Pilih preferensi cookie Anda

Kami menggunakan cookie penting serta alat serupa yang diperlukan untuk menyediakan situs dan layanan. Kami menggunakan cookie performa untuk mengumpulkan statistik anonim sehingga kami dapat memahami cara pelanggan menggunakan situs dan melakukan perbaikan. Cookie penting tidak dapat dinonaktifkan, tetapi Anda dapat mengklik “Kustom” atau “Tolak” untuk menolak cookie performa.

Jika Anda setuju, AWS dan pihak ketiga yang disetujui juga akan menggunakan cookie untuk menyediakan fitur situs yang berguna, mengingat preferensi Anda, dan menampilkan konten yang relevan, termasuk iklan yang relevan. Untuk menerima atau menolak semua cookie yang tidak penting, klik “Terima” atau “Tolak”. Untuk membuat pilihan yang lebih detail, klik “Kustomisasi”.

TrainingSpecification - Amazon SageMaker
Halaman ini belum diterjemahkan ke dalam bahasa Anda. Minta terjemahan

TrainingSpecification

Defines how the algorithm is used for a training job.

Contents

SupportedTrainingInstanceTypes

A list of the instance types that this algorithm can use for training.

Type: Array of strings

Valid Values: ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.p4d.24xlarge | ml.p4de.24xlarge | ml.p5.48xlarge | ml.p5e.48xlarge | ml.p5en.48xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.c5n.xlarge | ml.c5n.2xlarge | ml.c5n.4xlarge | ml.c5n.9xlarge | ml.c5n.18xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.g6.xlarge | ml.g6.2xlarge | ml.g6.4xlarge | ml.g6.8xlarge | ml.g6.16xlarge | ml.g6.12xlarge | ml.g6.24xlarge | ml.g6.48xlarge | ml.g6e.xlarge | ml.g6e.2xlarge | ml.g6e.4xlarge | ml.g6e.8xlarge | ml.g6e.16xlarge | ml.g6e.12xlarge | ml.g6e.24xlarge | ml.g6e.48xlarge | ml.trn1.2xlarge | ml.trn1.32xlarge | ml.trn1n.32xlarge | ml.trn2.48xlarge | ml.m6i.large | ml.m6i.xlarge | ml.m6i.2xlarge | ml.m6i.4xlarge | ml.m6i.8xlarge | ml.m6i.12xlarge | ml.m6i.16xlarge | ml.m6i.24xlarge | ml.m6i.32xlarge | ml.c6i.xlarge | ml.c6i.2xlarge | ml.c6i.8xlarge | ml.c6i.4xlarge | ml.c6i.12xlarge | ml.c6i.16xlarge | ml.c6i.24xlarge | ml.c6i.32xlarge | ml.r5d.large | ml.r5d.xlarge | ml.r5d.2xlarge | ml.r5d.4xlarge | ml.r5d.8xlarge | ml.r5d.12xlarge | ml.r5d.16xlarge | ml.r5d.24xlarge | ml.t3.medium | ml.t3.large | ml.t3.xlarge | ml.t3.2xlarge | ml.r5.large | ml.r5.xlarge | ml.r5.2xlarge | ml.r5.4xlarge | ml.r5.8xlarge | ml.r5.12xlarge | ml.r5.16xlarge | ml.r5.24xlarge

Required: Yes

TrainingChannels

A list of ChannelSpecification objects, which specify the input sources to be used by the algorithm.

Type: Array of ChannelSpecification objects

Array Members: Minimum number of 1 item. Maximum number of 8 items.

Required: Yes

TrainingImage

The Amazon ECR registry path of the Docker image that contains the training algorithm.

Type: String

Length Constraints: Maximum length of 255.

Pattern: [\S]+

Required: Yes

AdditionalS3DataSource

The additional data source used during the training job.

Type: AdditionalS3DataSource object

Required: No

MetricDefinitions

A list of MetricDefinition objects, which are used for parsing metrics generated by the algorithm.

Type: Array of MetricDefinition objects

Array Members: Minimum number of 0 items. Maximum number of 40 items.

Required: No

SupportedHyperParameters

A list of the HyperParameterSpecification objects, that define the supported hyperparameters. This is required if the algorithm supports automatic model tuning.>

Type: Array of HyperParameterSpecification objects

Array Members: Minimum number of 0 items. Maximum number of 100 items.

Required: No

SupportedTuningJobObjectiveMetrics

A list of the metrics that the algorithm emits that can be used as the objective metric in a hyperparameter tuning job.

Type: Array of HyperParameterTuningJobObjective objects

Required: No

SupportsDistributedTraining

Indicates whether the algorithm supports distributed training. If set to false, buyers can't request more than one instance during training.

Type: Boolean

Required: No

TrainingImageDigest

An MD5 hash of the training algorithm that identifies the Docker image used for training.

Type: String

Length Constraints: Maximum length of 72.

Pattern: ^[Ss][Hh][Aa]256:[0-9a-fA-F]{64}$

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

PrivasiSyarat situsPreferensi cookie
© 2025, Amazon Web Services, Inc. atau afiliasinya. Semua hak dilindungi undang-undang.