Perbarui Detail Versi Model - Amazon SageMaker

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

Perbarui Detail Versi Model

Anda dapat melihat dan memperbarui detail versi model tertentu dengan menggunakan konsol Amazon SageMaker Studio AWS SDK for Python (Boto3) atau Amazon.

penting

Amazon SageMaker mengintegrasikan Kartu Model ke dalam Registri Model. Paket model yang terdaftar di Registry Model mencakup Kartu Model yang disederhanakan sebagai komponen dari paket model. Untuk informasi selengkapnya, lihat Model paket skema kartu model (Studio).

Lihat dan Perbarui Detail Versi Model (Boto3)

Untuk melihat detail versi model dengan menggunakan Boto3, selesaikan langkah-langkah berikut.

  1. Panggil list_model_packages API operasi untuk melihat versi model dalam Grup Model.

    sm_client.list_model_packages(ModelPackageGroupName="ModelGroup1")

    Responsnya adalah daftar ringkasan paket model. Anda bisa mendapatkan Amazon Resource Name (ARN) dari versi model dari daftar ini.

    {'ModelPackageSummaryList': [{'ModelPackageGroupName': 'AbaloneMPG-16039329888329896', 'ModelPackageVersion': 1, 'ModelPackageArn': 'arn:aws:sagemaker:us-east-2:123456789012:model-package/ModelGroup1/1', 'ModelPackageDescription': 'TestMe', 'CreationTime': datetime.datetime(2020, 10, 29, 1, 27, 46, 46000, tzinfo=tzlocal()), 'ModelPackageStatus': 'Completed', 'ModelApprovalStatus': 'Approved'}], 'ResponseMetadata': {'RequestId': '12345678-abcd-1234-abcd-aabbccddeeff', 'HTTPStatusCode': 200, 'HTTPHeaders': {'x-amzn-requestid': '12345678-abcd-1234-abcd-aabbccddeeff', 'content-type': 'application/x-amz-json-1.1', 'content-length': '349', 'date': 'Mon, 23 Nov 2020 04:56:50 GMT'}, 'RetryAttempts': 0}}
  2. Hubungi describe_model_package untuk melihat detail versi model. Anda meneruskan versi model yang Anda dapatkan di output panggilan kelist_model_packages. ARN

    sm_client.describe_model_package(ModelPackageName="arn:aws:sagemaker:us-east-2:123456789012:model-package/ModelGroup1/1")

    Output dari panggilan ini adalah JSON objek dengan detail versi model.

    {'ModelPackageGroupName': 'ModelGroup1', 'ModelPackageVersion': 1, 'ModelPackageArn': 'arn:aws:sagemaker:us-east-2:123456789012:model-package/ModelGroup/1', 'ModelPackageDescription': 'Test Model', 'CreationTime': datetime.datetime(2020, 10, 29, 1, 27, 46, 46000, tzinfo=tzlocal()), 'InferenceSpecification': {'Containers': [{'Image': '257758044811.dkr.ecr.us-east-2.amazonaws.com/sagemaker-xgboost:1.0-1-cpu-py3', 'ImageDigest': 'sha256:99fa602cff19aee33297a5926f8497ca7bcd2a391b7d600300204eef803bca66', 'ModelDataUrl': 's3://sagemaker-us-east-2-123456789012/ModelGroup1/pipelines-0gdonccek7o9-AbaloneTrain-stmiylhtIR/output/model.tar.gz'}], 'SupportedTransformInstanceTypes': ['ml.m5.xlarge'], 'SupportedRealtimeInferenceInstanceTypes': ['ml.t2.medium', 'ml.m5.xlarge'], 'SupportedContentTypes': ['text/csv'], 'SupportedResponseMIMETypes': ['text/csv']}, 'ModelPackageStatus': 'Completed', 'ModelPackageStatusDetails': {'ValidationStatuses': [], 'ImageScanStatuses': []}, 'CertifyForMarketplace': False, 'ModelApprovalStatus': 'PendingManualApproval', 'LastModifiedTime': datetime.datetime(2020, 10, 29, 1, 28, 0, 438000, tzinfo=tzlocal()), 'ResponseMetadata': {'RequestId': '12345678-abcd-1234-abcd-aabbccddeeff', 'HTTPStatusCode': 200, 'HTTPHeaders': {'x-amzn-requestid': '212345678-abcd-1234-abcd-aabbccddeeff', 'content-type': 'application/x-amz-json-1.1', 'content-length': '1038', 'date': 'Mon, 23 Nov 2020 04:59:38 GMT'}, 'RetryAttempts': 0}}

Model paket skema kartu model (Studio)

Semua detail yang terkait dengan versi model dienkapsulasi dalam kartu model paket model. Kartu model paket model adalah penggunaan khusus Kartu SageMaker Model Amazon dan skemanya disederhanakan. Skema kartu model paket model ditunjukkan pada dropdown yang dapat diperluas berikut.

{ "title": "SageMakerModelCardSchema", "description": "Schema of a model package’s model card.", "version": "0.1.0", "type": "object", "additionalProperties": false, "properties": { "model_overview": { "description": "Overview about the model.", "type": "object", "additionalProperties": false, "properties": { "model_creator": { "description": "Creator of model.", "type": "string", "maxLength": 1024 }, "model_artifact": { "description": "Location of the model artifact.", "type": "array", "maxContains": 15, "items": { "type": "string", "maxLength": 1024 } } } }, "intended_uses": { "description": "Intended usage of model.", "type": "object", "additionalProperties": false, "properties": { "purpose_of_model": { "description": "Reason the model was developed.", "type": "string", "maxLength": 2048 }, "intended_uses": { "description": "Intended use cases.", "type": "string", "maxLength": 2048 }, "factors_affecting_model_efficiency": { "type": "string", "maxLength": 2048 }, "risk_rating": { "description": "Risk rating for model card.", "$ref": "#/definitions/risk_rating" }, "explanations_for_risk_rating": { "type": "string", "maxLength": 2048 } } }, "business_details": { "description": "Business details of model.", "type": "object", "additionalProperties": false, "properties": { "business_problem": { "description": "Business problem solved by the model.", "type": "string", "maxLength": 2048 }, "business_stakeholders": { "description": "Business stakeholders.", "type": "string", "maxLength": 2048 }, "line_of_business": { "type": "string", "maxLength": 2048 } } }, "training_details": { "description": "Overview about the training.", "type": "object", "additionalProperties": false, "properties": { "objective_function": { "description": "The objective function for which the model is optimized.", "function": { "$ref": "#/definitions/objective_function" }, "notes": { "type": "string", "maxLength": 1024 } }, "training_observations": { "type": "string", "maxLength": 1024 }, "training_job_details": { "type": "object", "additionalProperties": false, "properties": { "training_arn": { "description": "SageMaker Training job ARN.", "type": "string", "maxLength": 1024 }, "training_datasets": { "description": "Location of the model datasets.", "type": "array", "maxContains": 15, "items": { "type": "string", "maxLength": 1024 } }, "training_environment": { "type": "object", "additionalProperties": false, "properties": { "container_image": { "description": "SageMaker training image URI.", "type": "array", "maxContains": 15, "items": { "type": "string", "maxLength": 1024 } } } }, "training_metrics": { "type": "array", "items": { "maxItems": 50, "$ref": "#/definitions/training_metric" } }, "user_provided_training_metrics": { "type": "array", "items": { "maxItems": 50, "$ref": "#/definitions/training_metric" } }, "hyper_parameters": { "type": "array", "items": { "maxItems": 100, "$ref": "#/definitions/training_hyper_parameter" } }, "user_provided_hyper_parameters": { "type": "array", "items": { "maxItems": 100, "$ref": "#/definitions/training_hyper_parameter" } } } } } }, "evaluation_details": { "type": "array", "default": [], "items": { "type": "object", "required": [ "name" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,63}" }, "evaluation_observation": { "type": "string", "maxLength": 2096 }, "evaluation_job_arn": { "type": "string", "maxLength": 256 }, "datasets": { "type": "array", "items": { "type": "string", "maxLength": 1024 }, "maxItems": 10 }, "metadata": { "description": "Additional attributes associated with the evaluation results.", "type": "object", "additionalProperties": { "type": "string", "maxLength": 1024 } }, "metric_groups": { "type": "array", "default": [], "items": { "type": "object", "required": [ "name", "metric_data" ], "properties": { "name": { "type": "string", "pattern": ".{1,63}" }, "metric_data": { "type": "array", "items": { "anyOf": [ { "$ref": "#/definitions/simple_metric" }, { "$ref": "#/definitions/linear_graph_metric" }, { "$ref": "#/definitions/bar_chart_metric" }, { "$ref": "#/definitions/matrix_metric" } ] } } } } } } } }, "additional_information": { "additionalProperties": false, "type": "object", "properties": { "ethical_considerations": { "description": "Ethical considerations for model users.", "type": "string", "maxLength": 2048 }, "caveats_and_recommendations": { "description": "Caveats and recommendations for model users.", "type": "string", "maxLength": 2048 }, "custom_details": { "type": "object", "additionalProperties": { "$ref": "#/definitions/custom_property" } } } } }, "definitions": { "source_algorithms": { "type": "array", "minContains": 1, "maxContains": 1, "items": { "type": "object", "additionalProperties": false, "required": [ "algorithm_name" ], "properties": { "algorithm_name": { "description": "The name of the algorithm used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in AWS Marketplace that you are subscribed to.", "type": "string", "maxLength": 170 }, "model_data_url": { "description": "Amazon S3 path where the model artifacts, which result from model training, are stored.", "type": "string", "maxLength": 1024 } } } }, "inference_specification": { "type": "object", "additionalProperties": false, "required": [ "containers" ], "properties": { "containers": { "description": "Contains inference related information used to create model package.", "type": "array", "minContains": 1, "maxContains": 15, "items": { "type": "object", "additionalProperties": false, "required": [ "image" ], "properties": { "model_data_url": { "description": "Amazon S3 path where the model artifacts, which result from model training, are stored.", "type": "string", "maxLength": 1024 }, "image": { "description": "Inference environment path. The Amazon Elastic Container Registry (Amazon ECR) path where inference code is stored.", "type": "string", "maxLength": 255 }, "nearest_model_name": { "description": "The name of a pre-trained machine learning benchmarked by an Amazon SageMaker Inference Recommender model that matches your model.", "type": "string" } } } } } }, "risk_rating": { "description": "Risk rating of model.", "type": "string", "enum": [ "High", "Medium", "Low", "Unknown" ] }, "custom_property": { "description": "Additional property.", "type": "string", "maxLength": 1024 }, "objective_function": { "description": "Objective function for which the training job is optimized.", "additionalProperties": false, "properties": { "function": { "type": "string", "enum": [ "Maximize", "Minimize" ] }, "facet": { "type": "string", "maxLength": 63 }, "condition": { "type": "string", "maxLength": 63 } } }, "training_metric": { "description": "Training metric data.", "type": "object", "required": [ "name", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "notes": { "type": "string", "maxLength": 1024 }, "value": { "type": "number" } } }, "training_hyper_parameter": { "description": "Training hyperparameter.", "type": "object", "required": [ "name", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "value": { "type": "string", "pattern": ".{1,255}" } } }, "linear_graph_metric": { "type": "object", "required": [ "name", "type", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "notes": { "type": "string", "maxLength": 1024 }, "type": { "type": "string", "enum": [ "linear_graph" ] }, "value": { "anyOf": [ { "type": "array", "items": { "type": "array", "items": { "type": "number" }, "minItems": 2, "maxItems": 2 }, "minItems": 1 } ] }, "x_axis_name": { "$ref": "#/definitions/axis_name_string" }, "y_axis_name": { "$ref": "#/definitions/axis_name_string" } } }, "bar_chart_metric": { "type": "object", "required": [ "name", "type", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "notes": { "type": "string", "maxLength": 1024 }, "type": { "type": "string", "enum": [ "bar_chart" ] }, "value": { "anyOf": [ { "type": "array", "items": { "type": "number" }, "minItems": 1 } ] }, "x_axis_name": { "$ref": "#/definitions/axis_name_array" }, "y_axis_name": { "$ref": "#/definitions/axis_name_string" } } }, "matrix_metric": { "type": "object", "required": [ "name", "type", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "notes": { "type": "string", "maxLength": 1024 }, "type": { "type": "string", "enum": [ "matrix" ] }, "value": { "anyOf": [ { "type": "array", "items": { "type": "array", "items": { "type": "number" }, "minItems": 1, "maxItems": 20 }, "minItems": 1, "maxItems": 20 } ] }, "x_axis_name": { "$ref": "#/definitions/axis_name_array" }, "y_axis_name": { "$ref": "#/definitions/axis_name_array" } } }, "simple_metric": { "description": "Metric data.", "type": "object", "required": [ "name", "type", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "notes": { "type": "string", "maxLength": 1024 }, "type": { "type": "string", "enum": [ "number", "string", "boolean" ] }, "value": { "anyOf": [ { "type": "number" }, { "type": "string", "maxLength": 63 }, { "type": "boolean" } ] }, "x_axis_name": { "$ref": "#/definitions/axis_name_string" }, "y_axis_name": { "$ref": "#/definitions/axis_name_string" } } }, "axis_name_array": { "type": "array", "items": { "type": "string", "maxLength": 63 } }, "axis_name_string": { "type": "string", "maxLength": 63 } } }

Lihat dan Perbarui Detail Versi Model (Studio atau Studio Klasik)

Untuk melihat dan memperbarui detail versi model, selesaikan langkah-langkah berikut berdasarkan apakah Anda menggunakan Studio atau Studio Classic. Di Studio Classic, Anda dapat memperbarui status persetujuan untuk versi model. Untuk detailnya, lihat Memperbarui Status Persetujuan Model. Di Studio, di sisi lain, SageMaker membuat kartu model untuk paket model, dan UI versi model menyediakan opsi untuk memperbarui detail di kartu model.

Studio
  1. Buka konsol SageMaker Studio dengan mengikuti petunjuk di Luncurkan Amazon SageMaker Studio.

  2. Di panel navigasi kiri, pilih Model dari menu.

  3. Pilih tab Model terdaftar, jika belum dipilih.

  4. Tepat di bawah label tab Model terdaftar, pilih Grup Model, jika belum dipilih.

  5. Pilih nama grup model yang berisi versi model yang akan dilihat.

  6. Dalam daftar versi model, pilih versi model yang akan dilihat.

  7. Pilih salah satu tab berikut.

    • Pelatihan: Untuk melihat atau mengedit detail yang terkait dengan pekerjaan pelatihan Anda, termasuk metrik kinerja, artefak, IAM peran dan enkripsi, dan kontainer. Untuk informasi selengkapnya, lihat Tambahkan pekerjaan pelatihan (Studio).

    • Mengevaluasi: Untuk melihat atau mengedit detail yang terkait dengan pekerjaan pelatihan Anda, seperti metrik kinerja, kumpulan data evaluasi, dan keamanan. Untuk informasi selengkapnya, lihat Tambahkan pekerjaan evaluasi (Studio).

    • Audit: Untuk melihat atau mengedit detail tingkat tinggi yang terkait dengan tujuan bisnis model, penggunaan, risiko, dan detail teknis seperti algoritme dan batasan kinerja. Untuk informasi selengkapnya, lihat Perbarui informasi audit (tata kelola) (Studio).

    • Deploy: Untuk melihat atau mengedit lokasi wadah gambar inferensi Anda dan instance yang menyusun titik akhir. Untuk informasi selengkapnya, lihat Perbarui informasi penyebaran (Studio).

Studio Classic
  1. Masuk ke Amazon SageMaker Studio Classic. Untuk informasi selengkapnya, lihat Meluncurkan Amazon SageMaker Studio Classic.

  2. Di panel navigasi kiri, pilih ikon Beranda ( Black square icon representing a placeholder or empty image. ).

  3. Pilih Model, dan kemudian registri Model.

  4. Dari daftar grup model, pilih nama Grup Model yang ingin Anda lihat.

  5. Tab baru muncul dengan daftar versi model di Grup Model.

  6. Dalam daftar versi model, pilih nama versi model yang ingin Anda lihat detailnya.

  7. Pada tab versi model yang terbuka, pilih salah satu dari berikut ini untuk melihat detail tentang versi model:

    • Aktivitas: Menampilkan peristiwa untuk versi model, seperti pembaruan status persetujuan.

    • Kualitas model: Melaporkan metrik yang terkait dengan pemeriksaan kualitas model Model Monitor Anda, yang membandingkan prediksi model dengan Ground Truth. Untuk informasi selengkapnya tentang pemeriksaan kualitas model Model Monitor, lihatKualitas model.

    • Keterjelasan: Melaporkan metrik yang terkait dengan pemeriksaan atribusi fitur Monitor Model Anda, yang membandingkan peringkat relatif fitur Anda dalam data pelatihan versus data langsung. Untuk informasi selengkapnya tentang pemeriksaan penjelasan Model Monitor, lihat. Penyimpangan atribusi fitur untuk model dalam produksi

    • Bias: Melaporkan metrik yang terkait dengan pemeriksaan penyimpangan bias Monitor Model Anda, yang membandingkan distribusi data langsung dengan data pelatihan. Untuk informasi lebih lanjut tentang pemeriksaan penyimpangan bias Model Monitor, lihatBias drift untuk model dalam produksi.

    • Rekomendasi inferensi: Memberikan rekomendasi instans awal untuk kinerja optimal berdasarkan model dan muatan sampel Anda.

    • Uji beban: Menjalankan uji beban di seluruh pilihan jenis instans saat Anda memberikan persyaratan produksi spesifik, seperti batasan latensi dan throughput.

    • Spesifikasi inferensi: Menampilkan jenis instans untuk inferensi real-time Anda dan mengubah pekerjaan, serta informasi tentang container Amazon ECR Anda.

    • Informasi: Menampilkan informasi seperti proyek yang terkait dengan versi model, pipeline yang menghasilkan model, Grup Model, dan lokasi model di Amazon S3.