.7
is available. This release
fixes an issue where shadow
manager periodically logs
a NullPointerExcepti
on error during a shadow
manager sync.

March 27, 2024

Moquette MQTT 3.1.1 broker
v2.3.6 released

Moquette MQTT 3.1.1 broker
component v2.3.6 is available
. This version includes general
bug fixes and improvements.

March 27, 2024

Local debug console v2.4.2
released

Local debug console
component v2.4.2 is available
. This version includes general
bug fixes and improvements.

March 27, 2024

Lambda manager v2.3.3
released

Lambda manager component
v2.3.3 is available. This
version includes general bug
fixes and improvements.

March 27, 2024

IP detector v2.1.9 released IP detector component v2.1.9
is available. This release
adjusts the IP acquired step to
only send logs at the debug
log level.

March 27, 2024

2227

https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/mqtt-broker-moquette-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/mqtt-broker-moquette-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/local-debug-console-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/local-debug-console-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lambda-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lambda-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/ip-detector-component.html

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT fleet provisioning
plugin v1.2.1 released

AWS IoT fleet provisioning
plugin v1.2.1 is available.
This release fixes an issue
where the fleet provision
ing plugin is offline during a
Greengrass nucleus startup.
The fleet provisioning plugin
now indefinitely retries MQTT
connect calls.

March 27, 2024

AWS IoT Greengrass Core
v2.12.3 software update

This release provides version
2.12.3 of the Greengrass
nucleus component and
updates AWS-provided
components.

March 27, 2024

Greengrass CLI v2.12.3
released

Greengrass CLI component
v2.12.3 is available.

March 25, 2024

AWS IoT Device Tester v4.9.2
with GGV2Q v2.5.2 released

Version 4.9.2 of IDT for AWS
IoT Greengrass V2 is available.
This release includes the AWS
IoT Greengrass V2 qualificat
ion suite (GGV2Q) v2.5.2,
and supports Greengrass
nucleus versions 2.12.0, 2.11.
0, 2.10.0, 2.9.5.

March 18, 2024

Lookout for Vision edge agent
v1.2.0 released

Lookout for Vision edge agent
v1.2.0 is available.

March 11, 2024

AWS IoT Greengrass Core
v2.12.2 software update

This release provides version
2.12.2 of the Greengrass
nucleus component and
updates AWS-provided
components.

February 15, 2024

2228

https://docs.aws.amazon.com/greengrass/v2/developerguide/fleet-provisioning-changelog.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/fleet-provisioning-changelog.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2024-03-27.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2024-03-27.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-cli-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-cli-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lookout-for-vision-edge-agent-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lookout-for-vision-edge-agent-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2024-02-15.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2024-02-15.html

AWS IoT Greengrass Developer Guide, Version 2

Shadow manager v2.3.6
released

Shadow manager v2.3.6 is
available. This release fixes an
issue where shadow propertie
s that are deleted through
AWS Cloud updates while the
device is offline continue to
exist in the local shadow after
regaining connectivity.

February 14, 2024

Lambda launcher v2.0.13
released

Version 2.0.13 of the Lambda
launcher component is
available. This release
includes general bug fixes and
improvements.

February 14, 2024

Disk spooler v1.0.3 released Disk spooler component
v1.0.3 is available. This
release improves performance
by reusing database connectio
ns.

February 14, 2024

Lookout for Vision edge agent
v1.1.9 released

Lookout for Vision edge agent
v1.1.9 is available.

January 17, 2024

Greengrass Development Kit
CLI v1.6.2

Version 1.6.2 of the Greengras
s Development Kit CLI is
available. This version fixes
an issue where Windows
gradlew.bat does not work
due to the relative path.
This version also contains
additional improvements.

January 16, 2024

2229

https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lambda-launcher-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lambda-launcher-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/disk-spooler-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lookout-for-vision-edge-agent-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lookout-for-vision-edge-agent-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html

AWS IoT Greengrass Developer Guide, Version 2

New CloudTrail data events You can now log AWS
CloudTrail data events to get
information about resource
operations such as getting a
component or the configura
tion of a deployment. Use
these events to gain insight
into the operation of your
Greengrass devices.

December 20, 2023

Lookout for Vision edge agent
v1.1.8 released

Lookout for Vision edge agent
v1.1.8 is available.

December 12, 2023

Stream manager v2.1.12
released

Stream manager v2.1.12 is
now available. This release
changes the order that
Greengrass uses to select a
set of credentials for AWS
service calls.

December 8, 2023

MQTT bridge v2.3.1 released MQTT bridge v2.3.1 is
available. This release fixes
a rare issue where the local
MQTT client gets into a
disconnect loop.

December 8, 2023

Disk spooler v1.0.2 released Disk spooler component
v1.0.2 is available. This
release fixes an issue where
the MQTT message format
field isn't persisted in certain
cases.

December 8, 2023

2230

https://docs.aws.amazon.com/greengrass/v2/developerguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lookout-for-vision-edge-agent-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lookout-for-vision-edge-agent-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/mqtt-bridge-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/disk-spooler-component.html

AWS IoT Greengrass Developer Guide, Version 2

Client device auth component
v2.4.5 released

Client device auth component
v2.4.5 is available. This
release adds support for
wildcards at the end of thing
names in a selection rule and
fixes an issue where certifica
tes are not updated with new
connectivity info in certain
cases.

December 8, 2023

AWS IoT Greengrass Core
v2.12.1 software update

This release provides version
2.12.1 of the Greengrass
nucleus component and
updates AWS-provided
components.

December 8, 2023

Greengrass Development Kit
CLI v1.6.1

Version 1.6.1 of the Greengras
s Development Kit CLI
is available. This version
contains bug fixes and
improvements.

December 6, 2023

Recipe validation Added a recipe validation
feature that will validate
a component recipe when
creating a component version.

November 16, 2023

Publisher-supported
components

AWS IoT Greengrass now
offers Publisher-supporte
d components. These
components are developed,
offered, and serviced by third-
party vendors.

November 16, 2023

Greengrass Testing
Framework v1.2.0 released

Greengrass Testing
Framework v1.2.0 is available.

November 15, 2023

2231

https://docs.aws.amazon.com/greengrass/v2/developerguide/client-device-auth-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-device-auth-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-12-08.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-12-08.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-nucleus-component
https://docs.aws.amazon.com/greengrass/v2/developerguide/publisher-supported-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/publisher-supported-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/gg-testing-framework.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/gg-testing-framework.html

AWS IoT Greengrass Developer Guide, Version 2

Greengrass Development Kit
CLI v1.6.0

Version 1.6.0 of the Greengras
s Development Kit CLI is
available. This version adds
a recipe validation check
against the Greengrass
recipe schema during the
component build and
component publish
commands. This update
helps developers to identify
actionable issues within their
component recipes earlier
in the component creation
process. This version also
adds a confidence test suite
to the template that can be
pulled down by the test-
e2e init command. This
confidence test suite includes
eight generic tests that can be
used and extended to fit basic
component testing needs.

November 15, 2023

AWS IoT Device Tester v4.9.1
supports Greengrass nucleus
version 2.12.0

Version 4.9.1 of IDT for
AWS IoT Greengrass V2 now
supports Greengrass nucleus
version 2.12.0.

November 7, 2023

AWS IoT Greengrass Core
v2.12.0 software update

This release provides version
2.12.0 of the Greengrass
nucleus component and
updates AWS-provided
components.

November 7, 2023

2232

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-11-07.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-11-07.html

AWS IoT Greengrass Developer Guide, Version 2

Operate a Greengrass core
device in VPC

Operating a Greengrass core
device in VPC is available
. This feature enables you
to perform deployments in
VPC without public internet
access.

November 3, 2023

Greengrass CLI v2.12.0
released

Greengrass CLI component
v2.12.0 is available.

October 30, 2023

Stream manager v2.1.10
released

Stream manager v2.1.10 is
now available. This release
fixes an issue where the
HTTPS proxy configuration
doesn't trust the Greengrass
CA certificate chain.

October 26, 2023

Lambda launcher v2.0.12
released

Version 2.0.12 of the Lambda
launcher component is
available. This release fixes
an issue where the Lambda
launcher could throw an error
if the previous process was
not stopped properly.

October 26, 2023

2233

https://docs.aws.amazon.com/greengrass/v2/developerguide/vpc-interface-endpoints.html#vpc-operate-device-vpce
https://docs.aws.amazon.com/greengrass/v2/developerguide/vpc-interface-endpoints.html#vpc-operate-device-vpce
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-cli-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-cli-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lambda-launcher-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lambda-launcher-component.html

AWS IoT Greengrass Developer Guide, Version 2

Greengrass Development Kit
CLI v1.5.0

Version 1.5.0 of the
Greengrass Developme
nt Kit CLI is available.
This version updates the
patterns recognized by the
excludes build option when
build_system is zip. This
version will now recognize
glob patterns which match
pathnames based on their
wildcard characters. This
enables custom specifica
tion of which directories to
exclude from.

October 26, 2023

Lookout for Vision edge agent
v1.1.7 released

Lookout for Vision edge agent
v1.1.7 is available.

October 24, 2023

Shadow manager v2.3.4
released

Shadow manager v2.3.4 is
available. This release adds
support for null and empty
shadow state documents.

October 18, 2023

Log manager v2.3.6 released Log manager component
v2.3.6 is available.

October 18, 2023

Local debug console v2.4.0
released

Local debug console
component v2.4.0 is available.

October 18, 2023

Lambda manager v2.3.1
released

Lambda manager component
v2.3.1 is available.

October 18, 2023

Greengrass CLI v2.11.3
released

Greengrass CLI component
v2.11.3 is available.

October 18, 2023

2234

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lookout-for-vision-edge-agent-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lookout-for-vision-edge-agent-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/log-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/local-debug-console-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/local-debug-console-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lambda-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lambda-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-cli-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-cli-component.html

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass Core
v2.11.3 software update

This release provides version
2.11.3 of the Greengrass
nucleus component and
updates AWS-provided
components.

October 18, 2023

Secure tunneling v1.0.17
released

Secure tunneling v1.0.17 is
available.

October 4, 2023

Greengrass Development Kit
CLI v1.4.0

Version 1.4.0 of the Greengras
s Development Kit CLI is
available. This version adds a
new config command that
starts an interactive prompt
to modify fields within an
existing GDK configuration
file. This version also modifies
the gdk component
build and gdk component
publish commands to
verify that the recipe size is
within Greengrass requireme
nts (<=16000 bytes) before
proceeding.

October 2, 2023

Moquette MQTT 3.1.1 broker
v2.3.5 released

Moquette MQTT 3.1.1
broker component v2.3.5
is available. This version
updates Moquette to version
0.17.

September 28, 2023

MQTT bridge v2.3.0 released MQTT bridge v2.3.0 is
available. This release adds
MQTT 5 support for bridging
between AWS IoT Core and
local MQTT sources.

September 28, 2023

2235

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-10-18.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-10-18.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/secure-tunneling-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/secure-tunneling-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/mqtt-broker-moquette-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/mqtt-broker-moquette-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/mqtt-bridge-component.html

AWS IoT Greengrass Developer Guide, Version 2

Lookout for Vision edge agent
v1.1.6 released

Lookout for Vision edge agent
v1.1.6 is available.

September 27, 2023

Lambda manager v2.3.0
released

Lambda manager component
v2.3.0 is available.

September 15, 2023

Lambda launcher v2.0.11
released

Version 2.0.11 of the Lambda
launcher component is
available. This version
supports Lambda Manager
2.3.0.

September 15, 2023

Moquette MQTT 3.1.1 broker
v2.3.4 released

Moquette MQTT 3.1.1 broker
component v2.3.4 is available.

September 1, 2023

Greengrass Testing
Framework

GTF is a collection of building
blocks to support end-to-
end automation. It enables
AWS IoT Greengrass Version
2 internal customers to use
the same testing framework
that the service team uses for
qualifying software changes,
automated acceptance, and
quality assurance purposes.

August 11, 2023

AWS IoT Greengrass Core
v2.11.2 software update

This release provides version
2.11.2 of the Greengrass
nucleus component and
updates AWS-provided
components.

August 9, 2023

2236

https://docs.aws.amazon.com/greengrass/v2/developerguide/lookout-for-vision-edge-agent-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lookout-for-vision-edge-agent-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lambda-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lambda-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lambda-launcher-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lambda-launcher-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/mqtt-broker-moquette-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/mqtt-broker-moquette-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/gg-testing-framework.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/gg-testing-framework.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-08-09.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-08-09.html

AWS IoT Greengrass Developer Guide, Version 2

Greengrass Development Kit
CLI v1.3.0

Version 1.3.0 of the Greengras
s Development Kit CLI is
available. This version adds a
new test-e2e command to
support end-to-end testing of
components using Open Test
Framework.

July 21, 2023

AWS IoT Greengrass Core
v2.11.1 software update

This release provides version
2.11.1 of the Greengrass
nucleus component and
updates AWS-provided
components.

July 21, 2023

Disk spooler v1.0.0 released Disk spooler component
v1.0.0 is available.

June 28, 2023

AWS IoT Greengrass Core
v2.11.0 software update

This release provides version
2.11.0 of the Greengrass
nucleus component and
updates AWS-provided
components.

June 28, 2023

AWS IoT Greengrass Core
v2.10.3 software update

This release provides version
2.10.3 of the Greengrass
nucleus component and
updates AWS-provided
components.

June 21, 2023

AWS IoT Greengrass Core
v2.10.2 software update

This release provides version
2.10.2 of the Greengrass
nucleus component and
updates AWS-provided
components.

June 5, 2023

2237

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-07-21.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-07-21.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/disk-spooler-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-06-28.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-06-28.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-06-21.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-06-21.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-06-05.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-06-05.html

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass Core
v2.10.1 software update

This release provides version
2.10.1 of the Greengrass
nucleus component and
updates AWS-provided
components.

May 11, 2023

AWS IoT Greengrass Core
v2.10.0 software update

This release provides version
2.10.0 of the Greengrass
nucleus component and
updates AWS-provided
components.

May 9, 2023

SageMaker AI Edge Manager
discontinued

Amazon SageMaker AI Edge
Manager component is being
discontinued on April 26,
2024.

April 28, 2023

AWS IoT Greengrass Core
v2.9.6 software update

This release provides version
2.9.6 of the Greengrass
nucleus component and
updates AWS-provided
components.

April 20, 2023

Log manager v2.3.2 released Log manager component
v2.3.2 is available.

April 19, 2023

2238

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-05-11.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-05-11.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-05-09.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-05-09.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/sagemaker-edge-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/sagemaker-edge-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-04-20.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-04-20.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/log-manager-component.html

AWS IoT Greengrass Developer Guide, Version 2

Stream manager v2.1.4
released

Stream manager v2.1.4 is
now available. This release
fixes an issue where entries
for the same property asset
with the same timestamp
within a single batch return
ConflictingOperati
onException from the
SiteWise API which causes
stream manager to continuou
sly retry. This release also
updates the default connectio
n timeout from 3 seconds to 1
minute.

April 13, 2023

Greengrass Development Kit
CLI v1.2.3

Version 1.2.3 of the Greengras
s Development Kit CLI
is available. This version
contains bug fixes.

April 13, 2023

Client device auth component
v2.4.0 released

Client device auth component
v2.4.0 is available. This
release adds support for
client device auth to emit
operational metrics that can
be displayed on the Greengras
s Client Device dashboard.

April 10, 2023

Greengrass Development Kit
CLI v1.2.2

Version 1.2.2 of the Greengras
s Development Kit CLI
is available. This version
contains improvements and
bug fixes.

April 7, 2023

2239

https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-device-auth-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-device-auth-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass Core
v2.9.5 software update

This release provides version
2.9.5 of the Greengrass
nucleus component and
updates AWS-provided
components.

March 30, 2023

Stream manager v2.1.3
released

Stream manager v2.1.3 is now
available. This release fixes a
startup issue on Windows OS
when running as the SYSTEM
user.

March 7, 2023

Modbus-RTU protocol
adapter v2.1.5 released

Modbus-RTU protocol adapter
component v2.1.5 is available.
This release fixes an issue with
the ReadDiscreteInput
operation.

March 7, 2023

Client device auth component
v2.3.2 released

Client device auth component
v2.3.2 is available. This
release adds support for
caching hostname informati
on so that the component
correctly generates certificate
subjects when restarted while
offline.

March 7, 2023

AWS IoT Device Tester v4.7.0
supports Greengrass nucleus
version 2.9.4

Version 4.7.0 of IDT for
AWS IoT Greengrass V2 now
supports Greengrass nucleus
version 2.9.4.

March 2, 2023

Greengrass Command Line
Interface v1.2.0 released

Greengrass Command Line
Interface v1.2.0 is available.

February 28, 2023

2240

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-03-30.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-03-30.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/modbus-rtu-protocol-adapter-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/modbus-rtu-protocol-adapter-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-device-auth-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-device-auth-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass Core
v2.9.4 software update

This release provides version
2.9.4 of the Greengrass
nucleus component and
updates AWS-provided
components.

February 24, 2023

Shadow manager v2.3.1
released

Shadow manager v2.3.1 is
available. This release fixes a
condition that may prevent
cloud shadow updates from
syncing. This release also fixes
an issue where changes to
named shadow sync configura
tion applies to only one
named shadow.

February 21, 2023

AWS IoT Device Tester v4.7.0
supports Greengrass nucleus
version 2.9.3

Version 4.7.0 of IDT for
AWS IoT Greengrass V2 now
supports Greengrass nucleus
version 2.9.3.

February 9, 2023

IAM best practices updated Updated guide to align
with the IAM best practices
. For more information, see
Security best practices in IAM.

February 3, 2023

AWS IoT Greengrass Core
v2.9.3 software update

This release provides version
2.9.3 of the Greengrass
nucleus component and
updates AWS-provided
components.

February 1, 2023

Log manager v2.3.1 released Log manager v2.3.1 is
available.

January 27, 2023

2241

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-02-24.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-02-24.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-02-01.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2023-02-01.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/log-manager-component.html

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Device Tester v4.7.0
supports Greengrass nucleus
version 2.9.2

Version 4.7.0 of IDT for
AWS IoT Greengrass V2 now
supports Greengrass nucleus
version 2.9.2.

January 3, 2023

Shadow manager v2.3.0
released

Shadow manager v2.3.0 is
available. This release fixes
an issue that might prevent
shadows from syncing when
a device stores the Greengras
s device private key in a
hardware security module.

December 29, 2022

AWS IoT fleet provisioning
plugin v1.2.0 released

AWS IoT fleet provisioning
plugin v1.2.0 is available.
This release adds support
for device provisioning via
certificate signing request
with configurable private key
path.

December 22, 2022

AWS IoT Greengrass Core
v2.9.2 software update

This release provides version
2.9.2 of the Greengrass
nucleus component and
updates AWS-provided
components.

December 22, 2022

AWS IoT Device Tester v4.7.0
with GGV2Q v2.5.0 released

Version 4.7.0 of IDT for AWS
IoT Greengrass V2 is available.
This release includes the AWS
IoT Greengrass V2 qualificat
ion suite (GGV2Q) v2.5.0, and
supports Greengrass nucleus
versions 2.9.1, 2.9.0, 2.8.1,
2.8.0, 2.7.0, and 2.6.0.

December 13, 2022

2242

https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/fleet-provisioning-changelog.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/fleet-provisioning-changelog.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-12-22.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-12-22.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html

AWS IoT Greengrass Developer Guide, Version 2

Shadow manager v2.2.4
released

Fixes an issue where the
validation of the shadow's
size wasn't consistent with
the cloud when updating
the local shadow document.
This also fixes an issue where
the shadow manager stops
listening to configuration
updates if a deployment
performs a RESET on the
configuration nodes.

December 8, 2022

Lookout for Vision Edge
Agent 1.1.1 released

Lookout for Vision Edge
Agent component v1.1.1 is
available.

December 5, 2022

Log manager v2.3.0 released Log manager component
v2.3.0 is available.

November 18, 2022

AWS IoT Device Tester v4.5.11
supports Greengrass nucleus
version 2.9.1

Version 4.5.11 of IDT for
AWS IoT Greengrass V2 now
supports Greengrass nucleus
version 2.9.1.

November 18, 2022

AWS IoT Greengrass Core
v2.9.1 software update

This release provides version
2.9.1 of the Greengrass
nucleus component and
updates AWS-provided
components.

November 18, 2022

AWS IoT Device Tester v4.5.11
supports Greengrass nucleus
version 2.9.0

Version 4.5.11 of IDT for
AWS IoT Greengrass V2 now
supports Greengrass nucleus
version 2.9.0.

November 17, 2022

2243

https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lookout-for-vision-edge-agent-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lookout-for-vision-edge-agent-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/log-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-11-18.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-11-18.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html

AWS IoT Greengrass Developer Guide, Version 2

Stream manager v2.1.2
released

Stream manager v2.1.2 is now
available. This release fixes an
issue on Windows OS that use
a non-English language.

November 15, 2022

AWS IoT Greengrass Core
v2.9.0 software update

This release provides version
2.9.0 of the Greengrass
nucleus component and
updates AWS-provided
components.

November 15, 2022

AWS IoT Device Tester v4.5.11
supports Greengrass nucleus
version 2.8.1

Version 4.5.11 of IDT for
AWS IoT Greengrass V2 now
supports Greengrass nucleus
version 2.8.1.

October 19, 2022

AWS IoT Device Tester v4.5.11
with GGV2Q v2.4.1 released

Version 4.5.11 of IDT for AWS
IoT Greengrass V2 is available.
This release includes the AWS
IoT Greengrass V2 qualificat
ion suite (GGV2Q) v2.4.1, and
supports Greengrass nucleus
versions 2.8.0, 2.7.0, and
2.6.0.

October 13, 2022

AWS IoT Greengrass Core
v2.8.1 software update

This release provides version
2.8.1 of the Greengrass
nucleus component and
updates AWS-provided
components.

October 13, 2022

AWS IoT Greengrass Core
v2.8.0 software update

This release provides version
2.8.0 of the Greengrass
nucleus component and
updates AWS-provided
components.

October 7, 2022

2244

https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-11-15.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-11-15.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-10-13.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-10-13.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-10-07.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-10-07.html

AWS IoT Greengrass Developer Guide, Version 2

Added AWS CloudFormation
support for deployments

AWS CloudFormation now
supports AWS IoT Greengrass
deployments as a resource.

October 6, 2022

SageMaker AI Edge Manager
v1.3.0 released

Amazon SageMaker AI Edge
Manager component v1.3.0
is available. This release adds
support for this component
 to set the disk size for the
TensorRT model cache,
and improves prediction
concurrency to make better
use of device accelerator
engines such as GPUs.

September 1, 2022

Use interprocess communica
tion (IPC) client V2

Added information about IPC
client V2, which reduces the
amount of code that you need
to write to use IPC operation
s and helps avoid common
errors that can occur with IPC
client V1.

August 12, 2022

AWS IoT Device Tester v4.5.8
with GGV2Q v2.4.0 released

Version 4.5.8 of IDT for AWS
IoT Greengrass V2 is available.
This release includes the AWS
IoT Greengrass V2 qualificat
ion suite (GGV2Q) v2.4.0, and
supports Greengrass nucleus
versions 2.7.0, 2.6.0, and
2.5.6.

August 12, 2022

2245

https://docs.aws.amazon.com/greengrass/v2/developerguide/creating-resources-with-cloudformation.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/creating-resources-with-cloudformation.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/sagemaker-edge-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/sagemaker-edge-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/interprocess-communication.html#ipc-client-versions
https://docs.aws.amazon.com/greengrass/v2/developerguide/interprocess-communication.html#ipc-client-versions
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html

AWS IoT Greengrass Developer Guide, Version 2

SageMaker AI Edge Manager
v1.2.0 released

Amazon SageMaker AI Edge
Manager component v1.2.0
is available. This release adds
support for this component
 to automatically retrieve
SageMaker AI Neo-compiled
models that you upload to
Amazon S3, so you can deploy
new models without needing
to create a AWS IoT Greengras
s deployment.

August 3, 2022

AWS IoT Device Tester v4.5.3
supports Greengrass nucleus
version 2.7.0

Version 4.5.3 of IDT for
AWS IoT Greengrass V2 now
supports Greengrass nucleus
version 2.7.0.

August 1, 2022

Stream manager v2.1.0
released

Stream manager v2.1.0 is
now available. This release
includes support for you to
send telemetry metrics to
Amazon EventBridge.

July 28, 2022

AWS IoT Greengrass Core
v2.7.0 software update

This release provides version
2.7.0 of the Greengrass
nucleus component and
updates AWS-provided
components. It includes
support for you to send
telemetry metrics to Amazon
EventBridge.

July 28, 2022

2246

https://docs.aws.amazon.com/greengrass/v2/developerguide/sagemaker-edge-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/sagemaker-edge-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-07-28.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-07-28.html

AWS IoT Greengrass Developer Guide, Version 2

IoT SiteWise publisher v2.2.0
released

IoT SiteWise publisher
component v2.2.0 is available
. This release updates the
component to compress data
before sending it to the AWS
IoT SiteWise service, which
reduces bandwidth usage by
up to 75 percent.

July 19, 2022

Tutorial: Develop a
component that interacts
with client device shadows

Added a new module to
Tutorial: Interact with local
IoT devices over MQTT that
you can follow to learn how
to develop a component that
interacts with client device
shadows.

July 18, 2022

Choose a local MQTT broker Added information about
how to choose a local MQTT
broker where client devices
connect to a core device.

July 18, 2022

AWS IoT Device Tester v4.5.3
supports Greengrass nucleus
version 2.6.0

Version 4.5.3 of IDT for
AWS IoT Greengrass V2 now
supports Greengrass nucleus
version 2.6.0.

June 29, 2022

2247

https://docs.aws.amazon.com/greengrass/v2/developerguide/iotsitewise-publisher-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/iotsitewise-publisher-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-devices-tutorial.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-devices-tutorial.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-devices-tutorial.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-devices-tutorial.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-devices-tutorial.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/choose-local-mqtt-broker.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass Core
v2.6.0 software update

This release provides version
2.6.0 of the Greengrass
nucleus component and
updates AWS-provided
components. It includes
support for client device
shadows and a local MQTT
5 broker for client devices.
It also includes support for
wildcards in local publish/
subscribe topics, recipe
variables in component
configurations, and wildcards
in IPC authorization policies.
These features enable you
to more easily develop
and configure component
s that you deploy to fleets
of core devices. This release
also includes support for
components to use IPC
operations that manage local
deployments and components
on a core device.

June 27, 2022

Client device component
updates

Client device auth v2.1.0,
MQTT broker (Moquette)
v2.1.0, MQTT bridge v2.1.1,
and IP detector v2.1.2
are available. This release
improves certificate rotation,
improves MQTT broker
performance, and fixes issues
with how these component
s handle configuration reset
updates.

June 14, 2022

2248

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-06-27.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-06-27.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-device-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-device-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-device-auth-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/mqtt-broker-moquette-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/mqtt-bridge-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/ip-detector-component.html

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Device Tester v4.5.3
supports Greengrass nucleus
version 2.5.6

Version 4.5.3 of IDT for
AWS IoT Greengrass V2 now
supports Greengrass nucleus
version 2.5.6.

June 1, 2022

AWS IoT Greengrass Core
v2.5.6 software update

This release provides version
2.5.6 of the Greengrass
nucleus component and
updates AWS-provided
components. It includes
support for hardware security
modules with ECC keys. It also
includes other bug fixes and
improvements.

May 31, 2022

AWS IoT fleet provisioning
plugin v1.1.0 released

AWS IoT fleet provisioning
plugin v1.1.0 is available.
This release adds support for
additional file path formats
when you configure the
plugin on Windows devices.

May 12, 2022

New Lambda runtimes
released

Added support for new
Lambda runtimes: Python 3.9,
Java 11, and NodeJS 14.

May 10, 2022

Develop a Greengrass
component that defers
component updates

Added a tutorial that you
can follow to learn how
to develop a Greengras
s component that defers
component updates from
deployments. You might want
to delay an update when a
device has a low battery level
or while it runs a process
that can't be interrupted, for
example.

May 4, 2022

2249

https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-05-31.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-05-31.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/fleet-provisioning-changelog.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/fleet-provisioning-changelog.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-lambda-functions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-lambda-functions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/defer-component-updates-tutorial.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/defer-component-updates-tutorial.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/defer-component-updates-tutorial.html

AWS IoT Greengrass Developer Guide, Version 2

CloudWatch metrics v3.1.0
and AWS IoT Device Defender
v3.1.0 released

CloudWatch metrics
component v3.1.0 and
AWS IoT Device Defender
component v3.1.0 are
available. These releases
add support for HTTPS
network proxy configura
tions. For more information,
see Connect on port 443 or
through a network proxy and
Enable the core device to
trust an HTTPS proxy.

April 27, 2022

Migrate from AWS IoT
Greengrass Version 1

Added a guide that you can
follow to to migrate from
AWS IoT Greengrass V1 to
AWS IoT Greengrass V2.

April 26, 2022

AWS IoT Device Tester v4.5.3
with GGV2Q v2.3.1 updated
and IDT v4.5.1 with GGV2Q
v2.3.0 added to supported
versions

Version 4.5.3 of IDT for AWS
IoT Greengrass V2 with AWS
IoT Greengrass V2 qualifica
tion suite (GGV2Q) v2.3.1
has been updated to include
support for Greengrass
nucleus versions 2.5.5, 2.5.4,
and 2.5.3. This update also
includes IDT 4.5.1 with AWS
IoT Greengrass V2 qualifica
tion suite (GGV2Q) v2.3.0 as
a supported version. IDT 4.5.1
with AWS IoT Greengrass V2
qualification suite (GGV2Q)
v2.3.0 supports Greengrass
nucleus version 2.5.3.

April 25, 2022

2250

https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/configure-alpn-network-proxy.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/configure-alpn-network-proxy.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/https-proxy-certificate-trust.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/https-proxy-certificate-trust.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/migrate-from-v1.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/migrate-from-v1.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html

AWS IoT Greengrass Developer Guide, Version 2

Modbus-RTU protocol
adapter v2.1.0 released

Modbus-RTU protocol adapter
component v2.1.0 is available
. This release adds new
parameters that you can
specify to configure serial
communication with Modbus
RTU devices.

April 20, 2022

CloudWatch metrics v2.1.0,
Firehose v2.1.0, and Amazon
SNS v2.1.0 released

CloudWatch metrics
component v2.1.0, Firehose
component v2.1.0, and
Amazon SNS component
v2.1.0 are available. These
releases add support for
HTTPS network proxy
configurations. For more
information, see Connect
on port 443 or through a
network proxy and Enable the
core device to trust an HTTPS
proxy.

April 19, 2022

AWS IoT Device Tester v4.5.3
with GGV2Q v2.3.1 released

Version 4.5.3 of IDT for AWS
IoT Greengrass V2 is available.
This release includes the AWS
IoT Greengrass V2 qualificat
ion suite (GGV2Q) v2.3.1, and
supports Greengrass nucleus
version 2.5.5.

April 15, 2022

2251

https://docs.aws.amazon.com/greengrass/v2/developerguide/modbus-rtu-protocol-adapter-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/modbus-rtu-protocol-adapter-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/configure-alpn-network-proxy.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/configure-alpn-network-proxy.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/configure-alpn-network-proxy.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/https-proxy-certificate-trust.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/https-proxy-certificate-trust.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/https-proxy-certificate-trust.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass Core
v2.5.5 software update

This release provides version
2.5.5 of the Greengrass
nucleus component and
updates AWS-provided
components. It adds support
for Windows devices that use
a display language other than
English. It also fixes an issue
where the core device didn't
report its status to the AWS
IoT Greengrass cloud service
after provisioning in certain
scenarios.

April 6, 2022

AWS IoT Greengrass Core
v2.5.4 software update

This release provides version
2.5.4 of the Greengrass
nucleus component and
updates AWS-provided
components. It includes bug
fixes and improvements.

March 23, 2022

Download AWS IoT Device
Tester programmatically

Added information about how
to download IDT for AWS IoT
Greengrass V2 programma
tically.

March 15, 2022

Greengrass Development Kit
CLI v1.1.0

Version 1.1.0 of the Greengras
s Development Kit CLI
is available. This version
adds new arguments to
the component init and
component publish
commands. This version also
updates the component
publish command to build
the component if it isn't built.

February 24, 2022

2252

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-04-06.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-04-06.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-03-23.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-03-23.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/idt-programmatic-download.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/idt-programmatic-download.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html

AWS IoT Greengrass Developer Guide, Version 2

Shadow manager v2.1.0
released

Shadow manager component
v2.1.0 is available. This
release adds the option
to configure the interval
where the component syncs
shadows with AWS IoT Core.
For example, you can specify
a longer interval to reduce
bandwidth usage and charges.

February 3, 2022

Dockerfile and Docker images
for AWS IoT Greengrass Core
software v2.5.3

The Dockerfile and Docker
image for AWS IoT Greengrass
Core software v2.5.3 are now
available.

January 12, 2022

AWS IoT Device Tester v4.5.1
with GGV2Q v2.3.0 released

Version 4.5.1 of IDT for AWS
IoT Greengrass V2 is available
. This release includes the
AWS IoT Greengrass V2 q
ualification suite (GGV2Q)
v2.3.0, and supports validatin
g and qualifying Linux-based
devices that use a hardware
security module (HSM) to
store the private key and
certificate used by AWS IoT
Greengrass Core software.

January 11, 2022

2253

https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-greengrass-docker.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-greengrass-docker.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-greengrass-docker.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass Core
v2.5.3 software update

This release provides version
2.5.3 of the Greengrass
nucleus component and
updates AWS-provided
components. It includes
support for you to configure
the AWS IoT Greengrass Core
software to use a private
key and certificate that you
securely store in a hardware
security module (HSM).

January 6, 2022

Dockerfile and Docker images
for AWS IoT Greengrass Core
software v2.5.2

The Dockerfile and Docker
image for AWS IoT Greengrass
Core software v2.5.2 are now
available.

December 20, 2021

AWS IoT Device Tester v4.4.1
with GGV2Q v2.2.1 released

Version 4.4.1 of IDT for AWS
IoT Greengrass V2 is available.
This release includes the AWS
IoT Greengrass V2 qualificat
ion suite (GGV2Q) v2.2.1,
and supports Greengrass
nucleus version 2.5.2 for
device qualification.

December 12, 2021

Perform machine learning
inference using Amazon
Lookout for Vision

Added information about how
to perform machine learning
inference using Lookout for
Vision on Greengrass core
devices. Lookout for Vision
uses computer vision to find
visual defects in industrial
products.

December 8, 2021

2254

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-01-06.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2022-01-06.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-greengrass-docker.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-greengrass-docker.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-greengrass-docker.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/use-lookout-for-vision.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/use-lookout-for-vision.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/use-lookout-for-vision.html

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Device Tester v4.4.1
with GGV2Q v2.2.0 released

Version 4.4.1 of IDT for AWS
IoT Greengrass V2 is available.
This release includes the AWS
IoT Greengrass V2 qualificat
ion suite (GGV2Q) v2.2.0,
and supports Greengrass
nucleus version 2.5.2 for
device qualification.

December 6, 2021

AWS IoT Greengrass Core
v2.5.2 software update

This release provides version
2.5.2 of the Greengrass
nucleus component and
updates AWS-provided
components. It fixes an issue
with the Windows service that
occurs after the Greengras
s nucleus updates. It also
includes support for the
AWS IoT Device Defender
component on Windows
devices.

December 3, 2021

New edge connector for
Kinesis Video Streams
component

Version 1.0.0 of the edge
connector for Kinesis Video
Streams component is
available. This AWS-provi
ded reads video feeds from
local cameras and publishes
the streams to Kinesis Video
Streams. This component
integrates with AWS IoT
TwinMaker, which enables
you to view and manage
video streams and other data
in Grafana dashboards.

November 30, 2021

2255

https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2021-12-03.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2021-12-03.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/kvs-edge-connector-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/kvs-edge-connector-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/kvs-edge-connector-component.html

AWS IoT Greengrass Developer Guide, Version 2

Manage Greengrass core
devices with AWS Systems
Manager

Added information about how
to manage Greengrass core
devices with AWS Systems
Manager. Systems Manager is
an AWS service that enables
you to view operational data,
automate operation tasks,
and maintain security and
compliance.

November 29, 2021

Greengrass Development Kit
CLI

Added information about
the AWS IoT Greengrass
Development Kit Command-
Line Interface (GDK CLI),
which is a tool that you
can download to your local
development computer to
help you develop custom
Greengrass components. You
can use the GDK CLI to create,
build, and publish custom
components.

November 29, 2021

Community-provided
Greengrass components

Added information about
the Greengrass Software
Catalog, which is an index
of Greengrass component
s that are developed by the
Greengrass community.
From this catalog, you can
download, modify, and deploy
components to create your
Greengrass applications.

November 29, 2021

2256

https://docs.aws.amazon.com/greengrass/v2/developerguide/manage-with-systems-manager.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/manage-with-systems-manager.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/manage-with-systems-manager.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-development-kit-cli.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-software-catalog.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-software-catalog.html

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass Core
v2.5.1 software update

This release provides version
2.5.1 of the Greengrass
nucleus component and
updates AWS-provided
components. It includes
support for 32-bit Java on
Windows devices. It also fixes
issues with the new thing
group removal behavior and
loading system environment
variables on Windows devices.

November 23, 2021

AWS IoT Device Tester v4.4.0
with GGV2Q v2.1.0 released

Version 4.4.0 of IDT for AWS
IoT Greengrass V2 is available.
This release includes the AWS
IoT Greengrass V2 qualificat
ion suite (GGV2Q) v2.1.0,
and supports qualification of
Windows-based Greengrass
devices running Greengrass
nucleus version 2.5.0.

November 19, 2021

AWS IoT Greengrass Core
v2.5.0 software update

This release provides version
2.5.0 of the Greengrass
nucleus component and
updates AWS-provided
components. It includes
support for running the AWS
IoT Greengrass Core software
on Windows devices. It also
changes the thing group
removal behavior and adds
support for HTTPS proxies.

November 12, 2021

2257

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2021-11-23.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2021-11-23.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2021-11-12.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2021-11-12.html

AWS IoT Greengrass Developer Guide, Version 2

SageMaker AI Edge Manager
v1.1.0 released

Amazon SageMaker AI Edge
Manager component v1.1.0
is available. This release adds
support for Greengrass core
devices running Amazon Linux
2, and adds a new configura
tion parameter to specify the
location of the capture data
folder on your device.

November 3, 2021

Cross-service confused deputy
prevention update

AWS IoT Greengrass
V2 supports using the
aws:SourceArn and
aws:SourceAccount
global condition context keys
in IAM resource policies to
prevent the confused deputy
problem.

November 1, 2021

Client device component
updates

Client device auth v2.0.3,
IP detector v2.1.0, MQTT
bridge v2.1.0, and MQTT
broker (Moquette) v2.0.2 are
available. This release adds
full support for non-defau
lt MQTT broker ports and
includes other bug fixes and
improvements.

October 28, 2021

2258

https://docs.aws.amazon.com/greengrass/v2/developerguide/sagemaker-edge-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/sagemaker-edge-manager-component.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/cross-service-confused-deputy-prevention.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/cross-service-confused-deputy-prevention.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-device-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-device-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/client-device-auth-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/ip-detector-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/mqtt-bridge-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/mqtt-bridge-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/mqtt-broker-moquette-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/mqtt-broker-moquette-component.html

AWS IoT Greengrass Developer Guide, Version 2

Shadow manager v2.0.4
released

Shadow manager component
v2.0.4 is available. This
release fixes an issue that
caused shadow manager
to delete newly created
versions of any shadow that
was previously deleted.
Beginning with this release,
the DeleteThingShadow
IPC operation increments the
shadow version.

October 20, 2021

Log manager v2.2.0 released Log manager component
v2.2.0 is available. Log
manager now supports
using a configuration map
to provide component log
configurations.

October 20, 2021

Lambda manager v2.1.4
released

Lambda manager component
v2.1.4 is available. This
release fixes an issue that
caused Lambda functions
that use NodeJS runtimes to
process only one message.

October 20, 2021

Use interprocess communica
tion, AWS credentials, and
stream manager in Docker
container components

Added information about
how to use interprocess
communication (IPC), AWS
credentials, and stream
manager in your custom
Docker container component
s.

October 19, 2021

2259

https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/shadow-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/log-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lambda-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lambda-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-docker-container.html#docker-container-ipc
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-docker-container.html#docker-container-ipc
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-docker-container.html#docker-container-ipc
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-docker-container.html#docker-container-ipc

AWS IoT Greengrass Developer Guide, Version 2

New nucleus telemetry
emitter component

Version 1.0.0 of the nucleus
telemetry emitter component
is available. This AWS-provi
ded component gathers
system health telemetry data
and publishes it continually to
a local topic and an AWS IoT
Core MQTT topic.

September 30, 2021

Allow device traffic through a
proxy or firewall

Added information about
the endpoints and ports that
Greengrass core device use,
so you can restrict traffic as a
security measure.

September 16, 2021

AWS IoT Device Tester v4.2.0
with GGV2Q v2.0.1 released

Version 4.2.0 of IDT for
AWS IoT Greengrass V2 has
been updated with AWS IoT
Greengrass V2 qualification
suite (GGV2Q) v2.0.1. This
release supports Greengras
s nucleus version 2.4.0 for
device qualification.

August 31, 2021

Updated machine learning
installer components

DLR installer component
v1.6.5 and TensorFlow
Lite installer component
v2.5.4 are available. These
component versions include
the new UseInstaller
configuration parameter that
lets you disable the default
installation script.

August 30, 2021

2260

https://docs.aws.amazon.com/greengrass/v2/developerguide/nucleus-emitter-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/nucleus-emitter-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/allow-device-traffic.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/allow-device-traffic.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/machine-learning-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/machine-learning-components.html

AWS IoT Greengrass Developer Guide, Version 2

Embedded Linux support for
AWS IoT Greengrass

The BitBake recipe for AWS
IoT Greengrass V2 is available
in the meta-aws project
on GitHub. You can use this
recipe to build a custom
Linux-based operating system
using the Yocto Project.

August 20, 2021

Code integrity Added information about
how AWS IoT Greengrass
V2 verifies the integrity of
software that Greengrass core
devices download from the
AWS Cloud.

August 19, 2021

VPC endpoints (AWS PrivateLi
nk)

AWS IoT Greengrass now
supports interface VPC
endpoints (AWS PrivateLink)
for the AWS IoT Greengras
s control plane. You can
establish a private connectio
n between your VPC and the
AWS IoT Greengrass control
plane.

August 16, 2021

Stream manager v2.0.12
released

Stream manager v2.0.12 is
now available. This release
fixes an issue that prevented
 upgrades from version
2.0.7 of the stream manager
component to a version
between v2.0.8 and v2.0.11.

August 10, 2021

Dockerfile and Docker images
for AWS IoT Greengrass Core
software v2.4.0

The Dockerfile and Docker
image for AWS IoT Greengrass
Core software v2.4.0 are now
available.

August 9, 2021

2261

https://docs.aws.amazon.com/greengrass/v2/developerguide/setting-up.html#greengrass-v2-supported-platforms
https://docs.aws.amazon.com/greengrass/v2/developerguide/setting-up.html#greengrass-v2-supported-platforms
https://docs.aws.amazon.com/greengrass/v2/developerguide/code-integrity.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-greengrass-docker.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-greengrass-docker.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-greengrass-docker.html

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass Core
v2.4.0 software update

This release provides version
2.4.0 of the Greengrass
nucleus component and
updates AWS-provided
components. It includes
support for component
system resource limits, IPC
operations to pause and
resume components, and
provisioning plugins.

August 3, 2021

New AWS IoT SiteWise
components

Added the following AWS-
provided components for
AWS IoT SiteWise: IoT
SiteWise OPC-UA collector,
IoT SiteWise publisher, and
IoT SiteWise processor.

July 29, 2021

AWS IoT Device Tester v4.2.0
with GGV2Q v2.0.0 released

Version 4.2.0 of IDT for AWS
IoT Greengrass V2 is available
. This release includes the
AWS IoT Greengrass V2 q
ualification suite (GGV2Q)
v2.0.0 and includes support
for optional qualification
tests for Docker components,
machine learning, and stream
manager.

July 14, 2021

AWS IoT Greengrass Core IPC
library available in AWS IoT
Device SDK for C++ v2

Version 1.13.0 of the AWS
IoT Device SDK for C++ v2
supports AWS IoT Greengrass
Core IPC, so you can develop
components in C++ that
interact with the AWS IoT
Greengrass Core software.

July 14, 2021

2262

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2021-08-03.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2021-08-03.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/iotsitewise-opcua-collector-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/iotsitewise-opcua-collector-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/iotsitewise-publisher-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/iotsitewise-processor-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/interprocess-communication.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/interprocess-communication.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/interprocess-communication.html

AWS IoT Greengrass Developer Guide, Version 2

SageMaker AI Edge Manager
component v1.0.2 released

Amazon SageMaker AI Edge
Manager component v1.0.2
is available. This release
updates the installation script
in the component lifecycle.
Your core devices must now
have Python 3.6 or later,
including pip for your version
of Python, installed on the
device before you deploy this
component.

July 12, 2021

Support update for AWS IoT
Device Tester for AWS IoT
Greengrass V2

IDT for AWS IoT Greengrass
V2 version 4.1.0 now supports
using Greengrass nucleus
version 2.3.0 for device
qualification.

July 8, 2021

Dockerfile and Docker images
for AWS IoT Greengrass Core
software v2.3.0

The Dockerfile and Docker
image for AWS IoT Greengrass
Core software v2.3.0 are now
available.

July 7, 2021

AWS managed policies Added information about
AWS managed policies for
AWS IoT Greengrass.

July 2, 2021

New recommended JVM
options

Added information about
recommended JVM options
to control memory allocation
for AWS IoT Greengrass Core
software.

June 30, 2021

2263

https://docs.aws.amazon.com/greengrass/v2/developerguide/sagemaker-edge-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/sagemaker-edge-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-greengrass-docker.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-greengrass-docker.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-greengrass-docker.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/security-iam-aws-managed-policies
https://docs.aws.amazon.com/greengrass/v2/developerguide/configure-greengrass-core-v2#jvm-tuning
https://docs.aws.amazon.com/greengrass/v2/developerguide/configure-greengrass-core-v2#jvm-tuning

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Greengrass Core
v2.3.0 software update

This release provides version
2.3.0 of the Greengrass
nucleus component and
updates AWS-provided
components. It includes
support for large component
configuration documents in
deployments.

June 29, 2021

Dockerfile and Docker images
for AWS IoT Greengrass Core
software v2.2.0

The Dockerfile and Docker
image for AWS IoT Greengrass
Core software v2.2.0 are now
available.

June 28, 2021

AWS IoT Device Tester v4.1.0
with GGV2Q v1.1.1 released

Version 4.1.0 of IDT for AWS
IoT Greengrass V2 is available.
This release includes the AWS
IoT Greengrass V2 qualificat
ion suite (GGV2Q) v1.1.1 and
supports using Greengrass
nucleus v2.2.0, v2.1.0, and
v2.0.5 for device qualification.

June 18, 2021

AWS IoT Greengrass Core
v2.2.0 software update

This release provides version
2.2.0 of the Greengrass
nucleus component and
updates AWS-provided
components. It includes
components that you can
deploy to add support for
client devices and add the
local shadow service.

June 18, 2021

2264

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2021-06-29.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2021-06-29.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-greengrass-docker.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-greengrass-docker.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-greengrass-docker.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2021-06-18.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2021-06-18.html

AWS IoT Greengrass Developer Guide, Version 2

Lambda launcher v2.0.6
released

Version 2.0.6 of the Lambda
launcher component is
available. This version
includes performance
improvements and bug fixes.

June 13, 2021

New SageMaker AI Edge
Manager component released

Version 1.0.0 of the Amazon
SageMaker AI Edge Manager
component is available for
AWS IoT Greengrass. This
component installs the
SageMaker AI Edge Manager
agent binary on Greengrass
core devices.

June 10, 2021

Component types Added information about
component types in AWS IoT
Greengrass. The component
type specifies how the AWS
IoT Greengrass Core software
runs a component.

June 3, 2021

AWS IoT Device Tester v4.0.2
with GGV2Q v1.1.0 released

Version 4.0.2 of IDT for AWS
IoT Greengrass V2 is available
. This release includes the
AWS IoT Greengrass V2 q
ualification suite (GGV2Q)
v1.1.0 and supports using
Greengrass nucleus v2.1.0
with Greengrass CLI v2.1.0
for device qualification. This
also includes new required
test groups for MQTT and
Lambda, and other minor bug
fixes and improvements.

May 5, 2021

2265

https://docs.aws.amazon.com/greengrass/v2/developerguide/lambda-launcher-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/lambda-launcher-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/sagemaker-edge-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/sagemaker-edge-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/manage-components.html#component-types
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html

AWS IoT Greengrass Developer Guide, Version 2

Dockerfile and Docker images
for AWS IoT Greengrass Core
software v2.1.0

The Dockerfile and Docker
image for AWS IoT Greengrass
Core software v2.1.0 are now
available. The Docker image
enables you to run the AWS
IoT Greengrass Core software
in a Docker container that
uses Amazon Linux 2 as the
base operating system.

April 27, 2021

AWS IoT Greengrass Core
v2.1.0 software update

This release provides version
2.1.0 of the Greengrass
nucleus component and
updates AWS-provided
components. It includes a new
component that you can use
to download Docker images
from private Amazon ECR
repositories, and new sample
components to perform
machine learning inference
using TensorFlow Lite.

April 26, 2021

Example component that uses
Secrets Manager

Added an example
component that prints the
value of an AWS Secrets
Manager secret that you
deploy to a core device.

April 8, 2021

Minimal AWS IoT policy for
Greengrass core devices

Added information about
the minimal set of permissio
ns required to support basic
Greengrass functionality on a
core device.

April 2, 2021

2266

https://docs.aws.amazon.com/greengrass/v2/developerguide/run-greengrass-docker.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-greengrass-docker.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/run-greengrass-docker.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2021-04-26.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2021-04-26.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/ipc-secret-manager.html#ipc-secret-manager-examples
https://docs.aws.amazon.com/greengrass/v2/developerguide/ipc-secret-manager.html#ipc-secret-manager-examples
https://docs.aws.amazon.com/greengrass/v2/developerguide/device-auth.html#greengrass-core-minimal-iot-policy
https://docs.aws.amazon.com/greengrass/v2/developerguide/device-auth.html#greengrass-core-minimal-iot-policy

AWS IoT Greengrass Developer Guide, Version 2

Subscribe to IPC event
streams

Added information about
how to use interprocess
communication (IPC)
operations to subscribe
to streams of events on a
Greengrass core device.

April 1, 2021

Support update for AWS IoT
Device Tester for AWS IoT
Greengrass

IDT for AWS IoT Greengrass
V2 version 4.0.1 now supports
using Greengrass nucleus
version 2.0.5 with Greengra
ss CLI version 2.0.5 for device
qualification.

March 17, 2021

Create custom components
that use stream manager

Added information about
how to configure component
recipes and artifacts to
develop applications that
manage data streams.

March 9, 2021

AWS IoT Greengrass Core
v2.0.5 software update

This release provides version
2.0.5 of the Greengrass
nucleus component and
updates AWS-provided
components. It fixes an
issue with network proxy
support and an issue with
the Greengrass data plane
endpoint in AWS China
Regions.

March 9, 2021

2267

https://docs.aws.amazon.com/greengrass/v2/developerguide/interprocess-communication.html#ipc-subscribe-operations
https://docs.aws.amazon.com/greengrass/v2/developerguide/interprocess-communication.html#ipc-subscribe-operations
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/use-stream-manager-in-custom-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/use-stream-manager-in-custom-components.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2021-03-09.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2021-03-09.html

AWS IoT Greengrass Developer Guide, Version 2

Component environment
variable reference

Added information about the
environment variables that
the AWS IoT Greengrass Core
software sets for components.
You can use these environme
nt variables to get the thing
name, AWS Region, and
Greengrass nucleus version.

February 23, 2021

Manual installation Added information about
how to create required AWS
resources manually or to
install behind a firewall or
network proxy. By using a
manual installation, you don't
need to give the installer
permission to create resources
in your AWS account, because
you create the the required
AWS IoT and IAM resources.
You can also configure your
device to connect on port 443
or through a network proxy.

February 17, 2021

AWS IoT Greengrass Core IPC
library update in AWS IoT
Device SDK for Python v2

Version 1.5.4 of the AWS IoT
Device SDK for Python v2
simplifies the steps required
to connect to the AWS IoT
Greengrass Core IPC service.

February 11, 2021

Support update for AWS IoT
Device Tester for AWS IoT
Greengrass

IDT for AWS IoT Greengrass
V2 version 4.0.1 now supports
using Greengrass nucleus
version 2.0.4 with Greengra
ss CLI version 2.0.4 for device
qualification.

February 5, 2021

2268

https://docs.aws.amazon.com/greengrass/v2/developerguide/component-environment-variables.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/component-environment-variables.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/manual-installation.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/interprocess-communication.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/interprocess-communication.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/interprocess-communication.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/dev-test-versions.html

AWS IoT Greengrass Developer Guide, Version 2

New tutorial to import
Lambda functions

Added a new console-based
tutorial to import a Lambda
function as a component
that runs on Greengrass core
device.

February 5, 2021

AWS IoT Greengrass Core
v2.0.4 software update

This release provides version
2.0.4 of the Greengras
s nucleus component. It
includes the new greengras
sDataPlanePort
parameter to configure
HTTPS communication over
port 443 and fixes bugs.
The minimal IAM policy now
requires the iam:GetPo
licy and sts:GetCa
llerIdentity when the
AWS IoT Greengrass Core
software installer is run with
--provision true .

February 4, 2021

New secure tunneling
component released

Version 1.0.0 of the secure
tunneling component
is available for AWS IoT
Greengrass. This AWS-provi
ded component uses AWS
IoT secure tunneling to
establish secure bidirecti
onal communication with a
Greengrass core device that is
behind restricted firewalls.

January 21, 2021

2269

https://docs.aws.amazon.com/greengrass/v2/developerguide/import-lambda-function-console.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/import-lambda-function-console.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2021-02-04.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2021-02-04.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/secure-tunneling-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/secure-tunneling-component.html

AWS IoT Greengrass Developer Guide, Version 2

AWS IoT Device Tester for
AWS IoT Greengrass v4.0.1
released

Version 4.0.1 of IDT for AWS
IoT Greengrass V2 is available
. This version enables you to
use IDT to develop and run
your custom test suites for
device validation. This also
 includes code signed IDT
applications for macOS and
Windows.

December 22, 2020

Initial release of AWS IoT
Greengrass Version 2

AWS IoT Greengrass V2 is a
new major version release
of AWS IoT Greengrass. This
version adds several features
such as modular software
components and continuous
deployments. These features
make it easier for you to
develop and manage edge
applications.

December 15, 2020

2270

https://docs.aws.amazon.com/greengrass/v2/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/device-tester-for-greengrass-ug.html
https://docs.aws.amazon.com/greengrass/v2/developerguide
https://docs.aws.amazon.com/greengrass/v2/developerguide

AWS IoT Greengrass Developer Guide, Version 2

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

2271

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	AWS IoT Greengrass
	Table of Contents
	What is AWS IoT Greengrass?
	New features
	For first-time users of AWS IoT Greengrass
	For existing users of AWS IoT Greengrass V1
	How AWS IoT Greengrass works
	Key concepts for AWS IoT Greengrass
	Features of AWS IoT Greengrass
	AWS IoT Greengrass Core software

	Greengrass feature compatibility by operating system
	Choosing your AWS IoT Greengrass nucleus runtime
	Greengrass nucleus
	Greengrass nucleus lite
	Current limitations of Greengrass nucleus lite

	What's new in AWS IoT Greengrass Version 2
	Release: AWS IoT Greengrass Core v2.14.0 software update on December 16, 2024
	Public component updates

	Release: AWS IoT Greengrass Core v2.13.0 software update on August 26, 2024
	Public component updates

	Release: AWS IoT Greengrass Core v2.12.6 software update on May 24, 2024
	Public component updates

	Release: AWS IoT Greengrass Core v2.12.5 software update on April 25, 2024
	Public component updates

	Release: AWS IoT Greengrass Core v2.12.4 software update on April 02, 2024
	Public component updates

	Release: AWS IoT Greengrass Core v2.12.3 software update on March 27, 2024
	Public component updates

	Release: AWS IoT Greengrass Core v2.12.2 software update on February 15, 2024
	Public component updates

	Release: AWS IoT Greengrass Core v2.12.1 software update on December 8, 2023
	Public component updates

	Release: AWS IoT Greengrass Core v2.12.0 software update on November 7, 2023
	Public component updates

	Release: AWS IoT Greengrass Core v2.11.3 software update on October 18, 2023
	Public component updates

	Release: AWS IoT Greengrass Core v2.11.2 software update on August 9, 2023
	Public component updates

	Release: AWS IoT Greengrass Core v2.11.1 software update on July 21, 2023
	Public component updates

	Release: AWS IoT Greengrass Core v2.11.0 software update on June 28, 2023
	Public component updates

	Release: AWS IoT Greengrass Core v2.10.3 software update on June 21, 2023
	Public component updates

	Release: AWS IoT Greengrass Core v2.10.2 software update on June 5, 2023
	Public component updates

	Release: AWS IoT Greengrass Core v2.10.1 software update on May 11, 2023
	Public component updates

	Release: AWS IoT Greengrass Core v2.10.0 software update on May 9, 2023
	Public component updates

	Release: AWS IoT Greengrass Core v2.9.6 software update on April 20, 2023
	Public component updates

	Release: AWS IoT Greengrass Core v2.9.5 software update on March 30, 2023
	Public component updates

	Release: AWS IoT Greengrass Core v2.9.4 software update on February 24, 2023
	Public component updates

	Release: AWS IoT Greengrass Core v2.9.3 software update on February 01, 2023
	Public component updates

	Release: AWS IoT Greengrass Core v2.9.2 software update on December 22, 2022
	Public component updates

	Release: AWS IoT Greengrass Core v2.9.1 software update on November 18, 2022
	Public component updates

	Release: AWS IoT Greengrass Core v2.9.0 software update on November 15, 2022
	Public component updates

	Release: AWS IoT Greengrass Core v2.8.1 software update on October 13, 2022
	Public component updates

	Release: AWS IoT Greengrass Core v2.8.0 software update on October 7, 2022
	Public component updates

	Release: AWS IoT Greengrass Core v2.7.0 software update on July 28, 2022
	Public component updates

	Release: AWS IoT Greengrass Core v2.6.0 software update on June 27, 2022
	Public component updates

	Release: AWS IoT Greengrass Core v2.5.6 software update on May 31, 2022
	Public component updates

	Release: AWS IoT Greengrass Core v2.5.5 software update on April 6, 2022
	Public component updates

	Release: AWS IoT Greengrass Core v2.5.4 software update on March 23, 2022
	Public component updates

	Release: AWS IoT Greengrass Core v2.5.3 software update on January 6, 2022
	Public component updates

	Release: AWS IoT Greengrass Core v2.5.2 software update on December 3, 2021
	Public component updates

	Release: AWS IoT Greengrass Core v2.5.1 software update on November 23, 2021
	Public component updates

	Release: AWS IoT Greengrass Core v2.5.0 software update on November 12, 2021
	Platform support updates
	Public component updates

	Release: AWS IoT Greengrass Core v2.4.0 software update on August 3, 2021
	Public component updates

	Release: AWS IoT Greengrass Core v2.3.0 software update on June 29, 2021
	Public component updates

	Release: AWS IoT Greengrass Core v2.2.0 software update on June 18, 2021
	Public component updates

	Release: AWS IoT Greengrass Core v2.1.0 software update on April 26, 2021
	Platform support updates
	Public component updates

	Release: AWS IoT Greengrass Core v2.0.5 software update on March 09, 2021
	Public component updates

	Release: AWS IoT Greengrass Core v2.0.4 software update on February 04, 2021
	Public component updates

	Migrate from AWS IoT Greengrass Version 1
	Can I run my V1 applications on V2?
	Migration overview
	Differences between AWS IoT Greengrass V1 and AWS IoT Greengrass V2
	Validate V1 core devices can run V2 software
	Set up a new V2 core device to test V1 applications
	Step 1: Install AWS IoT Greengrass V2 on a new device
	(Optional) Enable logging to Amazon CloudWatch Logs

	Step 2: Create and deploy AWS IoT Greengrass V2 components to migrate AWS IoT Greengrass V1 applications
	Import V1 Lambda functions
	Use V1 connectors
	Run Docker containers
	Run machine learning inference
	Connect V1 Greengrass devices
	Enable the local shadow service
	Integrate with AWS IoT SiteWise

	Step 3: Test your AWS IoT Greengrass V2 applications

	Upgrade Greengrass V1 core devices to Greengrass V2
	Step 1: Install the AWS IoT Greengrass Core software v2.x
	Uninstall AWS IoT Greengrass Core v1.x before you install v2.x
	Install AWS IoT Greengrass Core software v2.x on a device already running v1.x

	Step 2: Deploy AWS IoT Greengrass V2 components to the core devices

	Tutorial: Getting started with AWS IoT Greengrass V2
	Prerequisites
	Step 1: Set up an AWS account
	Sign up for an AWS account
	Create a user with administrative access

	Step 2: Set up your environment
	Set up a Linux device (Raspberry Pi)
	Set up a Linux device (other)
	Set up a Windows device

	Step 3: Install the AWS IoT Greengrass Core software
	Install the AWS IoT Greengrass Core software (console)
	Install the AWS IoT Greengrass Core software (CLI)
	(Optional) Run the Greengrass software (Linux)
	Verify the Greengrass CLI installation on the device

	Step 4: Develop and test a component on your device
	Step 5: Create your component in the AWS IoT Greengrass service
	Create your component in AWS IoT Greengrass (console)
	Create your component in AWS IoT Greengrass (AWS CLI)

	Step 6: Deploy your component
	Deploy your component (console)
	Deploy your component (AWS CLI)

	Next steps

	Setting up AWS IoT Greengrass core devices
	Supported platforms
	Device requirements
	Lambda function requirements
	Set up an AWS account
	Install the AWS IoT Greengrass Core software
	Install AWS IoT Greengrass Core software with automatic resource provisioning
	Set up the device environment
	Set up a Linux device
	Set up a Windows device

	Provide AWS credentials to the device
	Download the AWS IoT Greengrass Core software
	Install the AWS IoT Greengrass Core software

	Install AWS IoT Greengrass Core software with manual resource provisioning
	Retrieve AWS IoT endpoints
	Create an AWS IoT thing
	Create the thing certificate
	Create the certificate and private key in the AWS IoT service
	Create the certificate from a private key in an HSM

	Configure the thing certificate
	Create a token exchange role
	Download certificates to the device
	Download certificates with private key and certificate files
	Download certificates with the private key and certificate in an HSM

	Set up the device environment
	Set up a Linux device
	Set up a Windows device

	Download the AWS IoT Greengrass Core software
	Install the AWS IoT Greengrass Core software
	Install the AWS IoT Greengrass Core software with private key and certificate files
	Install the AWS IoT Greengrass Core software with the private key and certificate in an HSM

	Install AWS IoT Greengrass Core software with AWS IoT fleet provisioning
	Prerequisites
	Retrieve AWS IoT endpoints
	Download certificates to the device
	Set up the device environment
	Set up a Linux device
	Set up a Windows device

	Download the AWS IoT Greengrass Core software
	Download the AWS IoT fleet provisioning plugin
	Install the AWS IoT Greengrass Core software
	Set up AWS IoT fleet provisioning for Greengrass core devices
	Create a token exchange role
	Create an AWS IoT policy
	Create a fleet provisioning template
	Create a provisioning claim certificate and private key

	Configure the AWS IoT fleet provisioning plugin
	AWS IoT fleet provisioning plugin changelog

	Install AWS IoT Greengrass Core software with custom resource provisioning
	Prerequisites
	Set up the device environment
	Set up a Linux device
	Set up a Windows device

	Download the AWS IoT Greengrass Core software
	Install the AWS IoT Greengrass Core software
	Develop custom provisioning plugins
	Requirements
	Implement the DeviceIdentityInterface interface
	The DeviceIdentityInterface interface

	Installer arguments

	Run the AWS IoT Greengrass Core software
	Check if the AWS IoT Greengrass Core software runs as a system service
	Run the AWS IoT Greengrass Core software as a system service
	Run the AWS IoT Greengrass Core software without a system service

	Run AWS IoT Greengrass Core software in a Docker container
	Supported platforms and requirements
	Run components in process mode

	AWS IoT Greengrass Docker software downloads
	Choose how to provision AWS resources
	Build the AWS IoT Greengrass container image from a Dockerfile
	Download the Dockerfile package
	Specify the AWS IoT Greengrass Core software version
	Set environment variables
	Specify the dependencies to install
	Build the AWS IoT Greengrass image

	Run AWS IoT Greengrass in a Docker container with automatic resource provisioning
	Prerequisites
	Configure your AWS credentials
	Create an environment file
	Run the AWS IoT Greengrass Core software in a container
	Next steps

	Run AWS IoT Greengrass in a Docker container with manual resource provisioning
	Prerequisites
	Retrieve AWS IoT endpoints
	Create an AWS IoT thing
	Create the thing certificate
	Configure the thing certificate
	Create a token exchange role
	Download certificates to the device
	Create a configuration file
	Create an environment file
	Run the AWS IoT Greengrass Core software in a container
	Next steps

	Troubleshooting AWS IoT Greengrass in a Docker container
	Troubleshooting issues with running the Docker container
	Error: Cannot perform an interactive login from a non TTY device
	Error: Unknown options: -no-include-email
	Error: A firewall is blocking file Sharing between windows and the containers.
	Error: An error occurred (AccessDeniedException) when calling the GetAuthorizationToken operation: User: arn:aws:iam::account-id:user/<user-name> is not authorized to perform: ecr:GetAuthorizationToken on resource: *
	Error: You have reached your pull rate limit

	Debugging AWS IoT Greengrass in a Docker container
	Persist Greengrass logs outside of the Docker container
	Attach an interactive shell to the Docker container

	Configure the AWS IoT Greengrass Core software
	Deploy the Greengrass nucleus component
	Configure the Greengrass nucleus as a system service
	Configure the nucleus as a system service (Linux)
	Configure the nucleus as a system service (Windows)

	Control memory allocation with JVM options
	Configure the user that runs components
	Set up a component user on Windows devices
	Configure the default component user

	Configure system resource limits for components
	Configure default system resource limits

	Connect on port 443 or through a network proxy
	Configure MQTT over port 443
	Configure MQTT over port 443 on existing core devices
	Configure MQTT over port 443 during installation

	Configure HTTPS over port 443
	Configure HTTPS over port 443 on existing core devices
	Configure HTTPS over port 443 during installation

	Configure a network proxy
	Configure a network proxy on existing core devices
	Configure a network proxy during installation
	Enable the core device to trust an HTTPS proxy
	The networkProxy object

	Use a device certificate signed by a private CA
	Configure MQTT timeouts and cache settings
	Configure Greengrass Nucleus on IPv6 network

	Update the AWS IoT Greengrass Core software (OTA)
	Requirements
	Considerations for core devices
	Greengrass nucleus update behavior
	Perform an OTA update

	Uninstall the AWS IoT Greengrass Core software

	AWS IoT Greengrass V2 tutorials
	Tutorial: Develop a Greengrass component that defers component updates
	Prerequisites
	Step 1: Install the Greengrass Development Kit CLI
	Step 2: Develop a component that defers updates
	Step 3: Publish the component to the AWS IoT Greengrass service
	Step 4: Deploy and test the component on a core device

	Tutorial: Interact with local IoT devices over MQTT
	Prerequisites
	Step 1: Review and update the core device AWS IoT policy
	Step 2: Enable client device support
	Step 3: Connect client devices
	Step 4: Develop a component that communicates with client devices
	Step 5: Develop a component that interacts with client device shadows

	Tutorial: Get started with SageMaker AI Edge Manager
	Prerequisites
	Set up your Greengrass core device in SageMaker AI Edge Manager
	Create an edge device fleet
	Register your Greengrass core device

	Create the sample components
	Run sample image classification inference
	Subscribe to the notifications topic
	Deploy the sample components
	To deploy your components (console)
	To deploy your components (AWS CLI)

	View inference results

	Tutorial: Perform sample image classification inference using TensorFlow Lite
	Prerequisites
	Step 1: Subscribe to the default notifications topic
	Step 2: Deploy the TensorFlow Lite image classification component
	To deploy the TensorFlow Lite image classification component (console)
	To deploy the TensorFlow Lite image classification component (AWS CLI)

	Step 3: View inference results
	Next steps

	Tutorial: Perform sample image classification inference on images from a camera using TensorFlow Lite
	Prerequisites
	Step 1: Configure the camera module on your device
	Step 2: Verify your subscription to the default notifications topic
	Step 3: Modify the TensorFlow Lite image classification component configuration and deploy it
	To configure and deploy the TensorFlow Lite image classification component (console)
	To configure and deploy the TensorFlow Lite image classification component (AWS CLI)

	Step 4: View inference results
	Next steps

	Components
	AWS-provided components
	Greengrass nucleus
	Versions
	Device requirements
	Supported platforms
	Feature considerations for Windows devices

	Operating system
	Requirements
	Dependencies
	Download and installation
	Configuration
	Local log file
	Changelog

	Greengrass nucleus lite
	Versions
	Operating system
	Requirements
	Compatibility
	Download and installation
	Configuration
	Local log file
	Changelog

	Client device auth
	Versions
	Type
	Operating system
	Requirements
	Endpoints and ports

	Dependencies
	Configuration
	Local log file
	Changelog

	CloudWatch metrics
	Versions
	Type
	Operating system
	Requirements
	Endpoints and ports

	Dependencies
	Configuration
	Input data
	Output data
	Licenses
	Local log file
	Changelog
	See also

	AWS IoT Device Defender
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Input data
	Output data
	Local log file
	Licenses
	Changelog

	Disk spooler
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Usage
	Local log file
	Changelog

	Docker application manager
	Versions
	Type
	Operating system
	Requirements
	Endpoints and ports

	Dependencies
	Configuration
	Local log file
	Changelog
	See also

	Edge connector for Kinesis Video Streams
	Versions
	Type
	Operating system
	Requirements
	Endpoints and ports

	Dependencies
	Configuration
	Licenses
	Usage
	Local log file
	Changelog
	See also

	Greengrass CLI
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Local log file
	Changelog

	IP detector
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Local log file
	Changelog

	Firehose
	Versions
	Type
	Operating system
	Requirements
	Endpoints and ports

	Dependencies
	Configuration
	Input data
	Output data
	Local log file
	Licenses
	Changelog
	See also

	Lambda launcher
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Local log file
	Changelog

	Lambda manager
	Versions
	Operating system
	Type
	Requirements
	Dependencies
	Configuration
	Local log file
	Changelog

	Lambda runtimes
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Local log file
	Changelog

	Legacy subscription router
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Local log file
	Changelog

	Local debug console
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Usage
	Local log file
	Changelog

	Log manager
	Versions
	Type
	Operating system
	Requirements
	Endpoints and ports

	Dependencies
	Configuration
	Usage
	Formats for log entries.

	Local log file
	Changelog

	Machine learning components
	Lookout for Vision Edge Agent
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Local log file
	Changelog

	SageMaker AI Edge Manager
	Versions
	Type
	Operating system
	Requirements
	Endpoints and ports

	Dependencies
	Configuration
	Local log file
	Changelog

	DLR image classification
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Local log file
	Changelog

	DLR object detection
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Local log file
	Changelog

	DLR image classification model store
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Local log file
	Changelog

	DLR object detection model store
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Local log file
	Changelog

	DLR runtime
	Versions
	Type
	Operating system
	Requirements
	Endpoints and ports

	Dependencies
	Configuration
	Usage
	Local log file
	Changelog

	TensorFlow Lite image classification
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Local log file
	Changelog

	TensorFlow Lite object detection
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Local log file
	Changelog

	TensorFlow Lite image classification model store
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Local log file
	Changelog

	TensorFlow Lite object detection model store
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Local log file
	Changelog

	TensorFlow Lite runtime
	Versions
	Type
	Operating system
	Requirements
	Endpoints and ports

	Dependencies
	Configuration
	Usage
	Local log file
	Changelog

	Modbus-RTU protocol adapter
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Input data
	Output data
	Modbus RTU requests and responses
	Example requests and responses
	Response status: Exception
	Response status: No response

	Local log file
	Licenses
	Changelog

	MQTT bridge
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Local log file
	Changelog

	MQTT 3.1.1 broker (Moquette)
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Local log file
	Changelog

	MQTT 5 broker (EMQX)
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Local log file
	Licenses
	Changelog

	Nucleus telemetry emitter
	Versions
	Type
	Operating system
	Dependencies
	Configuration
	Output data
	Usage
	Local log file
	Changelog

	PKCS#11 provider
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Local log file
	Changelog

	Secret manager
	Versions
	Type
	Operating system
	Requirements
	Endpoints and ports

	Dependencies
	Configuration
	Local log file
	Changelog

	Secure tunneling
	Versions
	Type
	Operating system
	Requirements
	Endpoints and ports

	Dependencies
	Configuration
	Local log file
	Licenses
	Usage
	See also
	Changelog

	Shadow manager
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Local log file
	Changelog

	Amazon SNS
	Versions
	Type
	Operating system
	Requirements
	Endpoints and ports

	Dependencies
	Configuration
	Input data
	Output data
	Local log file
	Licenses
	Changelog

	Stream manager
	Versions
	Type
	Operating system
	Requirements
	Endpoints and ports

	Dependencies
	Configuration
	Local log file
	Changelog

	Systems Manager Agent
	Versions
	Type
	Operating system
	Requirements
	Endpoints and ports

	Dependencies
	Configuration
	Local log file
	See also
	Changelog

	Token exchange service
	Versions
	Type
	Operating system
	Dependencies
	Configuration
	Local log file
	Changelog

	IoT SiteWise OPC UA collector
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Input data
	Output data
	Local log file
	Troubleshooting and debugging
	Licenses
	Changelog
	See also

	IoT SiteWise OPC UA data source simulator
	Versions
	Type
	Operating system
	Requirements
	Dependencies
	Configuration
	Local log file
	Changelog
	See also

	IoT SiteWise publisher
	Versions
	Type
	Operating system
	Requirements
	Endpoints and ports

	Dependencies
	Configuration
	Input data
	Local log file
	Troubleshooting and debugging
	Licenses
	Changelog
	See also

	IoT SiteWise processor
	Versions
	Type
	Operating system
	Requirements
	Endpoints and ports

	Dependencies
	Configuration
	Local log file
	Licenses
	

	Changelog
	See also

	Publisher-supported components
	AIShield.Edge
	AI EdgeLabs Sensor
	Greengrass S3 Ingestor

	Community components
	AWS IoT Greengrass development tools
	AWS IoT Greengrass Development Kit Command-Line Interface
	Prerequisites
	Changelog
	Install or update the AWS IoT Greengrass Development Kit Command-Line Interface
	AWS IoT Greengrass Development Kit Command-Line Interface commands
	component
	init
	build
	publish
	list

	config
	update

	test-e2e
	init
	build
	run

	Greengrass Development Kit CLI configuration file
	GDK CLI configuration file format
	GDK CLI configuration file examples
	Hello World (Python)
	Hello World (Java)
	Community components

	Greengrass Command Line Interface
	Install the Greengrass CLI
	Prerequisites
	Deploy the Greengrass CLI component
	To deploy the Greengrass CLI component (console)
	To deploy the Greengrass CLI component (AWS CLI)

	Greengrass CLI commands
	component
	details
	list
	restart
	stop

	deployment
	create
	cancel
	list
	status

	logs
	get
	list-keywords
	list-log-files

	get-debug-password

	Use AWS IoT Greengrass Testing Framework
	How it works
	GTF standalone JAR

	Changelog
	Greengrass Testing Framework configuration options
	GTF configuration options

	Tutorial: Run end-to-end tests using Greengrass Testing Framework and Greengrass Development Kit
	Prerequisites
	Step 1: Initialize a GDK project with a component
	Step 2: Initialize a GDK project with an end-to-end test module
	Step 3: Build a custom test case
	Step 4: Add a tag to the new test case
	Step 5: Build the test JAR
	Step 6: Run the test
	Example: Build a custom test case

	Tutorial: Use a confidence test from the confidence test suite
	Prerequisites
	Step 1: Initialize a GDK project with a component
	Step 2: Initialize a GDK project with an end-to-end test module
	Step 3: Use a test from the confidence test suite
	Step 4: Add a tag to the new test case
	Step 5: Build the test JAR
	Step 6: Run the test
	Example: Use a confidence test

	Develop AWS IoT Greengrass components
	Component lifecycle
	Component types
	Create AWS IoT Greengrass components
	Create a component (GDK CLI)
	Create a component (shell commands)

	Test AWS IoT Greengrass components with local deployments
	Publish components to deploy to your core devices
	Publish a component (GDK CLI)
	Publish a component (shell commands)

	Interact with AWS services
	Run a Docker container
	Requirements
	Run a Docker container from a public image in Amazon ECR or Docker Hub
	Run a Docker container from a private image in Amazon ECR
	Run a Docker container from an image in Amazon S3
	Use interprocess communication in Docker container components
	Use AWS credentials in Docker container components (Linux)
	Use stream manager in Docker container components (Linux)

	AWS IoT Greengrass component recipe reference
	Recipe validation
	Recipe format
	Recipe variables
	Recipe examples
	Hello World component recipe
	Python runtime component example
	Component recipe that specifies several fields

	Component environment variable reference

	Deploy AWS IoT Greengrass components to devices
	Core device deployments
	Platform dependency resolution
	Component dependency resolution
	Removing a device from a thing group
	Deployments
	Deployment options
	Create deployments
	Update component configurations
	Reset updates
	Merge updates
	Use recipe variables in merge updates

	Examples
	Industrial dashboard component recipe

	Create subdeployments
	Revise deployments
	Cancel deployments
	Check deployment status
	Check deployment status
	Check device deployment status

	Logging and monitoring in AWS IoT Greengrass
	Monitoring tools
	Monitor AWS IoT Greengrass logs
	Access file system logs
	Access CloudWatch Logs
	Access system service logs
	Enable logging to CloudWatch Logs
	Configure logging for AWS IoT Greengrass
	AWS CloudTrail logs

	Log AWS IoT Greengrass V2 API calls with AWS CloudTrail
	AWS IoT Greengrass V2 information in CloudTrail
	AWS IoT Greengrass data events in CloudTrail
	AWS IoT Greengrass management events in CloudTrail
	Understanding AWS IoT Greengrass V2 log file entries

	Gather system health telemetry data from AWS IoT Greengrass core devices
	Telemetry metrics
	Configure telemetry agent settings
	Subscribe to telemetry data in EventBridge
	Telemetry events
	Prerequisites to create EventBridge rules
	Create an event rule to get telemetry data (console)
	Create an event rule to get telemetry data (CLI)

	Get deployment and component health status notifications
	Deployment status change event
	Component status change event
	Prerequisites for creating EventBridge rules
	Configure device health notifications (console)
	Configure device health notifications (CLI)
	Configure device health notifications (AWS CloudFormation)
	See also

	Check Greengrass core device status
	Check health of a core device
	Check health of a core device group
	Check core device component status

	Run AWS Lambda functions
	Requirements
	Configure Lambda function lifecycle
	Configure Lambda function containerization
	Import a Lambda function as a component (console)
	Step 1: Choose a Lambda function to import
	Step 2: Configure Lambda function parameters
	Step 3: (Optional) Specify supported platforms for the Lambda function
	Step 4: (Optional) Specify component dependencies for the Lambda function
	Step 5: (Optional) Run the Lambda function in a container
	Step 6: Create the Lambda function component

	Import a Lambda function as a component (AWS CLI)
	Step 1: Define the Lambda function configuration
	Step 2: Create the Lambda function component

	Use the AWS IoT Device SDK to communicate with the Greengrass nucleus, other components, and AWS IoT Core
	IPC client versions
	Supported SDKs for interprocess communication
	Connect to the AWS IoT Greengrass Core IPC service
	Use AWS IoT Device SDK for Java v2 (IPC client V2)
	Use AWS IoT Device SDK for Python v2 (IPC client V2)
	Use AWS IoT Device SDK for C++ v2
	Use AWS IoT Device SDK for JavaScript v2 (IPC client V1)

	Authorize components to perform IPC operations
	Wildcards in authorization policies
	Recipe variables in authorization policies
	Special characters in authorization policies
	Authorization policy examples

	Subscribe to IPC event streams
	Define subscription handlers
	Example subscription handlers

	IPC best practices
	Publish/subscribe local messages
	Minimum SDK versions
	Authorization
	Authorization policy examples

	PublishToTopic
	Request
	Response
	Examples

	SubscribeToTopic
	Request
	Response
	Examples

	Examples
	Example publish/subscribe publisher (Java, IPC client V1)
	Example publish/subscribe subscriber (Java, IPC client V1)
	Example publish/subscribe publisher (Python, IPC client V1)
	Example publish/subscribe subscriber (Python, IPC client V1)
	Example publish/subscribe publisher (C++)
	Example publish/subscribe subscriber (C++)

	Publish/subscribe AWS IoT Core MQTT messages
	Minimum SDK versions
	Authorization
	MQTT wildcards in AWS IoT Core MQTT authorization policies
	Recipe variables in AWS IoT Core MQTT authorization policies
	Authorization policy examples

	PublishToIoTCore
	Request
	Response
	Examples

	SubscribeToIoTCore
	Request
	Response
	Examples

	Examples
	Example AWS IoT Core MQTT publisher (C++)
	Example AWS IoT Core MQTT subscriber (C++)

	Interact with component lifecycle
	Minimum SDK versions
	Authorization
	Authorization policy examples

	UpdateState
	Request
	Response

	SubscribeToComponentUpdates
	Request
	Response

	DeferComponentUpdate
	Request
	Response

	PauseComponent
	Minimum SDK versions
	Request
	Response

	ResumeComponent
	Minimum SDK versions
	Request
	Response

	Interact with component configuration
	Minimum SDK versions
	GetConfiguration
	Request
	Response

	UpdateConfiguration
	Request
	Response

	SubscribeToConfigurationUpdate
	Request
	Response

	SubscribeToValidateConfigurationUpdates
	Request
	Response

	SendConfigurationValidityReport
	Request
	Response

	Retrieve secret values
	Minimum SDK versions
	Authorization
	Authorization policy examples

	GetSecretValue
	Request
	Response
	Examples

	Examples
	Example: Print secret (Python, IPC client V1)
	Recipe
	Artifacts
	Usage

	Interact with local shadows
	Minimum SDK versions
	Authorization
	Recipe variables in local shadow authorization policies
	Authorization policy examples

	GetThingShadow
	Request
	Response
	Errors
	Examples

	UpdateThingShadow
	Request
	Response
	Errors
	Examples

	DeleteThingShadow
	Request
	Response
	Errors
	Examples

	ListNamedShadowsForThing
	Request
	Response
	Errors
	Examples

	Manage local deployments and components
	Minimum SDK versions
	Authorization
	CreateLocalDeployment
	Request
	Response

	ListLocalDeployments
	Request
	Response

	GetLocalDeploymentStatus
	Request
	Response

	ListComponents
	Request
	Response

	GetComponentDetails
	Request
	Response

	RestartComponent
	Request
	Response

	StopComponent
	Request
	Response

	CreateDebugPassword
	Request
	Response

	Authenticate and authorize client devices
	Minimum SDK versions
	Authorization
	Authorization policy examples

	VerifyClientDeviceIdentity
	Request
	Response

	GetClientDeviceAuthToken
	Request
	Response

	AuthorizeClientDeviceAction
	Request
	Response

	SubscribeToCertificateUpdates
	Request
	Response

	Interact with local IoT devices
	AWS-provided client device components
	Connect client devices to core devices
	Requirements
	Configure the Greengrass service role
	Configure the Greengrass service role (console)
	Configure the Greengrass service role (AWS CLI)

	Configure the AWS IoT thing policy
	Configure the AWS IoT thing policy (console)
	Configure the AWS IoT thing policy (AWS CLI)

	Greengrass components for client device support
	Configure cloud discovery (console)
	Configure cloud discovery (AWS CLI)
	Associate client devices
	Manage client device associations (console)
	Manage client device associations (AWS CLI)
	Manage client device associations (API)

	Authenticating clients while offline
	Storing client credentials

	Manage core device endpoints
	Use IP detector to automatically manage endpoints
	Deploy the IP detector component (console)
	Deploy the IP detector component (AWS CLI)

	Manually manage endpoints
	Manage endpoints (console)
	Manage endpoints (AWS CLI)
	Manage endpoints (API)

	Choose an MQTT broker
	Connecting client devices to an AWS IoT Greengrass Core device with an MQTT broker
	Using your own certificate authority

	Test client device communications
	Test communications (Python)
	Test communications (C++)
	Test communications (JavaScript)
	Test communications (Java)

	Greengrass discovery RESTful API
	Discovery authentication and authorization
	Request
	Response
	Example discover response documents

	Test the discovery API with cURL

	Relay MQTT messages between client devices and AWS IoT Core
	Configure and deploy the MQTT bridge component
	Relay MQTT messages

	Interact with client devices in components
	Configure and deploy the MQTT bridge component
	Receive MQTT messages from client devices
	Send MQTT messages to client devices

	Interact with and sync client device shadows
	Prerequisites
	Enable shadow manager to communicate with client devices
	Interact with client device shadows in components
	Sync client device shadows with AWS IoT Core

	Use IPv6 for local messaging
	Configure IP detector to use IPv6
	Deploy the IP detector component (console)
	Deploy the IP detector component (AWS CLI)

	Troubleshooting client devices
	Greengrass discovery issues
	Greengrass discovery issues (HTTP API)
	curl: (52) Empty reply from server
	HTTP 403: {"message":null,"traceId":"a1b2c3d4-5678-90ab-cdef-11111EXAMPLE"}
	HTTP 404: {"errorMessage":"The thing provided for discovery was not found"}

	Greengrass discovery issues (AWS IoT Device SDK v2 for Python)
	awscrt.exceptions.AwsCrtError: AWS_ERROR_HTTP_CONNECTION_CLOSED: The connection has closed or is closing.
	awsiot.greengrass_discovery.DiscoveryException: ('Error during discover call: response_code=403', 403)
	awsiot.greengrass_discovery.DiscoveryException: ('Error during discover call: response_code=404', 404)

	Greengrass discovery issues (AWS IoT Device SDK v2 for C++)
	aws-c-http: AWS_ERROR_HTTP_CONNECTION_CLOSED, The connection has closed or is closing.
	aws-c-common: AWS_ERROR_UNKNOWN, Unknown error. (HTTP 403)
	aws-c-common: AWS_ERROR_UNKNOWN, Unknown error. (HTTP 404)

	Greengrass discovery issues (AWS IoT Device SDK v2 for JavaScript)
	Error: aws-c-http: AWS_ERROR_HTTP_CONNECTION_CLOSED, The connection has closed or is closing.
	Error: Discovery failed (headers: [object Object]) { response_code: 403 }
	Error: Discovery failed (headers: [object Object]) { response_code: 404 }
	Error: Discovery failed (headers: [object Object])

	Greengrass discovery issues (AWS IoT Device SDK v2 for Java)
	software.amazon.awssdk.crt.CrtRuntimeException: Error Getting Response Status Code from HttpStream. (aws_last_error: AWS_ERROR_HTTP_DATA_NOT_AVAILABLE(2062), This data is not yet available.)
	java.lang.RuntimeException: Error x-amzn-ErrorType(403)
	java.lang.RuntimeException: Error x-amzn-ErrorType(404)

	MQTT connection issues
	io.moquette.broker.Authorizator: Client does not have read permissions on the topic
	MQTT connection issues (Python)
	AWS_ERROR_MQTT_PROTOCOL_ERROR: Protocol error occurred
	AWS_ERROR_MQTT_UNEXPECTED_HANGUP: Unexpected hangup occurred

	MQTT connection issues (C++)
	AWS_ERROR_MQTT_PROTOCOL_ERROR: Protocol error occurred
	AWS_ERROR_MQTT_UNEXPECTED_HANGUP: Unexpected hangup occurred

	MQTT connection issues (Java)
	software.amazon.awssdk.crt.mqtt.MqttException: Protocol error occurred
	AWS_ERROR_MQTT_UNEXPECTED_HANGUP: Unexpected hangup occurred

	MQTT connection issues (JavaScript)
	AWS_ERROR_MQTT_PROTOCOL_ERROR: Protocol error occurred
	AWS_ERROR_MQTT_UNEXPECTED_HANGUP: Unexpected hangup occurred

	Interact with device shadows
	Interact with shadows in components
	Retrieve and modify shadow states
	React to shadow state changes

	Sync local device shadows with AWS IoT Core
	Prerequisites
	Configure the shadow manager component
	Sync local shadows
	Shadow merge conflict behavior

	Manage data streams on Greengrass core devices
	Stream management workflow
	Requirements
	Data security
	Local data security
	Client authentication

	See also
	Configure AWS IoT Greengrass stream manager
	Stream manager parameters
	See also

	Create custom components that use stream manager
	Define component recipes that use stream manager
	Use the Stream Manager SDK for Java
	Use the Stream Manager SDK for Python
	Use the Stream Manager SDK for JavaScript

	Connect to stream manager in application code

	Use StreamManagerClient to work with streams
	Create message stream
	Requirements
	Examples

	Append message
	Requirements
	Examples
	AWS IoT Analytics or Kinesis Data Streams export destinations
	AWS IoT SiteWise export destinations
	Amazon S3 export destinations

	Read messages
	Requirements
	Examples

	List streams
	Requirements
	Examples

	Describe message stream
	Requirements
	Examples

	Update message stream
	Requirements
	Examples
	Constraints for updating streams

	Delete message stream
	Requirements
	Examples

	See also
	Export configurations for supported AWS Cloud destinations
	AWS IoT Analytics channels
	Requirements
	Exporting to AWS IoT Analytics

	Amazon Kinesis data streams
	Requirements
	Exporting to Kinesis Data Streams

	AWS IoT SiteWise asset properties
	Requirements
	Exporting to AWS IoT SiteWise

	Amazon S3 objects
	Requirements
	Exporting to Amazon S3
	Manage input data

	Monitor export tasks

	Perform machine learning inference
	How AWS IoT Greengrass ML inference works
	What's different in AWS IoT Greengrass Version 2?
	Requirements
	Supported model sources
	Supported machine learning runtimes
	AWS-provided machine learning components
	Use Amazon SageMaker AI Edge Manager on Greengrass core devices
	How SageMaker AI Edge Manager works on Greengrass devices
	Requirements
	Get started with SageMaker AI Edge Manager

	Use Amazon Lookout for Vision on Greengrass core devices
	Customize your machine learning components
	Modify the configuration of a public inference component
	Use a custom model with the sample inference component
	Create a custom model component (console)
	Create a custom model component (AWS CLI)

	Create custom machine learning components
	Retrieve the recipe for a public component
	Retrieve sample component artifacts
	Upload component artifacts to an S3 bucket
	Create custom components

	Create a custom inference component
	Upload your inference code to an Amazon S3 bucket
	Create a recipe for your inference component
	Create the inference component
	Create custom inference component (console)
	Create custom inference component (AWS CLI)

	Troubleshooting machine learning inference
	Failed to fetch library
	Cannot open shared object file
	Error: ModuleNotFoundError: No module named '<library>'
	No CUDA-capable device is detected
	No such file or directory
	RuntimeError: module compiled against API version 0xf but this version of NumPy is <version>
	picamera.exc.PiCameraError: Camera is not enabled
	Memory errors
	Disk space errors
	Timeout errors

	Manage Greengrass core devices with AWS Systems Manager
	Install the AWS Systems Manager Agent
	Step 1: Complete general Systems Manager setup steps
	Step 2: Create an IAM service role for Systems Manager
	Step 3: Add permissions to the token exchange role
	To add permissions to the token exchange role (console)
	To add permissions to the token exchange role (AWS CLI)

	Step 4: Deploy the Systems Manager Agent component
	To deploy the Systems Manager Agent component (console)
	To deploy the Systems Manager Agent component (AWS CLI)

	Step 5: Verify core device registration with Systems Manager
	To verify core device registration (AWS IoT Greengrass console)
	To verify core device registration (Systems Manager console)
	To verify core device registration (AWS CLI)

	Uninstall the AWS Systems Manager Agent
	Step 1: Deregister the core device from Systems Manager
	Step 2: Uninstall the Systems Manager Agent component
	To uninstall the Systems Manager Agent component (console)
	To uninstall the Systems Manager Agent component (CLI)

	Step 3: Uninstall the Systems Manager Agent software

	Security in AWS IoT Greengrass
	Data protection in AWS IoT Greengrass
	Data encryption
	Encryption in transit
	Data in transit over the internet
	Data on the core device

	Encryption at rest
	Data at rest in the AWS Cloud
	Data at rest on the Greengrass core

	Key management for the Greengrass core device

	Hardware security integration
	Requirements
	Hardware security best practices
	Install the AWS IoT Greengrass Core software with hardware security
	Configure hardware security on an existing core device
	Step 1: Initialize the hardware security module
	Step 2: Deploy the PKCS#11 provider component
	To deploy the PKCS#11 provider component (console)
	To deploy the PKCS#11 provider component (AWS CLI)

	Step 3: Update the configuration on the core device

	Use hardware without PKCS#11 support
	See also

	Device authentication and authorization for AWS IoT Greengrass
	X.509 certificates
	Certificate authority (CA) certificates
	Certificate rotation on the local MQTT broker

	AWS IoT policies for data plane operations
	AWS IoT Greengrass V2 policy actions

	Update a core device's AWS IoT policy
	Review and update a core device's AWS IoT policy (console)
	Review and update a core device's AWS IoT policy (AWS CLI)

	Minimal AWS IoT policy for AWS IoT Greengrass V2 core devices
	Minimal AWS IoT policy to support client devices
	Minimal AWS IoT policy for client devices

	Identity and access management for AWS IoT Greengrass
	Audience
	Authenticating with identities
	AWS account root user
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	See also
	How AWS IoT Greengrass works with IAM
	Identity-based policies for AWS IoT Greengrass
	Actions
	Resources
	Condition keys
	Examples

	Resource-based policies for AWS IoT Greengrass
	Access control lists (ACLs)
	Authorization based on AWS IoT Greengrass tags
	IAM roles for AWS IoT Greengrass
	Using temporary credentials with AWS IoT Greengrass
	Service-linked roles
	Service roles

	Identity-based policy examples for AWS IoT Greengrass
	Policy best practices
	Policy examples
	Allow users to view their own permissions

	Authorize core devices to interact with AWS services
	Service role permissions for core devices
	Allow access to S3 buckets for component artifacts

	Minimal IAM policy for installer to provision resources
	Greengrass service role
	Manage the Greengrass service role (console)
	Find your Greengrass service role (console)
	Create the Greengrass service role (console)
	Change the Greengrass service role (console)
	Detach the Greengrass service role (console)

	Manage the Greengrass service role (CLI)
	Get the Greengrass service role (CLI)
	Create the Greengrass service role (CLI)
	Remove the Greengrass service role (CLI)

	See also

	AWS managed policies for AWS IoT Greengrass
	AWS managed policy: AWSGreengrassFullAccess
	AWS managed policy: AWSGreengrassReadOnlyAccess
	AWS managed policy: AWSGreengrassResourceAccessRolePolicy
	AWS IoT Greengrass updates to AWS managed policies

	Cross-service confused deputy prevention
	Troubleshooting identity and access issues for AWS IoT Greengrass
	I'm not authorized to perform an action in AWS IoT Greengrass
	I'm not authorized to perform iam:PassRole
	I'm an administrator and want to allow others to access AWS IoT Greengrass
	I want to allow people outside of my AWS account to access my AWS IoT Greengrass resources

	Allow device traffic through a proxy or firewall
	Endpoints for basic operation
	Retrieve AWS IoT endpoints

	Endpoints for installation with automatic provisioning
	Endpoints for AWS-provided components

	Compliance validation for AWS IoT Greengrass
	FIPS endpoints
	Enable FIPS endpoints with deployment
	Install Nucleus with FIPS endpoints with manual resource provisioning
	Retrieve AWS IoT endpoints
	Create an AWS IoT thing
	Create the thing certificate
	Create the certificate and private key in the AWS IoT service
	Create the certificate from a private key in an HSM

	Configure the thing certificate
	Create a token exchange role
	Download certificates to the device
	Download certificates with private key and certificate files
	Download certificates with the private key and certificate in an HSM

	Set up the device environment
	Set up a Linux device
	Set up a Windows device

	Download the AWS IoT Greengrass Core software
	Install the AWS IoT Greengrass Core software
	Install the AWS IoT Greengrass Core software with private key and certificate files
	Install the AWS IoT Greengrass Core software with the private key and certificate in an HSM

	Install FIPS endpoints with fleet provisioning
	Prerequisites
	Retrieve AWS IoT endpoints
	Download certificates to the device
	Set up the device environment
	Set up a Linux device
	Set up a Windows device

	Download the AWS IoT Greengrass Core software
	Download the AWS IoT fleet provisioning plugin
	Install the AWS IoT Greengrass Core software

	Install FIPS endpoints with auto resource provisioning
	Set up the device environment
	Set up a Linux device
	Set up a Windows device

	Provide AWS credentials to the device
	Download the AWS IoT Greengrass Core software
	Install the AWS IoT Greengrass Core software

	FIPS compliance first party components

	Resilience in AWS IoT Greengrass
	Infrastructure security in AWS IoT Greengrass
	Configuration and vulnerability analysis in AWS IoT Greengrass
	Code integrity in AWS IoT Greengrass V2
	AWS IoT Greengrass and interface VPC endpoints (AWS PrivateLink)
	Considerations for AWS IoT Greengrass VPC endpoints
	Create an interface VPC endpoint for AWS IoT Greengrass control plane operations
	Creating a VPC endpoint policy for AWS IoT Greengrass
	Operate an AWS IoT Greengrass core device in VPC
	Prerequisites
	Limitations
	Set up your Greengrass core device to operate in VPC

	Security best practices for AWS IoT Greengrass
	Grant minimum possible permissions
	Don't hardcode credentials in Greengrass components
	Don't log sensitive information
	Keep your device clock in sync
	Cipher Suite Recommendations
	See also

	Using AWS IoT Device Tester for AWS IoT Greengrass V2
	AWS IoT Greengrass qualification suite
	Custom test suites
	Supported versions of AWS IoT Device Tester for AWS IoT Greengrass V2
	Latest IDT version for AWS IoT Greengrass V2
	Earlier IDT versions for AWS IoT Greengrass
	Unsupported versions of AWS IoT Device Tester for AWS IoT Greengrass V2

	Download IDT for AWS IoT Greengrass V2
	Download IDT manually
	Download IDT programmatically
	API request
	API response
	Examples

	Use IDT to run the AWS IoT Greengrass qualification suite
	Test suite versions
	Test group descriptions
	Prerequisites for running the AWS IoT Greengrass qualification suite
	Download the latest version of AWS IoT Device Tester for AWS IoT Greengrass
	Download the AWS IoT Greengrass software
	Create and configure an AWS account
	Step 1: Set up an AWS account
	Step 2: Configure permissions for IDT
	To configure permissions for IDT (console)
	To configure permissions for IDT (AWS CLI)

	AWS IoT Device Tester permissions

	Configure your device to run IDT tests
	Install Java on the host computer
	Configure your host computer to access your device under test
	Configure user credentials for Windows devices
	Configure user permissions on your device
	Configure a custom token exchange role
	Configure your device to test optional features
	Docker qualification requirements
	ML qualification requirements
	HSM qualification requirements

	Configure IDT settings to run the AWS IoT Greengrass qualification suite
	Configure AWS credentials in config.json
	Configure AWS credentials with a credentials file
	Configure AWS credentials with environment variables

	Configure device.json
	Configure userdata.json
	Fetch configuration from AWS Parameter Store

	Run the AWS IoT Greengrass qualification suite
	Example commands to run the qualification suite
	IDT for AWS IoT Greengrass V2 commands

	Understanding results and logs
	Viewing results
	Interpreting AWS IoT Device Tester results
	Viewing logs

	Use IDT to develop and run your own test suites
	Download the latest version of AWS IoT Device Tester for AWS IoT Greengrass
	Test suite creation workflow
	Tutorial: Build and run the sample IDT test suite
	Prerequisites
	Configure device information for IDT
	Build the sample test suite
	Use IDT to run the sample test suite
	Troubleshooting

	Tutorial: Develop a simple IDT test suite
	Prerequisites
	Create a test suite directory
	Create configuration files
	Get the IDT client SDK
	Create the test case executable
	Configure device information for IDT
	Run the test suite
	Troubleshooting

	Create IDT test suite configuration files
	Configure suite.json
	Configure group.json
	Configure test.json
	Configure test_orchestrator.yaml
	Configure userdata_schema.json

	Configure the IDT test orchestrator
	Test orchestrator format
	Test orchestrator context

	Configure the IDT state machine
	State machine format
	Valid states and state definitions
	RunTask
	Choice
	Parallel
	AddProductFeatures
	Report
	LogMessage
	SelectGroup
	Fail
	Succeed

	State machine context
	Execution errors
	Catch
	hasExecutionError

	Example state machines
	Example state machine: Run a single test group
	Example state machine: Run user-selected test groups
	Example state machine: Run a single test group with product features
	Example state machine: Run two test groups in parallel

	Create IDT test case executables
	Use the IDT Client SDK
	Device interaction
	IDT interaction
	Host interaction

	Enable IDT CLI commands
	Write event logs
	Report results to IDT
	Specify exit behavior

	Use the IDT context
	Context schema
	Access data in the context

	Configure settings for test runners
	Configure device.json
	(Optional) Configure userdata.json
	(Optional) Configure resource.json
	(Optional) Configure config.json

	Debug and run custom test suites
	Run IDT in debug mode
	IDT CLI commands to run tests

	Review IDT test results and logs
	Console message format
	AWS IoT Device Tester report schema
	Test suite report schema

	IDT usage metrics
	Configure your AWS credentials
	Step 1: Create an AWS account
	Step 2: Configure permissions for IDT

	Provide AWS credentials to IDT

	Troubleshooting IDT for AWS IoT Greengrass V2
	Where to look for errors
	Resolving IDT for AWS IoT Greengrass V2 errors
	Alias resolution errors
	Conflict errors
	Could not start test error
	Docker qualification image exists errors
	Failed to read credential
	Guice errors with PreInstalled Greengrass
	Invalid signature exception
	Machine learning qualification errors
	Open Test Framework (OTF) failed deployments
	Parsing errors
	Permission denied errors
	Qualification report generation error
	Required parameter missing error
	Security exception on macOS
	SSH connection errors
	Stream manager qualification errors
	Timeout errors
	Version check errors

	Support policy for AWS IoT Device Tester for AWS IoT Greengrass

	Greengrass based IoT solutions
	Eurotech

	Troubleshooting AWS IoT Greengrass V2
	View AWS IoT Greengrass Core software and component logs
	AWS IoT Greengrass Core software issues
	ThrottlingException from ListDeployments API
	Unable to set up core device
	Unable to start the AWS IoT Greengrass Core software as a system service
	Unable to set up nucleus as a system service
	Unable to connect to AWS IoT Core
	Out of memory error
	Unable to install Greengrass CLI
	User root is not allowed to execute
	com.aws.greengrass.lifecyclemanager.GenericExternalService: Could not determine user/group to run with
	Failed to map segment from shared object: operation not permitted
	Failed to set up Windows service
	com.aws.greengrass.util.exceptions.TLSAuthException: Failed to get trust manager
	com.aws.greengrass.deployment.IotJobsHelper: No connection available during subscribing to Iot Jobs descriptions topic. Will retry in sometime
	software.amazon.awssdk.services.iam.model.IamException: The security token included in the request is invalid
	software.amazon.awssdk.services.iot.model.IotException: User: <user> is not authorized to perform: iot:GetPolicy
	Error: com.aws.greengrass.shadowmanager.sync.model.FullShadowSyncRequest: Could not execute cloud shadow get request
	Operation aws.greengrass#<operation> is not supported by Greengrass
	java.io.FileNotFoundException: <stream-manager-store-root-dir>/stream_manager_metadata_store (Permission denied)
	com.aws.greengrass.security.provider.pkcs11.PKCS11CryptoKeyService: Private key or certificate with label <label> does not exist
	software.amazon.awssdk.services.secretsmanager.model.SecretsManagerException: User: <user> is not authorized to perform: secretsmanager:GetSecretValue on resource: <arn>
	software.amazon.awssdk.services.secretsmanager.model.SecretsManagerException: Access to KMS is not allowed
	java.lang.NoClassDefFoundError: com/aws/greengrass/security/CryptoKeySpi
	com.aws.greengrass.security.provider.pkcs11.PKCS11CryptoKeyService: CKR_OPERATION_NOT_INITIALIZED
	Greengrass core device stuck on nucleus v2.12.3

	AWS IoT Greengrass cloud issues
	An error occurred (AccessDeniedException) when calling the CreateComponentVersion operation: User: arn:aws:iam::123456789012:user/<username> is not authorized to perform: null
	Invalid Input: Encountered following errors in Artifacts: {<s3ArtifactUri> = Specified artifact resource cannot be accessed}
	INACTIVE deployment status

	Core device deployment issues
	Error: com.aws.greengrass.componentmanager.exceptions.PackageDownloadException: Failed to download artifact
	software.amazon.awssdk.services.s3.model.S3Exception: null (Service: S3, Status Code: 403, Request ID: null, ...)
	software.amazon.awssdk.services.s3.model.S3Exception: Access Denied (Service: S3, Status Code: 403, Request ID: <requestID>

	Error: com.aws.greengrass.componentmanager.exceptions.ArtifactChecksumMismatchException: Integrity check for downloaded artifact failed. Probably due to file corruption.
	Error: com.aws.greengrass.componentmanager.exceptions.NoAvailableComponentVersionException: Failed to negotiate component <name> version with cloud and no local applicable version satisfying requirement <requirements>
	software.amazon.awssdk.services.greengrassv2data.model.ResourceNotFoundException: The latest version of Component <componentName> doesn't claim platform <coreDevicePlatform> compatibility
	com.aws.greengrass.componentmanager.exceptions.PackagingException: The deployment attempts to update the nucleus from aws.greengrass.Nucleus-<version> to aws.greengrass.Nucleus-<version> but no component of type nucleus was included as target component
	Error: com.aws.greengrass.deployment.exceptions.DeploymentException: Unable to process deployment. Greengrass launch directory is not set up or Greengrass is not set up as a system service
	Info: com.aws.greengrass.deployment.exceptions.RetryableDeploymentDocumentDownloadException: Greengrass Cloud Service returned an error when getting full deployment configuration
	Warn: com.aws.greengrass.deployment.DeploymentService: Failed to get thing group hierarchy
	Info: com.aws.greengrass.deployment.DeploymentDocumentDownloader: Calling Greengrass cloud to get full deployment configuration
	Caused by: software.amazon.awssdk.services.greengrassv2data.model.GreengrassV2DataException: null (Service: GreengrassV2Data, Status Code: 403, Request ID: <some_request_id>, Extended Request ID: null)

	Core device component issues
	Warn: '<command>' is not recognized as an internal or external command
	Python script doesn't log messages
	Component configuration doesn't update when changing default configuration
	awsiot.greengrasscoreipc.model.UnauthorizedError
	com.aws.greengrass.authorization.exceptions.AuthorizationException: Duplicate policy ID "<id>" for principal "<componentList>"
	com.aws.greengrass.tes.CredentialRequestHandler: Error in retrieving AwsCredentials from TES (HTTP 400)
	com.aws.greengrass.tes.CredentialRequestHandler: Error in retrieving AwsCredentials from TES (HTTP 403)
	com.aws.greengrass.tes.CredentialsProviderError: Could not load credentials from any providers
	Received error when attempting to retrieve ECS metadata: Could not connect to the endpoint URL: "<tokenExchangeServiceEndpoint>"
	copyFrom: <configurationPath> is already a container, not a leaf
	com.aws.greengrass.componentmanager.plugins.docker.exceptions.DockerLoginException: Error logging into the registry using credentials - 'The stub received bad data.'
	java.io.IOException: Cannot run program "cmd" ...: [LogonUser] The password for this account has expired.
	aws.greengrass.StreamManager: Instant exceeds minimum or maximum instant

	Core device Lambda function component issues
	The following cgroup subsystems are not mounted: devices, memory
	ipc_client.py:64,HTTP Error 400:Bad Request, b'No subscription exists for the source <label-or-lambda-arn> and subject <label-or-lambda-arn>

	Component version discontinued
	Greengrass Command Line Interface issues
	java.lang.RuntimeException: Unable to create ipc client

	AWS Command Line Interface issues
	Error: Invalid choice: 'greengrassv2'

	Detailed deployment error codes
	Permission error
	Request error
	Component recipe error
	AWS component error, user component error, component error
	Device error
	Dependency error
	HTTP error
	Network error
	Nucleus error
	Server error
	Cloud service error
	Generic errors
	Unknown error

	Detailed component status codes

	Tag your AWS IoT Greengrass Version 2 resources
	Using tags in AWS IoT Greengrass V2
	Tag with the AWS Management Console
	Tag with the AWS IoT Greengrass V2 API

	Using tags with IAM policies

	Creating AWS IoT Greengrass resources with AWS CloudFormation
	AWS IoT Greengrass and AWS CloudFormation templates
	ComponentVersion template example
	Deployment template example

	Learn more about AWS CloudFormation

	Open source AWS IoT Greengrass Core software
	Document history for the AWS IoT Greengrass V2 Developer Guide
	AWS Glossary

