Mendeteksi atau Menganalisis Teks dalam Dokumen Multipage - Amazon Textract

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

Mendeteksi atau Menganalisis Teks dalam Dokumen Multipage

Prosedur ini menunjukkan kepada Anda cara untuk mendeteksi atau menganalisis teks dalam dokumen multihalaman dengan menggunakan operasi pendeteksi Amazon Textract, dokumen yang disimpan dalam bucket Amazon S3, topik Amazon SNS, dan antrean Amazon SQS. Pengolahan dokumen multipage merupakan operasi asinkron. Untuk informasi selengkapnya, lihat Memanggil Operasi Asinkron Amazon Texact.

Anda dapat memilih jenis pemrosesan yang ingin Anda lakukan kode: deteksi teks, analisis teks, atau analisis biaya.

Hasil pengolahan dikembalikan dalam arrayBlockobjek, yang berbeda tergantung pada jenis pengolahan yang Anda gunakan.

Untuk mendeteksi teks atau menganalisis dokumen multipage, Anda melakukan hal berikut:

  1. Buat topik Amazon SNS dan antrean Amazon SQS.

  2. Berlangganan antrean topik.

  3. Berikan izin topik untuk mengirim pesan ke antrean.

  4. Mulai memproses dokumen. Gunakan operasi yang sesuai untuk jenis analisis yang Anda pilih:

  5. Dapatkan status penyelesaian dari antrean Amazon SQS. Contoh kode melacak pengenal pekerjaan (JobId) yang dikembalikan olehStartoperasi. Ini hanya mendapatkan hasil untuk mencocokkan pengidentifikasi tugas yang dibaca dari status penyelesaian. Hal ini penting jika aplikasi lain menggunakan antrean dan topik yang sama. Untuk kesederhanaan, contoh penghapusan tugas yang tidak cocok. Pertimbangkan untuk menambahkan tugas yang dihapus ke antrean surat mati Amazon SQS untuk penyelidikan lebih lanjut.

  6. Dapatkan dan tampilkan hasil pemrosesan dengan memanggil operasi yang sesuai untuk jenis analisis yang Anda pilih:

  7. Hapus topik Amazon SNS dan antrean Amazon SQS.

Melakukan Operasi Asinkron

Contoh kode untuk prosedur ini disediakan di Java, Python, danAWS CLI. Sebelum memulai, pasang yang sesuaiAWSSDK. Untuk informasi selengkapnya, lihat Langkah 2: MenyiapkanAWS CLIdanAWSSDK.

Untuk mendeteksi atau menganalisis teks dalam dokumen multipage
  1. Konfigurasikan akses pengguna ke Amazon Textract Texact, dan konfigurasikan akses Amazon Textract Texact ke Amazon SNS. Untuk informasi selengkapnya, lihat Mengkonfigurasi Amazon Textract untuk Operasi Asynchronous. Untuk menyelesaikan prosedur ini, Anda memerlukan file dokumen multipage dalam format PDF. Lewati langkah 3 — 6 karena contoh kode membuat dan mengonfigurasi topik Amazon SNS dan antrean Amazon SQS. Jika completDalam contoh CLI, Anda tidak perlu mengatur antrian SQS.

  2. Unggah file dokumen multipage dalam format PDF atau TIFF ke bucket Amazon S3. (Dokumen satu halaman dalam format JPEG, PNG, TIFF, atau PDF juga dapat diproses).

    Untuk instruksi, lihatMengunggah objek ke Amazon S3diPanduan Pengguna Amazon Simple Storage Service.

  3. Gunakan hal berikutAWS SDK for Java, SDK for Python (Boto3), atauAWS CLIkode untuk mendeteksi teks atau menganalisis teks dalam dokumen multipage. DimainFungsi:

    • Ganti nilairoleArndengan peran IAM ARN yang Anda simpanMemberikan Amazon Textract Akses ke Topik Amazon SNS Anda.

    • Ganti nilaibucketdandocumentdengan nama file bucket dan dokumen yang Anda tentukan pada langkah 2.

    • Ganti nilaitypeparameter masukan dariProcessDocumentberfungsi dengan jenis pengolahan yang ingin Anda lakukan. GunakanProcessType.DETECTIONuntuk mendeteksi teks. GunakanProcessType.ANALYSISuntuk menganalisis teks.

    • Untuk contoh Python, ganti nilairegion_namedengan wilayah klien Anda beroperasi di.

    UntukAWS CLIcontoh, lakukan hal berikut:

    • Saat meneleponStartDocumentTextDetection, ganti nilaibucket-namedengan nama bucket S3 Anda, dan gantifile-namedengan nama file yang Anda tentukan pada langkah 2. Tentukan wilayah bucket Anda dengan menggantiregion-namedengan nama wilayah Anda. Perhatikan bahwa contoh CLI tidak menggunakan SQS.

    • Saat meneleponGetDocumentTextDetectionmenggantikanjob-id-numberdenganjob-iddikembalikan olehStartDocumentTextDetection. Tentukan wilayah bucket Anda dengan menggantiregion-namedengan nama wilayah Anda.

    Java
    package com.amazonaws.samples; import java.util.Arrays; import java.util.HashMap; import java.util.List; import java.util.Map; import com.amazonaws.auth.policy.Condition; import com.amazonaws.auth.policy.Policy; import com.amazonaws.auth.policy.Principal; import com.amazonaws.auth.policy.Resource; import com.amazonaws.auth.policy.Statement; import com.amazonaws.auth.policy.Statement.Effect; import com.amazonaws.auth.policy.actions.SQSActions; import com.amazonaws.services.sns.AmazonSNS; import com.amazonaws.services.sns.AmazonSNSClientBuilder; import com.amazonaws.services.sns.model.CreateTopicRequest; import com.amazonaws.services.sns.model.CreateTopicResult; import com.amazonaws.services.sqs.AmazonSQS; import com.amazonaws.services.sqs.AmazonSQSClientBuilder; import com.amazonaws.services.sqs.model.CreateQueueRequest; import com.amazonaws.services.sqs.model.Message; import com.amazonaws.services.sqs.model.QueueAttributeName; import com.amazonaws.services.sqs.model.SetQueueAttributesRequest; import com.amazonaws.services.textract.AmazonTextract; import com.amazonaws.services.textract.AmazonTextractClientBuilder; import com.amazonaws.services.textract.model.Block; import com.amazonaws.services.textract.model.DocumentLocation; import com.amazonaws.services.textract.model.DocumentMetadata; import com.amazonaws.services.textract.model.GetDocumentAnalysisRequest; import com.amazonaws.services.textract.model.GetDocumentAnalysisResult; import com.amazonaws.services.textract.model.GetDocumentTextDetectionRequest; import com.amazonaws.services.textract.model.GetDocumentTextDetectionResult; import com.amazonaws.services.textract.model.NotificationChannel; import com.amazonaws.services.textract.model.Relationship; import com.amazonaws.services.textract.model.S3Object; import com.amazonaws.services.textract.model.StartDocumentAnalysisRequest; import com.amazonaws.services.textract.model.StartDocumentAnalysisResult; import com.amazonaws.services.textract.model.StartDocumentTextDetectionRequest; import com.amazonaws.services.textract.model.StartDocumentTextDetectionResult; import com.fasterxml.jackson.databind.JsonNode; import com.fasterxml.jackson.databind.ObjectMapper;; public class DocumentProcessor { private static String sqsQueueName=null; private static String snsTopicName=null; private static String snsTopicArn = null; private static String roleArn= null; private static String sqsQueueUrl = null; private static String sqsQueueArn = null; private static String startJobId = null; private static String bucket = null; private static String document = null; private static AmazonSQS sqs=null; private static AmazonSNS sns=null; private static AmazonTextract textract = null; public enum ProcessType { DETECTION,ANALYSIS } public static void main(String[] args) throws Exception { String document = "document"; String bucket = "bucket"; String roleArn="role"; sns = AmazonSNSClientBuilder.defaultClient(); sqs= AmazonSQSClientBuilder.defaultClient(); textract=AmazonTextractClientBuilder.defaultClient(); CreateTopicandQueue(); ProcessDocument(bucket,document,roleArn,ProcessType.DETECTION); DeleteTopicandQueue(); System.out.println("Done!"); } // Creates an SNS topic and SQS queue. The queue is subscribed to the topic. static void CreateTopicandQueue() { //create a new SNS topic snsTopicName="AmazonTextractTopic" + Long.toString(System.currentTimeMillis()); CreateTopicRequest createTopicRequest = new CreateTopicRequest(snsTopicName); CreateTopicResult createTopicResult = sns.createTopic(createTopicRequest); snsTopicArn=createTopicResult.getTopicArn(); //Create a new SQS Queue sqsQueueName="AmazonTextractQueue" + Long.toString(System.currentTimeMillis()); final CreateQueueRequest createQueueRequest = new CreateQueueRequest(sqsQueueName); sqsQueueUrl = sqs.createQueue(createQueueRequest).getQueueUrl(); sqsQueueArn = sqs.getQueueAttributes(sqsQueueUrl, Arrays.asList("QueueArn")).getAttributes().get("QueueArn"); //Subscribe SQS queue to SNS topic String sqsSubscriptionArn = sns.subscribe(snsTopicArn, "sqs", sqsQueueArn).getSubscriptionArn(); // Authorize queue Policy policy = new Policy().withStatements( new Statement(Effect.Allow) .withPrincipals(Principal.AllUsers) .withActions(SQSActions.SendMessage) .withResources(new Resource(sqsQueueArn)) .withConditions(new Condition().withType("ArnEquals").withConditionKey("aws:SourceArn").withValues(snsTopicArn)) ); Map queueAttributes = new HashMap(); queueAttributes.put(QueueAttributeName.Policy.toString(), policy.toJson()); sqs.setQueueAttributes(new SetQueueAttributesRequest(sqsQueueUrl, queueAttributes)); System.out.println("Topic arn: " + snsTopicArn); System.out.println("Queue arn: " + sqsQueueArn); System.out.println("Queue url: " + sqsQueueUrl); System.out.println("Queue sub arn: " + sqsSubscriptionArn ); } static void DeleteTopicandQueue() { if (sqs !=null) { sqs.deleteQueue(sqsQueueUrl); System.out.println("SQS queue deleted"); } if (sns!=null) { sns.deleteTopic(snsTopicArn); System.out.println("SNS topic deleted"); } } //Starts the processing of the input document. static void ProcessDocument(String inBucket, String inDocument, String inRoleArn, ProcessType type) throws Exception { bucket=inBucket; document=inDocument; roleArn=inRoleArn; switch(type) { case DETECTION: StartDocumentTextDetection(bucket, document); System.out.println("Processing type: Detection"); break; case ANALYSIS: StartDocumentAnalysis(bucket,document); System.out.println("Processing type: Analysis"); break; default: System.out.println("Invalid processing type. Choose Detection or Analysis"); throw new Exception("Invalid processing type"); } System.out.println("Waiting for job: " + startJobId); //Poll queue for messages List<Message> messages=null; int dotLine=0; boolean jobFound=false; //loop until the job status is published. Ignore other messages in queue. do{ messages = sqs.receiveMessage(sqsQueueUrl).getMessages(); if (dotLine++<40){ System.out.print("."); }else{ System.out.println(); dotLine=0; } if (!messages.isEmpty()) { //Loop through messages received. for (Message message: messages) { String notification = message.getBody(); // Get status and job id from notification. ObjectMapper mapper = new ObjectMapper(); JsonNode jsonMessageTree = mapper.readTree(notification); JsonNode messageBodyText = jsonMessageTree.get("Message"); ObjectMapper operationResultMapper = new ObjectMapper(); JsonNode jsonResultTree = operationResultMapper.readTree(messageBodyText.textValue()); JsonNode operationJobId = jsonResultTree.get("JobId"); JsonNode operationStatus = jsonResultTree.get("Status"); System.out.println("Job found was " + operationJobId); // Found job. Get the results and display. if(operationJobId.asText().equals(startJobId)){ jobFound=true; System.out.println("Job id: " + operationJobId ); System.out.println("Status : " + operationStatus.toString()); if (operationStatus.asText().equals("SUCCEEDED")){ switch(type) { case DETECTION: GetDocumentTextDetectionResults(); break; case ANALYSIS: GetDocumentAnalysisResults(); break; default: System.out.println("Invalid processing type. Choose Detection or Analysis"); throw new Exception("Invalid processing type"); } } else{ System.out.println("Document analysis failed"); } sqs.deleteMessage(sqsQueueUrl,message.getReceiptHandle()); } else{ System.out.println("Job received was not job " + startJobId); //Delete unknown message. Consider moving message to dead letter queue sqs.deleteMessage(sqsQueueUrl,message.getReceiptHandle()); } } } else { Thread.sleep(5000); } } while (!jobFound); System.out.println("Finished processing document"); } private static void StartDocumentTextDetection(String bucket, String document) throws Exception{ //Create notification channel NotificationChannel channel= new NotificationChannel() .withSNSTopicArn(snsTopicArn) .withRoleArn(roleArn); StartDocumentTextDetectionRequest req = new StartDocumentTextDetectionRequest() .withDocumentLocation(new DocumentLocation() .withS3Object(new S3Object() .withBucket(bucket) .withName(document))) .withJobTag("DetectingText") .withNotificationChannel(channel); StartDocumentTextDetectionResult startDocumentTextDetectionResult = textract.startDocumentTextDetection(req); startJobId=startDocumentTextDetectionResult.getJobId(); } //Gets the results of processing started by StartDocumentTextDetection private static void GetDocumentTextDetectionResults() throws Exception{ int maxResults=1000; String paginationToken=null; GetDocumentTextDetectionResult response=null; Boolean finished=false; while (finished==false) { GetDocumentTextDetectionRequest documentTextDetectionRequest= new GetDocumentTextDetectionRequest() .withJobId(startJobId) .withMaxResults(maxResults) .withNextToken(paginationToken); response = textract.getDocumentTextDetection(documentTextDetectionRequest); DocumentMetadata documentMetaData=response.getDocumentMetadata(); System.out.println("Pages: " + documentMetaData.getPages().toString()); //Show blocks information List<Block> blocks= response.getBlocks(); for (Block block : blocks) { DisplayBlockInfo(block); } paginationToken=response.getNextToken(); if (paginationToken==null) finished=true; } } private static void StartDocumentAnalysis(String bucket, String document) throws Exception{ //Create notification channel NotificationChannel channel= new NotificationChannel() .withSNSTopicArn(snsTopicArn) .withRoleArn(roleArn); StartDocumentAnalysisRequest req = new StartDocumentAnalysisRequest() .withFeatureTypes("TABLES","FORMS") .withDocumentLocation(new DocumentLocation() .withS3Object(new S3Object() .withBucket(bucket) .withName(document))) .withJobTag("AnalyzingText") .withNotificationChannel(channel); StartDocumentAnalysisResult startDocumentAnalysisResult = textract.startDocumentAnalysis(req); startJobId=startDocumentAnalysisResult.getJobId(); } //Gets the results of processing started by StartDocumentAnalysis private static void GetDocumentAnalysisResults() throws Exception{ int maxResults=1000; String paginationToken=null; GetDocumentAnalysisResult response=null; Boolean finished=false; //loops until pagination token is null while (finished==false) { GetDocumentAnalysisRequest documentAnalysisRequest= new GetDocumentAnalysisRequest() .withJobId(startJobId) .withMaxResults(maxResults) .withNextToken(paginationToken); response = textract.getDocumentAnalysis(documentAnalysisRequest); DocumentMetadata documentMetaData=response.getDocumentMetadata(); System.out.println("Pages: " + documentMetaData.getPages().toString()); //Show blocks, confidence and detection times List<Block> blocks= response.getBlocks(); for (Block block : blocks) { DisplayBlockInfo(block); } paginationToken=response.getNextToken(); if (paginationToken==null) finished=true; } } //Displays Block information for text detection and text analysis private static void DisplayBlockInfo(Block block) { System.out.println("Block Id : " + block.getId()); if (block.getText()!=null) System.out.println("\tDetected text: " + block.getText()); System.out.println("\tType: " + block.getBlockType()); if (block.getBlockType().equals("PAGE") !=true) { System.out.println("\tConfidence: " + block.getConfidence().toString()); } if(block.getBlockType().equals("CELL")) { System.out.println("\tCell information:"); System.out.println("\t\tColumn: " + block.getColumnIndex()); System.out.println("\t\tRow: " + block.getRowIndex()); System.out.println("\t\tColumn span: " + block.getColumnSpan()); System.out.println("\t\tRow span: " + block.getRowSpan()); } System.out.println("\tRelationships"); List<Relationship> relationships=block.getRelationships(); if(relationships!=null) { for (Relationship relationship : relationships) { System.out.println("\t\tType: " + relationship.getType()); System.out.println("\t\tIDs: " + relationship.getIds().toString()); } } else { System.out.println("\t\tNo related Blocks"); } System.out.println("\tGeometry"); System.out.println("\t\tBounding Box: " + block.getGeometry().getBoundingBox().toString()); System.out.println("\t\tPolygon: " + block.getGeometry().getPolygon().toString()); List<String> entityTypes = block.getEntityTypes(); System.out.println("\tEntity Types"); if(entityTypes!=null) { for (String entityType : entityTypes) { System.out.println("\t\tEntity Type: " + entityType); } } else { System.out.println("\t\tNo entity type"); } if(block.getBlockType().equals("SELECTION_ELEMENT")) { System.out.print(" Selection element detected: "); if (block.getSelectionStatus().equals("SELECTED")){ System.out.println("Selected"); }else { System.out.println(" Not selected"); } } if(block.getPage()!=null) System.out.println("\tPage: " + block.getPage()); System.out.println(); } }
    AWS CLI

    IniAWS CLImemulai deteksi asinkron teks dalam dokumen tertentu. Ini menghasilkanjob-idyang dapat digunakan untuk retreive hasil deteksi.

    aws textract start-document-text-detection --document-location "{\"S3Object\":{\"Bucket\":\"bucket-name\",\"Name\":\"file-name\"}}" --region region-name

    IniAWS CLIperintah mengembalikan hasil untuk operasi asinkron Amazon Textract bila disediakan denganjob-id.

    aws textract get-document-text-detection --region region-name --job-id job-id-number

    Jika Anda mengakses CLI pada perangkat Windows, gunakan tanda kutip ganda bukan tanda kutip tunggal dan melarikan diri tanda kutip ganda dalam dengan garis miring terbalik (yaitu\) untuk mengatasi kesalahan parser yang mungkin Anda hadapi. Sebagai contoh, lihat di bawah

    aws textract start-document-text-detection --document-location "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" --region region-name
    Python
    import boto3 import json import sys import time class ProcessType: DETECTION = 1 ANALYSIS = 2 class DocumentProcessor: jobId = '' region_name = '' roleArn = '' bucket = '' document = '' sqsQueueUrl = '' snsTopicArn = '' processType = '' def __init__(self, role, bucket, document, region): self.roleArn = role self.bucket = bucket self.document = document self.region_name = region self.textract = boto3.client('textract', region_name=self.region_name) self.sqs = boto3.client('sqs') self.sns = boto3.client('sns') def ProcessDocument(self, type): jobFound = False self.processType = type validType = False # Determine which type of processing to perform if self.processType == ProcessType.DETECTION: response = self.textract.start_document_text_detection( DocumentLocation={'S3Object': {'Bucket': self.bucket, 'Name': self.document}}, NotificationChannel={'RoleArn': self.roleArn, 'SNSTopicArn': self.snsTopicArn}) print('Processing type: Detection') validType = True if self.processType == ProcessType.ANALYSIS: response = self.textract.start_document_analysis( DocumentLocation={'S3Object': {'Bucket': self.bucket, 'Name': self.document}}, FeatureTypes=["TABLES", "FORMS"], NotificationChannel={'RoleArn': self.roleArn, 'SNSTopicArn': self.snsTopicArn}) print('Processing type: Analysis') validType = True if validType == False: print("Invalid processing type. Choose Detection or Analysis.") return print('Start Job Id: ' + response['JobId']) dotLine = 0 while jobFound == False: sqsResponse = self.sqs.receive_message(QueueUrl=self.sqsQueueUrl, MessageAttributeNames=['ALL'], MaxNumberOfMessages=10) if sqsResponse: if 'Messages' not in sqsResponse: if dotLine < 40: print('.', end='') dotLine = dotLine + 1 else: print() dotLine = 0 sys.stdout.flush() time.sleep(5) continue for message in sqsResponse['Messages']: notification = json.loads(message['Body']) textMessage = json.loads(notification['Message']) print(textMessage['JobId']) print(textMessage['Status']) if str(textMessage['JobId']) == response['JobId']: print('Matching Job Found:' + textMessage['JobId']) jobFound = True self.GetResults(textMessage['JobId']) self.sqs.delete_message(QueueUrl=self.sqsQueueUrl, ReceiptHandle=message['ReceiptHandle']) else: print("Job didn't match:" + str(textMessage['JobId']) + ' : ' + str(response['JobId'])) # Delete the unknown message. Consider sending to dead letter queue self.sqs.delete_message(QueueUrl=self.sqsQueueUrl, ReceiptHandle=message['ReceiptHandle']) print('Done!') def CreateTopicandQueue(self): millis = str(int(round(time.time() * 1000))) # Create SNS topic snsTopicName = "AmazonTextractTopic" + millis topicResponse = self.sns.create_topic(Name=snsTopicName) self.snsTopicArn = topicResponse['TopicArn'] # create SQS queue sqsQueueName = "AmazonTextractQueue" + millis self.sqs.create_queue(QueueName=sqsQueueName) self.sqsQueueUrl = self.sqs.get_queue_url(QueueName=sqsQueueName)['QueueUrl'] attribs = self.sqs.get_queue_attributes(QueueUrl=self.sqsQueueUrl, AttributeNames=['QueueArn'])['Attributes'] sqsQueueArn = attribs['QueueArn'] # Subscribe SQS queue to SNS topic self.sns.subscribe( TopicArn=self.snsTopicArn, Protocol='sqs', Endpoint=sqsQueueArn) # Authorize SNS to write SQS queue policy = """{{ "Version":"2012-10-17", "Statement":[ {{ "Sid":"MyPolicy", "Effect":"Allow", "Principal" : {{"AWS" : "*"}}, "Action":"SQS:SendMessage", "Resource": "{}", "Condition":{{ "ArnEquals":{{ "aws:SourceArn": "{}" }} }} }} ] }}""".format(sqsQueueArn, self.snsTopicArn) response = self.sqs.set_queue_attributes( QueueUrl=self.sqsQueueUrl, Attributes={ 'Policy': policy }) def DeleteTopicandQueue(self): self.sqs.delete_queue(QueueUrl=self.sqsQueueUrl) self.sns.delete_topic(TopicArn=self.snsTopicArn) # Display information about a block def DisplayBlockInfo(self, block): print("Block Id: " + block['Id']) print("Type: " + block['BlockType']) if 'EntityTypes' in block: print('EntityTypes: {}'.format(block['EntityTypes'])) if 'Text' in block: print("Text: " + block['Text']) if block['BlockType'] != 'PAGE': print("Confidence: " + "{:.2f}".format(block['Confidence']) + "%") print('Page: {}'.format(block['Page'])) if block['BlockType'] == 'CELL': print('Cell Information') print('\tColumn: {} '.format(block['ColumnIndex'])) print('\tRow: {}'.format(block['RowIndex'])) print('\tColumn span: {} '.format(block['ColumnSpan'])) print('\tRow span: {}'.format(block['RowSpan'])) if 'Relationships' in block: print('\tRelationships: {}'.format(block['Relationships'])) print('Geometry') print('\tBounding Box: {}'.format(block['Geometry']['BoundingBox'])) print('\tPolygon: {}'.format(block['Geometry']['Polygon'])) if block['BlockType'] == 'SELECTION_ELEMENT': print(' Selection element detected: ', end='') if block['SelectionStatus'] == 'SELECTED': print('Selected') else: print('Not selected') def GetResults(self, jobId): maxResults = 1000 paginationToken = None finished = False while finished == False: response = None if self.processType == ProcessType.ANALYSIS: if paginationToken == None: response = self.textract.get_document_analysis(JobId=jobId, MaxResults=maxResults) else: response = self.textract.get_document_analysis(JobId=jobId, MaxResults=maxResults, NextToken=paginationToken) if self.processType == ProcessType.DETECTION: if paginationToken == None: response = self.textract.get_document_text_detection(JobId=jobId, MaxResults=maxResults) else: response = self.textract.get_document_text_detection(JobId=jobId, MaxResults=maxResults, NextToken=paginationToken) blocks = response['Blocks'] print('Detected Document Text') print('Pages: {}'.format(response['DocumentMetadata']['Pages'])) # Display block information for block in blocks: self.DisplayBlockInfo(block) print() print() if 'NextToken' in response: paginationToken = response['NextToken'] else: finished = True def GetResultsDocumentAnalysis(self, jobId): maxResults = 1000 paginationToken = None finished = False while finished == False: response = None if paginationToken == None: response = self.textract.get_document_analysis(JobId=jobId, MaxResults=maxResults) else: response = self.textract.get_document_analysis(JobId=jobId, MaxResults=maxResults, NextToken=paginationToken) # Get the text blocks blocks = response['Blocks'] print('Analyzed Document Text') print('Pages: {}'.format(response['DocumentMetadata']['Pages'])) # Display block information for block in blocks: self.DisplayBlockInfo(block) print() print() if 'NextToken' in response: paginationToken = response['NextToken'] else: finished = True def main(): roleArn = '' bucket = '' document = '' region_name = '' analyzer = DocumentProcessor(roleArn, bucket, document, region_name) analyzer.CreateTopicandQueue() analyzer.ProcessDocument(ProcessType.DETECTION) analyzer.DeleteTopicandQueue() if __name__ == "__main__": main()
    Node.JS

    Dalam contoh ini, ganti nilairoleArndengan peran IAM ARN yang Anda simpanMemberikan Amazon Textract Akses ke Topik Amazon SNS Anda. Ganti nilaibucketdandocumentdengan nama file bucket dan dokumen yang Anda tentukan pada langkah 2 di atas. Ganti nilaiprocessTypedengan jenis pemrosesan yang ingin Anda gunakan pada dokumen input. Akhirnya, ganti nilaiREGIONdengan wilayah klien Anda beroperasi di.

    // snippet-start:[sqs.JavaScript.queues.createQueueV3] // Import required AWS SDK clients and commands for Node.js import { CreateQueueCommand, GetQueueAttributesCommand, GetQueueUrlCommand, SetQueueAttributesCommand, DeleteQueueCommand, ReceiveMessageCommand, DeleteMessageCommand } from "@aws-sdk/client-sqs"; import {CreateTopicCommand, SubscribeCommand, DeleteTopicCommand } from "@aws-sdk/client-sns"; import { SQSClient } from "@aws-sdk/client-sqs"; import { SNSClient } from "@aws-sdk/client-sns"; import { TextractClient, StartDocumentTextDetectionCommand, StartDocumentAnalysisCommand, GetDocumentAnalysisCommand, GetDocumentTextDetectionCommand, DocumentMetadata } from "@aws-sdk/client-textract"; import { stdout } from "process"; // Set the AWS Region. const REGION = "us-east-1"; //e.g. "us-east-1" // Create SNS service object. const sqsClient = new SQSClient({ region: REGION }); const snsClient = new SNSClient({ region: REGION }); const textractClient = new TextractClient({ region: REGION }); // Set bucket and video variables const bucket = "bucket-name"; const documentName = "document-name"; const roleArn = "role-arn" const processType = "DETECTION" var startJobId = "" var ts = Date.now(); const snsTopicName = "AmazonTextractExample" + ts; const snsTopicParams = {Name: snsTopicName} const sqsQueueName = "AmazonTextractQueue-" + ts; // Set the parameters const sqsParams = { QueueName: sqsQueueName, //SQS_QUEUE_URL Attributes: { DelaySeconds: "60", // Number of seconds delay. MessageRetentionPeriod: "86400", // Number of seconds delay. }, }; // Process a document based on operation type const processDocumment = async (type, bucket, videoName, roleArn, sqsQueueUrl, snsTopicArn) => { try { // Set job found and success status to false initially var jobFound = false var succeeded = false var dotLine = 0 var processType = type var validType = false if (processType == "DETECTION"){ var response = await textractClient.send(new StartDocumentTextDetectionCommand({DocumentLocation:{S3Object:{Bucket:bucket, Name:videoName}}, NotificationChannel:{RoleArn: roleArn, SNSTopicArn: snsTopicArn}})) console.log("Processing type: Detection") validType = true } if (processType == "ANALYSIS"){ var response = await textractClient.send(new StartDocumentAnalysisCommand({DocumentLocation:{S3Object:{Bucket:bucket, Name:videoName}}, NotificationChannel:{RoleArn: roleArn, SNSTopicArn: snsTopicArn}})) console.log("Processing type: Analysis") validType = true } if (validType == false){ console.log("Invalid processing type. Choose Detection or Analysis.") return } // while not found, continue to poll for response console.log(`Start Job ID: ${response.JobId}`) while (jobFound == false){ var sqsReceivedResponse = await sqsClient.send(new ReceiveMessageCommand({QueueUrl:sqsQueueUrl, MaxNumberOfMessages:'ALL', MaxNumberOfMessages:10})); if (sqsReceivedResponse){ var responseString = JSON.stringify(sqsReceivedResponse) if (!responseString.includes('Body')){ if (dotLine < 40) { console.log('.') dotLine = dotLine + 1 }else { console.log('') dotLine = 0 }; stdout.write('', () => { console.log(''); }); await new Promise(resolve => setTimeout(resolve, 5000)); continue } } // Once job found, log Job ID and return true if status is succeeded for (var message of sqsReceivedResponse.Messages){ console.log("Retrieved messages:") var notification = JSON.parse(message.Body) var rekMessage = JSON.parse(notification.Message) var messageJobId = rekMessage.JobId if (String(rekMessage.JobId).includes(String(startJobId))){ console.log('Matching job found:') console.log(rekMessage.JobId) jobFound = true // GET RESUlTS FUNCTION HERE var operationResults = await GetResults(processType, rekMessage.JobId) //GET RESULTS FUMCTION HERE console.log(rekMessage.Status) if (String(rekMessage.Status).includes(String("SUCCEEDED"))){ succeeded = true console.log("Job processing succeeded.") var sqsDeleteMessage = await sqsClient.send(new DeleteMessageCommand({QueueUrl:sqsQueueUrl, ReceiptHandle:message.ReceiptHandle})); } }else{ console.log("Provided Job ID did not match returned ID.") var sqsDeleteMessage = await sqsClient.send(new DeleteMessageCommand({QueueUrl:sqsQueueUrl, ReceiptHandle:message.ReceiptHandle})); } } console.log("Done!") } }catch (err) { console.log("Error", err); } } // Create the SNS topic and SQS Queue const createTopicandQueue = async () => { try { // Create SNS topic const topicResponse = await snsClient.send(new CreateTopicCommand(snsTopicParams)); const topicArn = topicResponse.TopicArn console.log("Success", topicResponse); // Create SQS Queue const sqsResponse = await sqsClient.send(new CreateQueueCommand(sqsParams)); console.log("Success", sqsResponse); const sqsQueueCommand = await sqsClient.send(new GetQueueUrlCommand({QueueName: sqsQueueName})) const sqsQueueUrl = sqsQueueCommand.QueueUrl const attribsResponse = await sqsClient.send(new GetQueueAttributesCommand({QueueUrl: sqsQueueUrl, AttributeNames: ['QueueArn']})) const attribs = attribsResponse.Attributes console.log(attribs) const queueArn = attribs.QueueArn // subscribe SQS queue to SNS topic const subscribed = await snsClient.send(new SubscribeCommand({TopicArn: topicArn, Protocol:'sqs', Endpoint: queueArn})) const policy = { Version: "2012-10-17", Statement: [ { Sid: "MyPolicy", Effect: "Allow", Principal: {AWS: "*"}, Action: "SQS:SendMessage", Resource: queueArn, Condition: { ArnEquals: { 'aws:SourceArn': topicArn } } } ] }; const response = sqsClient.send(new SetQueueAttributesCommand({QueueUrl: sqsQueueUrl, Attributes: {Policy: JSON.stringify(policy)}})) console.log(response) console.log(sqsQueueUrl, topicArn) return [sqsQueueUrl, topicArn] } catch (err) { console.log("Error", err); } } const deleteTopicAndQueue = async (sqsQueueUrlArg, snsTopicArnArg) => { const deleteQueue = await sqsClient.send(new DeleteQueueCommand({QueueUrl: sqsQueueUrlArg})); const deleteTopic = await snsClient.send(new DeleteTopicCommand({TopicArn: snsTopicArnArg})); console.log("Successfully deleted.") } const displayBlockInfo = async (block) => { console.log(`Block ID: ${block.Id}`) console.log(`Block Type: ${block.BlockType}`) if (String(block).includes(String("EntityTypes"))){ console.log(`EntityTypes: ${block.EntityTypes}`) } if (String(block).includes(String("Text"))){ console.log(`EntityTypes: ${block.Text}`) } if (!String(block.BlockType).includes('PAGE')){ console.log(`Confidence: ${block.Confidence}`) } console.log(`Page: ${block.Page}`) if (String(block.BlockType).includes("CELL")){ console.log("Cell Information") console.log(`Column: ${block.ColumnIndex}`) console.log(`Row: ${block.RowIndex}`) console.log(`Column Span: ${block.ColumnSpan}`) console.log(`Row Span: ${block.RowSpan}`) if (String(block).includes("Relationships")){ console.log(`Relationships: ${block.Relationships}`) } } console.log("Geometry") console.log(`Bounding Box: ${JSON.stringify(block.Geometry.BoundingBox)}`) console.log(`Polygon: ${JSON.stringify(block.Geometry.Polygon)}`) if (String(block.BlockType).includes('SELECTION_ELEMENT')){ console.log('Selection Element detected:') if (String(block.SelectionStatus).includes('SELECTED')){ console.log('Selected') } else { console.log('Not Selected') } } } const GetResults = async (processType, JobID) => { var maxResults = 1000 var paginationToken = null var finished = false while (finished == false){ var response = null if (processType == 'ANALYSIS'){ if (paginationToken == null){ response = textractClient.send(new GetDocumentAnalysisCommand({JobId:JobID, MaxResults:maxResults})) }else{ response = textractClient.send(new GetDocumentAnalysisCommand({JobId:JobID, MaxResults:maxResults, NextToken:paginationToken})) } } if(processType == 'DETECTION'){ if (paginationToken == null){ response = textractClient.send(new GetDocumentTextDetectionCommand({JobId:JobID, MaxResults:maxResults})) }else{ response = textractClient.send(new GetDocumentTextDetectionCommand({JobId:JobID, MaxResults:maxResults, NextToken:paginationToken})) } } await new Promise(resolve => setTimeout(resolve, 5000)); console.log("Detected Documented Text") console.log(response) //console.log(Object.keys(response)) console.log(typeof(response)) var blocks = (await response).Blocks console.log(blocks) console.log(typeof(blocks)) var docMetadata = (await response).DocumentMetadata var blockString = JSON.stringify(blocks) var parsed = JSON.parse(JSON.stringify(blocks)) console.log(Object.keys(blocks)) console.log(`Pages: ${docMetadata.Pages}`) blocks.forEach((block)=> { displayBlockInfo(block) console.log() console.log() }) //console.log(blocks[0].BlockType) //console.log(blocks[1].BlockType) if(String(response).includes("NextToken")){ paginationToken = response.NextToken }else{ finished = true } } } // DELETE TOPIC AND QUEUE const main = async () => { var sqsAndTopic = await createTopicandQueue(); var process = await processDocumment(processType, bucket, documentName, roleArn, sqsAndTopic[0], sqsAndTopic[1]) var deleteResults = await deleteTopicAndQueue(sqsAndTopic[0], sqsAndTopic[1]) } main()
  4. Jalankan kode tersebut. Operasi mungkin membutuhkan waktu beberapa saat untuk menyelesaikan. Setelah selesai, daftar blok untuk teks yang terdeteksi atau dianalisis akan ditampilkan.