Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.
Kasus penggunaan 5 - Subquery atau CTE
Common Table Expressions (CTE) membantu memecah kueri besar menjadi kueri yang lebih kecil. Ini membuat seluruh kueri lebih mudah dipelihara.
Gabungan subquery digantikan oleh gabungan CTE, yang lebih mudah dibaca karena kueri diberi nama dan dipisahkan di dalam bagian CTE. Ini sangat membantu ketika ukuran kueri bertambah dan kueri menjadi lebih sulit dipertahankan. Selain itu, hasil CTE di PostgreSQL terwujud. Jika Anda memanggil CTE di beberapa tempat, definisi kueri yang sebenarnya akan dijalankan hanya satu kali. Hasilnya akan disimpan dalam memori. Anda dapat menggunakan ini untuk logika kompleks apa pun yang harus digunakan di beberapa tempat dalam kueri yang sama. Masukkan logika itu ke dalam CTE, dan panggil CTE beberapa kali.
Misalnya, pelanggan menggunakan kueri aplikasi inline dengan banyak subquery dalam kueri. Subquery disaring oleh nilai parameter masukan yang dikirim dari aplikasi.
EXPLAIN ANALYZE SELECT * FROM ORDER_DETAILS A WHERE A.ORDID IN (SELECT ORDID FROM PAYMENT_DETAILS) AND A.ORDID IN (SELECT ORDID FROM ITEM_DETAILS ) AND A.ORDID = 1000000;
"Nested Loop Semi Join (cost=3000.00..194258.21 rows=5 width=74) (actual time=201.605..747.945 rows=5 loops=1)" " -> Nested Loop Semi Join (cost=2000.00..135040.47 rows=5 width=74) (actual time=146.016..666.779 rows=5 loops=1)" " -> Gather (cost=1000.00..78580.31 rows=5 width=74) (actual time=58.893..463.570 rows=5 loops=1)" " Workers Planned: 2" " Workers Launched: 2" " -> Parallel Seq Scan on order_details a (cost=0.00..77579.81 rows=2 width=74) (actual time=165.627..549.702 rows=2 loops=3)" " Filter: (ordid = 1000000)" " Rows Removed by Filter: 1666665" " -> Materialize (cost=1000.00..56460.07 rows=3 width=4) (actual time=17.424..40.638 rows=1 loops=5)" " -> Gather (cost=1000.00..56460.06 rows=3 width=4) (actual time=87.113..203.178 rows=1 loops=1)" " Workers Planned: 2" " Workers Launched: 2" " -> Parallel Seq Scan on payment_details (cost=0.00..55459.76 rows=1 width=4) (actual time=174.431..423.792 rows=1 loops=3)" " Filter: (ordid = 1000000)" " Rows Removed by Filter: 1333002" " -> Materialize (cost=1000.00..59217.64 rows=4 width=4) (actual time=11.117..16.231 rows=1 loops=5)" " -> Gather (cost=1000.00..59217.62 rows=4 width=4) (actual time=55.581..81.148 rows=1 loops=1)" " Workers Planned: 2" " Workers Launched: 2" " -> Parallel Seq Scan on item_details (cost=0.00..58217.22 rows=2 width=4) (actual time=287.030..411.004 rows=1 loops=3)" " Filter: (ordid = 1000000)" " Rows Removed by Filter: 1333080" "Planning Time: 0.266 ms" "Execution Time: 747.986 ms"
Setelah memodifikasi subkueri dengan menggunakan CTE dan menambahkan filter sehingga hanya kumpulan baris yang diperlukan yang diambil, kinerja kueri meningkat.
EXPLAIN ANALYZE WITH PAYMENT AS ( SELECT * FROM PAYMENT_DETAILS WHERE ORDID = 1000000 ), ITEM AS (SELECT * FROM ITEM_DETAILS WHERE ORDID = 1000000) SELECT * FROM ORDER_DETAILS A JOIN PAYMENT B ON A.ORDID=B.ORDID JOIN ITEM C ON B.ORDID=C.ORDID
"Nested Loop (cost=3000.00..194258.91 rows=60 width=166) (actual time=586.410..732.918 rows=80 loops=1)" " -> Nested Loop (cost=2000.00..115677.83 rows=12 width=92) (actual time=456.760..457.083 rows=16 loops=1)" " -> Gather (cost=1000.00..59217.62 rows=4 width=48) (actual time=153.802..154.060 rows=4 loops=1)" " Workers Planned: 2" " Workers Launched: 2" " -> Parallel Seq Scan on item_details (cost=0.00..58217.22 rows=2 width=48) (actual time=85.417..249.045 rows=1 loops=3)" " Filter: (ordid = 1000000)" " Rows Removed by Filter: 1333332" " -> Materialize (cost=1000.00..56460.07 rows=3 width=44) (actual time=75.738..75.753 rows=4 loops=4)" " -> Gather (cost=1000.00..56460.06 rows=3 width=44) (actual time=302.947..303.005 rows=4 loops=1)" " Workers Planned: 2" " Workers Launched: 2" " -> Parallel Seq Scan on payment_details (cost=0.00..55459.76 rows=1 width=44) (actual time=184.609..294.784 rows=1 loops=3)" " Filter: (ordid = 1000000)" " Rows Removed by Filter: 1333332" " -> Materialize (cost=1000.00..78580.34 rows=5 width=74) (actual time=8.103..17.238 rows=5 loops=16)" " -> Gather (cost=1000.00..78580.31 rows=5 width=74) (actual time=129.641..275.795 rows=5 loops=1)" " Workers Planned: 2" " Workers Launched: 2" " -> Parallel Seq Scan on order_details a (cost=0.00..77579.81 rows=2 width=74) (actual time=78.556..268.994 rows=2 loops=3)" " Filter: (ordid = 1000000)" " Rows Removed by Filter: 1666665" "Planning Time: 0.108 ms" "Execution Time: 732.953 ms"
Ini adalah pengamatan dari data contoh. Saat Anda menjalankan kueri pada kumpulan data besar, perbedaan kinerja akan sangat tinggi.