Amazon Comprehend contoh menggunakan AWS SDK for .NET - AWS SDK for .NET

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

Amazon Comprehend contoh menggunakan AWS SDK for .NET

Contoh kode berikut menunjukkan cara melakukan tindakan dan menerapkan skenario umum dengan menggunakan Amazon AWS SDK for .NET Comprehend.

Tindakan adalah kutipan kode dari program yang lebih besar dan harus dijalankan dalam konteks. Sementara tindakan menunjukkan cara memanggil fungsi layanan individual, Anda dapat melihat tindakan dalam konteks dalam skenario terkait.

Skenario adalah contoh kode yang menunjukkan kepada Anda bagaimana menyelesaikan tugas tertentu dengan memanggil beberapa fungsi dalam layanan atau dikombinasikan dengan yang lain Layanan AWS.

Setiap contoh menyertakan tautan ke kode sumber lengkap, di mana Anda dapat menemukan instruksi tentang cara mengatur dan menjalankan kode dalam konteks.

Tindakan

Contoh kode berikut menunjukkan cara menggunakanDetectDominantLanguage.

AWS SDK for .NET
catatan

Ada lebih banyak tentang GitHub. Temukan contoh lengkapnya dan pelajari cara pengaturan dan menjalankannya di Repositori Contoh Kode AWS.

using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example calls the Amazon Comprehend service to determine the /// dominant language. /// </summary> public static class DetectDominantLanguage { /// <summary> /// Calls Amazon Comprehend to determine the dominant language used in /// the sample text. /// </summary> public static async Task Main() { string text = "It is raining today in Seattle."; var comprehendClient = new AmazonComprehendClient(Amazon.RegionEndpoint.USWest2); Console.WriteLine("Calling DetectDominantLanguage\n"); var detectDominantLanguageRequest = new DetectDominantLanguageRequest() { Text = text, }; var detectDominantLanguageResponse = await comprehendClient.DetectDominantLanguageAsync(detectDominantLanguageRequest); foreach (var dl in detectDominantLanguageResponse.Languages) { Console.WriteLine($"Language Code: {dl.LanguageCode}, Score: {dl.Score}"); } Console.WriteLine("Done"); } }

Contoh kode berikut menunjukkan cara menggunakanDetectEntities.

AWS SDK for .NET
catatan

Ada lebih banyak tentang GitHub. Temukan contoh lengkapnya dan pelajari cara pengaturan dan menjalankannya di Repositori Contoh Kode AWS.

using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example shows how to use the AmazonComprehend service detect any /// entities in submitted text. /// </summary> public static class DetectEntities { /// <summary> /// The main method calls the DetectEntitiesAsync method to find any /// entities in the sample code. /// </summary> public static async Task Main() { string text = "It is raining today in Seattle"; var comprehendClient = new AmazonComprehendClient(); Console.WriteLine("Calling DetectEntities\n"); var detectEntitiesRequest = new DetectEntitiesRequest() { Text = text, LanguageCode = "en", }; var detectEntitiesResponse = await comprehendClient.DetectEntitiesAsync(detectEntitiesRequest); foreach (var e in detectEntitiesResponse.Entities) { Console.WriteLine($"Text: {e.Text}, Type: {e.Type}, Score: {e.Score}, BeginOffset: {e.BeginOffset}, EndOffset: {e.EndOffset}"); } Console.WriteLine("Done"); } }
  • Untuk API detailnya, lihat DetectEntitiesdi AWS SDK for .NET APIReferensi.

Contoh kode berikut menunjukkan cara menggunakanDetectKeyPhrases.

AWS SDK for .NET
catatan

Ada lebih banyak tentang GitHub. Temukan contoh lengkapnya dan pelajari cara pengaturan dan menjalankannya di Repositori Contoh Kode AWS.

using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example shows how to use the Amazon Comprehend service to /// search text for key phrases. /// </summary> public static class DetectKeyPhrase { /// <summary> /// This method calls the Amazon Comprehend method DetectKeyPhrasesAsync /// to detect any key phrases in the sample text. /// </summary> public static async Task Main() { string text = "It is raining today in Seattle"; var comprehendClient = new AmazonComprehendClient(Amazon.RegionEndpoint.USWest2); // Call DetectKeyPhrases API Console.WriteLine("Calling DetectKeyPhrases"); var detectKeyPhrasesRequest = new DetectKeyPhrasesRequest() { Text = text, LanguageCode = "en", }; var detectKeyPhrasesResponse = await comprehendClient.DetectKeyPhrasesAsync(detectKeyPhrasesRequest); foreach (var kp in detectKeyPhrasesResponse.KeyPhrases) { Console.WriteLine($"Text: {kp.Text}, Score: {kp.Score}, BeginOffset: {kp.BeginOffset}, EndOffset: {kp.EndOffset}"); } Console.WriteLine("Done"); } }

Contoh kode berikut menunjukkan cara menggunakanDetectPiiEntities.

AWS SDK for .NET
catatan

Ada lebih banyak tentang GitHub. Temukan contoh lengkapnya dan pelajari cara pengaturan dan menjalankannya di Repositori Contoh Kode AWS.

using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example shows how to use the Amazon Comprehend service to find /// personally identifiable information (PII) within text submitted to the /// DetectPiiEntitiesAsync method. /// </summary> public class DetectingPII { /// <summary> /// This method calls the DetectPiiEntitiesAsync method to locate any /// personally dientifiable information within the supplied text. /// </summary> public static async Task Main() { var comprehendClient = new AmazonComprehendClient(); var text = @"Hello Paul Santos. The latest statement for your credit card account 1111-0000-1111-0000 was mailed to 123 Any Street, Seattle, WA 98109."; var request = new DetectPiiEntitiesRequest { Text = text, LanguageCode = "EN", }; var response = await comprehendClient.DetectPiiEntitiesAsync(request); if (response.Entities.Count > 0) { foreach (var entity in response.Entities) { var entityValue = text.Substring(entity.BeginOffset, entity.EndOffset - entity.BeginOffset); Console.WriteLine($"{entity.Type}: {entityValue}"); } } } }

Contoh kode berikut menunjukkan cara menggunakanDetectSentiment.

AWS SDK for .NET
catatan

Ada lebih banyak tentang GitHub. Temukan contoh lengkapnya dan pelajari cara pengaturan dan menjalankannya di Repositori Contoh Kode AWS.

using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example shows how to detect the overall sentiment of the supplied /// text using the Amazon Comprehend service. /// </summary> public static class DetectSentiment { /// <summary> /// This method calls the DetetectSentimentAsync method to analyze the /// supplied text and determine the overal sentiment. /// </summary> public static async Task Main() { string text = "It is raining today in Seattle"; var comprehendClient = new AmazonComprehendClient(Amazon.RegionEndpoint.USWest2); // Call DetectKeyPhrases API Console.WriteLine("Calling DetectSentiment"); var detectSentimentRequest = new DetectSentimentRequest() { Text = text, LanguageCode = "en", }; var detectSentimentResponse = await comprehendClient.DetectSentimentAsync(detectSentimentRequest); Console.WriteLine($"Sentiment: {detectSentimentResponse.Sentiment}"); Console.WriteLine("Done"); } }
  • Untuk API detailnya, lihat DetectSentimentdi AWS SDK for .NET APIReferensi.

Contoh kode berikut menunjukkan cara menggunakanDetectSyntax.

AWS SDK for .NET
catatan

Ada lebih banyak tentang GitHub. Temukan contoh lengkapnya dan pelajari cara pengaturan dan menjalankannya di Repositori Contoh Kode AWS.

using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example shows how to use Amazon Comprehend to detect syntax /// elements by calling the DetectSyntaxAsync method. /// </summary> public class DetectingSyntax { /// <summary> /// This method calls DetectSynaxAsync to identify the syntax elements /// in the sample text. /// </summary> public static async Task Main() { string text = "It is raining today in Seattle"; var comprehendClient = new AmazonComprehendClient(); // Call DetectSyntax API Console.WriteLine("Calling DetectSyntaxAsync\n"); var detectSyntaxRequest = new DetectSyntaxRequest() { Text = text, LanguageCode = "en", }; DetectSyntaxResponse detectSyntaxResponse = await comprehendClient.DetectSyntaxAsync(detectSyntaxRequest); foreach (SyntaxToken s in detectSyntaxResponse.SyntaxTokens) { Console.WriteLine($"Text: {s.Text}, PartOfSpeech: {s.PartOfSpeech.Tag}, BeginOffset: {s.BeginOffset}, EndOffset: {s.EndOffset}"); } Console.WriteLine("Done"); } }
  • Untuk API detailnya, lihat DetectSyntaxdi AWS SDK for .NET APIReferensi.

Contoh kode berikut menunjukkan cara menggunakanStartTopicsDetectionJob.

AWS SDK for .NET
catatan

Ada lebih banyak tentang GitHub. Temukan contoh lengkapnya dan pelajari cara pengaturan dan menjalankannya di Repositori Contoh Kode AWS.

using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example scans the documents in an Amazon Simple Storage Service /// (Amazon S3) bucket and analyzes it for topics. The results are stored /// in another bucket and then the resulting job properties are displayed /// on the screen. This example was created using the AWS SDK for .NEt /// version 3.7 and .NET Core version 5.0. /// </summary> public static class TopicModeling { /// <summary> /// This methos calls a topic detection job by calling the Amazon /// Comprehend StartTopicsDetectionJobRequest. /// </summary> public static async Task Main() { var comprehendClient = new AmazonComprehendClient(); string inputS3Uri = "s3://input bucket/input path"; InputFormat inputDocFormat = InputFormat.ONE_DOC_PER_FILE; string outputS3Uri = "s3://output bucket/output path"; string dataAccessRoleArn = "arn:aws:iam::account ID:role/data access role"; int numberOfTopics = 10; var startTopicsDetectionJobRequest = new StartTopicsDetectionJobRequest() { InputDataConfig = new InputDataConfig() { S3Uri = inputS3Uri, InputFormat = inputDocFormat, }, OutputDataConfig = new OutputDataConfig() { S3Uri = outputS3Uri, }, DataAccessRoleArn = dataAccessRoleArn, NumberOfTopics = numberOfTopics, }; var startTopicsDetectionJobResponse = await comprehendClient.StartTopicsDetectionJobAsync(startTopicsDetectionJobRequest); var jobId = startTopicsDetectionJobResponse.JobId; Console.WriteLine("JobId: " + jobId); var describeTopicsDetectionJobRequest = new DescribeTopicsDetectionJobRequest() { JobId = jobId, }; var describeTopicsDetectionJobResponse = await comprehendClient.DescribeTopicsDetectionJobAsync(describeTopicsDetectionJobRequest); PrintJobProperties(describeTopicsDetectionJobResponse.TopicsDetectionJobProperties); var listTopicsDetectionJobsResponse = await comprehendClient.ListTopicsDetectionJobsAsync(new ListTopicsDetectionJobsRequest()); foreach (var props in listTopicsDetectionJobsResponse.TopicsDetectionJobPropertiesList) { PrintJobProperties(props); } } /// <summary> /// This method is a helper method that displays the job properties /// from the call to StartTopicsDetectionJobRequest. /// </summary> /// <param name="props">A list of properties from the call to /// StartTopicsDetectionJobRequest.</param> private static void PrintJobProperties(TopicsDetectionJobProperties props) { Console.WriteLine($"JobId: {props.JobId}, JobName: {props.JobName}, JobStatus: {props.JobStatus}"); Console.WriteLine($"NumberOfTopics: {props.NumberOfTopics}\nInputS3Uri: {props.InputDataConfig.S3Uri}"); Console.WriteLine($"InputFormat: {props.InputDataConfig.InputFormat}, OutputS3Uri: {props.OutputDataConfig.S3Uri}"); } }

Skenario

Contoh kode berikut menunjukkan cara membuat aplikasi yang menganalisis kartu komentar pelanggan, menerjemahkannya dari bahasa aslinya, menentukan sentimen mereka, dan menghasilkan file audio dari teks yang diterjemahkan.

AWS SDK for .NET

Aplikasi contoh ini menganalisis dan menyimpan kartu umpan balik pelanggan. Secara khusus, ini memenuhi kebutuhan hotel fiktif di New York City. Hotel menerima umpan balik dari para tamu dalam berbagai bahasa dalam bentuk kartu komentar fisik. Umpan balik itu diunggah ke aplikasi melalui klien web. Setelah gambar kartu komentar diunggah, langkah-langkah berikut terjadi:

  • Teks diekstraksi dari gambar menggunakan Amazon Textract.

  • Amazon Comprehend menentukan sentimen teks yang diekstraksi dan bahasanya.

  • Teks yang diekstraksi diterjemahkan ke bahasa Inggris menggunakan Amazon Translate.

  • Amazon Polly mensintesis file audio dari teks yang diekstraksi.

Aplikasi lengkap dapat digunakan dengan. AWS CDK Untuk kode sumber dan petunjuk penerapan, lihat proyek di GitHub.

Layanan yang digunakan dalam contoh ini
  • Amazon Comprehend

  • Lambda

  • Amazon Polly

  • Amazon Textract

  • Amazon Translate