Kirim pekerjaan yang dijalankan dengan StartJobRun - Amazon EMR

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

Kirim pekerjaan yang dijalankan dengan StartJobRun

Untuk mengirimkan pekerjaan yang dijalankan dengan JSON file dengan parameter tertentu
  1. Buat start-job-run-request.json file dan tentukan parameter yang diperlukan untuk menjalankan pekerjaan Anda, seperti yang ditunjukkan oleh JSON file contoh berikut. Untuk informasi tentang parameter, lihat Pilihan untuk mengonfigurasi tugas berjalan.

    { "name": "myjob", "virtualClusterId": "123456", "executionRoleArn": "iam_role_name_for_job_execution", "releaseLabel": "emr-6.2.0-latest", "jobDriver": { "sparkSubmitJobDriver": { "entryPoint": "entryPoint_location", "entryPointArguments": ["argument1", "argument2", ...], "sparkSubmitParameters": "--class <main_class> --conf spark.executor.instances=2 --conf spark.executor.memory=2G --conf spark.executor.cores=2 --conf spark.driver.cores=1" } }, "configurationOverrides": { "applicationConfiguration": [ { "classification": "spark-defaults", "properties": { "spark.driver.memory":"2G" } } ], "monitoringConfiguration": { "persistentAppUI": "ENABLED", "cloudWatchMonitoringConfiguration": { "logGroupName": "my_log_group", "logStreamNamePrefix": "log_stream_prefix" }, "s3MonitoringConfiguration": { "logUri": "s3://my_s3_log_location" } } } }
  2. Gunakan start-job-run perintah dengan path ke start-job-run-request.json file yang disimpan secara lokal.

    aws emr-containers start-job-run \ --cli-input-json file://./start-job-run-request.json
Untuk memulai tugas berjalan menggunakan perintah start-job-run
  1. Pasokan semua parameter yang ditentukan dalam perintah StartJobRun, seperti yang ditunjukkan contoh berikut.

    aws emr-containers start-job-run \ --virtual-cluster-id 123456 \ --name myjob \ --execution-role-arn execution-role-arn \ --release-label emr-6.2.0-latest \ --job-driver '{"sparkSubmitJobDriver": {"entryPoint": "entryPoint_location", "entryPointArguments": ["argument1", "argument2", ...], "sparkSubmitParameters": "--class <main_class> --conf spark.executor.instances=2 --conf spark.executor.memory=2G --conf spark.executor.cores=2 --conf spark.driver.cores=1"}}' \ --configuration-overrides '{"applicationConfiguration": [{"classification": "spark-defaults", "properties": {"spark.driver.memory": "2G"}}], "monitoringConfiguration": {"cloudWatchMonitoringConfiguration": {"logGroupName": "log_group_name", "logStreamNamePrefix": "log_stream_prefix"}, "persistentAppUI":"ENABLED", "s3MonitoringConfiguration": {"logUri": "s3://my_s3_log_location" }}}'
  2. Untuk SparkSQL, sediakan semua parameter yang ditentukan dalam StartJobRun perintah, seperti yang ditunjukkan oleh contoh berikut.

    aws emr-containers start-job-run \ --virtual-cluster-id 123456 \ --name myjob \ --execution-role-arn execution-role-arn \ --release-label emr-6.7.0-latest \ --job-driver '{"sparkSqlJobDriver": {"entryPoint": "entryPoint_location", "sparkSqlParameters": "--conf spark.executor.instances=2 --conf spark.executor.memory=2G --conf spark.executor.cores=2 --conf spark.driver.cores=1"}}' \ --configuration-overrides '{"applicationConfiguration": [{"classification": "spark-defaults", "properties": {"spark.driver.memory": "2G"}}], "monitoringConfiguration": {"cloudWatchMonitoringConfiguration": {"logGroupName": "log_group_name", "logStreamNamePrefix": "log_stream_prefix"}, "persistentAppUI":"ENABLED", "s3MonitoringConfiguration": {"logUri": "s3://my_s3_log_location" }}}'