Reservasi Kapasitas - Amazon Elastic Compute Cloud

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

Reservasi Kapasitas

Reservasi Kapasitas memungkinkan Anda memesan kapasitas komputasi untuk instans Amazon EC2 di Zona Ketersediaan tertentu. Ada dua tipe Reservasi Kapasitas yang melayani kasus penggunaan yang berbeda.

Tipe Reservasi Kapasitas
  • Reservasi Kapasitas Sesuai Permintaan

  • Blok Kapasitas untuk ML

Berikut adalah beberapa kasus penggunaan umum untuk Reservasi Kapasitas Sesuai Permintaan:

  • Acara penskalaan — Buat Reservasi Kapasitas Sesuai Permintaan sebelum acara penting bisnis Anda untuk memastikan bahwa Anda dapat menskalakan saat diperlukan.

  • Persyaratan peraturan dan pemulihan bencana — Gunakan Reservasi Kapasitas Sesuai Permintaan untuk memenuhi persyaratan peraturan untuk ketersediaan tinggi, dan pesan kapasitas di Zona Ketersediaan atau Wilayah yang berbeda untuk pemulihan bencana.

Berikut ini adalah beberapa kasus penggunaan umum untuk Blok Kapasitas untuk ML:

  • Pelatihan model machine learning (ML) dan fine-tuning — Dapatkan akses tanpa gangguan ke instans GPU yang Anda pesan untuk menyelesaikan pelatihan model dan fine-tuning.

  • Eksperimen dan prototipe ML — Jalankan eksperimen dan bangun prototipe yang memerlukan instans GPU untuk jangka waktu pendek.

Kapan menggunakan Reservasi Kapasitas Sesuai Permintaan

Gunakan Reservasi Kapasitas Sesuai Permintaan jika Anda memiliki persyaratan kapasitas yang ketat, dan menjalankan beban kerja penting bisnis yang memerlukan jaminan kapasitas. Dengan Rerservasi Kapasitas Sesuai Permintaan, Anda dapat memastikan bahwa Anda akan selalu memiliki akses ke kapasitas Amazon EC2 yang telah Anda pesan selama Anda membutuhkannya.

Kapan menggunakan Blok Kapasitas untuk ML

Gunakan Blok Kapasitas untuk ML saat Anda perlu memastikan bahwa Anda memiliki akses tanpa gangguan ke instans GPU untuk jangka waktu tertentu yang dimulai pada tanggal yang akan datang. Blok Kapasitas ideal untuk melatih dan menyempurnakan model ML, menjalankan eksperimen singkat, dan menangani lonjakan sementara dalam permintaan inferensi di masa mendatang. Dengan Blok Kapasitas, Anda dapat memastikan bahwa Anda akan memiliki akses ke sumber daya GPU pada tanggal tertentu untuk menjalankan beban kerja ML Anda.