
User Guide

AWS IoT SiteWise

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS IoT SiteWise User Guide

AWS IoT SiteWise: User Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS IoT SiteWise User Guide

Table of Contents

What is AWS IoT SiteWise? ... 1
How AWS IoT SiteWise works .. 2

Ingest industrial data ... 2
Model assets to contextualize gathered data ... 3
Analyze using queries, alarms, and predictions .. 4
Visualize operations .. 4
Store data ... 4
Integrate with other services .. 5

Use cases for AWS IoT SiteWise .. 5
Manufacturing .. 5
Food and beverage ... 5
Energy and utilities ... 6

Working with AWS SDKs ... 6
Concepts ... 7

Get started ... 14
Requirements .. 14
Set up an AWS account .. 15

Sign up for an AWS account .. 15
Create a user with administrative access ... 15

Use the quick start demo ... 17
Create the AWS IoT SiteWise demo ... 17
Delete the AWS IoT SiteWise demo ... 19

Tutorials ... 21
Calculate OEE .. 21

Prerequisites ... 21
How to calculate OEE .. 22

Ingest data ... 24
Prerequisites ... 25
Step 1: Create an AWS IoT policy ... 26
Step 2: Create an AWS IoT thing .. 30
Step 3: Create a device asset model .. 33
Step 4: Create a device fleet asset model ... 35
Step 5: Create and configure a device asset ... 36
Step 6: Create and configure a device fleet asset ... 37

iii

AWS IoT SiteWise User Guide

Step 7: Create a rule in AWS IoT Core to send data to device assets ... 38
Step 8: Run the device client script .. 41
Step 9: Clean up resources after the tutorial ... 48

Integrate data with SiteWise Edge ... 50
Prerequisites ... 51
Step 1: Create an AWS IoT policy ... 52
Step 2: Create and configure an AWS IoT thing .. 53
Step 3: Configure your SiteWise Edge MQTT-enabled, V3 gateway ... 54
Step 4: Install SiteWise Edge gateway software .. 56
Step 5: Configure the EMQX broker to connect to external applications 56
Step 6: Publish data with Mosquitto .. 59
Step 7: Specify destinations ... 62
Step 8: Specify path filters ... 64
Step 9: Configure your AWS IoT resources .. 67
Step 10: Visualize your data .. 67
Step 11: Clean up resources after the tutorial ... 69
Additional resources .. 71

Visualize and share data in Grafana .. 72
Prerequisites ... 73
Step 1: Configure your Amazon Managed Grafana workspace ... 73
Step 2: Add AWS IoT SiteWise as a data source .. 75
Step 3: Create a dashboard to explore and visualize your data .. 76
(optional) Step 4: Set up alerts to monitor performance .. 79
Step 5: Clean up resources after the tutorial ... 80
Additional resources ... 71

Visualize and share data in SiteWise Monitor .. 82
Prerequisites ... 83
Step 1: Create a portal in SiteWise Monitor ... 83
Step 2: Sign in to a portal .. 87
Step 3: Create a wind farm project .. 89
Step 4: Create a dashboard to visualize wind farm data .. 92
Step 5: Explore the portal .. 99
Step 6: Clean up resources after the tutorial ... 100

Publish to Amazon DynamoDB ... 102
Prerequisites .. 103
Step 1: Configure AWS IoT SiteWise to publish property value updates 104

iv

AWS IoT SiteWise User Guide

Step 2: Create a rule in AWS IoT Core ... 104
Step 3: Configure the DynamoDB rule action .. 106
Step 4: Explore data in DynamoDB .. 106
Step 5: Clean up resources after the tutorial ... 107

Ingest data to AWS IoT SiteWise .. 109
Manage data streams .. 109

Configure permissions and settings ... 111
Associate a data stream to an asset property .. 112
Disassociate a data stream from an asset property .. 113
Delete a data stream ... 114
Update an asset property alias ... 115
Common scenarios ... 116

Ingest data with AWS IoT SiteWise APIs .. 118
BatchPutAssetPropertyValue API .. 118
CreateBulkImportJob API .. 121

Use AWS IoT Core rules .. 129
Grant required access .. 130
Configure the rule action .. 131
Reduce costs with Basic Ingest .. 140

Use AWS IoT Events actions .. 140
Use AWS IoT Greengrass stream manager ... 141

Use SiteWise Edge gateways .. 143
Gateway key concepts .. 143
Benefits of implementing SiteWise Edge ... 144
Self-host a gateway .. 144

Requirements ... 146
Create a gateway .. 151
Install gateway software ... 153
MQTT-enabled, V3 gateways ... 156
Classic streams, V2 gateways ... 223
Add data sources .. 237
Components for SiteWise Edge ... 278
Filter assets .. 280
Proxy support and trust stores .. 281
Use APIs .. 287

Host a gateway on Siemens Industrial Edge ... 304

v

AWS IoT SiteWise User Guide

Security ... 305
Siemens Secure Storage and the AWS IoT SiteWise Edge application 306
Destinations for Siemens Industrial Edge devices ... 306
Migrate from the preview application ... 308
Troubleshooting .. 309
AWS IoT SiteWise Edge application changelog .. 309
Requirements ... 310
Create a gateway .. 311
Create a Siemens Databus user ... 312
Access the application ... 313
Install the application .. 314
Update an installed application configuration ... 316

Destinations and path filters ... 317
Understand destinations ... 317
Understand path filters ... 321
Add a real-time destination ... 324
Add a buffered destination using Amazon S3 .. 332
Add path filters ... 339
Manage destinations .. 342

Manage gateways .. 349
Manage your SiteWise Edge gateway with the AWS IoT SiteWise console 349
Manage SiteWise Edge gateways using AWS OpsHub for AWS IoT SiteWise 350
Access your SiteWise Edge gateway using local operating system credentials 352
Manage the SiteWise Edge gateway certificate ... 354
Change the version of SiteWise Edge gateway component packs ... 355
List SiteWise Edge gateways .. 355
Describe a SiteWise Edge gateway ... 356
Create a SiteWise Edge gateway ... 357
Update a SiteWise Edge gateway ... 358
Update gateway capability configuration ... 359
Tag gateway resources .. 360
List tags for a gateway ... 361
Remove tags from a gateway .. 362
Update the version of an AWS IoT SiteWise component ... 363
Delete a SiteWise Edge gateway ... 363

Back up and restore gateways .. 365

vi

AWS IoT SiteWise User Guide

Daily backups of metric data ... 365
Restore a SiteWise Edge gateway ... 366
Restore AWS IoT SiteWise data ... 366
Validate successful backups and restorations .. 368

Legacy gateways (AWS IoT Greengrass Version 1) ... 368
Model industrial assets ... 370

Assets overview .. 370
Property aliases identify equipment data streams ... 370
Asset hierarchies represent equipment relationships ... 370
Asset models standardize equipment representation .. 371
Modeling options for industrial equipment ... 371
Creating and managing assets .. 371
Managing complex asset models ... 372
Asset and model states .. 372

Check the status of an asset .. 373
Check the status of an asset or component model .. 374

Asset model versions .. 376
Retrieve the active version of an asset model or component model (console) 377
Retrieve the active version of an asset model or component model (AWS CLI) 378

Custom composite models (components) .. 379
Inline custom composite models .. 380
Component-model-based custom composite models .. 381
Use paths to reference custom composite model properties .. 383

Asset model interfaces ... 385
Asset model standardization use case ... 385
Structure and components ... 387
Considerations ... 388
Understand the interface-asset model relationship .. 388
Create an interface ... 393
Apply an interface to an asset model .. 395
Manage interfaces .. 396
Additional interface examples ... 400

Set up object IDs ... 403
Work with object UUIDs .. 404
Use external IDs .. 404

Create models ... 406

vii

AWS IoT SiteWise User Guide

Create asset models in AWS IoT SiteWise ... 407
Create component models ... 422
Define data properties .. 426
Create custom composite models (components) ... 506

Create assets ... 510
Create an asset (console) .. 511
Create an asset (AWS CLI) .. 512
Configure a new asset ... 513

Search assets ... 513
Prerequisites .. 514
Advanced search on AWS IoT SiteWise console ... 514

Update attribute values ... 517
Associate and disassociate assets ... 519

Associate and disassociate assets (console) .. 520
Associate and disassociate assets (AWS CLI) .. 521

Update assets and models ... 523
Update assets in AWS IoT SiteWise .. 523
Update asset models, component models, and interfaces .. 525
Update custom composite models (components) ... 530
Optimistic locking for asset model writes .. 534

Delete assets and models in AWS IoT SiteWise .. 537
Delete assets .. 538
Delete models and interfaces .. 540

Bulk operations with assets and models .. 542
Key concepts and terminology .. 543
Supported functionality .. 544
Bulk operation prerequisites .. 544
Run a bulk import job ... 547
Run a bulk export job ... 549
Jobs progress tracking and error handling ... 553
Import metadata examples .. 558
Export metadata examples .. 573
Metadata transfer job schema ... 576

Monitor data with alarms ... 595
Alarm types ... 595
Alarm states .. 597

viii

AWS IoT SiteWise User Guide

Alarm state properties .. 597
Define alarms on asset models .. 600

Requirements for alarm notifications .. 604
Define AWS IoT Events alarms .. 604
Define external alarms .. 639

Configure alarms on assets ... 641
Configure a threshold value (console) ... 641
Configure a threshold value (AWS CLI) .. 642
Configure notification settings .. 644

Respond to alarms ... 646
Respond to an alarm (console) .. 647
Respond to an alarm (API) ... 650

Ingest an external alarm state .. 650
Map external alarm state streams .. 651
Ingest alarm state data ... 652

AWS IoT SiteWise Assistant .. 654
Configure the AWS IoT SiteWise Assistant ... 654
Create a dataset ... 656
Edit a dataset ... 661
Delete a dataset ... 663
AWS IoT SiteWise Assistant questions .. 664

Monitor data with AWS IoT SiteWise Monitor ... 665
SiteWise Monitor roles .. 666

SAML federation ... 667
SiteWise Monitor concepts .. 668
Get started with AWS IoT SiteWise Monitor (Classic) .. 670

Create a portal .. 671
Configure your portal .. 672
Invite administrators .. 676
Add portal users ... 678
Create dashboards (CLI) .. 683
Turn on alarms for your portals .. 689
Enable your portal at the edge ... 692
Administer your portals .. 692

Get started with AWS IoT SiteWise Monitor (AI-aware) .. 702
Create a portal .. 704

ix

AWS IoT SiteWise User Guide

Configure your portal .. 704
Administer your portals .. 707
Delete a portal .. 711
Create dashboards with AWS CLI .. 712
Portal login .. 717
Create a project .. 717
Update a project ... 718
Delete a project .. 719
Create a dashboard .. 719
Update a dashboard .. 721
Delete a dashboard .. 721
Configure dashboard ... 722

Query data from AWS IoT SiteWise ... 743
Query current asset values .. 744

Query an asset property's current value (console) .. 744
Query an asset property's current value (AWS CLI) .. 745

Query historical asset property values ... 746
Query asset property aggregates ... 747

Aggregates for an asset property (API) ... 748
Aggregates for an asset property (AWS CLI) .. 749

AWS IoT SiteWise query language ... 750
Query language reference .. 751

Query optimization ... 775
Metadata filters ... 775
Raw data filters ... 776
JOIN optimization .. 777
Large queries ... 779

ODBC .. 779
Connection string syntax .. 779
Connection string examples ... 785
Troubleshooting .. 786

Interact with other services .. 787
Understand asset properties in MQTT topics .. 787
Work with notifications .. 788

Turn on asset property notifications (console) ... 788
Turn on asset property notifications (AWS CLI) ... 789

x

AWS IoT SiteWise User Guide

Query notifications .. 791
Export data to Amazon S3 .. 794
Integrate Grafana ... 794
Integrate with AWS IoT TwinMaker ... 795

Enabling the integration ... 796
Integrating AWS IoT SiteWise and AWS IoT TwinMaker ... 797

Detect equipment anomalies .. 798
Add a prediction definition (console) ... 799
Train a prediction (console) .. 802
Start or stop inference on a prediction (console) .. 803
Add a prediction definition (CLI) ... 804
Train a prediction and starting inference (CLI) ... 807
Train a prediction (CLI) .. 809
Start or stop inference on a prediction (CLI) .. 811

Native anomaly detection ... 814
Native anomaly detection features .. 815
Prerequisites .. 815

Setup AWS CLI for Computation Model APIs ... 816
Property requirements .. 816
Labeling prerequisites .. 816
Model evaluation prerequisites ... 817

Enable anomaly detection on sensors of an asset ... 818
Create a computation model (AWS CLI) .. 818
ExecuteAction API payload preparation .. 819
Train the AWS CLI .. 820
Start and stop inference (AWS CLI) .. 822
Find data bindings ... 825

Enable anomaly detection on sensors across assets .. 827
Create a computation model (AWS CLI) .. 827
ExecuteAction API payload preparation .. 828
Train the AWS CLI .. 829
Start and stop inference (AWS CLI) .. 831

Advanced training configurations .. 834
Sample rate configuration .. 834
Label your data ... 835
Evaluate your model .. 837

xi

AWS IoT SiteWise User Guide

Advanced inference configurations .. 839
High frequency inferencing (5 minutes – 1 hour) ... 839
Low frequency inferencing (2 hours – 1 day) ... 840
Flexible scheduling ... 841
Model version activation ... 842
Checking model versions .. 844

Review inference results ... 844
Retrieve inference results ... 844
Understand inference results ... 846

Trigger custom actions on anomalous behavior (AWS Management Console) 847
Best practices .. 847

Understand the minimum date range ... 847
Sampling for high-frequency data and consistency between training and inference 848
Labeling recommendations .. 848

Manage data storage ... 850
Configure storage settings ... 851

Data retention impact ... 851
Configure for warm tier (console) ... 852
Configure for warm tier (AWS CLI)(.. 853
Configure for cold tier (console) ... 856
Configure for cold tier (AWS CLI) .. 859

Troubleshoot storage settings .. 864
Error: Bucket doesn't exist .. 865
Error: Access denied to Amazon S3 path .. 865
Error: Role ARN can't be assumed .. 866
Error: Failed to access cross-Region Amazon S3 bucket .. 866

File paths and schemas of data saved in the cold tier .. 866
Equipment data (measurements) .. 866
Metrics, transforms, and aggregates .. 870
Asset metadata ... 875
Asset hierarchy metadata ... 879
Storage data index files .. 881

Code examples ... 882
Basics .. 886

Hello AWS IoT SiteWise .. 887
Learn the basics .. 890

xii

AWS IoT SiteWise User Guide

Actions .. 954
Security .. 1028

Data protection .. 1029
Internetwork traffic privacy ... 1030
AWS IoT SiteWise Assistant Business Service improvement ... 1030

Data encryption ... 1030
Encryption at rest .. 1031
Encryption in transit .. 1033
Key management ... 1035

Identity and access management .. 1037
Audience ... 1037
Authenticate with identities ... 1038
How AWS IoT SiteWise works with IAM .. 1041
Managed policies .. 1059
Service-linked roles .. 1065
Set up permissions for alarms .. 1086
Cross-service confused deputy prevention in AWS IoT SiteWise .. 1091
Troubleshoot identity and access ... 1093

Compliance validation .. 1095
Resilience ... 1096
Infrastructure security .. 1096
Configuration and vulnerability analysis .. 1097
VPC endpoints .. 1098

Supported API operations .. 1098
Create an interface VPC endpoint .. 1101
Access AWS IoT SiteWise through an interface VPC endpoint .. 1101
Create a VPC endpoint policy ... 1103

Security best practices ... 1104
Use authentication credentials on your OPC UA servers ... 1104
Use encrypted communication modes for your OPC UA servers ... 1104
Keep your components up to date ... 1104
Encrypt your SiteWise Edge gateway's file system ... 1105
Secure access to your edge configuration .. 1105
Securing data on Siemens Industrial Edge Management .. 1105
Grant SiteWise Monitor users minimum possible permissions ... 1105
Don't expose sensitive information .. 1106

xiii

AWS IoT SiteWise User Guide

Follow AWS IoT Greengrass security best practices .. 1106
See also .. 1106

Log and monitor .. 1107
Monitor service logs .. 1107

Manage logging in AWS IoT SiteWise .. 1109
Example: AWS IoT SiteWise log file entries .. 1110

Monitor SiteWise Edge gateway logs .. 1111
Use Amazon CloudWatch Logs ... 1111
Use service logs .. 1113

Monitor with Amazon CloudWatch metrics ... 1115
AWS IoT Greengrass Version 2 gateway metrics ... 1115

Log API calls with AWS CloudTrail .. 1125
AWS IoT SiteWise information in CloudTrail .. 1125
AWS IoT SiteWise data events in CloudTrail .. 1126
AWS IoT SiteWise management events in CloudTrail ... 1129
Example: AWS IoT SiteWise log file entries .. 1129

Tag your resources .. 1131
Use tags in AWS IoT SiteWise .. 1131

Tag with the AWS Management Console .. 1131
Tag with the AWS IoT SiteWise API ... 1131

Use tags with IAM policies .. 1133
Troubleshooting ... 1135

Troubleshooting a gateway ... 1135
Configure and access SiteWise Edge gateway logs ... 1135
Troubleshooting SiteWise Edge gateway issues .. 1136
Troubleshooting the AWS IoT SiteWise Edge application on Siemens Industrial Edge 1142
Troubleshooting open-source integrations at the Edge ... 1143
Troubleshooting AWS IoT Greengrass issues .. 1145

Troubleshoot a portal ... 1146
Users and administrators can't access AWS IoT SiteWise portal .. 1146

Troubleshoot an AWS IoT SiteWise rule action ... 1147
Configure AWS IoT Core logs .. 1148
Configure a republish error action ... 1149
Troubleshoot rule issues ... 1151
Troubleshoot a rule (AWS IoT SiteWise) .. 1153
Troubleshoot a rule (DynamoDB) ... 1154

xiv

AWS IoT SiteWise User Guide

Troubleshoot bulk import and export .. 1158
Endpoints and quotas ... 1159

Endpoints ... 1159
Quotas .. 1159

Quotas for AWS IoT SiteWise assets and asset models ... 1159
Interface quotas ... 1165
Quotas for AWS IoT SiteWise asset property data ... 1166
Quotas for SiteWise Edge gateways .. 1173
Quotas for AWS IoT SiteWise Monitor .. 1174
Quotas for AWS IoT SiteWise bulk import and export of metadata 1175
Quotas for AWS IoT SiteWise bulk import of data ... 1176
AWS IoT SiteWise Assistant API throttling limits .. 1178
Quotas for anomaly detection .. 1179

Document history .. 1181

xv

AWS IoT SiteWise User Guide

What is AWS IoT SiteWise?

AWS IoT SiteWise is a managed service with which you can collect, store, organize and monitor
data from industrial equipment at scale to help you make better, data-driven decisions. You can
use AWS IoT SiteWise to monitor operations across facilities, quickly compute common industrial
performance metrics, and create applications that analyze industrial equipment data to prevent
costly equipment issues and reduce gaps in production.

With AWS IoT SiteWise Monitor, your operational users can create web applications to view and
analyze your industrial data in real-time. You can gain insights about your industrial operations
by configuring and monitoring metrics such as mean time between failures and overall equipment
effectiveness (OEE).

AWS IoT SiteWise Edge is a component of AWS IoT SiteWise that allows collection, storage and
processing of data on local devices. This is useful if you have limited access to the internet or need
to keep your data private.

The following diagram shows the basic architecture of AWS IoT SiteWise:

Topics

• How AWS IoT SiteWise works

• Use cases for AWS IoT SiteWise

• Using this service with an AWS SDK

• AWS IoT SiteWise concepts

1

AWS IoT SiteWise User Guide

How AWS IoT SiteWise works

AWS IoT SiteWise offers a resource modeling framework that you can use to create representations
of your industrial devices, processes, and facilities. The representations of your equipment and
processes are called asset models in AWS IoT SiteWise. With asset models, you define the raw data
to consume and how to process it into useful metrics. Build and visualize assets and models for
your industrial operation in the AWS IoT SiteWise console. You can also configure asset models to
collect and process data at the edge or in the AWS Cloud.

Topics

• Ingest industrial data

• Model assets to contextualize gathered data

• Analyze using queries, alarms, and predictions

• Visualize operations

• Store data

• Integrate with other services

Ingest industrial data

Begin to use AWS IoT SiteWise by ingesting industrial data. Ingesting your data is done in one of
several ways:

• Direct ingestion from on-site servers: Utilize protocols like OPC UA to read data directly
from on-site devices. Deploy the SiteWise Edge gateway software, compatible with AWS IoT
Greengrass V2, on a wide range of platforms such as common industrial gateways or virtual
servers. You can connect up to 100 OPC UA servers to a single AWS IoT SiteWise gateway. For
more information, see AWS IoT SiteWise Edge self-hosted gateway requirements.

Note that protocols like Modbus TCP and Ethernet/IP (EIP) are supported through our
partnership with Domatica in the context of AWS IoT Greengrass V2.

• Edge data processing with packs: Enhance your SiteWise Edge gateway by adding packs to
enable comprehensive edge capabilities. With SiteWise Edge, available on AWS IoT Greengrass
V2, data processing is executed directly on-site before being securely transmitted to the AWS
Cloud using an AWS IoT Greengrass stream. For more information, see Set up an OPC UA source
in SiteWise Edge.

How AWS IoT SiteWise works 2

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

• Adaptive ingestion via Amazon S3 with bulk operations: When working with large numbers of
assets or asset models, use bulk operations to bulk import and export resources from Amazon S3
buckets. For more information, see Bulk operations with assets and models.

• MQTT messages with AWS IoT Core Rules: For devices connected to AWS IoT Core sending
MQTT messages, employ the AWS IoT Core rules engine to direct those messages to AWS IoT
SiteWise.If you have devices connected to AWS IoT Core sending MQTT messages, use the AWS
IoT Core rules engine to route those messages to AWS IoT SiteWise. For more information, see
Ingest data to AWS IoT SiteWise using AWS IoT Core rules.

• Event-triggered data ingestion: Use AWS IoT Events actions to configure the IoT SiteWise action
in AWS IoT Events to send data to AWS IoT SiteWise when events occur. For more information,
see Ingest data to AWS IoT SiteWise from AWS IoT Events.

• AWS IoT SiteWise API: Your applications at the Edge or in the cloud can directly send data to
AWS IoT SiteWise. For more information, see Ingest data with AWS IoT SiteWise APIs.

Model assets to contextualize gathered data

After ingesting data, you can use the data to create virtual representations of your assets,
processes, and facilities by building models of your physical operations. An asset, representing a
device or process, transmits data streams to the AWS Cloud. Assets can also signify logical device
groupings. Hierarchies are formed by associating assets to mirror complex operations. These
hierarchies allow assets to access data from associated child assets. Assets are created from asset
models. Asset models are declarative structures that standardize asset formats. Reuse components
of assets for organization and maintainability of your models. For more information, see Model
industrial assets.

With AWS IoT SiteWise, you can configure your assets to transform the incoming data into
contextual metrics and transforms.

• Transforms work when receiving equipment data.

• Metrics are calculated at intervals you define.

Metrics and transforms are applicable to both individual assets or multiple assets.AWS IoT SiteWise
automatically computes commonly used statistical aggregates like average, sum, and count, across
various time frames relevant to your equipment data, metrics, and transforms.

Model assets to contextualize gathered data 3

https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html

AWS IoT SiteWise User Guide

Assets can be synchronized using AWS IoT TwinMaker. For more information, see Integrating AWS
IoT SiteWise and AWS IoT TwinMaker.

Analyze using queries, alarms, and predictions

Analyze the date gathered with AWS IoT SiteWise by running queries and setting up alarms. You
can also use Amazon Lookout to automatically detect anomalies within metrics and identify their
root causes.

• Set specific alarms to alert your team when equipment or processes deviate from optimal
performance, ensuring quick issue identification and resolution. For more information, see
Monitor data with alarms in AWS IoT SiteWise.

• Use the AWS IoT SiteWise API operations to query your asset properties' current values, historical
values, and aggregates over specific time intervals. For more information, see Query data from
AWS IoT SiteWise.

• Use anomaly detection with Amazon Lookout for Equipment to identify and visualize changes
in equipment or operating conditions. With anomaly detection, you can determine preventative
maintenance measures for your operations. This integration allows customers to sync data
between AWS IoT SiteWise and Amazon Lookout for Equipment. For more information, see
Detect anomalies with Lookout for Equipment.

Visualize operations

Set up SiteWise Monitor to create web applications for your operational employees. The web
applications help employees to visualize your operations. Handle varied levels of access for your
employees using IAM Identity Center or IAM. Configure unique logins and permissions for each
employee to view specific subsets of an entire industrial operation. AWS IoT SiteWise provides an
application guide for these employees to learn how to use SiteWise Monitor.

For more information on visualizing your operations, see Monitor data with AWS IoT SiteWise
Monitor.

Store data

You can integrate time series storage with your industrial data lake. AWS IoT SiteWise has three
storage tiers for industrial data:

• A hot storage tier that is optimized for real-time applications.

Analyze using queries, alarms, and predictions 4

https://docs.aws.amazon.com/iot-sitewise/latest/appguide/

AWS IoT SiteWise User Guide

• A warm storage tier optimized for analytical workloads.

• A customer-managed cold storage tier using Amazon S3 for operational data applications with
high latency tolerance.

AWS IoT SiteWise helps you manage storage cost by keeping recent data in the hot storage tier.
Then, you define data retention policies to move historical data to warm or cold tier storage. For
more information, see Manage data storage in AWS IoT SiteWise.

You can also import and export asset metadata. For more information see Asset metadata.

Integrate with other services

AWS IoT SiteWise integrates with several AWS services to develop a complete AWS IoT solution in
the AWS Cloud. For more information, see Interact with other AWS services.

Use cases for AWS IoT SiteWise

AWS IoT SiteWise is used across a variety of industries for many industrial data collection and
analysis applications.

Collect data consistently from all your sources to help resolve issues quickly. AWS IoT SiteWise
offers remote monitoring to collect the data directly on-site or gather it from multiple sources
across many facilities. AWS IoT SiteWise provides the necessary flexibility for industrial IoT data
solutions.

Manufacturing

AWS IoT SiteWise can simplify the process of collecting and utilizing data from your equipment to
pinpoint and minimize inefficiencies, enhancing industrial operations. AWS IoT SiteWise helps you
collect data from manufacturing lines and equipment. With AWS IoT SiteWise, you can transfer the
data to the AWS Cloud and build performance metrics for your specific equipment and processes.
You can use the metrics produced to understand the overall effectiveness of your operations and
identify opportunities for innovation and improvement. You can also view your manufacturing
process and identify equipment and process deficiencies, production gaps, or product defects.

Food and beverage

Food and beverage industry facilities handle a wide variety of food processing, including grinding
grain to flour, butchering and packing meat, and assembling, cooking, and freezing microwaveable

Integrate with other services 5

AWS IoT SiteWise User Guide

meals. Food processing plants often span multiple locations with plant and equipment operators
in a centralized location to monitor processes and equipment. For example, refrigeration units
assess ingredient handling and expiration. They monitor waste creation across facilities to ensure
operational efficiency. With AWS IoT SiteWise, you can group sensor data streams from multiple
locations by production line, and facilities so your process engineers can better understand and
make improvements across facilities.

Energy and utilities

With AWS IoT SiteWise, you can resolve equipment issues easier and more efficiently. You can
monitor asset performance remotely and in real time. Access historical equipment data from
anywhere to pinpoint potential problems, dispatch accurate resources, and both prevent and fix
issues faster.

Using this service with an AWS SDK

AWS software development kits (SDKs) are available for many popular programming languages.
Each SDK provides an API, code examples, and documentation that make it easier for developers to
build applications in their preferred language.

SDK documentation Code examples

AWS SDK for C++ AWS SDK for C++ code examples

AWS CLI AWS CLI code examples

AWS SDK for Go AWS SDK for Go code examples

AWS SDK for Java AWS SDK for Java code examples

AWS SDK for JavaScript AWS SDK for JavaScript code examples

AWS SDK for Kotlin AWS SDK for Kotlin code examples

AWS SDK for .NET AWS SDK for .NET code examples

AWS SDK for PHP AWS SDK for PHP code examples

AWS Tools for PowerShell AWS Tools for PowerShell code examples

Energy and utilities 6

https://docs.aws.amazon.com/sdk-for-cpp
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/cpp
https://docs.aws.amazon.com/cli
https://docs.aws.amazon.com/code-library/latest/ug/cli_2_code_examples.html
https://docs.aws.amazon.com/sdk-for-go
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/gov2
https://docs.aws.amazon.com/sdk-for-java
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2
https://docs.aws.amazon.com/sdk-for-javascript
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3
https://docs.aws.amazon.com/sdk-for-kotlin
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/kotlin
https://docs.aws.amazon.com/sdk-for-net
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/dotnetv3
https://docs.aws.amazon.com/sdk-for-php
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/php
https://docs.aws.amazon.com/powershell
https://docs.aws.amazon.com/code-library/latest/ug/powershell_5_code_examples.html

AWS IoT SiteWise User Guide

SDK documentation Code examples

AWS SDK for Python (Boto3) AWS SDK for Python (Boto3) code examples

AWS SDK for Ruby AWS SDK for Ruby code examples

AWS SDK for Rust AWS SDK for Rust code examples

AWS SDK for SAP ABAP AWS SDK for SAP ABAP code examples

AWS SDK for Swift AWS SDK for Swift code examples

Example availability

Can't find what you need? Request a code example by using the Provide feedback link at
the bottom of this page.

AWS IoT SiteWise concepts

The following are the core concepts of AWS IoT SiteWise:

Aggregate

Aggregates are fundamental metrics, or measurements, that AWS IoT SiteWise automatically
calculates for all time series data. For more information, see Query asset property aggregates in
AWS IoT SiteWise.

Asset

When you input, or ingest, data into AWS IoT SiteWise from your industrial equipment, your
devices, equipment, and processes are each shown as assets. Each asset has associated data. For
example, a piece of equipment might have a serial number, a location, a make and model, and
an installation date. It might also have time series values for availability, performance, quality,
temperature, pressure, and more. Group assets into hierarchies, allowing assets to access data
stored in their child assets. For more information, see Model industrial assets.

Concepts 7

https://docs.aws.amazon.com/pythonsdk
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python
https://docs.aws.amazon.com/sdk-for-ruby
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/ruby
https://docs.aws.amazon.com/sdk-for-rust
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/rustv1
https://docs.aws.amazon.com/sdk-for-sapabap
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/sap-abap
https://docs.aws.amazon.com/sdk-for-swift
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/swift

AWS IoT SiteWise User Guide

Asset hierarchy

Set up asset hierarchies to create logical representations of your industrial operations. To do
this, define a hierarchy in an asset model and associate assets created from that model with
the specified hierarchy. Metrics in parent assets can combine data from the properties of child
assets, allowing you to calculate metrics that offer insights into your overall operation or a
specific part of it. For more information, see Define asset model hierarchies.

Asset model

Every asset is made using an asset model. Asset models are structures that define and
standardize the format of your assets. They ensure consistent information across multiple
assets of the same type, allowing you to handle data in assets that represent groups of devices.
In each asset model, you can define attributes, time series inputs (measurements), time series
transformations (transforms), time series aggregations (metrics), and asset hierarchies. For more
information, see Model industrial assets.

Decide where your asset model's properties are processed by configuring your asset model for
the edge. Utilize this feature to handle and monitor asset data on your local devices.

Asset property

Asset properties are the structures within each asset that hold industrial data. Each property
has a data type and can also have a unit. A property can be an attribute, a measurement, a
transform, or a metric. For more information, see Define data properties.

Configure asset properties to compute at the edge. For more information about processing data
at the edge, see Set up an OPC UA source in SiteWise Edge.

Attribute

Attributes are properties of an asset that typically stay constant, like the device manufacturer
or device location. Attributes can have preset values. Every asset created from an asset model
includes the default values of the attributes defined in that model. For more information, see
Define static data (attributes).

Computation model

A ComputationModel is an abstraction for certain types of compute that can enact on your
data. It defines the blueprint for a suite of computations, where users can describe input, output
and configuration for a specific computation engine. ComputationModel is a new resource
with ARN and is stateful and versioned. For more information, see Create a computation model
(AWS CLI).

Concepts 8

AWS IoT SiteWise User Guide

Dashboard

Each project contains a set of dashboards. Dashboards provide a set of visualizations for the
values of a set of assets. Project owners create the dashboards and the visualizations that it
contains. When a project owner is ready to share the set of dashboards, the owner can invite
viewers to the project, which gives them access to all dashboards in the project. If you want
a different set of viewers for different dashboards, you must divide the dashboards between
projects. When viewers look at dashboards, they can customize time range to look at specific
data.

Dataset

Datasets are collections of data that represents time-series data, non-time-series data, and
non-equipment data such as shift schedules, maintenance records, and employee databases.
They support external data and use AWS IoT SiteWise analytic capabilities. It includes dataset
sources, dataset schema and dataset parameters. The AWS IoT SiteWise Assistant uses datasets
that consume Amazon Kendra indexes.

Data stream

Input, or ingest, industrial data into AWS IoT SiteWise even before creating asset models and
assets. AWS IoT SiteWise automatically generates data streams to collect raw data streams from
your equipment.

Data stream alias

Data stream aliases help you easily identify a data stream. For example, the alias server1-
windfarm/3/turbine/7/temperature indicates temperature values coming from turbine
#7 in wind farm #3. The term server1 is the data source name that helps identify the OPC UA
server, and server1- is a prefix attached to all data streams reported from this OPC UA server.

Data stream association

After you create asset models and assets, associate data streams with asset properties defined
in your assets to structure your data. AWS IoT SiteWise can then use asset models and assets
to handle incoming data from your data streams. You can also disassociate data streams from
asset properties. For more information, see Manage data streams for AWS IoT SiteWise.

Destinations

Destinations in SiteWise Edge represent the endpoints where you want to send your telemetry
or processed data. SiteWise Edge supports the AWS IoT SiteWise hot tier, buffered ingestion, or

Concepts 9

AWS IoT SiteWise User Guide

an Amazon S3 bucket as destinations. You can configure destinations to subscribe to specific
MQTT topics using path filters. For more information, see Understand AWS IoT SiteWise Edge
destinations.

Formula

Each transform and metric property comes with a formula that outlines how the property
transforms or aggregates data. These formulas include property inputs, operators, and
functions offered by AWS IoT SiteWise. For more information, see Use formula expressions.

Interface

An interface is a type of model that defines a standard structure that can be applied to different
asset models. For more information, see Asset model interfaces.

Measurement

Measurements are properties of an asset that depict the raw sensor time series data streams
from a device or equipment. For more information, see Define data streams from equipment
(measurements).

Metric

Metrics are properties of an asset that represent aggregated time series data. Each metric is
accompanied by a mathematical expression (formula) that outlines how to aggregate data
points and a time interval for computing that aggregation. Metrics generate a single data point
for each specified time interval. For more information, see Aggregate data from properties and
other assets (metrics).

MQTT

MQTT (Message Queuing Telemetry Transport) is a lightweight messaging protocol for sensors
and devices.

Packs

SiteWise Edge gateways use packs to determine how to collect, process, and route data. For
more information about the available packs for your SiteWise Edge gateway, see the section
called “Use packs”.

Data collection pack

Use the data collection pack so that your SiteWise Edge gateway can collect your industrial
data and route it to the AWS destination of your choice.

Concepts 10

AWS IoT SiteWise User Guide

Data processing pack

Use the data processing pack to process, store, and retrieve your data at the edge for up to
30 days. Exchange edge-processed data to and from local applications through SiteWise
Edge APIs.

OPC UA

OPC UA (Open Platform Communications Unified Architecture) is a communication protocol for
industrial automation.

Path filters

Use path filters within a gateway to subscribe to MQTT topics and publish to AWS IoT SiteWise
supported destinations. MQTT-based sources, data processing pipelines, and destinations all
exchange data using MQTT topics on a self-hosted MQTT-enabled, V3 gateway. You can define
topic filters to specify the data you want to ingest or route to different destinations.

Portal

An AWS IoT SiteWise Monitor portal is a web application that you can use to visualize and share
your AWS IoT SiteWise data. A portal has one or more administrators and contains zero or more
projects.

Portal administrator

Each SiteWise Monitor portal has one or more portal administrators. Portal administrators
use the portal to create projects that contain collections of assets and dashboards. The portal
administrator then assigns assets and owners to each project. By controlling access to the
project, portal administrators specify which assets that project owners and viewers can see.

Project

Each SiteWise Monitor portal contains a set of projects. Each project has a subset of your
AWS IoT SiteWise assets associated with it. Project owners create one or more dashboards to
provide a consistent way to view the data associated with those assets. Project owners can
invite viewers to the project to allow them to view the assets and dashboards in the project. The
project is the basic unit of sharing within SiteWise Monitor. Project owners can invite users who
were given access to the portal by the AWS administrator. A user must have access to a portal
before a project in that portal can be shared with that user.

Project owner

Each SiteWise Monitor project has owners. Project owners create visualizations in the form of
dashboards to represent operational data in a consistent manner. When dashboards are ready

Concepts 11

AWS IoT SiteWise User Guide

to share, the project owner can invite viewers to the project. Project owners can also assign
other owners to the project. Project owners can configure thresholds and notification settings
for alarms.

Project viewer

Each SiteWise Monitor project has viewers. Project viewers can connect to the portal to view the
dashboards that project owners created. In each dashboard, project viewers can adjust the time
range to better understand operational data. Project viewers can only view dashboards in the
projects to which they have access. Project viewers can acknowledge and snooze alarms.

Property alias

You have the option to create aliases on asset properties, such as an OPC UA server data
stream path (for example, /company/windfarm/3/turbine/7/temperature), simplifying the
identification of an asset property during the ingestion or retrieval of asset data. When you
use a SiteWise Edge gateway to ingest data from servers, your property aliases must match the
paths of your raw data streams. For more information, see Manage data streams for AWS IoT
SiteWise.

Property notification

When you enable property notifications for an asset property, AWS IoT SiteWise publishes
an MQTT message to AWS IoT Core each time that property receives a new value. The
message payload includes details about the update to that property value. Use property value
notifications to create solutions that connect your industrial data in AWS IoT SiteWise with
other AWS services. For more information, see Interact with other AWS services.

SiteWise Edge gateway

A SiteWise Edge gateway is installed on the customer's premises to gather, handle, and direct
data. A SiteWise Edge gateway connects to your industrial data sources through various
protocols to gather and process data, sending it to the AWS cloud. SiteWise Edge gateways can
also connect to partner data sources. For more information, see Use AWS IoT SiteWise Edge
gateways.

Transform

Transforms are properties of an asset that represent transformed time series data. Every
transform is accompanied by a mathematical expression (formula) that specifies how to
convert data points from one form to another. The transformed data points hold a one-to-one
relationship with the input data points. For more information, see Transform data (transforms).

Concepts 12

AWS IoT SiteWise User Guide

Visualization

In each dashboard, project owners decide how to display the properties and alarms of the assets
associated with the project. Availability might be represented as a line chart, while other values
might be displayed as bar charts or key performance indicators (KPIs). Alarms are best displayed
as status grids and status timelines. Project owners customize each visualization to provide the
best understanding of the data for that asset.

Concepts 13

AWS IoT SiteWise User Guide

Get started with AWS IoT SiteWise

With AWS IoT SiteWise, you can collect, organize, analyze, and visualize your data.

AWS IoT SiteWise provides a demo that you can use to explore the service without configuring a
real data source. For more information, see Use the AWS IoT SiteWise demo.

You can complete the following tutorials to explore certain features of AWS IoT SiteWise:

• Ingest data to AWS IoT SiteWise from AWS IoT things

• Visualize and share wind farm data in SiteWise Monitor

• Publish property value updates to Amazon DynamoDB

See the following topics to learn more about AWS IoT SiteWise:

• Ingest data to AWS IoT SiteWise

• Model industrial assets

• Configure edge capabilities on AWS IoT SiteWise Edge

• Monitor data with AWS IoT SiteWise Monitor

• Query data from AWS IoT SiteWise

• Interact with other AWS services

Topics

• Requirements

• Set up an AWS account

Requirements

You must have an AWS account to get started with AWS IoT SiteWise. If you don't have one, see the
following section for instructions on how to set up an account.

Use a Region where AWS IoT SiteWise is available. For more information, see AWS IoT SiteWise
endpoints and quotas. You can use the Region selector in the AWS Management Console to switch
to one of these Regions.

Requirements 14

https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html
https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html

AWS IoT SiteWise User Guide

Set up an AWS account

Topics

• Sign up for an AWS account

• Create a user with administrative access

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

Set up an AWS account 15

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/
https://console.aws.amazon.com/

AWS IoT SiteWise User Guide

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Create a user with administrative access 16

https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

AWS IoT SiteWise User Guide

Use the AWS IoT SiteWise demo

You can easily explore AWS IoT SiteWise by using the AWS IoT SiteWise demo. AWS IoT SiteWise
provides the demo as an AWS CloudFormation template that you can deploy to create asset
models, assets, and a SiteWise Monitor portal, and generate sample data for up to a week.

Important

Once you create the demo, you will start being charged for the resources that this demo
creates and consumes.

Topics

• Create the AWS IoT SiteWise demo

• Delete the AWS IoT SiteWise demo

Create the AWS IoT SiteWise demo

You can create the AWS IoT SiteWise demo from the AWS IoT SiteWise console.

Note

The demo creates Lambda functions, one CloudWatch Events rule, and the AWS Identity
and Access Management (IAM) roles required for the demo. You might see these resources
in your AWS account. We recommend that you keep these resources until you're done with
the demo. If you delete the resources, the demo might stop working correctly.

To create the demo in the AWS IoT SiteWise console

1. Navigate to the AWS IoT SiteWise console and find the SiteWise demo in the upper-right
corner of the page.

2. (Optional) Under SiteWise demo, change the Days to keep demo assets field to specify how
many days to keep the demo before deleting it.

3. (Optional) To create a SiteWise Monitor portal to monitor sample data, do the following.

Create the AWS IoT SiteWise demo 17

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

Note

You will be charged for the SiteWise Monitor resources that this demo creates and
consumes. For more information, see SiteWise Monitor in the AWS IoT SiteWise Pricing.

a. Choose Monitor Resources.

b. Choose Permission.

c. Choose an existing IAM role that grants your federated IAM users access to the portal.

Important

Your IAM role must have the following permissions.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iotsitewise:Describe*",
 "iotsitewise:List*",
 "iotsitewise:Get*",
 "cloudformation:DescribeStacks",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedRolePolicies",
 "sso:DescribeRegisteredRegions",
 "organizations:DescribeOrganization"
],
 "Resource": "*"
 }
]
}

Create the AWS IoT SiteWise demo 18

https://aws.amazon.com/iot-sitewise/pricing/

AWS IoT SiteWise User Guide

For more information about how to work with SiteWise Monitor, see What is AWS IoT SiteWise
Monitor? in the AWS IoT SiteWise Monitor Application Guide.

4. Choose Create demo.

The demo takes around 3 minutes to create. If the demo fails to create, your account might
have insufficient permissions. Switch to an account that has administrative permissions, or use
the following steps to delete the demo and try again:

a. Choose Delete demo.

The demo takes around 15 minutes to delete.

b. If the demo doesn't delete, open the AWS CloudFormation console, choose the stack
named IoTSiteWiseDemoAssets, and choose Delete in the upper-right corner.

c. If the demo fails to delete again, follow the steps in the AWS CloudFormation console to
skip the resources that failed to delete, and try again.

5. After the demo creates successfully, you can explore the demo assets and data in the AWS IoT
SiteWise console.

Delete the AWS IoT SiteWise demo

The AWS IoT SiteWise demo deletes itself after a week, or the number of days you chose if you
created the demo stack from the AWS CloudFormation console. You can delete the demo before
if you're done using the demo resources. You can also delete the demo if the demo fails to create.
Use the following steps to delete the demo manually.

To delete the AWS IoT SiteWise demo

1. Navigate to the AWS CloudFormation console.

2. Choose IoTSiteWiseDemoAssets from the list of Stacks.

3. Choose Delete.

When you delete the stack, all of the resources created for the demo are deleted.

4. In the confirmation dialog, choose Delete stack.

Delete the AWS IoT SiteWise demo 19

https://docs.aws.amazon.com/iot-sitewise/latest/appguide/what-is-monitor-app.html
https://docs.aws.amazon.com/iot-sitewise/latest/appguide/what-is-monitor-app.html
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/iotsitewise/
https://console.aws.amazon.com/iotsitewise/
https://console.aws.amazon.com/cloudformation

AWS IoT SiteWise User Guide

The stack takes around 15 minutes to delete. If the demo fails to delete, choose Delete in
the upper-right corner again. If the demo fails to delete again, follow the steps in the AWS
CloudFormation console to skip the resources that failed to delete, and try again.

Delete the AWS IoT SiteWise demo 20

AWS IoT SiteWise User Guide

AWS IoT SiteWise tutorials

Welcome to the AWS IoT SiteWise tutorials page. This growing collection of tutorials empowers
you with the knowledge and skills needed to navigate the intricacies of AWS IoT SiteWise. These
tutorials offer a diverse range of basic topics to cater to your needs. As you delve into the tutorials,
uncover invaluable insights into various aspects of AWS IoT SiteWise.

Each tutorial uses a specific equipment example. These tutorials are intended for test
environments, and they use fictitious company names, models, assets, properties, and so on. Their
purpose is to provide general guidance. The tutorials are not intended for direct use in a production
environment without careful review and adaptation to meet the unique needs of your organization.

Topics

• Calculate OEE in AWS IoT SiteWise

• Ingest data to AWS IoT SiteWise from AWS IoT things

• Integrate data into SiteWise Edge using an MQTT-enabled, V3 gateway

• Visualize and share data in Grafana

• Visualize and share wind farm data in SiteWise Monitor

• Publish property value updates to Amazon DynamoDB

Calculate OEE in AWS IoT SiteWise

This tutorial provides an example of how to calculate overall equipment effectiveness (OEE) for
a manufacturing process. As a result, your OEE calculations or formulas might differ from those
shown here. In general, OEE is defined as Availability * Quality * Performance. To learn
more about calculating OEE, see Overall equipment effectiveness on Wikipedia.

Prerequisites

To complete this tutorial, you must configure data ingestion for a device that has the following
three data streams:

• Equipment_State – A numerical code that represents the state of the machine, such as idle,
fault, planned stop, or normal operation.

• Good_Count – A data stream where each data point contains the number of successful
operations since the last data point.

Calculate OEE 21

https://en.wikipedia.org/wiki/Overall_equipment_effectiveness

AWS IoT SiteWise User Guide

• Bad_Count – A data stream where each data point contains the number of unsuccessful
operations since the last data point.

To configure data ingestion, see Ingest data to AWS IoT SiteWise. If you don't have an available
industrial operation, you can write a script that generates and uploads sample data through the
AWS IoT SiteWise API.

How to calculate OEE

In this tutorial, you create an asset model that calculates OEE from three data input streams:
Equipment_State, Good_Count, and Bad_Count. In this example, consider a generic packaging
machine, such as one that's used for packaging sugar, potato chips, or paint. In the AWS IoT
SiteWise console, create an AWS IoT SiteWise asset model with the following measurements,
transforms, and metrics. Then, you can create an asset to represent the packaging machine and
observe how AWS IoT SiteWise calculates OEE.

Define the following measurements to represent the raw data streams from the packaging
machine.

Measurements

• Equipment_State – A data stream (or measurement) that provides the current state of the
packaging machine in numerical codes:

• 1024 – The machine is idle.

• 1020 – A fault, such as an error or delay.

• 1000 – A planned stop.

• 1111 – A normal operation.

• Good_Count – A data stream where each data point contains the number of successful
operations since the last data point.

• Bad_Count – A data stream where each data point contains the number of unsuccessful
operations since the last data point.

Using the Equipment_State measurement data stream and the codes it contains, define the
following transforms (or derived measurements). Transforms have a one-to-one relationship with
raw measurements.

How to calculate OEE 22

https://console.aws.amazon.com/iotsitewise/
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

Transforms

• Idle = eq(Equipment_State, 1024) – A transformed data stream that contains the
machine's idle state.

• Fault = eq(Equipment_State, 1020) – A transformed data stream that contains the
machine's fault state.

• Stop = eq(Equipment_State, 1000) – A transformed data stream that contains the
machine's planned stop state.

• Running = eq(Equipment_State, 1111) – A transformed data stream that contains the
machine's normal operational state.

Using the raw measurements and the transformed measurements, define the following metrics
that aggregate machine data over specified time intervals. Choose the same time interval for each
metric when you define the metrics in this section.

Metrics

• Successes = sum(Good_Count) – The number of successfully filled packages over the
specified time interval.

• Failures = sum(Bad_Count) – The number of unsuccessfully filled packages over the
specified time interval.

• Idle_Time = statetime(Idle) – The machine's total idle time (in seconds) per specified
time interval.

• Fault_Time = statetime(Fault) – The machine's total fault time (in seconds) per specified
time interval.

• Stop_Time = statetime(Stop) – The machine's total planned stop time (in seconds) per
specified time interval.

• Run_Time = statetime(Running) – The machine's total time (in seconds) running without
issue per specified time interval.

• Down_Time = Idle_Time + Fault_Time + Stop_Time – The machine's total downtime (in
seconds) over the specified time interval, calculated as the sum of the machine states other than
Run_Time.

• Availability = Run_Time / (Run_Time + Down_Time) – The machine's uptime or
percentage of scheduled time that the machine is available to operate over the specified time
interval.

How to calculate OEE 23

AWS IoT SiteWise User Guide

• Quality = Successes / (Successes + Failures) – The machine's percentage of
successfully filled packages over the specified time intervals.

• Performance = ((Successes + Failures) / Run_Time) / Ideal_Run_Rate – The
machine's performance over the specified time interval as a percentage out of the ideal run rate
(in seconds) for your process.

For example, your Ideal_Run_Rate might be 60 packages per minute (1 package per second).
If your Ideal_Run_Rate is per minute or per hour, you need to divide it by the appropriate unit
conversion factor because Run_Time is in seconds.

• OEE = Availability * Quality * Performance – The machine's overall equipment
effectiveness over the specified time interval. This formula calculates OEE as a fraction out of 1.

Note

If OEE is defined as a transform, output values are computed for each of the input values.
There is a potential to generate unexpected values as the transform evaluation considers
the latest available values for all the contributing properties in the formula. For property
updates with the same timestamp, output values may be overwritten by updates from
other incoming properties. For example when Availability, Quality, and Performance are
computed, the OEE is computed with the last available data points for the other two
properties. These contributing values share timestamps, and cause incorrect output values
of the OEE. The order is not guaranteed for transforms computation.

Ingest data to AWS IoT SiteWise from AWS IoT things

Learn how to ingest data to AWS IoT SiteWise from a fleet of AWS IoT things by using device
shadows in this tutorial. Device shadows are JSON objects that store current state information for
an AWS IoT device. For more information, see Device shadow service in the AWS IoT Developer
Guide.

After you complete this tutorial, you can set up an operation in AWS IoT SiteWise based on AWS
IoT things. By using AWS IoT things, you can integrate your operation with other useful features of
AWS IoT. For example, you can configure AWS IoT features to do the following tasks:

• Configure additional rules to stream data to AWS IoT Events, Amazon DynamoDB, and other
AWS services. For more information, see Rules in the AWS IoT Developer Guide.

Ingest data 24

https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/
https://docs.aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html

AWS IoT SiteWise User Guide

• Index, search, and aggregate your device data with the AWS IoT fleet indexing service. For more
information, see Fleet indexing service in the AWS IoT Developer Guide.

• Audit and secure your devices with AWS IoT Device Defender. For more information, see AWS IoT
Device Defender in the AWS IoT Developer Guide.

In this tutorial, you learn how to ingest data from AWS IoT things' device shadows to assets in AWS
IoT SiteWise. To do so, you create one or more AWS IoT things and run a script that updates each
thing's device shadow with CPU and memory usage data. You use CPU and memory usage data in
this tutorial to imitate realistic sensor data. Then, you create a rule with an AWS IoT SiteWise action
that sends this data to an asset in AWS IoT SiteWise every time a thing's device shadow updates.
For more information, see Ingest data to AWS IoT SiteWise using AWS IoT Core rules.

Topics

• Prerequisites

• Step 1: Create an AWS IoT policy

• Step 2: Create and configure an AWS IoT thing

• Step 3: Create a device asset model

• Step 4: Create a device fleet asset model

• Step 5: Create and configure a device asset

• Step 6: Create and configure a device fleet asset

• Step 7: Create a rule in AWS IoT Core to send data to device assets

• Step 8: Run the device client script

• Step 9: Clean up resources after the tutorial

Prerequisites

To complete this tutorial, you need the following:

• An AWS account. If you don't have one, see Set up an AWS account.

• A development computer running Windows, macOS, Linux, or Unix to access the AWS
Management Console. For more information, see Getting Started with the AWS Management
Console.

• An AWS Identity and Access Management (IAM) user with administrator permissions.

Prerequisites 25

https://docs.aws.amazon.com/iot/latest/developerguide/iot-indexing.html
https://docs.aws.amazon.com/iot-device-defender/latest/devguide/what-is-device-defender.html
https://docs.aws.amazon.com/iot-device-defender/latest/devguide/what-is-device-defender.html
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html

AWS IoT SiteWise User Guide

• Python 3 installed on your development computer or installed on the device that you want to
register as an AWS IoT thing.

Step 1: Create an AWS IoT policy

In this procedure, create an AWS IoT policy that allows your AWS IoT things to access the resources
used in this tutorial.

Console

Use the following procedure to create an AWS IoT policy using the AWS IoT Core console:

To create an AWS IoT policy

1. Sign in to the AWS Management Console.

2. Review the AWS Regions where AWS IoT SiteWise is supported. Switch to one of these
supported Regions, if necessary.

3. Navigate to the AWS IoT console. If a Connect device button appears, choose it.

4. In the left navigation pane, choose Security and then choose Policies.

5. Choose Create.

6. Enter a name for the AWS IoT policy (for example, SiteWiseTutorialDevicePolicy).

7. Under Policy document, choose JSON to enter the following policy in JSON form. Replace
region and account-id with your Region and account ID, such as us-east-1 and
123456789012.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iot:Connect",
 "Resource": "arn:aws:iot:us-
east-1:123456789012:client/SiteWiseTutorialDevice*"
 },
 {
 "Effect": "Allow",

Step 1: Create an AWS IoT policy 26

https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/what-is.html
https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html
https://console.aws.amazon.com/iot/

AWS IoT SiteWise User Guide

 "Action": "iot:Publish",
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/$aws/things/
${iot:Connection.Thing.ThingName}/shadow/update",
 "arn:aws:iot:us-east-1:123456789012:topic/$aws/things/
${iot:Connection.Thing.ThingName}/shadow/delete",
 "arn:aws:iot:us-east-1:123456789012:topic/$aws/things/
${iot:Connection.Thing.ThingName}/shadow/get"
]
 },
 {
 "Effect": "Allow",
 "Action": "iot:Receive",
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topic/$aws/things/
${iot:Connection.Thing.ThingName}/shadow/update/accepted",
 "arn:aws:iot:us-east-1:123456789012:topic/$aws/things/
${iot:Connection.Thing.ThingName}/shadow/delete/accepted",
 "arn:aws:iot:us-east-1:123456789012:topic/$aws/things/
${iot:Connection.Thing.ThingName}/shadow/get/accepted",
 "arn:aws:iot:us-east-1:123456789012:topic/$aws/things/
${iot:Connection.Thing.ThingName}/shadow/update/rejected",
 "arn:aws:iot:us-east-1:123456789012:topic/$aws/things/
${iot:Connection.Thing.ThingName}/shadow/delete/rejected"
]
 },
 {
 "Effect": "Allow",
 "Action": "iot:Subscribe",
 "Resource": [
 "arn:aws:iot:us-east-1:123456789012:topicfilter/$aws/things/
${iot:Connection.Thing.ThingName}/shadow/update/accepted",
 "arn:aws:iot:us-east-1:123456789012:topicfilter/$aws/things/
${iot:Connection.Thing.ThingName}/shadow/delete/accepted",
 "arn:aws:iot:us-east-1:123456789012:topicfilter/$aws/things/
${iot:Connection.Thing.ThingName}/shadow/get/accepted",
 "arn:aws:iot:us-east-1:123456789012:topicfilter/$aws/things/
${iot:Connection.Thing.ThingName}/shadow/update/rejected",
 "arn:aws:iot:us-east-1:123456789012:topicfilter/$aws/things/
${iot:Connection.Thing.ThingName}/shadow/delete/rejected"
]
 },
 {
 "Effect": "Allow",

Step 1: Create an AWS IoT policy 27

AWS IoT SiteWise User Guide

 "Action": [
 "iot:GetThingShadow",
 "iot:UpdateThingShadow",
 "iot:DeleteThingShadow"
],
 "Resource": "arn:aws:iot:us-
east-1:123456789012:thing/SiteWiseTutorialDevice*"

 }
]
}

8. Choose Create.

AWS CLI

Important

This policy uses wildcards to stay within AWS IoT SiteWise CLI size limits. For more
restrictive permissions with explicit topic paths, create the policy through the AWS IoT
SiteWise console instead. For more information, see the IoT policy example provided on
the tab.

Use the following AWS CLI command to create an IoT policy:

aws iot create-policy \
 --policy-name "SiteWiseTutorialDevicePolicy" \
 --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iot:Connect",
 "Resource": "arn:aws:iot:region:account-id:client/SiteWiseTutorialDevice*"
 },
 {
 "Effect": "Allow",
 "Action": ["iot:Publish", "iot:Receive"],
 "Resource": [
 "arn:aws:iot:region:account-id:topic/$aws/things/
${iot:Connection.Thing.ThingName}/shadow/*"

Step 1: Create an AWS IoT policy 28

AWS IoT SiteWise User Guide

]
 },
 {
 "Effect": "Allow",
 "Action": "iot:Subscribe",
 "Resource": [
 "arn:aws:iot:region:account-id:topicfilter/$aws/things/
${iot:Connection.Thing.ThingName}/shadow/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:GetThingShadow",
 "iot:UpdateThingShadow",
 "iot:DeleteThingShadow"
],
 "Resource": "arn:aws:iot:region:account-id:thing/SiteWiseTutorialDevice*"
 }
]
 }'

To verify that your policy was created successfully, use the following command:

aws iot get-policy --policy-name "SiteWiseTutorialDevicePolicy"

This policy enables your AWS IoT devices to establish connections and communicate with device
shadows using MQTT messages. For more information about MQTT messages, see What is MQTT?.
To interact with device shadows, your AWS IoT things publish and receive MQTT messages on
topics that start with $aws/things/thing-name/shadow/. This policy incorporates a thing
policy variable known as ${iot:Connection.Thing.ThingName}. This variable substitutes
the connected thing's name in each topic. The iot:Connect statement sets limitations on which
devices can establish connections, ensuring that the thing policy variable can only substitute
names starting with SiteWiseTutorialDevice.

For more information, see Thing policy variables in the AWS IoT Developer Guide.

Step 1: Create an AWS IoT policy 29

https://aws.amazon.com/what-is/mqtt/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-policy-variables.html

AWS IoT SiteWise User Guide

Note

This policy applies to things whose names start with SiteWiseTutorialDevice. To use a
different name for your things, you must update the policy accordingly.

Step 2: Create and configure an AWS IoT thing

In this procedure, you create and configure an AWS IoT thing. You can designate your development
computer as an AWS IoT thing. As you progress, remember that the principles you're learning here
can be applied to actual projects. You have the flexibility to make and set up AWS IoT things on any
device capable of running an AWS IoT SDK, including AWS IoT Greengrass and FreeRTOS. For more
information, see AWS IoT SDKs in the AWS IoT Developer Guide.

Console

To create and configure an AWS IoT thing

1. Open a command line and run the following command to create a directory for this
tutorial.

mkdir iot-sitewise-rule-tutorial
cd iot-sitewise-rule-tutorial

2. Run the following command to create a directory for your thing's certificates.

mkdir device1

If you're creating additional things, increment the number in the directory name
accordingly to keep track of which certificates belong to which thing.

3. Navigate to the AWS IoT console.

4. In the left navigation pane, choose All devices in the Manage section. Then choose Things.

5. If a You don't have any things yet dialog box appears, choose Create a thing. Otherwise,
choose Create things.

6. On the Creating things page, choose Create a single thing and then choose Next.

Step 2: Create an AWS IoT thing 30

https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html
https://console.aws.amazon.com/iot/

AWS IoT SiteWise User Guide

7. On the Specify thing properties page, enter a name for your AWS IoT thing (for example,
SiteWiseTutorialDevice1) and then choose Next. If you're creating additional things,
increment the number in the thing name accordingly.

Important

The thing name must match the name used in the policy that you created in Step 1:
Creating an AWS IoT policy. Otherwise, your device can't connect to AWS IoT.

8. On the Configure device certificate - optional page, choose Auto-generate a new
certificate (recommended), then choose Next. Certificates enable AWS IoT to securely
identify your devices.

9. On the Attach policies to certificate - optional page, select the policy you created in Step
1: Creating an AWS IoT policy and choose Create thing.

10. On the Download certificates and keys dialog box, do the following:

a. Choose the Download links to download your thing's certificate, public key, and private
key. Save all three files to the directory that you created for your thing's certificates
(for example, iot-sitewise-rule-tutorial/device1).

Important

This is the only time that you can download your thing's certificate and keys,
which you need for your device to successfully connect to AWS IoT.

b. Choose the Download link to download a root CA certificate. Save the root CA
certificate to the iot-sitewise-rule-tutorial. We recommend downloading
Amazon Root CA 1.

11. Choose Done.

AWS CLI

Follow these steps to create and configure an AWS IoT thing using the AWS CLI:

1. Open a command line and run the following command to create a directory for this
tutorial:

Step 2: Create an AWS IoT thing 31

AWS IoT SiteWise User Guide

mkdir iot-sitewise-rule-tutorial

2. Navigate to the tutorial directory:

cd iot-sitewise-rule-tutorial

3. Run the following command to create a directory for your thing's certificates:

mkdir device1

If you're creating additional things, increment the number in the directory name
accordingly to keep track of which certificates belong to which thing.

4. Create an AWS IoT thing:

aws iot create-thing --thing-name "SiteWiseTutorialDevice1"

Important

The thing name must match the name pattern used in the policy that you created
in Step 1. Otherwise, your device can't connect to AWS IoT.

5. Create a certificate and save the files. Note the certificate ARN from the output - you'll
need it in the next steps:

aws iot create-keys-and-certificate \
 --set-as-active \
 --certificate-pem-outfile "device1/device.pem.crt" \
 --public-key-outfile "device1/public.pem.key" \
 --private-key-outfile "device1/private.pem.key"

6. Attach the policy you created in Step 1 to the certificate:

aws iot attach-policy \
 --policy-name "SiteWiseTutorialDevicePolicy" \
 --target "certificate-arn"

7. Attach the certificate to the thing:

aws iot attach-thing-principal \

Step 2: Create an AWS IoT thing 32

AWS IoT SiteWise User Guide

 --thing-name "SiteWiseTutorialDevice1" \
 --principal "certificate-arn"

8. Download the Amazon root CA certificate:

curl https://www.amazontrust.com/repository/AmazonRootCA1.pem >
 AmazonRootCA1.pem

This certificate is required for your device to successfully connect to AWS IoT.

Important

Store your certificates and keys securely. You cannot download these credentials again
after creating them.

You have now registered an AWS IoT thing on your computer. Take one of the following next steps:

• Continue to Step 3: Creating a device asset model without creating additional AWS IoT things. You
can complete this tutorial with only one thing.

• Repeat the steps in this section on another computer or device to create more AWS IoT things.
For this tutorial, we recommend that you follow this option so that you can ingest unique CPU
and memory usage data from multiple devices.

• Repeat the steps in this section on the same device (your computer) to create more AWS IoT
things. Each AWS IoT thing receives similar CPU and memory usage data from your computer, so
use this approach to demonstrate ingesting non-unique data from multiple devices.

Step 3: Create a device asset model

In this procedure, you create an asset model in AWS IoT SiteWise to represent your devices that
stream CPU and memory usage data. To process data in assets that represent groups of devices,
asset models enforce consistent information across multiple assets of the same type. For more
information, see Model industrial assets.

To create an asset model that represents a device

1. Navigate to the AWS IoT SiteWise console.

Step 3: Create a device asset model 33

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

2. In the left navigation pane, choose Models.

3. Choose Create asset model.

4. Under Model details, enter a name for your model. For example, SiteWise Tutorial
Device Model.

5. Under Measurement definitions, do the following:

a. In Name, enter CPU Usage.

b. In Unit, enter %.

c. Leave the Data type as Double.

Measurement properties represent a device's raw data streams. For more information, see
Define data streams from equipment (measurements).

6. Choose Add new measurement to add a second measurement property.

7. In the second row under Measurement definitions, do the following:

a. In Name, enter Memory Usage.

b. In Unit, enter %.

c. Leave the Data type as Double.

8. Under Metric definitions, do the following:

a. In Name, enter Average CPU Usage.

b. In Formula, enter avg(CPU Usage). Choose CPU Usage from the autocomplete list when
it appears.

c. In Time interval, enter 5 minutes.

Metric properties define aggregation calculations that process all input data points over an
interval and output a single data point per interval. This metric property calculates each
device's average CPU usage every 5 minutes. For more information, see Aggregate data from
properties and other assets (metrics).

9. Choose Add new metric to add a second metric property.

10. In the second row under Metric definitions, do the following:

a. In Name, enter Average Memory Usage.

Step 3: Create a device asset model 34

AWS IoT SiteWise User Guide

b. In Formula, enter avg(Memory Usage). Choose Memory Usage from the autocomplete
list when it appears.

c. In Time interval, enter 5 minutes.

This metric property calculates each device's average memory usage every 5 minutes.

11. (Optional) Add other additional metrics that you're interested in calculating per device. Some
interesting functions include min and max. For more information, see Use formula expressions.
In Step 4: Creating a device fleet asset model, you create a parent asset that can calculate
metrics using data from your entire fleet of devices.

12. Choose Create model.

Step 4: Create a device fleet asset model

In this procedure, you craft an asset model in AWS IoT SiteWise to symbolize your collection of
devices. Within this asset model, you establish a structure that allows you to link numerous device
assets to one overarching fleet asset. Following that, you outline metrics in the fleet asset model to
consolidate data from all connected device assets. This approach provides you with comprehensive
insights into the collective performance of your entire fleet.

To create an asset model that represents a device fleet

1. Navigate to the AWS IoT SiteWise console.

2. In the left navigation pane, choose Models.

3. Choose Create asset model.

4. Under Model details, enter a name for your model. For example, SiteWise Tutorial
Device Fleet Model.

5. Under Hierarchy definitions, do the following:

a. In Hierarchy name, enter Device.

b. In Hierarchy model, choose your device asset model (SiteWise Tutorial Device
Model).

A hierarchy defines a relationship between a parent (fleet) asset model and a child (device)
asset model. Parent assets can access child assets' property data. When you create assets
later, you need to associate child assets to parent assets according to a hierarchy definition

Step 4: Create a device fleet asset model 35

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

in the parent asset model. For more information, see Asset hierarchies represent equipment
relationships.

6. Under Metric definitions, do the following:

a. In Name, enter Average CPU Usage.

b. In Formula, enter avg(Device | Average CPU Usage). When the autocomplete list
appears, choose Device to choose a hierarchy, then choose Average CPU Usage to choose
the metric from the device asset that you created earlier.

c. In Time interval, enter 5 minutes.

This metric property calculates the average CPU usage of all device assets associated to a fleet
asset through the Device hierarchy.

7. Choose Add new metric to add a second metric property.

8. In the second row under Metric definitions, do the following:

a. In Name, enter Average Memory Usage.

b. In Formula, enter avg(Device | Average Memory Usage). When the autocomplete
list appears, choose Device to choose a hierarchy, then choose Average Memory Usage to
choose the metric from the device asset that you created earlier.

c. In Time interval, enter 5 minutes.

This metric property calculates the average memory usage of all device assets associated to a
fleet asset through the Device hierarchy.

9. (Optional) Add other additional metrics that you're interested in calculating across your fleet
of devices.

10. Choose Create model.

Step 5: Create and configure a device asset

In this procedure, you generate a device asset that's based on your device asset model. Then, you
define property aliases for each measurement property. A property alias is a unique string that
identifies an asset property. Later, you can identify a property for data upload by using the aliases
instead of the asset ID and property ID. For more information, see Manage data streams for AWS
IoT SiteWise.

Step 5: Create and configure a device asset 36

AWS IoT SiteWise User Guide

To create a device asset and define property aliases

1. Navigate to the AWS IoT SiteWise console.

2. In the left navigation pane, choose Assets.

3. Choose Create asset.

4. Under Model information, choose your device asset model, SiteWise Tutorial Device
Model.

5. Under Asset information, enter a name for your asset. For example, SiteWise Tutorial
Device 1.

6. Choose Create asset.

7. For your new device asset, choose Edit.

8. Under Measurements:

a. Under CPU Usage, enter /tutorial/device/SiteWiseTutorialDevice1/cpu as the
property alias. You include the AWS IoT thing's name in the property alias, so that you can
ingest data from all of your devices using a single AWS IoT rule.

b. Under Memory Usage, enter /tutorial/device/SiteWiseTutorialDevice1/
memory as the property alias.

9. Choose Save.

If you created multiple AWS IoT things earlier, repeat steps 3 through 10 for each device, and
increment the number in the asset name and property aliases accordingly. For example, the
second device asset's name should be SiteWise Tutorial Device 2, and its property aliases
should be /tutorial/device/SiteWiseTutorialDevice2/cpu, and /tutorial/device/
SiteWiseTutorialDevice2/memory.

Step 6: Create and configure a device fleet asset

In this procedure, you form a device fleet asset derived from your device fleet asset model.
Then, you link your individual device assets to the fleet asset. This association enables the metric
properties of the fleet asset to compile and analyze data from multiple devices. This data provides
you with a consolidated view of the collective performance of the entire fleet.

To create a device fleet asset and associate device assets

1. Navigate to the AWS IoT SiteWise console.

Step 6: Create and configure a device fleet asset 37

https://console.aws.amazon.com/iotsitewise/
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

2. In the left navigation pane, choose Assets.

3. Choose Create asset.

4. Under Model information, choose your device fleet asset model, SiteWise Tutorial
Device Fleet Model.

5. Under Asset information, enter a name for your asset. For example, SiteWise Tutorial
Device Fleet 1.

6. Choose Create asset.

7. For your new device fleet asset, choose Edit.

8. Under Assets associated to this asset, choose Add associated asset and do the following:

a. Under Hierarchy, choose Device. This hierarchy identifies the hierarchical relationship
between device and device fleet assets. You defined this hierarchy in the device fleet asset
model earlier in this tutorial.

b. Under Asset, choose your device asset, SiteWise Tutorial Device 1.

9. (Optional) If you created multiple device assets earlier, repeat steps 8 through 10 for each
device asset that you created.

10. Choose Save.

You should now see your device assets organized as a hierarchy.

Step 7: Create a rule in AWS IoT Core to send data to device assets

In this procedure, you establish a rule in AWS IoT Core. The rule is designed to interpret notification
messages from device shadows and transmit the data to your device assets in AWS IoT SiteWise.
Each time your device's shadow updates, AWS IoT sends an MQTT message. You can create a rule
that takes action when device shadows change based on the MQTT message. In this case, the aim
is to handle the update message, extract the property values, and transmit them to your device
assets in AWS IoT SiteWise.

To create a rule with an AWS IoT SiteWise action

1. Navigate to the AWS IoT console.

2. In the left navigation pane, choose Message routing and then choose Rules.

3. Choose Create rule.

4. Enter a name and description for your rule and the choose Next.

Step 7: Create a rule in AWS IoT Core to send data to device assets 38

https://console.aws.amazon.com/iot/

AWS IoT SiteWise User Guide

5. Enter the following SQL statement and the choose Next.

SELECT
 *
FROM
 '$aws/things/+/shadow/update/accepted'
WHERE
 startsWith(topic(3), "SiteWiseTutorialDevice")

This rule query statement works because the device shadow service publishes shadow updates
to $aws/things/thingName/shadow/update/accepted. For more information about
device shadows, see Device shadow service in the AWS IoT Developer Guide.

In the WHERE clause, this rule query statement uses the topic(3) function to get the thing
name from the third segment of the topic. Then, the statement filters out devices that have
names that don't match those of the tutorial devices. For more information about AWS IoT
SQL, see AWS IoT SQL reference in the AWS IoT Developer Guide.

6. Under Rule actions, choose Send message data to asset properties in AWS IoT SiteWise and
do the following:

a. Choose By property alias.

b. In Property alias, enter /tutorial/device/${topic(3)}/cpu.

The ${...} syntax is a substitution template. AWS IoT evaluates the contents within the
braces. This substitution template pulls the thing name from the topic to create an alias
unique to each thing. For more information, see Substitution templates in the AWS IoT
Developer Guide.

Note

Because an expression in a substitution template is evaluated separately from the
SELECT statement, you can't use a substitution template to reference an alias
created using an AS clause. You can reference only information present in the
original payload, in addition to supported functions and operators.

c. In Entry ID - optional, enter ${concat(topic(3), "-cpu-",
floor(state.reported.timestamp))}.

Step 7: Create a rule in AWS IoT Core to send data to device assets 39

https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-reference.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-substitution-templates.html

AWS IoT SiteWise User Guide

Entry IDs uniquely identify each value entry attempt. If an entry returns an error, you
can find the entry ID in the error output to troubleshoot the issue. The substitution
template in this entry ID combines the thing name and the device's reported timestamp.
For example, the resulting entry ID might look like SiteWiseTutorialDevice1-
cpu-1579808494.

d. In Time in seconds, enter ${floor(state.reported.timestamp)}.

This substitution template calculates the time in seconds from the device's reported
timestamp. In this tutorial, devices report timestamp in seconds in Unix epoch time as a
floating point number.

e. In Offset in nanos - optional, enter ${floor((state.reported.timestamp % 1) *
1E9)}.

This substitution template calculates the nanosecond offset from the time in seconds by
converting the decimal portion of the device's reported timestamp.

Note

AWS IoT SiteWise requires that your data has a current timestamp in Unix epoch
time. If your devices don't report time accurately, you can get the current time
from the AWS IoT rules engine with timestamp(). This function reports time
in milliseconds, so you must update your rule action's time parameters to the
following values:

• In Time in seconds, enter ${floor(timestamp() / 1E3)}.

• In Offset in nanos, enter ${(timestamp() % 1E3) * 1E6}.

f. In Data type, choose Double.

This data type must match the data type of the asset property you defined in the asset
model.

g. In Value, enter ${state.reported.cpu}. In substitution templates, you use the .
operator to retrieve a value from within a JSON structure.

h. Choose Add entry to add a new entry for the memory usage property, and complete the
following steps again for that property:

i. Choose By property alias.

Step 7: Create a rule in AWS IoT Core to send data to device assets 40

https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-function-timestamp

AWS IoT SiteWise User Guide

ii. In Property alias, enter /tutorial/device/${topic(3)}/memory.

iii. In Entry ID - optional, enter ${concat(topic(3), "-memory-",
floor(state.reported.timestamp))}.

iv. In Time in seconds, enter ${floor(state.reported.timestamp)}.

v. In Offset in nanos - optional, enter ${floor((state.reported.timestamp %
1) * 1E9)}.

vi. In Data type, choose Double.

vii. In Value, enter ${state.reported.memory}.

i. Under IAM Role, choose Create new role to create an IAM role for this rule action. This
role allows AWS IoT to push data to properties in your device fleet asset and its asset
hierarchy.

j. Enter a role name and choose Create.

7. (Optional) Configure an error action that you can use to troubleshoot your rule. For more
information, see Troubleshoot a rule (AWS IoT SiteWise).

8. Choose Next.

9. Review the settings and choose Create to create the rule.

Step 8: Run the device client script

For this tutorial, you aren't using an actual device to report data. Instead, you run a script to update
your AWS IoT thing's device shadow with CPU and memory usage to imitate real sensor data. To
run the script, you must first install required Python packages. In this procedure, you install the
required Python packages and then run the device client script.

To configure and run the device client script

1. Navigate to the AWS IoT console.

2. At the bottom of the left navigation pane, choose Settings.

3. Save your custom endpoint for use with the device client script. You use this endpoint to
interact with your thing's shadows. This endpoint is unique to your account in the current
Region.

Your custom endpoint should look like the following example.

Step 8: Run the device client script 41

https://console.aws.amazon.com/iot/

AWS IoT SiteWise User Guide

identifier.iot.region.amazonaws.com

4. Open a command line and run the following command to navigate to the tutorial directory
you created earlier.

cd iot-sitewise-rule-tutorial

5. Run the following command to install the AWS IoT Device SDK for Python.

pip3 install AWSIoTPythonSDK

For more information, see AWS IoT Device SDK for Python in the AWS IoT Developer Guide

6. Run the following command to install psutil, a cross-platform process and system utilities
library.

pip3 install psutil

For more information, see psutil in the Python Package Index.

7. Create a file called thing_performance.py in the iot-sitewise-rule-tutorial
directory and then copy the following Python code into the file.

import AWSIoTPythonSDK.MQTTLib as AWSIoTPyMQTT

import json
import psutil
import argparse
import logging
import time

Configures the argument parser for this program.
def configureParser():
 parser = argparse.ArgumentParser()
 parser.add_argument(
 "-e",
 "--endpoint",
 action="store",
 required=True,
 dest="host",

Step 8: Run the device client script 42

https://docs.aws.amazon.com/iot/latest/developerguide/iot-sdks.html#iot-python-sdk
https://pypi.org/project/psutil/

AWS IoT SiteWise User Guide

 help="Your AWS IoT custom endpoint",
)
 parser.add_argument(
 "-r",
 "--rootCA",
 action="store",
 required=True,
 dest="rootCAPath",
 help="Root CA file path",
)
 parser.add_argument(
 "-c",
 "--cert",
 action="store",
 required=True,
 dest="certificatePath",
 help="Certificate file path",
)
 parser.add_argument(
 "-k",
 "--key",
 action="store",
 required=True,
 dest="privateKeyPath",
 help="Private key file path",
)
 parser.add_argument(
 "-p",
 "--port",
 action="store",
 dest="port",
 type=int,
 default=8883,
 help="Port number override",
)
 parser.add_argument(
 "-n",
 "--thingName",
 action="store",
 required=True,
 dest="thingName",
 help="Targeted thing name",
)
 parser.add_argument(

Step 8: Run the device client script 43

AWS IoT SiteWise User Guide

 "-d",
 "--requestDelay",
 action="store",
 dest="requestDelay",
 type=float,
 default=1,
 help="Time between requests (in seconds)",
)
 parser.add_argument(
 "-v",
 "--enableLogging",
 action="store_true",
 dest="enableLogging",
 help="Enable logging for the AWS IoT Device SDK for Python",
)
 return parser

An MQTT shadow client that uploads device performance data to AWS IoT at a
 regular interval.
class PerformanceShadowClient:
 def __init__(
 self,
 thingName,
 host,
 port,
 rootCAPath,
 privateKeyPath,
 certificatePath,
 requestDelay,
):
 self.thingName = thingName
 self.host = host
 self.port = port
 self.rootCAPath = rootCAPath
 self.privateKeyPath = privateKeyPath
 self.certificatePath = certificatePath
 self.requestDelay = requestDelay

 # Updates this thing's shadow with system performance data at a regular
 interval.
 def run(self):
 print("Connecting MQTT client for {}...".format(self.thingName))
 mqttClient = self.configureMQTTClient()

Step 8: Run the device client script 44

AWS IoT SiteWise User Guide

 mqttClient.connect()
 print("MQTT client for {} connected".format(self.thingName))
 deviceShadowHandler = mqttClient.createShadowHandlerWithName(
 self.thingName, True
)

 print("Running performance shadow client for {}...
\n".format(self.thingName))
 while True:
 performance = self.readPerformance()
 print("[{}]".format(self.thingName))
 print("CPU:\t{}%".format(performance["cpu"]))
 print("Memory:\t{}%\n".format(performance["memory"]))
 payload = {"state": {"reported": performance}}
 deviceShadowHandler.shadowUpdate(
 json.dumps(payload), self.shadowUpdateCallback, 5
)
 time.sleep(args.requestDelay)

 # Configures the MQTT shadow client for this thing.
 def configureMQTTClient(self):
 mqttClient = AWSIoTPyMQTT.AWSIoTMQTTShadowClient(self.thingName)
 mqttClient.configureEndpoint(self.host, self.port)
 mqttClient.configureCredentials(
 self.rootCAPath, self.privateKeyPath, self.certificatePath
)
 mqttClient.configureAutoReconnectBackoffTime(1, 32, 20)
 mqttClient.configureConnectDisconnectTimeout(10)
 mqttClient.configureMQTTOperationTimeout(5)
 return mqttClient

 # Returns the local device's CPU usage, memory usage, and timestamp.
 def readPerformance(self):
 cpu = psutil.cpu_percent()
 memory = psutil.virtual_memory().percent
 timestamp = time.time()
 return {"cpu": cpu, "memory": memory, "timestamp": timestamp}

 # Prints the result of a shadow update call.
 def shadowUpdateCallback(self, payload, responseStatus, token):
 print("[{}]".format(self.thingName))
 print("Update request {} {}\n".format(token, responseStatus))

Step 8: Run the device client script 45

AWS IoT SiteWise User Guide

Configures debug logging for the AWS IoT Device SDK for Python.
def configureLogging():
 logger = logging.getLogger("AWSIoTPythonSDK.core")
 logger.setLevel(logging.DEBUG)
 streamHandler = logging.StreamHandler()
 formatter = logging.Formatter(
 "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
 streamHandler.setFormatter(formatter)
 logger.addHandler(streamHandler)

Runs the performance shadow client with user arguments.
if __name__ == "__main__":
 parser = configureParser()
 args = parser.parse_args()
 if args.enableLogging:
 configureLogging()
 thingClient = PerformanceShadowClient(
 args.thingName,
 args.host,
 args.port,
 args.rootCAPath,
 args.privateKeyPath,
 args.certificatePath,
 args.requestDelay,
)
 thingClient.run()

8. Run thing_performance.py from the command line with the following parameters:

• -n, --thingName – Your thing name, such as SiteWiseTutorialDevice1.

• -e, --endpoint – Your custom AWS IoT endpoint that you saved earlier in this procedure.

• -r, --rootCA – The path to your AWS IoT root CA certificate.

• -c, --cert – The path to your AWS IoT thing certificate.

• -k, --key – The path to your AWS IoT thing certificate private key.

• -d, --requestDelay – (Optional) The time in seconds to wait between each device shadow
update. Defaults to 1 second.

• -v, --enableLogging – (Optional) If this parameter is present, the script prints debug
messages from the AWS IoT Device SDK for Python.

Step 8: Run the device client script 46

AWS IoT SiteWise User Guide

Your command should look similar to the following example.

python3 thing_performance.py \
 --thingName SiteWiseTutorialDevice1 \
 --endpoint identifier.iot.region.amazonaws.com \
 --rootCA AmazonRootCA1.pem \
 --cert device1/thing-id-certificate.pem.crt \
 --key device1/thing-id-private.pem.key

If you're running the script for additional AWS IoT things, update the thing name and
certificate directory accordingly.

9. Try opening and closing programs on your device to see how the CPU and memory usages
change. The script prints each CPU and memory usage reading. If the script uploads data
to the device shadow service successfully, the script's output should look like the following
example.

[SiteWiseTutorialDevice1]
CPU: 24.6%
Memory: 85.2%

[SiteWiseTutorialDevice1]
Update request e6686e44-fca0-44db-aa48-3ca81726f3e3 accepted

10. Follow these steps to verify that the script is updating the device shadow:

a. Navigate to the AWS IoT console.

b. In the left navigation pane, choose All devices and then choose Things.

c. Choose your thing, SiteWiseTutorialDevice.

d. Choose the Device Shadows tab, choose Classic Shadow, and verify that the Shadow
state looks like the following example.

{
 "reported": {
 "cpu": 24.6,
 "memory": 85.2,
 "timestamp": 1579567542.2835066
 }
}

Step 8: Run the device client script 47

https://console.aws.amazon.com/iot/

AWS IoT SiteWise User Guide

If your thing's shadow state is empty or doesn't look like the previous example, check that
the script is running and successfully connected to AWS IoT. If the script continues to time
out when connecting to AWS IoT, check that your thing policy is configured according to
this tutorial.

11. Follow these steps to verify that the rule action is sending data to AWS IoT SiteWise:

a. Navigate to the AWS IoT SiteWise console.

b. In the left navigation pane, choose Assets.

c. Choose the arrow next to your device fleet asset (SiteWise Tutorial Device Fleet 1) to
expand its asset hierarchy, and then choose your device asset (SiteWise Tutorial Device 1).

d. Choose Measurements.

e. Verify that the Latest value cells have values for the CPU Usage and Memory Usage
properties.

f. If the CPU Usage and Memory Usage properties don't have the latest values, refresh
the page. If values don't appear after a few minutes, see Troubleshoot a rule (AWS IoT
SiteWise).

You have completed this tutorial. If you want to explore live visualizations of your data, you can
configure a portal in AWS IoT SiteWise Monitor. For more information, see Monitor data with AWS
IoT SiteWise Monitor. Otherwise, you can press CTRL+C in your command prompt to stop the
device client script. It's unlikely the Python program will send enough messages to incur charges,
but it's a best practice to stop the program when you're done.

Step 9: Clean up resources after the tutorial

Note

The resources created in this tutorial are required for the Integrate data into SiteWise Edge
tutorial. Do not clean up the resources in this step if you plan on completing it.

Step 9: Clean up resources after the tutorial 48

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

After you complete the tutorial about ingesting data from AWS IoT things, clean up your resources
to avoid incurring additional charges.

To delete hierarchical assets in AWS IoT SiteWise

1. Navigate to the AWS IoT SiteWise console

2. In the left navigation pane, choose Assets.

3. When you delete assets in AWS IoT SiteWise, you must first disassociate them.

Complete the following steps to disassociate your device assets from your device fleet asset:

a. Choose your device fleet asset (SiteWise Tutorial Device Fleet 1).

b. Choose Edit.

c. Under Assets associated to this asset, choose Disassociate for each device asset
associated to this device fleet asset.

d. Choose Save.

You should now see your device assets no longer organized as a hierarchy.

4. Choose your device asset (SiteWise Tutorial Device 1).

5. Choose Delete.

6. In the confirmation dialog, enter Delete and then choose Delete.

7. Repeat steps 4 through 6 for each device asset and the device fleet asset (SiteWise Tutorial
Device Fleet 1).

To delete hierarchical asset models in AWS IoT SiteWise

1. Navigate to the AWS IoT SiteWise console.

2. If you haven't already, delete your device and device fleet assets. For more information, see the
previous procedure. You can't delete a model if you have assets that were created from that
model.

3. In the left navigation pane, choose Models.

4. Choose your device fleet asset model (SiteWise Tutorial Device Fleet Model).

When deleting hierarchical asset models, start by deleting the parent asset model first.

5. Choose Delete.

6. In the confirmation dialog, enter Delete and then choose Delete.

Step 9: Clean up resources after the tutorial 49

https://console.aws.amazon.com/iotsitewise/
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

7. Repeat steps 4 through 6 for your device asset model (SiteWise Tutorial Device Model).

To disable or delete a rule in AWS IoT Core

1. Navigate to the AWS IoT console.

2. In the left navigation pane, choose Message routing and then choose Rules.

3. Select your rule and choose Delete.

4. In the confirmation dialog, enter the name of the rule and then choose Delete.

Integrate data into SiteWise Edge using an MQTT-enabled, V3
gateway

This tutorial guides you through integrating third-party devices and sensors that use MQTT
messaging protocol with the AWS IoT SiteWise MQTT-enabled, V3 gateway. You will learn how to
set up an AWS IoT SiteWise edge gateway to collect and monitor data from your MQTT-enabled
devices. AWS IoT SiteWise enables you to collect, process, and monitor industrial equipment data.
Use SiteWise Edge capabilities to optimize industrial IoT operations, and transform raw data into
actionable insights.

In this tutorial, we use data from a wind farm demonstration to illustrate key concepts. After you
become familiar with the process, you can repeat the tutorial with your own data.

After you complete this tutorial, you can do the following items:

• Set up and configure an MQTT-enabled, V3 gateway to receive data from industrial devices

• Process and validate incoming MQTT messages from your equipment at the edge

• View device data in AWS IoT SiteWise using a third-party visualization platform

• Send processed data from your edge gateway to the AWS Cloud to enable centralized storage
and further analysis

Additionally, you can leverage your edge gateway capabilities by connecting to other AWS IoT
services to perform the following tasks:

• Configure AWS IoT rules to route data to services like Amazon S3, Amazon Timestream, and AWS
Lambda.

Integrate data with SiteWise Edge 50

https://console.aws.amazon.com/iot/
https://aws.amazon.com/s3/
https://aws.amazon.com/timestream/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/

AWS IoT SiteWise User Guide

• Use AWS IoT Device Defender to remotely manage and update your gateway configurations.

• Implement secure device authentication and authorization using AWS IoT security features. For
more information, see AWS IoT security in the AWS IoT Developer Guide.

• Create automated alerts and notifications based on equipment data. For more information, see
Rules for AWS IoT in the AWS IoT Developer Guide.

Note

This tutorial references third-party services, tools, and documentation. AWS isn't a vendor
or supplier for any third-party products or services, and can't guarantee the accuracy of
information from external providers. Evaluate and validate all third-party tools before
deployment.

Topics

• Prerequisites

• Step 1: Create an AWS IoT policy

• Step 2: Create and configure an AWS IoT thing

• Step 3: Configure your SiteWise Edge MQTT-enabled, V3 gateway

• Step 4: Install SiteWise Edge gateway software

• Step 5: Configure the EMQX broker to connect to external applications

• Step 6: Publish data with Mosquitto

• Step 7: Specify destinations

• Step 8: Specify path filters

• Step 9: Configure your AWS IoT resources

• Step 10: Visualize your data

• Step 11: Clean up resources after the tutorial

• Additional resources

Prerequisites

To complete this tutorial, you need the following:

Prerequisites 51

https://aws.amazon.com/iot-device-defender/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-security.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html

AWS IoT SiteWise User Guide

• An AWS account. If you don't have one, see Set up an AWS account.

• An AWS Identity and Access Management (IAM) user with administrator permissions. For more
information, see Identity and access management for AWS IoT SiteWise.

• The latest version of Python installed on your device.

Important

This tutorial requires the use of resources created in the Ingest data tutorial. You must
complete it before proceeding with this tutorial.

Step 1: Create an AWS IoT policy

This tutorial uses the AWS IoT policy you created in the Ingest data tutorial. This policy sets the
security rules for your devices and creates a digital representation of your external devices and
sensors in AWS IoT. The policy allows your third-party devices to send data to AWS IoT Core using
MQTT (Message Queuing Telemetry Transport). For more information about MQTT messages, see
What is MQTT?.

Console

Ensure completion of an AWS IoT policy. For detailed instructions, see Step 1 in the Ingest data
tutorial.

To verify you have an active AWS IoT policy

1. Navigate to the AWS IoT console.

2. In the left navigation pane, choose Securities, then Policies.

3. Choose the policy you created. For example, SiteWiseTutorialDevicePolicy.

4. Confirm that the policy's status is listed as Active.

AWS CLI

Ensure completion of an AWS IoT policy. For detailed instruction, see Step 1 in the Ingest data
tutorial.

Use the following AWS CLI get-policy command in the AWS CLI Command Reference to verify
you have an active AWS IoT policy:

Step 1: Create an AWS IoT policy 52

https://aws.amazon.com/what-is/mqtt/
https://console.aws.amazon.com/iot/
https://docs.aws.amazon.com/cli/latest/reference/iot/get-policy.html

AWS IoT SiteWise User Guide

aws iot get-policy --policy-name "SiteWiseTutorialDevicePolicy"

This policy enables your AWS IoT devices to establish connections and to communicate with device
shadows using MQTT messages. To interact with device shadows, your AWS IoT things publish and
receive MQTT messages on topics that start with $aws/things/thing-name/shadow/. This
policy incorporates a thing policy variable known as ${iot:Connection.Thing.ThingName}.
This variable substitutes the connected thing's name in each topic. The iot:Connect statement
sets limitations on which devices can establish connections, ensuring that the thing policy variable
can only substitute names starting with SiteWiseTutorialDevice.

For more information, see Thing policy variables in the AWS IoT Developer Guide.

Note

This policy applies to things whose names start with SiteWiseTutorialDevice. To use a
different name for your things, you must update the policy accordingly.

Step 2: Create and configure an AWS IoT thing

In this step, register your edge device as an AWS IoT thing and generate your thing’s certificates
and keys needed for secure communication with AWS IoT SiteWise Edge. This process establishes
the foundation for your device to send third-party data through your MQTT-enabled, V3 gateway.

Console

Ensure completion of the creation and configuration steps for an AWS IoT thing. For detailed
instructions, see Step 2 in the Ingest data tutorial.

To verify you have an active AWS IoT thing

1. Navigate to the AWS IoT console.

2. In the left navigation pane, choose All devices, then Things.

3. Choose the thing you created. For example, SiteWiseTutorialDevice1.

4. Under Certificates, confirm that the status is listed as active.

Step 2: Create and configure an AWS IoT thing 53

https://docs.aws.amazon.com/iot/latest/developerguide/iot-policy-variables.html
https://console.aws.amazon.com/iot/

AWS IoT SiteWise User Guide

AWS CLI

Ensure completion of the creation and configuration steps for an AWS IoT thing. For detailed
instructions, see Step 2 in the Ingest data tutorial.

Use the following AWS CLI command to verify you have an active AWS IoT policy:

 aws iot describe-thing --thing-name "SiteWiseTutorialDevice1"

After completing these steps, you can securely connect your device to AWS IoT SiteWise Edge. You
created a local directory to store your certificates and keys you generated for MQTT authentication.
Your device is registered as an AWS IoT thing in the AWS IoT console, and your device is prepared
to integrate data with SiteWise Edge. You can connect your industrial equipment or other devices
to the AWS IoT platform and start ingesting data into SiteWise Edge.

Step 3: Configure your SiteWise Edge MQTT-enabled, V3 gateway

In this step, create your AWS IoT SiteWise Edge MQTT-enabled, V3 gateway and configure it to
receive data from the EMQX broker. The gateway acts as a bridge between your devices and AWS
IoT. This allows you to process data locally at the edge before sending it to the AWS Cloud. This
configuration reduces bandwidth and decreases cloud processing delays.

Console

To create your AWS IoT SiteWise MQTT-enabled, V3 gateway

1. Sign in to the AWS Management Console and open the AWS IoT SiteWise console.

2. In the left navigation pane, choose Edge gateways, then choose Create gateway.

3. Under Deployment target, choose Self-hosted gateway.

4. Under Self-hosted gateway options, choose MQTT-enabled, V3 gateway - recommended.

5. Under Gateway configuration:

a. In Gateway name, enter a name for your gateway. For example, SiteWise Tutorial
Device Gateway.

b. In Greengrass device OS, select the appropriate option for your device.

6. Under Advanced configuration:

a. Choose Default setup.

Step 3: Configure your SiteWise Edge MQTT-enabled, V3 gateway 54

https://console.aws.amazon.com/iot/
https://console.aws.amazon.com/
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

b. Enter a name for the Greengrass core device or use the name generated by AWS IoT
SiteWise.

7. Choose Create gateway.

8. In the confirmation dialog, choose Generate and download to generate an installer for
your SiteWise Edge gateway. For more information, see Create a self-hosted SiteWise Edge
gateway.

Warning

Store the installer file in a secure location. This file can't be regenerated, and is needed
to complete the gateway setup in later steps.

AWS CLI

Use AWS CLI to create a self-hosted gateway. You need to provide a name for the gateway,
specify the platform and gateway version. For more information, see CreateGateway in the AWS
IoT SiteWise API Reference.

To use this example, replace the user input placeholders with your own information.

aws iotsitewise create-gateway \
 --gateway-name SiteWise Tutorial Device Gateway \
 --gateway-platform greengrassV2={coreDeviceThingName=your-core-device-thing-
name, coreDeviceOperatingSystem=LINUX_AMD64} \
 --gateway-version 3 \
 [--cli-input-json your-configuration]

• gateway-name – A unique name for the gateway, for example, SiteWise Tutorial
Device Gateway.

• gateway-platform – Enter greengrassV2. For more information, see CreateGateway in
the AWS IoT SiteWise API Reference.

• coreDeviceThingName – The name of the AWS IoT thing for your AWS IoT Greengrass V2
core device. For example, SiteWiseTutorialDevice1.

• coreDeviceOperatingSystem – The operating system of the core device in AWS IoT
Greengrass V2. Specifying the operating system is required for gateway-version 3. Options
include: LINUX_AARCH64, LINUX_AMD64, and WINDOWS_AMD64.

Step 3: Configure your SiteWise Edge MQTT-enabled, V3 gateway 55

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateGateway.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateGateway.html

AWS IoT SiteWise User Guide

• gateway-version – The version of the gateway.

• Use 3 for the gateway version to create an MQTT-enabled, V3 gateway.

• cli-input-json – A JSON file containing request parameters.

Use the following AWS CLI command to verify that your gateway was created successfully:

aws iotsitewise describe-gateway --gateway-id your-gateway-id

Step 4: Install SiteWise Edge gateway software

To install the gateway software, use the installer package that you downloaded in the previous
step. The installation process configures the necessary components, starts the Greengrass core
service, and registers your device with AWS IoT Greengrass. After installation is complete, verify
that your gateway appears in the AWS IoT SiteWise console under Edge gateways and that the
Greengrass service is running properly on your device.

For detailed instructions, see Install the AWS IoT SiteWise Edge gateway software on your local
device.

Step 5: Configure the EMQX broker to connect to external applications

Note

You must have deployed your SiteWise Edge MQTT-enabled, V3 gateway before
proceeding. The gateway provides the necessary infrastructure and security settings
required for configuring the EMQX broker. The broker configuration will fail without an
active gateway deployment.

Configure the EMQX broker to enable secure communication between your IoT devices and
external applications. The EMQX broker functions as a central messaging hub that routes data
between your IoT devices, gateway, and applications. The EMQX broker ensures reliable message
delivery on your gateway and connected applications at the edge. For more information, see
Connect external applications to the EMQX broker.

To configure the EMQX broker

Step 4: Install SiteWise Edge gateway software 56

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

1. Set up the EMQX broker. For detailed configuration instructions, follow Steps 1-14 in Update
the EMQX deployment configuration for authentication.

2. Set up MQTT topics for wind farm monitoring. For more information on MQTT requirements,
see MQTT topic requirements.

a. CPU Usage: SiteWiseTutorialDevice/cpu

b. Memory Usage: SiteWiseTutorialDevice/memory

c. Timestamp: SiteWiseTutorialDevice/timestamp

3. Review your configuration and complete the deployment.

a. Choose Confirm to save your settings.

b. Choose Next until you reach the Review step.

c. On the Review page, choose Deploy.

d. Wait for the deployment to complete successfully before proceeding.

4. Prepare messages using the payload format to send to the EMQX broker. For more
information about structuring payloads, see Update the EMQX deployment configuration for
authentication.

5. Implement the following security measures:

a. Use Transport Layer Security (TLS) encryption (port 8833) to protect data in transit. For
more information, see Configure TLS for secure connections to the EMQX broker on AWS
IoT SiteWise Edge.

b. Set up username and password authentication to verify device identities. This security
measure helps protect your data, and ensures only authorized devices can connect to your
system. For more information, see Enable username and password authentication.

EMQX allows you to create authorization rules based on identifiers such as username, IP address,
or client ID. This is useful for controlling access to your data. For more information, see Set up
authorization rules for AWS IoT SiteWise Edge in EMQX.

After successful deployment, your EMQX broker is configured and ready to securely connect with
external applications.

Step 5: Configure the EMQX broker to connect to external applications 57

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/configure-emqx-broker.html#update-emqx-broker-authentication
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/configure-emqx-broker.html#update-emqx-broker-authentication
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/configure-emqx-broker.html#update-emqx-broker-authentication
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/configure-emqx-broker.html#update-emqx-broker-authentication

AWS IoT SiteWise User Guide

Note

The payload format must follow a specific structure for AWS IoT SiteWise Edge to properly
process and ingest your data. For more information about the required structure, see JSON
payload structure.

Example: Add CPU, memory, and timestamp JSON payloads

CPU JSON payload

{
 "propertyAlias": "SiteWiseTutorialDevice/cpu",
 "propertyValues": [
 {
 "quality": "GOOD",
 "timestamp": {
 "offsetInNanos": 0,
 "timeInSeconds": 1753206441
 },
 "value": {
 "integerValue": 45.2
 }
 }
]
}

Memory JSON payload

{
 "propertyAlias": "SiteWiseTutorialDevice/memory",
 "propertyValues": [
 {
 "quality": "GOOD",
 "timestamp": {
 "offsetInNanos": 0,
 "timeInSeconds": 1753206441
 },
 "value": {
 "integerValue": 67.8
 }
 }

Step 5: Configure the EMQX broker to connect to external applications 58

AWS IoT SiteWise User Guide

]
}

Timestamp JSON payload

{
 "propertyAlias": "SiteWiseTutorialDevice/timestamp",
 "propertyValues": [
 {
 "quality": "GOOD",
 "timestamp": {
 "offsetInNanos": 0,
 "timeInSeconds": 1753206441
 },
 "value": {
 "integerValue": 23.5
 }
 }
]
}

Note

Each JSON payload must be published separately as an individual message. Don't combine
multiple property values into a single message. Send each CPU, memory, and timestamp
payload as its own distinct MQTT publication.

The payload defines the required JSON structure that your IoT devices must use to send device
data through the EMQX broker to SiteWise Edge. This format ensures that AWS IoT SiteWise can
identify your devices and process the sensor readings. After you implement these configurations
and payload structures, your wind farm monitoring system is ready to collect and process data.

Step 6: Publish data with Mosquitto

After creating your MQTT-enabled, V3 gateway, configure Eclipse Mosquitto to send test data to
SiteWise Edge. Mosquitto is an open-source MQTT message broker that uses the MQTT protocol
for lightweight messaging between devices. The Mosquitto client allows you to publish messages
to MQTT topics, simulating data from wind farm sensors. Using Mosquitto, simulate device data
without requiring any third-party services or additional equipment. For more information, see

Step 6: Publish data with Mosquitto 59

AWS IoT SiteWise User Guide

documentation on the official Eclipse Mosquitto website. In this tutorial, local data from the Ingest
data tutorial and fictitious data are being used for demonstration purposes.

Use Mosquitto CLI client to test the SiteWise Edge EMQX broker

1. Install Mosquitto on your local device. For detailed instructions, see Download Mosquitto on
the official Eclipse Mosquitto website.

2. For more information about connecting external applications to transfer industrial data, see
Connect external applications to the EMQX broker.

Important

Ensure that the MQTT connection settings you configure here match the settings used
in Mosquitto publish command. The host must be the IP address or hostname of your
SiteWise Edge gateway. The port is typically 1883 (or 8883 if using SSL/TLS).

Use Mosquitto to publish test data. Open a command line and run the following commands:

Example: CPU property

mosquitto_pub -h localhost -p 1883 -t "SiteWiseTutorialDevice/cpu" -m '{
 "propertyAlias": "SiteWiseTutorialDevice/cpu",
 "propertyValues": [
 {
 "quality": "GOOD",
 "timestamp": {
 "timeInSeconds": 1753206441,
 "offsetInNanos": 0
 },
 "value": {
 "integerValue": 45.2
 }
 }
]
}'

Example: Memory property

mosquitto_pub -h localhost -p 1883 -t "SiteWiseTutorialDevice/memory" -m '{

Step 6: Publish data with Mosquitto 60

https://mosquitto.org
https://mosquitto.org/download/

AWS IoT SiteWise User Guide

 "propertyAlias": "SiteWiseTutorialDevice/memory",
 "propertyValues": [
 {
 "quality": "GOOD",
 "timestamp": {
 "timeInSeconds": 1753206441,
 "offsetInNanos": 0
 },
 "value": {
 "integerValue": 72.1
 }
 }
]
}'

Example: Timestamp property

mosquitto_pub -h localhost -p 1883 -t "SiteWiseTutorialDevice/timestamp" -m '{
 "propertyAlias": "SiteWiseTutorialDevice/timestamp",
 "propertyValues": [
 {
 "quality": "GOOD",
 "timestamp": {
 "timeInSeconds": 1753206441,
 "offsetInNanos": 0
 },
 "value": {
 "integerValue": 1683000000
 }
 }
]
}'

Note

The use of localhost as the EMQX broker address is for demonstration purposes only.
In production environments or when connecting from external devices, you must use
the appropriate EMQX broker address for your specific deployment configuration. For
detailed connection instructions, see Connect an application to the EMQX broker on AWS
IoT SiteWise Edge.

Step 6: Publish data with Mosquitto 61

AWS IoT SiteWise User Guide

Step 7: Specify destinations

In this step, specify destinations to determine where to direct your source data. Use AWS IoT
SiteWise with Amazon S3 buffering as your destination. This option provides a scalable way to
store and process your IoT data.

Console

To add destinations

1. Navigate to the AWS IoT SiteWise console and select Edge gateways.

2. Under SiteWise Tutorial Device Gateway, choose Add destinations.

3. Under Destination details, choose AWS IoT SiteWise buffered using Amazon S3. To learn
more about destination types, see AWS IoT SiteWise gateway destinations.

4. Under Destination name, enter a name for your destination, for example, SiteWise
Tutorial S3 Destination.

5. Under S3 upload settings, enter your S3 bucket location. For example, s3://sitewise-
tutorial-mqtt-data-[your-account-id]. To learn more about Amazon S3, see
Creating, configuring, and working with Amazon S3 buckets in the Amazon Simple Storage
Service User Guide.

6. Under Data upload frequency, enter a value between 1 minute and 30 days. For example,
1 minute.

7. Under Data storage settings:

• Deselect Copy data to storage. While this setting is recommended for production
environments, you don't need it for this tutorial. When you deselect this option, the
Delete data from S3 option is automatically deselected.

8. Choose Add destination.

Note

This tutorial uses a 1-minute interval for testing. After you complete the tutorial, you
can adjust this interval to match your production needs or delete it to avoid additional
charges.

Step 7: Specify destinations 62

https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-buckets-s3.html

AWS IoT SiteWise User Guide

AWS CLI

Example: Create a new AWS IoT SiteWise destination buffered using Amazon S3

Use the update-gateway-capability-configuration in the AWS CLI Command
Reference to configure the publisher. Set the capabilityNamespace parameter to
iotsitewise:publisher:3.

{
 "sources": [
 {
 "type": "MQTT"
 }
],
 "destinations": [
 {
 "type": "SITEWISE_BUFFERED",
 "name": "your-s3-destination-name",
 "config": {
 "targetBucketArn": "arn:aws:s3:::amzn-s3-demo-bucket/Optional/SomeFolder",
 "publishPolicy": {
 "publishFrequency": "1m",
 "localSizeLimitGB": 10
 },
 "siteWiseImportPolicy": {
 "enableSiteWiseStorageImport": true,
 "enableDeleteAfterImport": true,
 "bulkImportJobRoleArn": "arn:aws:iam::123456789012:role/your-role-name"
 }
 },
 "filters": [
 {
 "type": "PATH",
 "config": {
 "paths": [
 "#"
]
 }
 }
]
 }
]
 }

Step 7: Specify destinations 63

https://docs.aws.amazon.com/cli/latest/reference/iotsitewise/update-gateway-capability-configuration.html

AWS IoT SiteWise User Guide

For more information about destinations, see Add an AWS IoT SiteWise buffered destination
using Amazon S3.

Step 8: Specify path filters

In this step, configure path filters to specify which MQTT topics to monitor for your wind farm
device data.

Path filters follow the MQTT topic wildcard specification, which supports two special characters:

• + – This symbol represents a single-level wildcard, which matches any string at a single level.

• # – This symbol represents a multi-level wildcard, which matches any number of levels in the
topic hierarchy.

Note

For more information about other path filters, see Special characters in path filter names.

Console

To configure your path filters

Under Path filters:

1. Navigate to the AWS IoT SiteWise console and select Edge gateways.

2. Under SiteWise Tutorial Device Gateway, choose Add destinations.

3. Choose Add path filters to enter the following path filters manually:

• SiteWiseTutorialDevice/#

• windfarm/+/turbine/+/performance/#

• cpu/+/idle-time

• cpu/+/interruption-count/+

• +/memory/consumption

• timestamp/+/measurement

Step 8: Specify path filters 64

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

• device/+/status/+

• system/+/performance-log

4. Choose Add destination.

For more information about best practices for path filters, see Best practices for path filters.

AWS CLI

Use the following AWS CLI commands to configure your path filters:

Example 1: Device data using wildcard

{
 "destinations": [
 {
 "name": "All Device Data Destination"
 }
],
 "filters": [
 {
 "type": "PATH",
 "config": {
 "paths": [
 "SiteWiseTutorialDevice/#",
 "windfarm/+/turbine/+/performance/#"
]
 }
 }
]
}

This path filter configuration uses multi-level wildcards (#) to capture all data from the
SiteWiseTutorialDevice and all performance data from any turbine in the wind farm.

Example 2: CPU and memory performance

{
 "destinations": [
 {
 "name": "Performance Metrics Destination"
 }
],

Step 8: Specify path filters 65

AWS IoT SiteWise User Guide

 "filters": [
 {
 "type": "PATH",
 "config": {
 "paths": [
 "cpu/+/idle-time",
 "+/memory/consumption",
 "cpu/+/interruption-count/+"
]
 }
 }
]
}

This example captures various CPU metrics (idle time and interruption count) and memory
consumption data across devices.

Example 3: Device diagnostics

{
 "destinations": [
 {
 "name": "Device Diagnostics Destination"
 }
],
 "filters": [
 {
 "type": "PATH",
 "config": {
 "paths": [
 "device/+/status/+",
 "system/+/performance-log"
]
 }
 }
]
}

This configuration uses the + wildcard to capture diagnostic data from multiple devices,
specifically system performance logs and device status updates.

These three path filters match the MQTT topics that you use to publish test data with
Mosquitto. The filters ensure your SiteWise Edge gateway captures and processes the relevant

Step 8: Specify path filters 66

AWS IoT SiteWise User Guide

MQTT messages. For more information on how to add path filters, see Add path filters to AWS
IoT SiteWise Edge destinations.

Step 9: Configure your AWS IoT resources

In this step, create the necessary AWS IoT SiteWise asset models and assets to represent your
simulated third-party devices and enable data ingestion through your edge gateway.

Before starting this step, you should have completed steps 3 to 8 in the Ingest data tutorial. These
steps establish the foundational components to integrate your third-party data through the MQTT-
enabled V3 gateway. You also set up rules that define how your sensor data flows into AWS IoT
SiteWise, and run a device client script that simulates industrial wind farm data.

To validate your AWS IoT resource configuration

1. Use the following AWS CLI command to verify you created and properly configured your
SiteWise Tutorial Device Model and SiteWise Tutorial Device Fleet Model:

aws iotsitewise describe-asset-model --asset-model-id your-device-model-id

Use the following AWS CLI command to retrieve your asset models' ID:

aws iotsitewise list-asset-models

2. Use the following AWS CLI command to verify you created and properly configured your
SiteWise Tutorial Device 1 asset and SiteWise Tutorial Device Fleet 1 asset:

aws iotsitewise describe-asset --asset-id your-asset-id

Use the following AWS CLI command to retrieve your assets' ID:

aws iotsitewise list-assets

Step 10: Visualize your data

Set up the open-source version of Grafana to visualize your wind farm device data. Grafana is a
visualization platform that displays your real-time operational data. These dashboards help you

Step 9: Configure your AWS IoT resources 67

AWS IoT SiteWise User Guide

track operational efficiency and identify maintenance needs across your infrastructure. For more
information about integration, see Integrate AWS IoT SiteWise with Grafana.

To setup Grafana

1. For instructions to download and install the latest version of Grafana, see Install Grafana on
the official Grafana website.

2. For detailed configuration instructions specific to your operating system, see Configure
Grafana on the official Grafana website.

3. Configure the AWS IoT SiteWise data source. This allows you to set up the AWS IoT SiteWise
plugin on your Grafana server. For detailed instructions about how to use the plugin, see
Connect to an AWS IoT SiteWise data source in the Amazon Managed Grafana User Guide.

Important

Ensure you have the latest version of Grafana for compatibility with the AWS IoT SiteWise
data source.

After completing these steps, you can build and customize Grafana dashboards to display
your wind farm's operational metrics. This enables you to track and analyze your wind farm
performance at the edge in real time.

Note

While this tutorial uses the open-source version of Grafana, AWS also offers Amazon
Managed Grafana for production environments. Amazon Managed Grafana is a fully
managed service that eliminates the need to set up, configure, and maintain your own
Grafana servers.
Consider upgrading to Amazon Managed Grafana when you're ready to scale your solution.
For detailed instructions on how to connect your SiteWise data to Grafana, see the Visualize
and share data in Grafana tutorial.

You have completed the tutorial. In this procedure, you configured AWS IoT SiteWise Edge to
integrate third-party device data using an MQTT-enabled, V3 gateway. This setup allows you
to collect, process, and visualize industrial equipment data at the edge, reducing latency and

Step 10: Visualize your data 68

https://grafana.com/docs/grafana/latest/setup-grafana/installation/#install-grafana
https://grafana.com/docs/grafana/latest/setup-grafana/configure-grafana/#configure-grafana
https://grafana.com/docs/grafana/latest/setup-grafana/configure-grafana/#configure-grafana
https://docs.aws.amazon.com/grafana/latest/userguide/using-iotsitewise-in-AMG.html

AWS IoT SiteWise User Guide

operational costs. By using the wind farm demo, you collected and processed operational metrics
like CPU and memory usage data through your MQTT-enabled, V3 gateway.

To enhance your IoT solution, consider exploring advanced features like anomaly detection by
leveraging Detect anomalies with Lookout for Equipment, or integrating with other AWS services
like Amazon QuickSight in the Amazon QuickSight User Guide for advanced analytics.

Step 11: Clean up resources after the tutorial

After you complete this tutorial about integrating data into AWS IoT SiteWise Edge, clean up your
resources to avoid incurring additional charges.

To delete hierarchical assets in AWS IoT SiteWise

1. Navigate to the AWS IoT SiteWise console.

2. In the left navigation pane, choose Assets.

3. When you delete assets in AWS IoT SiteWise, you must first disassociate them.

Complete the following steps to disassociate your device assets from your device fleet asset:

a. Choose your device fleet asset (SiteWise Tutorial Device Fleet 1).

b. Choose Edit.

c. Under Assets associated to this asset, choose Disassociate for each device asset
associated to this device fleet asset.

d. Choose Save.

Note

The device assets are no longer organized as a hierarchy now.

4. Choose your device asset (SiteWise Tutorial Device 1).

5. Choose Delete.

6. In the confirmation dialog, enter Delete, and then choose Delete.

7. Repeat steps 4 through 6 for each device asset and the device fleet asset (SiteWise Tutorial
Device Fleet 1).

Step 11: Clean up resources after the tutorial 69

https://docs.aws.amazon.com/quicksight/latest/user/welcome.html
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

To delete hierarchical asset models in AWS IoT SiteWise

1. Navigate to the AWS IoT SiteWise console.

2. Delete your device and device fleet assets.

3. In the left navigation pane, choose Models.

4. Choose your device fleet asset model (SiteWise Tutorial Device Fleet Model). You can't delete
a model if you have assets that were created from that model.

When deleting hierarchical asset models, start by deleting the parent asset model first.

5. Choose Delete.

6. In the confirmation dialog, enter Delete, and then choose Delete.

7. Repeat steps 4 through 6 for your device asset model (SiteWise Tutorial Device Model).

To disable or delete a rule in AWS IoT Core

1. Navigate to the AWS IoT console.

2. In the left navigation pane, choose Message routing, and then choose Rules.

3. Select your rule and choose Delete.

4. In the confirmation dialog, enter the name of the rule and then choose Delete.

To delete an Amazon S3 bucket

1. Navigate to the Amazon S3 console.

2. In the left navigation pane, choose General purpose bucket.

3. In the buckets list, select the option button next to the bucket you created, and then choose
Empty at the top of the page.

4. In the confirmation dialog, confirm the deletion, and then choose Empty.

5. After the bucket is empty, choose Delete to delete the bucket.

6. In the confirmation dialog, enter the name of your bucket to confirm deletion.

7. Choose Delete bucket.

To delete a SiteWise Edge gateway

1. Navigate to the AWS IoT SiteWise console.

Step 11: Clean up resources after the tutorial 70

https://console.aws.amazon.com/iotsitewise/
https://console.aws.amazon.com/iot/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

2. In the left navigation pane, choose Edge gateways.

3. Under Gateways, choose the gateway you created for this tutorial. For example, SiteWise
Tutorial Device Gateway.

4. Choose Delete.

5. To confirm you want to delete the gateway, type Delete in the confirmation dialog, and then
choose Delete in the window that appears.

To delete your IoT thing

1. Navigate to the AWS IoT console.

2. In the left navigation pane, choose Manage, then choose Things.

3. Select the IoT thing you created for this tutorial. For example, SiteWiseTutorialDevice1.

4. Choose Delete.

5. In the confirmation dialog, enter the name of the thing, and then choose Delete.

To uninstall AWS IoT Greengrass Core

Uninstall the AWS IoT Greengrass Core software from your local device. For detailed instructions,
see Uninstall the AWS IoT Greengrass Core software in the AWS IoT Greengrass Developer Guide,
Version 2.

Important

Uninstalling Greengrass removes all local configurations and data. Ensure you've backed up
any important information before proceeding.

(Optional) To delete third-party resources

After completing this tutorial, consider shutting down any external resources you created. This
helps to prevent incurring charges from third-party providers.

Additional resources

Refer to the following resources for more information:

Additional resources 71

https://console.aws.amazon.com/iot/
https://docs.aws.amazon.com/greengrass/v2/developerguide/uninstall-greengrass-core-v2.html

AWS IoT SiteWise User Guide

• Interact with other AWS services

• Use AWS IoT SiteWise Edge gateways

• Troubleshooting a SiteWise Edge gateway

• Security best practices for AWS IoT SiteWise

• AWS IoT pricing

• Ingest data to AWS IoT SiteWise

• Use tags in AWS IoT SiteWise

Visualize and share data in Grafana

This tutorial guides you through configuring the AWS IoT SiteWise data source plugin with Grafana,
a data visualization platform. With Grafana, you can create dashboards that visualize and monitor
your industrial data. In this tutorial, a sample dataset from a wind farm demonstration is used to
illustrate key concepts. After you become familiar with the process, you can repeat the tutorial with
your own data.

After you complete this tutorial, you can do the following:

• Collect, query, and analyze data from industrial equipment

• Create interactive Grafana dashboards to visualize asset performance metrics

• Monitor operational data through a unified interface

• Share insights with your team using Grafana's collaboration features

• Combine AWS IoT SiteWise data with other AWS data sources such as Amazon CloudWatch or
Amazon Timestream

Topics

• Prerequisites

• Step 1: Configure your Amazon Managed Grafana workspace

• Step 2: Add AWS IoT SiteWise as a data source

• Step 3: Create a dashboard to explore and visualize your data

• (optional) Step 4: Set up alerts to monitor performance

• Step 5: Clean up resources after the tutorial

Visualize and share data in Grafana 72

https://aws.amazon.com/iot-sitewise/pricing/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/timestream/

AWS IoT SiteWise User Guide

• Additional resources

Prerequisites

To complete this tutorial, you need the following:

• An AWS account. If you don't have one, see Set up an AWS account.

• An AWS Identity and Access Management (IAM) user with administrator permissions. For detailed
instructions, see the section called “How AWS IoT SiteWise works with IAM”.

• A running AWS IoT SiteWise demo.

Note

This tutorial requires the use of resources created in the Use the AWS IoT SiteWise demo.
You must complete it before proceeding with this tutorial.

The demo typically takes around 3 minutes to create. If the demo fails to create, it might
indicate insufficient permissions in your AWS account. In this case, switch to an account with
administrative access. For more information about required permissions, see How AWS IoT
SiteWise works with IAM.

Important

Keep all demo resources until you complete this tutorial. Deleting any components might
disrupt the demo's functionality and affect your ability to display data in Grafana.

Step 1: Configure your Amazon Managed Grafana workspace

In this procedure, create and configure an Amazon Managed Grafana workspace to visualize your
wind farm data.

1. Sign in to the Amazon Managed Grafana console.

2. Choose Create workspace.

3. Under Workspace details, enter a name for your workspace, such as
SiteWiseTutorialDemo.

Prerequisites 73

https://console.aws.amazon.com/grafana/

AWS IoT SiteWise User Guide

4. Under Grafana version, choose the latest version. Choose this version for the most up-to-date
features and capabilities. For more information about different version sets, see Differences
between Grafana versions in the Amazon Managed Grafana User Guide.

5. Choose Next.

6. Under Authentication access, choose AWS IAM Identity Center.

• If AWS IAM Identity Center in your account isn't enabled, you will be prompted to set it up
first. For detailed instruction about how to set up user access, see Identity-based policy
examples for Amazon Managed Grafana in the Amazon Managed Grafana User Guide.

7. Under Permission type, choose Service managed. Amazon Managed Grafana automatically
creates and configures the necessary IAM roles and permissions for any AWS data sources
you choose to use in this workspace. For organizational member accounts, the Service
managed option is only available if the account is designated as a delegated administrator.
For information about setting up delegated administrator accounts, see Register a delegated
administrator member account in the AWS CloudFormation User Guide.

8. Under Workspace configuration options, take the following actions:

a. Select Turn Grafana alerting on. With this setting, you can create and manage alerts
through a centralized interface in your workspace. For more information, see Working with
Grafana alerting in the Amazon Managed Grafana User Guide.

b. Select Turn plugin management on. This allows you to install, update, and uninstall
plugins in your workspace. For more information, see Extend your workspace with plugins
in the Amazon Managed Grafana User Guide.

Important

Be sure to enable plugin management. If you don't select this option, you cannot add
AWS IoT SiteWise as a data source in the following step.

9. Under Network access control, choose Open access. You use demo data in this tutorial, so you
can make the workspace publically available.

• Open access – Allows your workspace to be publicly accessible.

• Restricted access – Limits access to specific IP ranges or VPC endpoints. For more
information, see How VPC connectivity works in the Amazon Managed Grafana User Guide.

10. Choose Next.

Step 1: Configure your Amazon Managed Grafana workspace 74

https://docs.aws.amazon.com/grafana/latest/userguide/version-differences.html
https://docs.aws.amazon.com/grafana/latest/userguide/version-differences.html
https://docs.aws.amazon.com/grafana/latest/userguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-create-workspace-standalone
https://docs.aws.amazon.com/grafana/latest/userguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-create-workspace-standalone
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-orgs-delegated-admin.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-orgs-delegated-admin.html
https://docs.aws.amazon.com/grafana/latest/userguide/alerts-overview.html
https://docs.aws.amazon.com/grafana/latest/userguide/alerts-overview.html
https://docs.aws.amazon.com/grafana/latest/userguide/grafana-plugins.html
https://docs.aws.amazon.com/grafana/latest/userguide/AMG-configure-vpc.html#AMG-VPC-how-it-works

AWS IoT SiteWise User Guide

11. Under the Service managed permission settings page, choose Current account to have
Amazon Managed Grafana automatically create policies and permissions for accessing AWS
data within your account.

12. Under Data sources, select AWS IoT SiteWise. For more information, see Connect to an AWS
IoT SiteWise data source in the Amazon Managed Grafana User Guide.

13. (Optional) Under Notification channels, select Amazon SNS to enable Grafana alerts to be
sent through Amazon SNS, This creates an IAM policy that allows publishing to Amazon SNS
topics with names starting with Grafana. You need to complete the notification channel setup
later in your Grafana console within the workspace.

14. Confirm the workspace details, and choose Create workspace. This process takes a couple of
minutes.

15. On the Authentication tab, under AWS IAM Identity Center. assign users or groups to your
workspace by doing the following:

• To assign the user who will manage AWS IoT SiteWise data, choose Assign new user
or group. Then choose Make admin from the Actions dropdown list to grant them
administrative privileges.

Important

To manage the Grafana workspace, you must assign the Admin role to at least one
user. This user will have full access to the Grafana workspace console.

You have now set up and configured your Grafana workspace. In the next step, you can add AWS
IoT SiteWise as a data source and begin creating visualizations for your wind farm data. From
your workspace, you can query, visualize, and analyze your industrial data in real time. For more
information about Amazon Managed Grafana workspaces, see Use your Grafana workspace in the
Amazon Managed Grafana User Guide.

Step 2: Add AWS IoT SiteWise as a data source

To help you visualize your data, Amazon Managed Grafana includes the AWS Data Sources plugin,
which simplifies the process of connecting to AWS services. This plugin comes pre-installed in your
workspace and provides a unified interface for discovering and configuring AWS resources as data
sources. For your wind farm visualization, you'll use this plugin to connect to AWS IoT SiteWise.

Step 2: Add AWS IoT SiteWise as a data source 75

https://docs.aws.amazon.com/grafana/latest/userguide/using-iotsitewise-in-AMG.html
https://docs.aws.amazon.com/grafana/latest/userguide/using-iotsitewise-in-AMG.html
https://docs.aws.amazon.com/grafana/latest/userguide/using-grafana-workspace.html

AWS IoT SiteWise User Guide

For more information, see Connect to an AWS IoT SiteWise data source in the Amazon Managed
Grafana User Guide.

Before you can start querying your wind farm data, the AWS Data Sources plugin needs the
appropriate permissions to access your AWS IoT SiteWise resources. These permissions were
automatically configured when you selected AWS IoT SiteWise as a data source in the previous
step. For more information about plugin permissions, see Required permissions in the Amazon
Managed Grafana User Guide.

To connect AWS IoT SiteWise to your Grafana workspace

1. Open the Amazon Managed Grafana console. In your workspace details page, choose the URL
displayed under Grafana workspace URL. The workspace URL opens the Grafana workspace
console login page.

2. Choose Sign in with AWS IAM Identity Center and enter your credentials. These credentials
only work if you responded to the email from Amazon Managed Grafana that prompted you to
create a password for IAM Identity Center.

3. In the left navigation pane, choose Apps, then AWS Data Sources, and then select the AWS
services tab.

4. Under AWS IoT SiteWise, choose Install now to install the latest version of the AWS IoT
SiteWise plugin.

5. Navigate to the Data sources tab, and select IoT SiteWise as the service.

6. Under Default region, select the Region where you want to retrieve data from, for example,
US East (N. Virginia).

7. After specifying the parameters for the plugin, select Add data source.

8. Select Go to settings.

9. Under Connection details, select Save and test to verify that the service is working.

Step 3: Create a dashboard to explore and visualize your data

In this step, create a Grafana dashboard to visualize the demo wind farm data that you created
earlier. Dashboards help you monitor your data by displaying multiple visualizations in a single
view. You can use dashboards to track metrics, analyze patterns, and gain insights from your
industrial data. For more information, see Create your first dashboard in the Amazon Managed
Grafana User Guide.

Step 3: Create a dashboard to explore and visualize your data 76

https://docs.aws.amazon.com/grafana/latest/userguide/using-iotsitewise-in-AMG.html
https://docs.aws.amazon.com/grafana/latest/userguide/AMG-configure-permissions.html
https://console.aws.amazon.com/grafana/
https://docs.aws.amazon.com/grafana/latest/userguide/getting-started-grafanaui.html

AWS IoT SiteWise User Guide

To create your first dashboard in Grafana

1. In the left navigation pane, select Dashboards and then choose Create Dashboard to start
building your first dashboard.

2. Select Add visualization. This opens the panel editor where you can configure data sources,
queries, and visualization settings.

3. Under the Query tab, select the AWS IoT SiteWise data source from the dropdown menu.

4. Under Query type, select Get property value aggregates from the dropdown menu to
retrieve aggregated values for asset properties over time.

5. Select Explore to view available assets in your hierarchy. From the Hierarchy tab, select Demo
Wind Farm Asset, and then select Demo Turbine Asset 1.

6. Under Property, select Average Power from the available properties. Select Run queries to
run the query so you can preview the output. The visualization will update to show the average
power data for Demo Turbine Asset 1.

7. In the right navigation pane, give the new panel a title, such as Turbine Demo 1 (Average
Power). Choose Apply to save your changes.

Warning

Whenever you make any changes to the dashboard, save the dashboard before
refreshing the page or navigating away. Otherwise, you will lose your progress.

8. In the top-right corner, select Save dashboard. You will be prompted to enter a name for your
dashboard, for example, SiteWise Wind Farm Demo Dashboard.

9. Choose Save.

For information about sharing dashboards, see Sharing dashboards and panels in the Amazon
Managed Grafana User Guide.

To add another panel to visualize the wind speed

1. Select Add visualization to open a blank panel.

2. Under the Query tab, select the AWS IoT SiteWise data source from the dropdown menu.

3. Under Query type, select Get property value from the dropdown menu and under Asset,
select Demo Wind Farm Asset, then Demo Turbine Asset 1.

Step 3: Create a dashboard to explore and visualize your data 77

https://docs.aws.amazon.com/grafana/latest/userguide/v10-dash-sharing.html

AWS IoT SiteWise User Guide

4. Under Property, select Wind Speed from the available properties. Select Run queries to
update the changes.

5. Under Visualization, select Gauge. Gauges work best for displaying single, real-time metrics
like wind speed.

6. In the right navigation pane, give the new panel a title, such as Turbine Demo 1 (Wind
Speed).

7. Under Standard options from the Panel options, select Unit. Choose Velocity, and then
choose meters/second (m/s).

8. Choose Apply to save your changes.

The following image displays what your Grafana dashboards might look like when you
complete this step.

Step 3: Create a dashboard to explore and visualize your data 78

AWS IoT SiteWise User Guide

(optional) Step 4: Set up alerts to monitor performance

Alerts indicate state changes after they occur to identify performance issues with your industrial
equipment. For more information, see Amazon Managed Grafana alerting in the Amazon Managed
Grafana User Guide.

To set up alerts in Grafana

1. Under the Rule tab in the Turbine Demo 1 (Average Power), set Evaluate every to 5m
and For to 15m. This configuration evaluates the average power every 5 minutes and triggers
an alert if the condition persists for longer than 15 minutes.

(optional) Step 4: Set up alerts to monitor performance 79

https://docs.aws.amazon.com/grafana/latest/userguide/alerts-overview.html

AWS IoT SiteWise User Guide

2. Under Conditions, select IS BELOW and enter 7,020 watts. This setting will notify you
if average turbine conditions fall below 7,020 watts for longer than 5 minutes. For more
information about creating alerts, see Alert rule fields in the Amazon Managed Grafana User
Guide.

You have completed the tutorial. In this procedure, you created a Grafana workspace and
configured it to visualize wind farm data from AWS IoT SiteWise. You built an interactive dashboard
with multiple widget types, including a time-series graph for average power and a gauge for wind
speed. You also set up alerts to monitor turbine performance, enabling you to identify potential
issues before they disrupt production. You can continue to enhance your dashboard by adding
more visualizations, creating additional alerts, or connecting other AWS data sources to gain
deeper insights into your industrial operations.

Step 5: Clean up resources after the tutorial

After you complete this tutorial about visualizing data with Grafana, clean up your resources to
avoid incurring additional charges.

The AWS IoT SiteWise demo deletes itself after a week, or the number of days you chose if you
created the demo stack from the AWS CloudFormation console. You can delete the demo before if
you are done using the demo resources. You can also delete the demo if the demo fails to create.
Use the following steps to delete the demo manually.

(optional) To delete the AWS IoT SiteWise demo

1. Navigate to the AWS CloudFormation console.

2. Choose IoTSiteWiseDemoAssets from the list of Stacks.

3. Choose Delete.

When you delete the stack, all of the resources created for the demo are deleted.

4. In the confirmation dialog, choose Delete stack.

The stack takes around 15 minutes to delete. If the demo fails to delete, choose Delete in
the upper-right corner again. If the demo fails to delete again, follow the steps in the AWS
CloudFormation console to skip the resources that failed to delete, and try again.

For more information, see Delete the AWS IoT SiteWise demo.

Step 5: Clean up resources after the tutorial 80

https://docs.aws.amazon.com/grafana/latest/userguide/old-create-alerts.html#old-alert-rule-fields
https://console.aws.amazon.com/cloudformation

AWS IoT SiteWise User Guide

If you delete an Amazon Managed Grafana, all the configuration data for that workspace is also
deleted. This includes dashboards, data source configuration, alerts, and snapshots.

To delete an Amazon Managed Grafana workspace

1. Open the Amazon Managed Grafana console.

2. In the left navigation pane, choose the menu icon.

3. Choose All workspaces.

4. Choose the name of the workspace that you want to delete.

5. Choose Delete.

6. To confirm the deletion, enter the name of the workspace and choose Delete.

Note

This procedure deletes a workspace. Other resources may not be deleted. For example,
IAM roles that were in use by the workspace are not deleted (but may be unlocked if
they are no longer in use).

For more information, see Delete an Amazon Managed Grafana workspace in the Amazon Managed
Grafana User Guide.

Additional resources

For more information about visualizing data, see the following resources:

• Troubleshooting Amazon Managed Grafana identity and access in the Amazon Managed Grafana
User Guide

• Security best practices in the Amazon Managed Grafana User Guide

• Integrate AWS IoT SiteWise with Grafana

• Process and visualize data with SiteWise Edge and open-source tools

• Users, teams, and permissions in the Amazon Managed Grafana User Guide

• Amazon Managed Grafana permissions and policies for AWS data sources in the Amazon
Managed Grafana User Guide

Additional resources 81

https://console.aws.amazon.com/grafana/
https://docs.aws.amazon.com/grafana/latest/userguide/AMG-edit-delete-workspace.html
https://docs.aws.amazon.com/grafana/latest/userguide/security_iam_troubleshoot.html
https://docs.aws.amazon.com/grafana/latest/userguide/AMG-Security-Best-Practices.html
https://docs.aws.amazon.com/grafana/latest/userguide/Grafana-administration-authorization.html
https://docs.aws.amazon.com/grafana/latest/userguide/AMG-manage-permissions.html

AWS IoT SiteWise User Guide

Visualize and share wind farm data in SiteWise Monitor

This tutorial explains how to use AWS IoT SiteWise Monitor to visualize and share industrial data
through managed web applications, known as portals. Each portal encompasses projects, providing
you with the flexibility to choose which data is accessible within each project. Then, specify people
in your organization that can access each portal. Your users sign in to portals using AWS IAM
Identity Center accounts, so you can use your existing identity store or a store managed by AWS.

You, and your users with sufficient permissions, can create dashboards in each project to visualize
your industrial data in meaningful ways. Then, your users can view these dashboards to quickly
gain insights into your data and monitor your operation. You can configure administrative or read-
only permissions to each project for every user in your company. For more information, see Monitor
data with AWS IoT SiteWise Monitor.

Throughout the tutorial, you enhance the AWS IoT SiteWise demo, providing a sample dataset
for a wind farm. You configure a portal in SiteWise Monitor, create a project, and dashboards to
visualize the wind farm data. The tutorial also covers the creation of additional users, along with
the assignment of permissions to own or view the project and its associated dashboards.

Note

When you use SiteWise Monitor, you're charged per user that signs in to a portal (per
month). In this tutorial, you create three users, but you only need to sign in with one user.
After you complete this tutorial, you incur charges for one user. For more information, see
AWS IoT SiteWise Pricing.

Topics

• Prerequisites

• Step 1: Create a portal in SiteWise Monitor

• Step 2: Sign in to a portal

• Step 3: Create a wind farm project

• Step 4: Create a dashboard to visualize wind farm data

• Step 5: Explore the portal

• Step 6: Clean up resources after the tutorial

Visualize and share data in SiteWise Monitor 82

https://aws.amazon.com/iot-sitewise/pricing/

AWS IoT SiteWise User Guide

Prerequisites

To complete this tutorial, you need the following:

• An AWS account. If you don't have one, see Set up an AWS account.

• A development computer running Windows, macOS, Linux, or Unix to access the AWS
Management Console. For more information, see What is the AWS Management Console?.

• An AWS Identity and Access Management (IAM) user with administrator permissions.

• A running AWS IoT SiteWise wind farm demo. When you set up the demo, it defines models
and assets in AWS IoT SiteWise and streams data to them to represent a wind farm. For more
information, see Use the AWS IoT SiteWise demo.

• If you enabled IAM Identity Center in your account, sign in to your AWS Organizations
management account. For more information, see AWS Organizations terminology and concepts.
If you haven't enabled IAM Identity Center, you will enable it in this tutorial and set your account
as the management account.

If you can't sign in to your AWS Organizations management account, you can partially complete
the tutorial as long as you have an IAM Identity Center user in your organization. In this case,
you can create the portal and dashboards, but you can't create new IAM Identity Center users to
assign to projects.

Step 1: Create a portal in SiteWise Monitor

In this procedure, you create a portal in AWS IoT SiteWise Monitor. Each portal is a managed web
application that you and your users can sign in to with AWS IAM Identity Center accounts. With IAM
Identity Center, you can use your company's existing identity store or create one managed by AWS.
Your company's employees can sign in without creating separate AWS accounts.

To create a portal

1. Sign in to the AWS IoT SiteWise console.

2. Review the AWS IoT SiteWise endpoints and quotas where AWS IoT SiteWise is supported and
switch Regions, if needed. You must run the AWS IoT SiteWise demo in the same Region.

3. In the left navigation pane, choose Portals.

4. Choose Create portal.

Prerequisites 83

https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/what-is.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_getting-started_concepts.html
https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html

AWS IoT SiteWise User Guide

5. If you already enabled IAM Identity Center, skip to step 6. Otherwise, complete the following
steps to enable IAM Identity Center:

a. On the Enable AWS IAM Identity Center (SSO) page, enter your Email address, First
name, and Last name to create an IAM Identity Center user for yourself to be the portal
administrator. Use an email address you can access so that you can receive an email to set
a password for your new IAM Identity Center user.

In a portal, the portal administrator creates projects and assigns users to projects. You can
create more users later.

b. Choose Create user.

6. On the Portal configuration page, complete the following steps:

a. Enter a name for your portal, such as WindFarmPortal.

b. (Optional) Enter a description for your portal. If you have multiple portals, use meaningful
descriptions to keep track of what each portal contains.

c. (Optional) Upload an image to display in the portal.

d. Enter an email address that portal users can contact when they have an issue with the
portal and need help from your company's AWS administrator to resolve it.

e. Choose Create portal.

Step 1: Create a portal in SiteWise Monitor 84

AWS IoT SiteWise User Guide

7. On the Invite administrators page, you can assign IAM Identity Center users to the portal as
administrators. Portal administrators manage permissions and projects within a portal. On this
page, do the following:

a. Select a user to be the portal administrator. If you enabled IAM Identity Center earlier in
this tutorial, select the user that you created.

b. (Optional) Choose Send invite to selected users. Your email client opens, and an
invitation appears in the message body. You can customize the email before you send it to
your portal administrators. You can also send the email to your portal administrators later.
If you're trying SiteWise Monitor for the first time and will be the portal administrator, you
don't need to email yourself.

c. Choose Next.

8. On the Assign users page, you can assign IAM Identity Center users to the portal. Portal
administrators can later assign these users as project owners or viewers. Project owners can
create dashboards in projects. Project viewers have read-only access to the projects that
they're assigned. On this page, you can create IAM Identity Center users to add to the portal.

Note

If you aren't signed in to your AWS Organizations management account, you can't
create IAM Identity Center users. Choose Assign users to create the portal without
portal users, and then skip this step.

Step 1: Create a portal in SiteWise Monitor 85

AWS IoT SiteWise User Guide

On this page, do the following:

a. Complete the following steps twice to create two IAM Identity Center users:

i. Choose Create user to open a dialog box where you enter details for the new user.

ii. Enter an Email address, First name, and Last name for the new user. IAM Identity
Center sends the user an email for them to set their password. If you want to sign in
to the portal as these users, choose an email address that you can access. Each email
address must be unique. Your users sign in to the portal using their email address as
their usernames.

iii. Choose Create user.

b. Select the two IAM Identity Center users that you created in the previous step.

Step 1: Create a portal in SiteWise Monitor 86

AWS IoT SiteWise User Guide

c. Choose Assign users to add these users to the portal.

The portals page opens with your new portal listed.

Step 2: Sign in to a portal

In this procedure, you sign in to your new portal using the AWS IAM Identity Center user that you
added to the portal.

To sign in to a portal

1. On the Portals page, choose your new portal's Link to open your portal in a new tab.

Step 2: Sign in to a portal 87

AWS IoT SiteWise User Guide

2. If you created your first IAM Identity Center user earlier in the tutorial, use the following steps
to create a password for your user:

a. Check your email for the subject line Invitation to join AWS IAM Identity Center.

b. Open that invitation email and choose Accept invitation.

c. In the new window, set a password for your IAM Identity Center user.

If you want to sign in later to the portal as the second and third IAM Identity Center users that
you created earlier, you can also complete these steps to set passwords for those users.

Note

If you didn't receive an email, you can generate a password for your user in the IAM
Identity Center console. For more information, see Reset the IAM Identiy Center user
password for an end user in the AWS IAM Identity Center User Guide.

3. Enter your IAM Identity Center Username and Password. If you created your IAM Identity
Center user earlier in this tutorial, your Username is the email address of the portal
administrator user that you created.

All portal users, including the portal administrator, must sign in with their IAM Identity Center
user credentials. These credentials are typically not the same credentials that you use to sign in
to the AWS Management Console.

Step 2: Sign in to a portal 88

https://docs.aws.amazon.com/singlesignon/latest/userguide/reset-password-for-user.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/reset-password-for-user.html

AWS IoT SiteWise User Guide

4. Choose Sign in.

Your portal opens.

Step 3: Create a wind farm project

In this procedure, you create a project in your portal. Projects are resources that define a set
of permissions, assets, and dashboards, which you can configure to visualize asset data in that
project. With projects, you define who has access to which subsets of your operation and how those
subsets' data is visualized. You can assign portal users as owners or viewers of each project. Project
owners can create dashboards to visualize data and share the project with other users. Project
viewers can view dashboards but not edit them. For more information about roles in SiteWise
Monitor, see SiteWise Monitor roles.

To create a wind farm project

1. In the left navigation pane in your portal, choose the Assets tab. On the Assets page, you can
explore all assets available in the portal and add assets to projects.

2. In the asset browser, choose Demo Wind Farm Asset. When you choose an asset, you can
explore that asset's live and historical data. You can also press Shift to select multiple assets
and compare their data side-by-side.

Step 3: Create a wind farm project 89

AWS IoT SiteWise User Guide

3. Choose Add asset to project in the upper left. Projects contain dashboards that your portal
users can view to explore your data. Each project has access to a subset of your assets in AWS
IoT SiteWise. When you add an asset to a project, all users with access to that project can also
access data for that asset and its children.

4. In the Add asset to project dialog box, choose Create new project, and then choose Next.

5. In the Create new project dialog box, enter a Project name and Project description for your
project, and then choose Add asset to project.

Step 3: Create a wind farm project 90

AWS IoT SiteWise User Guide

Your new project's page opens.

6. On the project's page, you can add portal users as owners or viewers of this project.

Note

If you aren't signed in to your AWS Organizations management account, you might not
have portal users to assign to this project, so you can skip this step.

On this page, do the following:

a. Under Project owners, choose Add owners or Edit users.

b. Choose the user to add as a project owner (for example, Mary Major), and then choose the
>> icon.

Step 3: Create a wind farm project 91

AWS IoT SiteWise User Guide

c. Choose Save.

Your IAM Identity Center user Mary Major can sign in to this portal to edit the dashboards
in this project and share this project with other users in this portal.

d. Under Project viewers, choose Add viewers or Edit users.

e. Choose the user to add as a project viewer (for example, Mateo Jackson), and then choose
the >> icon.

f. Choose Save.

Your IAM Identity Center user Mateo Jackson can sign in to this portal to view, but not
edit, the dashboards in the wind farm project.

Step 4: Create a dashboard to visualize wind farm data

In this procedure, you create dashboards to visualize the demo wind farm data. Dashboards contain
customizable visualizations of your project's asset data. Each visualization can have a different
type, such as a line chart, bar chart, or key performance indicator (KPI) display. You can choose

Step 4: Create a dashboard to visualize wind farm data 92

AWS IoT SiteWise User Guide

the visualization type that works best for your data. Project owners can edit dashboards, whereas
project viewers can only view dashboards to gain insights.

To create a dashboard with visualizations

1. On your new project's page, choose Create dashboard to create a dashboard and open its edit
page.

In a dashboard's edit page, you can drag asset properties from the asset hierarchy to the
dashboard to create visualizations. Then, you can edit each visualization's title, legend titles,
type, size, and location in the dashboard.

2. Enter a name your dashboard.

3. Drag Total Average Power from the Demo Wind Farm Asset to the dashboard to create a
visualization.

Step 4: Create a dashboard to visualize wind farm data 93

AWS IoT SiteWise User Guide

4. Choose Demo Turbine Asset 1 to show properties for that asset, and then drag Wind Speed to
the dashboard to create a visualization for wind speed.

5. Add Wind Speed to the new wind speed visualization for each Demo Turbine Asset 2, 3, and 4
(in that order).

Your Wind Speed visualization should look similar to the following screenshot.

Step 4: Create a dashboard to visualize wind farm data 94

AWS IoT SiteWise User Guide

6. Repeat steps 4 and 5 for the wind turbines' Torque (KiloNewton Meter) properties to create a
visualization for wind turbine torque.

7. Choose the visualization type icon for the Torque (KiloNewton Meter) visualization, and then
choose the bar chart icon.

Step 4: Create a dashboard to visualize wind farm data 95

AWS IoT SiteWise User Guide

8. Repeat steps 4 and 5 for the wind turbines' Wind Direction properties to create a visualization
for wind direction.

9. Choose the visualization type icon for the Wind Direction visualization, and then choose the
KPI chart icon (30%).

Step 4: Create a dashboard to visualize wind farm data 96

AWS IoT SiteWise User Guide

10. (Optional) Make other changes to each visualization's title, legend titles, type, size, and
location as needed.

11. Choose Save dashboard in the upper right to save your dashboard.

Your dashboard should look similar to the following screenshot.

Step 4: Create a dashboard to visualize wind farm data 97

AWS IoT SiteWise User Guide

12. (Optional) Create an additional dashboard for each wind turbine asset.

As a best practice, we recommend that you create a dashboard for each asset so that your
project viewers can investigate any issues with each individual asset. You can only add up to
5 assets to each visualization, so you must create multiple dashboards for your hierarchical
assets in many scenarios.

A dashboard for a demo wind turbine might look similar to the following screenshot.

Step 4: Create a dashboard to visualize wind farm data 98

AWS IoT SiteWise User Guide

13. (Optional) Change the timeline or select data points on a visualization to explore the data
in your dashboard. For more information, see Viewing dashboards in the AWS IoT SiteWise
Monitor Application Guide.

Step 5: Explore the portal

In this procedure, you can explore the portal as a user with fewer permissions than an AWS IoT
SiteWise portal administrator.

Step 5: Explore the portal 99

https://docs.aws.amazon.com/iot-sitewise/latest/appguide/view-dashboards.html

AWS IoT SiteWise User Guide

To explore the portal and finish the tutorial

• (Optional) If you added other users to the project as owners or viewers, you can sign in to the
portal as these users. This lets you explore the portal as a user with fewer permissions than a
portal administrator.

Important

You're charged for each user that signs in to a portal. For more information, see AWS
IoT SiteWise Pricing.

To explore the portal as other users, do the following:

a. Choose Log out in the bottom left of the portal to exit the web application.

b. Choose Sign out in the upper right of the IAM Identity Center application portal to sign
out of your IAM Identity Center user.

c. Sign in to the portal as the IAM Identity Center user that you assigned as a project owner
or project viewer. For more information, see Step 2: Sign in to a portal.

You've completed the tutorial. When you finish exploring your demo wind farm in SiteWise
Monitor, follow the next procedure to clean up your resources.

Step 6: Clean up resources after the tutorial

After you complete the tutorial, you can clean up your resources. You aren't charged for AWS IoT
SiteWise if users don't sign in to your portal, but you can delete your portal and AWS IAM Identity
Center directory users. Your demo wind farm assets are deleted at the end of the duration that you
chose when you created the demo, or you can delete the demo manually. For more information,
see Delete the AWS IoT SiteWise demo.

Use the following procedures to delete your portal and IAM Identity Center users.

To delete a portal

1. Navigate to the AWS IoT SiteWise console.

2. In the left navigation pane, choose Portals.

3. Choose your portal, WindFarmPortal, and then choose Delete.

Step 6: Clean up resources after the tutorial 100

https://aws.amazon.com/iot-sitewise/pricing/
https://aws.amazon.com/iot-sitewise/pricing/
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

When you delete a portal or project, the assets associated to deleted projects aren't affected.

4. In the Delete portal dialog box, choose Remove administrators and users.

5. Enter delete to confirm deletion, and then choose Delete.

To delete IAM Identity Center users

1. Navigate to the IAM Identity Center console.

2. In the left navigation pane, choose Users.

Step 6: Clean up resources after the tutorial 101

https://console.aws.amazon.com/singlesignon

AWS IoT SiteWise User Guide

3. Select the check box for each user to delete, and then choose Delete users.

4. In the Delete users dialog box, enter DELETE, and then choose Delete users.

Publish property value updates to Amazon DynamoDB

This tutorial introduces a convenient way to store your data by using Amazon DynamoDB, making
it easier to access historical asset data without repeatedly querying the AWS IoT SiteWise API. After
you complete this tutorial, you can create custom software that consumes your asset data, such

Publish to Amazon DynamoDB 102

https://aws.amazon.com/dynamodb/

AWS IoT SiteWise User Guide

as a live map of wind speed and direction over an entire wind farm. If you want to monitor and
visualize your data without implementing a custom software solution, see Monitor data with AWS
IoT SiteWise Monitor.

In this tutorial, you build on the AWS IoT SiteWise demo that provides a sample set of data for a
wind farm. You configure property value updates from the wind farm demo to send data, through
AWS IoT Core rules, to a DynamoDB table that you create. When you enable property value
updates, AWS IoT SiteWise sends your data to AWS IoT Core in MQTT messages. Then, define AWS
IoT Core rules that perform actions, such as the DynamoDB action, depending on the contents of
those messages. For more information, see Interact with other AWS services.

Topics

• Prerequisites

• Step 1: Configure AWS IoT SiteWise to publish property value updates

• Step 2: Create a rule in AWS IoT Core

• Step 3: Configure the DynamoDB rule action

• Step 4: Explore data in DynamoDB

• Step 5: Clean up resources after the tutorial

Prerequisites

To complete this tutorial, you need the following:

• An AWS account. If you don't have one, see Set up an AWS account.

• A development computer running Windows, macOS, Linux, or Unix to access the AWS
Management Console. For more information, see What is the AWS Management Console?

• An IAM user with administrator permissions. For detailed instructions, see the section called
“How AWS IoT SiteWise works with IAM”.

• A running AWS IoT SiteWise wind farm demo. When you set up the demo, it defines models
and assets in AWS IoT SiteWise and streams data to them to represent a wind farm. For more
information, see Use the AWS IoT SiteWise demo.

Prerequisites 103

https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/what-is.html

AWS IoT SiteWise User Guide

Step 1: Configure AWS IoT SiteWise to publish property value updates

In this procedure, you enable property value notifications on your demo turbine assets' Wind
Speed properties. After you enable property value notifications, AWS IoT SiteWise publishes each
value update in an MQTT message to AWS IoT Core.

To enable property value update notifications on asset properties

1. Sign in to the AWS IoT SiteWise console.

2. Review the AWS IoT SiteWise endpoints and quotas where AWS IoT SiteWise is supported
and switch AWS Regions, if necessary. Switch to a Region where you're running the AWS IoT
SiteWise demo.

3. In the left navigation pane, choose Assets.

4. Choose the arrow next to Demo Wind Farm Asset to expand the wind farm asset's hierarchy.

5. Choose a demo turbine and choose Edit.

6. Choose Measurements.

7. Update the Wind Speed property's MQTT Notification status to ACTIVE.

8. Choose Save at the bottom of the page.

9. Repeat steps 5 through 7 for each demo turbine asset.

10. Choose a demo turbine (for example, Demo Turbine Asset 1).

11. Choose Measurements.

12. Choose the copy icon next to the Wind Speed property to copy the notification topic to your
clipboard. Save the notification topic to use later in this tutorial. You only need to record the
notification topic from one turbine.

The notification topic should look like the following example.

$aws/sitewise/asset-models/a1b2c3d4-5678-90ab-cdef-11111EXAMPLE/
assets/a1b2c3d4-5678-90ab-cdef-22222EXAMPLE/properties/a1b2c3d4-5678-90ab-
cdef-33333EXAMPLE

Step 2: Create a rule in AWS IoT Core

In this step, create a rule in AWS IoT Core that parses the property value notification messages
and inserts data into an Amazon DynamoDB table. AWS IoT Core rules parse MQTT messages and

Step 1: Configure AWS IoT SiteWise to publish property value updates 104

https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html

AWS IoT SiteWise User Guide

perform actions based on the contents and topic of each message. Then, you create a rule with a
DynamoDB action to insert data to a DynamoDB table that you create as part of this tutorial.

To create a rule with a DynamoDB action

1. Navigate to the AWS IoT console.

2. In the left navigation pane, choose Message routing, and then choose Rules.

3. Choose Create rule.

4. Under Specify rule properties, enter a name and description for the rule.

5. Find the notification topic that you saved earlier in this tutorial.

$aws/sitewise/asset-models/a1b2c3d4-5678-90ab-cdef-11111EXAMPLE/
assets/a1b2c3d4-5678-90ab-cdef-22222EXAMPLE/properties/a1b2c3d4-5678-90ab-
cdef-33333EXAMPLE

Replace the asset ID (the ID after assets/) in the topic with a +. This selects the wind speed
property for all demo wind turbine assets. The + topic filter accepts all nodes from a single
level in a topic. Your topic should look like the following example.

$aws/sitewise/asset-models/a1b2c3d4-5678-90ab-cdef-11111EXAMPLE/assets/+/
properties/a1b2c3d4-5678-90ab-cdef-33333EXAMPLE

6. Enter the following rule query statement. Replace the topic in the FROM section with your
notification topic.

SELECT
 payload.assetId AS asset,
 (SELECT VALUE (value.doubleValue) FROM payload.values) AS windspeed,
 timestamp() AS timestamp
FROM
 '$aws/sitewise/asset-models/a1b2c3d4-5678-90ab-cdef-11111EXAMPLE/assets/+/
properties/a1b2c3d4-5678-90ab-cdef-33333EXAMPLE'
WHERE
 type = 'PropertyValueUpdate'

7. Under Rule actions, navigate to Action 1.

8. On the Select an action page, choose DynamoDBv2. This splits the message into multiple
columns of a DynamoDB table

Step 2: Create a rule in AWS IoT Core 105

https://console.aws.amazon.com/iot/

AWS IoT SiteWise User Guide

9. Under Table name, choose Create new table. You create an Amazon DynamoDB table to
receive wind speed data from the rule action.

10. Under Table name in the DynamoDB console enter a name for your table.

11. For Partition key, do the following:

a. Enter timestamp as the partition key.

b. Choose the Number type.

c. Select the Add sort key check box.

d. Enter asset as the sort key, and leave the default sort key type of String.

12. Choose Create table.

13. Return to the tab with the Configure action page.

14. On the Attach rule action page, refresh the Table name list, and choose your new DynamoDB
table you created in the previous step.

Step 3: Configure the DynamoDB rule action

In this step, configure the Amazon DynamoDB rule action to insert data from property value
updates to your new DynamoDB table.

To configure the DynamoDB rule action

1. Choose Create role to create an IAM role that grants AWS IoT Core access to perform the rule
action.

2. Enter a role name, for example, WindSpeedDataRole. Choose Create role.

3. Choose Next.

4. Choose Create at the bottom of the page to finish creating the rule.

Your demo asset data should start appearing in your DynamoDB table.

Step 4: Explore data in DynamoDB

In this step, explore the demo assets' wind speed data in your new Amazon DynamoDB table.

To explore asset data in DynamoDB

1. Return to the tab with the DynamoDB table open.

Step 3: Configure the DynamoDB rule action 106

https://console.aws.amazon.com/dynamodb/

AWS IoT SiteWise User Guide

2. In the table you created earlier, choose the Explore table items tab to view the data in the
table. Refresh the page if you don't see rows in the table. If rows don't appear after a few
minutes, see Troubleshoot a rule (DynamoDB).

3. In a row in the table, choose the edit icon to expand the data.

4. Choose the arrow next to the windspeed structure to expand the list of wind speed data
points. Each list reflects a batch of wind speed data points sent to AWS IoT SiteWise by the
wind farm demo. You might want a different data format if you set up a rule action for your
own use. For more information, see Query asset property notifications in AWS IoT SiteWise.

Now that you have completed the tutorial, disable or delete the rule and delete your DynamoDB
table to avoid incurring additional charges. To clean up your resources, see Step 5: Clean up
resources after the tutorial.

Step 5: Clean up resources after the tutorial

After you complete the tutorial, clean up your resources to avoid incurring additional charges. Your
demo wind farm assets are deleted at the end of the duration that you chose when you created the
demo. You can also delete the demo manually.

The AWS IoT SiteWise demo deletes itself after a week, or the number of days you chose if you
created the demo stack from the AWS CloudFormation console. You can delete the demo before if
you are done using the demo resources. You can also delete the demo if the demo fails to create.
Use the following steps to delete the demo manually.

(optional) To delete the AWS IoT SiteWise demo

1. Navigate to the AWS CloudFormation console.

2. Choose IoTSiteWiseDemoAssets from the list of Stacks.

3. Choose Delete.

When you delete the stack, all of the resources created for the demo are deleted.

4. In the confirmation dialog, choose Delete stack.

The stack takes around 15 minutes to delete. If the demo fails to delete, choose Delete in
the upper-right corner again. If the demo fails to delete again, follow the steps in the AWS
CloudFormation console to skip the resources that failed to delete, and try again.

Step 5: Clean up resources after the tutorial 107

https://console.aws.amazon.com/cloudformation

AWS IoT SiteWise User Guide

For more information, see Delete the AWS IoT SiteWise demo.

Use the following procedures to disable property value update notifications (if you didn't delete
the demo), disable or delete your AWS IoT rule, and delete your DynamoDB table.

To disable property value update notifications on asset properties

1. Navigate to the AWS IoT SiteWise console.

2. In the left navigation pane, choose Assets.

3. Choose the arrow next to Demo Wind Farm Asset to expand the wind farm asset's hierarchy.

4. Choose a demo turbine and choose Edit.

5. Update the Wind Speed property's Notification status to INACTIVE.

6. Choose Save asset at the bottom of the page.

7. Repeat steps 4 through 6 for each demo turbine asset.

To disable or delete a rule in AWS IoT Core

1. Navigate to the AWS IoT console.

2. In the left navigation pane, choose Message routing and then choose Rules.

3. Select your rule and choose Delete.

4. In the confirmation dialog, enter the name of the rule and then choose Delete.

To delete a DynamoDB table

1. Navigate to the DynamoDB console.

2. In the left navigation pane, choose Tables.

3. Choose the table you created earlier, for example, WindSpeedData.

4. Choose Delete.

5. In the confirmation dialog, enter confirm to delete the table.

Step 5: Clean up resources after the tutorial 108

https://console.aws.amazon.com/iotsitewise/
https://console.aws.amazon.com/iot/
https://console.aws.amazon.com/dynamodb/

AWS IoT SiteWise User Guide

Ingest data to AWS IoT SiteWise

AWS IoT SiteWise is designed to efficiently collect and correlate industrial data with corresponding
assets, representing various aspects of industrial operations. This documentation focuses on the
practical aspects of ingesting data into AWS IoT SiteWise, offering multiple methods tailored to
diverse industrial use cases. For instructions to build your virtual industrial operation, see Model
industrial assets.

You can send industrial data to AWS IoT SiteWise using any of the following options:

• AWS IoT SiteWise Edge–Use SiteWise Edge gateway as an intermediary between AWS IoT
SiteWise and your data servers. AWS IoT SiteWise provides AWS IoT Greengrass components
that you can deploy on any platform that can run AWS IoT Greengrass to set up a SiteWise Edge
gateway. This option supports linking with OPC UA server protocol.

• AWS IoT SiteWise API–Use the AWS IoT SiteWise API to upload data from any other source.
Use our streaming BatchPutAssetPropertyValue API for ingestion within seconds, or the batch-
oriented CreateBulkImportJob API to facilitate cost-effective ingestion in larger batches.

• AWS IoT Core rules–Use AWS IoT Core rules to upload data from MQTT messages published by
an AWS IoT thing or another AWS service.

• AWS IoT Events actions–Use AWS IoT Events actions triggered by specific events in AWS IoT
Events. This method is suitable for scenarios where data upload is tied to event occurrences.

• AWS IoT Greengrass stream manager–Use AWS IoT Greengrass stream manager to upload
data from local data sources using an edge device. This option caters to situations where data
originates from on-premises or edge locations.

These methods offer a range of solutions for managing data from different sources. Delve into the
details of each option to gain a comprehensive understanding of the data ingestion capabilities
AWS IoT SiteWise provides.

Manage data streams for AWS IoT SiteWise

A data stream is the resource that contains historical time series data. Each data stream is
identified by a unique alias, making it easier to keep track of the origin for each piece of data. Data
streams are automatically created in AWS IoT SiteWise when the first time series data is received.
If the first time series data is identified with an alias, AWS IoT SiteWise creates a new data stream

Manage data streams 109

https://en.wikipedia.org/wiki/OPC_Unified_Architecture
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateBulkImportJob.html

AWS IoT SiteWise User Guide

with that alias, provided no asset properties are already assigned that alias. Alternatively, if the first
time series data is identified with an asset ID and property ID, AWS IoT SiteWise creates a new data
stream and associates that data stream with the asset property.

There are two ways to assign an alias to an asset property. The method used depends on if data is
sent to AWS IoT SiteWise first, or an asset is created first.

• If data is sent to AWS IoT SiteWise first, this automatically creates a data stream with the
assigned alias. When the asset is created later, use the AssociateTimeSeriesToAssetProperty API
to associate the data stream and its alias to the asset property.

• If an asset is created first, use the UpdateAssetProperty API to assign an alias to an asset
property. When data is later sent to AWS IoT SiteWise, the data stream is automatically created
and associated with the asset property.

Currently, you can only associate data streams with measurements. Measurements are a type of
asset property that represent devices' raw sensor data streams, such as timestamped temperature
values or timestamped rotations per minute (RPM) values.

When these measurements define metrics or transformations, the incoming data triggers specific
calculations. It’s important to note that an asset property can only be linked to one data stream at
a time.

AWS IoT SiteWise uses TimeSeries for the Amazon Resource Name (ARN) resource to determine
your storage charges. For more information, see AWS IoT SiteWise Pricing.

The following sections show you how to use the AWS IoT SiteWise console or API to manage data
streams.

Topics

• Configure permissions and settings

• Associate a data stream to an asset property

• Disassociate a data stream from an asset property

• Delete a data stream

• Update an asset property alias

• Common scenarios

Manage data streams 110

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_AssociateTimeSeriesToAssetProperty.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateAssetProperty.html
https://aws.amazon.com/iot-sitewise/pricing/

AWS IoT SiteWise User Guide

Configure permissions and settings

Data streams are automatically created in AWS IoT SiteWise when the first time series data is
received. If the data ingested is not associated with an asset property, AWS IoT SiteWise creates
a new disassociated data stream which is configurable to be associated with an asset property.
Configure the access control of the gateway sending data to AWS IoT SiteWise, using IAM policies
to specify the type of data to be ingested.

The following IAM policy disables disassociated data ingestion from the gateway, while still
allowing data ingestion to data streams associated with an asset property:

Example IAM user policy that disables disassociated data ingestion from the gateway

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowPutAssetPropertyValuesUsingAssetIdAndPropertyId",
 "Effect": "Allow",
 "Action": "iotsitewise:BatchPutAssetPropertyValue",
 "Resource": "arn:aws:iotsitewise:*:*:asset/*"
 },
 {
 "Sid": "AllowPutAssetPropertyValuesUsingAliasWithAssociatedAssetProperty",
 "Effect": "Allow",
 "Action": "iotsitewise:BatchPutAssetPropertyValue",
 "Resource": "arn:aws:iotsitewise:*:*:time-series/*",
 "Condition": {
 "StringLikeIfExists": {
 "iotsitewise:isAssociatedWithAssetProperty": "true"
 }
 }
 },
 {
 "Sid": "DenyPutAssetPropertyValuesUsingAliasWithNoAssociatedAssetProperty",
 "Effect": "Deny",
 "Action": "iotsitewise:BatchPutAssetPropertyValue",
 "Resource": "arn:aws:iotsitewise:*:*:time-series/*",
 "Condition": {
 "StringLikeIfExists": {

Configure permissions and settings 111

AWS IoT SiteWise User Guide

 "iotsitewise:isAssociatedWithAssetProperty": "false"
 }
 }
 }
]
}

Example IAM user policy that disables all data ingestion from the gateway

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyPutAssetPropertyValues",
 "Effect": "Deny",
 "Action": "iotsitewise:BatchPutAssetPropertyValue",
 "Resource": [
 "arn:aws:iotsitewise:*:*:asset/*",
 "arn:aws:iotsitewise:*:*:time-series/*"
]
 }
]
}

Associate a data stream to an asset property

Manage your data streams using the AWS IoT SiteWise console or AWS CLI.

Console

Use the AWS IoT SiteWise console to manage your data streams.

To manage data streams (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Data streams.

Associate a data stream to an asset property 112

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

3. Choose a data stream by either filtering on data stream alias, or selecting Disassociated
data streams in the filter drop down menu.

4. Select the data stream to update. You may select multiple data streams. Click Manage data
streams on the upper right.

5. Select the data stream to be associated from Update data stream associations, and click
the Choose measurement button.

6. In the Choose measurement section, find the corresponding asset measurement property.
Select the measurement then click Choose.

7. Perform steps 4 and 5 for other data streams selected in step 3. Assign asset properties to
all the data streams.

8. Choose Update to commit the changes. A successful confirmation banner is displayed to
confirm the update.

AWS CLI

To associate a data stream (identified by its alias) to an asset property (identified by its IDs), run
the following command:

aws iotsitewise associate-time-series-to-asset-property \
 --alias <data-stream-alias> \
 --assetId <asset-ID> \
 --propertyId <property-ID>

Disassociate a data stream from an asset property

Console

Use the AWS IoT SiteWise console to disassociate your data stream from an asset property.

To disassociate data streams from an asset property (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Data streams.

3. Choose a data stream by either filtering on data stream alias, or selecting Associated data
streams in the filter drop down menu.

Disassociate a data stream from an asset property 113

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

4. Select the data stream to disassociate. The Data stream alias column must contain an alias.
The Asset name and Asset property name columns must contain the values of the asset
property the data stream is associated with. You can select multiple data streams.

5. Click Manage data streams on the upper right.

6. In the Update data stream associations section, click X in the Measurement name column.
A submitted status should appear in the Status column.

7. Choose Update to commit the changes. The data stream is now disassociated from the
asset property, and the alias is now used to identify the data stream.

AWS CLI

To disassociate a data stream from an asset property, (identified by its IDs and its alias), run the
following command:

 aws iotsitewise disassociate-time-series-from-asset-property \
 --alias <asset-property-alias> \
 --assetId <asset-ID> \
 --propertyId <property-ID>

The data stream is now disassociated from the asset property, and the alias is used to identify
the data stream. The alias is no longer associated with the asset property, as it is now associated
with the data stream.

Delete a data stream

When a property is removed from an asset model, AWS IoT SiteWise deletes the properties
and their data streams from all assets that are managed by the asset model. It also deletes all
properties and their data streams of an asset when the asset is deleted. If a data stream data must
be preserved, it must be disassociated from the asset property before it is deleted.

Warning

When a property is deleted from an asset, the associated data stream is also deleted. To
preserve the data stream, disassociate it from the asset property first, before deleting the
property from the asset model, or deleting the asset.

Delete a data stream 114

AWS IoT SiteWise User Guide

Console

Use the AWS IoT SiteWise console to disassociate your data stream from an asset property.

To delete a data stream (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Data streams.

3. Choose a data stream by filtering on data stream alias.

4. Select the data stream to delete. You may select multiple data streams.

5. Choose the Delete button to delete the data stream.

AWS CLI

Use the DeleteTimeSeries API to delete a specific data stream, by its alias.

 aws iotsitewise delete-time-series \
 --alias <data-stream-alias>

Update an asset property alias

Aliases must be unique within an AWS region. This includes aliases of both asset properties and
data streams. Do not assign an alias to an asset property, if another property or data stream is
using that alias.

Console

Use the AWS IoT SiteWise console to update an asset property alias.

To update an asset property alias (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Assets .

3. Select the asset from the table.

4. Click the Edit button.

5. Select the Property type in the Properties table.

Update an asset property alias 115

https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DeleteTimeSeries.html
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

6. Find the property, and type the new alias in the property alias text field.

7. Click the Save button to save the changes.

AWS CLI

To update an alias on an asset property, run the following command:

 aws iotsitewise update-asset-property \
 --asset-id <asset-ID> \
 --property-id <property-ID> \
 --property-alias <asset-property-alias> \
 --property-notification-state <ENABLED|DISABLED>

Note

If property notifications are currently enabled, it must be provided again to ensure it
continues to be enabled.

Common scenarios

Move a data stream

To change a data stream’s association to another asset property, first disassociate the data stream
from the current asset property. When disassociating a data stream from an asset property, there
must be an alias assigned to that asset property.

 aws iotsitewise disassociate-time-series-from-asset-property \
 --alias <asset-property-alias> \
 --assetId <asset-ID> \
 --propertyId <property-ID>

Now re-assign the data stream to the new asset property.

 aws iotsitewise associate-time-series-from-asset-property \
 --alias <data-stream-alias> \
 --assetId <new-asset-ID> \

Common scenarios 116

AWS IoT SiteWise User Guide

 --propertyId <new-property-ID>

Error when assigning an alias to an asset property

When using the UpdateAssetProperty API to assign an alias to a property, you may see the
following error message:

Given alias <data-stream-alias> for property <property-name> with ID <property-ID>
 already in use by another property or data stream

This error message indicates the alias is not assigned to the property, because it is currently used
by another property or a data stream.

This happens if data is being ingested to AWS IoT SiteWise with an alias. When data is sent with an
alias not being used by another data stream or asset property, a new data stream is created with
that alias. The below two options resolve the issue.

• Use AssociateTimeSeriesToAssetProperty API to associate the data stream with its alias
to the asset property.

• Temporarily stop the data ingestion and delete the data stream. Use UpdateAssetProperty
API to assign the alias to the asset property, and then turn data ingestion back on.

Error when associating a data stream to an asset property

When associating a data stream to an asset property, the following error message is seen.

assetProperty <property-name> with assetId <asset-ID> propertyId <property-ID> contains
 data

This error message indicates the asset property already is associated with a data stream containing
data. That data stream must be disassociated or deleted, before associating an other data stream
to that asset property.

Note

When disassociating a data stream from an asset property, the alias assigned to the
property is given to the data stream. For that alias to remain assigned to the property,
assign a new alias to that property before disassociating the data stream.

Common scenarios 117

AWS IoT SiteWise User Guide

To preserve the data stored in the asset property do the following:

• Ensure no data is being ingested to the asset property, to prevent creating a new data stream.

• Use UpdateAssetProperty API to set a new alias that is given to the currently assigned data
stream.

• Use DisassociateTimeSeriesFromAssetProperty API to disassociate the current data
stream from the asset property.

• Use AssociateTimeSeriesToAssetProperty API to associate the desired data stream to the
asset property.

If the data stored in the asset property must be deleted, do the following:

• Ensure no data is being ingested to the asset property, to prevent creating a new data stream.

• Use DeleteTimeSeries API to delete the currently assigned data stream.

• Use AssociateTimeSeriesToAssetProperty API to associate the desired data stream to the
asset property.

Ingest data with AWS IoT SiteWise APIs

Use AWS IoT SiteWise APIs to send timestamped industrial data to your assets' attribute and
measurement properties. The APIs accepts payload containing timestamp-quality-value (TQV)
structures.

BatchPutAssetPropertyValue API

Use the BatchPutAssetPropertyValue operation to upload your data. With this operation, you can
upload multiple data entries at a time to collect data from several devices and send it all in a single
request.

Important

The BatchPutAssetPropertyValue operation is subject to the following quotas:

• Up to 10 entries per request.

• Up to 10 property values (TQV data points) per entry.

Ingest data with AWS IoT SiteWise APIs 118

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html#API_BatchPutAssetPropertyValue_RequestSyntax
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_PutAssetPropertyValueEntry.html#iotsitewise-Type-PutAssetPropertyValueEntry-propertyValues

AWS IoT SiteWise User Guide

• AWS IoT SiteWise rejects any data with a timestamp dated to more than 7 days in the
past or more than 10 minutes in the future.

For more information about these quotas, see BatchPutAssetPropertyValue in the AWS IoT
SiteWise API Reference.

To identify an asset property, specify one of the following:

• The assetId and propertyId of the asset property that data is sent to.

• The propertyAlias, which is a data stream alias (for example, /company/windfarm/3/
turbine/7/temperature). To use this option, you must first set your asset property's alias. To
set property aliases, see Manage data streams for AWS IoT SiteWise.

The following example demonstrates how to send a wind turbine's temperature and rotations per
minute (RPM) readings from a payload stored in a JSON file.

aws iotsitewise batch-put-asset-property-value --cli-input-json file://batch-put-
payload.json

The example payload in batch-put-payload.json has the following content.

{
 "enablePartialEntryProcessing": true,
 "entries": [
 {
 "entryId": "unique entry ID",
 "propertyAlias": "/company/windfarm/3/turbine/7/temperature",
 "propertyValues": [
 {
 "value": {
 "integerValue": 38
 },
 "timestamp": {
 "timeInSeconds": 1575691200
 }
 }
]
 },

BatchPutAssetPropertyValue API 119

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html

AWS IoT SiteWise User Guide

 {
 "entryId": "unique entry ID",
 "propertyAlias": "/company/windfarm/3/turbine/7/rpm",
 "propertyValues": [
 {
 "value": {
 "doubleValue": 15.09
 },
 "timestamp": {
 "timeInSeconds": 1575691200
 },
 "quality": "GOOD"
 }
]
 },
 {
 "entryId": "unique entry ID",
 "propertyAlias": "/company/windfarm/3/turbine/7/rpm",
 "propertyValues": [
 {
 "value": {
 "nullValue":{"valueType": "D"}
 },
 "timestamp": {
 "timeInSeconds": 1575691200
 },
 "quality": "BAD"
 }
]
 }
]
}

Specifying enablePartialEntryProcessing as true allows ingestion of all values that do not
result in failure. The default behavior is false. If a value is invalid, the entire entry fails ingestion.

Each entry in the payload contains an entryId that you can define as any unique string. If any
request entries fail, each error will contain the entryId of the corresponding request so that you
know which requests to retry.

Each structure in the list of propertyValues is a timestamp-quality-value (TQV) structure that
contains a value, a timestamp, and optionally a quality.

BatchPutAssetPropertyValue API 120

AWS IoT SiteWise User Guide

• value – A structure that contains one of the following fields, depending on the type of the
property being set:

• booleanValue

• doubleValue

• integerValue

• stringValue

• nullValue

• nullValue – A structure with the following field denoting the type of the property value with
value Null and quality of BAD or UNCERTAIN.

• valueType – Enum of {"B", "D", "S", "I"}

• timestamp – A structure that contains the current Unix epoch time in seconds,
timeInSeconds. You can also set the offsetInNanos key in the timestamp structure if you
have temporally precise data. AWS IoT SiteWise rejects any data points with timestamps older
than 7 days in the past or newer than 10 minutes in the future.

• quality – (Optional) One of the following quality strings:

• GOOD – (Default) The data isn't affected by any issues.

• BAD – The data is affected by an issue such as sensor failure.

• UNCERTAIN – The data is affected by an issue such as sensor inaccuracy.

For more information about how AWS IoT SiteWise handles data quality in computations, see
Data quality in formula expressions.

CreateBulkImportJob API

Use the CreateBulkImportJob API to import large amounts of data from Amazon S3. Your data
must be saved in the CSV format in Amazon S3. Data files can have the following columns.

Note

Data older than 1 January 1970 00:00:00 UTC is not supported.
To identify an asset property, specify one of the following.

• The ASSET_ID and PROPERTY_ID of the asset property that you you're sending data to.

CreateBulkImportJob API 121

AWS IoT SiteWise User Guide

• The ALIAS, which is a data stream alias (for example, /company/windfarm/3/
turbine/7/temperature). To use this option, you must first set your asset property's
alias. To learn how to set property aliases, see the section called “Manage data streams”.

• ALIAS – The alias that identifies the property, such as an OPC UA server data stream path (for
example, /company/windfarm/3/turbine/7/temperature). For more information, see
Manage data streams for AWS IoT SiteWise.

• ASSET_ID – The ID of the asset.

• PROPERTY_ID – The ID of the asset property.

• DATA_TYPE – The property's data type can be one of the following.

• STRING – A string with up to 1024 bytes.

• INTEGER – A signed 32-bit integer with range [-2,147,483,648, 2,147,483,647].

• DOUBLE – A floating point number with range [-10^100, 10^100] and IEEE 754 double
precision.

• BOOLEAN – true or false.

• TIMESTAMP_SECONDS – The timestamp of the data point, in Unix epoch time.

• TIMESTAMP_NANO_OFFSET – The nanosecond offset coverted from TIMESTAMP_SECONDS.

• QUALITY – (Optional) The quality of the asset property value. The value can be one of the
following.

• GOOD – (Default) The data isn't affected by any issues.

• BAD – The data is affected by an issue such as sensor failure.

• UNCERTAIN – The data is affected by an issue such as sensor inaccuracy.

For more information about how AWS IoT SiteWise handles data quality in computations, see
Data quality in formula expressions.

• VALUE – The value of the asset property.

Example data file(s) in the .csv format

asset_id,property_id,DOUBLE,1635201373,0,GOOD,1.0
asset_id,property_id,DOUBLE,1635201374,0,GOOD,2.0
asset_id,property_id,DOUBLE,1635201375,0,GOOD,3.0

CreateBulkImportJob API 122

AWS IoT SiteWise User Guide

unmodeled_alias1,DOUBLE,1635201373,0,GOOD,1.0
unmodeled_alias1,DOUBLE,1635201374,0,GOOD,2.0
unmodeled_alias1,DOUBLE,1635201375,0,GOOD,3.0
unmodeled_alias1,DOUBLE,1635201376,0,GOOD,4.0
unmodeled_alias1,DOUBLE,1635201377,0,GOOD,5.0
unmodeled_alias1,DOUBLE,1635201378,0,GOOD,6.0
unmodeled_alias1,DOUBLE,1635201379,0,GOOD,7.0
unmodeled_alias1,DOUBLE,1635201380,0,GOOD,8.0
unmodeled_alias1,DOUBLE,1635201381,0,GOOD,9.0
unmodeled_alias1,DOUBLE,1635201382,0,GOOD,10.0

AWS IoT SiteWise provides the following API operations to create a bulk import job and get
information about an existing job.

• CreateBulkImportJob – Creates a new bulk import job.

• DescribeBulkImportJob – Retrieves information about a bulk import job.

• ListBulkImportJob – Retrieves a paginated list of summaries of all bulk import jobs.

Create an AWS IoT SiteWise bulk import job (AWS CLI)

Use the CreateBulkImportJob API operation to transfer data from Amazon S3 to AWS IoT SiteWise.
The CreateBulkImportJob API enables ingestion of large volumes of historical data, and buffered
ingestion of analytical data streams in small batches. It provides a cost-effective primitive for data
ingestion. The following example uses the AWS CLI.

Important

Before creating a bulk import job, you must enable AWS IoT SiteWise warm tier or AWS
IoT SiteWise cold tier. For more information, see Configure storage settings in AWS IoT
SiteWise.
The CreateBulkImportJob API supports ingestion of historical data into AWS IoT SiteWise
with the option to set the adaptive-ingestion-flag parameter.

• When set to false, the API ingests historical data without triggering computations or
notifications.

• When set to true, the API ingests new data, calculating metrics and transforming the
data to optimize ongoing analytics and notifications within seven days.

CreateBulkImportJob API 123

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateBulkImportJob.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeBulkImportJob.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListBulkImportJobs.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateBulkImportJob.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateBulkImportJob.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateBulkImportJob.html

AWS IoT SiteWise User Guide

Run the following command. Replace file-name with the name of the file that contains the bulk
import job configuration.

aws iotsitewise create-bulk-import-job --cli-input-json file://file-name.json

Example Bulk import job configuration

The following are examples of configuration settings:

• Replace adaptive-ingestion-flag with true or false.

• If set to false, the bulk import job ingests historical data into AWS IoT SiteWise.

• If set to true, the bulk import job does the following:

• Ingests new data into AWS IoT SiteWise.

• Calculates metrics and transforms, and supports notifications for data with a time stamp
that's within seven days.

• Replace delete-files-after-import-flag with true to delete the data from the Amazon
S3 data bucket after ingesting into AWS IoT SiteWise warm tier storage.

• Replace amzn-s3-demo-bucket-for-errors with the name of the Amazon S3 bucket to which
errors associated with this bulk import job are sent.

• Replace amzn-s3-demo-bucket-for-errors-prefix with the prefix of the Amazon S3 bucket
to which errors associated with this bulk import job are sent.

Amazon S3 uses the prefix as a folder name to organize data in the bucket. Each Amazon S3
object has a key that is its unique identifier in the bucket. Each object in a bucket has exactly one
key. The prefix must end with a forward slash (/). For more information, see Organizing objects
using prefixes in the Amazon Simple Storage Service User Guide.

• Replace amzn-s3-demo-bucket-data with the name of the Amazon S3 bucket from which data
is imported.

• Replace data-bucket-key with the key of the Amazon S3 object that contains your data. Each
object has a key that is a unique identifier. Each object has exactly one key.

• Replace data-bucket-version-id with the version ID to identify a specific version of the
Amazon S3 object that contains your data. This parameter is optional.

• Replace column-name with the column name specified in the .csv file.

• Replace job-name with a unique name that identifies the bulk import job.

• Replace job-role-arn with the IAM role that allows AWS IoT SiteWise to read Amazon S3 data.

CreateBulkImportJob API 124

https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-prefixes.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-prefixes.html

AWS IoT SiteWise User Guide

Note

Make sure that your role has the permissions shown in the following example. Replace
amzn-s3-demo-bucket-data with the name of the Amazon S3 bucket that contains your
data. Also, replace amzn-s3-demo-bucket-for-errors with the name of the Amazon
S3 bucket to which errors associated with this bulk import job are sent.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:GetObject",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket-data",
 "arn:aws:s3:::amzn-s3-demo-bucket-data/*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket-for-errors",
 "arn:aws:s3:::amzn-s3-demo-bucket-for-errors/*"
],
 "Effect": "Allow"
 }
]
}

{

CreateBulkImportJob API 125

AWS IoT SiteWise User Guide

 "adaptiveIngestion": adaptive-ingestion-flag,
 "deleteFilesAfterImport": delete-files-after-import-flag,
 "errorReportLocation": {
 "bucket": "amzn-s3-demo-bucket-for-errors",
 "prefix": "amzn-s3-demo-bucket-for-errors-prefix"
 },
 "files": [
 {
 "bucket": "amzn-s3-demo-bucket-data",
 "key": "data-bucket-key",
 "versionId": "data-bucket-version-id"
 }
],
 "jobConfiguration": {
 "fileFormat": {
 "csv": {
 "columnNames": ["column-name"]
 }
 }
 },
 "jobName": "job-name",
 "jobRoleArn": "job-role-arn"
}

Example response

{
 "jobId":"f8c031d0-01d1-4b94-90b1-afe8bb93b7e5",
 "jobStatus":"PENDING",
 "jobName":"myBulkImportJob"
}

Describe an AWS IoT SiteWise bulk import job (AWS CLI)

Use the DescribeBulkImportJob API operation to retrieve information about a specific bulk
import job in AWS IoT SiteWise. This operation returns details such as the job's status, creation
time, and error information if the job failed. You can use this operation to monitor job progress
and troubleshoot issues. To use DescribeBulkImportJob, you need the job ID from the
CreateBulkImportJob operation. The API returns the following information:

• List of files being imported, including their Amazon S3 bucket locations and keys

• Error report location (if applicable)

CreateBulkImportJob API 126

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeBulkImportJob.html

AWS IoT SiteWise User Guide

• Job configuration details, such as file format and CSV column names

• Job creation and last update timestamps

• Current job status (for example, whether the job is in progress, completed, or failed)

• IAM role ARN used for the import job

For completed jobs, review the results to confirm successful data integration. If a job fails, examine
the error details to diagnose and resolve issues.

Replace job-ID with the ID of the bulk import job that you want to retrieve.

aws iotsitewise describe-bulk-import-job --job-id job-ID

Example response

{
 "files":[
 {
 "bucket":"amzn-s3-demo-bucket1",
 "key":"100Tags12Hours.csv"
 },
 {
 "bucket":"amzn-s3-demo-bucket2",
 "key":"BulkImportData1MB.csv"
 },
 {
 "bucket":" amzn-s3-demo-bucket3",
 "key":"UnmodeledBulkImportData1MB.csv"
 }
],
 "errorReportLocation":{
 "prefix":"errors/",
 "bucket":"amzn-s3-demo-bucket-for-errors"
 },
 "jobConfiguration":{
 "fileFormat":{
 "csv":{
 "columnNames":[
 "ALIAS",
 "DATA_TYPE",
 "TIMESTAMP_SECONDS",

CreateBulkImportJob API 127

AWS IoT SiteWise User Guide

 "TIMESTAMP_NANO_OFFSET",
 "QUALITY",
 "VALUE"
]
 }
 }
 },
 "jobCreationDate":1645745176.498,
 "jobStatus":"COMPLETED",
 "jobName":"myBulkImportJob",
 "jobLastUpdateDate":1645745279.968,
 "jobRoleArn":"arn:aws:iam::123456789012:role/DemoRole",
 "jobId":"f8c031d0-01d1-4b94-90b1-afe8bb93b7e5"
}

List AWS IoT SiteWise bulk import jobs (AWS CLI)

Use the ListBulkImportJobs API operation to retrieve a list of summaries for bulk import jobs in
AWS IoT SiteWise. This operation provides an efficient way to monitor and manage your data
import processes. It returns the following key information for each job:

• Job ID. A unique identifier for each bulk import job

• Job name. The name you assigned to the job when creating it

• Current status. The job's current state (for example, COMPLETED, RUNNING, FAILED)

ListBulkImportJobs is particularly useful for getting a comprehensive overview of all your bulk
import jobs. This can help you track multiple data imports, identify any jobs that require attention,
and maintain an organized workflow. The operation supports pagination, allowing you to retrieve
large numbers of job summaries efficiently. You can use the job IDs returned by this operation with
the DescribeBulkImportJob operation to retrieve more detailed information about specific jobs.
This two-step process allows you to first get a high-level view of all jobs, and then drill down into
the details of jobs of interest. When using ListBulkImportJobs, you can apply filters to narrow
down the results. For example, you can filter jobs based on their status to retrieve only completed
jobs or only running jobs. This feature helps you focus on the most relevant information for your
current task. The operation also returns a nextToken if there are more results available. You can
use this token in subsequent calls to retrieve the next set of job summaries, enabling you to iterate
through all your bulk import jobs even if you have a large number of them. The following example
demonstrates how to use ListBulkImportJobs with the AWS CLI to retrieve a list of completed
jobs.

CreateBulkImportJob API 128

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListBulkImportJobss.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeBulkImportJob.html

AWS IoT SiteWise User Guide

aws iotsitewise list-bulk-import-jobs --filter COMPLETED

Example Response for completed jobs filter

{
 "jobSummaries":[
 {
 "id":"bdbbfa52-d775-4952-b816-13ba1c7cb9da",
 "name":"myBulkImportJob",
 "status":"COMPLETED"
 },
 {
 "id":"15ffc641-dbd8-40c6-9983-5cb3b0bc3e6b",
 "name":"myBulkImportJob2",
 "status":"COMPLETED"
 }
]
}

This command demonstrates how to use ListBulkImportJobs to retrieve a list of jobs that
completed with failures. The maximum is set to 50 results and we're using a next token for
paginated results.

aws iotsitewise list-bulk-import-jobs --filter COMPLETED_WITH_FAILURES --max-results 50
 --next-token "string"

Ingest data to AWS IoT SiteWise using AWS IoT Core rules

Send data to AWS IoT SiteWise from AWS IoT things and other AWS services by using rules in AWS
IoT Core. Rules transform MQTT messages and perform actions to interact with AWS services.
The AWS IoT SiteWise rule action forwards messages data to the BatchPutAssetPropertyValue
operation from the AWS IoT SiteWise API. For more information, see Rules and AWS IoT SiteWise
action in the AWS IoT Developer Guide.

To follow a tutorial that walks through the steps required to set up a rule that ingests data through
device shadows, see Ingest data to AWS IoT SiteWise from AWS IoT things.

You can also send data from AWS IoT SiteWise to other AWS services. For more information, see
Interact with other AWS services.

Use AWS IoT Core rules 129

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rule-actions.html#iotsitewise-rule
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rule-actions.html#iotsitewise-rule

AWS IoT SiteWise User Guide

Topics

• Grant AWS IoT the required access

• Configure the AWS IoT SiteWise rule action

• Reduce costs with Basic Ingest in AWS IoT SiteWise

Grant AWS IoT the required access

You use IAM roles to control the AWS resources to which each rule has access. Before you create
a rule, you must create an IAM role with a policy that allows the rule to perform actions on the
required AWS resource. AWS IoT assumes this role when running a rule.

If you create the rule action in the AWS IoT console, you can choose a root asset to create a role
that has access to a selected asset hierarchy. For more information about how to manually define a
role for a rule, see Granting AWS IoT the required access and Pass role permissions in the AWS IoT
Developer Guide.

For the AWS IoT SiteWise rule action, you must define a role that allows
iotsitewise:BatchPutAssetPropertyValue access to the asset properties to which the rule
sends data. To improve security, you can specify an AWS IoT SiteWise asset hierarchy path in the
Condition property.

The following example trust policy allows access to a specific asset and its children.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iotsitewise:BatchPutAssetPropertyValue",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iotsitewise:assetHierarchyPath": [
 "/root node asset ID",
 "/root node asset ID/*"
]

Grant required access 130

https://docs.aws.amazon.com/iot/latest/developerguide/iot-create-role.html
https://docs.aws.amazon.com/iot/latest/developerguide/pass-role.html

AWS IoT SiteWise User Guide

 }
 }
 }
]
}

Remove the Condition from the policy to allow access to all of your assets. The following
example trust policy allows access to all of your assets in the current Region.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iotsitewise:BatchPutAssetPropertyValue",
 "Resource": "*"
 }
]
}

Configure the AWS IoT SiteWise rule action

The AWS IoT SiteWise rule action sends data from the MQTT message that initiated the rule to
asset properties in AWS IoT SiteWise. You can upload multiple data entries to different asset
properties at the same time,to send updates for all sensors of a device in one message. You can
also upload multiple data points at once for each data entry.

Note

When you send data to AWS IoT SiteWise with the rule action, your data must meet all of
the requirements of the BatchPutAssetPropertyValue operation. For example, your
data can't have a timestamp earlier than 7 days from current Unix epoch time. For more
information, see Ingesting data with the AWS IoT SiteWise API.

Configure the rule action 131

AWS IoT SiteWise User Guide

For each data entry in the rule action, you identify an asset property and specify the timestamp,
quality, and value of each data point for that asset property. The rule action expects strings for all
parameters.

To identify an asset property in an entry, specify one of the following:

• The Asset ID (assetId) and Property ID (propertyId) of the asset property that you're
sending data to. You can find the Asset ID and Property ID using the AWS IoT SiteWise console. If
you know the Asset ID, you can use the AWS CLI to call DescribeAsset to find the Property ID.

• The Property alias (propertyAlias), which is a data stream alias (for example, /company/
windfarm/3/turbine/7/temperature). To use this option, you must first set your asset
property's alias. To learn how to set property aliases, see Manage data streams for AWS IoT
SiteWise.

For the timestamp in each entry, use the timestamp reported by your equipment or the timestamp
provided by AWS IoT Core. The timestamp has two parameters:

• Time in seconds (timeInSeconds) – The Unix epoch time, in seconds, at which the sensor or
equipment reported the data.

• Offset in nanos (offsetInNanos) – (Optional) The nanosecond offset from the time in seconds.

Important

If your timestamp is a string, has a decimal portion, or isn't in seconds, AWS IoT SiteWise
rejects the request. You must convert the timestamp to seconds and nanosecond offset.
Use features of the AWS IoT rules engine to convert the timestamp. For more information,
see the following:

• Getting timestamps for devices that don't report accurate time

• Converting timestamps that are in string format

You can use substitution templates for several parameters in the action to perform calculations,
invoke functions, and pull values from the message payload. For more information, see
Substitution templates in the AWS IoT Developer Guide.

Configure the rule action 132

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAsset.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-substitution-templates.html

AWS IoT SiteWise User Guide

Note

Because an expression in a substitution template is evaluated separately from the SELECT
statement, you can't use a substitution template to reference an alias created using an AS
clause. You can reference only information present in the original payload, in addition to
supported functions and operators.

Topics

• Getting timestamps for devices that don't report accurate time

• Converting timestamps that are in string format

• Converting nanosecond-precision timestamp strings

• Example rule configurations

• Troubleshooting the rule action

Getting timestamps for devices that don't report accurate time

If your sensor or equipment doesn't report accurate time data, get the current Unix epoch time
from the AWS IoT rules engine with timestamp(). This function outputs time in milliseconds, so you
must convert the value to time in seconds and offset in nanoseconds. To do so, use the following
conversions:

• For Time in seconds (timeInSeconds), use ${floor(timestamp() / 1E3)} to convert the
time from milliseconds to seconds.

• For Offset in nanos (offsetInNanos), use ${(timestamp() % 1E3) * 1E6} to calculate the
nanosecond offset of the timestamp.

Converting timestamps that are in string format

If your sensor or equipment reports time data in string format (for example,
2020-03-03T14:57:14.699Z), use time_to_epoch(String, String). This function inputs the
timestamp and format pattern as parameters and outputs time in milliseconds. Then, you must
convert the time to time in seconds and offset in nanoseconds. To do so, use the following
conversions:

Configure the rule action 133

https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-function-timestamp
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-sql-function-time-to-epoch

AWS IoT SiteWise User Guide

• For Time in seconds (timeInSeconds), use
${floor(time_to_epoch("2020-03-03T14:57:14.699Z", "yyyy-MM-
dd'T'HH:mm:ss'Z'") / 1E3)} to convert the timestamp string to milliseconds, and then to
seconds.

• For Offset in nanos (offsetInNanos), use
${(time_to_epoch("2020-03-03T14:57:14.699Z", "yyyy-MM-dd'T'HH:mm:ss'Z'")
% 1E3) * 1E6} to calculate the nanosecond offset of the timestamp string.

Note

The time_to_epoch function supports up to millisecond-precision timestamp strings.
To convert strings with microsecond or nanosecond precision, configure an AWS Lambda
function that your rule calls to convert the timestamp into numerical values. For more
information, see Converting nanosecond-precision timestamp strings.

Converting nanosecond-precision timestamp strings

If your device sends timestamp information in string format with nanosecond precision (for
example, 2020-03-03T14:57:14.699728491Z), use the following procedure to configure
your rule action. You can create an AWS Lambda function that converts the timestamp from a
string into Time in seconds (timeInSeconds) and Offset in nanos (offsetInNanos). Then,
use aws_lambda(functionArn, inputJson) in your rule action parameters to invoke that Lambda
function and use the output in your rule.

Note

This section contains advanced instructions that assume that you're familiar with how to
create the following resources:

• Lambda functions. For more information, see Create your first Lambda function in the
AWS Lambda Developer Guide.

• AWS IoT rules with the AWS IoT SiteWise rule action. For more information, see Ingest
data to AWS IoT SiteWise using AWS IoT Core rules.

Configure the rule action 134

https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-func-aws-lambda
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html

AWS IoT SiteWise User Guide

To create an AWS IoT SiteWise rule action that parses timestamp strings

1. Create a Lambda function with the following properties:

• Function name – Use a descriptive function name (for example,
ConvertNanosecondTimestampFromString).

• Runtime – Use a Python 3 runtime, such as Python 3.11 (python3.11).

• Permissions – Create a role with basic Lambda permissions
(AWSLambdaBasicExecutionRole).

• Layers – Add the AWSSDKPandas-Python311 layer for the Lambda function to use numpy.

• Function code – Use the following function code, which consumes a string argument named
timestamp and outputs timeInSeconds and offsetInNanos values for that timestamp.

import json
import math
import numpy

Converts a timestamp string into timeInSeconds and offsetInNanos in Unix epoch
 time.
The input timestamp string can have up to nanosecond precision.
def lambda_handler(event, context):
 timestamp_str = event['timestamp']
 # Parse the timestamp string as nanoseconds since Unix epoch.
 nanoseconds = numpy.datetime64(timestamp_str, 'ns').item()
 time_in_seconds = math.floor(nanoseconds / 1E9)
 # Slice to avoid precision issues.
 offset_in_nanos = int(str(nanoseconds)[-9:])
 return {
 'timeInSeconds': time_in_seconds,
 'offsetInNanos': offset_in_nanos
 }

This Lambda function inputs timestamp strings in ISO 8601 format using datetime64 from
NumPy.

Configure the rule action 135

https://en.wikipedia.org/wiki/ISO_8601
https://numpy.org/doc/stable/reference/arrays.datetime.html

AWS IoT SiteWise User Guide

Note

If your timestamp strings aren't in ISO 8601 format, you can implement a solution
with pandas that defines the timestamp format. For more information, see
pandas.to_datetime.

2. When you configure the AWS IoT SiteWise action for your rule, use the following substitution
templates for Time in seconds (timeInSeconds) and Offset in nanos (offsetInNanos).
These substitution templates assume that your message payload contains the timestamp
string in timestamp. The aws_lambda function consumes a JSON structure for its second
parameter, so you can modify the below substitution templates if needed.

• For Time in seconds (timeInSeconds), use the following substitution template.

${aws_lambda('arn:aws:lambda:region:account-
id:function:ConvertNanosecondTimestampFromString', {'timestamp':
 timestamp}).timeInSeconds}

• For Offset in nanos (offsetInNanos), use the following substitution template.

${aws_lambda('arn:aws:lambda:region:account-
id:function:ConvertNanosecondTimestampFromString', {'timestamp':
 timestamp}).offsetInNanos}

For each parameter, replace region and account-id with your Region and AWS account ID.
If you used a different name for your Lambda function, change that as well.

3. Grant AWS IoT permissions to invoke your function with the lambda:InvokeFunction
permission. For more information, see aws_lambda(functionArn, inputJson).

4. Test your rule (for example, use the AWS IoT MQTT test client) and verify that AWS IoT
SiteWise receives the data that you send.

If your rule doesn't work as expected, see Troubleshoot an AWS IoT SiteWise rule action.

Configure the rule action 136

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-func-aws-lambda

AWS IoT SiteWise User Guide

Note

This solution invokes the Lambda function twice for each timestamp string. You can create
another rule to reduce the number of Lambda function invocations if your rule handles
multiple data points that have the same timestamp in each payload.
To do so, create a rule with a republish action that invokes the Lambda and publishes
the original payload with the timestamp string converted to timeInSeconds and
offsetInNanos. Then, create a rule with an AWS IoT SiteWise rule action to consume
the converted payload. With this approach, you reduce the number of times that the rule
invokes the Lambda but increase the number of AWS IoT rule actions run. Consider the
pricing of each service if you apply this solution to your use case.

Example rule configurations

This section contains example rule configurations to create a rule with an AWS IoT SiteWise action.

Example Example rule action that uses property aliases as message topics

The following example creates a rule with an AWS IoT SiteWise action that uses the topic (through
topic()) as the property alias to identify asset properties. Use this example to define one rule for
ingesting double-type data to all wind turbines in all wind farms. This example requires that you
define property aliases on all turbine assets' properties. You would need to define a second, similar
rule to ingest integer-type data.

aws iot create-topic-rule \
 --rule-name SiteWiseWindFarmRule \
 --topic-rule-payload file://sitewise-rule-payload.json

The example payload in sitewise-rule-payload.json contains the following content.

{
 "sql": "SELECT * FROM '/company/windfarm/+/turbine/+/+' WHERE type = 'double'",
 "description": "Sends data to the wind turbine asset property with the same alias as
 the topic",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {

Configure the rule action 137

https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-function-topic

AWS IoT SiteWise User Guide

 "iotSiteWise": {
 "putAssetPropertyValueEntries": [
 {
 "propertyAlias": "${topic()}",
 "propertyValues": [
 {
 "timestamp": {
 "timeInSeconds": "${timeInSeconds}"
 },
 "value": {
 "doubleValue": "${value}"
 }
 }
]
 }
],
 "roleArn": "arn:aws:iam::account-id:role/MySiteWiseActionRole"
 }
 }
]
}

With this rule action, send the following message to a wind turbine property alias (for example, /
company/windfarm/3/turbine/7/temperature) as a topic to ingest data.

{
 "type": "double",
 "value": "38.3",
 "timeInSeconds": "1581368533"
}

Example Example rule action that uses timestamp() to determine time

The following example creates a rule with an AWS IoT SiteWise action that identifies an asset
property by IDs and uses timestamp() to determine the current time.

aws iot create-topic-rule \
 --rule-name SiteWiseAssetPropertyRule \
 --topic-rule-payload file://sitewise-rule-payload.json

The example payload in sitewise-rule-payload.json contains the following content.

Configure the rule action 138

https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-function-timestamp

AWS IoT SiteWise User Guide

{
 "sql": "SELECT * FROM 'my/asset/property/topic'",
 "description": "Sends device data to an asset property",
 "ruleDisabled": false,
 "awsIotSqlVersion": "2016-03-23",
 "actions": [
 {
 "iotSiteWise": {
 "putAssetPropertyValueEntries": [
 {
 "assetId": "a1b2c3d4-5678-90ab-cdef-22222EXAMPLE",
 "propertyId": "a1b2c3d4-5678-90ab-cdef-33333EXAMPLE",
 "propertyValues": [
 {
 "timestamp": {
 "timeInSeconds": "${floor(timestamp() / 1E3)}",
 "offsetInNanos": "${(timestamp() % 1E3) * 1E6}"
 },
 "value": {
 "doubleValue": "${value}"
 }
 }
]
 }
],
 "roleArn": "arn:aws:iam::account-id:role/MySiteWiseActionRole"
 }
 }
]
}

With this rule action, send the following message to the my/asset/property/topic to ingest
data.

{
 "type": "double",
 "value": "38.3"
}

Configure the rule action 139

AWS IoT SiteWise User Guide

Troubleshooting the rule action

To troubleshoot your AWS IoT SiteWise rule action in AWS IoT Core, configure CloudWatch Logs or
configure a republish error action for your rule. For more information, see Troubleshoot an AWS IoT
SiteWise rule action.

Reduce costs with Basic Ingest in AWS IoT SiteWise

AWS IoT Core provides a feature called Basic Ingest that you can use to send data through AWS IoT
Core without incurring AWS IoT messaging costs. Basic Ingest optimizes data flow for high volume
data ingestion workloads by removing the publish/subscribe message broker from the ingestion
path. You can use Basic Ingest if you know which rules your messages should be routed to.

To use Basic Ingest, you send messages directly to a specific rule using a special topic, $aws/
rules/rule-name. For example, to send a message to a rule named SiteWiseWindFarmRule,
you send a message to the topic $aws/rules/SiteWiseWindFarmRule.

If your rule action uses substitution templates that contain topic(Decimal), you can pass
the original topic at the end of the Basic Ingest special topic, such as $aws/rules/rule-
name/original-topic. For example, to use Basic Ingest with the wind farm property alias
example from the previous section, you can send messages to the following topic.

$aws/rules/SiteWiseWindFarmRule//company/windfarm/3/turbine/7/temperature

Note

The above example includes a second slash (//) because AWS IoT removes the Basic Ingest
prefix ($aws/rules/rule-name/) from the topic that's visible to the rule action. In this
example, the rule receives the topic /company/windfarm/3/turbine/7/temperature.

For more information, see Reducing messaging costs with basic ingest in the AWS IoT Developer
Guide.

Ingest data to AWS IoT SiteWise from AWS IoT Events

With AWS IoT Events, you can build complex event monitoring applications for your IoT fleet in the
AWS Cloud. Use the IoT SiteWise action in AWS IoT Events to send data to asset properties in AWS
IoT SiteWise when an event occurs.

Reduce costs with Basic Ingest 140

https://aws.amazon.com/iot-core/pricing/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-functions.html#iot-function-topic
https://docs.aws.amazon.com/iot/latest/developerguide/iot-basic-ingest.html

AWS IoT SiteWise User Guide

Note

End of support notice: On May 20, 2026, AWS will end support for AWS IoT Events. After
May 20, 2026, you will no longer be able to access the AWS IoT Events console or AWS IoT
Events resources. For more information, see AWS IoT Events end of support.

AWS IoT Events is designed to streamline the development of event monitoring applications for
IoT devices and systems within the AWS Cloud. Using AWS IoT Events, you can:

• Detect and respond to changes, anomalies, or specific conditions across your IoT fleet.

• Enhance your operational efficiency and enable proactive management of your IoT ecosystem.

By integrating with AWS IoT SiteWise through the AWS IoT SiteWise action, AWS IoT Events
extends its capabilities, allowing you to automatically update asset properties in AWS IoT SiteWise
in response to specific events. This interaction can simplify data ingestion and management. It can
also empower you with actionable insights.

For more information, see the following topics in the AWS IoT Events Developer Guide:

• What is AWS IoT Events?

• AWS IoT Events actions

• IoT SiteWise action

Use AWS IoT Greengrass stream manager in AWS IoT SiteWise

AWS IoT Greengrass stream manager is an integration feature that facilitates the transfer of data
streams from local sources to the AWS Cloud. It acts as an intermediary layer that manages data
flows, enabling devices operating at the edge to gather and store data before it is sent to AWS IoT
SiteWise, for further analysis and processing.

Add a data destination by configuring a local source on the AWS IoT SiteWise console. You can
also use stream manager in your custom AWS IoT Greengrass solution to ingest data to AWS IoT
SiteWise.

Use AWS IoT Greengrass stream manager 141

https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-end-of-support.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-supported-actions.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-other-aws-services.html#iotevents-iotsitewise

AWS IoT SiteWise User Guide

Note

To ingest data from OPC UA sources, configure an AWS IoT SiteWise Edge gateway that
runs on AWS IoT Greengrass. For more information, see Use AWS IoT SiteWise Edge
gateways.

For more information about how to configure a destination for local source data, see Understand
AWS IoT SiteWise Edge destinations.

For more information about how to ingest data using stream manager in a custom AWS IoT
Greengrass solution, see the following topics in the AWS IoT Greengrass Version 2 Developer Guide:

• What is AWS IoT Greengrass?

• Manage data streams on the AWS IoT Greengrass core

• Exporting data to AWS IoT SiteWise asset properties

Use AWS IoT Greengrass stream manager 142

https://docs.aws.amazon.com/greengrass/v2/developerguide/
https://docs.aws.amazon.com/greengrass/v2/developerguide/manage-data-streams.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/stream-export-configurations.html#export-to-iot-sitewise

AWS IoT SiteWise User Guide

Use AWS IoT SiteWise Edge gateways

AWS IoT SiteWise Edge extends cloud capabilities to industrial edge environments, enabling local
data processing, analysis, and decision-making. SiteWise Edge integrates with AWS IoT SiteWise
and other AWS services to provide comprehensive industrial IoT solutions. Gateways serve as the
intermediary between your industrial equipment and AWS IoT SiteWise.

SiteWise Edge gateways runs on two different deployment targets:

• AWS IoT Greengrass V2

• Siemens Industrial Edge

You can use a SiteWise Edge gateway to collect data at the edge and publish it to the cloud. For
gateways running on AWS IoT Greengrass, you can also process data at the edge using asset
models and assets.

The AWS IoT SiteWise Edge application on Siemens Industrial Edge supports integration between
industrial equipment and AWS IoT SiteWise so that you can aggregate and process raw machine
data and run analyses locally before sending refined data to the AWS Cloud.

Key concepts of SiteWise Edge gateways

SiteWise Edge has several useful features for edge computing in industrial environments.

Local data collection and processing

Supports data collection from industrial assets using protocols like OPC-UA and MQTT.
Gateways run on AWS IoT Greengrass Core devices or Siemens Industrial Edge.

Offline operation

Continues collecting and processing data during internet outages, syncing with the cloud when
connectivity is restored.

Edge computing with AWS IoT Greengrass components

Uses IoT SiteWise publisher to forward data to the cloud and AWS IoT SiteWise processor
for local transformations and calculations. Both the publisher and processor are AWS IoT
Greengrass V2 components. For more information on AWS IoT Greengrass components, see
AWS-provided components.

Gateway key concepts 143

https://docs.aws.amazon.com/greengrass/v2/developerguide/public-components.html

AWS IoT SiteWise User Guide

Integration with AWS IoT SiteWise to extend cloud features

Works with the AWS IoT SiteWise cloud features, extending asset models, analytics, and
dashboards to the edge.

For gateways with a data processing pack enabled, you can use AWS OpsHub for AWS IoT
SiteWise to centrally manage your SiteWise Edge gateways. AWS OpsHub provides remote
management and monitoring capabilities. For more information, see Manage SiteWise Edge
gateways using AWS OpsHub for AWS IoT SiteWise.

Partner data source integration

Connect a partner data source to your gateway and receive data from the partner in your
SiteWise Edge gateway and the AWS cloud. For more information, see Partner data sources on
SiteWise Edge gateways.

Local visualization on the edge

Provides custom dashboards for real-time insights at the edge.

Monitor data locally in your facility using SiteWise Monitor portals on your local devices. For
more information, see Enabling your AWS IoT SiteWise portal at the edge.

Benefits of implementing SiteWise Edge

SiteWise Edge offers numerous advantages that can significantly improve industrial operations and
decision-making processes.

• Real-time operational insights without cloud processing delays

• Operational continuity in disconnected environments

• Reduced bandwidth and storage costs through edge pre-processing

• Increased reliability with the ability to make local, data-driven decisions

Self-host an AWS IoT SiteWise Edge gateway with AWS IoT
Greengrass V2

Set up AWS IoT SiteWise Edge to collect, process, and visualize data from industrial equipment
locally before sending it to the cloud. Self-host using AWS IoT Greengrass Version 2.

Benefits of implementing SiteWise Edge 144

AWS IoT SiteWise User Guide

An AWS IoT SiteWise Edge gateway acts as the intermediary between your industrial equipment
and AWS IoT SiteWise. Running on AWS IoT Greengrass Version 2, the SiteWise Edge gateway
supports data collection and processing on premises. Monitor data locally within your facility
through SiteWise Monitor portals on your local devices with the data processing pack enabled and
AWS OpsHub installed.

There are two types of self-hosted gateways:

MQTT-enabled, V3 gateway

The MQTT-enabled, V3 gateway architecture provides improved data ingestion capabilities.
It utilizes MQTT protocol for efficient data communication and offers configurable data
destinations. These include options for buffered data ingestion using Amazon S3, as well as
real-time data ingestion. You can implement path filters to subscribe to specific MQTT topics,
enabling targeted data collection. Note that the MQTT-enabled, V3 gateway does not support
the Data Processing Pack feature. For more information, see MQTT-enabled, V3 Gateways for
AWS IoT SiteWise Edge.

Classic streams, V2 gateway

The Classic streams, V2 gateway represents the traditional AWS IoT SiteWise Edge gateway
architecture. It is well-suited for existing SiteWise Edge deployments and users accustomed to
the established workflow. While the Classic streams, V2 gateway supports the data processing
pack, note that data generated by the data processing pack cannot be ingested through
Amazon S3. Use the Classic streams, V2 gateway if you need to maintain compatibility with
existing deployments or if you require the data processing pack functionality. For more
information, see Classic streams, V2 gateways for AWS IoT SiteWise Edge.

Topics

• AWS IoT SiteWise Edge self-hosted gateway requirements

• Create a self-hosted SiteWise Edge gateway

• Install the AWS IoT SiteWise Edge gateway software on your local device

• MQTT-enabled, V3 Gateways for AWS IoT SiteWise Edge

• Classic streams, V2 gateways for AWS IoT SiteWise Edge

• Add data sources to your AWS IoT SiteWise Edge gateway

• AWS IoT Greengrass components for AWS IoT SiteWise Edge

• Filter assets on a SiteWise Edge gateway

Self-host a gateway 145

AWS IoT SiteWise User Guide

• Configure proxy support and manage trust stores for AWS IoT SiteWise Edge

• Use AWS IoT SiteWise APIs on the edge

AWS IoT SiteWise Edge self-hosted gateway requirements

AWS IoT SiteWise Edge gateways run on AWS IoT Greengrass V2 as a set of AWS IoT Greengrass
components that support data collection, processing, and publishing on premises. To configure a
SiteWise Edge gateway that runs on AWS IoT Greengrass V2, create a gateway in the AWS Cloud
and run the SiteWise Edge gateway software to set up your local device. When you use the AWS
Management Console to create the SiteWise Edge gateway, an installation script is provided. Run
this script on your target gateway device to set up necessary software and dependencies.

Local device requirements

Local devices must meet the following requirements to install and run the SiteWise Edge gateway
software.

• Supports AWS IoT Greengrass V2 Core software version v2.3.0 or newer. For more information,
see Requirements in the AWS IoT Greengrass Version 2 Developer Guide.

• One of the following supported platforms:

• OS: Ubuntu 20.04 or later

Architecture: x86_64 (AMD64) or ARMv8 (Aarch64)

• OS: Red Hat Enterprise Linux (RHEL) 8

Architecture: x86_64 (AMD64) or ARMv8 (Aarch64)

• OS: Amazon Linux 2

Architecture: x86_64 (AMD64) or ARMv8 (Aarch64)

• OS: Debian 11

Architecture: x86_64 (AMD64) or ARMv8 (Aarch64)

• OS: Windows Server 2019 and later

Architecture: x86_64 (AMD64)

Requirements 146

https://docs.aws.amazon.com/greengrass/v2/developerguide/greengrass-release-2021-06-29.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/setting-up.html#greengrass-v2-requirements

AWS IoT SiteWise User Guide

Note

ARM platforms support SiteWise Edge gateways with Data Collection Pack only. The data
processing pack is not supported.

• Minimum 4 GB RAM.

• Minimum 10 GB disk space available for the SiteWise Edge gateway software.

• Configure your local device to make sure that the proper ports are accessible. For a full list of the
required outbound service endpoints, see Required service endpoints for AWS IoT SiteWise Edge
gateways.

• Java Runtime Environment (JRE) version 11 or higher. Java must be available on the PATH
environment variable on the device. To use Java to develop custom components, you must install
a Java Development Kit (JDK). We recommend that you use Amazon Corretto or OpenJDK.

Amazon S3 buckets to allowlist for local devices

Configure your local device to provide firewall access the following Amazon S3 bucket. Configure
access based on the respective regions for your devices.

Region Endpoint

Asia Pacific (Tokyo) https://iot-sitewise-gateway-ap-northeast-1-7855588020
05.s3.ap-northeast-1.amazonaws.com

Asia Pacific (Seoul) https://iot-sitewise-gateway-ap-northeast-2-3100556724
53.s3.ap-northeast-2.amazonaws.com

Asia Pacific (Mumbai) https://iot-sitewise-gateway-ap-south-1-677656657204.s
3.ap-south-1.amazonaws.com

Asia Pacific (Singapore) https://iot-sitewise-gateway-ap-southeast-1-4751915585
54.s3.ap-southeast-1.amazonaws.com

Asia Pacific (Sydney) https://iot-sitewise-gateway-ap-southeast-2-3963194326
85.s3.ap-southeast-2.amazonaws.com

Requirements 147

https://docs.aws.amazon.com/prescriptive-guidance/latest/endpoints-for-iot-sitewise-edge-gateways/required-endpoints.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/endpoints-for-iot-sitewise-edge-gateways/required-endpoints.html
https://docs.aws.amazon.com/corretto/
https://openjdk.org/projects/jdk/

AWS IoT SiteWise User Guide

Region Endpoint

Canada (Central) https://iot-sitewise-gateway-ca-central-1-842060018567
.s3.ca-central-1.amazonaws.com

China (Beijing) https://iot-sitewise-gateway-cn-north-1-237124890262.s3.cn-
north-1.amazonaws.com.cn

Europe (Frankfurt) https://iot-sitewise-gateway-eu-central-1-748875242063
.s3.eu-central-1.amazonaws.com

Europe (Ireland) https://iot-sitewise-gateway-eu-west-1-383414315062.s3.eu-
west-1.amazonaws.com

US East (N. Virginia) https://iot-sitewise-gateway-us-east-1-223558168232.s3.us-
east-1.amazonaws.com and https://iot-sitewise-gateway-us-
east-1-223558168232.s3.amazonaws.com/

US East (Ohio) https://iot-sitewise-gateway-us-east-2-005072661813.s3.us-
east-2.amazonaws.com

AWS GovCloud (US-West) https://iot-sitewise-gateway-us-gov-west-1-59998456567
9.s3.us-gov-west-1.amazonaws.com/

US West (Oregon) https://iot-sitewise-gateway-us-west-2-502577205460.s3.us-
west-2.amazonaws.com

Data processing pack requirements

• If you plan to use the data processing pack at the edge with AWS IoT SiteWise, your local device
must also meet the following requirements:

• Has an x86 64 bit quad-core processor.

• Has at least 16 GB of RAM.

• Has at least 32 GB for RAM if using Microsoft Windows.

• Had at least 256 GB of free disk space.

• The local device must allow network inbound traffic on port 443.

Requirements 148

AWS IoT SiteWise User Guide

• The following ports are reserved for use by AWS IoT SiteWise: 80, 443, 3001, 4569, 4572,
8000, 8081, 8082, 8084, 8085, 8445, 8086, 9000, 9500, 11080, and 50010. Using a reserved
port for traffic can result in a terminated connection.

Note

The AWS IoT Greengrass V2 Stream manager component has its own requirements.
For more information, see Configuration in the AWS IoT Greengrass Version 2 Developer
Guide.

• The minimum disk space and compute capacity requirements depend on a variety of factors that
are unique to your implementation and use case.

• The disk space required for caching data for intermittent internet connectivity depends on the
following factors:

• Number of data streams uploaded

• Data points per data stream per second

• Size of each data point

• Communication speeds

• Expected network downtime

• The compute capacity required to poll and upload data depends on the following factors:

• Number of data streams uploaded

• Data points per data stream per second

Configure permissions to use SiteWise Edge gateways

You must have the following permissions to use SiteWise Edge gateways:

Note

If you use the AWS IoT SiteWise console to create your SiteWise Edge gateway, these
permissions are added for you.

• The IAM role for your SiteWise Edge gateway must allow you to use an SiteWise Edge gateway
on an AWS IoT Greengrass V2 device to process asset model data and asset data.

Requirements 149

https://docs.aws.amazon.com/greengrass/v2/developerguide/stream-manager-component.html#stream-manager-component-configuration

AWS IoT SiteWise User Guide

The role allows the following service to assume the role: credentials.iot.amazonaws.com.

Permissions details

The role must have the following permissions:

• iotsitewise – Allows principals to retrieve asset model data and asset data at the edge.

• iot – Allows your AWS IoT Greengrass V2 devices to interact with AWS IoT.

• logs – Allows your AWS IoT Greengrass V2 devices to send logs to Amazon CloudWatch Logs.

• s3 – Allows your AWS IoT Greengrass V2 devices to download custom component artifacts
from Amazon S3.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iotsitewise:BatchPutAssetPropertyValue",
 "iotsitewise:List*",
 "iotsitewise:Describe*",
 "iotsitewise:Get*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iot:DescribeCertificate",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams",
 "s3:GetBucketLocation",
 "s3:GetObject",
 "iot:Connect",
 "iot:Publish",
 "iot:Subscribe",
 "iot:Receive",
 "iot:DescribeEndpoint"

Requirements 150

AWS IoT SiteWise User Guide

],
 "Resource": "*"
 }
]
}

Create a self-hosted SiteWise Edge gateway

Use the AWS IoT SiteWise console or AWS CLI to create a self-hosted SiteWise Edge gateway. This
procedure details how to create a self-hosted SiteWise Edge gateway that you'll install on your own
hardware. For information about creating a SiteWise Edge gateway that runs on Siemens Industrial
Edge, see Host a SiteWise Edge gateway on Siemens Industrial Edge.

Create a SiteWise Edge gateway

Console

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. Choose Create gateway.

4. For Choose deployment target, choose self-hosted gateway.

5. Select either MQTT-enabled, V3 gateway or Classic streams, V2 gateway. For more
information on each option, see Self-host an AWS IoT SiteWise Edge gateway with AWS IoT
Greengrass V2. The MQTT-enabled, V3 gateway is recommend for it's future-ready features.

6. In the Gateway configuration section, enter a name for your SiteWise Edge gateway or use
the name generated by AWS IoT SiteWise.

7. Under Greengrass device OS, select the operating system of the device where you'll install
this SiteWise Edge gateway.

Note

The data processing pack is only available on x86 platforms. It is only available on
the Classic streams, V2 gateway

8. (Optional) To process and organize data at the edge, under Edge capabilities, select Data
Processing Pack.

Create a gateway 151

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

Note

To grant user groups in your corporate directory access to this SiteWise Edge
gateway, see Set up edge capability in SiteWise Edge

9. (Optional) Under advanced configuration, do the following:

• For Greengrass core device, choose one of the following options:

• Default setup – AWS automatically uses default settings to create a Greengrass core
device in AWS IoT Greengrass V2.

1. Enter a name for the Greengrass core device or use the name generated by AWS
IoT SiteWise.

• Advanced setup – Choose this option if you want to use an existing Greengrass core
device or to create one manually.

1. Choose a Greengrass core device or choose Create Greengrass core device to
create one in the AWS IoT Greengrass V2 console. For more information, see
Setting up AWS IoT Greengrass V2 core devices in the AWS IoT Greengrass Version
2 Developer Guide.

10. Choose Create gateway.

11. In the Generate SiteWise Edge gateway installer dialog box, choose Generate and
download. AWS IoT SiteWise automatically generates an installer that you can use to
configure your local device.

Important

You can't regenerate this file. Make sure that you save the installer file in a secure
location because you'll use the file later.

AWS CLI

To create a self-hosted gateway by using the AWS CLI, provide a name for the gateway, specify
the platform, and the gateway version. There are many other options that you can specify
when creating a gateway. For more information, see create-gateway in the AWS CLI Command
Reference for AWS IoT SiteWise

Create a gateway 152

https://docs.aws.amazon.com/greengrass/v2/developerguide/setting-up.html
https://docs.aws.amazon.com/cli/latest/reference/iotsitewise/create-gateway.html

AWS IoT SiteWise User Guide

To use this example, replace the user input placeholders with your own information.

aws iotsitewise create-gateway \
 --gateway-name your-gateway-name \
 --gateway-platform greengrassV2={coreDeviceThingName=your-core-device-thing-
name, coreDeviceOperatingSystem=LINUX_AMD64} \
 --gateway-version 3 \
 [--cli-input-json your-configuration]

• gateway-name – A unique name for the gateway.

• gateway-platform – Specifies the gateway platform configuration. For self-hosted
gateways, enter greengrassV2. For more information, see Options in the create-gateway
section of AWS CLI Command Reference for AWS IoT SiteWise.

• coreDeviceThingName – The name of the AWS IoT thing for your AWS IoT Greengrass V2
core device.

• coreDeviceOperatingSystem – The operating system of the core device in AWS
IoT Greengrass V2. Specifying the operating system is required for gateway-version
3 and not applicable for gateway-version 2. Options include: LINUX_AARCH64,
LINUX_AMD64, and WINDOWS_AMD64

• gateway-version – The version of the gateway.

• To create an MQTT-enabled, V3 gateway, use 3 for the gateway version.

• To create a Classic streams, V2 gateway, use 2 for the gateway version.

• cli-input-json – A JSON file containing request parameters.

Now that you've created the SiteWise Edge gateway, Install the AWS IoT SiteWise Edge gateway
software on your local device.

Install the AWS IoT SiteWise Edge gateway software on your local
device

After you've created an AWS IoT SiteWise Edge gateway, install the SiteWise Edge gateway
software on your local device. SiteWise Edge gateway software can be installed on local devices
that have Linux or Microsoft Windows server operating systems installed.

Install gateway software 153

https://docs.aws.amazon.com/cli/latest/reference/iotsitewise/create-gateway.html#options

AWS IoT SiteWise User Guide

Important

Make sure that your local device connects to the internet.

Linux

The following procedure uses SSH to connect to your local device. Alternatively, you can use a
USB flash drive or other tools to transfer the installer file to your local device. If you don't want
to use SSH, skip to Step 2: Install the SiteWise Edge gateway software below.

SSH prerequisites

Before you connect to your device using SSH, complete the following prerequisites.

• Linux and macOS - Download and install OpenSSH. For more information, see https://
www.openssh.com.

Step 1: Copy the installer to your SiteWise Edge gateway device

The following instructions explain how to connect to your local device using an SSH client.

1. To connect to your device, run the following command in a terminal window on your
computer, replacing username and IP with a username that has elevated privileges and IP
address.

ssh username@IP

2. To transfer the installer file that AWS IoT SiteWise generated to your SiteWise Edge
gateway device, run the following command.

Note

• Replace path-to-saved-installer with the path on your computer that you
used to save the installer file and the name of the installer file.

• Replace IP-address with the IP address of your local device.

• Replace directory-to-receive-installer with the path on your local
device that you use to receive the installer file.

Install gateway software 154

https://www.openssh.com/
https://www.openssh.com/

AWS IoT SiteWise User Guide

scp path-to-saved-installer.sh user-name@IP-address:directory-to-receive-
installer

Step 2: Install the SiteWise Edge gateway software

In the following procedures, run the commands in a terminal window on your SiteWise Edge
gateway device.

1. Give the installer file the execute permission.

chmod +x path-to-installer.sh

2. Run the installer.

sudo ./path-to-installer.sh

Windows Server

Prerequisites

You must have the following prerequisites to install the SiteWise Edge gateway software:

• Microsoft Windows Server 2019 or later installed

• Administrator privileges

• PowerShell version 5.1 or later installed

• SiteWise Edge gateway installer downloaded to the Windows Server where it will be
provisioned

Step 1: Run PowerShell as administrator

1. On the Windows server where you want to install SiteWise Edge gateway, log in as
administrator.

2. Enter PowerShell in the Windows search bar.

3. In the search results, open the context (right-click) menu on the Windows PowerShell app.
Choose Run as Administrator.

Install gateway software 155

AWS IoT SiteWise User Guide

Step 2: Install the SiteWise Edge gateway software

Run the following commands in a terminal window on your SiteWise Edge Gateway device.

1. Unblock the SiteWise Edge gateway installer.

unblock-file path-to-installer.ps1

2. Run the Installer.

./path-to-installer.ps1

Note

If the script execution is disabled on the system, change the script execution policy
to RemoteSigned.

Set-ExecutionPolicy RemoteSigned

The next step depends on the type of self-hosted gateway you need. Continue to MQTT-enabled,
V3 Gateways for AWS IoT SiteWise Edge or Classic streams, V2 gateways for AWS IoT SiteWise
Edge.

MQTT-enabled, V3 Gateways for AWS IoT SiteWise Edge

AWS IoT SiteWise can use MQTT-enabled, V3 gateways, representing a significant advancement
in the SiteWise Edge gateway architecture. This gateway type leverages the MQTT (Message
Queuing Telemetry Transport) protocol for data communication, providing enhanced flexibility and
efficiency in industrial IoT deployments.

The MQTT-enabled, V3 gateway uses MQTT for data transfer, enabling a lightweight, publish-
subscribe network protocol that efficiently transports messages between devices and the cloud.
You can set up various data destinations, including real-time data ingestion directly into AWS IoT
SiteWise and buffered data ingestion using Amazon S3. To enable precise data collection, you can
implement path filters to subscribe to specific MQTT topics.

MQTT-enabled, V3 gateways 156

AWS IoT SiteWise User Guide

MQTT-enabled, V3 gateways come with a pre-configured real-time destination with filters set to
"#" (all topics), which you can customize or remove as needed. To streamline data management,
only one real-time destination can exist in each gateway.

The MQTT-enabled architecture differs significantly from the Classic streams, V2 gateway. While
V2 uses a stream-based approach, V3 employs MQTT, offering more configurable data destinations
and filtering options. However, note that V3 does not support the data processing pack, which is
available in V2.

The MQTT-enabled, V3 gateway offers several advantages:

• Improved scalability, due to MQTT's lightweight nature, enabling better handling of numerous
devices and high-frequency data transmission.

• Enhanced data control through path filters, enabling granular management of data collection
and reducing unnecessary data transfer and processing.

• Flexible data handling, allowing configuration between real-time processing and buffered
storage based on specific needs.

• Alignment with modern IoT communication standards, setting the stage for future
enhancements and integrations.

Consider adopting the MQTT-enabled, V3 gateway for new deployments, especially when you
require flexible data ingestion options and precise control over data collection.

Note

For existing deployments or scenarios requiring the data processing pack, the Classic
streams, V2 gateway remains a viable option.

By offering both gateway types, AWS IoT SiteWise ensures that you can choose the solution that
best fits your specific industrial IoT needs, whether you prioritize advanced MQTT capabilities or
compatibility with existing systems.

Destinations and path filters

View the following topics to learn more about destinations and path filters in MQTT-enabled
gateways:

• Understand AWS IoT SiteWise Edge destinations

MQTT-enabled, V3 gateways 157

AWS IoT SiteWise User Guide

• Add an AWS IoT SiteWise Edge real-time destination

• Add an AWS IoT SiteWise buffered destination using Amazon S3

• Understand path filters for AWS IoT SiteWise Edge destinations

• Add path filters to AWS IoT SiteWise Edge destinations

• Manage AWS IoT SiteWise Edge destinations

Connect external applications to the EMQX broker

This guide explains how to connect external applications to your AWS IoT SiteWise Edge gateway
through an EMQX broker on your deployed MQTT-enabled, V3 gateway. External applications
might include custom monitoring tools, third-party visualization software, or legacy systems that
need to interact with your industrial data at the edge.

We'll cover the configuration steps for both Linux and Microsoft Windows environments, including
EMQX deployment configuration, TLS setup for secure connections, and authorization rules to
control access to specific topics.

Note

EMQX is not a vendor or supplier for AWS IoT SiteWise Edge.

Important

For securing connections to your gateway, we strongly recommend using certificate-based
authentication through the AWS IoT Greengrass client device authentication feature. This
method provides robust security through mutual TLS (mTLS) authentication. For more
information, see Connect client devices to core devices in the AWS IoT Greengrass Version 2
Developer Guide.

If you are not able to use certificate based authentication, follow this guide to setup authentication
using usernames and passwords.

Prerequisites

• A SiteWise Edge MQTT-enabled, V3 gateway that has been deployed and is online

MQTT-enabled, V3 gateways 158

https://docs.aws.amazon.com/greengrass/v2/developerguide/connect-client-devices.html

AWS IoT SiteWise User Guide

• Access to the gateway host

• Access to the AWS IoT SiteWise and AWS IoT Greengrass consoles

Topics

• Message payload format for the EMQX broker on AWS IoT SiteWise Edge

• Configure the EMQX broker

• Connect an application to the EMQX broker on AWS IoT SiteWise Edge

• Set up authorization rules for AWS IoT SiteWise Edge in EMQX

Message payload format for the EMQX broker on AWS IoT SiteWise Edge

For the IoT SiteWise publisher component to consume data from your external application and
publish it to the AWS IoT SiteWise cloud, the payload sent to the broker must meet specific
requirements.

Understanding the payload format is key to successful MQTT communication with AWS IoT
SiteWise Edge. While the connection setup process is covered in later sections, we present the
payload requirements first to help you plan your implementation.

MQTT topic requirements

There are no restrictions on MQTT topic structure, including the number of levels or characters
used. However, we recommend that the topic matches the propertyAlias field in the payload.

Example Example property alias

If the MQTT topic is site1/line1/compressor1/temperature, ensure the propertyAlias
matches.

{
 "assetId": "compressor_asset_01",
 "propertyAlias": "site1/line1/compressor1/temperature",
 "propertyId": "temperature_sensor_01",
 "propertyValues": [
 {
 "quality": "GOOD",
 "timestamp": {
 "offsetInNanos": 0,

MQTT-enabled, V3 gateways 159

AWS IoT SiteWise User Guide

 "timeInSeconds": 1683000000
 },
 "value": {
 "doubleValue": 23.5
 }
 }
]
}

JSON payload structure

The MQTT message payload are written in JSON and follow the PutAssetPropertyValueEntry
message format defined in the AWS IoT SiteWise API Reference.

{
 "assetId": "string",
 "propertyAlias": "string",
 "propertyId": "string",
 "propertyValues": [
 {
 "quality": "string",
 "timestamp": {
 "offsetInNanos": number,
 "timeInSeconds": number
 },
 "value": {
 "booleanValue": boolean,
 "doubleValue": number,
 "integerValue": number,
 "stringValue": "string"
 }
 }
]
}

Note

For a message to be considered valid, only one of the following conditions can be true:

• The propertyAlias is set, or

• Both assetId and propertyId are set

MQTT-enabled, V3 gateways 160

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_PutAssetPropertyValueEntry.html

AWS IoT SiteWise User Guide

The PutAssetPropertyValueEntry has an entryId field that is not required in this
context.

Configure the EMQX broker

This section covers how to add usernames and passwords. It also covers how to establish a TLS
connection from an external source using the added username and password. You can configure
the EMQX broker using Linux or Microsoft Windows.

Note

To configure the broker, you need a core device that is setup with the default EMQX
configuration in your MQTT-enabled, V3 gateway.

Important

After completing this procedure, we highly recommend configuring authorization rules.
For more information, see Set up authorization rules for AWS IoT SiteWise Edge in EMQX.
Authorization rules for added users enhances security.

Update the EMQX deployment configuration for authentication

To update the EMQX deployment configuration for authentication

1. Navigate to the AWS IoT SiteWise console.

2. In the left navigation, choose Edge gateways in the Edge section.

3. Choose the gateway to configure.

4. In the Edge gateway configuration section, copy your Greengrass core device value. Save it
for later use.

5. Open the AWS IoT console.

6. On the left navigation, under the Manage section, choose Greengrass devices, then
Deployments.

7. Find the core device value you saved earlier and choose that link to open the deployment.

MQTT-enabled, V3 gateways 161

https://console.aws.amazon.com/iotsitewise/
https://console.aws.amazon.com/iot/

AWS IoT SiteWise User Guide

8. Choose the Actions dropdown button, then Revise.

9. Read the message that appears and then choose Revise deployment. The Specify target page
appears.

10. Choose Next until you reach the Configure components step.

11. Select the aws.greengrass.clientdevices.mqtt.EMQX radio button.

12. Choose the Configure component button. A configuration page appears for the component.

13. Under Configuration update, choose Reset to default configuration for component version:
2.*.*.

14. Enter the following configuration in the Configuration to merge section based on your OS.

Linux

{
 "emqxConfig": {
 "authorization": {
 "no_match": "allow"
 },
 "listeners": {
 "tcp": {
 "default": {
 "enabled": true,
 "enable_authn": false
 }
 },
 "ssl": {
 "default": {
 "enabled": true,
 "enable_authn": true,
 "ssl_options": {
 "verify": "verify_none",
 "fail_if_no_peer_cert": false
 }
 }
 }
 },
 "authentication": {
 "enable": true,
 "backend": "built_in_database",
 "mechanism": "password_based",
 "password_hash_algorithm": {

MQTT-enabled, V3 gateways 162

AWS IoT SiteWise User Guide

 "iterations": 210000,
 "mac_fun": "sha512",
 "name": "pbkdf2"
 },
 "user_id_type": "username"
 },
 "dashboard": {
 "listeners": {
 "http": {
 "bind": 18083
 }
 }
 }
 },
 "authMode": "bypass",
 "dockerOptions": "-p 8883:8883 -p 127.0.0.1:1883:1883
 -p 127.0.0.1:18083:18083 -v emqx-data:/opt/emqx/data -e
 EMQX_NODE__NAME=emqx@local",
 "requiresPrivilege": "true"
}

Windows

{
 "emqxConfig": {
 "authorization": {
 "no_match": "allow"
 },
 "listeners": {
 "tcp": {
 "default": {
 "enabled": true,
 "enable_authn": false
 }
 },
 "ssl": {
 "default": {
 "enabled": true,
 "enable_authn": true,
 "ssl_options": {
 "verify": "verify_none",
 "fail_if_no_peer_cert": false
 }

MQTT-enabled, V3 gateways 163

AWS IoT SiteWise User Guide

 }
 }
 },
 "authentication": {
 "enable": true,
 "backend": "built_in_database",
 "mechanism": "password_based",
 "password_hash_algorithm": {
 "iterations": 210000,
 "mac_fun": "sha512",
 "name": "pbkdf2"
 },
 "user_id_type": "username"
 },
 "dashboard": {
 "listeners": {
 "http": {
 "bind": 18083
 }
 }
 }
 },
 "authMode": "bypass",
 "requiresPrivilege": "true"
}

The dockerOptions field is only for Linux gateways.

15. Choose Confirm.

16. Choose Next until you reach the Review step.

17. Choose Deploy.

18. After the deployment succeeds, proceed to the next step.

Enable username and password authentication

This section shows you how to add usernames and passwords through the EMQX dashboard GUI.

MQTT-enabled, V3 gateways 164

AWS IoT SiteWise User Guide

Note

The EMQX-related instructions provided are for reference only. As EMQX documentation
and features may change over time, and we do not maintain their documentation, we
recommend consulting EMQX's official documentation for the most current information.

EMQX Dashboard

To enable username and password authentication through the EMQX dashboard

1. Ensure that you are within the gateway host.

2. Open a browser window and visit http://localhost:18083/.

3. Enter the default username of admin and the default password of public. For more
information, see EMQX Dashboard in the EMQX Docs.

4. After login, you are prompted to change your password. Update your password to continue
to the EMQX Dashboard.

5. In the left navigation, choose the shield icon, then Authentication.

6. In the Built-in Database row, choose the Users button.

7. Choose the plus sign icon button to add users. An Add screen appears.

8. Enter a username and password for the user of the external application.

9. Choose Save. The username you chose appears in the Authentication page's table.

Note

Existing or default authorization rules apply to the new user. It's recommended to
review and adjust them to your external application needs.

EMQX Management with Linux

Use the AWS IoT SiteWise EMQX CLI tool at /greengrass/v2/bin/swe-emqx-cli.

To enable username and password authentication through EMQX Management using Linux

1. Change the admin password by running the following command:

MQTT-enabled, V3 gateways 165

https://docs.emqx.com/en/emqx/latest/
http://localhost:18083/
https://docs.emqx.com/en/emqx/latest/dashboard/introduction.html#first-login

AWS IoT SiteWise User Guide

/greengrass/v2/bin/swe-emqx-cli admin change-pwd

2. When prompted, do the following:

1. Enter your current administrator user (default is admin) and password (default is
public).

2. Enter and confirm your new password.

If successful, you see the following message:

admin password changed successfully

3. Add users for external applications by running the following command:

/greengrass/v2/bin/swe-emqx-cli users add

4. When prompted, do the following:

1. Enter the username for the new user.

2. Enter and confirm the password for the new user.

If successful, you see the following message:

User '[username]' created successfully

5. Verify user configuration by running the following command:

/greengrass/v2/bin/swe-emqx-cli users list

The output shows all configured users:

Users:
- [your-added-username]

Total users: 1

MQTT-enabled, V3 gateways 166

AWS IoT SiteWise User Guide

EMQX Management with Windows

Use the AWS IoT SiteWise EMQX CLI tool at one of the following locations:

• PowerShell: C:\greengrass\v2\bin\swe-emqx-cli.ps1

• Command Prompt: C:\greengrass\v2\bin\swe-emqx-cli.bat

To enable username and password authentication through EMQX Management using
Windows

1. Change the admin password by running the following command:

C:\greengrass\v2\bin\swe-emqx-cli.ps1 admin change-pwd

2. When prompted, do the following:

1. Enter your current administrator user (default is admin) and password (default is
public).

2. Enter and confirm your new password.

If successful, you see the following message:

admin password changed successfully

3. Add users for external applications by running the following command:

C:\greengrass\v2\bin\swe-emqx-cli.ps1 users add

4. When prompted, do the following:

1. Enter the username for the new user.

2. Enter and confirm the password for the new user.

If successful, you see the following message:

User '[username]' created successfully

5. Verify user configuration by running the following command:

MQTT-enabled, V3 gateways 167

AWS IoT SiteWise User Guide

C:\greengrass\v2\bin\swe-emqx-cli.ps1 users list

The output shows all configured users:

Users:
- [your-added-username]

Total users: 1

Connect an application to the EMQX broker on AWS IoT SiteWise Edge

The EMQX broker uses Transport Layer Security (TLS) on port 8883 to encrypt all communications,
ensuring your data remains protected during transmission. This section walks you through the
steps to establish connections between your applications and the EMQX broker. Following these
steps helps maintain the integrity and confidentiality of your industrial data. The connection
process involves two main approaches: using automated IP discovery through components, or
manually configuring DNS names and IP addresses as Subject Alternative Names (SANs) in your TLS
certificates. Each method has its own advantages depending on your network setup and security
requirements. This documentation will guide you through both options.

Topics

• Configure TLS for secure connections to the EMQX broker on AWS IoT SiteWise Edge

• Test the EMQX broker connection on AWS IoT SiteWise Edge

• Use your own CA

• Open port 8883 for external firewall connections

Configure TLS for secure connections to the EMQX broker on AWS IoT SiteWise Edge

By default, AWS IoT Greengrass generates a TLS server certificate for the EMQX broker that is
signed by the core device certificate authority (CA). For more information, see Connecting client
devices to an AWS IoT Greengrass Core device with an MQTT broker.

Retrieve the TLS certificate

To get the CA certificate run the following command on the gateway host:

MQTT-enabled, V3 gateways 168

https://docs.aws.amazon.com/greengrass/v2/developerguide/connecting-to-mqtt.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/connecting-to-mqtt.html

AWS IoT SiteWise User Guide

Linux

Run the following command in a shell session on the gateway host:

/greengrass/v2/bin/swe-emqx-cli cert

This command displays the certificate location and prints the certificate's content.

You can alternatively save the certificate to a file using this command:

/greengrass/v2/bin/swe-emqx-cli cert --output /path/to/certificate.pem

Windows

Run the following command in a PowerShell session on the gateway host:

C:\greengrass\v2\bin\swe-emqx-cli.ps1 cert

This command displays the certificate location and prints the certificate's content.

You can alternatively save the certificate to a file using this command:

C:\greengrass\v2\bin\swe-emqx-cli.ps1 cert --output C:\path\to\certificate.pem

The CLI automatically locates the certificate regardless of the exact path on your system.

Copy the contents of the ca.pem file to the external application that you're connecting to the
broker. Save it as BrokerCoreDeviceCA.pem.

Add custom DNS names/IP addresses to the TLS server certificate

The subject alternative name (SAN) on the cert generated by AWS IoT Greengrass is localhost.
When establishing a TLS connection from outside of the gateway host, the TLS verification step
fails because the broker’s hostname does not match the hostname of localhost on the server
certificate.

To address mismatched hostname issue, AWS IoT Greengrass provides two ways of managing core
device endpoints. This section covers both options. For more detailed information, see Manage core
device endpoints in the AWS IoT Greengrass Version 2 Developer Guide.

MQTT-enabled, V3 gateways 169

https://docs.aws.amazon.com/greengrass/v2/developerguide/manage-core-device-endpoints.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/manage-core-device-endpoints.html

AWS IoT SiteWise User Guide

• To connect to the EMQX broker using the core device's IP address, use the Automated IP
discovery section.

• To connect to the EMQX broker using a DNS name instead of IP address, you use the Manual
management section.

Automated IP discovery

This option allows your core device to automatically discover its IP address and add it as a
Subject Alternative Name (SAN) to the broker certificate.

1. Add the aws.greengrass.clientdevices.IPDetector component to your core
device’s deployment.

2. Deploy the changes to your device

3. Wait for deployment to complete.

After the deployment completes, you can establish a secure TLS connection using the
broker's IP address.

The IP address is automatically added as a SAN to the broker certificate.

Manual DNS and IP Configuration

You can manually add DNS names and IP addresses as Subject Alternative Names (SANs) to your
TLS certificate. This method is useful when you have configured a DNS name for your gateway
host.

Important

If you are using the IPDetector component, remove it from your deployment before
proceeding. The IPDetector component overrides manual endpoint configurations.

To manually configure endpoints

1. Navigate to the AWS IoT SiteWise console.

2. In the left navigation, choose Edge gateways in the Edge section.

3. Choose the gateway to configure.

MQTT-enabled, V3 gateways 170

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

4. In the Edge gateway configuration section, choose your Greengrass core device url. The
core device's page appears.

5. Choose the Client devices tab.

6. Choose Manage endpoints.

7. In the Manage endpoints dialog box, enter the DNS name(s) and any IP addresses you want
to add as SANs. Use port 8883.

8. Choose Update.

The broker's TLS server certificate updates automatically to include your new endpoints.

To verify the TLS server certificate update using Linux

1. Start a shell session on your gateway host.

docker exec emqx openssl x509 -in ./data/cert.pem -text -noout | grep -A1
 "Subject Alternative Name"

2. The command returns an output similar to the following:

X509v3 Subject Alternative Name:
DNS:endpoint_you_added, DNS:localhost

3. Verify that your endpoint appears in the list of SANs.

To verify the TLS server certificate update using Windows

1. Start a shell session on your gateway host.

(Get-PfxCertificate -FilePath "C:\greengrass\v2\work
\aws.greengrass.clientdevices.mqtt.EMQX\v2\data\cert.pem").Extensions | Where-
Object { $_.Oid.FriendlyName -eq "Subject Alternative Name" } | ForEach-Object
 { "Subject Alternative Name:", ($_.Format($true) -split "`n")[0..1] }

2. The command returns an output similar to the following:

Subject Alternative Name:
DNS Name=your-endpoint
DNS Name=localhost

MQTT-enabled, V3 gateways 171

AWS IoT SiteWise User Guide

3. Verify that the endpoint you added is in the list of SANs.

Test the EMQX broker connection on AWS IoT SiteWise Edge

After configuring your EMQX broker with TLS certificates and authentication credentials, it's
important to verify that your setup works correctly. Testing the connection helps ensure that
your security configurations are properly implemented and that clients can successfully establish
encrypted connections to the broker. This section demonstrates how to test your broker connection
using the Mosquitto command line interface (CLI) client, a widely-used MQTT client tool that
supports TLS encryption and authentication.

Use Mosquitto CLI client to test the EMQX broker connection

In this step we will use the mosquitto CLI client to test our setup and make sure we can connect
successfully to the broker using the username and password we created earlier. To get the
BrokerCoreDeviceCA.pem follow steps under Step 3: Setting up TLS.

mosquitto_sub -h hostname|ip address \
 -p 8883 \
 -t "#" \
 -q 1 \
 -u username -P password \
 --cafile BrokerCoreDeviceCA.pem

Note

You may get an SSL:verify error if the hostname/IP address you are connecting to does
not match the Subject Alternative Name (SAN) that is on the CA cert you're passing to the
client. See "Adding custom DNS names/IP addresses to the TLS server cert" under Step 3:
Setting up TLS for how to get a certificate with the correct SAN.

At this point, all users have access to publish and subscribe to all topics on the broker. Proceed to
Set up authorization rules for AWS IoT SiteWise Edge in EMQX.

Use your own CA

AWS IoT Greengrass outlines how to configure your own client device auth component
to use your own certificate authority (CA). The client device auth component

MQTT-enabled, V3 gateways 172

AWS IoT SiteWise User Guide

(aws.greengrass.clientdevices.Auth) authenticates client devices and authorizes client
device actions. For more information, see Using your own certificate authority in the AWS IoT
Greengrass Version 2 Developer Guide.

To use your own CA, add the aws.greengrass.clientdevices.Auth component to your
deployment so that you can specify a custom configuration.

Open port 8883 for external firewall connections

Linux

In your Linux host firewall rule, add an inbound rule for port 8883 to allow incoming
connections from outside of the gateway host. If there are any firewalls in place, ensure that
incoming TLS connections on port 8883 are allowed.

Windows

In your Microsoft Windows host firewall rule, add an inbound rule for port 8883 to allow
incoming connections from outside of the gateway host. Ensure the rule is an allow rule, of type
port, specifying port 8883. You can configure this according to your network configuration to
allow connections from your external applications to the broker.

Set up authorization rules for AWS IoT SiteWise Edge in EMQX

EMQX supports adding authorization rules based on identifiers such as username, IP address or
client ID. This is useful if you want to limit the number of external applications connecting to
various operations or topics.

Topics

• Configure authorization using the built-in database with Linux

• Configure authorization using the built-in database with Windows

• Update the EMQX deployment configuration for authorization

• Add authorization rules through the EMQX Dashboard for users

Configure authorization using the built-in database with Linux

When you configure authorization rules, there are two configuration choices that depend on your
deployment setup.

MQTT-enabled, V3 gateways 173

https://docs.aws.amazon.com/greengrass/v2/developerguide/connecting-to-mqtt.html#use-your-own-CA

AWS IoT SiteWise User Guide

• Docker – If you're running a standard Docker installation without Litmus Edge, use the Docker
bridge gateway configuration. This is typically the case when you've only deployed AWS IoT
SiteWise components.

• Litmus Edge – If you have Litmus Edge installed on your gateway, use the Litmus Edge network
subnet configuration.

Note

If you initially configure the Docker bridge gateway and later install Litmus Edge,
reconfigure the authorization rules using the Litmus Edge network subnet option to ensure
proper communication between all components.

To add basic authorization rules

1. Verify that the EMQX broker is deployed and running.

2. Start a shell session on your gateway host.

Docker without Litmus Edge

For standard Docker installation without Litmus Edge, run:

/greengrass/v2/bin/swe-emqx-cli acl init

Litmus Edge network subnet

If you're using Litmus Edge, determine the Litmus Edge network subnet IP:

docker network inspect LitmusNetwork | grep IPAM -A9

Note the Subnet value from the output and run the following command. Replace
litmus_subnet_ip with the Subnet value from the previous step.

/greengrass/v2/bin/swe-emqx-cli acl init litmus_subnet_ip

MQTT-enabled, V3 gateways 174

AWS IoT SiteWise User Guide

The tool automatically creates and applies authorization rules to allow connections from the
provided IP address to the broker. It allows access to all topics. This includes the IoT SiteWise
OPC UA collector and IoT SiteWise publisher.

3. Proceed to Update the EMQX deployment configuration for authorization.

Configure authorization using the built-in database with Windows

This section covers configuring authorization rules using the built-in database for Windows
deployments.

To add basic authorization rules

1. Verify that the EMQX broker is deployed and running.

2. Run the AWS IoT SiteWise EMQX CLI tool:

C:\greengrass\v2\bin\swe-emqx-cli.ps1 acl init

The tool automatically creates and applies ACL rules allowing connections from localhost
(127.0.0.1) to the broker. It allows access to all topics. This includes the IoT SiteWise OPC UA
collector and IoT SiteWise publisher.

3. Proceed to Update the EMQX deployment configuration for authorization.

Update the EMQX deployment configuration for authorization

To update the EMQX deployment configuration for authorization

1. Navigate to the AWS IoT SiteWise console.

2. In the left navigation, choose Edge gateways in the Edge section.

3. Choose the gateway to configure.

4. In the Edge gateway configuration section, copy your Greengrass core device value. Save it
for later use.

5. Open the AWS IoT console.

6. On the left navigation, under the Manage section, choose Greengrass devices, then
Deployments.

MQTT-enabled, V3 gateways 175

https://console.aws.amazon.com/iotsitewise/
https://console.aws.amazon.com/iot/

AWS IoT SiteWise User Guide

7. Find the core device value you saved earlier and choose that link to open the deployment.

8. Choose the Actions dropdown button, then Revise.

9. Read the message that appears and then choose Revise deployment. The Specify target page
appears.

10. Choose Next until you reach the Configure components step.

11. Select the aws.greengrass.clientdevices.mqtt.EMQX radio button.

12. Choose the Configure component button. A configuration page appears for the component.

13. Under Configuration update, choose Reset to default configuration for component version:
2.*.*.

14. Paste the following content in the Configuration to merge section based on your OS.

Linux

{
 "emqxConfig": {
 "authorization": {
 "no_match": "deny",
 "sources": [
 {
 "type": "built_in_database"
 },
 {
 "type": "file",
 "path": "data/authz/acl.conf"
 }
]
 },
 "listeners": {
 "tcp": {
 "default": {
 "enabled": true,
 "enable_authn": false
 }
 },
 "ssl": {
 "default": {
 "enabled": true,
 "enable_authn": true,
 "ssl_options": {
 "verify": "verify_none",

MQTT-enabled, V3 gateways 176

AWS IoT SiteWise User Guide

 "fail_if_no_peer_cert": false
 }
 }
 }
 },
 "authentication": {
 "enable": true,
 "backend": "built_in_database",
 "mechanism": "password_based",
 "password_hash_algorithm": {
 "iterations": 210000,
 "mac_fun": "sha512",
 "name": "pbkdf2"
 },
 "user_id_type": "username"
 },
 "dashboard": {
 "listeners": {
 "http": {
 "bind": 18083
 }
 }
 }
 },
 "authMode": "bypass",
 "dockerOptions": "-p 8883:8883 -p 127.0.0.1:1883:1883
 -p 127.0.0.1:18083:18083 -v emqx-data:/opt/emqx/data -e
 EMQX_NODE__NAME=emqx@local",
 "requiresPrivilege": "true"
}

Windows

{
 "emqxConfig": {
 "authorization": {
 "no_match": "deny",
 "sources": [
 {
 "type": "built_in_database"
 },
 {
 "type": "file",

MQTT-enabled, V3 gateways 177

AWS IoT SiteWise User Guide

 "path": "C:\\greengrass\\v2\\work\
\aws.greengrass.clientdevices.mqtt.EMQX\\v2\\data\\authz\\acl.conf"
 }
]
 },
 "listeners": {
 "tcp": {
 "default": {
 "enabled": true,
 "enable_authn": false
 }
 },
 "ssl": {
 "default": {
 "enabled": true,
 "enable_authn": true,
 "ssl_options": {
 "verify": "verify_none",
 "fail_if_no_peer_cert": false
 }
 }
 }
 },
 "authentication": {
 "enable": true,
 "backend": "built_in_database",
 "mechanism": "password_based",
 "password_hash_algorithm": {
 "iterations": 210000,
 "mac_fun": "sha512",
 "name": "pbkdf2"
 },
 "user_id_type": "username"
 },
 "dashboard": {
 "listeners": {
 "http": {
 "bind": 18083
 }
 }
 }
 },
 "authMode": "bypass",
 "requiresPrivilege": "true"

MQTT-enabled, V3 gateways 178

AWS IoT SiteWise User Guide

}

15. Choose Confirm.

16. Choose Next until you reach the Review step.

17. Choose Deploy.

Note

From this point onward, you can't edit the ACL file to update the authorization rules.
Alternatively, you can proceed to Add authorization rules through the EMQX Dashboard for
users after a successful deployment.

Add authorization rules through the EMQX Dashboard for users

You can add or update authorization rules using the EMQX Dashboard or the AWS IoT SiteWise
EMQX CLI tool. The AWS IoT SiteWise EMQX CLI tool manages authorization using EMQX's built-in
database.

Note

Adding authorization rules is an advanced configuration step that requires understanding
of MQTT topic patterns and access control. For more information about creating
authorization rules using EMQX's built-in database, see Use Built-in Database in the EMQX
Docs.

Note

The EMQX-related instructions provided are for reference only. As EMQX documentation
and features may change over time, and we do not maintain their documentation, we
recommend consulting EMQX's official documentation for the most current information.

EMQX dashboard

This procedure shows how you can add authorization rules on the EMQX dashboard.

MQTT-enabled, V3 gateways 179

https://docs.emqx.com/en/emqx/latest/access-control/authz/mnesia.html
https://docs.emqx.com/en/emqx/latest/

AWS IoT SiteWise User Guide

The EMQX dashboard is only accessible from within the gateway host. If you try to connect from
outside of the gateway host, you can't access the dashboard.

To add authorization rules using the EMQX Dashboard

1. Ensure that you are within the gateway host.

2. Open a browser window and visit http://localhost:18083/.

3. Login to the the EMQX dashboard. This procedure assumes that you've changed your
default login credentials to something of your choosing. For more information on intial
setup, see Enable username and password authentication.

4. Choose the shield icon, then Authorization from the dropdown menu.

5. Choose the Permissions button on the Built-in Database row.

6. In the Built-in Database authorization section, add or update the user authorization rules
for your business needs. For more guidance on creating rules, see the Use Built-in Database
section in the EMQX Docs.

AWS IoT SiteWise CLI tool using Linux

To manage authorization rules using the AWS IoT SiteWise EMQX CLI tool in Linux:

• Add authorization rules for a user using the following format:

/greengrass/v2/bin/swe-emqx-cli auth add your-username your-action your-
permission your-topic [your-action-permission-topic]

Example Add authorization rules for a user

This example shows how to add rules for a user named system1:

/greengrass/v2/bin/swe-emqx-cli auth add system1 \
 publish allow "sensors/#" \
 subscribe allow "control/#" \
 all deny "#"

Example : View authorization rules for a user

To view authorization rules for the system1 users, run the following command:

MQTT-enabled, V3 gateways 180

http://localhost:18083/
https://docs.emqx.com/en/emqx/latest/access-control/authz/mnesia.html

AWS IoT SiteWise User Guide

/greengrass/v2/bin/swe-emqx-cli auth list system1

Example : View all existing authorization rules

To view all of the authorization rules you currently have, run the following command:

/greengrass/v2/bin/swe-emqx-cli auth list

Example : Delete all authorization rules for a user

To delete all of the authorization rules applied to a particular user, run the following command:

/greengrass/v2/bin/swe-emqx-cli auth delete system1

You are prompted to confirm the deletion.

AWS IoT SiteWise CLI tool using Windows

To manage authorization rules using the AWS IoT SiteWise EMQX CLI tool in Windows
PowerShell:

• Add authorization rules for a user using the following format:

C:\greengrass\v2\bin\swe-emqx-cli.ps1 auth add your-username your-action your-
permission your-topic [your-action-permission-topic]

Example : Add authorization rules for a user

This example shows how to add rules for a user named system1:

C:\greengrass\v2\bin\swe-emqx-cli.ps1 auth add system1 `
 publish allow "sensors/#" `
 subscribe allow "control/#" `
 all deny "#"

Example : View authorization rules for a user

To view authorization rules for the system1 users, run the following command:

MQTT-enabled, V3 gateways 181

AWS IoT SiteWise User Guide

C:\greengrass\v2\bin\swe-emqx-cli.ps1 auth list system1

Example : View all existing authorization rules

To view all of the authorization rules you currently have, run the following command:

C:\greengrass\v2\bin\swe-emqx-cli.ps1 auth list

Example : Delete all authorization rules for a user

To delete all of the authorization rules applied to a particular user, run the following command:

C:\greengrass\v2\bin\swe-emqx-cli.ps1 auth delete system1

You are prompted to confirm the deletion.

Process and visualize data with SiteWise Edge and open-source tools

Configure AWS IoT SiteWise Edge MQTT-enabled gateways with open-source tools for local
processing and visualization to enhance your industrial data management capabilities.

With SiteWise Edge, you can create a local data processing pipeline using external, open-source
tools. Use Node-RED® to store time-series data with InfluxDB®, and monitor operations through
Grafana® dashboards.

Node-RED processes and transforms your data flows, while InfluxDB provides time-series data
storage. Grafana displays your real-time operational data. Use these tools with SiteWise Edge to
synchronize data between your local environment and the AWS Cloud, giving you both immediate
local insights and long-term cloud-based analytics capabilities.

Note

Node-RED®, InfluxDB®, and Grafana® are not vendors or suppliers for SiteWise Edge.

MQTT-enabled, V3 gateways 182

https://nodered.org/
https://www.influxdata.com/lp/influxdb-database/
https://grafana.com/

AWS IoT SiteWise User Guide

Note

In this guide, we're using the open-source version of Grafana for SiteWise Edge as opposed
to the Amazon Managed Grafana service.

Deployment options

You can deploy this solution using one of two approaches. With a Microsoft Windows manual
setup, you control component configuration and integration with your infrastructure. With Linux,
you can use Docker to deploy pre-configured components in containers.

Choose the method that meets your operational requirements.

• Set up open source integrations manually (Windows) – For custom configurations or existing
infrastructure

• Set up open-source integrations with Docker (Linux) – For rapid deployment with pre-configured
components

MQTT-enabled, V3 gateways 183

https://grafana.com/
https://docs.aws.amazon.com/grafana/latest/userguide/what-is-Amazon-Managed-Service-Grafana.html

AWS IoT SiteWise User Guide

Wind farm example overview

This guide uses a wind farm example to demonstrate how you can monitor wind speed for a
turbine on a wind farm. This practical scenario illustrates common industrial monitoring needs
where both local and cloud-based visibility are valuable for operational efficiency.

With this integration, you can:

• Collect data from industrial equipment using an AWS IoT SiteWise Edge gateway

• Process data locally with Node-RED, InfluxDB, and Grafana

• Store data locally using InfluxDB

• Monitor data in real time using Grafana dashboards

Throughout this guide, we use the example of a windfarm. We use Node-RED to simulate a turbine
that generates wind speed data. Node-RED translates the data payload, publishes the data to
the SiteWise Edge MQTT broker, subscribes to receive data from the broker, and stores the data
locally in InfluxDB. This approach ensures that all of the operational data is available both locally
for immediate access and in the cloud for further analytics. By implementing this pattern, you
gain resilience against network disruptions while maintaining the ability to perform advanced
analytics in the AWS Cloud. Grafana connects to InfluxDB for local monitoring, providing operators
with real-time visibility into metrics without cloud dependencies. A SiteWise Edge MQTT-enabled
gateway connects to the same MQTT broker to send data to AWS IoT SiteWise, creating a bridge
between your edge operations and cloud-based services.

You can use your own data and configurations to create a similar workflow tailored to your
specific industrial requirements, whether you're monitoring manufacturing equipment, utility
infrastructure, or other industrial assets.

Requirements for open-source integrations

Before implementing open-source integrations with SiteWise Edge, ensure your environment
meets the necessary requirements.

• Hardware requirements - Your gateway hardware must meet the requirements for SiteWise
Edge gateways. For more information, see AWS IoT SiteWise Edge self-hosted gateway
requirements for MQTT-enabled, V3 gateways and Requirements for the AWS IoT SiteWise Edge
application.

MQTT-enabled, V3 gateways 184

AWS IoT SiteWise User Guide

Important

When deploying additional open-source components, ensure your hardware meets the
requirements for InfluxDB, Node-RED, and Grafana.

• Your network configuration must support both local communication between components and
cloud connectivity for SiteWise Edge.

• All services must run on the same host.

Security considerations

We recommend that you encrypt all communications between components, especially when
accessing interfaces from non-local networks. Implement proper access controls for each
component and follow AWS best practices for AWS IoT SiteWise Edge gateway configuration and
AWS account security.

Development environment

This guide demonstrates Node-RED, InfluxDB, and Grafana running and accessed locally on a
gateway host. For production deployments that require external access, implement security
measures including TLS encryption, authentication, and authorization. Follow each application's
security best practices.

Third-party software

This solution uses third-party software not maintained by AWS, including InfluxDB, Node-RED,
Grafana, and the node-red-contrib-influxdb plugin. Before deployment, ensure these
components comply with your organization's security requirements, compliance standards, and
governance policies.

Important

This guide references and uses third-party software not owned or maintained by AWS.
Before implementation, ensure that all components meet your security, compliance, and
governance requirements. Keep all software updated with the latest security patches and
follow best practices for securing your edge deployment.
InfluxDB, Node-RED, Grafana are not vendors or suppliers for SiteWise Edge.

MQTT-enabled, V3 gateways 185

https://docs.influxdata.com/influxdb/v2/install/
https://nodered.org/docs/getting-started/
https://grafana.com/docs/grafana/latest/setup-grafana/installation/

AWS IoT SiteWise User Guide

Other considerations

Consider these additional factors when implementing open-source integrations with SiteWise
Edge.

• Use the latest versions of all services, tools, and components.

• Filter and aggregate data locally before cloud transmission to reduce AWS IoT SiteWise data
ingestion costs. Configure appropriate data retention periods in InfluxDB and properly size your
gateway hardware. For more information, see AWS IoT SiteWise pricing.

• Implement regular backup procedures for all data.

• Monitor resource usage on your gateway and configure appropriate resource limits for each
component. Implement data retention policies in InfluxDB to manage disk usage.

Set up open source integrations manually (Windows)

Use this guide to manually create a time series bucket for wind speed data that connects with
Grafana® and Node-RED®.

Manually install and configure Node-RED, InfluxDB®, and Grafana on Microsoft Windows to control
your deployment configuration. You can store and manage time series data from your devices
using InfluxDB.

Manual setup prerequisites

Before you begin, complete these requirements:

Note

Run all services (SiteWise Edge, InfluxDB, Node-RED, and Grafana) on the same host.

• Install an MQTT-enabled, V3 gateway. For more information, see MQTT-enabled, V3 Gateways
for AWS IoT SiteWise Edge.

• Install and run these services locally:

• InfluxDB OSS v2. For installation steps, see Install InfluxDB.

• Node-RED. For installation steps, see Install Node-RED locally.

• Grafana. For installation steps, see Install Grafana.

MQTT-enabled, V3 gateways 186

https://aws.amazon.com/iot-sitewise/pricing/
https://docs.influxdata.com/influxdb/v2/install/
https://nodered.org/docs/getting-started/local
https://grafana.com/docs/grafana/latest/setup-grafana/installation/

AWS IoT SiteWise User Guide

Set up local storage with InfluxDB

With InfluxDB®, you can store time series data from your devices locally. The purpose of local
storage capability is to maintain operational visibility during network disruptions and reduce
latency for time-critical applications. You can perform analysis and visualization at the edge while
still having the option to selectively forward data to the cloud.

In this section, you create a time series bucket for turbine wind speed data and generate an API
token for Grafana® and Node-RED® connectivity. The InfluxDB bucket serves as a dedicated storage
container for your time series data, similar to a database in traditional systems. The API token
enables secure programmatic access to your data.

To set up InfluxDB

1. After completing the prerequisite steps and ensuring all tools are running on the same host,
open your web browser and go to http://127.0.0.1:8086.

2. (Optional) Enable TLS encryption for enhanced security. For more information, see Enable TLS
encryption in the InfluxData Documentation.

3. Create a time series InfluxDB bucket to store data from Node-RED. The bucket will serve as a
dedicated container for your wind farm data, allowing you to organize and manage retention
policies specific to this dataset. For more information, see Manage buckets in the InfluxData
Documentation.

4. (Optional) Configure the data retention period for your edge location. Setting appropriate
retention periods helps manage storage resources efficiently by automatically removing older
data that's no longer needed for local operations.

For information about data retention, see Data retention in InfluxDB in the InfluxData
Documentation.

5. Generate an API token for the bucket. This token will enable secure communication between
InfluxDB and other components like Node-RED and Grafana. This way, only authorized services
can read from or write to your data store. For more information, see Create a token in the
InfluxData Documentation.

After you complete these steps, you can store time series data in your InfluxDB instance, providing
a foundation for local data persistence and analysis in your edge environment.

MQTT-enabled, V3 gateways 187

http://127.0.0.1:8086
https://docs.influxdata.com/influxdb/v2/admin/security/enable-tls/
https://docs.influxdata.com/influxdb/v2/admin/security/enable-tls/
https://docs.influxdata.com/influxdb/v2/admin/buckets/
https://docs.influxdata.com/influxdb/v2/reference/internals/data-retention/
https://docs.influxdata.com/influxdb/cloud/admin/tokens/create-token/

AWS IoT SiteWise User Guide

Configure Node-RED flows for AWS IoT SiteWise data integration

With Node-RED®, you can implement two flows to manage data between your devices and AWS
IoT SiteWise. These flows work together to create a comprehensive data management solution that
addresses both local and cloud data flow.

• Data publish flow – Publishes to the cloud. The data publish flow sends data to AWS IoT
SiteWise. This flow simulates a turbine device by generating sensor data, translating it to AWS
IoT SiteWise format, and publishing to the SiteWise Edge MQTT broker. This enables you to
leverage AWS IoT SiteWise's cloud capabilities for storage, analytics, and integration with other
AWS services.

For more information, see Configure the data publish flow.

• Data retention flow – Stores data at the edge. The data retention flow subscribes to the
SiteWise Edge MQTT broker to receive data, translate it into InfluxDB® format, and stores it
locally for monitoring. This local storage provides immediate access to operational data, reduces
latency for time-critical applications, and ensures continuity during network disruptions.

For more information, see Configure the data retention flow.

These two flows work together to ensure data is both sent to AWS IoT SiteWise and stored locally
for immediate access.

To access your Node-RED console, go to http://127.0.0.1:1880. For information about enabling
TLS, see Enable TLS encryption.

Configure the data publish flow

The data publish flow uses three nodes to create a pipeline that sends your industrial data to the
cloud. This flow is essential for enabling cloud-based analytics, long-term storage, and integration
with other AWS services. First, simulated device data is sent to the SiteWise Edge MQTT broker. The
gateway picks up the data from the broker which allows for transmission to the AWS IoT SiteWise
cloud, where you can leverage powerful analytics and visualization capabilities.

• Data input - Receives device data from your industrial equipment or simulators

• Data translator for AWS IoT SiteWise - Translates data to AWS IoT SiteWise format to ensure
compatibility with the SiteWise Edge gateway

• MQTT publisher - Publishes data to SiteWise Edge MQTT broker, making it available to both
local and cloud consumers

MQTT-enabled, V3 gateways 188

http://127.0.0.1:1880
https://docs.influxdata.com/influxdb/v2/admin/security/enable-tls/

AWS IoT SiteWise User Guide

Configure the data input node

In this example, the data input node uses a simulated wind turbine device that generates wind
speed data. This node serves as the entry point for your industrial data, whether it comes
from simulated sources (as in our example) or from actual industrial equipment in production
environments.

We use a custom JSON format for the data payload to provide a standardized structure that
works efficiently with both local processing tools and the AWS IoT SiteWise cloud service. This
format includes essential metadata like timestamps and quality indicators alongside the actual
measurement values, enabling comprehensive data management and quality tracking throughout
your pipeline. Import the inject node to receive simulated data in this standardized JSON format
with timestamps, quality indicators, and values.

For more information on the Node-RED inject node, see the Inject section in the Node-RED
Documentation.

The turbine simulator generates wind speed data every second in this standardized JSON format:

Example : Turbine data payload

{
 name: string, // Property name/identifier
 timestamp: number, // Epoch time in nanoseconds
 quality: "GOOD" | "UNCERTAIN" | "BAD",
 value: number | string | boolean
}

This format provides several benefits:

MQTT-enabled, V3 gateways 189

https://nodered.org/docs/user-guide/nodes#inject

AWS IoT SiteWise User Guide

• The name field identifies the specific property or measurement, allowing you to track multiple
data points from the same device

• The timestamp in nanoseconds ensures precise time tracking for accurate historical analysis

• The quality indicator helps you filter and manage data based on its reliability

• The flexible value field supports different data types to accommodate various sensor outputs

Example : Inject node of a turbine simulator

[
 {
 "id": "string",
 "type": "inject",
 "z": "string",
 "name": "Turbine Simulator",
 "props": [
 {
 "p": "payload.timestamp",
 "v": "",
 "vt": "date"
 },
 {
 "p": "payload.quality",
 "v": "GOOD",
 "vt": "str"
 },
 {
 "p": "payload.value",
 "v": "$random()",
 "vt": "jsonata"
 },
 {
 "p": "payload.name",
 "v": "/Renton/WindFarm/Turbine/WindSpeed",
 "vt": "str"
 }
],
 "repeat": "1",
 "crontab": "",
 "once": false,
 "onceDelay": "",
 "topic": "",

MQTT-enabled, V3 gateways 190

AWS IoT SiteWise User Guide

 "x": 270,
 "y": 200,
 "wires": [
 [
 "string"
]
]
 }
]

Configure a node for data translation

The SiteWise Edge gateway requires data in a specific format to ensure compatibility with AWS
IoT SiteWise cloud. The translator node is an important component that converts your input
data to the required AWS IoT SiteWise payload format. This translation step ensures that your
industrial data can be properly processed, stored, and later analyzed in the AWS IoT SiteWise cloud
environment.

By standardizing the data format at this stage, you enable integration between your edge devices
and the cloud service where you can use asset modeling, analytics, and visualization capabilities.
Use this structure:

Example : Payload structure for SiteWise Edge data parsing

{
 "propertyAlias": "string",
 "propertyValues": [
 {
 "value": {
 "booleanValue": boolean,
 "doubleValue": number,
 "integerValue": number,
 "stringValue": "string"
 },
 "timestamp": {
 "timeInSeconds": number,
 "offsetInNanos": number
 },
 "quality": "GOOD" | "UNCERTAIN" | "BAD",
 }]
}

MQTT-enabled, V3 gateways 191

AWS IoT SiteWise User Guide

Note

Match the propertyAlias to your MQTT topic hierarchy (for example, /Renton/
WindFarm/Turbine/WindSpeed). This ensures that your data is properly associated with
the correct asset property in AWS IoT SiteWise. For more information, see the "Data stream
alias" concept in AWS IoT SiteWise concepts.

1. Import the example function node for AWS IoT SiteWise payload translation. This function
handles the conversion from your standardized input format to the AWS IoT SiteWise-
compatible format, ensuring proper timestamp formatting, quality indicators, and value
typing.

[
 {
 "id": "string",
 "type": "function",
 "z": "string",
 "name": "Translate to SiteWise payload",
 "func": "let input = msg.payload;\nlet output = {};\n
\noutput[\"propertyAlias\"] = input.name;\n\nlet propertyVal = {}\n\nlet
 timeInSeconds = Math.floor(input.timestamp / 1000);\nlet offsetInNanos =
 (input.timestamp % 1000) * 1000000;\n\npropertyVal[\"timestamp\"] = {\n
 \"timeInSeconds\": timeInSeconds,\n \"offsetInNanos\": offsetInNanos,\n};
\n\npropertyVal[\"quality\"] = input.quality\n\nlet typeNameConverter = {\n
 \"number\": (x) => Number.isInteger(x) ? \"integerValue\" : \"doubleValue
\",\n \"boolean\": (x) => \"booleanValue\",\n \"string\": (x) =>
 \"stringValue\", \n}\nlet typeName = typeNameConverter[typeof input.value]
(input.value)\npropertyVal[\"value\"] = {}\npropertyVal[\"value\"][typeName]
 = input.value;\n\noutput[\"propertyValues\"] = [propertyVal]\n\nreturn {\n
 payload: JSON.stringify(output)\n};",
 "outputs": 1,
 "timeout": "",
 "noerr": 0,
 "initialize": "",
 "finalize": "",
 "libs": [],
 "x": 530,
 "y": 200,
 "wires": [
 [

MQTT-enabled, V3 gateways 192

AWS IoT SiteWise User Guide

 "string"
]
]
 }
]

2. Verify that the JavaScript code translates wind speed data correctly. The function performs
several important tasks:

• Extracts the property name from the input and sets it as the propertyAlias

• Converts the timestamp from milliseconds to the required seconds and nanoseconds format

• Preserves the quality indicator for data reliability tracking

• Automatically detects the value type and formats it according to AWS IoT SiteWise
requirements

3. Connect the node to your flow, linking it between the data input node and the MQTT
publisher.

For guidance on writing a function specific to your business needs, see Writing Functions in the
Node-RED Documentation

Configure the MQTT publisher

After translation, the data is ready for publication to the SiteWise Edge MQTT broker.

Configure the MQTT publisher with these settings to send data to the SiteWise Edge MQTT broker:

To import the MQTT out node

1. Import an MQTT out configuration node using "type": "mqtt out". MQTT out nodes let
you share a broker's configuration.

2. Enter key-value pairs for information relevant to MQTT broker connection and message
routing.

Import the example mqtt out node.

Example

[
 {

MQTT-enabled, V3 gateways 193

https://nodered.org/docs/user-guide/writing-functions

AWS IoT SiteWise User Guide

 "id": "string",
 "type": "mqtt out",
 "z": "string",
 "name": "Publish to MQTT broker",
 "topic": "/Renton/WindFarm/Turbine/WindSpeed",
 "qos": "1",
 "retain": "",
 "respTopic": "",
 "contentType": "",
 "userProps": "",
 "correl": "",
 "expiry": "",
 "broker": "string",
 "x": 830,
 "y": 200,
 "wires": []
 },
 {
 "id": "string",
 "type": "mqtt-broker",
 "name": "emqx",
 "broker": "127.0.0.1",
 "port": "1883",
 "clientid": "",
 "autoConnect": true,
 "usetls": false,
 "protocolVersion": "5",
 "keepalive": 15,
 "cleansession": true,
 "autoUnsubscribe": true,
 "birthTopic": "",
 "birthQos": "0",
 "birthPayload": "",
 "birthMsg": {},
 "closeTopic": "",
 "closePayload": "",
 "closeMsg": {},
 "willTopic": "",
 "willQos": "0",
 "willPayload": "",
 "willMsg": {},
 "userProps": "",
 "sessionExpiry": ""
 }

MQTT-enabled, V3 gateways 194

AWS IoT SiteWise User Guide

]

The example MQTT out node creates the MQTT connection with the following information:

• Server: 127.0.0.1

• Port: 1883

• Protocol: MQTT V5

Then, the MQTT out node configures message routing with the following information:

• Topic: /Renton/WindFarm/Turbine/WindSpeed

• QoS: 1

Deploy and verify the nodes

After configuring the three data publish flow nodes, follow these steps to deploy the flow and
verify that data is being transmitted correctly to AWS IoT SiteWise

To deploy and verify connections

1. Connect the three nodes as shown in the data publish flow.

2. Choose Deploy to apply all node connection changes.

3. Navigate to the AWS IoT SiteWise console and choose Data streams.

4. Ensure Alias prefix is selected in the dropdown menu. Then, search for the /Renton/
WindFarm/Turbine/WindSpeed alias.

MQTT-enabled, V3 gateways 195

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

If you see the correct alias in your search, you have deployed the flow and verified data
transmission.

Configure the data retention flow

The data retention flow is can be used to maintain operational visibility at the edge. This is useful
during network disruptions or when you need immediate access to your data. This flow subscribes
to the MQTT broker to receive device data, converts it to InfluxDB® format, and stores it locally. By
implementing this flow, you create a resilient local data store that operators can access without
cloud dependencies, enabling real-time monitoring and decision-making at the edge.

The flow consists of three key components working together to ensure your data is properly
captured and stored:

• MQTT subscription client - Receives data from the broker, ensuring you capture all relevant
industrial data

• InfluxDB translator - Converts AWS IoT SiteWise payload to InfluxDB format, preparing the data
for efficient time-series storage

• InfluxDB writer - Handles local storage, ensuring data persistence and availability for local
applications

Set up the MQTT subscription client

• Configure the MQTT subscription client in Node-RED to receive data from the MQTT EMQX
broker in AWS IoT SiteWise by importing the example below.

MQTT-enabled, V3 gateways 196

AWS IoT SiteWise User Guide

Example : MQTT in node

[
 {
 "id": "string",
 "type": "mqtt in",
 "z": "string",
 "name": "Subscribe to MQTT broker",
 "topic": "/Renton/WindFarm/Turbine/WindSpeed",
 "qos": "1",
 "datatype": "auto-detect",
 "broker": "string",
 "nl": false,
 "rap": true,
 "rh": 0,
 "inputs": 0,
 "x": 290,
 "y": 340,
 "wires": [
 [
 "string"
]
]
 },
 {
 "id": "string",
 "type": "mqtt-broker",
 "name": "emqx",
 "broker": "127.0.0.1",
 "port": "1883",
 "clientid": "",
 "autoConnect": true,
 "usetls": false,
 "protocolVersion": "5",
 "keepalive": 15,
 "cleansession": true,
 "autoUnsubscribe": true,
 "birthTopic": "",
 "birthQos": "0",
 "birthPayload": "",
 "birthMsg": {},
 "closeTopic": "",
 "closePayload": "",

MQTT-enabled, V3 gateways 197

AWS IoT SiteWise User Guide

 "closeMsg": {},
 "willTopic": "",
 "willQos": "0",
 "willPayload": "",
 "willMsg": {},
 "userProps": "",
 "sessionExpiry": ""
 }
]

This subscription ensures that all relevant data published to the broker is captured for local
storage, providing a complete record of your industrial operations. The node uses the same
MQTT connection parameters as the Configure the MQTT publisher section, with the following
subscription settings:

• Topic – /Renton/WindFarm/Turbine/WindSpeed

• QoS – 1

For more information, see Connect to an MQTT Broker in the Node-RED Documentation.

Configure the InfluxDB translator

InfluxDB organizes data using tags for indexing and fields for values. This organization optimizes
query performance and storage efficiency for time-series data. Import the example function
node that contains JavaScript code to convert AWS IoT SiteWise payload to InfluxDB format. The
translator splits the properties into two groups:

• Tags – Quality and name properties for efficient indexing

• Fields – Timestamp (in milliseconds since epoch) and value

Example : Function node of translating to an InfluxDB payload

[
 {
 "id": "string",
 "type": "function",
 "z": "string",
 "name": "Translate to InfluxDB payload",

MQTT-enabled, V3 gateways 198

https://cookbook.nodered.org/mqtt/connect-to-broker
https://docs.influxdata.com/influxdb/v1/concepts/glossary/#tag
https://docs.influxdata.com/influxdb/v1/concepts/glossary/#field

AWS IoT SiteWise User Guide

 "func": "let data = msg.payload;\n\nlet timeInSeconds =
 data.propertyValues[0].timestamp.timeInSeconds;\nlet offsetInNanos =
 data.propertyValues[0].timestamp.offsetInNanos;\nlet timestampInMilliseconds =
 (timeInSeconds * 1000) + (offsetInNanos / 1000000);\n\nmsg.payload = [\n {\n
 \"timestamp(milliseconds_since_epoch)\": timestampInMilliseconds,\n
 \"value\": data.propertyValues[0].value.doubleValue\n },\n {\n \"name\":
 data.propertyAlias,\n \"quality\": data.propertyValues[0].quality\n }\n]\n
\nreturn msg",
 "outputs": 1,
 "timeout": "",
 "noerr": 0,
 "initialize": "",
 "finalize": "",
 "libs": [],
 "x": 560,
 "y": 340,
 "wires": [
 [
 "string"
]
]
 }
]

For additional configuration options, see the node-red-contrib-influxdb in the Node-RED GitHub
repository.

Set up the InfluxDB writer

The InfluxDB writer node is the final component in your data retention flow, responsible for storing
your industrial data in the local InfluxDB database. This local storage is important for maintaining
operational visibility during network disruptions and providing immediate access to data for time-
critical applications.

1. Install the node-red-contrib-influxdb package through the Manage palette option. This
package provides the necessary nodes for connecting Node-RED with InfluxDB.

2. Add an InfluxDB out node to your flow. This node will handle the actual writing of data to your
InfluxDB database.

3. Configure the server properties to establish a secure connection to your InfluxDB instance:

a. Set Version to 2.0 - This specifies that you're connecting to InfluxDB v2.x, which uses a
different API than earlier versions

MQTT-enabled, V3 gateways 199

https://github.com/mblackstock/node-red-contrib-influxdb

AWS IoT SiteWise User Guide

b. Set URL to http://127.0.0.1:8086 - This points to your local InfluxDB instance

c. Enter your InfluxDB authentication token. This secure token authorizes the connection
to your database. You generated the token during the Set up local storage with InfluxDB
procedure.

4. Specify the storage location parameters to define where and how your data will be stored:

a. Enter your InfluxDB Organization name – The organization is a workspace for a group of
users, where your buckets and dashboards belong. For more information, see Manage
organizations in the InfluxData Documentation.

b. Specify the InfluxDB Bucket (for example, WindFarmData) – The bucket is equivalent to a
database in traditional systems, serving as a container for your time series data

c. Set the InfluxDB Measurement (for example, TurbineData) – The measurement is similar
to a table in relational databases, organizing related data points

Note

Find your organization name in the InfluxDB instance's left sidebar. The organization,
bucket, and measurement concepts are fundamental to InfluxDB's data organization model.
For more information, see the InfluxDB documentation.

Deploy and verify the retention flow

After configuring all components of the data retention flow, you need to deploy and verify that
the system is working correctly. This verification ensures that your industrial data is being properly
stored locally for immediate access and analysis.

1. Connect the three nodes as shown in the data retention flow diagram. This creates a complete
pipeline from data subscription to local storage.

MQTT-enabled, V3 gateways 200

https://docs.influxdata.com/influxdb/v2/admin/organizations/
https://docs.influxdata.com/influxdb/v2/admin/organizations/
https://docs.influxdata.com/influxdb/v2/admin/organizations/

AWS IoT SiteWise User Guide

2. Choose Deploy to apply your changes and activate the flow. This starts the data collection and
storage process.

3. Use the InfluxDB Data Explorer to query and visualize your data. This tool allows you to verify
that data is being properly stored and to create initial visualizations of your time series data.

In the Data Explorer, you should be able to see your wind speed measurements being recorded
over time, confirming that the entire pipeline from data generation to local storage is
functioning correctly.

For more information, see Query in Data Explorer in the InfluxData Documentation.

With both the data publish flow and data retention flow deployed, you now have a complete
system that sends data to the AWS IoT SiteWise cloud while maintaining a local copy for
immediate access and resilience. This dual-path approach ensures that you get the benefits of
cloud-based analytics and storage while maintaining operational visibility at the edge.

Set up Grafana for SiteWise Edge

Grafana® lets you create local real-time monitoring dashboards for your industrial data. By
visualizing the data stored in InfluxDB®, you can provide operators with immediate insights into
equipment performance, process efficiency, and potential issues. This visibility at the edge is
important for time-sensitive operations and maintaining continuity during network disruptions.

Configure the data source

Connecting Grafana to your InfluxDB database creates a powerful visualization layer for your
industrial data. This connection enables real-time monitoring dashboards that operators can use to
make informed decisions without cloud dependencies.

MQTT-enabled, V3 gateways 201

https://docs.influxdata.com/influxdb/v2/query-data/execute-queries/data-explorer/

AWS IoT SiteWise User Guide

1. Access your Grafana instance locally by navigating to http://127.0.0.1:3000 in your browser.
If enabling TLS is required, you can refer to Set up Grafana HTTPS for secure web traffic in the
Grafana Labs Documentation.

2. Add an InfluxDB data source pointing to the InfluxDB time series bucket where Node-RED
writes data. For example, WindFarmData. This connection establishes the link between your
stored data and the visualization platform.

3. For detailed instructions, see Configure the InfluxDB data source in the Grafana Labs
Documentation.

Create a Grafana dashboard for SiteWise Edge data

Creating a dashboard is the final step in building your local monitoring solution. Dashboards
provide visual representations of your industrial data, making it easier to identify trends,
anomalies, and potential issues at a glance.

• Follow the guide to create a dashboard. For more information, see Build your first
dashboard in the Grafana Labs Documentation. This template assumes your bucket is named
WindFarmData and measurement is TurbineData.

You can also use the quick start guide by importing the provided example dashboard template
to quickly create a dashboard with a time series plot for the data that Node-RED generates in
previous section. This template provides a starting point that you can customize to meet your
specific monitoring needs.

{
 "__inputs": [
 {
 "name": "DS_WINDFARM-DEMO",
 "label": "windfarm-demo",
 "description": "",
 "type": "datasource",
 "pluginId": "influxdb",
 "pluginName": "InfluxDB"
 }
],
 "__elements": {},
 "__requires": [
 {
 "type": "grafana",

MQTT-enabled, V3 gateways 202

http://127.0.0.1:3000
https://grafana.com/docs/grafana/latest/setup-grafana/set-up-https/
https://grafana.com/docs/grafana/latest/datasources/influxdb/configure-influxdb-data-source/
https://grafana.com/docs/grafana/latest/getting-started/build-first-dashboard/
https://grafana.com/docs/grafana/latest/getting-started/build-first-dashboard/

AWS IoT SiteWise User Guide

 "id": "grafana",
 "name": "Grafana",
 "version": "11.6.0-pre"
 },
 {
 "type": "datasource",
 "id": "influxdb",
 "name": "InfluxDB",
 "version": "1.0.0"
 },
 {
 "type": "panel",
 "id": "timeseries",
 "name": "Time series",
 "version": ""
 }
],
 "annotations": {
 "list": [
 {
 "builtIn": 1,
 "datasource": {
 "type": "grafana",
 "uid": "-- Grafana --"
 },
 "enable": true,
 "hide": true,
 "iconColor": "rgba(0, 211, 255, 1)",
 "name": "Annotations & Alerts",
 "type": "dashboard"
 }
]
 },
 "editable": true,
 "fiscalYearStartMonth": 0,
 "graphTooltip": 0,
 "id": null,
 "links": [],
 "panels": [
 {
 "datasource": {
 "type": "influxdb",
 "uid": "${DS_WINDFARM-DEMO}"
 },

MQTT-enabled, V3 gateways 203

AWS IoT SiteWise User Guide

 "fieldConfig": {
 "defaults": {
 "color": {
 "mode": "palette-classic"
 },
 "custom": {
 "axisBorderShow": false,
 "axisCenteredZero": false,
 "axisColorMode": "text",
 "axisLabel": "",
 "axisPlacement": "auto",
 "barAlignment": 0,
 "barWidthFactor": 0.6,
 "drawStyle": "line",
 "fillOpacity": 0,
 "gradientMode": "none",
 "hideFrom": {
 "legend": false,
 "tooltip": false,
 "viz": false
 },
 "insertNulls": false,
 "lineInterpolation": "linear",
 "lineWidth": 1,
 "pointSize": 5,
 "scaleDistribution": {
 "type": "linear"
 },
 "showPoints": "auto",
 "spanNulls": false,
 "stacking": {
 "group": "A",
 "mode": "none"
 },
 "thresholdsStyle": {
 "mode": "off"
 }
 },
 "mappings": [],
 "thresholds": {
 "mode": "absolute",
 "steps": [
 {
 "color": "green"

MQTT-enabled, V3 gateways 204

AWS IoT SiteWise User Guide

 },
 {
 "color": "red",
 "value": 80
 }
]
 }
 },
 "overrides": []
 },
 "gridPos": {
 "h": 8,
 "w": 12,
 "x": 0,
 "y": 0
 },
 "id": 1,
 "options": {
 "legend": {
 "calcs": [],
 "displayMode": "list",
 "placement": "bottom",
 "showLegend": true
 },
 "tooltip": {
 "hideZeros": false,
 "mode": "single",
 "sort": "none"
 }
 },
 "pluginVersion": "11.6.0-pre",
 "targets": [
 {
 "datasource": {
 "type": "influxdb",
 "uid": "${DS_WINDFARM-DEMO}"
 },
 "query": "from(bucket: \"WindFarmData\")\n |> range(start:
 v.timeRangeStart, stop: v.timeRangeStop)\n |> filter(fn: (r) => r[\"_measurement
\"] == \"TurbineData\")\n |> filter(fn: (r) => r[\"_field\"] == \"value\")\n
 |> filter(fn: (r) => r[\"name\"] == \"/Renton/WindFarm/Turbine/WindSpeed\")\n
 |> filter(fn: (r) => r[\"quality\"] == \"GOOD\")\n |> aggregateWindow(every:
 v.windowPeriod, fn: mean, createEmpty: false)\n |> yield(name: \"mean\")",
 "refId": "A"

MQTT-enabled, V3 gateways 205

AWS IoT SiteWise User Guide

 }
],
 "title": "Panel Title",
 "type": "timeseries"
 }
],
 "schemaVersion": 41,
 "tags": [],
 "templating": {
 "list": []
 },
 "time": {
 "from": "now-6h",
 "to": "now"
 },
 "timepicker": {},
 "timezone": "browser",
 "title": "demo dashboard",
 "uid": "fejc0t08o6d4wb",
 "version": 1,
 "weekStart": ""
}

Set up open-source integrations with Docker (Linux)

For a streamlined deployment process, you can use Docker to set up Node-RED®, InfluxDB®, and
Grafana® on a Linux environment. This method uses pre-configured containers, allowing for rapid
deployment and easier management of the components.

Docker setup prerequisites

Before you begin, verify that have the following:

• An MQTT-enabled, V3 gateway. For more information, see MQTT-enabled, V3 Gateways for AWS
IoT SiteWise Edge.

• The Docker Compose plugin. For installation steps, see Install the Docker Compose plugin in the
Docker Manuals documentation.

Deploy the services

This deployment runs SiteWise Edge, InfluxDB, Node-RED, and Grafana on the same host.

MQTT-enabled, V3 gateways 206

https://docs.docker.com/compose/install/linux/

AWS IoT SiteWise User Guide

Set up the environment

1. Gain root access:

sudo -i

2. Create a .env file or export these environment variables:

export INFLUXDB_PASSWORD=your-secure-influxdb-password
export INFLUXDB_TOKEN=your-secure-influxdb-token
export GRAFANA_PASSWORD=your-secure-grafana-password

Configure the Docker network

• Create a bridge network using the name SiteWiseEdgeNodeRedDemoNetwork.

docker network create --driver=bridge SiteWiseEdgeNodeRedDemoNetwork

Prepare the Docker Compose file

Copy the contents of the following YAML file to your SiteWise Edge gateway device.

Expand to view the Docker Compose YAML file example

services:
 influxdb:
 image: influxdb:latest
 container_name: influxdb
 ports:
 - "127.0.0.1:8086:8086"
 volumes:
 - influxdb-storage:/.influxdbv2
 environment:
 - DOCKER_INFLUXDB_INIT_MODE=setup
 - DOCKER_INFLUXDB_INIT_USERNAME=admin
 - DOCKER_INFLUXDB_INIT_PASSWORD=${INFLUXDB_PASSWORD}
 - DOCKER_INFLUXDB_INIT_ORG=iot-sitewise-edge
 - DOCKER_INFLUXDB_INIT_BUCKET=WindFarmData
 - DOCKER_INFLUXDB_INIT_RETENTION=0
 - DOCKER_INFLUXDB_INIT_ADMIN_TOKEN=${INFLUXDB_TOKEN}
 networks:

MQTT-enabled, V3 gateways 207

AWS IoT SiteWise User Guide

 - SiteWiseEdgeNodeRedDemoNetwork
 restart: unless-stopped

 grafana:
 image: grafana/grafana:latest
 container_name: grafana
 ports:
 - "127.0.0.1:3000:3000"
 volumes:
 - grafana-storage:/var/lib/grafana
 - ./grafana/provisioning:/etc/grafana/provisioning
 environment:
 - GF_SECURITY_ADMIN_USER=admin
 - GF_SECURITY_ADMIN_PASSWORD=${GRAFANA_PASSWORD}
 - GF_INSTALL_PLUGINS=grafana-clock-panel,grafana-simple-json-datasource
 - GF_PATHS_PROVISIONING=/etc/grafana/provisioning
 - GF_PATHS_CONFIG=/etc/grafana/grafana.ini
 - GF_LOG_LEVEL=info
 configs:
 - source: grafana_datasource
 target: /etc/grafana/provisioning/datasources/influxdb.yaml
 - source: grafana_preload_dashboard_config
 target: /etc/grafana/provisioning/dashboards/dashboard.yml
 - source: grafana_preload_dashboard
 target: /etc/grafana/provisioning/dashboards/demo_dashboard.json
 depends_on:
 - influxdb
 networks:
 - SiteWiseEdgeNodeRedDemoNetwork
 restart: unless-stopped

 nodered:
 build:
 context: .
 dockerfile_inline: |
 FROM nodered/node-red:latest
 RUN npm install node-red-contrib-influxdb
 container_name: nodered
 ports:
 - "127.0.0.1:1880:1880"
 volumes:
 - node_red_data:/data
 environment:
 - NODE_RED_ENABLE_SAFE_MODE=false

MQTT-enabled, V3 gateways 208

AWS IoT SiteWise User Guide

 - NODE_RED_ENABLE_PALETTE_EDIT=true
 - NODE_RED_AUTO_INSTALL_MODULES=true
 configs:
 - source: nodered_flows
 target: /data/flows.json
 - source: nodered_settings
 target: /data/settings.js
 - source: nodered_flows_cred
 target: /data/flows_cred.json
 depends_on:
 - influxdb
 networks:
 - SiteWiseEdgeNodeRedDemoNetwork
 restart: unless-stopped

volumes:
 influxdb-storage:
 grafana-storage:
 node_red_data:

networks:
 SiteWiseEdgeNodeRedDemoNetwork:
 external: true

configs:
 grafana_datasource:
 content: |
 apiVersion: 1
 datasources:
 - name: windfarm-demo
 type: influxdb
 access: proxy
 url: http://influxdb:8086
 jsonData:
 version: Flux
 organization: iot-sitewise-edge
 defaultBucket: WindFarmData
 tlsSkipVerify: true
 secureJsonData:
 token: ${INFLUXDB_TOKEN}
 editable: false

 grafana_preload_dashboard_config:
 content: |

MQTT-enabled, V3 gateways 209

AWS IoT SiteWise User Guide

 apiVersion: 1
 providers:
 - name: "Dashboard provider"
 orgId: 1
 type: file
 options:
 path: /etc/grafana/provisioning/dashboards

 grafana_preload_dashboard:
 content: |
 {
 "annotations": {
 "list": [
 {
 "builtIn": 1,
 "datasource": {
 "type": "grafana",
 "uid": "-- Grafana --"
 },
 "enable": true,
 "hide": true,
 "iconColor": "rgba(0, 211, 255, 1)",
 "name": "Annotations & Alerts",
 "type": "dashboard"
 }
]
 },
 "editable": true,
 "fiscalYearStartMonth": 0,
 "graphTooltip": 0,
 "id": 1,
 "links": [],
 "panels": [
 {
 "datasource": {
 "type": "influxdb",
 "uid": "PEB0DCBF338B3CEB2"
 },
 "fieldConfig": {
 "defaults": {
 "color": {
 "mode": "palette-classic"
 },
 "custom": {

MQTT-enabled, V3 gateways 210

AWS IoT SiteWise User Guide

 "axisBorderShow": false,
 "axisCenteredZero": false,
 "axisColorMode": "text",
 "axisLabel": "",
 "axisPlacement": "auto",
 "barAlignment": 0,
 "barWidthFactor": 0.6,
 "drawStyle": "line",
 "fillOpacity": 0,
 "gradientMode": "none",
 "hideFrom": {
 "legend": false,
 "tooltip": false,
 "viz": false
 },
 "insertNulls": false,
 "lineInterpolation": "linear",
 "lineWidth": 1,
 "pointSize": 5,
 "scaleDistribution": {
 "type": "linear"
 },
 "showPoints": "auto",
 "spanNulls": false,
 "stacking": {
 "group": "A",
 "mode": "none"
 },
 "thresholdsStyle": {
 "mode": "off"
 }
 },
 "mappings": [],
 "thresholds": {
 "mode": "absolute",
 "steps": [
 {
 "color": "green"
 },
 {
 "color": "red",
 "value": 80
 }
]

MQTT-enabled, V3 gateways 211

AWS IoT SiteWise User Guide

 }
 },
 "overrides": []
 },
 "gridPos": {
 "h": 8,
 "w": 12,
 "x": 0,
 "y": 0
 },
 "id": 1,
 "options": {
 "legend": {
 "calcs": [],
 "displayMode": "list",
 "placement": "bottom",
 "showLegend": true
 },
 "tooltip": {
 "hideZeros": false,
 "mode": "single",
 "sort": "none"
 }
 },
 "pluginVersion": "11.6.0",
 "targets": [
 {
 "datasource": {
 "type": "influxdb",
 "uid": "PEB0DCBF338B3CEB2"
 },
 "query": "from(bucket: \"WindFarmData\")\n |> range(start:
 v.timeRangeStart, stop: v.timeRangeStop)\n |> filter(fn: (r) => r[\"_measurement
\"] == \"TurbineData\")\n |> filter(fn: (r) => r[\"_field\"] == \"value\")\n
 |> filter(fn: (r) => r[\"name\"] == \"/Renton/WindFarm/Turbine/WindSpeed\")\n
 |> filter(fn: (r) => r[\"quality\"] == \"GOOD\")\n |> aggregateWindow(every:
 v.windowPeriod, fn: mean, createEmpty: false)\n |> yield(name: \"mean\")",
 "refId": "A"
 }
],
 "title": "Wind Speed",
 "type": "timeseries"
 }
],

MQTT-enabled, V3 gateways 212

AWS IoT SiteWise User Guide

 "preload": false,
 "schemaVersion": 41,
 "tags": [],
 "templating": {
 "list": []
 },
 "time": {
 "from": "now-6h",
 "to": "now"
 },
 "timepicker": {},
 "timezone": "browser",
 "title": "Demo Dashboard",
 "uid": "eejtureqjo9a8c",
 "version": 2
 }

 nodered_flows:
 content: |
 [
 {
 "id": "95fce448fdd43b47",
 "type": "tab",
 "label": "Demo Flow",
 "disabled": false,
 "info": ""
 },
 {
 "id": "5f63740b66af3386",
 "type": "mqtt out",
 "z": "95fce448fdd43b47",
 "name": "Publish to MQTT broker",
 "topic": "/Renton/WindFarm/Turbine/WindSpeed",
 "qos": "1",
 "retain": "",
 "respTopic": "",
 "contentType": "",
 "userProps": "",
 "correl": "",
 "expiry": "",
 "broker": "5744207557fa19be",
 "x": 830,
 "y": 200,
 "wires": []

MQTT-enabled, V3 gateways 213

AWS IoT SiteWise User Guide

 },
 {
 "id": "8f2eb590d596679b",
 "type": "function",
 "z": "95fce448fdd43b47",
 "name": "Translate to SiteWise payload",
 "func": "let input = msg.payload;\nlet output = {};\n\noutput[\"propertyAlias
\"] = input.name;\n\nlet propertyVal = {}\n\nlet timeInSeconds =
 Math.floor(input.timestamp / 1000);\nlet offsetInNanos = (input.timestamp % 1000) *
 1000000;\n\npropertyVal[\"timestamp\"] = {\n \"timeInSeconds\": timeInSeconds,\n
 \"offsetInNanos\": offsetInNanos,\n};\n\npropertyVal[\"quality\"] = input.quality
\n\nlet typeNameConverter = {\n \"number\": (x) => Number.isInteger(x) ?
 \"integerValue\" : \"doubleValue\",\n \"boolean\": (x) => \"booleanValue\",\n
 \"string\": (x) => \"stringValue\", \n}\nlet typeName = typeNameConverter[typeof
 input.value](input.value)\npropertyVal[\"value\"] = {}\npropertyVal[\"value\"]
[typeName] = input.value;\n\noutput[\"propertyValues\"] = [propertyVal]\n\nreturn {\n
 payload: JSON.stringify(output)\n};",
 "outputs": 1,
 "timeout": "",
 "noerr": 0,
 "initialize": "",
 "finalize": "",
 "libs": [],
 "x": 530,
 "y": 200,
 "wires": [
 [
 "5f63740b66af3386"
]
]
 },
 {
 "id": "4b78cbdea5e3258c",
 "type": "inject",
 "z": "95fce448fdd43b47",
 "name": "Turbine Simulator",
 "props": [
 {
 "p": "payload.timestamp",
 "v": "",
 "vt": "date"
 },
 {
 "p": "payload.quality",

MQTT-enabled, V3 gateways 214

AWS IoT SiteWise User Guide

 "v": "GOOD",
 "vt": "str"
 },
 {
 "p": "payload.value",
 "v": "$$random()",
 "vt": "jsonata"
 },
 {
 "p": "payload.name",
 "v": "/Renton/WindFarm/Turbine/WindSpeed",
 "vt": "str"
 }
],
 "repeat": "1",
 "crontab": "",
 "once": false,
 "onceDelay": "",
 "topic": "",
 "x": 270,
 "y": 200,
 "wires": [
 [
 "8f2eb590d596679b"
]
]
 },
 {
 "id": "b658bf337ea2e316",
 "type": "influxdb out",
 "z": "95fce448fdd43b47",
 "influxdb": "2f1c38495035d2e4",
 "name": "Store data in InfluxDB",
 "measurement": "TurbineData",
 "precision": "",
 "retentionPolicy": "",
 "database": "",
 "retentionPolicyV18Flux": "",
 "org": "iot-sitewise-edge",
 "bucket": "WindFarmData",
 "x": 840,
 "y": 340,
 "wires": []
 },

MQTT-enabled, V3 gateways 215

AWS IoT SiteWise User Guide

 {
 "id": "9432d39af35b202f",
 "type": "function",
 "z": "95fce448fdd43b47",
 "name": "Translate to InfluxDB payload",
 "func": "let data = msg.payload;\n\nlet timeInSeconds =
 data.propertyValues[0].timestamp.timeInSeconds;\nlet offsetInNanos =
 data.propertyValues[0].timestamp.offsetInNanos;\nlet timestampInMilliseconds =
 (timeInSeconds * 1000) + (offsetInNanos / 1000000);\n\nmsg.payload = [\n {\n
 \"timestamp(milliseconds_since_epoch)\": timestampInMilliseconds,\n
 \"value\": data.propertyValues[0].value.doubleValue\n },\n {\n \"name\":
 data.propertyAlias,\n \"quality\": data.propertyValues[0].quality\n }\n]\n
\nreturn msg",
 "outputs": 1,
 "timeout": "",
 "noerr": 0,
 "initialize": "",
 "finalize": "",
 "libs": [],
 "x": 560,
 "y": 340,
 "wires": [
 [
 "b658bf337ea2e316"
]
]
 },
 {
 "id": "b689403d2c80816b",
 "type": "mqtt in",
 "z": "95fce448fdd43b47",
 "name": "Subscribe to MQTT broker",
 "topic": "/Renton/WindFarm/Turbine/WindSpeed",
 "qos": "1",
 "datatype": "auto-detect",
 "broker": "5744207557fa19be",
 "nl": false,
 "rap": true,
 "rh": 0,
 "inputs": 0,
 "x": 290,
 "y": 340,
 "wires": [
 [

MQTT-enabled, V3 gateways 216

AWS IoT SiteWise User Guide

 "9432d39af35b202f"
]
]
 },
 {
 "id": "4f59bed8e829fc35",
 "type": "comment",
 "z": "95fce448fdd43b47",
 "name": "Data Publish Flow",
 "info": "dfgh",
 "x": 270,
 "y": 160,
 "wires": []
 },
 {
 "id": "b218c7fc58c8b6e7",
 "type": "comment",
 "z": "95fce448fdd43b47",
 "name": "Data Retention flow",
 "info": "",
 "x": 270,
 "y": 300,
 "wires": []
 },
 {
 "id": "5744207557fa19be",
 "type": "mqtt-broker",
 "name": "emqx",
 "broker": "emqx",
 "port": "1883",
 "clientid": "",
 "autoConnect": true,
 "usetls": false,
 "protocolVersion": "5",
 "keepalive": 15,
 "cleansession": true,
 "autoUnsubscribe": true,
 "birthTopic": "",
 "birthQos": "0",
 "birthPayload": "",
 "birthMsg": {},
 "closeTopic": "",
 "closePayload": "",
 "closeMsg": {},

MQTT-enabled, V3 gateways 217

AWS IoT SiteWise User Guide

 "willTopic": "",
 "willQos": "0",
 "willPayload": "",
 "willMsg": {},
 "userProps": "",
 "sessionExpiry": ""
 },
 {
 "id": "2f1c38495035d2e4",
 "type": "influxdb",
 "hostname": "influxdb",
 "port": 8086,
 "protocol": "http",
 "database": "",
 "name": "InfluxDB",
 "usetls": false,
 "tls": "",
 "influxdbVersion": "2.0",
 "url": "http://influxdb:8086",
 "timeout": "",
 "rejectUnauthorized": false
 }
]

 nodered_flows_cred:
 content: |
 {
 "2f1c38495035d2e4": {
 "token": "${INFLUXDB_TOKEN}"
 }
 }

 nodered_settings:
 content: |
 module.exports = {
 flowFile: 'flows.json',
 credentialSecret: false,
 adminAuth: null,
 editorTheme: {
 projects: {
 enabled: false
 }
 }

MQTT-enabled, V3 gateways 218

AWS IoT SiteWise User Guide

 }

Update the SiteWise Edge deployment

1. Navigate to the AWS IoT console

2. Choose Greengrass devices in the left navigation menu under the Manage section, then Core
devices.

3. Select the core device connected to your SiteWise Edge Gateway.

4. Choose the Deployments tab, then select the Deployment ID value.

5. Choose Actions, then select Revise.

6. Read the pop up message and then choose Revise Deployment.

7. In Step 2 - Select components, select the following components and then choose Next.

• aws.greengrass.clientdevices.mqtt.EMQX

• aws.iot.SiteWiseEdgePublisher

8. In Step 3 - Configure components, select the
aws.greengrass.clientdevices.mqtt.EMQX component value and add the following
network configuration:

{
 "emqxConfig": {
 "authorization": {
 "no_match": "allow"
 },
 "listeners": {
 "tcp": {
 "default": {
 "enabled": true,
 "enable_authn": false
 }
 }
 }
 },
 "authMode": "bypass",
 "dockerOptions": "-p 127.0.0.1:1883:1883 --
network=SiteWiseEdgeNodeRedDemoNetwork",
 "requiresPrivilege": "true"
}

MQTT-enabled, V3 gateways 219

https://console.aws.amazon.com/iot/

AWS IoT SiteWise User Guide

9. Choose Next.

10. In Step 4 - Configure advanced settings, choose Next.

11. Choose Deploy

Launch the services

1. Start the services using the Docker Compose file. Run the following command under the
directory containing the compose.yaml file.

docker compose up -d

2. Create an SSH tunnel to access the services:

ssh -i path_to_your_ssh_key -L 1880:127.0.0.1:1880 -L 3000:127.0.0.1:3000 -L
 8086:127.0.0.1:8086 username@gateway_ip_address

This deployment creates the following services in the SiteWiseEdgeNodeRedDemoNetwork
network:

InfluxDB v2 (port 8086)

Includes pre-configured organization (iot-sitewise-edge), WindFarmData InfluxDB bucket, and
admin credentials

Node-RED (port 1880)

Includes InfluxDB nodes and pre-configured flows for AWS IoT SiteWise integration

Grafana (port 3000)

Includes admin user, InfluxDB datasource, and monitoring dashboard

Access the services

After deployment, access the services using the following URLs and credentials:

Note

You can access each service from your host or the gateway machine.

MQTT-enabled, V3 gateways 220

AWS IoT SiteWise User Guide

Service access details

Service URL Credentials

Node-RED http://127.0.0.1:1880 No credentials required

InfluxDB http://127.0.0.1:8086 Username: admin

Password: $INFLUXDB
_PASSWORD

Grafana http://127.0.0.1:3000 Username: admin

Password: $GRAFANA_
PASSWORD

Verify the deployment

To ensure your deployment is successful, perform the following checks:

1. For Node-RED, verify the presence of two preloaded flows:

• Data publish flow

• Data retention flow

2. For AWS IoT SiteWise, in the AWS IoT SiteWise console, confirm the presence of a data stream
with the alias /Renton/WindFarm/Turbine/WindSpeed.

3. For InfluxDB, use the Data Explorer to verify data storage in the TurbineData measurement
within the WindFarmData bucket.

4. For Grafana, view the dashboard to confirm the display of time series data generated from
Node-RED.

Process data for open source integrations

The data can be processed (such as transformation or aggregation), at different stages using
various tools, each serving different monitoring requirements.

MQTT-enabled, V3 gateways 221

http://127.0.0.1:1880
http://127.0.0.1:8086
http://127.0.0.1:3000

AWS IoT SiteWise User Guide

Process data with Node-RED nodes

Transform your data in real time using Node-RED® built-in processing nodes. Configure these
nodes through the Node-RED console to create your data pipeline.

Data transformation nodes

Transform individual data points, similar to Transforms in AWS IoT SiteWise, using these nodes:

• change node - Performs simple value modifications on your data.

• function node - Enables custom JavaScript transformations for complex data processing.

Metrics calculation nodes

Combine multiple data points into a single output, similar to Metrics in AWS IoT SiteWise, using
these nodes:

• batch node - Groups multiple messages for batch processing.

• join node - Combines multiple data streams into a single output.

• aggregator node - Calculates aggregate metrics from multiple data points.

For additional node options, see the Node-RED Library.

Create InfluxDB tasks

While Node-RED excels at basic data processing with quick setup, complex metric calculations may
become challenging in flow-based programming. InfluxDB® Tasks provide an alternative through
scheduled Flux scripts for advanced processing needs.

Use InfluxDB Tasks for:

• Statistical aggregations across large datasets

• Mathematical operations on multiple properties

• Derived measurements from multiple sources

Task features

• Scheduled Execution - Run tasks based on cron expressions

MQTT-enabled, V3 gateways 222

https://flows.nodered.org/

AWS IoT SiteWise User Guide

• Batch Processing - Optimize operations for time-series data

• Error Recovery - Automatically retry failed operations

• Monitoring - Track execution through detailed logs

Manage tasks through the InfluxDB UI, API, or CLI. For more information, see Process data with
InfluxDB tasks.

Use Grafana transformations

Transform data visualization in Grafana® without modifying the source data in InfluxDB. Grafana
transformations apply only to the visualization layer.

• Visual Builder - Create transformations without writing code

• Live Preview - View transformation results in real time

• Multi-Source - Process data from multiple database sources

• Storage Efficient - Transform data at visualization time without storing intermediary results

For more information, see Transform data.

Troubleshooting open-source integrations

For more information on troubleshooting topics related to open source integrations for SiteWise
Edge gateways, see Troubleshooting open-source integrations at the Edge.

Classic streams, V2 gateways for AWS IoT SiteWise Edge

Understand the features and limitations of Classic streams, V2 gateways for AWS IoT SiteWise
Edge.

The Classic streams, V2 gateway maintains traditional functionality familiar from earlier AWS IoT
SiteWise deployments before the introduction of MQTT-enabled, V3 gateways. These SiteWise
Edge gateways are considered Classic streams, V2 gateways. They maintain backward compatibility
and are functional with the data processing pack. While the Classic streams, V2 gateway offers
reliable performance for existing setups, it has limitations compared to newer gateway options.
Specifically, this gateway type is not fully compatible with the advanced features available in the
MQTT-enabled, V3 gateway destination. To use the MQTT messaging protocol, you can create a
new MQTT-enabled, V3 gateway. For more information, see MQTT-enabled, V3 Gateways for AWS
IoT SiteWise Edge.

Classic streams, V2 gateways 223

https://docs.influxdata.com/influxdb/cloud/process-data/
https://docs.influxdata.com/influxdb/cloud/process-data/
https://grafana.com/docs/grafana/latest/panels/transform-data/

AWS IoT SiteWise User Guide

Topics

• Use packs to collect and process data in SiteWise Edge

• Configure the AWS IoT SiteWise publisher component

• Destinations and AWS IoT Greengrass stream manager

• Configure edge capabilities on AWS IoT SiteWise Edge

• Configure edge data processing for AWS IoT SiteWise models and assets

Use packs to collect and process data in SiteWise Edge

AWS IoT SiteWise Edge gateways use different packs to determine how to collect and process your
data.

Currently, the following packs are available:

• Data collection pack – Use this pack to collect your industrial data and route it to AWS Cloud
destinations. By default, this pack is enabled automatically for your SiteWise Edge gateway.

• Data processing pack – Use this pack to enable SiteWise Edge gateway communication with
edge-configured asset models and assets. You can use edge configuration to control what asset
data to compute and process on-site. You can then send your data to AWS IoT SiteWise or other
AWS services. For more information about the data processing pack, see the section called
“Configure edge data processing”.

Upgrading packs

Important

Upgrading data processing pack versions from before (and including) 2.0.x to version 2.1.x
will result in data loss of locally stored measurements.

SiteWise Edge gateways use different packs to determine how to collect and process your data. You
can use the AWS IoT SiteWise console to upgrade packs.

To upgrade packs (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the left navigation, choose Edge gateways in the Edge section.

Classic streams, V2 gateways 224

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

3. In the Gateways list, choose the SiteWise Edge gateway with the packs you want to upgrade.

4. In the Gateway configuration section, choose Software updates available.

5. On the Edit software versions page, choose Updates.

Note

You can only upgrade packs that are enabled. To find the list of packs that are enabled
for this SiteWise Edge gateway, choose Overview, and then see the Edge capabilities
section.

6. On the edit software versions page, in the Gateway component updates section, do the
following:

• To update the OPC UA collector, choose a version, and then choose Deploy.

• To update the Publisher, choose a version, and then choose Deploy.

• To update the Data processing pack, choose a version, and then choose Deploy.

7. When you're done deploying new versions, choose Done.

If you're experiencing problems upgrading the packs, see Unable to deploy packs to SiteWise Edge
gateways.

Configure the AWS IoT SiteWise publisher component

After you create an AWS IoT SiteWise Edge gateway and install the software, you can set up the
publisher component so your SiteWise Edge gateway can export data to the AWS Cloud. Use
the publisher component to enable additional features or configure default settings. For more
information, see AWS IoT SiteWise publisher in the AWS IoT Greengrass Version 2 Developer Guide.

Note

The publisher configuration differs based on the type of gateway you're using. For Classic
stream, V2 gateways, use the iotsitewise:publisher:2 namespace. For MQTT-
enabled, V3 gateways, use the iotsitewise:publisher:3 namespace.

Console

1. Navigate to the AWS IoT SiteWise console.

Classic streams, V2 gateways 225

https://docs.aws.amazon.com/greengrass/v2/developerguide/iotsitewise-publisher-component.html
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

2. In the navigation pane, choose Edge gateways.

3. Select the SiteWise Edge gateway for which you want to configure the publisher.

4. In the Publisher configuration section, choose Edit

5. For Publishing order, choose one of the following:

• Publish oldest data first – The SiteWise Edge gateway publishes the oldest data to the
cloud first by default.

• Publish newest data first – The SiteWise Edge gateway publishes the newest data to the
cloud first.

6. (Optional) If you don't want the SiteWise Edge gateway to compress your data, unselect
Activate compression when uploading data.

7. (Optional) If you don't want to publish old data, choose Exclude expired data and do the
following:

• For Cutoff period, enter a value and choose a unit. The cutoff period must be between
five minutes and seven days. For example, if the cutoff period is three days, data that's
older than three days isn't published to the cloud.

8. (Optional) To set custom settings about how data is handled on your local device, choose
Local storage settings and do the following:

a. For Retention period, enter a number and choose a unit. The retention period must be
between one minute and 30 days, and greater than or equal to the rotation period. For
example, if the retention period is 14 days, the SiteWise Edge gateway deletes any data
at the edge that's older than the specified cutoff period after it's stored for 14 days.

b. For Rotation period, enter a number and choose a unit. The rotation period must be
greater than one minute, and equal to, or less than, the retention period. For example,
say the rotation period is two days, the SiteWise Edge gateway batches up and saves
data that is older than the cutoff period to a single file. For self-hosted gateways
through AWS IoT Greengrass V2, the SiteWise Edge gateway transfers a batch of
data to the following local directory once every two days: /greengrass/v2/work/
aws.iot.SiteWiseEdgePublisher/exports.

c. For Storage capacity, enter a value that is greater than or equal to 1. If the storage
capacity is 2 GB, the SiteWise Edge gateway starts deleting data when more than 2 GB
of data is stored locally.

9. Choose Save.

Classic streams, V2 gateways 226

AWS IoT SiteWise User Guide

AWS CLI

Use the UpdateGatewayCapabilityConfiguration API to configure the publisher.

Set the capabilityNamespace parameter to iotsitewise:publisher:2.

Example : Publisher configuration for Classic Stream, V2 gateways

The publisher namespace: iotsitewise:publisher:2

{
 "SiteWisePublisherConfiguration": {
 "publishingOrder": "TIME_ORDER",
 "enableCompression": true,
 "dropPolicy": {
 "cutoffAge": "7d",
 "exportPolicy": {
 "retentionPeriod": "7d",
 "rotationPeriod": "6h",
 "exportSizeLimitGB": 10
 }
 }
 },
 "SiteWiseS3PublisherConfiguration": {
 "accessRoleArn": "arn:aws:iam:123456789012:role/roleName",
 "streamToS3ConfigMapping": [
 {
 "streamName": "S3_OPC-UA_Data_Collector",
 "targetBucketArn": "arn:aws:s3:::amzn-s3-demo-bucket/dataCollector",
 "publishPolicy": {
 "publishFrequency": "10m",
 "localSizeLimitGB": 10
 },
 "siteWiseImportPolicy": {
 "enableSiteWiseStorageImport": true,
 "enableDeleteAfterImport": true
 }
 }
]
 }
}

The publisher provides the following configuration parameters that you can customize:

Classic streams, V2 gateways 227

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateGatewayCapabilityConfiguration.html

AWS IoT SiteWise User Guide

SiteWisePublisherConfiguration

publishingOrder

The order in which data is published to the cloud. The value of this parameter can be one
of the following:

• TIME_ORDER (Publish oldest data first) – The earliest data is published to the cloud
first, by default.

• RECENT_DATA (Publish newest data first) – The newest data is published to the cloud
first.

enableCompression

Set this to true to compress data before publishing. Data compression can reduce
bandwidth usage.

dropPolicy

(Optional) A policy that controls what data is published to the cloud.

cutoffAge

The maximum age of data to be published specified in days, hours, and minutes. For
example, 7d or 1d7h16m. Data older than what you specify is not sent to AWS IoT
SiteWise.

Data that is earlier than the cutoff period is not published to the cloud. The cutoff age
must be between five minutes and seven days.

You can use m, h, and d when you specify a cutoff age. Note that m represents
minutes, h represents hours, and d represents days.

exportPolicy

(Optional) A policy that manages data storage at the edge. This policy applies to data
that is earlier than the cutoff age.

retentionPeriod

Your SiteWise Edge gateway deletes any data at the edge that is earlier than the
cutoff period from the local storage after it is stored for the specified retention
period. The retention period must be between one minute and 30 days, and
greater than or equal to the rotation period.

Classic streams, V2 gateways 228

AWS IoT SiteWise User Guide

You can use m, h, and d when you specify a retention period. Note that m
represents minutes, h represents hours, and d represents days.

rotationPeriod

The time interval over which to batch up and save data that is earlier than the
cutoff period to a single file. The SiteWise Edge gateway transfers one batch
of data to the following local directory at the end of each rotation period: /
greengrass/v2/work/aws.iot.SiteWiseEdgePublisher/exports. The
rotation period must be greater than one minute, and equal to or less than the
retention period.

You can use m, h, and d when you specify a rotation period. Note that m represents
minutes, h represents hours, and d represents days.

exportSizeLimitGB

The maximum allowed size of data stored locally, in GB. If this quota is breached,
the SiteWise Edge gateway starts deleting the earliest data until the size of data
stored locally is equal to or less than the quota. The value of this parameter must
be greater than or equal to 1.

SiteWiseS3PublisherConfiguration

accessRoleArn

The access role that gives AWS IoT SiteWise permission to manage the Amazon S3 bucket
that you are publishing to.

streamToS3ConfigMapping

An array of configurations that maps a stream to an Amazon S3 configuration.

streamName

The stream to read from and publish to the Amazon S3 configuration.

targetBucketArn

The bucket ARN to publish to.

publishPolicy

publishFrequency

The frequency with which the SiteWise Edge gateway publishes to the Amazon S3
bucket.

Classic streams, V2 gateways 229

AWS IoT SiteWise User Guide

localSizeLimitGB

The maximum size of the files written to local disk. If this threshold is breached,
the publisher publishes all buffered data to its destination.

siteWiseImportPolicy

enableSiteWiseStorageImport

Set this to true to import data from an Amazon S3 bucket to AWS IoT SiteWise
storage.

enableDeleteAfterImport

Set this to true to delete the file in the Amazon S3 bucket after ingestion into the
AWS IoT SiteWise storage.

Destinations and AWS IoT Greengrass stream manager

AWS IoT Greengrass stream manager allows you to send data to the following AWS Cloud
destinations: channels in AWS IoT Analytics, streams in Amazon Kinesis Data Streams, asset
properties in AWS IoT SiteWise, or objects in Amazon Simple Storage Service (Amazon S3).
For more information, see Manage data streams on the AWS IoT Greengrass Core in AWS IoT
Greengrass Version 2 Developer Guide.

Example : Data stream message structure

The following example shows the required data stream message structure transmitted by the AWS
IoT Greengrass stream manager.

{
 "assetId": "string",
 "propertyAlias": "string",
 "propertyId": "string",
 "propertyValues": [
 {
 "quality": "string",
 "timestamp": {
 "offsetInNanos": number,
 "timeInSeconds": number
 },
 "value": {

Classic streams, V2 gateways 230

https://docs.aws.amazon.com/greengrass/v2/developerguide/manage-data-streams.html

AWS IoT SiteWise User Guide

 "booleanValue": boolean,
 "doubleValue": number,
 "integerValue": number,
 "stringValue": "string"
 }
 }
]
}

Note

The data stream message must include either (assetId and propertyId) or
propertyAlias in its structure.

assetId

(Optional) The ID of the asset to update.

propertyAlias

(Optional) The alias that identifies the property, such as an OPC UA server data stream path. For
example:

/company/windfarm/3/turbine/7/temperature

For more information, see Manage data streams in the AWS IoT SiteWise User Guide.

propertyId

(Optional) The ID of the asset property for this entry.

propertyValues

(Required) The list of property values to upload. You can specify up to 10 propertyValues
array elements.

quality

(Optional) The quality of the asset property value.

timestamp

(Required) The timestamp of the asset property value.

Classic streams, V2 gateways 231

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/manage-data-streams.html

AWS IoT SiteWise User Guide

offsetInNanos

(Optional) The nanosecond offset from timeInSeconds.

timeInSeconds

(Required) The timestamp date, in seconds, in the Unix epoch format. Fractional
nanosecond data is provided by offsetInNanos.

value

(Required) The value of the asset property.

Note

Only one of the following values can exist in the value field.

booleanValue

(Optional) Asset property data of type Boolean (true or false).

doubleValue

(Optional) Asset property data of type double (floating point number).

integerValue

(Optional) Asset property data of type integer (whole number).

stringValue

(Optional) Asset property data of type string (sequence of characters).

Configure edge capabilities on AWS IoT SiteWise Edge

You can use AWS IoT SiteWise Edge to collect and temporarily store data so that you can organize
and process device data locally. By enabling edge processing, you can choose to send only
aggregated data to the AWS Cloud to optimize your bandwidth usage and cloud storage costs.
Using AWS IoT SiteWise components with AWS IoT Greengrass, you can collect and process data at
the edge before sending it to the AWS Cloud, or manage it on-premises using SiteWise Edge APIs.

Data collection happens through data packs and AWS IoT SiteWise components that run on AWS
IoT Greengrass.

Classic streams, V2 gateways 232

AWS IoT SiteWise User Guide

Note

• AWS IoT SiteWise retains your edge data on your SiteWise Edge gateways up to 30 days.
The retention period of your data is dependent on the available disk space of your device.

• If your SiteWise Edge gateway has been disconnected from the AWS Cloud for 30 days,
the Data Processing Pack is automatically disabled.

Topics

• Set up edge capability in SiteWise Edge

Set up edge capability in SiteWise Edge

AWS IoT SiteWise provides the following packs that your SiteWise Edge gateway can use to
determine how to collect and process your data. Select packs to enable edge capabilities for your
SiteWise Edge gateway.

• Data collection pack enables your SiteWise Edge gateway to collect data from multiple OPC UA
servers, and then export the data from the edge to the AWS Cloud. It becomes active once you
have added data sources to your SiteWise Edge gateway.

• Data processing pack enables your SiteWise Edge gateway to process your equipment data at
the edge. For example, you can use asset models to compute metrics and transforms. For more
information about asset models and assets, see Model industrial assets.

Note

• The data processing pack is only available on x86 platforms.

To configure edge capabilities

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. Select the SiteWise Edge gateway for which you want to activate edge capabilities.

4. In the Edge capabilities section, choose Edit

Classic streams, V2 gateways 233

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

5. In the Edge capabilities section, select Enable data processing pack (incurs additional
charges).

6. (Optional) In the Edge LDAP connection section, you can grant user groups in your corporate
directory access to this SiteWise Edge gateway. The user groups can use the Lightweight
Directory Access Protocol (LDAP) credentials to access the SiteWise Edge gateway. Then they
can use the AWS OpsHub for AWS IoT SiteWise application, AWS IoT SiteWise API operations,
or other tools to manage the SiteWise Edge gateway. For more information, see Manage
SiteWise Edge gateways.

Note

You can also use the Linux or Microsoft Windows credentials to access the SiteWise
Edge gateway. For more information, see Access your SiteWise Edge gateway using
Linux operating system credentials.

a. Select Activated.

b. For Provider name, enter a name for your LDAP provider.

c. For Hostname or IP address, enter the hostname or IP address of your LDAP server.

d. For Port, enter a port number.

e. For Base distinguished name (DN), enter a distinguished name (DN) for the base.

The following attribute types are supported: commonName (CN), localityName (L),
stateOrProvinceName (ST), organizationName (O), organizationalUnitName (OU),
countryName (C), streetAddress (STREET), domainComponent (DC), and userid (UID).

f. For Admin group DN, enter a DN.

g. For User group DN, enter a DN.

7. Choose Save.

Now that you've activated edge capabilities on your SiteWise Edge gateway, you need to configure
your asset model for the edge. Your asset model edge configuration specifies where your assets
properties are computed. You can compute all properties at the edge, or you can configure your
asset model properties separately. Asset model properties include metrics, transforms, and
measurements.

For more information about asset properties, see the section called “Define data properties”.

Classic streams, V2 gateways 234

AWS IoT SiteWise User Guide

After you create your asset model, you can then configure it for the edge. For more information
about configuring your asset model for the edge, see the section called “Create an asset model
(console)”.

Note

Asset models and dashboards are automatically synced between the AWS Cloud and
your SiteWise Edge gateway every 10 minutes. You can also sync manually from the local
SiteWise Edge gateway application.

Configure edge data processing for AWS IoT SiteWise models and assets

You can use AWS IoT SiteWise Edge to collect, store, organize and monitor equipment data locally.
You can use SiteWise Edge so that you can model your industrial data and SiteWise Monitor to
create dashboards for your operational staff to visualize data locally. You can process your data
locally and send it to the AWS Cloud, or process it on-premises by using the AWS IoT SiteWise API.

With AWS IoT SiteWise Edge, you can process raw data locally and choose to send only aggregated
data to the AWS Cloud to optimize your bandwidth usage and cloud storage costs.

Note

• AWS IoT SiteWise retains your edge data on your SiteWise Edge gateways up to 30 days.
The retention period of your data is dependent on the available disk space of your device.

• If your SiteWise Edge gateway has been disconnected from the AWS Cloud for 30 days,
the Set up an OPC UA source in SiteWise Edge is automatically disabled.

Configure an asset model for data processing on SiteWise Edge

You must configure your asset model for the edge before your can process your SiteWise Edge
gateway data at the edge. Your asset model edge configuration specifies where your assets
properties are computed. You can choose to compute all properties at the edge and send the
results to the AWS Cloud, or customize where to compute each asset property separately. For more
information, see Configure edge data processing for AWS IoT SiteWise models and assets.

Asset properties include metrics, transforms, and measurements:

Classic streams, V2 gateways 235

AWS IoT SiteWise User Guide

• Metrics are the asset's aggregated data over a specified period of time. You can compute new
metrics by using existing metric data. AWS IoT SiteWise always sends your metrics to the AWS
Cloud for long-term storage. AWS IoT SiteWise computes metrics on the AWS Cloud by default.
You can configure your asset model to compute your metrics at the edge. AWS IoT SiteWise
sends processed results to the AWS Cloud.

• Transforms are mathematical expressions that map an asset property's data points from one
form to another. Transforms can use metrics as input data and must be computed and stored at
the same location as their inputs. If you configure a metric input to compute at the edge, AWS
IoT SiteWise also computes its associated transform at the edge.

• Measurements are formatted as raw data that your device collects and sends to the AWS Cloud
by default. You can configure your asset model to store this data on your local device.

For more information about asset properties, see the section called “Define data properties”.

After you create your asset model, you can then configure it for the edge. For more information
about configuring your asset model for the edge, see the section called “Create an asset model
(console)”.

Note

Asset models and dashboards are automatically synced between the AWS Cloud and your
SiteWise Edge gateway every 10 minutes. You can also sync manually from the Manage
SiteWise Edge gateways.

You can use the AWS IoT SiteWise REST APIs and the AWS Command Line Interface (AWS CLI)
to query your SiteWise Edge gateway for data at the edge. Before you query your SiteWise Edge
gateway for data at the edge, you must meet the following prerequisites:

• Your credentials must be set for the REST APIs. For more information about setting credentials,
see the section called “Manage gateways”.

• The SDK endpoint must point to the IP address of your SiteWise Edge gateway. You can find
more information in the documentation for your SDK. For example, see Specifying Custom
Endpoints in the AWS SDK for Java 2.x Developer Guide.

• Your SiteWise Edge gateway certificate must be registered. You can find more information
about registering your SiteWise Edge gateway certificate in the documentation for your SDK. For

Classic streams, V2 gateways 236

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/specifying-endpoints.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/specifying-endpoints.html

AWS IoT SiteWise User Guide

example, see the Registering Certificate Bundles in Node.js in the AWS SDK for Java 2.x Developer
Guide.

For more information about querying data with AWS IoT SiteWise, see Query data from AWS IoT
SiteWise.

Add data sources to your AWS IoT SiteWise Edge gateway

After setting up an AWS IoT SiteWise Edge gateway, you can add and configure data sources to
ingest data from local industrial equipment to AWS IoT SiteWise. SiteWise Edge supports various
protocols, including OPC UA, and many other protocols available through partner data sources.
These sources enable your gateway to connect with local servers and retrieve your industrial data.
By configuring data sources, you can ingest data from a variety of data sources, and then associate
the data streams with asset properties, enabling comprehensive industrial asset modeling and data
mapping in AWS IoT SiteWise.

Topics

• OPC UA data sources for AWS IoT SiteWise Edge gateways

• Partner data sources on SiteWise Edge gateways

OPC UA data sources for AWS IoT SiteWise Edge gateways

After you set up an AWS IoT SiteWise Edge gateway, you can configure data sources so that your
SiteWise Edge gateway can ingest data from local industrial equipment to AWS IoT SiteWise.
Each source represents a local server, such as an OPC UA server, that your SiteWise Edge gateway
connects and retrieves industrial data streams. For more information about setting up a SiteWise
Edge gateway, see Create a self-hosted SiteWise Edge gateway.

The gateway type, MQTT-enabled, V3 gateways versus Classic stream, V2 gateways, influences how
OPC UA data is handled. In Classic stream, V2 gateways, OPC UA data sources are added directly to
the gateway IoT SiteWise publisher configuration. Each data source is coupled with the gateway,
and data routing is configured individually for each source. In contrast, using MQTT-enabled,
V3 gateways, OPC UA data sources are converted to MQTT topics and are managed through
centralized destinations. For more information on each type, see MQTT-enabled, V3 Gateways for
AWS IoT SiteWise Edge and Classic streams, V2 gateways for AWS IoT SiteWise Edge.

Add data sources 237

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/node-registering-certs.html

AWS IoT SiteWise User Guide

Note

AWS IoT SiteWise restarts your SiteWise Edge gateway each time you add or edit a source.
Your SiteWise Edge gateway won't ingest data while it's updating source configuration.
The time to restart your SiteWise Edge gateway depends on the number of tags on your
SiteWise Edge gateway's sources. Restart time can range from a few seconds (for a SiteWise
Edge gateway with few tags) to several minutes (for a SiteWise Edge gateway with many
tags).

After you create sources, you can associate your data streams with asset properties. For more
information about how to create and use assets, see Model industrial assets.

You can view CloudWatch metrics to verify that a data source is connected to AWS IoT SiteWise. For
more information, see AWS IoT Greengrass Version 2 gateway metrics.

Currently, AWS IoT SiteWise supports the following data source protocols:

• OPC UA – A machine-to-machine (M2M) communication protocol for industrial automation.

Support for additional industrial protocols

SiteWise Edge supports a wide range of industrial protocols through integration with data
source partners. These partnerships enable connectivity with over 200 different protocols,
accommodating various industrial systems and devices.

For a list of available data source partners, see SiteWise Edge gateway partner data source options.

Set up an OPC UA source in SiteWise Edge

You can use the AWS IoT SiteWise console or a SiteWise Edge gateway capability to define and add
an OPC UA source to your SiteWise Edge gateway to represent a local OPC UA server.

Topics

• Configure an OPC UA source (console)

• Configure an OPC UA source (AWS CLI)

Add data sources 238

https://en.wikipedia.org/wiki/OPC_Unified_Architecture

AWS IoT SiteWise User Guide

Configure an OPC UA source (console)

You can use the console to configure the OPC UA source with the following procedure.

Note

Warning: Duplicate TQVs may result in double charging.

To configure an OPC UA source using the AWS IoT SiteWise console

1. Navigate to the AWS IoT SiteWise console.

2. In the left navigation, choose Edge gateways in the Edge section.

3. Select the SiteWise Edge gateway to add an OPC UA source.

4. Choose Add data source.

5. Enter a name for the source.

6. Enter the Local endpoint of the data source server. The endpoint can be the IP address or
hostname. You may also add a port number to the local endpoint. For example, your local
endpoint might look like this: opc.tcp://203.0.113.0:49320

7. (Optional) For Node ID for selection, add node filters to limit which data streams are ingested
to the AWS Cloud. By default, SiteWise Edge gateways use the root node of a server to ingest
all data streams. You can use node filters to reduce your SiteWise Edge gateway's startup time
and CPU usage by only including paths to data that you model in AWS IoT SiteWise. By default,
SiteWise Edge gateways upload all OPC UA paths except those that start with /Server/. To
define OPC UA node filters, you can use node paths and the * and ** wildcard characters. For
more information, see Use OPC UA node filters in SiteWise Edge.

8. Destinations vary between MQTT-enabled, V3 gateways and Classic streams, V2 gateways.

• Classic steams, V2 gateway destinations have a 1:1 relationship with the source. Each
source sends data to a particular destination.

• MQTT-enabled, V3 gateway destinations are set up separately because the hub and
spoke model lets you centralize configuration and management of multiple data sources
across different gateways. To set up destinations in a V3 gateway, see Understand AWS IoT
SiteWise Edge destinations.

Add data sources 239

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

Classic steams, V2 gateway destinations

• AWS IoT SiteWise real-time – Choose this to send data directly to AWS IoT SiteWise
storage. Ingest and monitor data in real-time at the edge.

• AWS IoT SiteWise Buffered using Amazon S3 – Send data in Parquet format to Amazon
S3 and then import into AWS IoT SiteWise storage. Choose this option to ingest data
in batches, and store historical data in a cost-effective way. You can configure your
preferred Amazon S3 bucket location, and the frequency at which you want data to be
uploaded to Amazon S3. You can also choose what to do with the data after ingestion
into AWS IoT SiteWise. You can choose to have the data available in both AWS IoT
SiteWise and Amazon S3 or you can choose to delete it automatically from Amazon S3
after it has been imported into AWS IoT SiteWise.

• The Amazon S3 bucket is a staging and buffering mechanism and supports files in the
Parquet format.

• If you select the check box Import data into AWS IoT SiteWise storage, data is
uploaded into Amazon S3 first, and then into AWS IoT SiteWise storage.

• If you select the check box Delete data from Amazon S3, data is deleted from
Amazon S3, after it is imported into SiteWise storage.

• If you clear the check box Delete data from Amazon S3, data is stored both in
Amazon S3, and in SiteWise storage.

• If you clear the check box Import data into AWS IoT SiteWise storage, data is stored
only in Amazon S3. It is not imported into SiteWise storage.

Visit Manage data storage for details on the various storage options AWS IoT SiteWise
provides. To learn more about pricing options, see AWS IoT SiteWise pricing.

• AWS IoT Greengrass stream manager – Use AWS IoT Greengrass stream manager to
send data to the following AWS Cloud destinations: channels in AWS IoT Analytics,
streams in Amazon Kinesis Data Streams, asset properties in AWS IoT SiteWise, or objects
in Amazon Simple Storage Service (Amazon S3). For more information, see Manage data
streams on the AWS IoT Greengrass Core in AWS IoT Greengrass Version 2 Developer
Guide.

Enter a name for the AWS IoT Greengrass stream.

Add data sources 240

https://aws.amazon.com/iot-sitewise/pricing/
https://docs.aws.amazon.com/greengrass/v2/developerguide/manage-data-streams.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/manage-data-streams.html

AWS IoT SiteWise User Guide

MQTT-enabled, V3 gateway destinations

1. See MQTT-enabled, V3 Gateways for AWS IoT SiteWise Edge for information on adding
your relevant destinations.

2. Return to this procedure after adding your source destinations.

9. In the Advanced configuration pane, you can do the following:

a. Choose a Message security mode for connections and data in transit between your source
server and your SiteWise Edge gateway. This field is the combination of the OPC UA
security policy and message security mode. Choose the same security policy and message
security mode that you specified for your OPC UA server.

b. If your source requires authentication, choose an AWS Secrets Manager secret from the
Authentication configuration list. The SiteWise Edge gateway uses the authentication
credentials in this secret when it connects to this data source. You must attach secrets
to your SiteWise Edge gateway's AWS IoT Greengrass component to use them for data
source authentication. For more information, see the section called “Configure data source
authentication”.

Tip

Your data server might have an option named Allow anonymous login. If this
option is Yes, then your source doesn't require authentication.

c. (Optional) You can activate a data stream prefix by selecting Activate data stream prefix -
optional.

• Enter a Data stream prefix. The SiteWise Edge gateway adds this prefix to all data
streams from this source. Use a data stream prefix to distinguish between data
streams that have the same name from different sources. Each data stream should
have a unique name within your account.

d. (Optional) Choose a Data type conversion option to convert unsupported OPC UA data
types into strings before ingesting them into AWS IoT SiteWise. Convert array values with
simple data types to JSON strings and DateTime data types to ISO 8601 strings. For more
information, see Converting unsupported data types.

e. (Optional) For Property groups, choose Add new group.

Add data sources 241

AWS IoT SiteWise User Guide

i. Enter a Name for the property group.

ii. For Properties:

1. For Node paths, add OPC UA node filters to limit which OPC UA paths are
uploaded to AWS IoT SiteWise. The format is similar to Node ID for selection.

iii. For Group settings, do the following:

1. For Data quality setting, choose the type of data quality that you want AWS IoT
SiteWise Collector to ingest.

2. For Scan mode setting, configure the standard subscription properties using Scan
mode. You can select Subscribe or Poll. For more information about scan mode,
see the section called “Filter data ingestion ranges”.

Subscribe

To send every data point

i. Choose Subscribe and set the following:

A. Data change trigger – The condition that initiates a data change alert.

B. Subscription queue size – The depth of the queue on an OPC–UA
server for a particular metric where notifications for monitored items
are queued.

C. Subscription publishing interval – The interval (in milliseconds) of
publishing cycle specified when subscription is created.

D. Snapshot interval - Optional – The snapshot frequency timeout
setting to ensure that AWS IoT SiteWise Edge ingests a steady stream
of data.

E. Scan rate – The rate that you want the SiteWise Edge gateway to read
your registers. AWS IoT SiteWise automatically calculates the minimum
allowable scan rate for your SiteWise Edge gateway.

F. Timestamp – The timestamp to include with your OPC UA data points.
You can use the server timestamp or your device's timestamp.

Add data sources 242

https://reference.opcfoundation.org/v104/Core/docs/Part4/7.17.2/
https://reference.opcfoundation.org/v104/Core/docs/Part4/7.16/
https://reference.opcfoundation.org/v104/Core/docs/Part4/5.13.2/

AWS IoT SiteWise User Guide

Note

Use version 2.5.0 or later of the IoT SiteWise OPC UA collector
component. If you use the timestamp feature with earlier
versions, configuration updates fail. For more information, see
Update the version of an AWS IoT SiteWise component.

ii. In Deadband settings, configure a Deadband type. The deadband type
controls what data your source sends to your AWS IoT SiteWise, and what
data it discards. For more information about the deadband setting, see the
section called “Filter data ingestion ranges”.

• None – The associated server sends all data points for this property
group.

• Percentage – The associated server only sends data that falls outside a
specified percentage of the data's range. This range is computed by the
server based on the engineering unit minimum and maximum defined
for each node. If the server does not support percentage deadbands or
lacks defined engineering units, the gateway calculates the range using
the minimum and maximum values provided below.

• Absolute – The associated server only sends data that falls outside of a
specific range.

A. Set the Deadband value as the percentage of the data range to
deadband.

B. (Optional) Specify a minimum and maximum for the deadband range
using Minimum range - optional and Maximum range - optional.

Poll

To send data points at a specific interval

• Choose Poll and set the following:

A. Scan rate – The rate that you want the SiteWise Edge gateway to read
your registers. AWS IoT SiteWise automatically calculates the minimum
allowable scan rate for your SiteWise Edge gateway.

Add data sources 243

AWS IoT SiteWise User Guide

B. Timestamp – The timestamp to include with your OPC UA data points.
You can use the server timestamp or your device's timestamp.

Note

Use version 2.5.0 or later of the IoT SiteWise OPC UA collector
component. If you use the timestamp feature with earlier
versions, configuration updates fail. For more information, see
Update the version of an AWS IoT SiteWise component.

Note

Deadband settings are applicable when you've selected Subscribe in
the Scan mode settings.

10. Choose Save.

Configure an OPC UA source (AWS CLI)

You can define OPC UA data sources for an SiteWise Edge gateway using the AWS CLI. To do this,
create an OPC UA capability configuration JSON file and use the update-gateway-capability-
configuration command to update the SiteWise Edge gateway configuration. You must define all of
your OPC UA sources in a single capability configuration.

MQTT-enabled, V3 gateway

This capability has the following namespace.

• iotsitewise:opcuacollector:3

{
 "sources": [
 {
 "name": "string",
 "endpoint": {
 "certificateTrust": {
 "type": "TrustAny" | "X509",
 "certificateBody": "string",

Add data sources 244

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotsitewise/update-gateway-capability-configuration.html#
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotsitewise/update-gateway-capability-configuration.html#

AWS IoT SiteWise User Guide

 "certificateChain": "string",
 },
 "endpointUri": "string",
 "securityPolicy": "NONE" | "BASIC128_RSA15" | "BASIC256" | "BASIC256_SHA256"
 | "AES128_SHA256_RSAOAEP" | "AES256_SHA256_RSAPSS",
 "messageSecurityMode": "NONE" | "SIGN" | "SIGN_AND_ENCRYPT",
 "identityProvider": {
 "type": "Anonymous" | "Username",
 "usernameSecretArn": "string"
 },
 "nodeFilterRules": [
 {
 "action": "INCLUDE",
 "definition": {
 "type": "OpcUaRootPath",
 "rootPath": "string"
 }
 }
]
 },
 "measurementDataStreamPrefix": "string",
 "typeConversions": {
 "array": "JsonArray",
 "datetime": "ISO8601String"
 },
 "destination": {
 {
 "type":"MQTT"
 }
 },
 "propertyGroups": [
 {
 "name": "string",
 "nodeFilterRuleDefinitions": [
 {
 "type": "OpcUaRootPath",
 "rootPath": "string"
 }
],
 "deadband": {
 "type": "PERCENT" | "ABSOLUTE",
 "value": double,
 "eguMin": double,
 "eguMax": double,

Add data sources 245

AWS IoT SiteWise User Guide

 "timeoutMilliseconds": integer
 },
 "scanMode": {
 "type": "EXCEPTION" | "POLL",
 "rate": integer,
 "timestampToReturn": "SOURCE_TIME" | "SERVER_TIME"
 },
 "dataQuality": {
 "allowGoodQuality": true | false,
 "allowBadQuality": true | false,
 "allowUncertainQuality": true | false
 },
 "subscription": {
 "dataChangeTrigger": "STATUS" | "STATUS_VALUE" |
 "STATUS_VALUE_TIMESTAMP",
 "queueSize": integer,
 "publishingIntervalMilliseconds": integer,
 "snapshotFrequencyMilliseconds": integer
 }
 }
]
 }
]
}

Classic streams, V2 gateway

This capability has the following namespace.

• iotsitewise:opcuacollector:2

Request syntax

{
 "sources": [
 {
 "name": "string",
 "endpoint": {
 "certificateTrust": {
 "type": "TrustAny" | "X509",
 "certificateBody": "string",
 "certificateChain": "string",
 },

Add data sources 246

AWS IoT SiteWise User Guide

 "endpointUri": "string",
 "securityPolicy": "NONE" | "BASIC128_RSA15" | "BASIC256" | "BASIC256_SHA256"
 | "AES128_SHA256_RSAOAEP" | "AES256_SHA256_RSAPSS",
 "messageSecurityMode": "NONE" | "SIGN" | "SIGN_AND_ENCRYPT",
 "identityProvider": {
 "type": "Anonymous" | "Username",
 "usernameSecretArn": "string"
 },
 "nodeFilterRules": [
 {
 "action": "INCLUDE",
 "definition": {
 "type": "OpcUaRootPath",
 "rootPath": "string"
 }
 }
]
 },
 "measurementDataStreamPrefix": "string",
 "typeConversions": {
 "array": "JsonArray",
 "datetime": "ISO8601String"
 },
 "destination": {
 "type": "StreamManager",
 "streamName": "string",
 "streamBufferSize": integer,
 },
 "propertyGroups": [
 {
 "name": "string",
 "nodeFilterRuleDefinitions": [
 {
 "type": "OpcUaRootPath",
 "rootPath": "string"
 }
],
 "deadband": {
 "type": "PERCENT" | "ABSOLUTE",
 "value": double,
 "eguMin": double,
 "eguMax": double,
 "timeoutMilliseconds": integer
 },

Add data sources 247

AWS IoT SiteWise User Guide

 "scanMode": {
 "type": "EXCEPTION" | "POLL",
 "rate": integer,
 "timestampToReturn": "SOURCE_TIME" | "SERVER_TIME"
 },
 "dataQuality": {
 "allowGoodQuality": true | false,
 "allowBadQuality": true | false,
 "allowUncertainQuality": true | false
 },
 "subscription": {
 "dataChangeTrigger": "STATUS" | "STATUS_VALUE" |
 "STATUS_VALUE_TIMESTAMP",
 "queueSize": integer,
 "publishingIntervalMilliseconds": integer,
 "snapshotFrequencyMilliseconds": integer
 }
 }
]
 }
]
}

Request body

sources

A list of OPC UA source definition structures that each contain the following information:

name

A unique, friendly name for the source.

endpoint

An endpoint structure that contains the following information:

certificateTrust

A certificate trust policy structure that contains the following information:

type

The certificate trust mode for the source. Choose one of the following:

Add data sources 248

AWS IoT SiteWise User Guide

• TrustAny – The SiteWise Edge gateway trusts any certificate when it connects to
the OPC UA source.

• X509 – The SiteWise Edge gateway trusts an X.509 certificate when it connects to
the OPC UA source. If you choose this option, you must define certificateBody
in certificateTrust. You can also define certificateChain in
certificateTrust.

certificateBody

(Optional) The body of an X.509 certificate.

This field is required if you choose X509 for type in certificateTrust.

certificateChain

(Optional) The chain of trust for an X.509 certificate.

This field is used only if you choose X509 for type in certificateTrust.

endpointUri

The local endpoint of the OPC UA source. For example, your local endpoint might look
like opc.tcp://203.0.113.0:49320.

securityPolicy

The security policy to use so that you can secure messages that are read from the OPC
UA source. Choose one of the following:

• NONE – The SiteWise Edge gateway doesn't secure messages from the OPC UA source.
We recommend that you choose a different security policy. If you choose this option,
you must also choose NONE for messageSecurityMode.

• BASIC256_SHA256 – The Basic256Sha256 security policy.

• AES128_SHA256_RSAOAEP – The Aes128_Sha256_RsaOaep security policy.

• AES256_SHA256_RSAPSS – The Aes256_Sha256_RsaPss security policy.

• BASIC128_RSA15 – (Deprecated) The Basic128Rsa15 security policy is deprecated in
the OPC UA specification because it's no longer considered secure. We recommend that
you choose a different security policy. For more information, see Profile SecurityPolicy
– Basic128Rsa15.

• BASIC256 – (Deprecated) The Basic256 security policy is deprecated in the OPC UA
specification because it's no longer considered secure. We recommend that you choose
a different security policy. For more information, see SecurityPolicy – Basic256.

Add data sources 249

https://profiles.opcfoundation.org/profile/1532
https://profiles.opcfoundation.org/profile/1532
https://profiles.opcfoundation.org/profile/1536

AWS IoT SiteWise User Guide

Important

If you choose a security policy other than NONE, you must choose SIGN or
SIGN_AND_ENCRYPT for messageSecurityMode. You must also configure your
source server to trust the SiteWise Edge gateway. For more information, see Set
up OPC UA servers to trust the AWS IoT SiteWise Edge gateway.

messageSecurityMode

The message security mode to use to secure connections to the OPC UA source. Choose
one of the following:

• NONE – The SiteWise Edge gateway doesn't secure connections to the OPC UA source.
We recommend that you choose a different message security mode. If you choose this
option, you must also choose NONE for securityPolicy.

• SIGN – Data in transit between the SiteWise Edge gateway and the OPC UA source is
signed but not encrypted.

• SIGN_AND_ENCRYPT – Data in transit between the gateway and the OPC UA source is
signed and encrypted.

Important

If you choose a message security mode other than NONE, you must choose a
securityPolicy other than NONE. You must also configure your source server
to trust the SiteWise Edge gateway. For more information, see Set up OPC UA
servers to trust the AWS IoT SiteWise Edge gateway.

identityProvider

An identity provider structure that contains the following information:

type

The type of authentication credentials required by the source. Choose one of the
following:

• Anonymous – The source doesn't require authentication to connect.

Add data sources 250

AWS IoT SiteWise User Guide

• Username – The source requires a user name and password to connect. If you
choose this option, you must define usernameSecretArn in identityProvider.

usernameSecretArn

(Optional) The ARN of an AWS Secrets Manager secret. The SiteWise Edge gateway
uses the authentication credentials in this secret when it connects to this source. You
must attach secrets to your SiteWise Edge gateway's IoT SiteWise connector to use
them for source authentication. For more information, see Configure data source
authentication for SiteWise Edge.

This field is required if you choose Username for type in identityProvider.

nodeFilterRules

A list of node filter rule structures that define the OPC UA data stream paths to send to
the AWS Cloud. You can use node filters to reduce your SiteWise Edge gateway's startup
time and CPU usage by only including paths to data that you model in AWS IoT SiteWise.
By default, SiteWise Edge gateways upload all OPC UA paths except those that start with
/Server/. To define OPC UA node filters, you can use node paths and the * and **
wildcard characters. For more information, see Use OPC UA node filters in SiteWise Edge.

Each structure in the list must contain the following information:

action

The action for this node filter rule. You can choose the following option:

• INCLUDE – The SiteWise Edge gateway includes only data streams that match this
rule.

definition

A node filter rule structure that contains the following information:

type

The type of node filter path for this rule. You can choose the following option:

• OpcUaRootPath – The SiteWise Edge gateway evaluates this node filter path
against the root of the OPC UA path hierarchy.

rootPath

The node filter path to evaluate against the root of the OPC UA path hierarchy.
This path must start with /.

Add data sources 251

AWS IoT SiteWise User Guide

measurementDataStreamPrefix

A string to prepend to all data streams from the source. The SiteWise Edge gateway adds
this prefix to all data streams from this source. Use a data stream prefix to distinguish
between data streams that have the same name from different sources. Each data stream
should have a unique name within your account.

typeConversions

The types of conversions available for unsupported OPC UA data types. Each data type is
converted to strings. For more information, see Converting unsupported data types.

array

The simple array data type that is converted to strings. You can choose the following
option:

• JsonArray – Indicates that you choose to convert your simple array data types to
strings.

datetime

The DateTime data type that is converted to strings. You can choose the following
option:

• ISO8601String – Indicates that you choose to convert ISO 8601 data types to
strings.

destination

Configuration for the destination of OPC UA tags. Classic stream, v2 and MQTT-enabled, V3
gateways have differing configurations for destinations.

type

The type of the destination.

streamName – only for Classic streams, V2 gateways

The name of the stream. The stream name should be unique.

streamBufferSize – only for Classic streams, V2 gateways

The buffer size of the stream. This is important for managing the flow of data from OPC
UA sources.

Add data sources 252

AWS IoT SiteWise User Guide

propertyGroups

(Optional) The list of property groups that define the deadband and scanMode requested
by the protocol.

name

The name of the property group. This should be a unique identifier.

deadband

The deadband value defines the minimum change in a data point's value that must occur
before the data is sent to the cloud. It contains the following information:

type

The supported types of deadband. You can choose the following options:

• ABSOLUTE – A fixed value that specifies the minimum absolute change required to
consider a data point significant enough to be sent to the cloud.

• PERCENT – A dynamic value that specifies the minimum change required as a
percentage of the last sent data point's value. This type of deadband is useful when
the data values vary significantly over time.

value

The value of the deadband. When type is ABSOLUTE, this value is a unitless double.
When type is PERCENT, this value is a double between 1 and 100.

eguMin

(Optional) The engineering unit minimum when using a PERCENT deadband. You set
this if the OPC UA server doesn't have engineering units configured.

eguMax

(Optional) The engineering unit maximum when using a PERCENT deadband. You set
this if the OPC UA server doesn't have engineering units configured.

timeoutMilliseconds

The duration in milliseconds before timeout. The minimum is 100.

scanMode

The scanMode structure that contains the following information:

Add data sources 253

AWS IoT SiteWise User Guide

type

The supported types of scanMode. Accepted values are POLL and EXCEPTION.

rate

The sampling interval for the scan mode.

timestampToReturn

The source of the timestamp. You can choose the following options:

• SOURCE_TIME – Uses the timestamp from your device.

• SERVER_TIME – Uses the timestamp from your server.

Note

Use TimestampToReturn with version 2.5.0 or later of the IoT SiteWise
OPC UA collector component. If you use this feature with earlier versions,
configuration updates fail. For more information, see Update the version of an
AWS IoT SiteWise component.

nodeFilterRuleDefinitions

(Optional) A list of node paths to include in the property group. Property groups
can't overlap. If you don't specify a value for this field, the group contains all
paths under the root, and you can't create additional property groups. The
nodeFilterRuleDefinitions structure contains the following information:

type

OpcUaRootPath is the only supported type. This specifies that the value of
rootPath is a path relative to the root of the OPC UA browsing space.

rootPath

A comma-delimited list that specifies the paths (relative to the root) to include in the
property group.

Additional capability configuration examples for Classic streams, V2 gateways (AWS CLI)

The following example defines an OPC UA SiteWise Edge gateway capability configuration from a
payload stored in a JSON file.

Add data sources 254

AWS IoT SiteWise User Guide

aws iotsitewise update-gateway-capability-configuration \
--capability-namespace "iotsitewise:opcuacollector:2" \
--capability-configuration file://opc-ua-configuration.json

Example : OPC UA source configuration

The following opc-ua-configuration.json file defines a basic, insecure OPC UA source
configuration.

{
 "sources": [
 {
 "name": "Wind Farm #1",
 "endpoint": {
 "certificateTrust": {
 "type": "TrustAny"
 },
 "endpointUri": "opc.tcp://203.0.113.0:49320",
 "securityPolicy": "NONE",
 "messageSecurityMode": "NONE",
 "identityProvider": {
 "type": "Anonymous"
 },
 "nodeFilterRules": []
 },
 "measurementDataStreamPrefix": ""
 }
]
}

Example : OPC UA source configuration with defined property groups

The following opc-ua-configuration.json file defines a basic, insecure OPC UA source
configuration with defined property groups.

{
 "sources": [
 {
 "name": "source1",
 "endpoint": {
 "certificateTrust": {
 "type": "TrustAny"

Add data sources 255

AWS IoT SiteWise User Guide

 },
 "endpointUri": "opc.tcp://10.0.0.9:49320",
 "securityPolicy": "NONE",
 "messageSecurityMode": "NONE",
 "identityProvider": {
 "type": "Anonymous"
 },
 "nodeFilterRules": [
 {
 "action": "INCLUDE",
 "definition": {
 "type": "OpcUaRootPath",
 "rootPath": "/Utilities/Tank"
 }
 }
]
 },
 "measurementDataStreamPrefix": "propertyGroups",
 "propertyGroups": [
 {
 "name": "Deadband_Abs_5",
 "nodeFilterRuleDefinitions": [
 {
 "type": "OpcUaRootPath",
 "rootPath": "/Utilities/Tank/Temperature/TT-001"
 },
 {
 "type": "OpcUaRootPath",
 "rootPath": "/Utilities/Tank/Temperature/TT-002"
 }
],
 "deadband": {
 "type":"ABSOLUTE",
 "value": 5.0,
 "timeoutMilliseconds": 120000
 }
 },
 {
 "name": "Polling_10s",
 "nodeFilterRuleDefinitions": [
 {
 "type": "OpcUaRootPath",
 "rootPath": "/Utilities/Tank/Pressure/PT-001"
 }

Add data sources 256

AWS IoT SiteWise User Guide

],
 "scanMode": {
 "type": "POLL",
 "rate": 10000
 }
 },
 {
 "name": "Percent_Deadband_Timeout_90s",
 "nodeFilterRuleDefinitions": [
 {
 "type": "OpcUaRootPath",
 "rootPath": "/Utilities/Tank/Flow/FT-*"
 }
],
 "deadband": {
 "type":"PERCENT",
 "value": 5.0,
 "eguMin": -100,
 "eguMax": 100,
 "timeoutMilliseconds": 90000
 }
 }
]
 }
]
}

Example : OPC UA source configuration with properties

The following JSON example for opc-ua-configuration.json defines an OPC UA source
configuration with the following properties:

• Trusts any certificate.

• Uses the BASIC256 security policy to secure messages.

• Uses the SIGN_AND_ENCRYPT mode to secure connections.

• Uses authentication credentials stored in a Secrets Manager secret.

• Filters out data streams except those whose path starts with /WindFarm/2/WindTurbine/.

• Adds /Washington to the start of every data stream path to distinguish between this "Wind
Farm #2" and a "Wind Farm #2" in another area.

Add data sources 257

AWS IoT SiteWise User Guide

{
 "sources": [
 {
 "name": "Wind Farm #2",
 "endpoint": {
 "certificateTrust": {
 "type": "TrustAny"
 },
 "endpointUri": "opc.tcp://203.0.113.1:49320",
 "securityPolicy": "BASIC256",
 "messageSecurityMode": "SIGN_AND_ENCRYPT",
 "identityProvider": {
 "type": "Username",
 "usernameSecretArn":
 "arn:aws:secretsmanager:region:123456789012:secret:greengrass-windfarm2-auth-1ABCDE"
 },
 "nodeFilterRules": [
 {
 "action": "INCLUDE",
 "definition": {
 "type": "OpcUaRootPath",
 "rootPath": "/WindFarm/2/WindTurbine/"
 }
 }
]
 },
 "measurementDataStreamPrefix": "/Washington"
 }
]
}

Example : OPC UA source configuration with certificate trust

The following JSON example for opc-ua-configuration.json defines an OPC UA source
configuration with the following properties:

• Trusts a given X.509 certificate.

• Uses the BASIC256 security policy to secure messages.

• Uses the SIGN_AND_ENCRYPT mode to secure connections.

{

Add data sources 258

AWS IoT SiteWise User Guide

 "sources": [
 {
 "name": "Wind Farm #3",
 "endpoint": {
 "certificateTrust": {
 "type": "X509",
 "certificateBody": "-----BEGIN CERTIFICATE-----
 MIICiTCCAfICCQD6m7oRw0uXOjANBgkqhkiG9w
 0BAQUFADCBiDELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAldBMRAwDgYDVQQHEwdTZ
 WF0dGxlMQ8wDQYDVQQKEwZBbWF6b24xFDASBgNVBAsTC0lBTSBDb25zb2xlMRIw
 EAYDVQQDEwlUZXN0Q2lsYWMxHzAdBgkqhkiG9w0BCQEWEG5vb25lQGFtYXpvbi5
 jb20wHhcNMTEwNDI1MjA0NTIxWhcNMTIwNDI0MjA0NTIxWjCBiDELMAkGA1UEBh
 MCVVMxCzAJBgNVBAgTAldBMRAwDgYDVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBb
 WF6b24xFDASBgNVBAsTC0lBTSBDb25zb2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMx
 HzAdBgkqhkiG9w0BCQEWEG5vb25lQGFtYXpvbi5jb20wgZ8wDQYJKoZIhvcNAQE
 BBQADgY0AMIGJAoGBAMaK0dn+a4GmWIWJ21uUSfwfEvySWtC2XADZ4nB+BLYgVI
 k60CpiwsZ3G93vUEIO3IyNoH/f0wYK8m9TrDHudUZg3qX4waLG5M43q7Wgc/MbQ
 ITxOUSQv7c7ugFFDzQGBzZswY6786m86gpEIbb3OhjZnzcvQAaRHhdlQWIMm2nr
 AgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAtCu4nUhVVxYUntneD9+h8Mg9q6q+auN
 KyExzyLwaxlAoo7TJHidbtS4J5iNmZgXL0FkbFFBjvSfpJIlJ00zbhNYS5f6Guo
 EDmFJl0ZxBHjJnyp378OD8uTs7fLvjx79LjSTbNYiytVbZPQUQ5Yaxu2jXnimvw
 3rrszlaEXAMPLE=
 -----END CERTIFICATE-----",
 "certificateChain": "-----BEGIN CERTIFICATE-----
 MIICiTCCAfICCQD6m7oRw0uXOjANBgkqhkiG9w
 0BAQUFADCBiDELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAldBMRAwDgYDVQQHEwdTZ
 WF0dGxlMQ8wDQYDVQQKEwZBbWF6b24xFDASBgNVBAsTC0lBTSBDb25zb2xlMRIw
 EAYDVQQDEwlUZXN0Q2lsYWMxHzAdBgkqhkiG9w0BCQEWEG5vb25lQGFtYXpvbi5
 jb20wHhcNMTEwNDI1MjA0NTIxWhcNMTIwNDI0MjA0NTIxWjCBiDELMAkGA1UEBh
 MCVVMxCzAJBgNVBAgTAldBMRAwDgYDVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBb
 WF6b24xFDASBgNVBAsTC0lBTSBDb25zb2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMx
 HzAdBgkqhkiG9w0BCQEWEG5vb25lQGFtYXpvbi5jb20wgZ8wDQYJKoZIhvcNAQE
 BBQADgY0AMIGJAoGBAMaK0dn+a4GmWIWJ21uUSfwfEvySWtC2XADZ4nB+BLYgVI
 k60CpiwsZ3G93vUEIO3IyNoH/f0wYK8m9TrDHudUZg3qX4waLG5M43q7Wgc/MbQ
 ITxOUSQv7c7ugFFDzQGBzZswY6786m86gpEIbb3OhjZnzcvQAaRHhdlQWIMm2nr
 AgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAtCu4nUhVVxYUntneD9+h8Mg9q6q+auN
 KyExzyLwaxlAoo7TJHidbtS4J5iNmZgXL0FkbFFBjvSfpJIlJ00zbhNYS5f6Guo
 EDmFJl0ZxBHjJnyp378OD8uTs7fLvjx79LjSTbNYiytVbZPQUQ5Yaxu2jXnimvw
 3rrszlaEXAMPLE=
 -----END CERTIFICATE-----"
 },
 "endpointUri": "opc.tcp://203.0.113.2:49320",
 "securityPolicy": "BASIC256",
 "messageSecurityMode": "SIGN_AND_ENCRYPT",

Add data sources 259

AWS IoT SiteWise User Guide

 "identityProvider": {
 "type": "Anonymous"
 },
 "nodeFilterRules": []
 },
 "measurementDataStreamPrefix": ""

 }
]
}

Set up OPC UA servers to trust the AWS IoT SiteWise Edge gateway

If you choose a messageSecurityMode other than None when configuring your OPC UA source,
you must enable your source servers to trust the AWS IoT SiteWise Edge gateway. The SiteWise
Edge gateway generates a certificate that your source server might require. The process varies
depending on your source servers. For more information, see the documentation for your servers.

The following procedure outlines the basic steps.

To enable an OPC UA server to trust the SiteWise Edge gateway

1. Open the interface for configuring your OPC UA server.

2. Enter the user name and password for the OPC UA server administrator.

3. Locate Trusted Clients in the interface, and then choose AWS IoT SiteWise Gateway Client.

4. Choose Trust.

Exporting the OPC UA client certificate

Some OPC UA servers require access to the OPC UA client certificate file to trust the SiteWise Edge
gateway. If this applies to your OPC UA servers, you can use the following procedure to export the
OPC UA client certificate from the SiteWise Edge gateway. Then, you can import the certificate on
your OPC UA server.

To export the OPC UA client certificate file for a source

1. Run the following command to change to the directory that contains the
certificate file. Replace sitewise-work with the local storage path for the
aws.iot.SiteWiseEdgeCollectorOpcua Greengrass work folder and replace source-
name with the name of the data source.

Add data sources 260

AWS IoT SiteWise User Guide

By default, the Greengrass work folder is /greengrass/v2/work/
aws.iot.SiteWiseEdgeCollectorOpcua on Linux and C:/greengrass/v2/work/
aws.iot.SiteWiseEdgeCollectorOpcua on Microsoft Windows.

cd /sitewise-work/source-name/opcua-certificate-store

2. The SiteWise Edge gateway's OPC UA client certificate for this source is in the aws-iot-
opcua-client.pfx file.

Run the following command to export the certificate to a .pem file called aws-iot-opcua-
client-certificate.pem.

keytool -exportcert -v -alias aws-iot-opcua-client -keystore aws-iot-opcua-
client.pfx -storepass amazon -storetype PKCS12 -rfc > aws-iot-opcua-client-
certificate.pem

3. Transfer the certificate file, aws-iot-opcua-client-certificate.pem, from the SiteWise
Edge gateway to the OPC UA server.

To do so, you can use common software such as the scp program to transfer the file using the
SSH protocol. For more information, see Secure copy on Wikipedia.

Note

If your SiteWise Edge gateway is running on Amazon Elastic Compute Cloud (Amazon
EC2) and you're connecting to it for the first time, you must configure prerequisites to
connect. For more information, see Connect to your Linux instance using SSH in the
Amazon EC2 User Guide.

4. Import the certificate file, aws-iot-opcua-client-certificate.pem, on the OPC UA
server to trust the SiteWise Edge gateway. Steps can vary depending on the source server that
you use. Consult the documentation for the server.

Filter data ingestion ranges with OPC UA

You can control the way you ingest data with an OPC UA source by using scan mode and deadband
ranges. These features let you control what kind of data to ingest, and how and when your server
and SiteWise Edge gateway exchange this information.

Add data sources 261

https://en.wikipedia.org/wiki/Secure_copy
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connect-to-linux-instance.html

AWS IoT SiteWise User Guide

Collect or filter out data based on quality

You can configure your data quality settings to control what data is collected from the OPC UA
source. The data source includes the quality rating as metadata when it sends it. You can select one
or all of the following options:

• Good

• Bad

• Uncertain

Handle NaN or null values

SiteWise Edge supports the collection and handling of NaN and null values.

• NaN (Not a Number): Represents undefined or unrepresentable numerical results.

• Null: Indicates missing data.

The IoT SiteWise OPC UA collector captures NaN and Null values with BAD or UNCERTAIN quality.
These special values are written to the local stream, enabling more comprehensive data collection.

Control data collection frequency with Scan mode

You can configure your OPC UA scan mode to control the way you collect data from your OPC UA
source. You can choose subscription or polling mode.

• Subscription mode – The OPC UA source collects data to send to your SiteWise Edge gateway at
the frequency defined by your scan rate. The server only sends data when the value has changed,
so this is the maximum frequency your SiteWise Edge gateway receives data.

• Polling mode – Your SiteWise Edge gateway polls the OPC UA source at a set frequency defined
by your scan rate. The server sends data regardless of whether the value has changed, so your
SiteWise Edge gateway always receives data at this interval.

Note

The polling mode option overrides your deadband settings for this source.

Add data sources 262

AWS IoT SiteWise User Guide

Filter OPC UA data ingestion with deadband ranges

You can apply a deadband to your OPC UA source property groups to filter out and discard
certain data instead of sending it to the AWS Cloud. A deadband specifies a window of expected
fluctuations in the incoming data values from your OPC UA source. If the values fall within this
window, your OPC UA server won't send it to the AWS Cloud. You can use deadband filtering to
reduce the amount of data you're processing and sending to the AWS Cloud. To learn how to set
up OPC UA sources for your SiteWise Edge gateway, see OPC UA data sources for AWS IoT SiteWise
Edge gateways.

Note

Your server deletes all data that falls inside the window specified by your deadband. You
can't recover this discarded data.

Types of deadbands

You can specify two types of deadbands for your OPC UA server property group. These let you
choose how much data is sent to the AWS Cloud, and how much is discarded.

• Percentage – You specify a window using a percentage of expected fluctuation in the
measurement value. The server calculates the exact window from this percentage, and sends
data to the AWS Cloud that exceeds falls outside the window. For example, specifying a 2%
deadband value on a sensor with a range from -100 degrees Fahrenheit to +100 degrees
Fahrenheit tells the server to send data to the AWS Cloud when the value changes by 4 degrees
Fahrenheit or more.

Note

You can optionally specify a minimum and maximum deadband value for this window if
your source server doesn't define engineering units. If an engineering unit range is not
provided, the OPC UA server defaults to the full range of the measurement data type.

• Absolute – You specify a window using exact units. For example, specifying a deadband value of
2 on a sensor tells the server to send data to the AWS Cloud when its value changes by at least
2 units. You can use absolute deadbanding for dynamic environments where fluctuations are
regularly expected during normal operations.

Add data sources 263

AWS IoT SiteWise User Guide

Deadband timeouts

You can optionally configure a deadband timeout setting. After this timeout, the OPC UA server
sends the current measurement value even if it is within the expected deadband fluctuation. You
can use the timeout setting to ensure that AWS IoT SiteWise is ingesting a steady stream of data at
all times, even when values do not exceed the defined deadband window.

Use OPC UA node filters in SiteWise Edge

When you define OPC UA data sources for an SiteWise Edge gateway, you can define node filters.
Node filters let you limit which data stream paths the SiteWise Edge gateway sends to the cloud.
You can use node filters to reduce your SiteWise Edge gateway's startup time and CPU usage
by only including paths to data that you model in AWS IoT SiteWise. By default, SiteWise Edge
gateways upload all OPC UA paths except those that start with /Server/. You can use the * and
** wildcard characters in your node filters to include multiple data stream paths with one filter. To
learn how to set up OPC UA sources for your SiteWise Edge gateway, see OPC UA data sources for
AWS IoT SiteWise Edge gateways.

Note

AWS IoT SiteWise restarts your SiteWise Edge gateway each time you add or edit a source.
Your SiteWise Edge gateway won't ingest data while it's updating source configuration.
The time to restart your SiteWise Edge gateway depends on the number of tags on your
SiteWise Edge gateway's sources. Restart time can range from a few seconds (for a SiteWise
Edge gateway with few tags) to several minutes (for a SiteWise Edge gateway with many
tags).

The following table lists the wildcards that you can use to filter OPC UA data sources.

OPC UA node filter wildcards

Wildcard Description

* Matches a single level in a data stream path.

** Matches multiple levels in a data stream path.

Add data sources 264

AWS IoT SiteWise User Guide

Note

If you configure a source with a broad filter and then later change the source to use a more
restrictive filter, AWS IoT SiteWise stops storing data that doesn't match the new filter.

Example : Scenario using node filters

Consider the following hypothetical data streams:

• /WA/Factory 1/Line 1/PLC1

• /WA/Factory 1/Line 1/PLC2

• /WA/Factory 1/Line 2/Counter1

• /WA/Factory 1/Line 2/PLC1

• /OR/Factory 1/Line 1/PLC1

• /OR/Factory 1/Line 2/Counter2

Using the previous data streams, you can define node filters to limit what data to include from your
OPC UA source.

• To select all nodes in this example, use / or /**/. You can include multiple directories or folders
with the ** wildcard characters.

• To select all PLC data streams, use /*/*/*/PLC* or /**/PLC*.

• To select all counters in this example, use /**/Counter* or /*/*/*/Counter*.

• To select all counters from Line 2, use /**/Line 2/Counter*.

Converting unsupported data types

Optionally enable data type conversion in AWS IoT SiteWise for simple arrays and DateTime data
types. AWS IoT SiteWise doesn't support all OPC UA data types. When you send unsupported data
to your AWS IoT Greengrass data stream, that data is lost. However, by converting the unsupported
native data types to strings, you can ingest the data into AWS IoT SiteWise rather than discarding
it. AWS IoT SiteWise serializes your converted data so that you can later use your own functions to
convert the strings back to their original data type downstream, if needed.

Add data sources 265

AWS IoT SiteWise User Guide

You can update your data type conversion settings for a data source at any time and each data
source can have its own settings.

When you add data sources in the AWS IoT SiteWise console, there are two checkboxes under Data
type conversion in Advanced Configuration. You can indicate which data types to convert to
strings.

Additionally, the IoT SiteWise OPC UA collector can accept NaN or null values on the edge.

• Convert array values with simple data types to JSON strings

• Convert DateTime values to ISO 8601 strings

Prerequisite

• Use version 2.5.0 or later of the IoT SiteWise OPC UA collector.

Limitations

These are the limitations for OPC UA data type conversion to strings in AWS IoT SiteWise.

• Complex data type conversion is not supported.

• String limits after conversion are 1024 bytes. If the string is longer than 1024 bytes, the string is
rejected by AWS IoT SiteWise.

Configure data source authentication for SiteWise Edge

If your OPC UA server requires authentication credentials to connect, you can use AWS Secrets
Manager to create and deploy a secret to your SiteWise Edge gateway. AWS Secrets Manager
encrypts secrets on the device to keep your user name and password secure until you need to use
them. For more information about the AWS IoT Greengrass secret manager component, see Secret
manager in the AWS IoT Greengrass Version 2 Developer Guide.

For information about managing access to Secrets Manager secrets, see:

• Who has permissions to your AWS Secrets Manager secrets.

• Determining if a request is allowed or denied within an account.

Add data sources 266

https://docs.aws.amazon.com/greengrass/v2/developerguide/iotsitewise-opcua-collector-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/secret-manager-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/secret-manager-component.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/determine-acccess_examine-iam-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow

AWS IoT SiteWise User Guide

Step 1: Create source authentication secrets

You can use AWS Secrets Manager to create an authentication secret for your data source. In the
secret, define username and password key-value pairs that contain authentication details for
your data source.

To create a secret (console)

1. Navigate to the AWS Secrets Manager console.

2. Choose Store a new secret.

3. Under Secret type, choose Other type of secrets.

4. Under Key/value pairs, do the following:

1. In the first input box, enter username and in the second input box enter the username.

2. Choose Add row.

3. In the first input box, enter password and in the second input box enter the password.

5. For Encryption key, select aws/secretsmanager, and then choose Next.

6. On the Store a new secret page, enter a Secret name.

7. (Optional) Enter a Description that helps you identify this secret, and then choose Next.

8. (Optional) On the Store a new secret page, turn on Automatic rotation. For more information,
see Rotate secrets in the AWS Secrets Manager User Guide.

9. Specify a rotation schedule.

10. Choose a Lambda function that can rotate this secret, and then choose Next.

11. Review your secret configurations, and then choose Store.

To authorize your SiteWise Edge gateway to interact with AWS Secrets Manager, the IAM role for
your SiteWise Edge gateway must allow the secretsmanager:GetSecretValue action. You can
use the Greengrass core device to search for the IAM policy. For more information about updating
an IAM policy, see Editing IAM policies in the AWS Identity and Access Management User Guide.

Example policy

Replace secret-arn with the Amazon Resource Name (ARN) of the secret that you created in the
previous step. For more information about how to get the ARN of a secret, see Find secrets in AWS
Secrets Manager in the AWS Secrets Manager User Guide.

Add data sources 267

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-edit.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_search-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_search-secret.html

AWS IoT SiteWise User Guide

JSON

{
"Version":"2012-10-17",
"Statement":[
 {
 "Action":[
 "secretsmanager:GetSecretValue"
],
 "Effect":"Allow",
 "Resource":[
 "arn:aws:secretsmanager:us-east-1:123456789012:secret/*"
]
 }
]
}

Step 2: Deploy secrets to your SiteWise Edge gateway device

You can use the AWS IoT SiteWise console to deploy secrets to your SiteWise Edge gateway.

To deploy a secret (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Gateways.

3. From the Gateways list, choose the target SiteWise Edge gateway.

4. In the Gateway configuration section, choose the Greengrass core device link to open the
AWS IoT Greengrass core associated with the SiteWise Edge gateway.

5. In the navigation pane, choose Deployments.

6. Choose the target deployment, and then choose Revise.

7. On the Specify target page, choose Next.

8. On the Select components page, in the Public components section, turn off Show only
selected components.

9. Search for and choose the aws.greengrass.SecretManager component, and then choose Next.

10. From the Selected components list, choose the aws.greengrass.SecretManager component,
and then choose Configure component.

Add data sources 268

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

11. In the Configuration to merge field, add the following JSON object.

Note

Replace secret-arn with the ARN of the secret that you created in the previous step.
For more information about how to get the ARN of a secret, see Find secrets in AWS
Secrets Manager in the AWS Secrets Manager User Guide.

{
"cloudSecrets":[
 {
 "arn":"secret-arn"
 }
]
}

12. Choose Confirm.

13. Choose Next.

14. On the Configure advanced settings page, choose Next.

15. Review your deployment configurations, and then choose Deploy.

Step 3: Add authentication configurations

You can use the AWS IoT SiteWise console to add authentication configurations to your SiteWise
Edge gateway.

To add authentication configurations (console)

1. Navigate to the AWS IoT SiteWise console.

2. From the Gateways list, choose the target SiteWise Edge gateway.

3. From the Data sources list, choose the target data source, and then choose Edit.

4. On the Add a data source page, choose Advanced configuration.

5. For Authentication configuration, choose the secret that you deployed in the previous step.

6. Choose Save.

Add data sources 269

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_search-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_search-secret.html
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

Partner data sources on SiteWise Edge gateways

When using an AWS IoT SiteWise Edge gateway you can connect a partner data source to your
SiteWise Edge gateway and receive data from the partner in your SiteWise Edge gateway and the
AWS cloud. These partner data sources are AWS IoT Greengrass components that are developed in
partnership between AWS and the partner. When you add a partner data source, AWS IoT SiteWise
will create this component and deploy it on your SiteWise Edge gateway.

Note

You can add one data source for each partner in each gateway.

To add a partner data source, do the following:

1. Add a partner data source in SiteWise Edge

2. Go to the partner’s web portal, where applicable, and configure the partner data source so it
connects to the SiteWise Edge gateway.

Topics

• Security

• Set up Docker on your SiteWise Edge gateway

• Add a partner data source in SiteWise Edge

• SiteWise Edge gateway partner data source options

Security

As part of the Shared Responsibility Model between AWS, our customers, and our partners the
following describes who is responsible for the different aspects of security:

Customer responsibility

• Vetting the partner.

• Configuring the network access given to the partner.

• Monitoring for reasonable usage of the SiteWise Edge gateway machine resources (CPU,
memory, and file system).

Add data sources 270

https://aws.amazon.com/compliance/shared-responsibility-model/

AWS IoT SiteWise User Guide

AWS responsibility

• Isolating the partner from the customer AWS cloud resources except those needed by the
partner. In this case, AWS IoT SiteWise ingestion.

• Restricting the partner solution to a reasonable usage of the SiteWise Edge gateway machine
resources (CPU and memory).

Partner responsibility

• Using secure defaults.

• Keeping the solution secure over time through patches and other appropriate updates.

• Keeping customer data confidential.

Set up Docker on your SiteWise Edge gateway

AWS IoT SiteWise provides a Docker image that allows you to run the SiteWise Edge application on
various platforms and environments. This Docker image encapsulates all the necessary components
and dependencies required to collect, process, and send data from your industrial equipment to the
AWS Cloud. By using the Docker image, you can deploy and run the SiteWise Edge application on
Docker-compatible hosts, such as servers, edge devices, or cloud-based container services.

To add a partner data source, Docker Engine 1.9.1 or later must be installed on your local device.

Note

Version 20.10 is the latest version that is verified to work with the SiteWise Edge gateway
software.

Verify Docker is installed

To verify Docker is installed, run the following command from a terminal connected to your
SiteWise Edge gateway:

docker info

If the command returns a docker is not recognized result, or an older version of Docker is
installed, Install Docker Engine before continuing.

Add data sources 271

https://docs.docker.com/engine/
https://docs.docker.com/engine/install/

AWS IoT SiteWise User Guide

Set up Docker

The system user that runs a Docker container component must have root or administrator
permissions, or you must configure Docker to run it as a non-root or non-admistrator user.

On Linux devices, you must add a ggc_user user to the docker group to call Docker commands
without sudo.

To add ggc_user, or the non-root user that you use to run Docker container components, to the
docker group, run the following command:

sudo usermod -aG docker ggc_user

For more information, see Linux post-installation steps for DockerEngine.

Add a partner data source in SiteWise Edge

To connect a partner data source to your SiteWise Edge gateway, add it as a data source. When you
add it as a data source, AWS IoT SiteWise will deploy a private AWS IoT Greengrass component to
your SiteWise Edge gateway.

Prerequisites

To add a partner data source, you must do the following:

• For EasyEdge and CloudRail, create an account with the partner, then bind the accounts.

• Set up Docker on your SiteWise Edge gateway

Create a SiteWise Edge gateway with a partner data source

If you want to create a new SiteWise Edge gateway, complete the steps in Create a self-hosted
SiteWise Edge gateway. After you’ve created SiteWise Edge gateway follow the steps in Add a
partner data source to an existing SiteWise Edge gateway to add a partner data source.

Add a partner data source to an existing SiteWise Edge gateway

1. Navigate to the AWS IoT SiteWise console.

2. In the left navigation, choose Edge gateways in the Edge section.

3. Choose the SiteWise Edge gateway you want to connect the partner data source to.

Add data sources 272

https://docs.docker.com/engine/install/linux-postinstall/
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

4. Under Data sources, choose Add data source.

5. On the Add data source screen, choose a Source type, to select the partner that connects your
SiteWise Edge gateway. Each data source has its own configuration options. There are two
categories of data sources: AWS sources and Partner sources.

Using a partner data source, you can select one source per gateway. For a list of data source
partner integration options, see SiteWise Edge gateway partner data source options. Note that
you can add up to 100 OPC UA data sources (AWS sources). To get started with OPC UA data
sources, see OPC UA data sources for AWS IoT SiteWise Edge gateways.

6. Enter a name for the source.

7. Select your data source's tab below and follow the configuration procedure.

CloudRail

Much of the CloudRail configuration is done in the CloudRail portal after saving the data
source for your SiteWise Edge gateway. However, authorizing the connection is required.

Note

The CloudRail connection is only available on Linux.

1. Create a CloudRail account to get started with connecting to AWS IoT SiteWise.

2. Ensure that Docker is installed on your gateway. For more information, see Set up
Docker on your SiteWise Edge gateway.

3. Read the Authorize access and deployment agreement, then choose Authorize.
Checking the box grants the AWS partner access to your data source and allows AWS to
deploy on the partner's component.

Note

The Measurement Prefix – optional is set within your CloudRail portal.

Add data sources 273

https://devices.cloudrail.com/signup

AWS IoT SiteWise User Guide

Note

Partner software is developed, maintained, and supported by the AWS partner.
AWS is not responsible for the interface, configuration, or software.

For more information, see CloudRail.

EasyEdge

Much of the EasyEdge configuration is done in the EasyEdge portal after saving the data
source for your SiteWise Edge gateway. However, authorizing the connection is required.

Note

The EasyEdge connection is only available on Linux.

1. Create an EasyEdge account to get started with connecting to AWS IoT SiteWise.

2. Ensure that Docker is installed on your gateway. For more information, see Set up
Docker on your SiteWise Edge gateway.

3. Read the Authorize access and deployment agreement, then choose Authorize.
Checking the box grants the AWS partner access to your data source and allows AWS to
deploy on the partner's component.

Note

The Measurement Prefix – optional is set within your EasyEdge portal.

Note

Partner software is developed, maintained, and supported by the AWS partner.
AWS is not responsible for the interface, configuration, or software.

Add data sources 274

https://accounts.easyedge.io/signup?partner=aws

AWS IoT SiteWise User Guide

For more information, see EasyEdge.

Litmus Edge

You can activate the Litmus configuration in two ways. Activate Litmus Edge directly
through AWS IoT SiteWise using information from the Litmus Edge Manager portal. Or, you
can manually activate Litmus Edge for AWS IoT SiteWise through Litmus Edge Manager.

Note

The Litmus Edge connection is only available on Linux.

To activate using a Litmus Edge activation code on AWS IoT SiteWise

Use this procedure when adding a Litmus Edge data source with a Litmus Edge activation
code on the AWS IoT SiteWise console.

1. Select Activate now using a code. Additional configuration options appear.

2. Enter the Litmus Edge Manager to connect Litmus Edge to your SiteWise Edge
gateway. For more information, see Step 3a: Set Data and Device Management
Endpoint in the Litmus Edge Manager documentation.

3. Provide the Litmus Edge Manager activation code to activate Litmus Edge on AWS IoT
SiteWise

4. Optionally, provide AWS IoT SiteWise with the Litmus Edge Manager CA certificate.
The certificate prevents Litmus Edge from activating on an unauthorized Litmus Edge
Manager.

5. Ensure that Docker is installed on your gateway. For more information, see Set up
Docker on your SiteWise Edge gateway.

Note

AWS IoT SiteWise deploys the partner application as a Docker container. The
application is deployed with NET_ADMIN capability so that the Litmus Edge
Docker container can be managed through Litmus Edge Manager. Litmus Edge

Add data sources 275

https://docs.litmus.io/edgemanager/quickstart-guide/activate-an-edge-device/step-3-activation-request
https://docs.litmus.io/edgemanager/quickstart-guide/activate-an-edge-device/step-3-activation-request

AWS IoT SiteWise User Guide

requires this privileged access to run on your devices. For more information
about the Litmus Edge Docker requirements, see Docker Installation in the
QuickStart Guide in the Litmus Edge documentation.

6. Read the Authorize access and deployment agreement, then choose Authorize.
Checking the box grants the AWS partner access to your data source and allows AWS to
deploy on the partner's component.

To activate manually through Litmus Edge

1. Select Activate later on Litmus Edge.

2. Ensure that Docker is installed on your gateway. For more information, see Set up
Docker on your SiteWise Edge gateway.

Note

AWS IoT SiteWise deploys the partner application as a Docker container. The
application is deployed with NET_ADMIN capability so that the Litmus Edge
Docker container can be managed through Litmus Edge Manager. Litmus Edge
requires this privileged access to run on your devices. For more information
about the Litmus Edge Docker requirements, see Docker Installation in the
QuickStart Guide in the Litmus Edge documentation.

3. Read the Authorize access and deployment agreement, then choose Authorize.
Checking the box grants the AWS partner access to your data source and allows AWS to
deploy on the partner's component.

4. After the deployment is complete, follow the Access the Litmus Edge Web UI
instructions in the Litmus Edge QuickStart Guide documentation.

Note

Partner software is developed, maintained, and supported by the AWS partner.
AWS is not responsible for the interface, configuration, or software.

Add data sources 276

https://docs.litmus.io/litmusedge-v1/quickstart-guide/installation-and-deployments/docker-installation
https://docs.litmus.io/litmusedge-v1/quickstart-guide/installation-and-deployments/docker-installation
https://docs.litmus.io/litmusedge/quickstart-guide/access-the-litmus-edge-web-ui

AWS IoT SiteWise User Guide

For more information, see Litmus Edge.

8. Choose Save.

SiteWise Edge gateway partner data source options

AWS IoT SiteWise allows you to connect and ingest data from various partner data sources, such as
industrial equipment, sensors, and other third-party systems. To connect a partner data source, you
need to follow a few steps, including configuring the data source to send data to AWS IoT SiteWise,
setting up the necessary permissions and authentication, and mapping the data to your asset
models. This process ensures that your partner data is seamlessly integrated into your AWS IoT
SiteWise environment, enabling you to monitor and analyze it alongside your other data sources.

This section lists the available partners for third-party data source integration on SiteWise Edge
gateways. Use the information below to configure a partner data source.

Note

You can add one data source for each partner in each gateway

CloudRail

Portal:

https://devices.cloudrail.com/

Requirements

For more information on CloudRail requirements, see FAQS on the CloudRail website.

CloudRail documentation:

Edge Computing: SiteWise Edge

EasyEdge

Portal:

https://studio.easyedge.io/

Add data sources 277

https://devices.cloudrail.com/
https://cloudrail.com/faqs/
https://devices.cloudrail.com/documentation?service=AWSIoTSitewiseEdge#awsiotsitewiseEdge1
https://studio.easyedge.io/

AWS IoT SiteWise User Guide

Requirements

EasyEdge requirements – Information about EasyEdge requirements, including endpoints and
ports required for configuring the firewall. Note: You'll need an EasyEdge account to access this
documentation.

EasyEdge documentation:

EasyEdge for AWS

Litmus Edge

Access to Litmus Edge Manager:

To access Litmus Edge, set up a Litmus Edge Manager account.

Requirements

Litmus Edge Requirements – Recommended configurations and system requirements to deploy
Litmus Edge.

Litmus documentation:

• Integration to AWS IoT SiteWise

• Litmus Edge Documentation

AWS IoT Greengrass components for AWS IoT SiteWise Edge

SiteWise Edge uses AWS IoT Greengrass components to collect, process, and transmit industrial
data at the edge. These components work together to enable local data processing and seamless
integration with the AWS IoT SiteWise cloud service.

IoT SiteWise publisher

The IoT SiteWise publisher component (aws.iot.SiteWiseEdgePublisher)is responsible
for:

• Securely transmitting collected data to the AWS IoT SiteWise cloud service

• Managing data buffering and retries during connectivity issues

For more information on configuring the publisher for SiteWise Edge, see Configure the AWS
IoT SiteWise publisher component. And, for more information on the publisher component, see
IoT SiteWise publisher in the AWS IoT Greengrass Version 2 Developer Guide.

Components for SiteWise Edge 278

https://docs.easyedge.io/getting-started/requirements.html
https://www.easyedge.io/easyedge-for-aws/
https://docs.litmus.io/edgemanager/quickstart-guide/access-to-litmus-edge-manager
https://docs.litmus.io/litmusedge/quickstart-guide/system-requirements
https://docs.litmus.io/litmusedge-v1/litmusedge-with-aws-iot-sitewise
https://docs.litmus.io/litmusedge/
https://docs.aws.amazon.com/greengrass/v2/developerguide/iotsitewise-publisher-component.html

AWS IoT SiteWise User Guide

IoT SiteWise processor

The IoT SiteWise processor component (aws.iot.SiteWiseEdgeProcessor) performs the
following tasks:

• Executing data transformations and calculations at the edge

• Implementing asset property definitions and computations locally

• Reducing data volume by aggregating or filtering data before transmission

For more information about the processor component, see IoT SiteWise processor in the AWS
IoT Greengrass Version 2 Developer Guide.

IoT SiteWise OPC UA collector

The IoT SiteWise OPC UA collector (aws.iot.SiteWiseEdgeCollectorOpcua) component is
designed to:

• Connect to OPC UA servers in industrial environments

• Collect data from OPC UA data sources efficiently

• Transform OPC UA data into a format compatible with AWS IoT SiteWise

For more information about OPC UA collector component, see IoT SiteWise OPC UA collector in
the AWS IoT Greengrass Version 2 Developer Guide.

IoT SiteWise OPC UA data source simulator

The IoT SiteWise OPC UA data source simulator component
(aws.iot.SiteWiseEdgeOpcuaDataSourceSimulator) provides the following
functionality:

• Starts a local OPC UA server that generates sample data

• Simulates a data source that can be read by the AWS IoT SiteWise OPC UA collector
component on an AWS IoT SiteWise gateway

• Enables exploration of AWS IoT SiteWise features using the generated sample data

This component is particularly useful for testing and development purposes, allowing you to
simulate industrial data sources without the need for physical equipment.

For more information about the data source simulation component, see IoT SiteWise OPC UA
data source simulator in the AWS IoT Greengrass Version 2 Developer Guide.

Components for SiteWise Edge 279

https://docs.aws.amazon.com/greengrass/v2/developerguide/iotsitewise-processor-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/iotsitewise-opcua-collector-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/iotsitewise-opcua-data-source-simulator-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/iotsitewise-opcua-data-source-simulator-component.html

AWS IoT SiteWise User Guide

These AWS IoT Greengrass components work to enable SiteWise Edge functionality. The IoT
SiteWise publisher ensures data is reliably sent to the cloud, the IoT SiteWise processor handles
local computations and data optimization, and the IoT SiteWise OPC UA collector facilitates
integration with common industrial protocols.

Note

To use these components, you must have AWS IoT Greengrass V2 or later installed on
your edge devices. Proper configuration of each component is important for optimal
performance of SiteWise Edge.

Filter assets on a SiteWise Edge gateway

You can use edge filtering to more efficiently manage your assets by sending only a subset of
assets to a specific SiteWise Edge gateway for use in data processing. If your assets are arranged
in a tree, or parent-child, structure, you can set up an IAM policy attached to a SiteWise Edge
gateway’s IAM role that only allows the root of the tree, or parent, and its children to be sent to a
specific SiteWise Edge gateway.

Note

If you’re arranging existing assets into a tree structure, after you’ve created the structure,
go into each existing asset that you added to the structure and choose Edit and then
choose Save to make sure AWS IoT SiteWise recognizes the new structure.

Set up edge filtering

Set up edge filtering on your SiteWise Edge gateway by adding the following IAM policy to the
SiteWise Edge gateway’s IAM role, replacing <root-asset-id> with the ID of the root asset you
want to send to the SiteWise Edge gateway.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {

Filter assets 280

AWS IoT SiteWise User Guide

 "Effect": "Deny",
 "Action": [
 "iotsitewise:DescribeAsset",
 "iotsitewise:ListAssociatedAssets"
],
 "Resource": "arn:aws:iotsitewise:*:*:asset/*",
 "Condition": {
 "StringNotLike": {
 "iotsitewise:assetHierarchyPath": "/<root-asset-id>*"
 }
 }
 }
]
}

If there are assets currently on your SiteWise Edge gateway that you'd like to remove, log into your
SiteWise Edge gateway and run the following command to force the SiteWise Edge gateway to
sync with AWS IoT SiteWise by deleting the cache.

sudo rm /greengrass/v2/work/aws.iot.SiteWiseEdgeProcessor/sync-app/
sync_resource_bundles/edge.json

Configure proxy support and manage trust stores for AWS IoT SiteWise
Edge

In AWS IoT SiteWise Edge, configure and manage trust stores to set up proxy support for your edge
devices. First, set up proxy configuration, then configure trust stores. You can configure trust stores
either during gateway installation or manually after your gateway is established.

• Proxies – Facilitate connectivity between your edge devices and AWS services in various network
environments.

• Trust stores – Ensure secure connections by managing trusted certificates. Proper configurations
help you comply with your network security policies, enable communication in restricted
network environments, and optimize data transfer between edge devices and cloud services.

SiteWise Edge utilizes multiple trust stores for different component types, ensuring secure and
efficient data flow from your edge devices to the cloud. You can configure trust stores and proxies
on an existing gateway or during the installation process when creating a new gateway.

Proxy support and trust stores 281

AWS IoT SiteWise User Guide

Requirements for trust store and proxy configurations

Before you configure a trust store or install SiteWise Edge with proxy settings, ensure that you
meet the prerequisites. There are varied implementation requirements based on your component
usage and functionality requirements.

Proxy support requirements

• The URL of your proxy server. The URL should include the user info, the port number for the
host. For example, scheme://[userinfo@]host[:port].

• scheme – Must be HTTP or HTTPS

• (Optional) userinfo – User name and password information

• host – The host name or IP address of the proxy server

• port – The port number

• A list of addresses to bypass the proxy.

• (Optional) The proxy CA certificate file if you're using an HTTPS proxy with a self-signed
certificate.

Trust store requirements

• For full data processing pack functionality with HTTPS proxy, you should update all three trust
stores.

• If you only use the IoT SiteWise OPC UA collector and IoT SiteWise publisher, update the
certificates AWS IoT Greengrass Core and Java trust stores to the latest version.

Best practices for trust store and proxy server edge configurations

For ongoing maintenance and to maintain the highest level of security in your edge environment:

• Regularly review and update proxy settings to align with your network security requirements.

• Monitor gateway connectivity and data flow to ensure proper proxy communication

• Maintain and update trust stores according to your organization's certificate management
policies

• You can implement and follow our recommended best practices for secure communication in
edge environments, such as:

• Document your proxy and trust store configurations for operational visibility

Proxy support and trust stores 282

AWS IoT SiteWise User Guide

• Follow your organization's security practices for credential management

These practices help maintain secure and reliable operations for your SiteWise Edge gateways
while remaining aligned with your broader security policies.

Configure proxy settings during AWS IoT SiteWise Edge gateway installation

You can configure AWS IoT SiteWise Edge to work with a proxy server during gateway installation.
The installation script supports both HTTP and HTTPS proxies and can automatically configure
trust stores for secure proxy connections.

When you run the installation script with proxy settings, it performs several important tasks:

• Validates the proxy URL format and parameters to ensure they are correctly specified.

• Downloads and installs required dependencies through the configured proxy.

• If a proxy CA certificate is provided, it's appended to the AWS IoT Greengrass root CA certificate
and imported into the Java KeyStore.

• Configures AWS IoT Greengrass (which SiteWise Edge uses) to use the proxy for all outbound
connections.

• Completes the SiteWise Edge installation with the appropriate proxy and trust store
configurations.

To configure proxy settings when installing gateway software

1. Create a SiteWise Edge gateway. For more information, see Create a self-hosted SiteWise Edge
gateway and Install the AWS IoT SiteWise Edge gateway software on your local device.

2. Run the installation script with the appropriate proxy settings for your environment. Replace
the placeholders with your specific proxy information

Replace each of the following items:

• -p, --proxy-url – The URL of the proxy server. The URL must be either http or https.

• -n, --no-proxy – A comma-separated list of addresses to bypass the proxy.

• (Optional)-c, --proxy-ca-cert – Path to the proxy CA certificate file.

• (Optional)-j, --javastorepass – The Java KeyStore password. The default password is
changeit.

Proxy support and trust stores 283

AWS IoT SiteWise User Guide

Linux

For Linux systems, use the following command structure:

sudo ./install.sh -p proxy-url -n no-proxy-addresses [-c proxy-ca-cert-path] [-
j javastorepass]

Windows

For Microsoft Windows systems using PowerShell, use this command structure:

.\install.ps1 -ProxyUrl proxy-url -NoProxyAddresses no-proxy-addresses [-
ProxyCaCertPath proxy-ca-cert-path] [-JavaStorePass javastorepass]

Troubleshooting during proxy-enabled installation

For more information on resolving trust store issues related to a SiteWise Edge gateway, see Proxy-
enabled installation issues.

Manually configure trust stores for HTTPS proxy support in AWS IoT SiteWise
Edge

When configuring AWS IoT SiteWise Edge components to connect through an HTTPS proxy, add
the proxy server's certificate to the appropriate trust stores. SiteWise Edge uses multiple trust
stores to secure communications. There are three trust stores and your use of them depends upon
the SiteWise Edge component type in your gateway implementation.

Trust stores are automatically updated during the installation process when proxy settings are
provided.

• Configure an AWS IoT Greengrass Core component trust store – The AWS IoT Greengrass root CA
certificate is included in the trust stores to verify the authenticity of AWS services.

This trust store helps AWS IoT Greengrass components securely communicate with AWS services
through the proxy while verifying the authenticity of those services.

• Configure a Java-based component trust store – The Java KeyStore (JKS) is the main trust store
used by Java-based components for SSL/TLS connections.

Proxy support and trust stores 284

AWS IoT SiteWise User Guide

Java applications rely on the JKS to establish secure connections. For example, if you're using
the IoT SiteWise publisher or IoT SiteWise OPC UA collector, which are Java-based, you'll need to
configure this trust store. This ensures these components can securely communicate through the
HTTPS proxy when sending data to the cloud or collecting data from OPC UA servers.

• System-level component trust store configuration – When using HTTPS proxies, their certificates
must be added to the appropriate trust stores to enable secure connections.

When using HTTPS proxies, their certificates must be added to the appropriate trust stores to
enable secure connections. This is necessary because system-level components, often written in
languages like Rust or Go, rely on the system's trust store rather than Java's JKS. For example,
if you're using system utilities that need to communicate through the proxy (like for software
updates or time synchronization), you'll need to configure the system-level trust store. This
ensures these components and utilities can establish secure connections through the proxy.

Configure an AWS IoT Greengrass Core component trust store

For AWS IoT Greengrass Core functions that use Amazon's root CA:

1. Locate the certificate file at /greengrass/v2/AmazonRootCA1.pem

2. Append the HTTPS proxy root certificate (self-signed) to this file.

-----BEGIN CERTIFICATE-----
MIIEFTCCAv2gAwIQWgIVAMHSAzWG/5YVRYtRQOxXUTEpHuEmApzGCSqGSIb3DQEK
\nCwUAhuL9MQswCQwJVUzEPMAVUzEYMBYGA1UECgwP1hem9uLmNvbSBJbmMuMRww
... content of proxy CA certificate ...
+vHIRlt0e5JAm5\noTIZGoFbK82A0/nO7f/t5PSIDAim9V3Gc3pSXxCCAQoFYnui
GaPUlGk1gCE84a0X\n7Rp/lND/PuMZ/s8YjlkY2NmYmNjMCAXDTE5MTEyN2cM216
gJMIADggEPADf2/m45hzEXAMPLE=
-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----
MIIDQTCCAimgF6AwIBAgITBmyfz/5mjAo54vB4ikPmljZKyjANJmApzyMZFo6qBg
ADA5MQswCQYDVQQGEwJVUzEPMA0tMVT8QtPHRh8jrdkGA1UEChMGDV3QQDExBBKW
... content of root CA certificate ...
o/ufQJQWUCyziar1hem9uMRkwFwYVPSHCb2XV4cdFyQzR1KldZwgJcIQ6XUDgHaa
5MsI+yMRQ+hDaXJiobldXgjUka642M4UwtBV8oK2xJNDd2ZhwLnoQdeXeGADKkpy
rqXRfKoQnoZsG4q5WTP46EXAMPLE

Proxy support and trust stores 285

AWS IoT SiteWise User Guide

-----END CERTIFICATE-----

Configure HTTPS proxy on an established gateway

You can add proxy support to an established gateway by connecting to port 443 instead of port
8883. For more information on using a proxy server, see Connect on port 443 or through a network
proxy in the AWS IoT Greengrass Version 2 Developer Guide. If you create a new gateway, you can
set the proxy configuration during gateway installation. For more information, see Configure proxy
settings during AWS IoT SiteWise Edge gateway installation.

When you use an HTTPS proxy with AWS IoT Greengrass on SiteWise Edge, the software
automatically chooses between HTTP and HTTPS for proxy connections based on the provided
URL.

Important

Update all required trust stores before attempting to connect through an HTTPS proxy.

Configure a Java-based component trust store

For IoT SiteWise publisher, IoT SiteWise OPC UA collector, and Java services in the data processing
pack, the default Java trust store location is $JAVA_HOME/jre/lib/security/cacerts

To add a certificate

1. Create a file to store the proxy server's certificate, such as proxy.crt.

Note

Create the file ahead of time using the proxy server's certificate.

2. Add the file to Java's trust store using the following command:

sudo keytool -import -alias proxyCert -keystore /usr/lib/jvm/java-11-openjdk-amd64/
lib/security/cacerts -file proxy.crt

3. When prompted, use the default password: changeit

Proxy support and trust stores 286

https://docs.aws.amazon.com/greengrass/v2/developerguide/configure-greengrass-core-v2.html#configure-alpn-network-proxy
https://docs.aws.amazon.com/greengrass/v2/developerguide/configure-greengrass-core-v2.html#configure-alpn-network-proxy

AWS IoT SiteWise User Guide

System-level component trust store configuration

For components written in Rust, Go, and other languages that use the system trust store:

Linux

Linux systems: Add certificates to /etc/ssl/certs/ca-certificates.crt

Windows

Microsoft Windows systems: To configure the trust store, follow the Certificate Store procedure
in the Microsoft Ignite documentation.

Windows offers multiple certificate stores, including separate stores for User and Computer
scopes, each with several sub-stores. For most SiteWise Edge setups, we recommend adding
certificates to the COMPUTER | Trusted Root Certification Authorities store.
However, depending on your specific configuration and security requirements, you might need
to use a different store.

Troubleshooting trust store issues

For more information on resolving trust store issues related to a SiteWise Edge gateway, see Trust
store issues.

Use AWS IoT SiteWise APIs on the edge

AWS IoT SiteWise provides a subset of its APIs, along with edge-specific APIs, enabling seamless
interaction with asset models and their associated assets deployed at the edge. These asset models
must be configured to run on the edge. For more information, see Configure an asset model for
data processing on SiteWise Edge for detailed instructions on this setup process.

After you configure these APIs, you can retrieve comprehensive data about your asset models and
individual assets. Retrieving asset model, asset, dashboard, portal and project information can
help you monitor deployed portals and dashboards, and access asset data collected at the edge
level. This provides a central host in your network for interactions with AWS IoT SiteWise without
requiring a web API call.

Topics

• All available AWS IoT SiteWise Edge device APIs

Use APIs 287

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/certificate-stores

AWS IoT SiteWise User Guide

• Edge-only APIs for use with AWS IoT SiteWise edge devices

• Enable CORS on AWS IoT SiteWise Edge APIs

• Configure session timeouts for AWS IoT SiteWise Edge

• Tutorial: List asset models on an AWS IoT SiteWise Edge gateway

All available AWS IoT SiteWise Edge device APIs

AWS IoT SiteWise provides a variety of APIs to use on edge devices so that you can complete tasks
locally on the device. Some of the available edge APIs include retrieving asset models, creating
and updating asset properties, and sending data streams to the cloud. By leveraging these APIs,
you can build solutions that can operate in environments with intermittent or limited network
connectivity.

Available AWS IoT SiteWise APIs

The following AWS IoT SiteWise APIs are available on edge devices:

• ListAssetModels

• DescribeAssetModel

• ListAssets

• DescribeAsset

• DescribeAssetProperty

• ListAssociatedAssets

• GetAssetPropertyAggregates

• GetAssetPropertyValue

• GetAssetPropertyValueHistory

• ListDashboards

• ListPortals

• ListProjectAssets

• ListProjects

• DescribeDashboard

• DescribePortal

Use APIs 288

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListAssetModels.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAssetModel.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListAssets.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAsset.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAssetProperty.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListAssociatedAssets.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyAggregates.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyValueHistory.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListDashboards.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListPortals.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListProjectAssets.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListProjects.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeDashboard.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribePortal.html

AWS IoT SiteWise User Guide

• DescribeProject

Available edge-only APIs

The following APIs are used locally on devices on the edge:

• Authenticate – Use this API to get the SigV4 temporary credentials that you'll use to make API
calls.

Edge-only APIs for use with AWS IoT SiteWise edge devices

In addition to the AWS IoT SiteWise APIs that are available on the edge, there are edge-specific
ones. Those edge-specifc APIs are described below.

Authenticate

Gets the credentials from the SiteWise Edge gateway. You'll need to add local users or connect to
your system using LDAP or a Linux user pool. For more information about adding users, see LDAP
or Linux user pool.

Request syntax

POST /authenticate HTTP/1.1
Content-type: application/json
{
 "username": "string",
 "password": "string",
 "authMechanism": "string"
}

URI request Parameters

The request does not use any URI parameters.

Request body

The request accepts the following data in JSON format.

username

The username used to validate the request call.

Use APIs 289

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeProject.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/manage-gateways-ggv2.html#opshub-app
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/manage-gateways-ggv2.html#opshub-app

AWS IoT SiteWise User Guide

Type: String

Required: Yes

password

The password of the user requesting credentials.

Type: String

Required: Yes

authMechanism

The authentication method to validate this user in the host.

Type: String

Valid values: ldap, linux, winnt

Required: Yes

Response syntax

HTTP/1.1 200
Content-type: application/json
{
 "accessKeyId": "string",
 "secretAccessKey": "string",
 "sessionToken": "string",
 "region": "edge"
}

Response elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format.

accessKeyId

The access key ID that identifies the temporary security credentials.

Use APIs 290

AWS IoT SiteWise User Guide

Length Constraints: Minimum length of 16. Maximum length of 128.

Pattern: [\w]*

secretAccessKey

The secret access key that can be used to sign requests.

Type: String

sessionToken

The token that users must pass to the service API to use the temporary credentials.

Type: String

region

The region you are targeting for API calls.

Type: CONSTANT - edge

Errors

IllegalArgumentException

The request was rejected because the provided body document was malformed. The error
message describes the specific error.

HTTP Status Code: 400

AccessDeniedException

The user doesn't have valid credentials based on the current Identity Provider. The error
message describes the authentication Mechanism.

HTTP Status Code: 403

TooManyRequestsException

The request has reached it's limit of authentication attempts. The error message contains the
quantity of time to wait until new attempts of authentication are made.

HTTP Status Code: 429

Use APIs 291

AWS IoT SiteWise User Guide

Enable CORS on AWS IoT SiteWise Edge APIs

Enabling CORS (Cross-Origin Resource Sharing) on AWS IoT SiteWise Edge APIs allows web
applications to directly communicate with the APIs across different domains. This enables seamless
integration, real-time data exchange, and cross-domain data access without intermediary servers
or workarounds. CORS settings can be configured to specify allowable origins, ensuring controlled
cross-origin access.

Note

CORS is available for version 3.3.1 and later of the This feature is available for version 3.3.1
and later of the aws.iot.SiteWiseEdgeProcessor component. For more information,
see AWS IoT SiteWise processor in the AWS IoT Greengrass Version 2 Developer Guide.

To enable CORS on SiteWise Edge APIs

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. Select the SiteWise Edge gateway for which you want to enable CORS. You can enable CORS
on the AWS IoT Greengrass V2 deployment type.

4. In the Gateway configuration section, choose the associated Greengrass core device.

5. In the Deployments tab, under Greengrass devices, select the appropriate deployment link.

6. Under Actions choose Revise, then Revise deployment.

Important

Creating a revised CORS enabled configuration replaces the device’s current
configuration.

7. In Step 1, Specify target, provide an optional Name to identify the deployment.

8. In Step 2, Select components - optional, you can leave all current selections as-is and choose
Next.

9. In Step 3, Configure components - optional, select aws.iot.SiteWiseEdgeProcessor, and
choose Configure component.

10. In the Configuration update section, under Configuration to merge, enter the following JSON:

Use APIs 292

https://docs.aws.amazon.com/greengrass/v2/developerguide/iotsitewise-processor-component.html
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

{
 "AWS_SITEWISE_EDGE_ACCESS_CONTROL_ALLOW_ORIGIN": "*"
}

Note

Using * as the value for AWS_SITEWISE_EDGE_ACCESS_CONTROL_ALLOW_ORIGIN
allows all origins. For production environments, it's recommended to specify exact
origin URLs for better security.

11. Choose Confirm.

12. Choose Next to proceed through remaining steps until you arrive at Step5, Review.

13. Review your configuration changes, then choose Deploy to apply the changes to your SiteWise
Edge gateway.

Note

Alternatively, you can enable CORS by setting global the environmental variable
AWS_SITEWISE_EDGE_ACCESS_CONTROL_ALLOW_ORIGIN to * on your AWS IoT
SiteWise gateway.

Note

For authenticated proxy, userinfo must be included in the url field in the proxy
configuration rather than as a separated username and password fields.

After the deployment is complete, CORS is enabled on your SiteWise Edge API, allowing specified
origins to make cross-origin requests to the API.

Configure session timeouts for AWS IoT SiteWise Edge

SiteWise Edge allows you to configure session timeouts for the SiteWise Edge API. This feature
enhances security by automatically terminating inactive sessions after a specified time-period.
This section guides you through the process of configuring the session timeout using the AWS IoT
SiteWise console.

Use APIs 293

AWS IoT SiteWise User Guide

Note

Session timeout configuration is available for version 3.4.0 and later of the
aws.iot.SiteWiseEdgeProcessor component. For more information, see AWS IoT
SiteWise processor in the AWS IoT Greengrass Version 2 Developer Guide.

To configure a session timeout for a SiteWise Edge gateway

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. Choose the SiteWise Edge gateway where you want to configure the session timeout.

Note

You can configure the session timeout on the AWS IoT Greengrass V2 deployment
type.

4. In the Gateway configuration section, choose the associated Greengrass core device.

5. In the Deployments tab, under Greengrass devices, select the appropriate deployment link.

6. Under Actions choose Revise. Read the warning, and then choose Revise deployment.

Important

Creating a revised session timeout configuration replaces the device's current
configuration.

7. In Step 1, Specify target, provide an optional Name to identify the revised deployment, and
then choose Next.

8. In Step 2, Select components - optional, you can leave all current selections as-is and choose
Next.

9. In Step 3, Configure components - optional, select aws.iot.SiteWiseEdgeProcessor, and
choose Configure component.

10. In the Configuration update section, under Configuration to merge, enter the following
JSON:

Use APIs 294

https://docs.aws.amazon.com/greengrass/v2/developerguide/iotsitewise-processor-component.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/iotsitewise-processor-component.html
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

{
 "AWS_SITEWISE_EDGE_SESSION_TIMEOUT_MINUTES": "240"
}

11. Set the value for AWS_SITEWISE_EDGE_SESSION_TIMEOUT_MINUTES in minutes. Session
timeout values can be from 1 minute to 10080 minutes (7 days). The default value is 240
minutes (4 hours).

12. Choose Confirm.

13. Choose Next to proceed through remaining steps until you arrive at Step 5, Review.

14. Review your configuration changes, then choose Deploy to apply the changes to your SiteWise
Edge gateway.

Note

Alternatively, you can configure the session timeout by setting the global environmental
variable AWS_SITEWISE_EDGE_SESSION_TIMEOUT_MINUTES to your desired value (in
minutes) on your SiteWise Edge gateway.

After the deployment is complete, the new session timeout configuration is applied to your
SiteWise Edge API.

Tutorial: List asset models on an AWS IoT SiteWise Edge gateway

You can use a subset of the available AWS IoT SiteWise APIs along with edge-specific APIs to
interact with asset models and their assets on the edge. This tutorial will walk you through getting
temporary credentials to an AWS IoT SiteWise Edge gateway and getting a list of the asset models
on the SiteWise Edge gateway.

Prerequisites

In the steps of this tutorial you can use a variety of tools. To use these tools, make sure you have
the corresponding prerequisites installed.

To complete this tutorial, you need the following:

• A deployed and running AWS IoT SiteWise Edge self-hosted gateway requirements

• Access to your SiteWise Edge gateway in the same network over port 443.

Use APIs 295

AWS IoT SiteWise User Guide

• OpenSSL installed

• (AWS OpsHub for AWS IoT SiteWise) The AWS OpsHub for AWS IoT SiteWise application

• (curl) curl installed

• (Python) urllib3 installed

• (Python) Python3 installed

• (Python) Boto3 installed

• (Python) BotoCore installed

Step 1: Get a SiteWise Edge gateway service signed certificate

To establish a TLS connection to the APIs available at the SiteWise Edge gateway, you need a
trusted certificate. You can generate this certificate using a OpenSSL or AWS OpsHub for AWS IoT
SiteWise.

OpenSSL

Note

You need OpenSSL installed to run this command.

Open a terminal and run the following command to get a signed certificate from the SiteWise
Edge gateway. Replace <sitewise_gateway_ip> with the IP of the SiteWise Edge gateway.

openssl s_client -connect <sitewise_gateway_ip>:443 </dev/null 2>/dev/null | openssl
 x509 -outform PEM > GatewayCert.pem

AWS OpsHub for AWS IoT SiteWise

You can use AWS OpsHub for AWS IoT SiteWise. For more information, see Manage SiteWise
Edge gateways.

The absolute path to the downloaded SiteWise Edge gateway certificate is used in this
tutorial. Run the following command to export the complete path of your certificate, replacing
<absolute_path_to_certificate> with the path to the certificate:

export PATH_TO_CERTIFICATE='<absolute_path_to_certificate>'

Use APIs 296

https://www.openssl.org/
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/manage-gateways-ggv2.html#opshub-app
https://ec.haxx.se/install/
https://urllib3.readthedocs.io/en/stable/index.html
https://www.python.org/downloads/
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html
https://botocore.amazonaws.com/v1/documentation/api/latest/index.html
https://www.openssl.org/

AWS IoT SiteWise User Guide

Step 2: Get your SiteWise Edge gateway hostname

Note

You need OpenSSL installed to run this command.

To complete the tutorial you'll need the hostname of your SiteWise Edge gateway. To get the
hostname of your SiteWise Edge gateway, run the following, replacing <sitewise_gateway_ip>
with the IP of the SiteWise Edge gateway:

openssl s_client -connect <sitewise_gateway_ip>:443 </dev/null 2>/dev/null | grep -Po
 'CN = \K.*'| head -1

Run the following command to export the hostname for use later, replacing
<your_edge_gateway_hostname> with the hostname of your SiteWise Edge gateway:

export GATEWAY_HOSTNAME='<your_edge_gateway_hostname>'

Step 3: Get temporary credentials for your SiteWise Edge gateway

Now that you have the signed certificate and the hostname of your SiteWise Edge gateway,
you need to get temporary credentials so you can run APIs on the gateway. You can get these
credentials through AWS OpsHub for AWS IoT SiteWise or directly from the SiteWise Edge gateway
using APIs.

Important

Credentials expire every 4 hours, so you should get the credentials just before using the
APIs on your SiteWise Edge gateway. Don't cache credentials for longer than 4 hours.

Get temporary credentials using AWS OpsHub for AWS IoT SiteWise

Note

You need the AWS OpsHub for AWS IoT SiteWise application installed.

Use APIs 297

https://www.openssl.org/
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/manage-gateways-ggv2.html#opshub-app

AWS IoT SiteWise User Guide

To use AWS OpsHub for AWS IoT SiteWise application to get your temporary credentials do the
following:

1. Log into the application.

2. Choose Settings.

3. For Authentication, choose Copy credentials.

4. Expand the option that fits your environment and choose Copy.

5. Save the credentials for use later.

Get temporary credentials using the SiteWise Edge gateway API

To use the SiteWise Edge gateway API to get the temporary credentials you can use a Python script
or curl, first you'll need to have a user name and password for your SiteWise Edge gateway. The
SiteWise Edge gateways use SigV4 authentication and authorization. For more information about
adding users, see LDAP or Linux user pool. These credentials will be used in the following steps
to get the local credentials on your SiteWise Edge gateway that are needed to use the AWS IoT
SiteWise APIs.

Python

Note

You need urllib3 and Python3 installed.

To get the credentials using Python

1. Create a file called get_credentials.py and the copy the following code into it.

'''
The following demonstrates how to get the credentials from the SiteWise Edge
 gateway. You will need to add local users or connect your system to LDAP/AD
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/manage-gateways-
ggv2.html#create-user-pool

Example usage:
 python3 get_credentials.py -e https://<gateway_hostname> -c
 <path_to_certificate> -u '<gateway_username>' -p '<gateway_password>' -m
 '<method>'

Use APIs 298

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/manage-gateways-ggv2.html#opshub-app
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/manage-gateways-ggv2.html#opshub-app
https://urllib3.readthedocs.io/en/stable/index.html
https://www.python.org/downloads/

AWS IoT SiteWise User Guide

'''
import urllib3
import json
import urllib.parse
import sys
import os
import getopt

"""
This function retrieves the AWS IoT SiteWise Edge gateway credentials.
"""
def get_credentials(endpoint,certificatePath, user, password, method):
 http = urllib3.PoolManager(cert_reqs='CERT_REQUIRED', ca_certs=
 certificatePath)
 encoded_body = json.dumps({
 "username": user,
 "password": password,
 "authMechanism": method,
 })

 url = urllib.parse.urljoin(endpoint, "/authenticate")

 response = http.request('POST', url,
 headers={'Content-Type': 'application/json'},
 body=encoded_body)

 if response.status != 200:
 raise Exception(f'Failed to authenticate! Response status
 {response.status}')

 auth_data = json.loads(response.data.decode('utf-8'))

 accessKeyId = auth_data["accessKeyId"]
 secretAccessKey = auth_data["secretAccessKey"]
 sessionToken = auth_data["sessionToken"]
 region = "edge"

 return accessKeyId, secretAccessKey, sessionToken, region

def print_help():
 print('Usage:')
 print(f'{os.path.basename(__file__)} -e <endpoint> -c <path/to/certificate>
 -u <user> -p <password> -m <method> -a <alias>')
 print('')

Use APIs 299

AWS IoT SiteWise User Guide

 print('-e, --endpoint edge gateway endpoint. Usually the Edge gateway
 hostname.')
 print('-c, --cert_path path to downloaded gateway certificate')
 print('-u, --user Edge user')
 print('-p, --password Edge password')
 print('-m, --method (Optional) Authentication method (linux, winnt,
 ldap), default is linux')
 sys.exit()

def parse_args(argv):
 endpoint = ""
 certificatePath = None
 user = None
 password = None
 method = "linux"

 try:
 opts, args = getopt.getopt(argv, "he:c:u:p:m:",
 ["endpoint=","cert_path=", "user=", "password=", "method="])
 except getopt.GetoptError:
 print_help()

 for opt, arg in opts:
 if opt == '-h':
 print_help()
 elif opt in ("-e", "--endpoint"):
 endpoint = arg
 elif opt in ("-u", "--user"):
 user = arg
 elif opt in ("-p", "--password"):
 password = arg
 elif opt in ("-m", "--method"):
 method = arg.lower()
 elif opt in ("-c", "--cert_path"):
 certificatePath = arg

 if method not in ['ldap', 'linux', 'winnt']:
 print("not valid method parameter, required are ldap, linux, winnt")
 print_help()

 if (user == None or password == None):
 print("To authenticate against edge user, password have to be passed
 together, and the region has to be set to 'edge'")

Use APIs 300

AWS IoT SiteWise User Guide

 print_help()

 if(endpoint == ""):
 print("You must provide a valid and reachable gateway hostname")
 print_help()

 return endpoint,certificatePath, user, password, method

def main(argv):
 # get the command line args
 endpoint, certificatePath, user, password, method = parse_args(argv)

 accessKeyId, secretAccessKey, sessionToken, region=get_credentials(endpoint,
 certificatePath, user, password, method)

 print("Copy and paste the following credentials into the shell, they are
 valid for 4 hours:")
 print(f"export AWS_ACCESS_KEY_ID={accessKeyId}")
 print(f"export AWS_SECRET_ACCESS_KEY={secretAccessKey}")
 print(f"export AWS_SESSION_TOKEN={sessionToken}")
 print(f"export AWS_REGION={region}")
 print()

if __name__ == "__main__":
 main(sys.argv[1:])

2. Run get_credentials.py from the terminal replacing <gateway_username> and
<gateway_password> with the credentials you created.

python3 get_credentials.py -e https://$GATEWAY_HOSTNAME -c $PATH_TO_CERTIFICATE
 -u '<gateway_username>' -p '<gateway_password>' -m 'linux'

curl

Note

You need curl installed.

Use APIs 301

https://ec.haxx.se/install/

AWS IoT SiteWise User Guide

To get the credentials using curl

1. Run the following command from the terminal replacing <gateway_username> and
<gateway_password> with the credentials you created.

curl --cacert $PATH_TO_CERTIFICATE --location \
-X POST https://$GATEWAY_HOSTNAME:443/authenticate \
--header 'Content-Type: application/json' \
--data-raw '{
 "username": "<gateway_username>",
 "password": "<gateway_password>",
 "authMechanism": "linux"
}'

The response should look like the following:

{
 "username": "sweuser",
 "accessKeyId": "<accessKeyId>",
 "secretAccessKey": "<secretAccessKey>",
 "sessionToken": "<sessionToken>",
 "sessionExpiryTime": "2022-11-17T04:51:40.927095Z",
 "authMechanism": "linux",
 "role": "edge-user"
}

2. Run the following command from your terminal.

export AWS_ACCESS_KEY_ID=<accessKeyId>
export AWS_SECRET_ACCESS_KEY=<secretAccessKey>
export AWS_SESSION_TOKEN=<sessionToken>
export AWS_REGION=edge

Step 4: Get a list of the asset models on the SiteWise Edge gateway

Now that you have a signed certificate, your SiteWise Edge gateway hostname, and temporary
credentials for your SiteWise Edge gateway, you can use the ListAssetModels API to get a list of
the asset models on your SiteWise Edge gateway.

Use APIs 302

AWS IoT SiteWise User Guide

Python

Note

You need Python3, Boto3, and BotoCore installed.

To get the the list of asset models using Python

1. Create a file called list_asset_model.py and the copy the following code into it.

import json
import boto3
import botocore
import os

create the client using the credentials
client = boto3.client("iotsitewise",
 endpoint_url= "https://"+ os.getenv("GATEWAY_HOSTNAME"),
 region_name=os.getenv("AWS_REGION"),
 aws_access_key_id=os.getenv("AWS_ACCESS_KEY_ID"),
 aws_secret_access_key=os.getenv("AWS_SECRET_ACCESS_KEY"),
 aws_session_token=os.getenv("AWS_SESSION_TOKEN"),
 verify=os.getenv("PATH_TO_CERTIFICATE"),
 config=botocore.config.Config(inject_host_prefix=False))

call the api using local credentials
response = client.list_asset_models()
print(response)

2. Run list_asset_model.py from the terminal.

python3 list_asset_model.py

curl

Note

You need curl installed.

Use APIs 303

https://www.python.org/downloads/
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html
https://botocore.amazonaws.com/v1/documentation/api/latest/index.html
https://ec.haxx.se/install/

AWS IoT SiteWise User Guide

To get the list of asset models using curl

Run the following command from the terminal.

curl \
 --request GET https://$GATEWAY_HOSTNAME:443/asset-models \
 --cacert $PATH_TO_CERTIFICATE \
 --aws-sigv4 "aws:amz:edge:iotsitewise" \
 --user "$AWS_ACCESS_KEY_ID:$AWS_SECRET_ACCESS_KEY" \
 -H "x-amz-security-token:$AWS_SESSION_TOKEN"

The response should look like the following:

{
 "assetModelSummaries": [
 {
 "arn": "arn:aws:iotsitewise:{region}:{account-id}:asset-model/{asset-
model-id}",
 "creationDate": 1.669245291E9,
 "description": "This is a small example asset model",
 "id": "{asset-model-id}",
 "lastUpdateDate": 1.669249038E9,
 "name": "Some Metrics Model",
 "status": {
 "error": null,
 "state": "ACTIVE"
 }
 },
 .
 .
 .
],
 "nextToken": null
}

Host a SiteWise Edge gateway on Siemens Industrial Edge

Host your gateway on Siemens Industrial Edge using the AWS IoT SiteWise Edge application. Just
as with AWS IoT Greengrass V2, you can optimize manufacturing processes or improve operational
workflows using the SiteWise Edge on Siemens Industrial Edge.

Host a gateway on Siemens Industrial Edge 304

AWS IoT SiteWise User Guide

You can ingest data from your Siemens Industrial Edge device to your AWS account by running
a SiteWise Edge gateway on the device. To do this, request access to the AWS IoT SiteWise
Edge application from the SiteWise Edge support team. Then, create a SiteWise Edge gateway
resource with a deployment target of Siemens Industrial Edge device - new. Next, download
the configuration file, and upload it to your application through the Siemens Industrial Edge
Management portal. For more information about running applications on Siemens Industrial
Edge, including how to set up the required Siemens resources, see What is Industrial Edge? in the
Siemens documentation.

Note

Siemens is not a vendor or supplier for SiteWise Edge. The Siemens Industrial Edge
Marketplace is an independent marketplace.

Topics

• Security

• Siemens Secure Storage and the AWS IoT SiteWise Edge application

• Destinations for Siemens Industrial Edge devices

• Migrate from the preview application

• Troubleshooting

• AWS IoT SiteWise Edge application changelog

• Requirements for the AWS IoT SiteWise Edge application

• Create a gateway for Siemens Industrial Edge

• Create a Siemens Databus user for the application

• Access the AWS IoT SiteWise Edge application

• Install the application onto a Siemens device

• Update the AWS IoT SiteWise Edge application configuration

Security

As part of the Shared Responsibility Model between AWS, our customers, and our partners the
following describes who is responsible for the different aspects of security:

Security 305

https://docs.eu1.edge.siemens.cloud/
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS IoT SiteWise User Guide

Customer responsibility

• Vetting the partner.

• Configuring the network access given to the partner.

• Physically securing the device running SiteWise Edge.

AWS responsibility

• Isolating the partner from the customer AWS Cloud resources.

Partner responsibility

• Using secure defaults.

• Keeping the solution secure over time through patches and other appropriate updates.

• Keeping customer data confidential.

• Vetting other applications available in the partner marketplace.

Siemens Secure Storage and the AWS IoT SiteWise Edge application

To protect credentials and secrets required to run the AWS IoT SiteWise Edge application, Siemens
Industrial Edge provides mechanisms to securely store the credentials on the device. The AWS IoT
SiteWise Edge application won't run on a device if it doesn't have support for securely storing these
credentials. Run failures caused by missing Secure Storage support are logged in log files.

The following minimum OS versions are required to install and run the AWS IoT SiteWise Edge
application. Upgrade your devices to the latest versions to install the application.

• For virtual devices: IEVD version 1.19 or above

• For physical devices: IED-OS version 2.2 or above

The AWS IoT SiteWise Edge application on Siemens Industrial Edge will not run until you have
upgraded your device.

Destinations for Siemens Industrial Edge devices

When using the AWS IoT SiteWise Edge application on Siemens Industrial Edge, destinations help
prepare data before sending it to AWS IoT SiteWise for further analysis and distribution. You can
configure data destination settings for buffered data ingestion using Amazon S3 or use real-time
data ingestion. Both allow you to subscribe to MQTT topics using path filters on the Siemens
Industrial Edge device deployment target.

Siemens Secure Storage and the AWS IoT SiteWise Edge application 306

AWS IoT SiteWise User Guide

The Siemens Industrial Edge deployment target on your gateway supports two primary data
handling methods:

• AWS IoT SiteWise real-time settings - Data is sent directly to AWS IoT SiteWise as it's collected

• AWS IoT SiteWise buffered using Amazon S3 settings - Data is collected and stored temporarily
in batches before being sent to Amazon S3

For more information about configuring these options, see Add an AWS IoT SiteWise buffered
destination using Amazon S3 and Add an AWS IoT SiteWise Edge real-time destination.

Prefixes for path filters

Path filters for gateways using Siemens Industrial Edge deployment targets combine both the topic
and data stream name to create a unique identifier for your data. The combined topic with data
stream name is called a prefix in Siemens Industrial Edge gateways. This differs from self-hosted
gateways where path filters are based solely on MQTT topics.

Example Path filter structure for Siemens data streams

A typical path filter for a Siemens data stream includes both the topic path and the data stream
name:

ie/d/device1/application1/datastream1

Where:

• ie/d/ is the required prefix for Siemens data streams

• device1/application1 represents the hierarchical path

• datastream1 is the specific data stream name

Note

When working with Siemens Industrial Edge data streams, ensure that you include both
the metadata (ie/m/) and data (ie/d/) topics in your path filters to receive complete
information about your data streams.

Destinations for Siemens Industrial Edge devices 307

AWS IoT SiteWise User Guide

Destinations and path filters

View the following topics to learn more about destinations and path filters in MQTT-enabled
gateways:

• Understand AWS IoT SiteWise Edge destinations

• Add an AWS IoT SiteWise Edge real-time destination

• Add an AWS IoT SiteWise buffered destination using Amazon S3

• Understand path filters for AWS IoT SiteWise Edge destinations

• Add path filters to AWS IoT SiteWise Edge destinations

• Manage AWS IoT SiteWise Edge destinations

Migrate from the preview application

If you ran SiteWise Edge on Siemens Industrial Edge during the preview phase, you'll need to
upgrade from the preview version, version 1.0.1, to the latest version. Do the following to migrate:

1. Create new SiteWise Edge gateways. For more information, see Create a gateway for Siemens
Industrial Edge.

2. Create a new Siemens Databus user for each new gateway. For more information, see Create a
Siemens Databus user for the application.

3. Uninstall the version 1.0.1 AWS IoT SiteWise Edge gateway application on your IED.

Note

Prepare for interruptions to data flow as you reconfigure the AWS IoT SiteWise assets
previously used by the preview version of the AWS IoT SiteWise Edge application. While
the data history is preserved, there is potential for data loss while you reinstall the new
gateway.

4. Delete the SiteWise Edge gateways you created during the preview in the AWS IoT SiteWise
console.

5. Install the AWS IoT SiteWise Edge gateway application on IED using the new gateway
configuration file. For more information, see Install the application onto a Siemens device.

Migrate from the preview application 308

https://console.aws.amazon.com/iotsitewise/home?region=us-east-1#/gateway
https://console.aws.amazon.com/iotsitewise/home?region=us-east-1#/gateway

AWS IoT SiteWise User Guide

Important

Installing the new gateway overwrites the preview version of the SiteWise Edge
application. It isn't possible to go back to version 1.0.1 after installing version 2.0.0.

After configuring the new gateway and Siemens Databus user, your data flows to your properties.

You can also upgrade your SiteWise Edge application from version directly. However, a new
gateway configuration is still necessary.

Troubleshooting

To troubleshoot the SiteWise Edge gateway on your Siemens Industrial Edge device, see
Troubleshooting the AWS IoT SiteWise Edge application on Siemens Industrial Edge.

You can also access AWS re:Post to find answers to your questions.

AWS IoT SiteWise Edge application changelog

The following table describes the changes in each version of the AWS IoT SiteWise Edge
application.

Version Changes

3.0.0 New features

• Adds additional configuration options in the AWS IoT
SiteWise console for gateways installed on Siemens Industria
l Edge:

• Add and configure Amazon S3 destinations.

• Remove the AWS IoT SiteWise real-time destination.

• Add filters for each destination to control data routing.

• Adds the option for a global prefix configuration to send
all data from the IoT SiteWise publisher in the Siemens IE
installer. The prefix is applied after filtering.

Troubleshooting 309

https://repost.aws

AWS IoT SiteWise User Guide

Version Changes

Bug fixes and improvements

• Adds the ability to retry connections to the Siemens
Industrial Edge Databus if AWS IoT SiteWise Edge applicati
on’s initial attempt fails.

2.0.1 Bug fixes and improvements

• Fixes an issue where the app would enter failure state and
quit if it was unable to retrieve AWS credentials on startup.
Adds support to retry until successful credential retrieval.

2.0.0 • The AWS IoT SiteWise Edge application is now generally
available.

• Application requires Siemens IEVD version 1.19, or Siemens
IED-OS version 2.2.

• Performance improvements: Reduced memory and CPU
usage.

• Debugging improvements: You can now upload an optional
config file to enable debug logs.

• Security enhancements: The application uses SecureStorage
API to securely store credentials on the device.

• Docker digest value: sha256:4a960f29234a190ebb52
24c1fd0f3e99faafccc4cb3d93ca13fef247
b6656d18

1.0.1 Initial release

Requirements for the AWS IoT SiteWise Edge application

To run AWS IoT SiteWise Edge on Siemens Industrial Edge, you need the following:

• A Siemens Digital Exchange Platform account.

• A Siemens Industrial Edge Hub (iehub) account.

• A Siemens Industrial Edge Management instance.

Requirements 310

https://www.dex.siemens.com/

AWS IoT SiteWise User Guide

• The IE App Configuration Service. To learn more, see Installing the IE App Configuration
Service manually in the Siemens Industrial Edge Management documentation.

• Access to version 2.0.1 or higher of the AWS IoT SiteWise Edge application. For more
information, see Access the AWS IoT SiteWise Edge application.

• Either a Siemens Industrial Edge Device (IED) or a Siemens Industrial Edge virtual Device (IEVD).

• A minimum of 15 GB disk space for hardware requirements.

• 1 GB of RAM with an additional 1 GB of swap memory.

• Device configuration to allow outbound traffic on ports 443 and 8883.

• A x86-64 bit processor.

• Siemens Industrial Edge Management version 1.13.10 or higher.

• Device conformance to Siemens Secure Storage requirements.

• On virtual devices, IEVD version 1.19 or above.

• On physical devices, IED-OS version 2.2 or above.

• The latest version of Docker Compose.

• Docker Engine version 18.091 or higher.

• Required domain access. For more information, see AWS IoT SiteWise endpoints.

Create a gateway for Siemens Industrial Edge

After you have the proper Siemens accounts and IEM instances, you can create a SiteWise Edge
gateway of deployment type Siemens Industrial Edge device.

Note

Ensure that you meet all requirements for running a device on Siemens Industrial Edge
Management. For more information, see Requirements for the AWS IoT SiteWise Edge
application.

To create the configuration file

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. Choose Create gateway.

Create a gateway 311

https://docs.eu1.edge.siemens.cloud/get_started_and_operate/industrial_edge_management/how_to_setup_operate/vm/operation/app_projects/app_configurations/ie_application_configuration_service/installing_the_ie_acs_manually.html
https://docs.eu1.edge.siemens.cloud/get_started_and_operate/industrial_edge_management/how_to_setup_operate/vm/operation/app_projects/app_configurations/ie_application_configuration_service/installing_the_ie_acs_manually.html
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

4. For Deployment type, choose Siemens Industrial Edge device.

5. Enter a name for your SiteWise Edge gateway or use the name generated by AWS IoT SiteWise.

6. (Optional) Under advanced configuration, do the following:

• Enter a name for your AWS IoT Core Thing or use the name generated by AWS IoT
SiteWise.

7. Choose Create gateway.

8. In the Generate SiteWise Edge gateway configuration file dialog box, choose Generate and
download. AWS IoT SiteWise automatically generates a configuration file that you will use to
configure the AWS IoT SiteWise Edge application.

Important

You use the gateway configuration file to backup and restore your AWS IoT SiteWise
Edge application. Save your SiteWise Edge gateway configuration file in AWS Secrets
Manager to securely store and manage the file. Secrets Manager securely stores,
manages, and retrieves sensitive information.

Create a Siemens Databus user for the application

AWS IoT SiteWise Edge on Siemens Industrial Edge ingests data from the Siemens Databus
application. To connect SiteWise Edge to the Siemens Databus, you need a Siemens Databus user
that provides access to the data you want to securely transfer to AWS IoT SiteWise. To start, create
a Siemens Databus user and then provide the credentials to the SiteWise Edge application.

To create a Siemens Databus user

1. In your Siemens Industrial Edge Management instance, choose Edge Management in the
Platform Applications section.

2. Choose the Data connections icon.

3. Select Databus. A list of your connected devices appears.

4. Select the device to connect to the AWS IoT SiteWise Edge application.

5. Choose Launch. The Databus Configurator for your selected device appears.

6. Create a user for your Edge device under Users. For more information on creating a user, see
Users in the Siemens Industrial Edge Management documentation.

Create a Siemens Databus user 312

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.eu1.edge.siemens.cloud/get_started_and_operate/industrial_edge_management/operation/iam/03_user-management.html

AWS IoT SiteWise User Guide

7. Select the topics for which this Siemens Databus should have access. These topics restrict what
AWS IoT SiteWise Edge can access.

Important

All topics that a Siemens Databus user has access to are published to AWS IoT SiteWise.

Note

Siemens Databus users need access to both data and metadata topics. Topics that start
with ie/d are data topics. And topics that start with ie/m are metadata topics. Share
topics in pairs so that SiteWise Edge has access to both data and metadata for each
respective topic.

8. Set appropriate permissions for your Siemens Databus configuration.

After creating your Siemens Databus configuration, you can install the AWS IoT SiteWise Edge
application on your Siemens Industrial Edge Management. For more information, see Install the
application onto a Siemens device.

You can also optionally configure destinations and path filters for your Siemens Industrial Edge
gateway. For more information, see Destinations and path filters.

Access the AWS IoT SiteWise Edge application

To gain access to the AWS IoT SiteWise Edge application on Siemens Industrial Edge, send an email
requesting access to the SiteWise Edge support team.

Include the following information in your email:

• Your name and contact information

Access the application 313

mailto:aws-iot-swe-siemens-app-support@amazon.com?subject=Access%20request%20for%20SiteWise%20Edge%20on%20Siemens%20Industrial%20Edge

AWS IoT SiteWise User Guide

• Company name

• Siemens Industrial Edge tenant ID

Install the application onto a Siemens device

After you gain access to the AWS IoT SiteWise Edge application by emailing the SiteWise Edge
support team for Siemens Industrial Edge, assign the application to an instance of Siemens
Industrial Edge Management. Then, you can install the AWS IoT SiteWise Edge application on your
device.

To install the AWS IoT SiteWise Edge application

1. Verify that the Docker digest provided within Siemens Industrial Edge Management matches
the latest version listed in the AWS IoT SiteWise Edge application changelog.

For more information on locating the Docker digest value for Siemens, see the Managing an
app in the Siemens Industrial Edge Device of the Siemens documentation.

Siemens Industrial Edge Management supports one version of the AWS IoT SiteWise Edge
application at a time. Take this step to ensure that you're using the latest version of the
application before installing the AWS IoT SiteWise Edge application on your Siemens Industrial
Edge device.

2. Assign the AWS IoT SiteWise Edge application to Siemens Industrial Edge Management. For
more information, see Managing an app in the Industrial Edge Management section of the
Siemens documentation.

3. Within Edge Management, browse the catalog for the AWS IoT SiteWise Edge and choose it.

4. Choose Install.

Note

If a Contact Us button displays, choose it, and follow the steps to request access to the
AWS IoT SiteWise Edge application on Siemens Industrial Edge. For more information,
see Access the AWS IoT SiteWise Edge application.

5. Select Databus_Configuration in the Schema Configurations options.

6. Enter the Username and Password for the Databus configuration. For more information on
creating a Siemens Databus user, see Create a Siemens Databus user for the application.

Install the application 314

https://docs.eu1.edge.siemens.cloud/get_started_and_operate/industrial_edge_device/operation/management.html#managing-an-app
https://docs.eu1.edge.siemens.cloud/get_started_and_operate/industrial_edge_device/operation/management.html#managing-an-app
https://docs.eu1.edge.siemens.cloud/get_started_and_operate/industrial_edge_management/how_to_setup_operate/vm/operation/my_installed_apps/managing_an_app.html

AWS IoT SiteWise User Guide

7. Choose the small, round gray checkmark icon next to Databus_Configuration to turn the icon
color green.

Note

The input configurations only apply if the checkmark icon changes from gray to green.
Otherwise, the input configuration is ignored.

8. Choose Next to move onto Other Configurations where you can upload your gateway
configuration file.

9. Choose SiteWise_Edge_Gateway_Config as the location to upload the gateway configuration
file.

Install the application 315

AWS IoT SiteWise User Guide

Note

Ensure that you choose SiteWise_Edge_Gateway_Config rather than
SiteWise_Edge_Support_Config_Optional.

10. Select the device to install the application.

11. Choose Install now.

You can optionally configure the publisher component to export data to the AWS Cloud. For more
information, see configure the AWS IoT SiteWise publisher component.

To configure destinations for your Siemens Industrial Edge gateway, see Destinations and path
filters.

Update the AWS IoT SiteWise Edge application configuration

There are a few things to consider when updating an AWS IoT SiteWise Edge application
configuration on Siemens Industrial Edge.

Note

Any change to the AWS IoT SiteWise Edge application configuration requires a restart of
the application.

Reasons to restart the AWS IoT SiteWise Edge application

• A new Siemens Databus user for the AWS IoT SiteWise Edge application.

• A change to the gateway configuration file (your SiteWise_Edge_Gateway_Config file).

• A proxy configuration update (which also requires a full IEVD reboot)

• To enable debug logs for debugging issues

Restarting the application

1. In your Siemens Industrial Edge Management instance, choose Edge Management in the
Platform Applications section.

Update an installed application configuration 316

AWS IoT SiteWise User Guide

2. Choose My Installed Apps.

3. Select the AWS IoT SiteWise Edge application.

4. Choose Restart.

Destinations and path filters

Destinations in AWS IoT SiteWise Edge provide a flexible and efficient way to manage how your
industrial data flows from edge devices to the cloud. This section explains how to configure
destinations, use path filters to route specific data streams, and choose the right destination type
for your use case.

You can use destinations and path filters on self-hosted MQTT-enabled, V3 gateways and gateways
used in conjunction with AWS IoT SiteWise Edge application hosted on Siemens Industrial Edge.
Destinations and path filters do not work with Classic Streams, V2 gateways.

Topics

• Understand AWS IoT SiteWise Edge destinations

• Understand path filters for AWS IoT SiteWise Edge destinations

• Add an AWS IoT SiteWise Edge real-time destination

• Add an AWS IoT SiteWise buffered destination using Amazon S3

• Add path filters to AWS IoT SiteWise Edge destinations

• Manage AWS IoT SiteWise Edge destinations

Understand AWS IoT SiteWise Edge destinations

Use AWS IoT SiteWise Edge destinations to determine where to send your source data. You can
choose your data destination based on specific characteristics you need, like cost-effectiveness, low
latency, or storage requirements. Integrate device data captured by AWS IoT SiteWise, our partners,
or custom applications to publish and subscribe to path filters (topics) at the edge. You can then
model, transfer, and store your device data in the cloud.

Note

For full use of all destination features on self-hosted gateways, upgrade to the latest
versions of the IoT SiteWise publisher and IoT SiteWise OPC UA collector. Stream support is

Destinations and path filters 317

AWS IoT SiteWise User Guide

continued on Classic streams, V2 gateways to maintain compatibility with existing setups.
For more information, see Classic streams, V2 gateways for AWS IoT SiteWise Edge

Topics

• How SiteWise Edge destinations enhance data management

• Destination types

• Compare destination functionality between gateway versions

• Destination limitations

• Use cases for SiteWise Edge destinations

How SiteWise Edge destinations enhance data management

Export data from the edge to AWS IoT SiteWise in real time, or in batches using Amazon S3.

Destinations enhance flexibility and scalability in your AWS IoT SiteWise environment. Destinations
implement a centralized data management model, where sources publish data to a central system.
Destinations determine where your data is sent using path filters. Destinations can subscribe to
multiple path filters.

MQTT-enabled gateways, whether self-hosted or running on Siemens Industrial Edge, use MQTT
for local communication and come with a default real-time destination which has filters set to #.
This means that, by default, all messages on all topics are published to the AWS IoT SiteWise real-
time destination. For more information, see Understand path filters for AWS IoT SiteWise Edge
destinations. You can add one real-time destination in each gateway.

Destination types

When configuring a destination for your gateway, you have two main options: real-time
configuration using AWS IoT SiteWise, and a buffered configuration using Amazon S3. Each
destination type has its own set of settings and considerations.

AWS IoT SiteWise real-time settings

Choose this to send data directly to AWS IoT SiteWise hot-tier storage to facilitate ingesting
and monitoring data in real-time. The real-time settings manage data flow, particularly when

Understand destinations 318

AWS IoT SiteWise User Guide

a gateway experiences connectivity issues with the cloud. During connection loss, data is
temporarily stored locally on the gateway. Once the connection is re-established, the stored
data is automatically sent to the cloud.

You can adjust various aspects of the data publishing process, such as the maximum amount
of data to be stored locally, the rate at which data is sent to the cloud upon reconnection, and
when to delete data after the storage reaches its capacity.

For more information on AWS IoT SiteWise storage tiers, see, Manage data storage in AWS IoT
SiteWise.

AWS IoT SiteWise buffered using Amazon S3 settings

This destination type allows you to buffer data locally on the gateway and periodically send it
to an Amazon S3 bucket in batches. The data is stored in the efficient Parquet format, which is
optimized for analytical workloads. Once the data is in Amazon S3, you can import it into AWS
IoT SiteWise for storage, processing, and analysis.

Choose this option to ingest data in batches, and store historical data in a cost-effective way.
You can configure your preferred Amazon S3 bucket location, and the frequency at which you
want data to be uploaded to Amazon S3. You can also choose what to do with the data after
ingestion into AWS IoT SiteWise. You can choose to have the data available in both SiteWise
and Amazon S3 or you can choose to delete it automatically from Amazon S3.

Compare destination functionality between gateway versions

The destinations feature in MQTT-enabled gateways streamlines data flow management.
Destinations simplify data management through centralized configuration of data routing to
various endpoints. This approach eliminates the need for complex individual stream setups, making
the overall system more flexible and easier to manage.

By comparison, the Classic streams, V2 gateway, SiteWise Edge transmits data from data sources to
publishers via AWS IoT Greengrass streams, configuring data destinations individually for each data
source.

With the AWS IoT SiteWise destination feature, the publisher routing configuration is consolidated.
Destination configuration allows you to manage destinations and path filters in a centralized
manner. You can easily add a destination, manage path filters, delete unnecessary filters or
destinations, depending on your needs.

Understand destinations 319

AWS IoT SiteWise User Guide

Additionally, the destinations feature utilizes MQTT (Message Queuing Telemetry Transport), an
industry-standard protocol widely used in industrial IoT applications. This adoption of MQTT helps
AWS IoT SiteWise to facilitate easier integration with various devices and systems.

Destination limitations

Current limitations for destinations on SiteWise Edge gateways include:

• The data processing pack isn't supported on MQTT-enabled gateways.

• Data type support is limited to AWS IoT SiteWise data types. For information on enabling data
type conversion, see Converting unsupported data types.

Use cases for SiteWise Edge destinations

SiteWise Edge destinations are utilized in diverse applications. Here are some key examples:

Industrial automation, Real-time monitoring and predictive maintenance

In industrial settings, sensors and devices on the factory floor can publish data to SiteWise
Edge. Destinations can be configured to filter and route relevant data, enabling real-time
monitoring and analysis of machine performance. You can subscribe to relevant MQTT topics
using path filters, process the data, and then publish the processed data. In this way, you
can selectively route processed data to AWS cloud analytic services or on-premises systems.
Manufacturers can then implement predictive maintenance strategies, optimize production
processes, and reduce downtime.

Smart buildings, Energy efficiency and occupancy optimization

Building automation systems generate data streams to monitor and control various aspects of
a building, such as HVAC systems, lighting, and access control. With SiteWise Edge, these data
streams can be ingested, processed, and routed to different destinations. Facility managers
can configure destinations to filter and forward relevant data, enabling advanced capabilities
like energy efficiency measures and occupancy optimization while ensuring data privacy and
compliance.

These use cases demonstrate how the Destinations feature in SiteWise Edge can be leveraged
across various industries to ingest, process, and route data efficiently. This enables advanced
capabilities such as real-time monitoring, predictive maintenance, energy efficiency, and remote
diagnostics while ensuring data privacy and compliance.

Understand destinations 320

AWS IoT SiteWise User Guide

Understand path filters for AWS IoT SiteWise Edge destinations

Topics

• Path filter requirements

• Best practices for path filters

• Path filters for OPC UA servers

• Special characters in path filter names

Each destination is configured to route data to AWS IoT SiteWise or Amazon S3. Path filters allow
you to select specific data to filter when receiving MQTT messages for a destination. Path filters
represent the logical names of your data streams, acting as subscriptions to desired MQTT topics.

In MQTT, data is organized into topics, which are hierarchical strings separated by forward slashes
(/). For example, a device might publish temperature data to the topic home/livingroom/
sensor1/temperature. Here, home/livingroom/sensor1 represents the path or logical name
of the sensor, and temperature is the data type being published.

You can use path filters to subscribe to specific topics or a range of topics using wildcards (+ and
#). The + wildcard matches a single level in the topic hierarchy. For example, home/+/sensor1/
temperature would match home/livingroom/sensor1/temperature and home/bedroom/
sensor1/temperature. The # wildcard, when used at the end of a filter, matches multiple levels.

You can also use a variety of characters typically not allowed in the MQTT specification within a
path filter name. These characters don't function as wildcards when used within a name. AWS IoT
SiteWise converts these characters using encoding to ensure MQTT compliance while preserving
your original naming structure. This feature is particularly useful for accommodating existing
naming conventions from other systems. For more information, see Special characters in path filter
names.

By carefully selecting the appropriate path filters, you can control which data is sent to a specific
destination. Tailor the data flow to your IoT system's requirements using path filters.

Path filter requirements

When entering path filters using the AWS IoT SiteWise console, keep the following in mind:

• Path filters are delimited by a new line, with each line representing a separate path filter.

• Individual path filters can have between 1 and 65,535 bytes.

Understand path filters 321

AWS IoT SiteWise User Guide

• A path filter can't be blank.

• Null values (U+0000) are not allowed.

• You can enter up to 100 path filters or 65,535 characters at a time, whichever limit is reached
first.

• The overall limit is 20,000 path filters for all the destinations on a gateway combined.

• You can use %, #, +, and $ characters within path filter names, however AWS IoT SiteWise
automatically converts them to URI encoding.

Best practices for path filters

When creating path filters for your AWS IoT SiteWise destinations, consider the following strategies
to effectively manage your data.

• Structure your filters to mirror your device hierarchy. For example, in a manufacturing setting,
factory/+/machine/#, captures data from all machines across different production lines.

• Use specific levels for device types, locations, or functions. For example, factory/assembly-
line/robot/temperature. Or, in smart agriculture, farm/+/crop/+/moisture, to monitor
moisture levels for various crops across different fields.

• Leverage wildcards strategically: Use + for variations at a single level and # to capture all
subsequent levels. For example, building/+/+/energy-consumption, tracks energy usage
across different zones and floors in a building. This assumes the first + captures all floors and the
second + captures all zones.

• Balance specificity and flexibility by creating filters that are specific enough to capture relevant
data but flexible enough to accommodate future changes. For example, site/+/equipment-
type/+/measurement allows for addition of new sites or equipment types without changing
the filter structure.

Test your filters thoroughly to ensure they capture the intended data and align with your IoT
system's architecture and goals.

Path filters for OPC UA servers

For OPC UA servers, your path filters must correspond to the OPC UA tag names. The final level
of your path filter must match the OPC UA tag name exactly. For example, if your OPC UA tag is
Device1.Temperature, your path filter might be factory/line1/Device1.Temperature.
You can use wildcards in the preceding levels, such as factory/+/Device1.Temperature to

Understand path filters 322

AWS IoT SiteWise User Guide

capture the tag across multiple production lines. If you have special characters within your path
filter names, see Special characters in path filter names for more information.

Special characters in path filter names

AWS IoT SiteWise accommodates characters commonly used in industrial protocols like OPC UA,
which are typically not allowed in standard MQTT topic names. This feature facilitates smoother
integration of industrial systems with MQTT-based architectures.

Note

While our special character handling is helpful for integration and migration, it's
recommended to align with standard MQTT naming conventions for new implementations
when possible to ensure broader compatibility.

When receiving data from industrial sources, AWS IoT SiteWise normalizes topic names using URI
encoding for special characters:

• % becomes %25 (encoded first as the escape character)

• # becomes %23

• + becomes %2B

• $ becomes %24 (only when at the start of a topic)

This encoding ensures that source data containing these special MQTT characters can be safely
used as MQTT topic names while preserving the original industrial naming conventions.

Example : Special characters in path filter names

Here are examples of how industrial topic names might appear in AWS IoT SiteWise path filters:

• Factory1/Line#2/Sensor+3 becomes Factory1/Line%232/Sensor%2B3

• Plant%A/Unit$1/Temp becomes Plant%25A/Unit%241/Temp

• Site1/#Section/+Node becomes Site1/%23Section/%2BNode

When creating subscriptions or viewing topic names in AWS IoT SiteWise, you'll see the original,
unencoded versions. The encoding is handled automatically to ensure MQTT compliance.

Understand path filters 323

AWS IoT SiteWise User Guide

Add an AWS IoT SiteWise Edge real-time destination

The real-time destination type enables you to stream IoT data directly from your devices and
gateways into AWS IoT SiteWise storage in real-time. This option is ideal for use cases that require
immediate ingestion and processing of data as it is generated, without the need for batching or
buffering. You can only have one real-time destination configured in each gateway, as it streams
data continuously to AWS IoT SiteWise.

Note

Duplicate TQVs may result in double charging.

To add a real-time destination

Use the AWS IoT SiteWise console or AWS CLI to add a real-time destination to your SiteWise Edge
MQTT-enabled gateway.

Console

1. Open the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. Select the gateway to which you want to add a destination.

4. In the Destinations section, choose Add destination.

5. On the Add destination page, enter Destination details:

a. A name for your destination in the Destination name field.

b. Select the AWS IoT SiteWise real-time for the Destination type.

6. Configure the gateway publishing order by setting the Publishing order to either Publish
older data first or Publish newest data first. By default, the gateway publishes the oldest
data first.

7. Use Maximum batch wait time to set a maximum time for the publisher to wait before
sending a batch of data to AWS IoT SiteWise. This setting applies for each alias. The data is
stored locally until either:

• The set time has elapsed, or

• 10 time-quality-value (TQV) entries are received for the alias

Add a real-time destination 324

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

Whichever condition is met first triggers the batch to be sent to the cloud.

8. To compress uploaded data, select the Activate compression when uploading data check
box. Letting the gateway compress your data prior to uploading it to the cloud reduces
bandwidth usage.

9. To filter out expired publisher data, select the Exclude expired data check box. This
selection only sends active and current data to AWS IoT SiteWise.

10. In the Cutoff period field, enter the frequency at which data should be considered expired
within your dataset. You can determine if the data is counted in terms of minutes or days.
The minimum cutoff period is five minutes. The maximum cutoff period is seven days.

11. Optionally configure the Local storage settings:

a. Set the Retention period frequency – The amount of time the gateway locally stores
data that is older than the cutoff period. The minimum retention period is one minute.

The maximum retention period is 30 days and greater than or equal to the rotation
period.

b. Set the Rotation period – The time interval to specify when saving data that is older
than the cutoff period for a single file. The gateway transfers one batch of data to the
following local directory at the end of each rotation period: /greengrass/v2/work/
aws.iot.SiteWiseEdgePublisher/exports.

The retention must be greater than one minute and equal to the retention period.

c. Provide the Storage capacity (GB) value to set the maximum size of data stored locally
in GB. If the data exceeds the determined maximum local storage size, the gateway
starts deleting the oldest data first. The gateway continues to delete until the size of
data stored locally is equal to or less than the quota.

The storage capacity must be greater than or equal to one GB.

12. Add path filters to your destination. For more information see, Add path filters to AWS IoT
SiteWise Edge destinations.

For more information, see Destination types.

Add a real-time destination 325

AWS IoT SiteWise User Guide

AWS CLI

Example : Create a new AWS IoT SiteWise real-time destination

Use the UpdateGatewayCapabilityConfiguration API to configure the publisher.

Set the capabilityNamespace parameter to iotsitewise:publisher:3.

{
 "sources": [
 {
 "type": "MQTT"
 }
],
 "destinations": [
 {
 "type": "SITEWISE_REALTIME",
 "name": "your-destination-name",
 "config": {
 "publishingOrder": "TIME_ORDER",
 "enableCompression": true,
 "maxBatchWaitTime": "10s"
 },
 "filters": [
 {
 "type": "PATH",
 "config": {
 "paths": [
 "#"
]
 }
 }
]
 }
]
}

To update an existing AWS IoT SiteWise real-time destination, first use the
DescribeGatewayCapabilityConfiguration API to find the destinationId.

Example : Update an AWS IoT SiteWise real-time destination

Use the UpdateGatewayCapabilityConfiguration API to configure the publisher.

Add a real-time destination 326

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateGatewayCapabilityConfiguration.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateGatewayCapabilityConfiguration.html

AWS IoT SiteWise User Guide

Set the capabilityNamespace parameter to iotsitewise:publisher:3.

{
 "sources": [
 {
 "type": "MQTT"
 }
],
 "destinations": [
 {
 "id": "your-existing-destination-id",
 "type": "SITEWISE_REALTIME",
 "name": "your-destination-name",
 "config": {
 "publishingOrder": "TIME_ORDER",
 "enableCompression": true,
 "dropPolicy": {
 "cutoffAge": "7d",
 "exportPolicy": {
 "retentionPeriod": "7d",
 "rotationPeriod": "6h",
 "exportSizeLimitGB": 10
 }
 },
 "maxBatchWaitTime": "10s"
 },
 "filters": [
 {
 "type": "PATH",
 "config": {
 "paths": [
 "#"
]
 }
 }
]
 }
]
}

The following configuration options are specific to gateways using the
iotsitewise:publisher:3 namespace.

Add a real-time destination 327

AWS IoT SiteWise User Guide

sources

Defines data sources to transfer of data from your industrial equipment to AWS IoT
SiteWise. For MQTT-enabled gateways, use MQTT.

Type: Array of objects

Required: Yes

destinations

Defines where to send data. Destinations are either real-time or buffered using Amazon S3.
At least one destination object is required, but you can add an empty array. You can have
one real-time destination for each gateway. For more information, see Understand AWS IoT
SiteWise Edge destinations.

Type: Array of objects

Required: Yes

id

The unique identifier for the destination. You can either provide an existing destination
ID or leave it blank. If you do not specify an ID then a UUID is generated by default.

Type: String

Required: No

type

Type of destination. Options include: SITEWISE_REALTIME and SITEWISE_BUFFERED.

• SITEWISE_REALTIME – Send data directly to AWS IoT SiteWise storage in real-time.

• SITEWISE_BUFFERED – Send data to Amazon S3 in batches in Parquet format, and
then import into AWS IoT SiteWise storage.

Type: String

Required: Yes

name

A unique name for the destination.

Add a real-time destination 328

AWS IoT SiteWise User Guide

Type: String

Required: Yes

config

Configuration specific to the destination type in JSON format. The configuration varies
between real-time and buffered destinations.

Type: Object

Required: Yes

publishingOrder

Determines the order in which data is published. Data publishes based on its
timestamp. Options include TIME_ORDER and RECENT_DATA.

• TIME_ORDER (default) – Publishes older data first.

• RECENT_DATA – Publishes newest data first.

Type: String

Required: No

enableCompression

When set to true, enables data compression before sending to AWS IoT SiteWise.
Letting the gateway compress your data prior to uploading it to the cloud reduces
bandwidth usage. The default value is true.

Type: Boolean

Required: No

dropPolicy

Defines how to handle older data.

Type: object

Required: No

• cutoffAge

Add a real-time destination 329

AWS IoT SiteWise User Guide

The maximum age of data to be published specified in days, hours, and minutes.
For example, 7d or 1d7h16m. Data older than what you specify is not sent to AWS
IoT SiteWise.

Data that is earlier than the cutoff period is not published to the cloud. The cutoff
age must be between five minutes and seven days.

You can use m, h, and d when you specify a cutoff age. Note that m represents
minutes, h represents hours, and d represents days.

Type: String

Required: Yes

• exportPolicy

Defines how to handle data that exceeds the cutoff age.

Type: Object

Required: No

• retentionPeriod

Your SiteWise Edge gateway deletes any data at the edge that is earlier than the
cutoff period from the local storage after it is stored for the specified retention
period. The retention period must be between one minute and 30 days, and
greater than or equal to the rotation period.

You can use m, h, and d when you specify a retention period. Note that m
represents minutes, h represents hours, and d represents days.

Type: String

Required: No

• rotationPeriod

The time interval over which to batch up and save data that is earlier than the
cutoff period to a single file. The SiteWise Edge gateway transfers one batch
of data to the following local directory at the end of each rotation period: /
greengrass/v2/work/aws.iot.SiteWiseEdgePublisher/exports. The

Add a real-time destination 330

AWS IoT SiteWise User Guide

rotation period must be greater than one minute, and equal to or less than the
retention period.

You can use m, h, and d when you specify a rotation period. Note that m
represents minutes, h represents hours, and d represents days.

Type: String

Required: No

• exportSizeLimitGB

The maximum allowed size of data stored locally, in GB. If this quota is breached,
the SiteWise Edge gateway starts deleting the earliest data until the size of data
stored locally is equal to or less than the quota. The value of this parameter must
be greater than or equal to 1.

Type: Integer

Required: No

maxBatchWaitTime

Sets a maximum time for the publisher to wait before sending a batch of data to AWS
IoT SiteWise. This setting applies for each alias. The data is stored locally until either:

• The set time has elapsed, or

• 10 time-quality-value (TQV) entries are received for the alias

Use m, h, and d to specify a cutoff time. Note that m represents minutes, h represents
hours, and d represents days.

Type: String

Required: No

filters

Filters to apply to the data. At least one filter is required.

Type: String

Required: Yes

Add a real-time destination 331

AWS IoT SiteWise User Guide

type

Type of filter. Use PATH.

Type: String

Required: Yes

config

Configuration specific to the filter type in JSON format. At least one object is required,
but the array can be empty.

Type: Object

Required: Yes

• paths

An array of path filters. For more information, see Understand path filters for AWS IoT
SiteWise Edge destinations. The default path is #.

Type: Array of strings

Required: Yes

Add an AWS IoT SiteWise buffered destination using Amazon S3

The buffered destination type allows you to save on ingestion costs into AWS IoT SiteWise if you
don't need the data in real-time. It enables you to temporarily store your IoT data in an Amazon
S3 bucket before importing it into AWS IoT SiteWise. Or, you can simply upload your data to S3
for storage, regardless of whether you plan to import it to AWS IoT SiteWise. This is useful for
batching and buffering data from your devices and gateways before ingesting it into AWS IoT
SiteWise. With this option, data is uploaded to the specified S3 bucket in Parquet format at a
configured frequency. You can then import this data into AWS IoT SiteWise storage for further
analysis and processing.

To add a destination buffered using Amazon S3

Use the AWS IoT SiteWise console or AWS CLI to add a destination that buffers data using Amazon
S3 to your SiteWise Edge gateway.

Add a buffered destination using Amazon S3 332

AWS IoT SiteWise User Guide

Console

Use the AWS Management Console to add an AWS IoT SiteWise destination buffered using
Amazon S3.

1. Open the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. Select the gateway to which you want to add a destination.

4. In the Destinations section, choose Add destination.

5. On the Add destination page, enter Destination details:

a. A name for your destination in the Destination name field.

b. Select AWS IoT SiteWise buffered using Amazon S3 for Destination type. AWS IoT
SiteWise buffered using Amazon S3 sends data to Amazon Simple Storage Service in
batches, in Parquet format, and then imports the data into AWS IoT SiteWise storage.

6. Enter the Amazon S3 URL for the location where you want to store your gateway data. You
can browse for the path by choosing Browse S3. Once a bucket is added, you can also view
the bucket by choosing View.

7. Specify how often your gateway should upload data to Amazon S3 by entering a time
frame and selecting a time increment for Data upload frequency. The frequency value
should be greater than 0 and less than or equal to 30 days.

8. In Data storage settings, determine what to do with your gateway data after importing it
to AWS IoT SiteWise. There are two decisions to make regarding data storage:

• If you want to copy imported data into AWS IoT SiteWise storage, select the Copy data
to storage check box. This option duplicates the imported data from your configured
Amazon S3 bucket into AWS IoT SiteWise storage.

• If you choose to import your data from your Amazon S3 bucket into AWS IoT SiteWise
storage, you can also specify whether the imported data should be deleted after the
import is complete. Select the Delete data from Amazon S3 check box to delete the
imported date from the configured Amazon S3 bucket after importing it to AWS IoT
SiteWise storage.

9. Add path filters to your destination. For more information see, Add path filters to AWS IoT
SiteWise Edge destinations.

Add a buffered destination using Amazon S3 333

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

AWS CLI

Example : Create a new AWS IoT SiteWise destination buffered using Amazon S3

Use the UpdateGatewayCapabilityConfiguration API to configure the publisher.

Set the capabilityNamespace parameter to iotsitewise:publisher:3.

{
 "sources": [
 {
 "type": "MQTT"
 }
],
 "destinations": [
 {
 "type": "SITEWISE_BUFFERED",
 "name": "your-s3-destination-name",
 "config": {
 "targetBucketArn": "arn:aws:s3:::amzn-s3-demo-bucket/Optional/SomeFolder",
 "publishPolicy": {
 "publishFrequency": "15m",
 "localSizeLimitGB": 10
 },
 "siteWiseImportPolicy": {
 "enableSiteWiseStorageImport": true,
 "enableDeleteAfterImport": true,
 "bulkImportJobRoleArn": "arn:aws:iam::123456789012:role/your-role-name"
 }
 },
 "filters": [
 {
 "type": "PATH",
 "config": {
 "paths": [
 "#"
]
 }
 }
]
 }
]
 }

Add a buffered destination using Amazon S3 334

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateGatewayCapabilityConfiguration.html

AWS IoT SiteWise User Guide

Example : Update an AWS IoT SiteWise destination buffered using Amazon S3

To update an existing AWS IoT SiteWise real-time destination, first use the
DescribeGatewayCapabilityConfiguration API to find the destinationId.

The publisher namespace: iotsitewise:publisher:3

{
 "sources": [
 {
 "type": "MQTT"
 }
],
 "destinations": [
 {
 "id": "your-existing-destination-id",
 "type": "SITEWISE_BUFFERED",
 "name": "your-s3-destination-name",
 "config": {
 "targetBucketArn": "arn:aws:s3:::amzn-s3-demo-bucket/Optional/SomeFolder",
 "publishPolicy": {
 "publishFrequency": "15m",
 "localSizeLimitGB": 10
 },
 "siteWiseImportPolicy": {
 "enableSiteWiseStorageImport": true,
 "enableDeleteAfterImport": true,
 "bulkImportJobRoleArn": "arn:aws:iam::123456789012:role/your-role-name"
 }
 },
 "filters": [
 {
 "type": "PATH",
 "config": {
 "paths": [
 "#"
]
 }
 }
]
 }

Add a buffered destination using Amazon S3 335

AWS IoT SiteWise User Guide

]
 }

The following configuration options are specific to MQTT-enabled gateways using the
iotsitewise:publisher:3 namespace.

sources

Defines data sources to transfer of data from your industrial equipment to AWS IoT
SiteWise. For MQTT-enabled gateways, use MQTT.

Type: Array of objects

Required: Yes

destinations

Defines where to send data. Destinations are either real-time or buffered using Amazon S3.
At least one destination object is required, but you can add an empty array. You can have
one real-time destination for each gateway. For more information, see Understand AWS IoT
SiteWise Edge destinations.

Type: Array of objects

Required: Yes

id

The unique identifier for the destination. You can either provide an existing destination
ID or leave it blank to have a new ID automatically generated for the destination.

Type: String

Required: No

type

Type of destination. Options include: SITEWISE_REALTIME and SITEWISE_BUFFERED.
Choose SITEWISE_BUFFERED.

• SITEWISE_REALTIME (default) – Send data directly to AWS IoT SiteWise storage
in real-time. For more information, see Add an AWS IoT SiteWise Edge real-time
destination.

Add a buffered destination using Amazon S3 336

AWS IoT SiteWise User Guide

• SITEWISE_BUFFERED – Send data to Amazon S3 in batches in Parquet format, and
then import into AWS IoT SiteWise storage.

Type: String

Required: Yes

name

A unique name for the destination.

Type: String

Required: Yes

config

Configuration specific to the destination type in JSON format. The configuration varies
between real-time and buffered destinations.

Type: Object

Required: Yes

targetBucketArn

The bucket ARN to publish to. Choose the same AWS Region for both AWS IoT
SiteWise and Amazon S3. If a prefix is chosen, it must have between 1-255 characters.

Note

AWS IoT SiteWise, including the gateway, will have access to the entire
specified S3 bucket. We recommend using a dedicated bucket for buffered
data ingestion.

Type: String

Required: Yes

publishPolicy

Details of the publishing policy.

Type: Object

Add a buffered destination using Amazon S3 337

AWS IoT SiteWise User Guide

Required: Yes

publishFrequency

The frequency with which the SiteWise Edge gateway publishes to the Amazon
S3 bucket. Data upload frequency to Amazon S3 must be greater than 0 minutes
and less than or equal to 30 days. You can use m, h, and d when you specify a
publishing frequency age. Note that m represents minutes, h represents hours, and
d represents days. The default value is 15 minutes.

Type: String

Required: Yes

localSizeLimitGB

The maximum size of the files written to local disk in GB. If this threshold is
breached, the publisher publishes all buffered data to its destination.

Type: Integer

Required: Yes

siteWiseImportPolicy

Details of the import policy for importing data to AWS IoT SiteWise.

Type: Object

Required: Yes

enableSiteWiseStorageImport

Set this to true to import data from an Amazon S3 bucket to AWS IoT SiteWise
storage. It initially makes a copy of the data in AWS IoT SiteWise. Then, if you set
enableDeleteAfterImport to true, the data in S3 deletes after copying to AWS
IoT SiteWise. Pricing implications apply. The default value is true.

Type: Boolean

Required: Yes

enableDeleteAfterImport

Set this to true to delete the file in the Amazon S3 bucket after ingestion into the
AWS IoT SiteWise storage. The default value is true.

Add a buffered destination using Amazon S3 338

AWS IoT SiteWise User Guide

Type: Boolean

Required: Yes

bulkImportJobRoleArn

The ARN of the IAM role that AWS IoT SiteWise assumes to read buffered data
from Amazon S3 during data ingestion. This role is used when an edge device calls
on AWS IoT SiteWise APIs to initiate the bulk import process.

Note

If enableSiteWiseStorageImport is set to true, this parameter is
required.

Type: String

Required: No

Add path filters for your destination. For more information, see Add path filters to AWS IoT
SiteWise Edge destinations.

Add path filters to AWS IoT SiteWise Edge destinations

Add path filters to a destination. Path filters use MQTT topic syntax, where # is a wildcard character
that matches any number of levels, and + is a wildcard character that matches a single level. You
can add multiple destinations to a gateway, each with its own set of path filters subscribed to your
equipment telemetry.

Siemens Industrial Edge gateways use a prefix for compatibility. For more information, see Prefixes
for path filters.

Console

To add path filters

1. Open the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. Select the gateway to which you want to add path filters.

Add path filters 339

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

4. In the Path filters section under Add destination, choose Add path filter.

5. Enter the path filter that you want this destination to subscribe to. You can use wildcard
characters (# and +) to subscribe to multiple paths.

6. Choose Add path filter to add the path filter to the list.

7. Repeat steps to add additional path filters, if needed.

8. Once you have added all of the required path filters, choose Create.

AWS CLI for self-hosted gateways

Example : Path filter configuration

{
 "destinations": [
 {
 ...
 }
],
 "filters": [
 {
 "type": "PATH",
 "config": {
 "paths": [
 "home/+/sensor1/temperature",
 "home/livingroom/sensor1/temperature",
 "home/livingroom/sensor1/temperature",
 "building/#"
]
 }
 }
]
}

AWS CLI for Siemens IEgateways

Example : Prefix configuration for path filters

Capture all data by using both the data (ie/d) and metadata (ie/m) prefixes for each path
filter.

Add path filters 340

AWS IoT SiteWise User Guide

{
 "destinations": [
 {
 ...
 }
],
 "filters": [
 {
 "type": "PATH",
 "config": {
 "paths": [
 "ie/d/home/+/sensor12/temperature",
 "ie/m/home/livingroom/sensor12/temperature",
 "ie/d/home/livingroom/sensor13/temperature2",
 "ie/m/home/livingroom/sensor13/temperature2",
 "ie/d/building/#",
 "ie/m/building/#"
]
 }
 }
]
}

Note

Copy path filters between destinations by downloading list of path filters. For more
information, see Download all path filters in a destination (console).

Upload path filters in bulk

To upload path filters in bulk, use a CSV or text file. AWS IoT SiteWise automatically removes exact
duplicates when you upload files. For example, windfarm/site1/ and windfarm/site1/ are
exact duplicates that AWS IoT SiteWise catches because the string is exactly the same. Partial
duplicates are not removed and result in additional charges. For example, windfarm/# and
windfarm/site1 are overlapping topics because windfarm/site1 is already encompassed by
windfarm/#.

Add path filters 341

AWS IoT SiteWise User Guide

Note

Avoid duplicates to prevent additional charges. The uploaded file must be in either .csv
or .txt format. It can't contain any headers and should consist of a single column. In the
column, list your path filters, with each filter on a separate line. No other information
should be included in the file.

File upload requirements

These are additional path filter requirements.

• You can upload one .csv or .txt file. Other file formats are not supported.

• CSV (.csv) files cannot have headers and should only contain one column.

• You can have one path filter on each line.

• The uploaded files cannot be empty.

• When using # as a wildcard, it must be the last character in the topic filter. For example, topic/
or as a standalone character at a particular topic level. However, note that # can also be used
as a regular character within a topic level name, such as factory/machine#1/topic. For more
information see Special characters in path filter names

• You can also use the + character. For example, use factory/+/temp to get all temperatures
for factories instead of factory/machine2/temp and factory/machine3/temp
individually.

Manage AWS IoT SiteWise Edge destinations

After adding destinations, you can perform various operations to manage them, such as editing
destination configurations, deleting destinations, and managing path filters.

Edit a destination

Select the radio button next to the destination in the table and choose the Edit button to edit a
destination.

Manage destinations 342

AWS IoT SiteWise User Guide

Console

To edit a destination using the AWS IoT SiteWise console

1. Open the AWS IoT SiteWise console.

2. In the left navigation, choose Edge gateways in the Edge section.

3. Select the appropriate gateway.

4. In the Destinations section, choose destination you want to edit and then choose Edit.

5. Modify the destination and then choose Save.

AWS CLI

To edit a destination using AWS CLI

• You can edit a destination by modifying the JSON capability configuration information.

aws iotsitewise update-gateway-capability-configuration \
--gateway-id your-gateway-id \
--capability-namespace "iotsitewise:publisher:3" \
--capability-configuration '{
 "sources": [
 {
 "type": "MQTT"
 }
],
 "destinations": [
 {
 "id": "your-existing-destination-id",
 "type": "SITEWISE_REALTIME",
 "name": "your-updated-destination-name",
 "config": {
 "publishingOrder": "TIME_ORDER",
 "enableCompression": true,
 "dropPolicy": {
 "cutoffAge": "10d",
 "exportPolicy": {
 "retentionPeriod": "10d",
 "rotationPeriod": "6h",
 "exportSizeLimitGB": 10
 }
 },

Manage destinations 343

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

 "maxBatchWaitTime": "15s"
 },
 "filters": [
 {
 ...
 }
]
 }
]
}'

Note

You can't update the destination type or capability-namespace. For example, you
can't switch from a type of SITEWISE_REALTIME to SITEWISE_BUFFERED. You can
have one real-time destination for each MQTT-enabled gateway.

Delete a destination

If you no longer need a destination, you can delete it from your SiteWise Edge gateway.

Console

To delete a destination using the AWS IoT SiteWise console

1. Open the AWS IoT SiteWise console.

2. In the left navigation, choose Edge gateways in the Edge section.

3. Select the appropriate gateway.

4. In the Destinations section, choose destination you want to delete and then choose Delete.
A confirmation screen appears.

5. To confirm your choice to delete the destination, type "delete" in the confirmation box.

Manage destinations 344

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

AWS CLI

To delete a destination using AWS CLI

• Delete the gateway capability configuration by specifying the gateway ID and modifying
the capability configuration to remove the destination you want to delete.

aws iotsitewise update-gateway-capability-configuration \
 --gateway-id your-gateway-id \
 --capability-namespace "iotsitewise:publisher:3" \
 --capability-configuration '{
 "sources": [
 {
 "type": "MQTT"
 }
],
 "destinations": []
}'

Note

The destinations array can be empty ([]), but the destinations object itself must be
included in the capability configuration.

Download all path filters in a destination (console)

Download a CSV file containing all of your path filters in the AWS IoT SiteWise console. You can use
a downloaded list of path filters to easily share path filter lists between gateway destinations.

To download a CSV file of all path filters using the AWS IoT SiteWise console

1. Open the AWS IoT SiteWise console.

2. In the left navigation, choose Edge gateways in the Edge section.

3. Select the gateway containing your path filters.

4. Choose either Add destination or Edit destination.

5. Navigate to the Path filters section and choose Download CSV.

Manage destinations 345

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

Note

The CSV file includes all path filters in a particular destination, regardless of which ones
you selected from the list of path filters.

Edit a path filter

You can edit individual path filters to refine which data your destination receives.

Console

Using the AWS IoT SiteWise console, you can edit each individual path filter within each
respective text box.

To edit a path filter using the AWS IoT SiteWise console

1. Open the AWS IoT SiteWise console.

2. In the left navigation, choose Edge gateways in the Edge section.

3. Select the gateway containing your path filters.

4. Select the appropriate destination.

5. Choose Edit.

6. Choose the text box for the row containing the path filter that you want to edit.

7. Update the path filter's text, ensuring that the edited path filter's checkbox is selected.

8. Choose Save.

AWS CLI

To edit path filters for a destination using the AWS CLI, first retrieve the current configuration,
modify it, and then update it using the update-gateway-capability-configuration
command.

To edit a path filter using AWS CLI

1. Retrieve the current capability configuration:

aws iotsitewise describe-gateway-capability-configuration \
 --gateway-id your-gateway-id \

Manage destinations 346

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

 --capability-namespace "iotsitewise:publisher:3" \
 --query "capabilityConfiguration"

2. Edit the JSON to modify the path filters as needed.

3. Update the capability configuration with the modified path filters:

aws iotsitewise update-gateway-capability-configuration \
 --gateway-id your-gateway-id \
 --capability-namespace "iotsitewise:publisher:3" \
 --capability-configuration json-containing-your-updated-path-filters

Delete a path filter

You can delete path filters for a destination to control the data it receives from MQTT sources and
data processing pipelines.

Console

To delete a path filter using the AWS IoT SiteWise console

1. Open the AWS IoT SiteWise console.

2. In the left navigation, choose Edge gateways in the Edge section.

3. Select the gateway containing your path filters.

4. Select the appropriate destination.

5. Choose Edit.

6. On the Edit destination screen, in the Path filters section, select one or more the path
filters to delete.

7. Choose Delete. A deletion confirmation message appears. If want to proceed with deleting
the path filters, choose Delete on the confirmation screen.

AWS CLI

To delete a destination using AWS CLI

• Delete a path filter by removing it from the capability configuration.

aws iotsitewise update-gateway-capability-configuration \
 --gateway-id your-gateway-id \

Manage destinations 347

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

 --capability-namespace "iotsitewise:publisher:3" \
 --capability-configuration '{
 "sources": [
 {
 "type": "MQTT"
 }
],
 "destinations": [
 {
 "id": "your-destination-id",
 "type": "SITEWISE_REALTIME",
 "name": "your-destination-name",
 "config": {
 ...
 },
 "filters": [
 {
 "type": "PATH",
 "config": {
 "paths": [
 "/path1",
 "/path2",
 "/delete-a-path-to-remove-it"
]
 }
 }
]
 }
]
}

Note

The filters array can be empty ([]), but the filters object itself must be included in the
capability configuration.

Manage destinations 348

AWS IoT SiteWise User Guide

Manage SiteWise Edge gateways

You can use the AWS IoT SiteWise console and API operations to manage AWS IoT SiteWise Edge
gateways. You can also use the AWS OpsHub for AWS IoT SiteWise for Windows application to
manage some aspects of your SiteWise Edge gateway from your local device.

We highly recommend that you use the AWS OpsHub for AWS IoT SiteWise application to monitor
the disk usage on your local device. You can also monitor the Gateway.AvailableDiskSpace
and Gateway.UsedPercentageDiskSpace Amazon CloudWatch metrics and create alarms to
get notified when the disk space is getting low. For more information about Amazon CloudWatch
alarms, see Create a CloudWatch alarm based on a static threshold.

Make sure that your device has enough space for upcoming data. When you're about to run out
of space on your local device, the service automatically deletes a small amount of data with the
oldest timestamps to make room for upcoming data.

To check if the service deleted your data, do the following:

1. Sign in to the AWS OpsHub for AWS IoT SiteWise application.

2. Choose Settings.

3. For Logs, specify a time range, and then choose Download.

4. Unzip the log file.

5. If the log file contains the following message, the service deleted your data: number bytes of
data have been deleted to prevent SiteWise Edge gateway storage from running out of space.

Manage your SiteWise Edge gateway with the AWS IoT SiteWise console

You can use the AWS IoT SiteWise console to configure, update, and monitor all SiteWise Edge
gateways in your AWS account.

You can view your SiteWise Edge gateways by navigating to the Edge Gateways page in the AWS
IoT SiteWise console. To access the Edge gateway details page for a specific gateway, choose the
name of an Edge gateway.

From the Overview tab of the Edge gateway details page, you can do the following:

• In the Data sources section, update data source configuration and configure additional data
sources

Manage gateways 349

https://aws-iot-sitewise.s3.amazonaws.com/gateway/OpsHub+for+AWS+IoT+SiteWise.exe
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html
https://console.aws.amazon.com/iotsitewise/
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

• Choose Open CloudWatch metrics to view the number of data points ingested per data source
in the CloudWatch metrics console

• In the Edge capabilities section, add data packs to your SiteWise Edge gateway by clicking Edit

• In the Gateway configuration section, view the connectivity status of your SiteWise Edge
gateways

• In the Publisher configuration section, view the SiteWise Edge gateway sync status and
configuration of the AWS IoT SiteWise publisher component

From the Updates tab of the Edge gateway details page, you can see the current component and
pack versions that are deployed to the Edge gateway. This is also where you deploy new versions,
when they're available.

Manage SiteWise Edge gateways using AWS OpsHub for AWS IoT
SiteWise

You use the AWS OpsHub for AWS IoT SiteWise application to manage and monitor your
self-hosted SiteWise Edge gateways. This application provides the following monitoring and
management options:

• Under Overview, you can do the following:

• View SiteWise Edge gateway details that help you get insights into your SiteWise Edge
gateway device data, identify issues, and improve the SiteWise Edge gateway's performance.

• View SiteWise Monitor portals that monitor the data from local servers and equipment at the
edge. For more information, see What is AWS IoT SiteWise Monitor in the AWS IoT SiteWise
Monitor Application Guide.

• Under Health, there's a dashboard that displays data from your SiteWise Edge gateway. Domain
experts, such as process engineers, can use the dashboard to see an overview of SiteWise Edge
gateway behavior.

• Under Assets, view assets deployed to the local device and the last value collected or computed
for asset properties.

• Under Settings, you can do the following:

• If the Data Processing Pack is installed, view the SiteWise Edge gateway configuration
information and sync resources with the AWS Cloud.

• Download the authentication files that you can use to access the SiteWise Edge gateway by
using other tools.

Manage SiteWise Edge gateways using AWS OpsHub for AWS IoT SiteWise 350

https://docs.aws.amazon.com/iot-sitewise/latest/appguide/what-is-monitor-app.html

AWS IoT SiteWise User Guide

• Download logs that you can use to troubleshoot the SiteWise Edge gateway.

• View the AWS IoT SiteWise components deployed to the SiteWise Edge gateway.

Important

The following are required to use AWS OpsHub for AWS IoT SiteWise:

• Your local device and the AWS OpsHub for AWS IoT SiteWise application must be
connected to the same network.

• The data processing pack must be enabled.

To manage SiteWise Edge gateways using AWS OpsHub

1. Download and install the AWS OpsHub for AWS IoT SiteWise for Windows application.

2. Open the application.

3. If you don't have local credentials set up for your gateway, follow the steps under Access your
SiteWise Edge gateway using local operating system credentials to set them up.

4. You can sign in to your SiteWise Edge gateway with your Linux or Lightweight Directory Access
Protocol (LDAP) credentials. To sign in to your SiteWise Edge gateway, do one of the following:

Linux

1. For Hostname or IP address, enter the hostname or IP address of your local device.

2. For Authentication, choose Linux.

3. For User name, enter the user name of your Linux operating system.

4. For Password, enter the password of your Linux operating system.

5. Choose Sign in.

LDAP

1. For Hostname or IP address, enter the hostname or IP address of your local device.

2. For Authentication, choose LDAP.

3. For User name, enter your LDAP's user name.

4. For Password, enter your LDAP's password.

Manage SiteWise Edge gateways using AWS OpsHub for AWS IoT SiteWise 351

https://aws-iot-sitewise.s3.amazonaws.com/gateway/OpsHub+for+AWS+IoT+SiteWise.exe

AWS IoT SiteWise User Guide

5. Choose Sign in.

Access your SiteWise Edge gateway using local operating system
credentials

Besides Lightweight Directory Access Protocol (LDAP), you can use the Linux or Windows
credentials to access your self-hosted SiteWise Edge gateway.

Important

To access your SiteWise Edge gateway with Linux credentials, you must activate the data
processing pack for your SiteWise Edge gateway.

Access your SiteWise Edge gateway using Linux operating system credentials

The following steps assume that you use a device with Ubuntu. If you use a different Linux
distribution, consult the relevant documentation for your device.

To create a Linux user pool

1. To create an admin group, run the following command.

sudo groupadd --system SWE_ADMIN_GROUP

Users in the SWE_ADMIN_GROUP group can allow admin access for the SiteWise Edge gateway.

2. To create a user group, run the following command.

sudo groupadd --system SWE_USER_GROUP

Users in the SWE_USER_GROUP group can allow read-only access for the SiteWise Edge
gateway.

3. To add a user to the admin group, run the following command. Replace user-name and
password with the user name and password that you want to add.

sudo useradd -p $(openssl passwd -1 password) user-name

Access your SiteWise Edge gateway using local operating system credentials 352

AWS IoT SiteWise User Guide

4. To add a user to either SWE_ADMIN_GROUP or SWE_USER_GROUP, replace user-name with the
the user name that you added in the previous step.

sudo usermod -a -G SWE_ADMIN_GROUP user-name

You can now use the user name and password to sign in to the SiteWise Edge gateway on the AWS
OpsHub for AWS IoT SiteWise application.

Access your SiteWise Edge gateway using Windows credentials

The following steps assume that you use a device with Windows.

Important

Security is a shared responsibility between AWS and you. Create a strong password policy
with at least 12 characters and a combination of uppercase, lowercase, numbers, and
symbols. Additionally, set the Windows Firewall rules to allow incoming traffic on port 443
and to block incoming traffic on all other ports.

To create a Windows Server user pool

1. Run PowerShell as the administrator.

a. On the Windows server where you want to install SiteWise Edge Gateway, log in as
administrator.

b. Enter PowerShell in the Windows search bar.

c. In the search results, right click on the Windows PowerShell app. Choose Run as
Administrator.

2. To create an admin group, run the following command.

net localgroup SWE_ADMIN_GROUP /add

You must be a user in the SWE_ADMIN_GROUP group to allow admin access for the SiteWise
Edge gateway.

3. To create a user group, run the following command.

Access your SiteWise Edge gateway using local operating system credentials 353

AWS IoT SiteWise User Guide

net localgroup SWE_USER_GROUP /add

You must be a user in the SWE_USER_GROUP group to allow ready-only access for the SiteWise
Edge gateway.

4. To add user, run the following command. Replace user-name and password with the user
name and the password that you want to create.

net user user-name password /add

5. To add a user to the admin group, run the following command. Replace user-name with the
user name that you want to add.

net localgroup SWE_ADMIN_GROUP user-name /add

You can now use the user name and password to sign in to the SiteWise Edge gateway on the AWS
OpsHub for AWS IoT SiteWise application.

Manage the SiteWise Edge gateway certificate

You can use SiteWise Monitor and third-party applications, such as Grafana, on your SiteWise
Edge gateway devices. These applications require a TLS connection to the service. SiteWise Edge
gateways currently use a self-signed certificate. If you use a browser to open the applications, such
as a SiteWise Monitor portal, you might receive a warning for untrusted certificate.

The following shows how to download the trusted certificate from the AWS OpsHub for AWS IoT
SiteWise application.

1. Sign in to the application.

2. Choose Settings.

3. For Authentication, choose Download certificate.

The following assumes that you use Google Chrome or FireFox. If you use a different browser,
consult the relevant documentation for your browser. To add the certificate that you downloaded
in the previous step to a browser, do one of the following:

Manage the SiteWise Edge gateway certificate 354

AWS IoT SiteWise User Guide

• If you use Google Chrome, follow the Set up certificates in the Google Chrome Enterprise Help
documentation.

• If you use Firefox, follow the To Load the Certificate into the Mozilla or Firefox Browser in the
Oracle documentation.

Change the version of SiteWise Edge gateway component packs

You can use the AWS IoT SiteWise console to change the version of component packs on your
SiteWise Edge gateways.

To change the version of a SiteWise Edge gateway component pack

1. Navigate to the AWS IoT SiteWise console.

2. In the left navigation pane, choose Gateways.

3. Select the SiteWise Edge gateway that you would like to change the pack versions for.

4. Under Gateway configuration, choose View software versions.

5. On the Edit software versions page, for the pack you want to update the version of, select the
version you want to deploy and choose Deploy.

6. Choose Done.

List SiteWise Edge gateways

Console

To list SiteWise Edge gateways

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. View the list of all your SiteWise Edge gateways.

AWS CLI

To list your gateways using AWS CLI, follow these steps:

• Use the list-gateways command to view all your gateways:

Change the version of SiteWise Edge gateway component packs 355

https://support.google.com/chrome/a/answer/3505249?hl=en
https://docs.oracle.com/cd/E19528-01/819-4639/gaesv/index.html
https://console.aws.amazon.com/iotsitewise/
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

aws iotsitewise list-gateways

This command returns a list of your gateways with their IDs, names, and other information.

You can also specify pagination parameters:

aws iotsitewise list-gateways --max-results 10 --next-token your-token

For more information, see list-gateways in the AWS CLI Command Reference.

Describe a SiteWise Edge gateway

Console

To view gateway details

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. Choose the name of the gateway you want to view details for.

4. View the gateway details on the Edge gateway details page.

AWS CLI

To get detailed information about a specific gateway using AWS CLI, follow these steps:

• Use the describe-gateway command with the gateway ID:

aws iotsitewise describe-gateway --gateway-id a1b2c3d4-5678-90ab-
cdef-1a1a1EXAMPLE

This command returns detailed information about the gateway.

For more information, see describe-gateway in the AWS CLI Command Reference.

Describe a SiteWise Edge gateway 356

https://docs.aws.amazon.com/cli/latest/reference/iotsitewise/list-gateways.html
https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/cli/latest/reference/iotsitewise/describe-gateway.html

AWS IoT SiteWise User Guide

Create a SiteWise Edge gateway

Console

To create a SiteWise Edge gateway

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. Choose Create gateway.

4. Enter a name for your gateway.

5. Select the Greengrass group for your gateway.

6. Optionally, add tags to your gateway.

7. Choose Create.

AWS CLI

To create a new IoT SiteWise gateway using AWS CLI, follow these steps:

• Use the create-gateway command to create a new gateway:

aws iotsitewise create-gateway \
 --gateway-name "NewSiteWiseGateway" \
 --gateway-platform '{
 "greengrass": {
 "groupArn": "arn:aws:greengrass:us-east-1:123456789012:group/
a1b2c3d4-5678-90ab-cdef-1a1a1EXAMPLE"
 }
 }' \
 --tags '{
 "Environment": "Production",
 "Location": "Factory1"
 }'

This command returns the new gateway's ID and ARN:

{
 "gatewayId": "a1b2c3d4-5678-90ab-cdef-1a1a1EXAMPLE",
 "gatewayArn": "arn:aws:iotsitewise:us-east-1:123456789012:gateway/
a1b2c3d4-5678-90ab-cdef-1a1a1EXAMPLE"

Create a SiteWise Edge gateway 357

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

}

For more information, see create-gateway in the AWS CLI Command Reference.

Update a SiteWise Edge gateway

Console

To update a SiteWise Edge gateway

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. Select the gateway you want to update.

4. Choose Edit.

5. Update the gateway name or other settings as needed.

6. Choose Save.

AWS CLI

To update an existing gateway using AWS CLI, follow these steps:

• Use the update-gateway command to update a gateway's name:

aws iotsitewise update-gateway \
 --gateway-id a1b2c3d4-5678-90ab-cdef-1a1a1EXAMPLE \
 --gateway-name "UpdatedGatewayName"

This command produces no output when successful.

For more information, see update-gateway in the AWS CLI Command Reference.

Update a SiteWise Edge gateway 358

https://docs.aws.amazon.com/cli/latest/reference/iotsitewise/create-gateway.html
https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/cli/latest/reference/iotsitewise/update-gateway.html

AWS IoT SiteWise User Guide

Update gateway capability configuration

Console

To update gateway capability configuration

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. Choose the name of the gateway you want to update.

4. In the Data sources section, choose Edit.

5. Update the data source configuration as needed.

6. Choose Save.

AWS CLI

To update a gateway's capability configuration using AWS CLI, follow these steps:

• Use the update-gateway-capability-configuration command to update the capability
configuration:

aws iotsitewise update-gateway-capability-configuration \
 --gateway-id a1b2c3d4-5678-90ab-cdef-1a1a1EXAMPLE \
 --capability-namespace "iotsitewise:opcuacollector:1" \
 --capability-configuration '{
 "sources": [
 {
 "name": "OPC-UA Server",
 "endpoint": {
 "certificateTrust": {
 "type": "TrustAny"
 },
 "endpointUri": "opc.tcp://10.0.0.1:4840",
 "securityPolicy": "NONE",
 "messageSecurityMode": "NONE",
 "identityProvider": {
 "type": "Anonymous"
 }
 },
 "measurementDataStreamPrefix": ""
 }

Update gateway capability configuration 359

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

]
 }'

This command returns the capability namespace and sync status:

{
 "capabilityNamespace": "iotsitewise:opcuacollector:1",
 "capabilitySyncStatus": "CONFIGURING"
}

For more information, see update-gateway-capability-configuration in the AWS CLI Command
Reference.

Tag gateway resources

Console

To tag a gateway resource

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. Choose the name of the gateway you want to tag.

4. Choose the Tags tab.

5. Choose Manage tags.

6. Choose Add new tag and enter a key and value for each tag.

7. Choose Save.

AWS CLI

To add tags to a gateway using AWS CLI, follow these steps:

• Use the tag-resource command to add tags to a gateway:

aws iotsitewise tag-resource \
 --resource-arn "arn:aws:iotsitewise:us-east-1:123456789012:gateway/
a1b2c3d4-5678-90ab-cdef-1a1a1EXAMPLE" \
 --tags '{

Tag gateway resources 360

https://docs.aws.amazon.com/cli/latest/reference/iotsitewise/update-gateway-capability-configuration.html
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

 "Department": "Operations",
 "Project": "FactoryAutomation"
 }'

This command produces no output when successful.

For more information, see tag-resource in the AWS CLI Command Reference.

List tags for a gateway

Console

To list tags for a gateway

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. Choose the name of the gateway you want to view tags for.

4. Choose the Tags tab.

5. View the list of tags associated with the gateway.

AWS CLI

To list the tags associated with a gateway using AWS CLI, follow these steps:

• Use the list-tags-for-resource command to list tags for a gateway:

aws iotsitewise list-tags-for-resource \
 --resource-arn "arn:aws:iotsitewise:us-east-1:123456789012:gateway/
a1b2c3d4-5678-90ab-cdef-1a1a1EXAMPLE"

This command returns the tags associated with the gateway:

{
 "tags": {
 "Environment": "Production",
 "Location": "Factory1",
 "Department": "Operations",
 "Project": "FactoryAutomation"

List tags for a gateway 361

https://docs.aws.amazon.com/cli/latest/reference/iotsitewise/tag-resource.html
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

 }
}

For more information, see list-tags-for-resource in the AWS CLI Command Reference.

Remove tags from a gateway

Console

To remove tags from a gateway

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. Choose the name of the gateway you want to remove tags from.

4. Choose the Tags tab.

5. Choose Manage tags.

6. Choose the remove icon (X) next to each tag you want to remove.

7. Choose Save.

AWS CLI

To remove tags from a gateway using AWS CLI, follow these steps:

• Use the untag-resource command to remove tags from a gateway:

aws iotsitewise untag-resource \
 --resource-arn "arn:aws:iotsitewise:us-east-1:123456789012:gateway/
a1b2c3d4-5678-90ab-cdef-1a1a1EXAMPLE" \
 --tag-keys '["Project", "Department"]'

This command produces no output when successful.

For more information, see untag-resource in the AWS CLI Command Reference.

Remove tags from a gateway 362

https://docs.aws.amazon.com/cli/latest/reference/iotsitewise/list-tags-for-resource.html
https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/cli/latest/reference/iotsitewise/untag-resource.html

AWS IoT SiteWise User Guide

Update the version of an AWS IoT SiteWise component

Update the AWS IoT SiteWise gateway component on your AWS IoT Greengrass core device to
ensure your access to the latest features, performance improvements, and security patches.

To update an AWS IoT SiteWise component on AWS IoT Greengrass

1. Navigate to the AWS IoT SiteWise console.

2. In the left navigation pane, choose Edge gateways.

3. Select the gateway to edit and choose Edit.

4. In Edge Capabilities, under Software versions, choose Software updates available. The Edit
software versions page appears.

5. Choose the component version.

Note

It's recommend to select the latest version available. Keeping gateway components
up-to-date helps you maintain optimal functionality for industrial data collection and
processing.

6. Choose Deploy. This starts an AWS IoT Greengrass V2 deployment to update the AWS IoT
SiteWise component on the gateway.

Delete a SiteWise Edge gateway

Console

To delete the SiteWise Edge gateway

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. Choose the gateway you want to delete.

4. Choose Delete.

5. To confirm you want to delete the gateway, type "delete" and then choose Delete in the
window that appears.

Update the version of an AWS IoT SiteWise component 363

https://console.aws.amazon.com/iotsitewise/
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

AWS CLI

To delete a gateway using AWS CLI, follow these steps:

1. List your gateways to identify the gateway ID of the gateway you want to delete.

aws iotsitewise list-gateways

This command returns a list of your gateways with their IDs, names, and other information:

{
 "gatewaySummaries": [
 {
 "gatewayId": "a1b2c3d4-5678-90ab-cdef-1a1a1EXAMPLE",
 "gatewayName": "ExampleCorpGateway",
 "gatewayCapabilitySummaries": [
 {
 "capabilityNamespace": "iotsitewise:opcuacollector:1",
 "capabilitySyncStatus": "IN_SYNC"
 }
],
 "creationDate": 1588369971.457,
 "lastUpdateDate": 1588369971.457
 }
]
}

2. Delete the gateway by specifying its ID:

aws iotsitewise delete-gateway --gateway-id a1b2c3d4-5678-90ab-cdef-1a1a1EXAMPLE

This command produces no output when successful.

Note

When you delete a gateway, some of the gateway's files remain in your gateway's
file system.

3. To verify that the gateway has been deleted, you can list your gateways again:

Delete a SiteWise Edge gateway 364

AWS IoT SiteWise User Guide

aws iotsitewise list-gateways

The deleted gateway should no longer appear in the list.

For more information, see delete-gateway in the AWS CLI Command Reference.

Back up and restore SiteWise Edge gateways

This topic covers how to restore SiteWise Edge gateways and backup your metric data. If you
are experiencing issues with a broken SiteWise Edge gateway on the same machine and need
to troubleshoot the issue, please read the AWS IoT SiteWise documentation Troubleshooting
SiteWise Edge gateway issues.

Note

The guidance covered in this topic is for SiteWise Edge gateways installed on AWS IoT
Greengrass V2 version 2.1.0 or higher.

Daily backups of metric data

Creating a back up is important, if you would like to transfer or restore the data on a new machine.
Backing up your data greatly reduces the risk of loss of operating data during a transfer or
restoration process.

This section applies to gateways that use the data processing pack. For more information on the
data processing pack, see Configure an asset model for data processing on SiteWise Edge.

The influxdb folder path is as follows:

Linux

/greengrass/v2/work/aws.iot.SiteWiseEdgeProcessor/influxdb

Windows

C:\greengrass\v2\work\aws.iot.SiteWiseEdgeProcessor\influxdb

Back up and restore gateways 365

https://docs.aws.amazon.com/cli/latest/reference/storagegateway/delete-gateway.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/troubleshooting-gateway.html#troubleshoot-gateway-issues
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/troubleshooting-gateway.html#troubleshoot-gateway-issues

AWS IoT SiteWise User Guide

We recommend that you backup the whole folder with everything underneath it.

We recommend that you periodically backup your metric data from the 1.0 SiteWise Edge to either
an external hard drive or to the AWS cloud.

Restore a SiteWise Edge gateway

Before attempting to restore a SiteWise Edge gateway, ensure that all edge devices connected to
the gateway are stopped or disconnected.

Use the following procedure to a restore a SiteWise Edge gateway:

1. Use the installation script downloaded when you create SiteWise Edge gateway to restore the
SiteWise Edge gateway on the new machine. Read the Installing the SiteWise Edge gateway
software on your local device procedure to setup the SiteWise Edge gateway.

If you lose or cannot find the installation script, please contact AWS Customer Support.

2. Once the SiteWise Edge gateway has been installed, log into the AWS IoT Greengrass console.

3. To redeploy the components, navigate to Manage then under AWS IoT Greengrass devices
select Core devices.

4. In the AWS IoT Greengrass core devices table select the core device corresponding to your
SiteWise Edge gateway.

5. Once on the device page, open the Deployments tab and select your Deployment ID, this will
open the Deployments page with your selected ID.

6. Once you are on the Deployments page, in the top right press the Actions button, and select
the Revise option. to initiate a new deployment. Configure the deployment. If you would like
to keep the deployment as it is, skip to Review and Deploy.

7. Wait for the Deployment Status to become Completed.

Note

It will also take a few minutes for all components on the SiteWise Edge to fully setup
and running.

Restore AWS IoT SiteWise data

Use the following procedure to restore data on a new machine.

Restore a SiteWise Edge gateway 366

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/install-gateway-software-on-local-device.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/install-gateway-software-on-local-device.html
https://aws.amazon.com/contact-us/
https://console.aws.amazon.com/greengrass

AWS IoT SiteWise User Guide

1. Copy the influxdb folder to the new machine.

2. Stop the SiteWise EdgeProcessor component, by running the following command in your
terminal:

Linux

sudo /greengrass/v2/bin/greengrass-cli component stop -n
aws.iot.SiteWiseEdgeProcessor

Windows

C:\greengrass\v2\bin\greengrass-cli component stop -n
aws.iot.SiteWiseEdgeProcesso

3. Locate the path where you backed up your data, and run the following command:

Linux

sudo yes | sudo cp -rf <influxdb_backup_path> /greengrass/v2/work/
aws.iot.SiteWiseEdgeProcessor/influxdb

PowerShell

Copy-Item -Recurse -Force <influxdb_backup_path>* C:\greengrass
\v2\work\aws.iot.SiteWiseEdgeProcessor\

Windows

robocopy <influxdb_backup_path> C:\greengrass\v2\work
\aws.iot.SiteWiseEdgeProcessor\ /E

4. Restart the SiteWiseEdgeProcessor component:

Linux

sudo /greengrass/v2/bin/greengrass-cli component restart -n
aws.iot.SiteWiseEdgeProcessor

Windows

C:\greengrass\v2\bin\greengrass-cli component restart -n
aws.iot.SiteWiseEdgeProcessor

Restore AWS IoT SiteWise data 367

AWS IoT SiteWise User Guide

Validate successful backups and restorations

Use this procedure validate your backed-up data and SiteWise Edge gateway restorations.

Note

This procedure requires that you have installed AWS OpsHub for AWS IoT SiteWise. For
more information see, Managing SiteWise Edge gateways using AWS OpsHub for AWS IoT
SiteWise.

1. Open AWS OpsHub for AWS IoT SiteWise.

2. On the SiteWise Edge Gateway Settings page, check the status of each component listed
in the Components table. Verify that the status color is green and the readout displays
RUNNING.

3. Validate your past data on the portal dashboard to check that the past data and the new data
are both properly setup. There will be a downtime between past and new data. You should
except to see a duration where no data points are collected.

If you run into issues with backing up or restoring a SiteWise Edge gateway see the following
troubleshooting topics Troubleshooting an AWS IoT SiteWise Edge gateway.

Legacy gateways (AWS IoT Greengrass Version 1)

Note

SiteWise Edge gateways running on AWS IoT Greengrass V1 are available only if you started
using this feature before July 29, 2021. For more information on running an AWS IoT
SiteWise gateway using AWS IoT Greengrass V2, see Self-host an AWS IoT SiteWise Edge
gateway with AWS IoT Greengrass V2.

SiteWise Edge gateways now exclusively run on AWS IoT Greengrass V2, providing enhanced
functionality and improved performance for your industrial IoT applications. This latest version
AWS IoT Greengrass V2 represents an architectural evolution, built on a modern component-
based framework that enables modular software deployment. It streamlines installation through

Validate successful backups and restorations 368

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/manage-gateways-ggv2.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/manage-gateways-ggv2.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/troubleshooting-gateway.html

AWS IoT SiteWise User Guide

a unified installer while offering developers greater flexibility in deploying custom components
and conducting local testing. The component-based model allows for more efficient resource
management and introduces a simplified configuration approach through component recipes.
This design facilitates better dependency handling between components, supports continuous
deployment practices, and provides enhanced CLI capabilities for local development. Additionally,
AWS IoT Greengrass V2 centralizes configuration management through AWS IoT Core and delivers
improved logging and monitoring features, all protected by a more granular security permissions
model.

For more information on getting started with SiteWise Edge gateways using AWS IoT Greengrass
V2, AWS IoT SiteWise Edge self-hosted gateway requirements. These resources provide step-
by-step instructions on setting up your gateways, configuring data sources, and managing your
industrial IoT infrastructure.

Note

As AWS continues to innovate and improve its IoT services, it's recommended to stay
updated with the latest features and enhancements. Regularly check the AWS IoT SiteWise
and AWS IoT Greengrass documentation for new capabilities that can further optimize your
industrial IoT solutions.

Legacy gateways (AWS IoT Greengrass Version 1) 369

AWS IoT SiteWise User Guide

Model industrial assets

Assets overview

You can create virtual representations of your industrial operation with AWS IoT SiteWise assets.
An asset represents a device, a piece of equipment, or a process that uploads one or more data
streams to the AWS Cloud. For example, an asset device can be a wind turbine that sends air
temperature, propeller rotation speed, and power output time-series measurements to asset
properties in AWS IoT SiteWise.

Property aliases identify equipment data streams

Each data stream corresponds to unique property alias. For example, the alias /company/
windfarm/3/turbine/7/temperature uniquely identifies the temperature data stream coming
from turbine #7 in wind farm #3. You can configure AWS IoT SiteWise assets to transform incoming
measurement data using mathematical expressions, such as to convert temperature data from
Celsius to Fahrenheit.

Asset hierarchies represent equipment relationships

An asset can also represent a logical grouping of devices, such as an entire wind farm. You can
associate assets with other assets to create asset hierarchies that represent complex industrial
operations. Assets can access the data within their associated child assets. By doing so, you can use
AWS IoT SiteWise expressions to calculate aggregate metrics, such as the net power output of a
wind farm.

Assets overview 370

AWS IoT SiteWise User Guide

Asset models standardize equipment representation

You must create every asset from an asset model. Asset models are declarative structures that
standardize the format of your assets. Asset models enforce consistent information across multiple
assets of the same type so that you can process data in assets that represent groups of devices.
For example, a manufacturing plant might have an asset model for CNC machines that defines
properties such as temperature, downtime, and production rate. In the preceding diagram, you use
the same asset model for all three turbines because they share a common set of properties.

Modeling options for industrial equipment

When designing your industrial asset representation, consider these options:

• Asset models represent specific types of equipment or processes. You must create each physical
asset from an asset model. For example, a chemical processing plant might have separate asset
models for reactors, mixers, and storage tanks.

• Component models define reusable sub-assemblies that you can include in asset models or
other component models. For example, you could include a temperature sensor component
model in multiple equipment asset models across a factory.

• Asset model interfaces apply standards across different asset models. For example, a "Rotating
Equipment" interface could define standard properties for vibration, temperature, and RPM that
apply to pumps, turbines, and motors, despite each having its own unique asset model.

Creating and managing assets

After you define your asset models, you can create your industrial assets. To create an asset, select
an ACTIVE asset model to create an asset from that model. Then, you can populate asset-specific
information such as data stream aliases and attributes. In the preceding diagram, you create
three turbine assets from one asset model and then associate data stream aliases like /company/
windfarm/3/turbine/7/temperature for each turbine.

You can also update and delete existing assets, asset models, and component models. When you
update an asset model, every asset based on that asset model reflects any changes that you make
to the underlying model. When you update a component model, this applies to every asset based
on every asset model that references the component model.

Asset models standardize equipment representation 371

AWS IoT SiteWise User Guide

Managing complex asset models

Your asset models may be very complex, for example when modeling a complicated piece of
equipment that has many subcomponents. To help keep such asset models organized and
maintainable, you can use custom composite models to group related properties or to re-use
shared components. For more information, see Custom composite models (components).

Asset and model states

When you create, update, or delete an asset, an asset model, or a component model, the changes
take time to propagate. AWS IoT SiteWise resolves these operations asynchronously and updates
the status of each resource. Each asset, asset model, and component model has a status field that
contains the state of the resource and any error message, if applicable. The state can be one of the
following values:

• ACTIVE – The resource is active. This is the only state in which you can query and interact with
assets, asset models, and component models.

• CREATING – The resource is being created.

• UPDATING – The resource is being updated.

• DELETING – The resource is being deleted.

• PROPAGATING – (Asset models and component models only) The changes are propagating to all
dependent resources (from asset model to assets, or from component model to asset models).

• FAILED – The resource failed to validate during a create or update operation, possibly due to a
circular reference in an expression. You can delete resources that are in the FAILED state.

Some of the create, update, and delete operations in AWS IoT SiteWise place an asset, asset model,
or component model in a state other than ACTIVE while the operation resolves. To query or
interact with a resource after you perform one of these operations, you must wait until the state
changes to ACTIVE. Otherwise, your requests fail.

Topics

• Check the status of an asset

• Check the status of an asset or component model

Managing complex asset models 372

AWS IoT SiteWise User Guide

Check the status of an asset

You can use the AWS IoT SiteWise console or API to check the status of an asset.

Topics

• Check the status of an asset (console)

• Check the status of an asset (AWS CLI)

Check the status of an asset (console)

Use the following procedure to check the status of an asset in the AWS IoT SiteWise console.

To check the status of an asset (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Assets.

3. Choose the asset to check.

Tip

You can choose the arrow icon to expand an asset hierarchy to find your asset.

4. Find Status in the Asset details panel.

Check the status of an asset (AWS CLI)

You can use the AWS Command Line Interface (AWS CLI) to check the status of an asset.

To check the status of an asset, use the DescribeAsset operation with the assetId parameter.

Check the status of an asset 373

https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAsset.html

AWS IoT SiteWise User Guide

To check the status of an asset (AWS CLI)

• Run the following command to describe the asset. Replace asset-id with the asset's ID or
external ID. The external ID is a user-defined ID. For more information, see Reference objects
with external IDs in the AWS IoT SiteWise User Guide.

aws iotsitewise describe-asset --asset-id asset-id

The operation returns a response that contains the asset's details. The response contains an
assetStatus object that has the following structure:

{
 ...
 "assetStatus": {
 "state": "String",
 "error": {
 "code": "String",
 "message": "String"
 }
 }
 }

The asset's state is in assetStatus.state in the JSON object.

Check the status of an asset or component model

You can use the AWS IoT SiteWise console or API to check the status of an asset model or
component model.

Topics

• Check the status of an asset model or component model (console)

• Check the status of an asset model or component model (AWS CLI)

Check the status of an asset model or component model (console)

Use the following procedure to check the status of an asset model or component model in the AWS
IoT SiteWise console.

Check the status of an asset or component model 374

AWS IoT SiteWise User Guide

Tip

Asset models and component models are both listed under Models in the navigation pane.
The Details panel of the selected asset model or component model indicates which type it
is.

To check the status of an asset model or component model (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Models.

3. Choose the model to check.

4. Find Status in the Details panel.

Check the status of an asset model or component model (AWS CLI)

You can use the AWS CLI to check the status of an asset model or component model.

To check the status of an asset model or component model, use the DescribeAssetModel operation
with the assetModelId parameter.

Tip

The AWS CLI defines component models as a type of asset model. Therefore, you use the
same DescribeAssetModel operation for both types of model. The assetModelType field
in the response indicates whether it's an ASSET_MODEL or a COMPONENT_MODEL.

Check the status of an asset or component model 375

https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAssetModel.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAssetModel.html

AWS IoT SiteWise User Guide

To check the status of an asset model or component model (AWS CLI)

• Run the following command to describe the model. Replace asset-model-id with the ID or
the external ID of the asset model or component model. The external ID is a user-defined ID.
For more information, see Reference objects with external IDs in the AWS IoT SiteWise User
Guide.

aws iotsitewise describe-asset-model --asset-model-id asset-model-id

The operation returns a response that contains the model's details. The response contains an
assetModelStatus object that has the following structure.

{
 ...
 "assetModelStatus": {
 "state": "String",
 "error": {
 "code": "String",
 "message": "String"
 }
 }
 }

The model's state is in assetModelStatus.state in the JSON object.

Asset model versions

AWS IoT SiteWise supports asynchronous processing of create and update operations on asset
models and component models. It also updates the status of the model.

AWS IoT SiteWise propagates a valid model's changes in the create and update requests to its
dependent resources (from asset model to assets, or from component model to asset models). It
then places the model in ACTIVE state.

If the provided model definition is invalid, AWS IoT SiteWise places the model in a FAILED state.
The changes are not propagated to the dependent resources. The dependent resources refer to the
last model definition propagated when the model was in an ACTIVE state.

Based on the information above, model definitions have two types of model versions:

Asset model versions 376

AWS IoT SiteWise User Guide

1. Latest version – The latest definition accepted as part of a create or update request.

2. Active version – The latest definition successfully processed, and the model state is ACTIVE.

By default, details of the model's latest version is returned when describe APIs are called on an
asset model or component model. There are scenarios where the active version of the asset model
or component model is needed. See example scenarios below:

• An update operation with an invalid definition places your asset model in a FAILED state. You
must revert your changes by retrieving the active version of the asset model, and creating
another update request referring to this valid definition.

• An application on AWS IoT SiteWise exists where customers can view assets and their
corresponding asset models. When a user refers the asset model definition corresponding to
a particular asset, and the asset model is in a transitory UPDATING, PROPAGATING, or FAILED
state, the latest version returns the asset model definition that is not yet propagated to its
assets. In this case, you must retrieve the active version of the asset model to customers.

Topics

• Retrieve the active version of an asset model or component model (console)

• Retrieve the active version of an asset model or component model (AWS CLI)

Retrieve the active version of an asset model or component model
(console)

Follow this procedure to retrieve the active version of an asset model or component model in the
AWS IoT SiteWise console.

Tip

Asset models and component models are both listed under Models in the navigation pane.
The Details panel of the selected asset model or component model indicates which type it
is.

To retrieve the active version of an asset model or component model (console)

1. Navigate to the AWS IoT SiteWise console.

Retrieve the active version of an asset model or component model (console) 377

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

2. In the navigation pane, choose Models.

3. Choose the model to retrieve its active version.

a. If the model is in an ACTIVE state, you are viewing its active version.

b. If the model is in a transitory UPDATING, PROPAGATING, or FAILED state, find the See
active version under Status in the Details panel.

Retrieve the active version of an asset model or component model
(AWS CLI)

Use the AWS CLI to retrieve the active version of an asset model or component model.

To retrieve the active version of an asset model or component model, use the DescribeAssetModel
operation with the assetModelVersion parameter.

Tip

The AWS CLI defines component models as a type of asset model. Therefore, you use the
same DescribeAssetModel operation for both types of model. The assetModelType field
in the response indicates whether it's an ASSET_MODEL or a COMPONENT_MODEL.

To retrieve the active version of an asset model or component model (AWS CLI)

• Run the following command to describe the model. Replace asset-model-id with the ID or
the external ID of the asset model or component model. The external ID is a user-defined ID.
For more information, see Reference objects with external IDs in the AWS IoT SiteWise User
Guide.

aws iotsitewise describe-asset-model --asset-model-id asset-model-id --asset-model-
version ACTIVE

The operation returns a response with the model's details. The response contains an
assetModelStatus object with the following structure.

{
 ...

Retrieve the active version of an asset model or component model (AWS CLI) 378

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAssetModel.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAssetModel.html

AWS IoT SiteWise User Guide

 "assetModelName": "string",
 "assetModelProperties": [...],
 ...,
 "assetModelVersion": "string"
}

Custom composite models (components)

When you're modeling an especially complex industrial asset, such as a complicated piece of
machinery that has many parts, it can become a challenge to keep your asset models organized
and maintainable.

In such cases, you can add custom composite models, or components if you're using the console,
to your existing asset models and component models. These help you stay organized by grouping
related properties and re-using subcomponent definitions.

There are two types of custom composite models:

• Inline custom composite models define a set of grouped properties that apply to the asset
model or component model to which the custom composite model belongs. You use them
to group related properties. They consists of a name, a description, and a set of asset model
properties. They are not reusable.

• Component-model-based custom composite models reference a component model that you
want to include in your asset model or component model. You use them to include standard
subassemblies in your model. They consist of a name, a description, and the ID of the component
model it references. They have no properties of their own; the referenced component model
provides its associated properties to any created assets.

The following sections illustrate how to use custom composite models in your designs.

Topics

• Inline custom composite models

• Component-model-based custom composite models

• Use paths to reference custom composite model properties

Custom composite models (components) 379

AWS IoT SiteWise User Guide

Inline custom composite models

Inline custom composite models provide a way to organize your asset model by grouping related
properties.

For example, suppose you want to model a robot asset. The robot includes a servomotor, a power
supply, and a battery. Each of those constituent parts has its own properties that you want to
include in the model. You might define an asset model called robot_model that has properties
such as the following.

• robot_model

• servo_status (integer)

• servo_position (double)

• powersupply_status (integer)

• powersupply_temperature (double)

• battery_status (integer)

• battery_charge (double)

However, in some cases, there might be many subassemblies, or the subassemblies themselves
might have many properties. In these cases, there might be so many properties that they become
cumbersome to reference and maintain in a single flat list at the model root, like in the preceding
example.

To deal with such situations, you can use an inline custom composite model to group properties. An
inline custom composite model is a custom composite model that defines its own properties. For
example, you could model your robot like the following.

• robot_model

• servo

• status (integer)

• position (double)

• powersupply

• status (integer)

• temperature (double)

Inline custom composite models 380

AWS IoT SiteWise User Guide

• battery

• status (integer)

• charge (double)

In the preceding example, servo, powersupply, and battery are the names of inline custom
composite models defined within the robot_model asset model. Each of these composite models
then defines properties of its own.

Note

In this case, each custom composite model defines its own properties, so that all the
properties are part of the asset model itself (robot_model in this case). These properties
aren't shared with any other asset models or component models. For example, if you
created some other asset model that also had an inline custom composite model called
servo, then making a change to the servo within robot_model wouldn't affect the other
asset model's servo definition.
If you want to implement such sharing (for example, to have only one definition for a servo,
which all your asset models can share), you would create a component model for it instead,
and then create component-model-based composite models that reference it. See the
following section for details.

For information about how to create inline custom composite models, see Create custom
composite models (components).

Component-model-based custom composite models

You can create a component model in AWS IoT SiteWise to define a standard, reusable sub-
assembly. Once you have created a component model, you can add references to it in your other
asset models and component models. You do this by adding a component-model-based custom
composite model to any model where you want to reference the component. You can add
references to your component from many models, or multiple times within the same model.

In this way, you can avoid duplicating the same definitions across models. It also simplifies
maintaining your models, because any changes you make to a component model will be reflected
across all asset models that use it.

Component-model-based custom composite models 381

AWS IoT SiteWise User Guide

For example, suppose that your industrial installation has many types of equipment that all use the
same kind of servo motor. Some of them have many servo motors in a single piece of equipment.
You create an asset model for each equipment type, but you don't want to duplicate the definition
of servo every time. You want to model it just once and use it in your various asset models. If
you later make a change to the definition of servo, it will be updated across all your models and
assets.

To model the robot from the previous example in this way, you could define servo motors, power
supplies, and batteries as component models, like this.

• servo_component_model

• status (integer)

• position (double)

• powersupply_component_model

• status (integer)

• temperature (double)

• battery__component_model

• status (integer)

• charge (double)

You could then define asset models, such as robot_model, that reference these components.
Multiple asset models can reference the same component model. You can also reference the
same component model multiple times in one asset model, such as if your robot has multiple
servomotors in it.

• robot_model

• servo1 (reference: servo_component_model)

• servo2 (reference: servo_component_model)

• servo3 (reference: servo_component_model)

Component-model-based custom composite models 382

AWS IoT SiteWise User Guide

• powersupply (reference: powersupply_component_model)

• battery (reference: battery_component_model)

For information about how to create component models, see Create component models.

For information about how to reference your component models in other models, see Create
custom composite models (components).

Use paths to reference custom composite model properties

When you create a property on an asset model, component model, or custom composite model,
you can reference it from other properties that use its value, such as transforms and metrics.

AWS IoT SiteWise provides different ways for you to reference your property. The simplest way
is often to use its property ID. However, if the property you want to reference is on a custom
composite model, you may find it more useful to reference it by path instead.

A path is an ordered sequence of path segments that specifies a property in terms of its position
among the nested composite models within an asset model and composite model.

Obtain property paths

You can get a property's path from the path field of its AssetModelProperty.

For example, suppose you have an asset model robot_model that contains a custom composite
model servo, which has a property position. If you call DescribeAssetModelCompositeModel on
servo, then the position property would list a path field that looks like this:

"path": [
 {
 "id": "asset model ID",
 "name": "robot_model"
 },
 {
 "id": "composite model ID",
 "name": "servo"
 },
 {
 "id": "property ID",

Use paths to reference custom composite model properties 383

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_AssetModelProperty.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAssetModelCompositeModel.html

AWS IoT SiteWise User Guide

 "name": "position"
 }
]

Using property paths

You can use a property path when you define a property that references other properties, such as a
transform or metric.

A property uses a variable to reference another property. For more information about working with
variables, see Use variables in formula expressions.

When you define a variable to reference a property, you can use either the property's ID or its path.

To define a variable that uses the path of the referenced property, specify the propertyPath field
of its value.

For example, to define an asset model that has a metric that references a property by using a path,
you could pass a payload like this to CreateAssetModel:

{
 ...
 "assetModelProperties": [
 {
 ...
 "type": {
 "metric": {
 ...
 "variables": [
 {
 "name": "variable name",
 "value": {
 "propertyPath": [
 path segments
]
 }
 }
],
 ...
 }
 },
 ...

Use paths to reference custom composite model properties 384

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateAssetModel.html

AWS IoT SiteWise User Guide

 },
 ...
],
 ...
}

Asset model interfaces

AWS IoT SiteWise interfaces set standards across different asset models. They define a common
structure that ensures consistency while allowing for variations in implementation.

Interfaces share the same structure as asset models (properties, composite models, and hierarchies)
but you cannot create assets directly from them. Instead, interfaces are applied to existing asset
models to ensure standardization. Component models are not supported for interfaces.

Using interfaces provides several benefits:

• Standardized properties and metrics across different asset model variations

• Simplified metric definitions at the interface level

• More efficient management of complex asset hierarchies

• Independent property lifecycle management for each asset model variation

• Enhanced cross-team collaboration where operations teams focus on physical asset
representation while data teams establish standards across equipment

We recommend creating your asset models first to model your real-world industrial equipment.
Every equipment type, with their own set of properties, can be represented by their own asset
models.

Asset model standardization use case

Interfaces help standardize properties across different asset models while preserving their unique
characteristics.

For example, there are four stations in a powertrain shop: engine, transmission, differential, and
assembly. Each station contains various equipment types. For example, the engine station includes
CNC machines, but they differ in specifications: some are 3-axis, while others are 5-axis.

Asset model interfaces 385

AWS IoT SiteWise User Guide

However, interfaces let you create standards for commonalities seen in the CNC machines. You can
use the repeatable properties in an interface rather than create asset models for each property.

For example, you can:

1. Create separate asset models for each category of machine types. In this example, that's the
"CNC 3 Axis machines" and the "CNC 5 Axis machines."

2. Define a standard interface with common properties and metrics. In this example,
Temperature-in-C, Down-time, and Running-time are all common properties that apply
to both CNC machines.

3. Apply this interface to all CNC machine asset models, still allowing for device-specific
properties on the individual asset models.

Asset model standardization use case 386

AWS IoT SiteWise User Guide

You can also define availability metrics at the interface level. For example, Avail = avg(Down-
time, Running-time) calculates the availability based on the down time and running time
values.

Using interfaces simplifies your asset model management by ensuring consistent property
definitions and metrics across applicable equipment while maintaining the unique characteristics of
each machine type.

Structure and components

Interfaces include the same property types as asset models: attributes, measurements, transforms,
and metrics. When overlayed on an asset model, you map existing properties to their interface
counterparts. Unmapped interface properties are automatically created in the asset model.

Interface hierarchies define rollup metrics, while asset model hierarchies enable asset associations.
When you use an interface, the service will automatically map asset model hierarchies to interface
hierarchies when computing rollup metrics. After applying an interface, rollup metrics are defined
through the interface hierarchy rather than the asset model's own hierarchy.

Structure and components 387

AWS IoT SiteWise User Guide

Considerations

When working with interfaces, keep these considerations in mind:

• Asset model and interface properties can be automatically mapped by name or manually
mapped. Hierarchies are automatically mapped by the service when computing rollup metrics.

• You cannot define additional metrics in the linked asset model that use interface metrics as
inputs.

• An asset model can only be linked to one interface. However, you can have multiple asset models
applied to the same interface.

• Alarms are not supported in interfaces.

• Component models are not supported for interfaces.

Topics

• Understand the interface-asset model relationship

• Create an interface

• Apply an interface to an asset model

• Manage interfaces, linked asset models, and properties

• Additional interface examples

Understand the interface-asset model relationship

Interfaces and asset models work together in a complementary relationship:

Interfaces vs. Asset Models

Aspect Interfaces Asset Models

Purpose Define standards and applies
consistency

Represent physical or logical assets

Asset Creation Cannot create assets directly Used to create assets

Properties Define standard properties that
must be implemented in models

Can have interface-applied and
unique properties

Considerations 388

AWS IoT SiteWise User Guide

Aspect Interfaces Asset Models

Metrics Define standard calculations Implement interface metrics and can
have additional metrics

Hierarchies Define data computation hierarchi
cal relationships for rollup metrics

Define physical hierarchical relations
hips for asset associations

When you apply an interface to an asset model:

• The asset model must map all properties defined in the interface.

• Property mappings define how interface properties correspond to asset model properties.

• Mapped asset model properties must remain synchronized with their corresponding interface
properties and cannot be modified in a way that would cause inconsistency between the two.

• Unmapped interface properties are automatically created in the asset model.

• The asset model can have additional properties beyond those defined in the interface.

• The asset model implements interface metrics. Changes to interface metrics propagate to all
asset models using the interface.

• Interface hierarchies are used for computing rollup metrics. Asset model hierarchies can be
defined independently, and the service will automatically map them when computing rollup
metrics.

This relationship ensures standardization while allowing for the flexibility needed to represent
diverse equipment types.

Standardize existing asset models

While interfaces are valuable when designing new asset models from scratch, they're equally
powerful for standardizing existing asset models that may have evolved independently over time.

When working with existing asset models, you can apply interfaces to standardize metrics and
properties:

1. Identify common metrics and properties across your existing asset models

2. Create an interface that defines these standard properties and metrics

3. Apply the interface to your existing asset models using property mapping

Understand the interface-asset model relationship 389

AWS IoT SiteWise User Guide

4. Use rollup metrics to aggregate data across your asset hierarchy

For example, if you have existing CNC machine asset models with different property names but
similar data, like temp_celsius, temperature_c, machine_temp), you can:

1. Create a CNC-INTERFACE with a standardized Temperature-in-C property

2. Apply this interface to each CNC asset model, mapping the existing temperature properties to
the interface's Temperature-in-C property

3. Define rollup metrics in the interface that calculate statistics across all machines (e.g., average
temperature)

This approach allows you to maintain your existing asset models while gaining the benefits of
standardization and simplified metrics calculation.

Hierarchy relationships

Interface hierarchy

Defines relationships for calculating and aggregating data across different interfaces. For
example, in a factory setting, an interface hierarchy could connect temperature-monitoring
interfaces at different levels to calculate average temperatures. For example: machine,
production line, and facility. When you define a rollup metric like AverageTemperature, the
interface hierarchy determines how that metric aggregates data from lower levels to higher
levels.

Asset model hierarchy

Represents the actual physical or logical structure of your assets. For instance, a CNC machine
asset model might be part of a production line asset model, which in turn belongs to a factory
asset model. This hierarchy reflects real-world relationships and helps organize assets in a
way that matches their physical arrangement or business structure. When combined with
interface hierarchies, asset model hierarchies help the system understand which assets should
be included in rollup calculations.

These two hierarchy types work together: interface hierarchies define how to compute aggregated
metrics, while asset model hierarchies define which specific assets should be included in those
calculations.

Understand the interface-asset model relationship 390

AWS IoT SiteWise User Guide

Interface metrics and rollup calculations

Interfaces excel at defining standardized metrics that can be applied across different asset models.
This is particularly valuable for rollup metrics that aggregate data from multiple assets.

When you define metrics in an interface, they're automatically applied to all asset models that
implement the interface. The metrics can reference properties defined in the interface, use
aggregation functions to calculate statistics across assets, and ensure consistent calculations across
all implementing asset models For example, you can define an availability metric in an interface
that calculates the ratio of running time to total time:

{
 "name": "Availability",
 "dataType": "DOUBLE",
 "type": {
 "metric": {
 "expression": "Running-time / (Running-time + Down-time) * 100",
 "variables": [
 {
 "name": "Running-time",
 "value": {
 "propertyId": "${Running-time}"
 }
 },
 {
 "name": "Down-time",
 "value": {
 "propertyId": "${Down-time}"
 }
 }
],
 "window": {
 "tumbling": {
 "interval": "1h"
 }
 }
 }
 },
 "unit": "Percent"
}

Understand the interface-asset model relationship 391

AWS IoT SiteWise User Guide

When this interface is applied to multiple asset models, the availability metric is calculated
consistently for all of them, even if the underlying property names differ (thanks to property
mapping).

For more information about defining metrics and using aggregation functions, see Aggregate data
from properties and other assets (metrics).

Rollup metrics with interfaces

Interfaces can also define rollup metrics that aggregate data across assets in a hierarchy. When
you define a hierarchy in an interface and apply it to an asset model, you can create metrics that
aggregate data from child assets.

For example, you can define a metric that calculates the average temperature across all CNC
machines in a factory:

{
 "name": "AverageTemperature",
 "dataType": "DOUBLE",
 "type": {
 "metric": {
 "expression": "avg(Temperature-in-C)",
 "variables": [
 {
 "name": "Temperature-in-C",
 "value": {
 "propertyId": "${Temperature-in-C}",
 "hierarchyId": "${CNC-machines}"
 }
 }
],
 "window": {
 "tumbling": {
 "interval": "1h"
 }
 }
 }
 },
 "unit": "Celsius"
}

Understand the interface-asset model relationship 392

AWS IoT SiteWise User Guide

This metric uses the avg() aggregation function to calculate the average temperature across all
CNC machines in the hierarchy. The hierarchyId parameter specifies which hierarchy to use for
the aggregation.

When this interface is applied to an asset model, the rollup metric automatically aggregates data
from all child assets that match the hierarchy mapping.

Create an interface

You can create interfaces using either the AWS IoT SiteWise console or the AWS CLI.

Console

1. Navigate to the AWS IoT SiteWise console and choose Models from the navigation pane.

2. Choose Create interface.

3. Enter a unique Name and optional Description for your interface. You can also optionally
add an External ID of you choosing.

4. Add properties to your interface. You can add attributes, measurements, transforms,
and metrics just like with asset models. For more information, see Create an asset model
(console).

5. Choose Create interface to create the interface.

6. If you have hierarchies to define parent-child relationships between interfaces, choose Add
hierarchy and enter relevant details.

AWS CLI

To create an interface, use the CreateAssetModel operation with the assetModelType
parameter set to INTERFACE:

aws iotsitewise create-asset-model \
 --asset-model-name "CNC-INTERFACE" \
 --asset-model-description "Standard interface for CNC machines" \
 --asset-model-type "INTERFACE" \
 --asset-model-properties '[
 {
 "name": "Temperature-in-C",
 "dataType": "DOUBLE",
 "type": {
 "measurement": {}

Create an interface 393

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

 },
 "unit": "Celsius"
 },
 {
 "name": "Down-time",
 "dataType": "DOUBLE",
 "type": {
 "measurement": {}
 },
 "unit": "Minutes"
 },
 {
 "name": "Running-time",
 "dataType": "DOUBLE",
 "type": {
 "measurement": {}
 },
 "unit": "Minutes"
 },
 {
 "name": "Availability",
 "dataType": "DOUBLE",
 "type": {
 "metric": {
 "expression": "Running-time / (Running-time + Down-time) * 100",
 "variables": [
 {
 "name": "Running-time",
 "value": {
 "propertyId": "${Running-time}"
 }
 },
 {
 "name": "Down-time",
 "value": {
 "propertyId": "${Down-time}"
 }
 }
],
 "window": {
 "tumbling": {
 "interval": "1h"
 }
 }

Create an interface 394

AWS IoT SiteWise User Guide

 }
 },
 "unit": "Percent"
 }
]'

Apply an interface to an asset model

When applying an interface to an asset model, you map asset model properties and hierarchies
to their interface counterparts. For unmapped interface properties, corresponding properties are
automatically created in the asset model. After linking, the service prevents changes to the asset
model that would violate interface standards.

You can add one asset model to an interface at a time. However, multiple asset models can be
linked to a single interface.

Console

1. Navigate to the AWS IoT SiteWise console and choose Models from the navigation pane.

2. Select the asset model to which you want to apply an interface.

3. Choose Link asset model in the Link asset models section. This brings up the Link
interface page.

4. In the Asset models and interfaces section, select an asset model from the Select a model
to link dropdown menu.

5. In the Property mappings section, map each interface property to an existing asset model
property or create a new property. AWS IoT SiteWise automatically links properties with
matching names in the asset model and interface.

6. Review the property mappings and choose Link interface.

AWS CLI

To apply an interface to an asset model, use the PutAssetModelInterfaceRelationship
operation:

aws iotsitewise put-asset-model-interface-relationship \
 --asset-model-id "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --interface-asset-model-id "a1b2c3d4-5678-90ab-cdef-22222EXAMPLE" \

Apply an interface to an asset model 395

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

 --property-mapping-configuration '{
 "createMissingProperty": true,
 "matchByPropertyName": true,
 "overrides": [
 {
 "assetModelPropertyId": "a1b2c3d4-5678-90ab-cdef-44444EXAMPLE",
 "interfaceAssetModelPropertyId": "a1b2c3d4-5678-90ab-cdef-33333EXAMPLE"

 }
]
 }'

To retrieve information about an interface relationship, use the
DescribeAssetModelInterfaceRelationship operation:

aws iotsitewise describe-asset-model-interface-relationship \
 --asset-model-id "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --interface-asset-model-id "a1b2c3d4-5678-90ab-cdef-22222EXAMPLE"

To list all asset models that have a specific interface applied to them, use the
ListInterfaceRelationships operation:

aws iotsitewise list-interface-relationships \
 --interface-asset-model-id "a1b2c3d4-5678-90ab-cdef-22222EXAMPLE" \
 --max-results 10

To delete an interface relationship, use the DeleteAssetModelInterfaceRelationship
operation:

aws iotsitewise delete-asset-model-interface-relationship \
 --asset-model-id "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE" \
 --interface-asset-model-id "a1b2c3d4-5678-90ab-cdef-22222EXAMPLE"

Manage interfaces, linked asset models, and properties

After creating interfaces and linking them to asset models, you can manage relationships, edit, and
delete interfaces through the console or AWS CLI.

Manage interfaces 396

AWS IoT SiteWise User Guide

Modify an interface and asset model relationship

To change an interface's relationship to an asset model, do the following in either the AWS IoT
SiteWise console or through AWS CLI:

Console

1. Navigate to the AWS IoT SiteWise console and choose Models from the navigation pane.

2. Select the interface you want modify.

3. Choose the asset model to modify and edit it.

You can follow the Apply an interface to an asset model instructions to link a different
asset model.

4. Choose Apply interface to save your changes.

AWS CLI

To edit an interface and asset model relationship, use the
PutAssetModelInterfaceRelationship action. Replace your-asset-model-id and
your-interface-asset-model-id with your own values. For more information, see
PutAssetModelInterfaceRelationship in the AWS IoT SiteWise API Reference.

aws iotsitewise put-asset-model-interface-relationship \
 --asset-model-id your-asset-model-id \
 --interface-asset-model-id your-interface-asset-model-id

Modify an interface property mapping

To change an interface's property, do the following in either the AWS IoT SiteWise console or
through AWS CLI:

Console

1. Navigate to the AWS IoT SiteWise console and choose Models from the navigation pane.

2. Select the interface for which you want modify property mappings. The Edit property
mappings page appears.

3. In the Property mappings section, filter the list to find the appropriate property mappings.

Manage interfaces 397

https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_PutAssetModelInterfaceRelationship.html
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

4. Change the properties using the Model property column.

AWS CLI

To edit an interface and asset model relationship, use the
PutAssetModelInterfaceRelationship action. Replace your-asset-model-id and
your-interface-asset-model-id with your own values. For more information, see
PutAssetModelInterfaceRelationship in the AWS IoT SiteWise API Reference.

aws iotsitewise put-asset-model-interface-relationship \
 --asset-model-id your-asset-model-id \
 --interface-asset-model-id your-interface-asset-model-id \

List interfaces linked to an asset model

To get a list of interfaces applied to an asset model, do the following in either the AWS IoT
SiteWise console or through AWS CLI:

Console

1. Navigate to the AWS IoT SiteWise console and choose Models from the navigation pane.

2. In the Models section, choose the appropriate asset model or interface. You can view a list
of either applied interfaces or linked asset models on the model's corresponding details
page.

• When viewing a particular interface, see the Linked asset models section.

• When viewing a particular asset model, see the Applied interfaces section.

AWS CLI

To list interfaces, you can use the ListInterfaceRelationships operation. Replace
your-interface-asset-model-id with your own value. For more information, see
ListInterfaceRelationships in the AWS IoT SiteWise API Reference.

aws iotsitewise list-interface-relationships \
 --interface-asset-model-id your-interface-asset-model-id \
 [--next-token your-next-token] \
 [--max-results 20]

Manage interfaces 398

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_PutAssetModelInterfaceRelationship.html
https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListInterfaceRelationships.html

AWS IoT SiteWise User Guide

View the details of an interface and asset model relationship

To see the details of an interface applied to an asset model, do the following in either the AWS IoT
SiteWise console or through AWS CLI:

Console

View the details of applied interfaces and linked asset models.

1. Navigate to the AWS IoT SiteWise console and choose Models from the navigation pane.

2. In the Models section, search for the appropriate asset model or interface. Select the model
or interface's Name to open up a page containing more details.

AWS CLI

To view interface details for an interface and asset model relationship, use the
DescribeAssetModelInterfaceRelationship action. Replace your-asset-model-id
and your-interface-asset-model-id with your own values. For more information, see
DescribeAssetModelInterfaceRelationship in the AWS IoT SiteWise API Reference.

aws iotsitewise describe-asset-model-interface-relationship \
 --asset-model-id your-asset-model-id \
 --interface-asset-model-id your-interface-asset-model-id

Remove an interface applied to an asset model

To remove an interface applied to an asset model, do the following in either the AWS IoT SiteWise
console or through AWS CLI:

Console

We recommend removing an interface through the asset model. You can also delete an
interface or unlink an interface through a particular interface's page.

1. Navigate to the AWS IoT SiteWise console and choose Models from the navigation pane.

2. Select the appropriate asset model from which to remove the interface relationship.

3. Choose Unlink asset model.

Manage interfaces 399

https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAssetModelInterfaceRelationship.html
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

AWS CLI

To remove an interface relationship from an asset model, you can use the
DeleteAssetModelInterfaceRelationship action. Replace your-
interface-asset-model-id with your own value. For more information, see
DeleteAssetModelInterfaceRelationship in the AWS IoT SiteWise API Reference.

aws iotsitewise delete-asset-model-interface-relationship \
 --asset-model-id your-asset-model-id \
 --interface-asset-model-id your-interface-asset-model-id

Additional interface examples

Here are additional examples of how interfaces can be used in different industrial scenarios:

Energy generation equipment

A power generation company can use interfaces to standardize metrics across different types of
generation equipment:

{
 "assetModelName": "GENERATOR-INTERFACE",
 "assetModelDescription": "Standard interface for power generators",
 "assetModelType": "INTERFACE",
 "assetModelProperties": [
 {
 "name": "ActivePower",
 "dataType": "DOUBLE",
 "type": { "measurement": {} },
 "unit": "MW"
 },
 {
 "name": "ReactivePower",
 "dataType": "DOUBLE",
 "type": { "measurement": {} },
 "unit": "MVAR"
 },
 {
 "name": "Frequency",
 "dataType": "DOUBLE",
 "type": { "measurement": {} },

Additional interface examples 400

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DeleteAssetModelInterfaceRelationship.html

AWS IoT SiteWise User Guide

 "unit": "Hz"
 },
 {
 "name": "PowerFactor",
 "dataType": "DOUBLE",
 "type": {
 "metric": {
 "expression": "cos(atan(ReactivePower / ActivePower))",
 "variables": [
 {
 "name": "ActivePower",
 "value": { "propertyId": "${ActivePower}" }
 },
 {
 "name": "ReactivePower",
 "value": { "propertyId": "${ReactivePower}" }
 }
],
 "window": { "tumbling": { "interval": "5m" } }
 }
 },
 "unit": "None"
 }
]
}

This interface can be applied to various generator asset models (gas turbines, steam turbines, wind
turbines) to ensure consistent power metrics across the fleet.

Water treatment facilities

A water utility can use interfaces to standardize monitoring across treatment plants:

{
 "assetModelName": "WATER-QUALITY-INTERFACE",
 "assetModelDescription": "Standard interface for water quality monitoring",
 "assetModelType": "INTERFACE",
 "assetModelProperties": [
 {
 "name": "pH",
 "dataType": "DOUBLE",
 "type": { "measurement": {} },
 "unit": "pH"

Additional interface examples 401

AWS IoT SiteWise User Guide

 },
 {
 "name": "Turbidity",
 "dataType": "DOUBLE",
 "type": { "measurement": {} },
 "unit": "NTU"
 },
 {
 "name": "DissolvedOxygen",
 "dataType": "DOUBLE",
 "type": { "measurement": {} },
 "unit": "mg/L"
 },
 {
 "name": "QualityIndex",
 "dataType": "DOUBLE",
 "type": {
 "metric": {
 "expression": "(pH >= 6.5 && pH <= 8.5 ? 100 : 50) * (Turbidity < 1 ? 1 :
 0.8) * (DissolvedOxygen > 5 ? 1 : 0.7)",
 "variables": [
 {
 "name": "pH",
 "value": { "propertyId": "${pH}" }
 },
 {
 "name": "Turbidity",
 "value": { "propertyId": "${Turbidity}" }
 },
 {
 "name": "DissolvedOxygen",
 "value": { "propertyId": "${DissolvedOxygen}" }
 }
],
 "window": { "tumbling": { "interval": "1h" } }
 }
 },
 "unit": "Score"
 }
]
}

Additional interface examples 402

AWS IoT SiteWise User Guide

This interface ensures that water quality is measured consistently across all treatment facilities,
regardless of their specific equipment configurations.

Hierarchical interfaces

Interfaces can be organized hierarchically to support aggregate metrics at different levels of your
operation:

1. Equipment-level interface (for example, PUMP-INTERFACE)

• Properties: Flow rate, pressure, power consumption, vibration

• Metrics: Efficiency, health score

2. Process-level interface (for example, PUMPING-STATION-INTERFACE)

• Properties: Total flow, average pressure, total power

• Metrics: Station efficiency, operational cost per volume

• Hierarchy: Contains PUMP-INTERFACE equipment

3. Facility-level interface (for example, WATER-FACILITY-INTERFACE)

• Properties: Facility throughput, energy usage, chemical usage

• Metrics: Facility efficiency, cost per unit volume, carbon footprint

• Hierarchy: Contains PUMPING-STATION-INTERFACE processes

This hierarchical approach allows metrics to be calculated at each level while maintaining
consistency across your entire operation.

Set up AWS IoT SiteWise object IDs

AWS IoT SiteWise defines various types of persistent objects, such as assets, asset models,
properties, and hierarchies. All such objects have unique identifiers that you can use to retrieve,
update, and delete them.

AWS IoT SiteWise has different options for customers for ID creation. AWS IoT SiteWise generates
one for you by default at object creation time. Users can also provide their own IDs to your objects.

Topics

• Work with object UUIDs

Set up object IDs 403

AWS IoT SiteWise User Guide

• Use external IDs

Work with object UUIDs

Every persistent object in AWS IoT SiteWise has a UUID to identify it. For example, asset models
have an asset model ID, assets have an asset ID, and so on. This ID is assigned at the time that you
create the object, and remains unchanged for the object's lifetime.

When you create a new object, AWS IoT SiteWise generates a unique ID for you by default. You can
also provide your own ID at creation time in UUID format.

Note

UUIDs must be globally unique within the AWS Region where it's created, and for the same
object type. When AWS IoT SiteWise auto-generates an ID for you, it's always unique. If you
choose your own ID, make sure that it's unique.

For example, if you create a new asset model by calling CreateAssetModel, you can provide your
own UUID in the optional assetModelId field of the request.

By contrast, if you omit assetModelId from the request, AWS IoT SiteWise generates a UUID for
the new asset model.

Use external IDs

To define your own ID in some format other than UUID, you can assign an external ID. For example,
you can do this if you reuse an ID that you're using in a system that's not AWS, or to be more
human-readable. External IDs have a more flexible format. You can use them to reference your
objects in AWS IoT SiteWise API operations where you would otherwise use the UUID.

Like the UUIDs, each external ID must be unique within its context. For example, you can't have two
asset models with the same external ID. Also, like the UUIDs, an object can only have one external
ID in its lifetime, which can't change.

Differences between external IDs and UUIDs

External IDs differ from UUIDs in the following ways:

Work with object UUIDs 404

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateAssetModel.html

AWS IoT SiteWise User Guide

• Every object has a UUID, but external IDs are optional.

• AWS IoT SiteWise never generates external IDs. You provide these yourself.

• If the object does not already have one, you can assign an external ID at any time.

Format of external IDs

A valid external ID has the following properties:

• Is between 2 and 128 characters long.

• The first and last characters must be alphanumeric (A-Z, a-z, 0-9).

• Characters other than first and last must either be alphanumeric, or else one of the following:
_-.:

For example, an external ID must conform to the following regular expression:

[a-zA-Z0-9][a-zA-Z0-9_\-.:]*[a-zA-Z0-9]+

Reference objects with external IDs

In many places that you could reference an object using its UUID, you can use its external ID
instead, if it has one. To do so, append the external ID to the string externalId:.

For example, suppose you have an asset model whose UUID (asset model ID) is
a1b2c3d4-5678-90ab-cdef-11111EXAMPLE, which also has the external ID myExternalId.
Call DescribeAssetModel to get details about it. You could use either of the following as the value
of assetModelId:

• With the asset model ID (UUID) itself: a1b2c3d4-5678-90ab-cdef-11111EXAMPLE

• With the external ID: externalId:myExternalId

aws iotsitewise describe-asset-model --asset-model-id a1b2c3d4-5678-90ab-
cdef-11111EXAMPLE
aws iotsitewise describe-asset-model --asset-model-id externalId:myExternalId

Use external IDs 405

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAssetModel.html

AWS IoT SiteWise User Guide

Note

The externalId: prefix is not, itself, part of the external ID. You only need to provide
the prefix when you supply an external ID to an API operation that accepts either UUIDs or
external IDs. For example, supply the prefix when you query or update an existing object.
When you define an external ID for an object, such as when you create an asset model,
don't include the prefix.

You can use external IDs in place of UUIDs in this fashion for many API operations in AWS IoT
SiteWise, but not all. For example, the GetAssetPropertyValue, must use UUIDs; it doesn't support
external ID usage.

To determine whether a particular API operation supports this usage, consult the API Reference.

Create asset models, component models, and interfaces for
AWS IoT SiteWise

AWS IoT SiteWise asset models, component models, and interfaces drive standardization of your
industrial data. Asset models define the overall asset, such as a wind turbine or a manufacturing
line. Component models represent the individual components that make up the asset, such as
blades, generators, or sensors. Interfaces enforce standards across different asset models. By
creating these models, you can organize and structure your asset data in a way that reflects the
real-world relationships and hierarchies of your industrial equipment, making it easier to monitor,
analyze, and maintain.

An asset model or component model contains a name, description, asset properties, and
(optionally) custom composite models that group properties together, or that reference
component models for subassemblies.

In AWS IoT SiteWise, you can create asset models, component models, and interfaces to represent
the structure and properties of your industrial assets and their components.

• You use an asset model to create assets. In addition to the features listed above, an asset model
can also contain hierarchy definitions that define relationships among assets.

• A component model represents a subassembly within an asset model or another component
model. When you create a component model, you can add references to it in asset models and in
other component models. However, you can't create assets directly from component models.

Create models 406

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_Operations.html

AWS IoT SiteWise User Guide

• An interface enforces standards across different asset models. Interfaces define common
properties, metrics, and hierarchies that must be implemented by asset models. You can't create
assets directly from interfaces, but they help ensure consistency across similar asset types.

After you create an asset model or component model, you can create custom composite models
for it to group properties together or to reference existing component models. You can also link
interfaces to asset models to enforce standardization.

For details about how to create asset models, component models, and interfaces, see the following
sections.

Topics

• Create asset models in AWS IoT SiteWise

• Create component models

• Define data properties

• Create custom composite models (components)

Create asset models in AWS IoT SiteWise

AWS IoT SiteWise asset models drive standardization of your industrial data. An asset model
contains a name, description, asset properties, and asset hierarchy definitions. For example,
you can define a wind turbine model with temperature, rotations per minute (RPM), and power
properties. Then, you can define a wind farm model with a net power output property and a wind
turbine hierarchy definition.

Note

• We recommend that you model your operation starting with the lowest-level nodes. For
example, create your wind turbine model before you create your wind farm model. Asset
hierarchy definitions contain references to existing asset models. With this approach, you
can define asset hierarchies as you create your models.

• Asset models can't contain other asset models. If you must define a model that you can
reference as a subassembly within another model, you should create a component-->
model instead. For more information, see Create component models.

Create asset models in AWS IoT SiteWise 407

AWS IoT SiteWise User Guide

The following sections describe how to use the AWS IoT SiteWise console or API to create asset
models. The following sections also describe the different types of asset properties and asset
hierarchies that you can use to create models.

Topics

• Create an asset model (console)

• Create an asset model (AWS CLI)

• Example asset models

• Define asset model hierarchies

Create an asset model (console)

You can use the AWS IoT SiteWise console to create an asset model. The AWS IoT SiteWise console
provides various features, such as formula auto completion, that can help you define valid asset
models.

To create an asset model (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Models.

3. Choose Create asset model.

4. On the Create model page, do the following:

a. Enter a Name for the asset model, such as Wind Turbine or Wind Turbine Model.
This name must be unique across all models in your account in this Region.

b. (Optional) Add an External ID for the model. This is a user-defined ID. For more
information, see Reference objects with external IDs in the AWS IoT SiteWise User Guide.

c. (Optional) Add Measurement definitions for the model. Measurements represent data
streams from your equipment. For more information, see Define data streams from
equipment (measurements).

d. (Optional) Add Transform definitions for the model. Transforms are formulas that map
data from one form to another. For more information, see Transform data (transforms).

e. (Optional) Add Metric definitions for the model. Metrics are formulas that aggregate
data over time intervals. Metrics can input data from associated assets, so that you can
calculate values that represent your operation or a subset of your operation. For more
information, see Aggregate data from properties and other assets (metrics).

Create asset models in AWS IoT SiteWise 408

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

f. (Optional) Add Hierarchy definitions for the model. Hierarchies are relationships between
assets. For more information, see Define asset model hierarchies.

g. (Optional) Add tags for the asset model. For more information, see Tag your AWS IoT
SiteWise resources.

h. Choose Create model.

When you create an asset model, the AWS IoT SiteWise console navigates to the new model's
page. On this page, you can see the model's Status, which is initially CREATING. This page
automatically updates, so you can wait for the model's status to update.

Note

The asset model creation process can take up to a few minutes for complex models.
After the asset model status is ACTIVE, you can use the asset model to create assets.
For more information, see Asset and model states.

5. (Optional) After you create your asset model, you can configure your asset model for the
edge. For more information about SiteWise Edge, see Configure edge capabilities on AWS IoT
SiteWise Edge.

a. On the model page, choose Configure for Edge.

b. On the model configuration page, choose the edge configuration for your model. This
controls where AWS IoT SiteWise can compute and store properties associated with this
asset model. For more information about configuring your model for the edge, see Set up
an OPC UA source in SiteWise Edge.

c. For Custom edge configuration, choose the location that you want AWS IoT SiteWise to
compute and store each of your asset model properties.

Note

Transforms and metrics that are associated must be configured for the same
location. For more information about configuring your model for the edge, see Set
up an OPC UA source in SiteWise Edge.

d. Choose Save. On the model page, your Edge configuration should now be Configured.

Create asset models in AWS IoT SiteWise 409

AWS IoT SiteWise User Guide

Create an asset model (AWS CLI)

You can use the AWS Command Line Interface (AWS CLI) to create an asset model.

Use the CreateAssetModel operation to create an asset model with properties and hierarchies. This
operation expects a payload with the following structure.

{
 "assetModelType": "ASSET_MODEL",
 "assetModelName": "String",
 "assetModelDescription": "String",
 "assetModelProperties": Array of AssetModelProperty,
 "assetModelHierarchies": Array of AssetModelHierarchyDefinition
}

To create an asset model (AWS CLI)

1. Create a file called asset-model-payload.json and then copy the following JSON object
into the file.

{
 "assetModelType": "ASSET_MODEL",
 "assetModelName": "",
 "assetModelDescription": "",
 "assetModelProperties": [

],
 "assetModelHierarchies": [

],
 "assetModelCompositeModels": [

]
}

2. Use your preferred JSON text editor to edit the asset-model-payload.json file for the
following:

a. Enter a name (assetModelName) for the asset model, such as Wind Turbine or Wind
Turbine Model. This name must be unique across all asset models and component
models in your account in this AWS Region.

Create asset models in AWS IoT SiteWise 410

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateAssetModel.html

AWS IoT SiteWise User Guide

b. (Optional) Enter an external ID (assetModelExternalId) for the asset model. This is a
user-defined ID. For more information, see Reference objects with external IDs in the AWS
IoT SiteWise User Guide.

c. (Optional) Enter a description (assetModelDescription) for the asset model, or
remove the assetModelDescription key-value pair.

d. (Optional) Define asset properties (assetModelProperties) for the model. For more
information, see Define data properties.

e. (Optional) Define asset hierarchies (assetModelHierarchies) for the model. For more
information, see Define asset model hierarchies.

f. (Optional) Define alarms for the model. Alarms monitor other properties so that you
can identify when equipment or processes require attention. Each alarm definition
is a composite model (assetModelCompositeModels) that standardizes the set of
properties that the alarm uses. For more information, see Monitor data with alarms in
AWS IoT SiteWise and Define alarms on asset models in AWS IoT SiteWise.

g. (Optional) Add tags (tags) for the asset model. For more information, see Tag your AWS
IoT SiteWise resources.

3. Run the following command to create an asset model from the definition in the JSON file.

aws iotsitewise create-asset-model --cli-input-json file://asset-model-payload.json

The operation returns a response that contains the assetModelId that you refer
to when creating an asset. The response also contains the state of the model
(assetModelStatus.state), which is initially CREATING. The asset model's status is
CREATING until the changes propagate.

Note

The asset model creation process can take up to a few minutes for complex models. To
check the current status of your asset model, use the DescribeAssetModel operation by
specifying the assetModelId. After the asset model status is ACTIVE, you can use the
asset model to create assets. For more information, see Asset and model states.

4. (Optional) Create custom composite models for your asset model. With custom composite
models, you can group properties within the model, or include a subassembly by referencing a
component model. For more information, see Create custom composite models (components).

Create asset models in AWS IoT SiteWise 411

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAssetModel.html

AWS IoT SiteWise User Guide

Example asset models

This section contains example asset models definitions that you can use to create asset models
with the AWS CLI and AWS IoT SiteWise SDKs. These asset models represent a wind turbine and
a wind farm. Wind turbine assets ingest raw sensor data and calculate values such as power and
average wind speed. Wind farm assets calculate values such as total power for all wind turbines in
the wind farm.

Topics

• Wind turbine asset model

• Wind farm asset model

Wind turbine asset model

The following asset model represents a turbine in a wind farm. The wind turbine ingests sensor
data to calculate values such as power and average wind speed.

Note

This example model resembles the wind turbine model from the AWS IoT SiteWise demo.
For more information, see Use the AWS IoT SiteWise demo.

{
 "assetModelType": "ASSET_MODEL",
 "assetModelName": "Wind Turbine Asset Model",
 "assetModelDescription": "Represents a turbine in a wind farm.",
 "assetModelProperties": [
 {
 "name": "Location",
 "dataType": "STRING",
 "type": {
 "attribute": {
 "defaultValue": "Renton"
 }
 }
 },
 {
 "name": "Make",
 "dataType": "STRING",

Create asset models in AWS IoT SiteWise 412

AWS IoT SiteWise User Guide

 "type": {
 "attribute": {
 "defaultValue": "Amazon"
 }
 }
 },
 {
 "name": "Model",
 "dataType": "INTEGER",
 "type": {
 "attribute": {
 "defaultValue": "500"
 }
 }
 },
 {
 "name": "Torque (KiloNewton Meter)",
 "dataType": "DOUBLE",
 "unit": "kNm",
 "type": {
 "measurement": {}
 }
 },
 {
 "name": "Wind Direction",
 "dataType": "DOUBLE",
 "unit": "Degrees",
 "type": {
 "measurement": {}
 }
 },
 {
 "name": "RotationsPerMinute",
 "dataType": "DOUBLE",
 "unit": "RPM",
 "type": {
 "measurement": {}
 }
 },
 {
 "name": "Wind Speed",
 "dataType": "DOUBLE",
 "unit": "m/s",
 "type": {

Create asset models in AWS IoT SiteWise 413

AWS IoT SiteWise User Guide

 "measurement": {}
 }
 },
 {
 "name": "RotationsPerSecond",
 "dataType": "DOUBLE",
 "unit": "RPS",
 "type": {
 "transform": {
 "expression": "rpm / 60",
 "variables": [
 {
 "name": "rpm",
 "value": {
 "propertyId": "RotationsPerMinute"
 }
 }
]
 }
 }
 },
 {
 "name": "Overdrive State",
 "dataType": "DOUBLE",
 "type": {
 "transform": {
 "expression": "gte(torque, 3)",
 "variables": [
 {
 "name": "torque",
 "value": {
 "propertyId": "Torque (KiloNewton Meter)"
 }
 }
]
 }
 }
 },
 {
 "name": "Average Power",
 "dataType": "DOUBLE",
 "unit": "Watts",
 "type": {
 "metric": {

Create asset models in AWS IoT SiteWise 414

AWS IoT SiteWise User Guide

 "expression": "avg(torque) * avg(rps) * 2 * 3.14",
 "variables": [
 {
 "name": "torque",
 "value": {
 "propertyId": "Torque (Newton Meter)"
 }
 },
 {
 "name": "rps",
 "value": {
 "propertyId": "RotationsPerSecond"
 }
 }
],
 "window": {
 "tumbling": {
 "interval": "5m"
 }
 }
 }
 }
 },
 {
 "name": "Average Wind Speed",
 "dataType": "DOUBLE",
 "unit": "m/s",
 "type": {
 "metric": {
 "expression": "avg(windspeed)",
 "variables": [
 {
 "name": "windspeed",
 "value": {
 "propertyId": "Wind Speed"
 }
 }
],
 "window": {
 "tumbling": {
 "interval": "5m"
 }
 }
 }

Create asset models in AWS IoT SiteWise 415

AWS IoT SiteWise User Guide

 }
 },
 {
 "name": "Torque (Newton Meter)",
 "dataType": "DOUBLE",
 "unit": "Nm",
 "type": {
 "transform": {
 "expression": "knm * 1000",
 "variables": [
 {
 "name": "knm",
 "value": {
 "propertyId": "Torque (KiloNewton Meter)"
 }
 }
]
 }
 }
 },
 {
 "name": "Overdrive State Time",
 "dataType": "DOUBLE",
 "unit": "Seconds",
 "type": {
 "metric": {
 "expression": "statetime(overdrive_state)",
 "variables": [
 {
 "name": "overdrive_state",
 "value": {
 "propertyId": "Overdrive State"
 }
 }
],
 "window": {
 "tumbling": {
 "interval": "5m"
 }
 }
 }
 }
 }
],

Create asset models in AWS IoT SiteWise 416

AWS IoT SiteWise User Guide

 "assetModelHierarchies": []
}

Wind farm asset model

The following asset model represents a wind farm that comprises multiple wind turbines. This asset
model defines a hierarchy to the wind turbine model. This lets the wind farm calculate values (such
as average power) from data for all wind turbines in the wind farm.

Note

This example model resembles the wind farm model from the AWS IoT SiteWise demo. For
more information, see Use the AWS IoT SiteWise demo.

This asset model depends on the Wind turbine asset model. Replace the propertyId and
childAssetModelId values with those from an existing wind turbine asset model.

{
 "assetModelName": "Wind Farm Asset Model",
 "assetModelDescription": "Represents a wind farm.",
 "assetModelProperties": [
 {
 "name": "Code",
 "dataType": "INTEGER",
 "type": {
 "attribute": {
 "defaultValue": "300"
 }
 }
 },
 {
 "name": "Location",
 "dataType": "STRING",
 "type": {
 "attribute": {
 "defaultValue": "Renton"
 }
 }
 },
 {
 "name": "Reliability Manager",

Create asset models in AWS IoT SiteWise 417

AWS IoT SiteWise User Guide

 "dataType": "STRING",
 "type": {
 "attribute": {
 "defaultValue": "Mary Major"
 }
 }
 },
 {
 "name": "Total Overdrive State Time",
 "dataType": "DOUBLE",
 "unit": "seconds",
 "type": {
 "metric": {
 "expression": "sum(overdrive_state_time)",
 "variables": [
 {
 "name": "overdrive_state_time",
 "value": {
 "propertyId": "ID of Overdrive State Time property in Wind Turbine
 Asset Model",
 "hierarchyId": "Turbine Asset Model"
 }
 }
],
 "window": {
 "tumbling": {
 "interval": "5m"
 }
 }
 }
 }
 },
 {
 "name": "Total Average Power",
 "dataType": "DOUBLE",
 "unit": "Watts",
 "type": {
 "metric": {
 "expression": "sum(turbine_avg_power)",
 "variables": [
 {
 "name": "turbine_avg_power",
 "value": {

Create asset models in AWS IoT SiteWise 418

AWS IoT SiteWise User Guide

 "propertyId": "ID of Average Power property in Wind Turbine Asset
 Model",
 "hierarchyId": "Turbine Asset Model"
 }
 }
],
 "window": {
 "tumbling": {
 "interval": "5m"
 }
 }
 }
 }
 }
],
 "assetModelHierarchies": [
 {
 "name": "Turbine Asset Model",
 "childAssetModelId": "ID of Wind Turbine Asset Model"
 }
]
}

Define asset model hierarchies

You can define asset model hierarchies to create logical associations between the asset models
in your industrial operation. For example, you can define a wind farm composed of onshore and
offshore wind farms. An onshore wind farm contains a turbine and onshore location. An offshore
wind farm contains a turbine and offshore location.

Create asset models in AWS IoT SiteWise 419

AWS IoT SiteWise User Guide

When you associate a child asset model to a parent asset model through a hierarchy, the parent
asset model's metrics can input data from the child asset model's metrics. You can use asset model
hierarchies and metrics to calculate statistics that provide insight to your operation or a subset
of your operation. For more information, see Aggregate data from properties and other assets
(metrics).

Each hierarchy defines a relationship between a parent asset model and a child asset model.
In a parent asset model, you can define multiple hierarchies to the same child asset model. For
example, if you have two different types of wind turbines in your wind farms, where all wind
turbines are represented by the same asset model, you can define a hierarchy for each type. Then,
you can define metrics in the wind farm model to calculate independent and combined statistics
for each type of wind turbine.

Create asset models in AWS IoT SiteWise 420

AWS IoT SiteWise User Guide

A parent asset model can be associated with multiple child asset models. For example, if you have
an onshore wind farm and an offshore wind farm that are represented by two different asset
models, you can associate these asset models with the same parent wind farm asset model.

A child asset model can also be associated with multiple parent asset models. For example, if you
have two different types of wind farms, where all wind turbines are represented by the same asset
model, you can associate the wind turbine asset model with different wind farm asset models.

Note

When you define an asset model hierarchy, the child asset model must be ACTIVE or have a
previous ACTIVE version. For more information, see Asset and model states.

After you define hierarchical asset models and create assets, you can associate the assets to
complete the parent-child relationship. For more information, see Create assets for asset models in
AWS IoT SiteWise and Associate and disassociate assets.

Topics

• Define asset model hierarchies (console)

• Define asset hierarchies (AWS CLI)

Define asset model hierarchies (console)

When you define a hierarchy for an asset model in the AWS IoT SiteWise console, you specify the
following parameters:

• Hierarchy name – The hierarchy's name, such as Wind Turbines.

• Hierarchy model – The child asset model.

• Hierarchy External ID (Optional) – This is a user-defined ID. For more information, see Reference
objects with external IDs in the AWS IoT SiteWise User Guide.

For more information, see Create an asset model (console).

Define asset hierarchies (AWS CLI)

When you define a hierarchy for an asset model with the AWS IoT SiteWise API, you specify the
following parameters:

Create asset models in AWS IoT SiteWise 421

AWS IoT SiteWise User Guide

• name – The hierarchy's name, such as Wind Turbines.

• childAssetModelId – The ID or the external ID of the child asset model for the hierarchy. You
can use the ListAssetModels operation to find the ID of an existing asset model.

Example Example hierarchy definition

The following example demonstrates an asset model hierarchy that represents a wind farm's
relationship to wind turbines. This object is an example of an AssetModelHierarchy. For more
information, see Create an asset model (AWS CLI).

{
 ...
 "assetModelHierarchies": [
 {
 "name": "Wind Turbines",
 "childAssetModelId": "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE"
 },
]
}

Create component models

Use AWS IoT SiteWise component models to define subassemblies that you can reference from
asset models or other component models. In this way, you can re-use the definition of the
component across multiple other models, or multiple times within the same model.

The process of defining a component model is very similar to defining an asset model. Like an asset
model, a component model has a name, description, and asset properties. However, component
models can't include asset hierarchy definitions, since component models themselves can't be used
to create assets directly. Component models also can't define alarms.

For example, you can define a component for a servo motor with motor temperature, encoder
temperature, and insulation resistance properties. Then, you can define an asset model for
equipment that contains servo motors, such as a CNC machine.

Create component models 422

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListAssetModels.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_AssetModelHierarchy.html

AWS IoT SiteWise User Guide

Note

• We recommend that you model your operation starting with the lowest-level nodes.
For example, create your servo motor component before you create your CNC machine's
asset model. Asset models contain references to existing component models.

• You can't create an asset directly from a component model. To create an asset that uses
your component, you must create an asset model for your asset. Then, you create a
custom composite model for it that references your component. For more information
about creating asset models, see Create asset models in AWS IoT SiteWise For more
information about creating custom composite models, see Create custom composite
models (components).

The following sections describe how to use the AWS IoT SiteWise API to create component models.

Topics

• Create a component model (AWS CLI)

• Example component model

Create a component model (AWS CLI)

You can use the AWS Command Line Interface (AWS CLI) to create a component model.

Use the CreateAssetModel operation to create a component model with properties. This operation
expects a payload with the following structure:

{
 "assetModelType": "COMPONENT_MODEL",
 "assetModelName": "String",
 "assetModelDescription": "String",
 "assetModelProperties": Array of AssetModelProperty,
}

To create a component model (AWS CLI)

1. Create a file called component-model-payload.json and then copy the following JSON
object into the file:

Create component models 423

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateAssetModel.html

AWS IoT SiteWise User Guide

{
 "assetModelType": "COMPONENT_MODEL",
 "assetModelName": "",
 "assetModelDescription": "",
 "assetModelProperties": [

]
}

2. Use your preferred JSON text editor to edit the component-model-payload.json file for
the following:

a. Enter a name (assetModelName) for the component model, such as Servo Motor or
Servo Motor Model. This name must be unique across all asset models and component
models in your account in this AWS Region.

b. (Optional) Enter an external ID (assetModelExternalId) for the component model.
This is a user-defined ID. For more information, see Reference objects with external IDs in
the AWS IoT SiteWise User Guide.

c. (Optional) Enter a description (assetModelDescription) for the asset model, or
remove the assetModelDescription key-value pair.

d. (Optional) Define asset properties (assetModelProperties) for the component model.
For more information, see Define data properties.

e. (Optional) Add tags (tags) for the asset model. For more information, see Tag your AWS
IoT SiteWise resources.

3. Run the following command to create a component model from the definition in the JSON file.

aws iotsitewise create-asset-model --cli-input-json file://component-model-
payload.json

The operation returns a response that contains the assetModelId that you refer to when
adding a reference to your component model in an asset model or another component model.
The response also contains the state of the model (assetModelStatus.state), which is
initially CREATING. The component model's status is CREATING until the changes propagate.

Create component models 424

AWS IoT SiteWise User Guide

Note

The component model creation process can take up to a few minutes for
complex models. To check the current status of your component model, use the
DescribeAssetModel operation by specifying the assetModelId. After the component
model status is ACTIVE, you can add references to your component model in asset
models or other component models. For more information, see Asset and model states.

4. (Optional) Create custom composite models for your component model. With custom
composite models, you can group properties within the model, or to include a subassembly by
referencing another component model. For more information, see Create custom composite
models (components).

Example component model

This section contains an example component model definition that you can use to create
a component model with the AWS CLI and AWS IoT SiteWise SDKs. This component model
represents a servo motor that can be used within another piece of equipment, such as a CNC
machine.

Topics

• Servo motor component model

Servo motor component model

The following component model represents a servo motor that can be used within equipment
such as CNC machines. The servo motor provides various measurements, such as temperatures and
electrical resistance. These measurements are available as properties on assets created from asset
models that reference the servo motor component model.

{
 "assetModelName": "ServoMotor",
 "assetModelType": "COMPONENT_MODEL",
 "assetModelProperties": [
 {
 "dataType": "DOUBLE",
 "name": "Servo Motor Temperature",

Create component models 425

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAssetModel.html

AWS IoT SiteWise User Guide

 "type": {
 "measurement": {}
 },
 "unit": "Celsius"
 },
 {
 "dataType": "DOUBLE",
 "name": "Spindle speed",
 "type": {
 "measurement": {}
 },
 "unit": "rpm"
 }
]
}

Define data properties

Asset properties are the structures within each asset that contain asset data. Asset properties can be
any of the following types:

• Attributes – An asset's generally static properties, such as device manufacturer or geographic
region. For more information, see Define static data (attributes).

• Measurements – An asset's raw device's sensor data streams, such as timestamped rotation
speed values or timestamped temperature values in Celsius. A measurement is defined by a data
stream alias. For more information, see Define data streams from equipment (measurements).

• Transforms – An asset's transformed time-series values, such as timestamped temperature
values in Fahrenheit. A transform is defined by an expression and the variables to consume with
that expression. For more information, see Transform data (transforms).

• Metrics – An asset's data aggregated over a specified time interval, such as the hourly average
temperature. A metric is defined by a time interval, an expression, and the variables to consume
with that expression. Metric expressions can input associated assets' metric properties, so that
you can calculate metrics that represent your operation or a subset of your operation. For more
information, see Aggregate data from properties and other assets (metrics).

For more information, see Create asset models in AWS IoT SiteWise.

For an example of how to use measurements, transforms, and metrics to calculate Overall
Equipment Effectiveness (OEE), see Calculate OEE in AWS IoT SiteWise.

Define data properties 426

AWS IoT SiteWise User Guide

Topics

• Define static data (attributes)

• Define data streams from equipment (measurements)

• Transform data (transforms)

• Aggregate data from properties and other assets (metrics)

• Use formula expressions

Define static data (attributes)

Asset attributes represent information that is generally static, such as device manufacturer or
geographic location. Each asset that you create from an asset model contains the attributes of that
model.

Topics

• Define attributes (console)

• Define attributes (AWS CLI)

Define attributes (console)

When you define an attribute for an asset model in the AWS IoT SiteWise console, you specify the
following parameters:

• Name – The property's name.

• Default value – (Optional) The default value for this attribute. Assets created from the model
have this value for the attribute. For more information about how to override the default value
in an asset created from a model, see Update attribute values.

• Data type – The property's data type, which is one of the following:

• String – A string with up to 1024 bytes.

• Integer – A signed 32-bit integer with range [-2,147,483,648, 2,147,483,647].

• Double – A floating point number with range [-10^100, 10^100] and IEEE 754 double
precision.

• Boolean – true or false.

• External ID – (Optional) This is a user-defined ID. For more information, see Reference objects
with external IDs in the AWS IoT SiteWise User Guide.

Define data properties 427

AWS IoT SiteWise User Guide

For more information, see Create an asset model (console).

Define attributes (AWS CLI)

When you define an attribute for an asset model with the AWS IoT SiteWise API, you specify the
following parameters:

• name – The property's name.

• defaultValue – (Optional) The default value for this attribute. Assets created from the model
have this value for the attribute. For more information about how to override the default value
in an asset created from a model, see Update attribute values.

• dataType – The property's data type, which is one of the following:

• STRING – A string with up to 1024 bytes.

• INTEGER – A signed 32-bit integer with range [-2,147,483,648, 2,147,483,647].

• DOUBLE – A floating point number with range [-10^100, 10^100] and IEEE 754 double
precision.

• BOOLEAN – true or false.

• externalId – (Optional) This is a user-defined ID. For more information, see Reference objects
with external IDs in the AWS IoT SiteWise User Guide.

Example Example attribute definition

The following example demonstrates an attribute that represents an asset's model number with a
default value. This object is an example of an AssetModelProperty that contains an Attribute. You
can specify this object as a part of the CreateAssetModel request payload to create an attribute
property. For more information, see Create an asset model (AWS CLI).

{
...
"assetModelProperties": [
{
 "name": "Model number",
 "dataType": "STRING",
 "type": {
 "attribute": {
 "defaultValue": "BLT123"
 }
 }

Define data properties 428

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_AssetModelProperty.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_Attribute.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateAssetModel.html

AWS IoT SiteWise User Guide

}
],
...
}

Define data streams from equipment (measurements)

A measurement represents a device's raw sensor data stream, such as timestamped temperature
values or timestamped rotations per minute (RPM) values.

Topics

• Define measurements (console)

• Define measurements (AWS CLI)

Define measurements (console)

When you define a measurement for an asset model in the AWS IoT SiteWise console, you specify
following parameters:

• Name – The property's name.

• Unit – (Optional) The scientific unit for the property, such as mm or Celsius.

• Data type – The property's data type, which is one of the following:

• String – A string with up to 1024 bytes.

• Integer – A signed 32-bit integer with range [-2,147,483,648, 2,147,483,647].

• Double – A floating point number with range [-10^100, 10^100] and IEEE 754 double
precision.

• Boolean – true or false.

• External ID – (Optional) This is a user-defined ID. For more information, see Reference objects
with external IDs in the AWS IoT SiteWise User Guide.

For more information, see Create an asset model (console).

Define measurements (AWS CLI)

When you define a measurement for an asset model with the AWS IoT SiteWise API, you specify the
following parameters:

Define data properties 429

AWS IoT SiteWise User Guide

• name – The property's name.

• dataType – The property's data type, which is one of the following:

• STRING – A string with up to 1024 bytes.

• INTEGER – A signed 32-bit integer with range [-2,147,483,648, 2,147,483,647].

• DOUBLE – A floating point number with range [-10^100, 10^100] and IEEE 754 double
precision.

• BOOLEAN – true or false.

• unit – (Optional) The scientific unit for the property, such as mm or Celsius.

• externalId – (Optional) This is a user-defined ID. For more information, see Reference objects
with external IDs in the AWS IoT SiteWise User Guide.

Example Example measurement definition

The following example demonstrates a measurement that represents an asset's temperature sensor
readings. This object is an example of an AssetModelProperty that contains a Measurement. You
can specify this object as a part of the CreateAssetModel request payload to create a measurement
property. For more information, see Create an asset model (AWS CLI).

The Measurement structure is an empty structure when you define an asset model because you
later configure each asset to use unique device data streams. For more information about how
to connect an asset's measurement property to a device's sensor data stream, see Manage data
streams for AWS IoT SiteWise.

{
 ...
 "assetModelProperties": [
 {
 "name": "Temperature C",
 "dataType": "DOUBLE",
 "type": {
 "measurement": {}
 },
 "unit": "Celsius"
 }
],
 ...
}

Define data properties 430

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_AssetModelProperty.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_Measurement.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateAssetModel.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_Measurement.html

AWS IoT SiteWise User Guide

Transform data (transforms)

Transforms are mathematical expressions that map asset properties' data points from one form
to another. A transform expression consists of asset property variables, literals, operators, and
functions. The transformed data points hold a one-to-one relationship with the input data points.
AWS IoT SiteWise calculates a new transformed data point each time any of the input properties
receives a new data point.

Note

For property updates with the same timestamp, output values may be overwritten by
updates from other incoming properties.

For example, if your asset has a temperature measurement stream named Temperature_C with
units in Celsius, you can convert each data point to Fahrenheit with the formula Temperature_F
= 9/5 * Temperature_C + 32. Each time AWS IoT SiteWise receives a data point in the
Temperature_C measurement stream, the corresponding Temperature_F value is calculated
within a few seconds and available as the Temperature_F property.

If your transform contains more than one variable, the data point that arrives earlier initiates the
computation immediately. Consider an example where a parts manufacturer uses a transform to
monitor product quality. Using a different standard based on the part type, the manufacturer uses
the following measurements to represent the process:

• Part_Number - A string that identifies the part type.

• Good_Count - An integer that increases by one if the part meets the standard.

• Bad_Count - An integer that increases by one if the part doesn't meet the standard.

The manufacturer also creates a transform, Quality_Monitor, that equals
if(eq(Part_Number, "BLT123") and (Bad_Count / (Good_Count + Bad_Count) >
0.1), "Caution", "Normal").

This transform monitors the percentage of bad parts produced for a specific part type. If the part
number is BLT123 and the percentage of bad parts exceeds 10 percent (0.1), the transform returns
"Caution". Otherwise, the transform returns "Normal".

Define data properties 431

AWS IoT SiteWise User Guide

Note

• If Part_Number receives a new data point before other measurements, the
Quality_Monitor transform uses the new Part_Number value and the latest
Good_Count and Bad_Count values. To avoid errors, reset Good_Count and
Bad_Count before the next manufacturing run.

• Use metrics if you want to evaluate expressions only after all variables receive new data
points.

Topics

• Define transforms (console)

• Define transforms (AWS CLI)

Define transforms (console)

When you define a transform for an asset model in the AWS IoT SiteWise console, you specify
following parameters:

• Name – The property's name.

• Unit – (Optional) The scientific unit for the property, such as mm or Celsius.

• Data type – The data type of the transform, which can be Double or String.

• External ID – (Optional) This is a user-defined ID. For more information, see Reference objects
with external IDs in the AWS IoT SiteWise User Guide.

• Formula – The transform expression. Transform expressions can't use aggregation functions or
temporal functions. To open the auto complete feature, start typing or press the down arrow
key. For more information, see Use formula expressions.

Important

Transforms can input properties that are integer, double, Boolean, or string type.
Booleans convert to 0 (false) and 1 (true).
Transforms must input one or more properties that aren't attributes and any number
of attribute properties. AWS IoT SiteWise calculates a new transformed data point each
time the input property that isn't an attribute receives a new data point. New attribute

Define data properties 432

AWS IoT SiteWise User Guide

values don't launch transform updates. The same request rate for asset property data API
operations applies for transform computation results.
Formula expressions can only output double or string values. Nested expressions can
output other data types, such as strings, but the formula as a whole must evaluate to
a number or string. You can use the jp function to convert a string to a number. The
Boolean value must be 1 (true) or 0 (false). For more information, see Undefined, infinite,
and overflow values.

For more information, see Create an asset model (console).

Define transforms (AWS CLI)

When you define a transform for an asset model with the AWS IoT SiteWise API, you specify the
following parameters:

• name – The property's name.

• unit – (Optional) The scientific unit for the property, such as mm or Celsius.

• dataType – The data type of the transform, which must be DOUBLE or STRING.

• externalId – (Optional) This is a user-defined ID. For more information, see Reference objects
with external IDs in the AWS IoT SiteWise User Guide.

• expression – The transform expression. Transform expressions can't use aggregation functions
or temporal functions. For more information, see Use formula expressions.

• variables – The list of variables that defines the other properties of your asset to use in the
expression. Each variable structure contains a simple name to use in the expression and a value
structure that identifies which property to link to that variable. The value structure contains the
following information:

• propertyId – The ID of the property from which to input values. You can use the property's
name instead of its ID.

Important

Transforms can input properties that are integer, double, Boolean, or string type.
Booleans convert to 0 (false) and 1 (true).
Transforms must input one or more properties that aren't attributes and any number
of attribute properties. AWS IoT SiteWise calculates a new transformed data point each
time the input property that isn't an attribute receives a new data point. New attribute

Define data properties 433

AWS IoT SiteWise User Guide

values don't launch transform updates. The same request rate for asset property data API
operations applies for transform computation results.
Formula expressions can only output double or string values. Nested expressions can
output other data types, such as strings, but the formula as a whole must evaluate to
a number or string. You can use the jp function to convert a string to a number. The
Boolean value must be 1 (true) or 0 (false). For more information, see Undefined, infinite,
and overflow values.

Example transform definition

The following example demonstrates a transform property that converts an asset's temperature
measurement data from Celsius to Fahrenheit. This object is an example of an AssetModelProperty
that contains a Transform. You can specify this object as a part of the CreateAssetModel request
payload to create a transform property. For more information, see Create an asset model (AWS
CLI).

{
...
"assetModelProperties": [
...
{
 "name": "Temperature F",
 "dataType": "DOUBLE",
 "type": {
 "transform": {
 "expression": "9/5 * temp_c + 32",
 "variables": [
 {
 "name": "temp_c",
 "value": {
 "propertyId": "Temperature C"
 }
 }
]
 }
 },
 "unit": "Fahrenheit"
}
],
...

Define data properties 434

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_AssetModelProperty.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_Transform.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateAssetModel.html

AWS IoT SiteWise User Guide

}

Example transform definition that contains three variables

The following example demonstrates a transform property that returns a warning message
("Caution") if more than 10 percent of the BLT123 parts don't meet the standard. Otherwise, it
returns an information message ("Normal").

{
...
"assetModelProperties": [
...
{
"name": "Quality_Monitor",
"dataType": "STRING",
"type": {
 "transform": {
 "expression": "if(eq(Part_Number,"BLT123") and (Bad_Count / (Good_Count +
 Bad_Count) > 0.1), "Caution", "Normal")",
 "variables": [
 {
 "name": "Part_Number",
 "value": {
 "propertyId": "Part Number"
 }
 },
 {
 "name": "Good_Count",
 "value": {
 "propertyId": "Good Count"
 }
 },
 {
 "name": "Bad_Count",
 "value": {
 "propertyId": "Bad Count"
 }
 }
]
 }
}
}
...

Define data properties 435

AWS IoT SiteWise User Guide

}

Aggregate data from properties and other assets (metrics)

Metrics are mathematical expressions that use aggregation functions to process all input data
points and output a single data point per specified time interval. For example, a metric can
calculate the average hourly temperature from a temperature data stream.

Metrics can input data from associated assets' metrics, so you can calculate statistics that provide
insight to your operation or a subset of your operation. For example, a metric can calculate the
average hourly temperature across all wind turbines in a wind farm. For more information about
how to define associations between assets, see Define asset model hierarchies.

Metrics can also input data from other properties without aggregating data over each time
interval. If you specify an attribute in a formula, AWS IoT SiteWise uses the latest value for that
attribute when it computes the formula. If you specify a metric in a formula, AWS IoT SiteWise
uses the last value for the time interval over which it computes the formula. This means you can
define metrics like OEE = Availability * Quality * Performance, where Availability,
Quality, and Performance are all other metrics on the same asset model.

AWS IoT SiteWise also automatically computes a set of basic aggregation metrics for all asset
properties. To reduce computation costs, you can use these aggregates instead of defining custom
metrics for basic computations. For more information, see Query asset property aggregates in AWS
IoT SiteWise.

Topics

• Define metrics (console)

• Define metrics (AWS CLI)

Define metrics (console)

When you define a metric for an asset model in the AWS IoT SiteWise console, you specify the
following parameters:

• Name – The property's name.

• Data type – The data type of the transform, which can be Double or String.

• External ID – (Optional) This is a user-defined ID. For more information, see Reference objects
with external IDs in the AWS IoT SiteWise User Guide.

Define data properties 436

AWS IoT SiteWise User Guide

• Formula – The metric expression. Metric expressions can use aggregation functions to input data
from a property for all associated assets in a hierarchy. Start typing or press the down arrow key
to open the auto complete feature. For more information, see Use formula expressions.

Important

Metrics can only be properties that are integer, double, Boolean, or string type. Booleans
convert to 0 (false) and 1 (true).
If you define any metric input variables in a metric's expression, those inputs must have
the same time interval as the output metric.
Formula expressions can only output double or string values. Nested expressions can
output other data types, such as strings, but the formula as a whole must evaluate to
a number or string. You can use the jp function to convert a string to a number. The
Boolean value must be 1 (true) or 0 (false). For more information, see Undefined, infinite,
and overflow values.

• Time interval – The metric time interval. AWS IoT SiteWise supports the following tumbling
window time intervals, where each interval starts when the previous one ends:

• 1 minute – 1 minute, computed at the end of each minute (12:00:00 AM, 12:01:00 AM,
12:02:00 AM, and so on).

• 5 minutes – 5 minutes, computed at the end of every five minutes starting on the hour
(12:00:00 AM, 12:05:00 AM, 12:10:00 AM, and so on).

• 15 minutes – 15 minutes, computed at the end of every fifteen minutes starting on the hour
(12:00:00 AM, 12:15:00 AM, 12:30:00 AM, and so on).

• 1 hour – 1 hour (60 minutes), computed at the end of every hour in UTC (12:00:00 AM,
01:00:00 AM, 02:00:00 AM, and so on).

• 1 day – 1 day (24 hours), computed at the end of every day in UTC (12:00:00 AM Monday,
12:00:00 AM Tuesday, and so on).

• 1 week – 1 week (7 days), computed at the end of every Sunday in UTC (every 12:00:00 AM
Monday).

• Custom interval – You can enter any time interval between a minute and a week.

• Offset date – (Optional) The reference date from which to aggregate data.

• Offset time – (Optional) The reference time from which to aggregate data. The offset time must
be between 00:00:00 and 23:59:59.

Define data properties 437

AWS IoT SiteWise User Guide

• Offset time zone – (Optional) The time zone for the offset. If it isn't specified, the default offset
time zone is the Universal Coordinated Time (UTC).

Supported time zones

• (UTC+00:00) Universal Coordinated Time

• (UTC+01:00) European Central Time

• (UTC+02:00) Eastern European

• (UTC03+:00) Eastern African Time

• (UTC+04:00) Near East Time

• (UTC+05:00) Pakistan Lahore Time

• (UTC+05:30) India Standard Time

• (UTC+06:00) Bangladesh Standard Time

• (UTC+07:00) Vietnam Standard Time

• (UTC+08:00) China Taiwan Time

• (UTC+09:00) Japan Standard Time

• (UTC+09:30) Australia Central Time

• (UTC+10:00) Australia Eastern Time

• (UTC+11:00) Solomon Standard Time

• (UTC+12:00) New Zealand Standard Time

• (UTC-11:00) Midway Islands Time

• (UTC-10:00) Hawaii Standard Time

• (UTC-09:00) Alaska Standard Time

• (UTC-08:00) Pacific Standard Time

• (UTC-07:00) Phoenix Standard Time

• (UTC-06:00) Central Standard Time

• (UTC-05:00) Eastern Standard Time

• (UTC-04:00) Puerto Rico and US Virgin Islands Time

• (UTC-03:00) Argentina Standard Time

• (UTC-02:00) South Georgia Time

• (UTC-01:00) Central African Time
Define data properties 438

AWS IoT SiteWise User Guide

Example custom time interval with an offset (console)

The following example shows you how to define a 12-hour time interval with an offset on February
20, 2021, at 6:30:30 PM (PST).

To define a custom interval with an offset

1. For Time interval, choose Custom interval.

2. For Time interval, do one of the following:

• Enter 12, and then choose hours.

• Enter 720, and then choose minutes.

• Enter 43200, and then choose seconds.

Important

The Time interval must be an integer regardless of the unit.

3. For Offset date, choose 2021/02/20.

4. For Offset time, enter 18:30:30.

5. For Offset timezone, choose (UTC-08:00) Pacific Standard Time.

If you create the metric on July 1, 2021, before or at 06:30:30 PM (PST), you get the first
aggregation result on July 1, 2021, at 06:30:30 PM (PST). The second aggregation result is on July
2, 2021, at 06:30:30 AM (PST), and so on.

Define metrics (AWS CLI)

When you define a metric for an asset model with the AWS IoT SiteWise API, you specify the
following parameters:

• name – The property's name.

• dataType – The data type of the metric, which can be DOUBLE or STRING.

• externalId – (Optional) This is a user-defined ID. For more information, see Reference objects
with external IDs in the AWS IoT SiteWise User Guide.

Define data properties 439

AWS IoT SiteWise User Guide

• expression – The metric expression. Metric expressions can use aggregation functions to input
data from a property for all associated assets in a hierarchy. For more information, see Use
formula expressions.

• window – The time interval and offset for the metric's tumbling window, where each interval
starts when the previous one ends:

• interval – The time interval for the tumbling window. The time interval must be between a
minute and a week.

• offsets – The offset for the tumbling window.

For more information, see TumblingWindow in the AWS IoT SiteWise API Reference.

Example custom time interval with an offset (AWS CLI)

The following example shows you how to define a 12-hour time interval with an offset on
February 20, 2021, at 06:30:30 PM (PST).

{
 "window": {
 "tumbling": {
 "interval": "12h",
 "offset": " 2021-07-23T18:30:30-08"
 }
 }
}

If you create the metric on July 1, 2021, before or at 06:30:30 PM (PST), you get the first
aggregation result on July 1, 2021, at 06:30:30 PM (PST). The second aggregation result is on
July 2, 2021, at 06:30:30 AM (PST), and so on.

• variables – The list of variables that defines the other properties of your asset or child
assets to use in the expression. Each variable structure contains a simple name for use in the
expression and a value structure that identifies which property to link to that variable. The
value structure contains the following information:

• propertyId – The ID of the property from which to pull values. You can use the property's
name instead of its ID if the property is defined in the current model (rather than defined in a
model from a hierarchy).

Define data properties 440

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_TumblingWindow.html

AWS IoT SiteWise User Guide

• hierarchyId – (Optional) The ID of the hierarchy from which to query child assets for the
property. You can use the hierarchy definition's name instead of its ID. If you omit this value,
AWS IoT SiteWise finds the property in the current model.

Important

Metrics can only be properties that are integer, double, Boolean, or string type. Booleans
convert to 0 (false) and 1 (true).
If you define any metric input variables in a metric's expression, those inputs must have
the same time interval as the output metric.
Formula expressions can only output double or string values. Nested expressions can
output other data types, such as strings, but the formula as a whole must evaluate to
a number or string. You can use the jp function to convert a string to a number. The
Boolean value must be 1 (true) or 0 (false). For more information, see Undefined, infinite,
and overflow values.

• unit – (Optional) The scientific unit for the property, such as mm or Celsius.

Example Example metric definition

The following example demonstrates a metric property that aggregates an asset's temperature
measurement data to calculate maximum hourly temperature in Fahrenheit. This object is an
example of an AssetModelProperty that contains a Metric. You can specify this object as a part
of the CreateAssetModel request payload to create a metric property. For more information, see
Create an asset model (AWS CLI).

{
 ...
 "assetModelProperties": [
 ...
 {
 "name": "Max temperature",
 "dataType": "DOUBLE",
 "type": {
 "metric": {
 "expression": "max(temp_f)",
 "variables": [
 {

Define data properties 441

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_AssetModelProperty.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_Metric.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateAssetModel.html

AWS IoT SiteWise User Guide

 "name": "temp_f",
 "value": {
 "propertyId": "Temperature F"
 }
 }
],
 "window": {
 "tumbling": {
 "interval": "1h"
 }
 }
 }
 },
 "unit": "Fahrenheit"
 }
],
 ...
}

Example Example metric definition that inputs data from associated assets

The following example demonstrates a metric property that aggregates multiple wind turbines'
average power data to calculate total average power for a wind farm. This object is an example
of an AssetModelProperty that contains a Metric. You can specify this object as a part of the
CreateAssetModel request payload to create a metric property.

{
 ...
 "assetModelProperties": [
 ...
 {
 "name": "Total Average Power",
 "dataType": "DOUBLE",
 "type": {
 "metric": {
 "expression": "avg(power)",
 "variables": [
 {
 "name": "power",
 "value": {
 "propertyId": "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE",
 "hierarchyId": "Turbine Asset Model"
 }

Define data properties 442

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_AssetModelProperty.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_Metric.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateAssetModel.html

AWS IoT SiteWise User Guide

 }
],
 "window": {
 "tumbling": {
 "interval": "5m"
 }
 }
 }
 },
 "unit": "kWh"
 }
],
 ...
}

Use formula expressions

With formula expressions, you can define the mathematical functions to transform and aggregate
your raw industrial data to gain insights about your operation. Formula expressions combine
literals, operators, functions, and variables to process data. For more information about how
to define asset properties that use formula expressions, see Transform data (transforms) and
Aggregate data from properties and other assets (metrics). Transforms and metrics are formula
properties.

Topics

• Use variables in formula expressions

• Use literals in formula expressions

• Use operators in formula expressions

• Use constants in formula expressions

• Use functions in formula expressions

• Formula expression tutorials

Use variables in formula expressions

Variables represent AWS IoT SiteWise asset properties in formula expressions. Use variables to
input values from other asset properties in your expressions, so that you can process data from
constant properties (attributes), raw data streams (measurements), and other formula properties.

Define data properties 443

AWS IoT SiteWise User Guide

Variables can represent asset properties from the same asset model or from associated child asset
models. Only metric formulas can input variables from child asset models.

You identify variables by different names in the console and the API.

• AWS IoT SiteWise console – Use asset property names as variables in your expressions.

• AWS IoT SiteWise API (AWS CLI, AWS SDKs) – Define variables with the ExpressionVariable
structure, which requires a variable name and a reference to an asset property. The variable
name can contain lowercase letters, numbers, and underscores. Then, use variable names to
reference asset properties in your expressions.

Variable names are case sensitive.

For more information, see Defining transforms and Defining metrics.

Use variables to reference properties

A variable's value defines the property that it references. AWS IoT SiteWise provides different ways
to do this.

• By property ID: You can specify the property's unique ID (UUID) to identify it.

• By name: If the property is on the same asset model, you can specify its name in the property ID
field.

• By path: A variable value can refer to a property by its path. For more information, see Use paths
to reference custom composite model properties.

Note

Variables are not supported by AWS IoT SiteWise console. They are used by AWS IoT
SiteWise API, including the AWS Command Line Interface AWS CLI) and AWS SDKs.

A variable that you receive in a response from AWS IoT SiteWise includes full information about the
value, including both the ID and the path.

However, when you pass a variable into AWS IoT SiteWise (for example, in a "create" or "update"
call), you only need to specify one of these. For example, if you specify the path, you don't need to
provide the ID.

Define data properties 444

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ExpressionVariable.html

AWS IoT SiteWise User Guide

Use literals in formula expressions

AWS IoT SiteWise supports the use of literals in expressions and formulas. Literals are fixed values
that represent a specific data type. In AWS IoT SiteWise, you can define number and string literals
in formula expressions. Literals can be used in various contexts, including data transformations,
alarm conditions, and visualization calculations.

•
Numbers

Use numbers and scientific notation to define integers and doubles. You can use E notation to
express numbers with scientific notation.

Examples: 1, 2.0, .9, -23.1, 7.89e3, 3.4E-5

•
Strings

Use the ' (quote) and " (double quote) characters to define strings. The quote type for the start
and end must match. To escape a quote that matches the one that you use to declare a string,
include that quote character twice. This is the only escape character in AWS IoT SiteWise strings.

Examples: 'active', "inactive", '{"temp": 52}', "{""temp"": ""high""}"

Use operators in formula expressions

You can use the following common operators in formula expressions.

Operator Description

+ If both operands are numbers, this operator
adds the left and right operands.

If either operand is a string, this operator
concatenates the left and right operands
as strings. For example, the expression 1
+ 2 + " is three" evaluates to "3 is
three". The concatenated string can have up
to 1024 characters. If the string exceeds 1024

Define data properties 445

https://en.wikipedia.org/wiki/Scientific_notation#E_notation

AWS IoT SiteWise User Guide

Operator Description

characters, then AWS IoT SiteWise doesn't
output a data point for that computation.

- Subtracts the right operand from the left
operand.

You can only use this operator with numeric
operands.

/ Divides the left operand by the right operand.

You can only use this operator with numeric
operands.

* Multiplies the left and right operands.

You can only use this operator with numeric
operands.

^ Raises the left operand to the power of the
right operand (exponentiation).

You can only use this operator with numeric
operands.

% Returns the remainder from dividing the left
operand by the right operand. The result
has the same sign as the left operand. This
behavior differs from the modulo operation.

You can only use this operator with numeric
operands.

x < y Returns 1 if x is less than y, otherwise 0.

x > y Returns 1 if x is greater than y, otherwise 0.

Define data properties 446

AWS IoT SiteWise User Guide

Operator Description

x <= y Returns 1 if x is less than or equal to y,
otherwise 0.

x >= y Returns 1 if x is greater than or equal to y,
otherwise 0.

x == y Returns 1 if x is equal to y, otherwise 0.

x != y Returns 1 if x is not equal to y, otherwise 0.

!x Returns 1 if x is evaluated to 0 (false),
otherwise 0.

x is evaluated to false if:

• x is a numeric operand and it's evaluated to
0.

• x is evaluated to an empty string.

• x is evaluated to an empty array.

• x is evaluated to None.

x and y Returns 0 if x is evaluated to 0 (false).
Otherwise, returns the evaluated result of y.

x or y is evaluated to false if:

• x or y is a numeric operand and it's
evaluated to 0.

• x or y is evaluated to an empty string.

• x or y is evaluated to an empty array.

• x or y is evaluated to None.

Define data properties 447

AWS IoT SiteWise User Guide

Operator Description

x or y Returns 1 if x is evaluated to 1 (true).
Otherwise, returns the evaluated result of y.

x or y is evaluated to false if:

• x or y is a numeric operand and it's
evaluated to 0.

• x or y is evaluated to an empty string.

• x or y is evaluated to an empty array.

• x or y is evaluated to None.

not x Returns 1 if x is evaluated to 0 (false),
otherwise 0.

x is evaluated to false if:

• x is a numeric operand and it's evaluated to
0.

• x is evaluated to an empty string.

• x is evaluated to an empty array.

• x is evaluated to None.

[]

s[index]

Returns the character at an index index of
the string s. This is equivalent to the index
syntax in Python.

Example Examples

• "Hello!"[1] returns e.

• "Hello!"[-2] returns o.

Define data properties 448

AWS IoT SiteWise User Guide

Operator Description

[]

s[start:end:step]

Returns a slice of the string s. This is equivalen
t to the slice syntax in Python. This operator
has the following arguments:

• start – (Optional) The inclusive start index
of the slice. Defaults to 0.

• end – (Optional) The exclusive end index
of the slice. Defaults to the length of the
string.

• step – (Optional) The number to increment
for each step in the slice. For example, you
can specify 2 to return a slice with every
other character, or specify -1 to reverse the
slice. Defaults to 1.

You can omit the step argument to use its
default value. For example, s[1:4:1] is
equivalent to s[1:4].

The arguments must be integers or the
none constant. If you specify none, AWS
IoT SiteWise uses the default value for that
argument.

Example Examples

• "Hello!"[1:4] returns "ell".

• "Hello!"[:2] returns "He".

• "Hello!"[3:] returns "lo!".

• "Hello!"[:-4] returns "He".

• "Hello!"[::2] returns "Hlo".

• "Hello!"[::-1] returns "!olleH".

Define data properties 449

AWS IoT SiteWise User Guide

Use constants in formula expressions

In AWS IoT SiteWise, you can use constants in your expressions and formulas to represent
fixed values or predefined parameters. Constants can be used in various contexts, such as data
transformations, alarm conditions, or visualization calculations. By using constants, you can
simplify your expressions and make them more readable and maintainable.

You can use the following common mathematical constants in your expressions. All constants are
case insensitive.

Note

If you define a variable with the same name as a constant, the variable overrides the
constant.

Constant Description

pi The number pi (π): 3.141592653589793

e The number e: 2.718281828459045

true Equivalent to the number 1. In AWS IoT
SiteWise, Booleans convert to their number
equivalents.

false Equivalent to the number 0. In AWS IoT
SiteWise, Booleans convert to their number
equivalents.

none

Equivalent to no value. You can use this
constant to output nothing as the result of a
conditional expression.

Use functions in formula expressions

You can use the following functions to operate on data in your formula expressions.

Define data properties 450

AWS IoT SiteWise User Guide

Transforms and metrics support different functions. The following table indicates which types of
functions are compatible with each type of formula property.

Note

You can include a maximum of 10 functions in a formula expression.

Function type Transforms Metrics

Use common functions in
formula expressions

Yes Yes

Use comparison functions in
formula expressions

Yes Yes

Use conditional functions in
formula expressions

Yes Yes

Use string functions in
formula expressions

Yes Yes

Use aggregation functions in
formula expressions

No Yes

Define data properties 451

AWS IoT SiteWise User Guide

Function type Transforms Metrics

Use temporal functions in
formula expressions

Yes Yes

Use date and time functions
in formula expressions

Yes Yes

Function syntax

You can use the following syntax to create functions:

Regular syntax

With the regular syntax, the function name is followed by parentheses with zero or more
arguments.

function_name(argument1, argument2, argument3, ...). For example, functions
with the regular syntax might look like log(x) and contains(s, substring).

Uniform function call syntax (UFCS)

UFCS enables you to call functions using the syntax for method calls in object-oriented
programming. With UFCS, the first argument is followed by dot (.), then the function name and
the remaining arguments (if any) inside parentheses.

argument1.function_name(argument2, argument3, ...). For example, functions with
UFCS might look like x.log() and s.contains(substring).

You can also use UFCS to chain subsequent functions. AWS IoT SiteWise uses the evaluation
result of the current function as the first argument for the next function.

For example, you can use message.jp('$.status').lower().contains('fail') instead
of contains(lower(jp(message, '$.status')),'fail').

For more information, visit the D Programming Language website.

Define data properties 452

https://tour.dlang.org/tour/en/gems/uniform-function-call-syntax-ufcs

AWS IoT SiteWise User Guide

Note

You can use UFCS for all AWS IoT SiteWise functions.
AWS IoT SiteWise functions are not case sensitive. For example, you can use lower(s) and
Lower(s) interchangeably.

Use common functions in formula expressions

In transforms and metrics, you can use the following functions to calculate common mathematical
functions in transforms and metrics.

Function Description

abs(x) Returns the absolute value of x.

acos(x) Returns the arccosine of x.

asin(x) Returns the arcsine of x.

atan(x) Returns the arctangent of x.

cbrt(x) Returns the cubic root of x.

ceil(x) Returns the nearest integer greater than x.

cos(x) Returns the cosine of x.

cosh(x) Returns the hyperbolic cosine of x.

cot(x) Returns the cotangent of x.

exp(x) Returns e to the power of x.

expm1(x) Returns exp(x) - 1. Use this function to
more accurately calculate exp(x) - 1 for
small values of x.

floor(x) Returns the nearest integer less than x.

Define data properties 453

AWS IoT SiteWise User Guide

Function Description

log(x) Returns the loge (base e) of x.

log10(x) Returns the log10 (base 10) of x.

log1p(x) Returns log(1 + x). Use this function to
more accurately calculate log(1 + x) for
small values of x.

log2(x) Returns the log2 (base 2) of x.

pow(x, y) Returns x to the power of y. This is equivalent
to x ^ y.

signum(x) Returns the sign of x (-1 for negative inputs, 0
for zero inputs, +1 for positive inputs).

sin(x) Returns the sine of x.

sinh(x) Returns the hyperbolic sine of x.

sqrt(x) Returns the square root of x.

tan(x) Returns the tangent of x.

tanh(x) Returns the hyperbolic tangent of x.

Use comparison functions in formula expressions

In transforms and metrics, you can use the following comparison functions to compare two values
and output 1 (true) or 0 (false). AWS IoT SiteWise compares strings by lexicographic order.

Function Description

gt(x, y) Returns 1 if x is greater than y, otherwise 0 (x
> y).

Define data properties 454

https://en.wikipedia.org/wiki/Lexicographic_order

AWS IoT SiteWise User Guide

Function Description

This function doesn't return a value if x and y
are incompatible types, such as a number and
a string.

gte(x, y) Returns 1 if x is greater than or equal to y,
otherwise 0 (x ≥ y).

AWS IoT SiteWise considers the arguments
equal if they are within a relative tolerance
of 1E-9. This behaves similar to the isclose
function in Python.

This function doesn't return a value if x and y
are incompatible types, such as a number and
a string.

eq(x, y) Returns 1 if x is equal to y, otherwise 0 (x ==
y).

AWS IoT SiteWise considers the arguments
equal if they are within a relative tolerance
of 1E-9. This behaves similar to the isclose
function in Python.

This function doesn't return a value if x and y
are incompatible types, such as a number and
a string.

lt(x, y) Returns 1 if x is less than y, otherwise 0 (x <
y).

This function doesn't return a value if x and y
are incompatible types, such as a number and
a string.

Define data properties 455

https://docs.python.org/3/library/math.html#math.isclose
https://docs.python.org/3/library/math.html#math.isclose

AWS IoT SiteWise User Guide

Function Description

lte(x, y) Returns 1 if x is less than or equal to y,
otherwise 0 (x ≤ y).

AWS IoT SiteWise considers the arguments
equal if they are within a relative tolerance
of 1E-9. This behaves similar to the isclose
function in Python.

This function doesn't return a value if x and y
are incompatible types, such as a number and
a string.

isnan(x) Returns 1 if x is equal to NaN, otherwise 0.

This function doesn't return a value if x is a
string.

Use conditional functions in formula expressions

In transforms and metrics, you can use the following function to check a condition and return
different results, whether the condition evaluates to true or false.

Function Description

if(condition, result_if_true,
result_if_false)

Evaluates the condition and returns
result_if_true if the condition evaluates
to true or result_if_false if the
condition evaluates to false.

condition must be a number. This function
considers 0 and an empty string as false
and everything else (including NaN) as true.
Booleans convert to 0 (false) and 1 (true).

You can return the none constant from this
function to discard the output for a particula

Define data properties 456

https://docs.python.org/3/library/math.html#math.isclose

AWS IoT SiteWise User Guide

Function Description

r condition. This means you can filter out data
points that don't meet a condition. For more
information, see Filter data points.

Example Examples

• if(0, x, y) returns the variable y.

• if(5, x, y) returns the variable x.

• if(gt(temp, 300), x, y) returns the
variable x if the variable temp is greater
than 300.

• if(gt(temp, 300), temp, none)
returns the variable temp if it's greater than
or equal to 300, or none (no value) if temp
is less than 300.

We recommend that you use UFCS for nested
conditional functions where one or more
arguments are conditional functions. You can
use if(condition, result_if_true)
to evaluate a condition and elif(cond
ition, result_if_true, result_if
_false) to evaluate additional conditions.

For example, you can use if(condition1,
result1_if_true).elif(condi
tion2, result2_if_true, result2_i
f_false) instead of if(condition1,
result1_if_true, if(condit
ion2, result2_if_true, result2_i
f_false)) .

You can also chain additional intermedi
ate conditional functions. For example, you
can use if(condition1, result1_i

Define data properties 457

AWS IoT SiteWise User Guide

Function Description

f_true).elif(condition2,
result2_if_true).elif(condi
tion3, result3_if_true, result3_i
f_false) instead of nesting multiple if
statements, such as if(condition1,
result1_if_true, if(condit
ion2, result2_if_true, if(condit
ion3, result3_if_true result3_i
f_false))) .

Important

You must use elif(condition,
result_if_true, result_if
_false) with UFCS.

Use string functions in formula expressions

In transforms and metrics, you can use the following functions to operate on strings. For more
information, see Use strings in formulas.

Important

Formula expressions can only output double or string values. Nested expressions can
output other data types, such as strings, but the formula as a whole must evaluate to a
number or string. You can use the jp function to convert a string to a number. The Boolean
value must be 1 (true) or 0 (false). For more information, see Undefined, infinite, and
overflow values.

Function Description

len(s) Returns the length of the string s.

Define data properties 458

AWS IoT SiteWise User Guide

Function Description

find(s, substring) Returns the index of the string substring in
the string s.

contains(s, substring) Returns 1 if the string s contains the string
substring , otherwise 0.

upper(s) Returns the string s in uppercase form.

lower(s) Returns the string s in lowercase form.

Define data properties 459

AWS IoT SiteWise User Guide

Function Description

jp(s, json_path)

Evaluates the string s with the JsonPath
expression json_path and returns the
result.

Use this function to do the following:

• Extract a value, array, or object from a
serialized JSON structure.

• Convert a string to a number. For example,
the formula jp('111', '$') returns 111
as a number.

To extract a string value from a JSON
structure and return it as a number, you must
use multiple nested jp functions. The outer
jp function extracts the string from the JSON
structure, and the inner jp function converts
the string to a number.

The string json_path must contain a string
literal. This means that json_path can't be
an expression that evaluates to a string.

Example Examples

• jp('{"status":"active","val
ue":15}', '$.value') returns 15.

• jp('{"measurement":{"readin
g":25,"confidence":0.95}}',
'$.measurement.reading') returns
25.

• jp('[2,8,23]', '$[2]') returns 23.

• jp('{"values":[3,6,7]}',
'$.values[1]') returns 6.

• jp('111', '$') returns 111.

Define data properties 460

https://github.com/json-path/JsonPath

AWS IoT SiteWise User Guide

Function Description

• jp(jp('{"measurement":{"rea
ding":25,"confidence":"0.95
"}}', '$.measurement.con
fidence'), '$') returns 0.95.

join(s0, s1, s2, s3, ...) Returns a concatenated string with a delimiter
. This function uses the first input string as a
delimiter and joins the remaining input strings
together. This behaves similar to the join(Char
Sequence delimiter, CharSequence... elements)
 function in Java.

Example Examples

• join("-", "aa", "bb", "cc") returns
aa-bb-cc

format(expression: "format") or
format("format", expression)

Returns a string in the specified format.
This function evaluates expression to
a value, and then returns the value in the
specified format. This behaves similar to
the format(String format, Object... args)
function in Java. For more information about
supported formats, see Conversions under
Class Formatter in the Java Platform, Standard
Edition 7 API Specification.

Example Examples

• format(100+1: "d") returns a string,
101.

• format("The result is %d",
100+1) returns a string, The result is
101.

Define data properties 461

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#join-java.lang.CharSequence-java.lang.CharSequence...-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#join-java.lang.CharSequence-java.lang.CharSequence...-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#join-java.lang.CharSequence-java.lang.CharSequence...-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#format-java.lang.String-java.lang.Object...-
https://docs.oracle.com/javase/7/docs/api/java/util/Formatter.html

AWS IoT SiteWise User Guide

Function Description

f'expression' Returns a concatenated string. With this
formatted function, you can use a simple
expression to concatenate and format strings.
These functions may contain nested expressio
ns. You can use {} (curly braces) to interpola
te expressions. This behaves similar to the
formatted string literals in Python.

Example Examples

• f'abc{1+2: "f"}d' returns abc3.0000
00d . To evaluate this example expression,
do the following:

1. format(1+2: "f") returns a floating
point number, 3.000000.

2. join('', "abc", 1+2, 'd') returns
a string, abc3.000000d .

You can also write the expression in
the following way: join('', "abc",
format(1+2: "f"), 'd') .

Use aggregation functions in formula expressions

In metrics only, you can use the following functions that aggregate input values over each time
interval and calculate a single output value. Aggregation functions can aggregate data from
associated assets.

Aggregation function arguments can be variables, number literals, temporal functions, nested
expressions, or aggregation functions. The formula max(latest(x), latest(y), latest(z))
uses an aggregation function as an argument and returns the largest current value of the x, y, and
z properties.

You can use nested expressions in aggregation functions. When you use nested expressions, the
following rules apply:

Define data properties 462

https://docs.python.org/3/reference/lexical_analysis.html#f-strings

AWS IoT SiteWise User Guide

• Each argument can have only one variable.

Example

For example, avg(x*(x-1)) and sum(x/2)/avg(y^2) are supported.

For example, min(x/y) isn't supported.

• Each argument can have multilevel nested expressions.

Example

For example, sum(avg(x^2)/2) is supported.

• Different arguments can have different variables.

Example

For example, sum(x/2, y*2) is supported.

Note

• If your expressions contain measurements, AWS IoT SiteWise uses the last values over the
current time interval for the measurements to compute aggregates.

• If your expressions contain attributes, AWS IoT SiteWise uses the latest values for the
attributes to compute aggregates.

Function Description

avg(x0, ..., xn) Returns the mean of the given variables'
values over the current time interval.

This function outputs a data point only if the
given variables have at least one data point
over the current time interval.

sum(x0, ..., xn)

Returns the sum of the given variables' values
over the current time interval.

Define data properties 463

AWS IoT SiteWise User Guide

Function Description

This function outputs a data point only if the
given variables have at least one data point
over the current time interval.

min(x0, ..., xn) Returns the minimum of the given variables'
values over the current time interval.

This function outputs a data point only if the
given variables have at least one data point
over the current time interval.

max(x0, ..., xn) Returns the maximum of the given variables'
values over the current time interval.

This function outputs a data point only if the
given variables have at least one data point
over the current time interval.

count(x0, ..., xn) Returns the total number of data points for
the given variables over the current time
interval. For more information about how to
count the number of data points that meet a
condition, see Count data points that match a
condition.

This function computes a data point for every
time interval.

stdev(x0, ..., xn) Returns the standard deviation of the given
variables' values over the current time interval.

This function outputs a data point only if the
given variables have at least one data point
over the current time interval.

Define data properties 464

AWS IoT SiteWise User Guide

Use temporal functions in formula expressions

Use temporal functions to return values based on timestamps of data points.

Use temporal functions in metrics

In metrics only, you can use the following functions that return values based on timestamps of
data points.

Temporal function arguments must be properties from the local asset model or nested expressions.
This means that you can't use properties from child asset models in temporal functions.

You can use nested expressions in temporal functions. When you use nested expressions, the
following rules apply:

• Each argument can have only one variable.

For example, latest(t*9/5 + 32) is supported.

• Arguments can't be aggregation functions.

For example, first(sum(x)) isn't supported.

Function Description

first(x) Returns the given variable's value with the
earliest timestamp over the current time
interval.

last(x)

Returns the given variable's value with the
latest timestamp over the current time
interval.

earliest(x) Returns the given variable's last value before
the start of the current time interval.

This function computes a data point for every
time interval, if the input property has at least
one data point in its history. See time-range-
defintion for details.

Define data properties 465

AWS IoT SiteWise User Guide

Function Description

latest(x)

Returns the given variable's last value with the
latest timestamp before the end of the current
time interval.

This function computes a data point for every
time interval, if the input property has at least
one data point in its history. See time-range-
defintion for details.

statetime(x)

Returns the amount of time in seconds
that the given variables are positive over
the current time interval. You can use the
comparison functions to create a transform
property for the statetime function to
consume.

For example, if you have an Idle property
that is 0 or 1, you can calculate idle time per
time interval with this expression: IdleTime
= statetime(Idle) . For more informati
on, see the example statetime scenario.

This function doesn't support metric propertie
s as input variables.

This function computes a data point for every
time interval, if the input property has at least
one data point in its history.

Define data properties 466

AWS IoT SiteWise User Guide

Function Description

TimeWeightedAvg(x, [interpol
ation])

Returns the average of input data weighted
with time intervals between points.
See Time weighted functions parameters for
computation and intervals details.

The optional argument interpolaton must
be a string constant:

• locf – This is the default. The calculati
on uses the Last Observed Carry Forward
computation algorithm for intervals
between data points. In this approach, the
data point is computed as the last observed
value until the next input data point time
stamp.

The value after a good data point is
extrapolated as its value until the next data
point timestamp.

• linear – The calculation uses the linear
interpolation computation algorithm for
intervals between data points.

The value between two good data points is
extrapolated as linear interpolation between
those data point's values.

The value between good and bad data
points or the value after the last good data
point will be extrapolated as a good data
point.

Define data properties 467

AWS IoT SiteWise User Guide

Function Description

TimeWeightedStDev(x, [algo])

Returns the standard deviation of input data
weighted with time intervals between points.

See Time weighted functions parameters for
computation and intervals details.

The calculation uses the Last Observed Carry
Forward computation algorithm for intervals
 between data points. In this approach, the
data point is computed as the last observed
value until the next input data point time
stamp. Weight is computed as time interval
in seconds between data points or window
boundaries.

The optional argument algo must be a string
constant:

• f – This is the default. It returns an unbiased
weighted sample variance with Frequency
 weights, where TimeWeight is computed in
seconds. This algorithm is usually assumed
under standard deviation and is known as
Bessel's correction of standard deviation for
weighted samples.

• p – Returns the biased weighted sample
variance, also known as Population
variance.

The following formulas are used for computati
on where:

• Sp = population standard deviation

• Sf = frequency standard deviation

• Xi = incoming data

Define data properties 468

AWS IoT SiteWise User Guide

Function Description

• ωi = weight that equals time interval in
seconds

• μ* = a weighted mean of incoming data

Equation for population standard deviation:

Equation for frequency standard deviation:

The following diagram shows how AWS IoT SiteWise computes the temporal functions first,
last, earliest, and latest, relative to the current time interval.

Note

• The time range for first(x), last(x) is (current window start, current window end].

• The time range for latest(x) is (beginning of time, current window end].

• The time range for earliest(x) is (beginning of time, previous window end].

Time-weighted functions parameters

Time-weighted functions computed for the aggregate window take into account the following:

• Data points inside the window

Define data properties 469

AWS IoT SiteWise User Guide

• Time intervals between data points

• Last data point before the window

• First data point after the window (for some algorithms)

Terms:

• Bad data point – Any data point with non-good quality or non-number value. This is not
considered in a window result computation.

• Bad interval – The interval after a bad data point. The interval before the first known data point
is also considered a bad interval.

• Good data point – Any data point with good quality and numeric value.

Note

• AWS IoT SiteWise only consumes GOOD quality data when it computes transforms and
metrics. It ignores UNCERTAIN and BAD data points.

• The interval before the first known data point is considered a bad interval. See the
section called “Formula expression tutorials” for more information.

The interval after the last known data point continues indefinitely, affecting all following windows.
When a new data point arrives, the function recomputes the interval.

Following the rules above, the aggregate window result is computed and limited to window
boundaries. By default, the function only sends the window result if the whole window is a good
interval.

If the window good interval is smaller than the window length, the function does not send the
window.

When the data points affecting the window result change, the function recalculates the window,
even if the data points are outside of the window.

If the input property has at least one data point in its history and a computation has been initiated,
the function calculates the time-weighted aggregate functions for every time interval.

Define data properties 470

AWS IoT SiteWise User Guide

Example Example statetime scenario

Consider an example where you have an asset with the following properties:

• Idle – A measurement that is 0 or 1. When the value is 1, the machine is idle.

• Idle Time – A metric that uses the formula statetime(Idle) to calculate the amount of
time in seconds where the machine is idle, per 1 minute interval.

The Idle property has the following data points.

Timestamp 2:00:00 PM 2:00:30 PM 2:01:15 PM 2:02:45 PM 2:04:00 PM

Idle 0 1 1 0 0

AWS IoT SiteWise calculates the Idle Time property every minute from the values of Idle. After
this calculation completes, the Idle Time property has the following data points.

Timestamp 2:00:00 PM 2:01:00 PM 2:02:00 PM 2:03:00 PM 2:04:00 PM

Idle Time N/A 30 60 45 0

AWS IoT SiteWise performs the following calculations for Idle Time at the end of each minute.

• At 2:00 PM (for 1:59 PM to 2:00 PM)

• There is no data for Idle before 2:00 PM, so no data point is calculated.

• At 2:01 PM (for 2:00 PM to 2:01 PM)

• At 2:00:00 PM, the machine is active (Idle is 0).

• At 2:00:30 PM, the machine is idle (Idle is 1).

• Idle doesn't change again before the end of the interval at 2:01:00 PM, so Idle Time is 30
seconds.

• At 2:02 PM (for 2:01 PM to 2:02 PM)

• At 2:01:00 PM, the machine is idle (per the last data point at 2:00:30 PM).

• At 2:01:15 PM, the machine is still idle.

Define data properties 471

AWS IoT SiteWise User Guide

• Idle doesn't change again before the end of the interval at 2:02:00 PM, so Idle Time is 60
seconds.

• At 2:03 PM (for 2:02 PM to 2:03 PM)

• At 2:02:00 PM, the machine is idle (per the last data point at 2:01:15 PM).

• At 2:02:45 PM, the machine is active.

• Idle doesn't change again before the end of the interval at 2:03:00 PM, so Idle Time is 45
seconds.

• At 2:04 PM (for 2:03 PM to 2:04 PM)

• At 2:03:00 PM, the machine is active (per the last data point at 2:02:45 PM).

• Idle doesn't change again before the end of the interval at 2:04:00 PM, so Idle Time is 0
seconds.

Example Example TimeWeightedAvg and TimeWeightedStDev scenario

The following tables provide sample inputs and outputs for these one-minute window metrics:
Avg(x), TimeWeightedAvg(x), TimeWeightedAvg(x, "linear"), stDev(x),
timeWeightedStDev(x), timeWeightedStDev(x, 'p').

Sample input for one-minute aggregate window:

Note

These data points all have GOOD quality.

03:00:00 4.0

03:01:00 2.0

03:01:10 8.0

03:01:50 20.0

03:02:00 14.0

03:02:05 10.0

Define data properties 472

AWS IoT SiteWise User Guide

03:02:10 3.0

03:02:30 20.0

03:03:30 0.0

Aggregate results output:

Note

None – Result not produced for this window.

Time Avg(x) TimeWeigh
tedAvg(x)

TimeWeigh
tedAvg(X,
"linear")

stDev(X) timeWeigh
tedStDev(
x)

timeWeigh
tedStDev(
x, 'p')

3:00:00 4 None None 0 None None

3:01:00 2 4 3 0 0 0

3:02:00 14 9 13 6 5.4306100
41581775

5.3851648
07134504

3:03:00 11 13 12.875 8.5440037
4531753

7.7240544
37220943

7.6594168
62050705

3:04:00 0 10 2.5 0 10.084389
681792215

10

3:05:00 None 0 0 None 0 0

Use temporal functions in transforms

In transforms only, you can use the pretrigger() function to retrieve the GOOD quality value for
a variable prior to the property update that initiated the current transform calculation.

Define data properties 473

AWS IoT SiteWise User Guide

Consider an example where a manufacturer uses AWS IoT SiteWise to monitor the status of a
machine. The manufacturer uses the following measurements and transforms to represent the
process:

• A measurement, current_state, that can be 0 or 1.

• If the machine is in the cleaning state, current_state equals 1.

• If the machine is in the manufacturing state, current_state equals 0.

• A transform, cleaning_state_duration, that equals if(pretrigger(current_state)
== 1, timestamp(current_state) - timestamp(pretrigger(current_state)),
none). This transform returns how long the machine has been in the cleaning state in seconds,
in the Unix epoch format. For more information, see Use conditional functions in formula
expressions and the timestamp() function.

If the machine stays in the cleaning state longer than expected, the manufacturer might
investigate the machine.

You can also use the pretrigger() function in multivariate transforms. For example, you have
two measurements named x and y, and a transform, z, that equals x + y + pretrigger(y).
The following table shows the values for x, y, and z from 9:00 AM to 9:15 AM.

Note

• This example assumes that the values for the measurements arrive chronologically. For
example, the value of x for 09:00 AM arrives before the value of x for 09:05 AM.

• If the data points for 9:05 AM arrive before the data points for 9:00 AM, z isn't calculated
at 9:05 AM.

• If the value of x for 9:05 AM arrives before the value of x for 09:00 AM and the values of
y arrive chronologically, z equals 22 = 20 + 1 + 1 at 9:05 AM.

 09:00 AM 09:05 AM 09:10 AM 09:15 AM

x 10 20 30

y 1 2 3

Define data properties 474

AWS IoT SiteWise User Guide

 09:00 AM 09:05 AM 09:10 AM 09:15 AM

z = x + y
+ pretrigge
r(y)

y doesn't receive
any data point
before 09:00
AM. Therefore, z
isn't calculated
at 09:00 AM.

23 = 20 + 2 + 1

pretrigge
r(y) equals 1.

25 = 20 + 3 + 2

x doesn't
receive a new
data point.
pretrigge
r(y) equals 2.

36 = 30 + 3 + 3

y doesn't receive
a new data
point. Therefore
, pretrigge
r(y) equals 3
at 09:15 AM.

Use date and time functions in formula expressions

In transforms and metrics, you can use the date and time functions in the following ways:

• Retrieve the current timestamp of a data point in UTC or in the local time zone.

• Construct timestamps with arguments, such as year, month, and day_of_month.

• Extract a time period such as a year or month with the unix_time argument.

Function Description

now() Returns the current date and time, in seconds,
in the Unix epoch format.

timestamp() • In transforms, the function returns the
timestamp, in seconds, of the input message
in the Unix epoch format.

In transforms only, you can do one of the
following:

• Provide a variable as an argument to the
function. The timestamp(variable-
name) function returns the timestamp
, in seconds, of the latest GOOD quality
value for the specified variable in the Unix
epoch format.

Define data properties 475

AWS IoT SiteWise User Guide

Function Description

For example, if your asset has a transform
property named Temperature_F
that uses the 9/5 * Temperature_C
formula to convert each temperature
data point from Celsius to Fahrenheit,
you can use the timestamp(Temperat
ure_F) function to get the timestamp
of the latest GOOD quality value for the
Temperature_F property.

• Use the pretrigger() function
as an argument to the function. The
timestamp(pretrigger(variable-
name)) function returns the timestamp
, in seconds, of the GOOD quality value
for the specified variable prior to the
property update that initiated the current
transform calculation in the Unix epoch
format. For more information, see Use
temporal functions in transforms.

• In metrics, the function returns the
timestamp retrieved at the end of the
current window, in seconds, in the Unix
epoch format.

Define data properties 476

AWS IoT SiteWise User Guide

Function Description

mktime(time_zone, year, month,
day_of_month, hour, minute,
second)

Returns the input time in seconds, in the Unix
epoch format.

The following requirements apply for using
this function:

• The time zone argument must be a quoted
string ('UTC'). If not specified, the default
time zone is UTC.

The time zone argument can be the first or
last argument.

• The year, month, day of month, hour,
minute, and second arguments must be in
order.

• The year, month, and date arguments are
required.

The following limits apply for using this
function:

• year - Valid values are between 1970 and
2250.

• month - Valid values are between 1 and 12.

• day-of-month - Valid values are between
1 - 31.

• hour - Valid values are between 0 and 23.

• minute - Valid values are between 0 and
59.

• second - Valid values are between 0 and
60. It can be a floating point number.

Examples:

Define data properties 477

AWS IoT SiteWise User Guide

Function Description

• mktime(2020, 2, 29)

• mktime('UTC+3', 2021, 12, 31,
22)

• mktime(2022, 10, 13, 2, 55,
13.68, 'PST')

Define data properties 478

AWS IoT SiteWise User Guide

Function Description

localtime(unix_time, time_zone) Returns the year, the day of the month, the
day of the week, the day of the year, the hour,
the minute, or the second in the specified time
zone from the Unix time.

The following requirements apply for using
this function:

• The time zone argument must be a quoted
string ('UTC'). If not specified, the default
time zone is UTC.

• The Unix time argument is the time in
seconds, in the Unix epoch format. The valid
range is between 1-31556889864403199. It
can be a floating point number.

Example response: 2007-12-03T10:15:3
0+01:00[Europe/Paris]

localtime(unix_time, time_zone
) isn't a standalone function. The year(),
mon(), mday, wday(), yday(), hour(),
minute(), and sec() functions take
localtime(unix_time, time_zone)
as an argument.

Examples:

• year(localtime('GMT', 160589860
8.8113723))

• now().localtime().year()

• timestamp().localtime(‘PST’
).year()

Define data properties 479

AWS IoT SiteWise User Guide

Function Description

• localtime(1605289736, ‘Europe/L
ondon’).year()

year(localtime(unix_time,
time_zone)

Returns the year from localtime
(unix_time, time_zone) .

mon(localtime(unix_time,
time_zone))

Returns the month from localtime
(unix_time, time_zone) .

mday(localtime(unix_time,
time_zone))

Returns the day of the month from
localtime(unix_time, time_zone) .

wday(localtime(unix_time,
time_zone))

Returns the day of the week from localtime
(unix_time, time_zone) .

yday(localtime(unix_time,
time_zone))

Returns the day of the year from localtime
(unix_time, time_zone) .

hour(localtime(unix_time,
time_zone))

Returns the hour from localtime
(unix_time, time_zone) .

minute(localtime(unix_time,
time_zone))

Returns the minute from localtime
(unix_time, time_zone) .

sec(localtime(unix_time,
time_zone))

Returns the second from localtime
(unix_time, time_zone) .

Supported time zone formats

You can specify the time zone argument in the following ways:

• Time zone offset - Specify 'Z' for UTC or an offset ('+2' or '-5').

• Offset IDs - Combine a time zone abbreviation and an offset. For example, 'GMT+2' and
'UTC-01:00'. The time zone abbreviation must contain only three letters.

• Region based IDs - For example, 'Etc/GMT+12' and 'Pacific/Pago_Pago'.

Define data properties 480

AWS IoT SiteWise User Guide

Supported time zone abbreviations

The date and time functions support the following three-letter time zone abbreviations:

• EST - -05:00

• HST - -10:00

• MST - -07:00

• ACT - Australia/Darwin

• AET - Australia/Sydney

• AGT - America/Argentina/Buenos_Aires

• ART - Africa/Cairo

• AST - America/Anchorage

• BET - America/Sao_Paulo

• BST - Asia/Dhaka

• CAT - Africa/Harare

• CET - Europe/Paris

• CNT - America/St_Johns

• CST - America/Chicago

• CTT - Asia/Shanghai

• EAT - Africa/Addis_Ababa

• IET - America/Indiana/Indianapolis

• IST - Asia/Kolkata

• JST - Asia/Tokyo

• MIT - Pacific/Apia

• NET - Asia/Yerevan

• NST - Pacific/Auckland

• PLT - Asia/Karachi

• PRT - America/Puerto_Rico

• PST - America/Los_Angeles

• SST - Pacific/Guadalcanal

Define data properties 481

AWS IoT SiteWise User Guide

• VST - Asia/Ho_Chi_Minh

Supported Region-based IDs

The date and time functions support the following Region-based IDs, organized by their relation to
UTC+00:00:

• Etc/GMT+12 (UTC-12:00)

• Pacific/Pago_Pago (UTC-11:00)

• Pacific/Samoa (UTC-11:00)

• Pacific/Niue (UTC-11:00)

• US/Samoa (UTC-11:00)

• Etc/GMT+11 (UTC-11:00)

• Pacific/Midway (UTC-11:00)

• Pacific/Honolulu (UTC-10:00)

• Pacific/Rarotonga (UTC-10:00)

• Pacific/Tahiti (UTC-10:00)

• Pacific/Johnston (UTC-10:00)

• US/Hawaii (UTC-10:00)

• SystemV/HST10 (UTC-10:00)

• Etc/GMT+10 (UTC-10:00)

• Pacific/Marquesas (UTC-09:30)

• Etc/GMT+9 (UTC-09:00)

• Pacific/Gambier (UTC-09:00)

• America/Atka (UTC-09:00)

• SystemV/YST9 (UTC-09:00)

• America/Adak (UTC-09:00)

• US/Aleutian (UTC-09:00)

• Etc/GMT+8 (UTC-08:00)

• US/Alaska (UTC-08:00)

Define data properties 482

AWS IoT SiteWise User Guide

• America/Juneau (UTC-08:00)

• America/Metlakatla (UTC-08:00)

• America/Yakutat (UTC-08:00)

• Pacific/Pitcairn (UTC-08:00)

• America/Sitka (UTC-08:00)

• America/Anchorage (UTC-08:00)

• SystemV/PST8 (UTC-08:00)

• America/Nome (UTC-08:00)

• SystemV/YST9YDT (UTC-08:00)

• Canada/Yukon (UTC-07:00)

• US/Pacific-New (UTC-07:00)

• Etc/GMT+7 (UTC-07:00)

• US/Arizona (UTC-07:00)

• America/Dawson_Creek (UTC-07:00)

• Canada/Pacific (UTC-07:00)

• PST8PDT (UTC-07:00)

• SystemV/MST7 (UTC-07:00)

• America/Dawson (UTC-07:00)

• Mexico/BajaNorte (UTC-07:00)

• America/Tijuana (UTC-07:00)

• America/Creston (UTC-07:00)

• America/Hermosillo (UTC-07:00)

• America/Santa_Isabel (UTC-07:00)

• America/Vancouver (UTC-07:00)

• America/Ensenada (UTC-07:00)

• America/Phoenix (UTC-07:00)

• America/Whitehorse (UTC-07:00)

• America/Fort_Nelson (UTC-07:00)

Define data properties 483

AWS IoT SiteWise User Guide

• SystemV/PST8PDT (UTC-07:00)

• America/Los_Angeles (UTC-07:00)

• US/Pacific (UTC-07:00)

• America/El_Salvador (UTC-06:00)

• America/Guatemala (UTC-06:00)

• America/Belize (UTC-06:00)

• America/Managua (UTC-06:00)

• America/Tegucigalpa (UTC-06:00)

• Etc/GMT+6 (UTC-06:00)

• Pacific/Easter (UTC-06:00)

• Mexico/BajaSur (UTC-06:00)

• America/Regina (UTC-06:00)

• America/Denver (UTC-06:00)

• Pacific/Galapagos (UTC-06:00)

• America/Yellowknife (UTC-06:00)

• America/Swift_Current (UTC-06:00)

• America/Inuvik (UTC-06:00)

• America/Mazatlan (UTC-06:00)

• America/Boise (UTC-06:00)

• America/Costa_Rica (UTC-06:00)

• MST7MDT (UTC-06:00)

• SystemV/CST6 (UTC-06:00)

• America/Chihuahua (UTC-06:00)

• America/Ojinaga (UTC-06:00)

• Chile/EasterIsland (UTC-06:00)

• US/Mountain (UTC-06:00)

• America/Edmonton (UTC-06:00)

• Canada/Mountain (UTC-06:00)

Define data properties 484

AWS IoT SiteWise User Guide

• America/Cambridge_Bay (UTC-06:00)

• Navajo (UTC-06:00)

• SystemV/MST7MDT (UTC-06:00)

• Canada/Saskatchewan (UTC-06:00)

• America/Shiprock (UTC-06:00)

• America/Panama (UTC-05:00)

• America/Chicago (UTC-05:00)

• America/Eirunepe (UTC-05:00)

• Etc/GMT+5 (UTC-05:00)

• Mexico/General (UTC-05:00)

• America/Porto_Acre (UTC-05:00)

• America/Guayaquil (UTC-05:00)

• America/Rankin_Inlet (UTC-05:00)

• US/Central (UTC-05:00)

• America/Rainy_River (UTC-05:00)

• America/Indiana/Knox (UTC-05:00)

• America/North_Dakota/Beulah (UTC-05:00)

• America/Monterrey (UTC-05:00)

• America/Jamaica (UTC-05:00)

• America/Atikokan (UTC-05:00)

• America/Coral_Harbour (UTC-05:00)

• America/North_Dakota/Center (UTC-05:00)

• America/Cayman (UTC-05:00)

• America/Indiana/Tell_City (UTC-05:00)

• America/Mexico_City (UTC-05:00)

• America/Matamoros (UTC-05:00)

• CST6CDT (UTC-05:00)

• America/Knox_IN (UTC-05:00)

Define data properties 485

AWS IoT SiteWise User Guide

• America/Bogota (UTC-05:00)

• America/Menominee (UTC-05:00)

• America/Resolute (UTC-05:00)

• SystemV/EST5 (UTC-05:00)

• Canada/Central (UTC-05:00)

• Brazil/Acre (UTC-05:00)

• America/Cancun (UTC-05:00)

• America/Lima (UTC-05:00)

• America/Bahia_Banderas (UTC-05:00)

• US/Indiana-Starke (UTC-05:00)

• America/Rio_Branco (UTC-05:00)

• SystemV/CST6CDT (UTC-05:00)

• Jamaica (UTC-05:00)

• America/Merida (UTC-05:00)

• America/North_Dakota/New_Salem (UTC-05:00)

• America/Winnipeg (UTC-05:00)

• America/Cuiaba (UTC-04:00)

• America/Marigot (UTC-04:00)

• America/Indiana/Petersburg (UTC-04:00)

• Chile/Continental (UTC-04:00)

• America/Grand_Turk (UTC-04:00)

• Cuba (UTC-04:00)

• Etc/GMT+4 (UTC-04:00)

• America/Manaus (UTC-04:00)

• America/Fort_Wayne (UTC-04:00)

• America/St_Thomas (UTC-04:00)

• America/Anguilla (UTC-04:00)

• America/Havana (UTC-04:00)

• US/Michigan (UTC-04:00)

Define data properties 486

AWS IoT SiteWise User Guide

• America/Barbados (UTC-04:00)

• America/Louisville (UTC-04:00)

• America/Curacao (UTC-04:00)

• America/Guyana (UTC-04:00)

• America/Martinique (UTC-04:00)

• America/Puerto_Rico (UTC-04:00)

• America/Port_of_Spain (UTC-04:00)

• SystemV/AST4 (UTC-04:00)

• America/Indiana/Vevay (UTC-04:00)

• America/Indiana/Vincennes (UTC-04:00)

• America/Kralendijk (UTC-04:00)

• America/Antigua (UTC-04:00)

• America/Indianapolis (UTC-04:00)

• America/Iqaluit (UTC-04:00)

• America/St_Vincent (UTC-04:00)

• America/Kentucky/Louisville (UTC-04:00)

• America/Dominica (UTC-04:00)

• America/Asuncion (UTC-04:00)

• EST5EDT (UTC-04:00)

• America/Nassau (UTC-04:00)

• America/Kentucky/Monticello (UTC-04:00)

• Brazil/West (UTC-04:00)

• America/Aruba (UTC-04:00)

• America/Indiana/Indianapolis (UTC-04:00)

• America/Santiago (UTC-04:00)

• America/La_Paz (UTC-04:00)

• America/Thunder_Bay (UTC-04:00)

• America/Indiana/Marengo (UTC-04:00)

• America/Blanc-Sablon (UTC-04:00)

Define data properties 487

AWS IoT SiteWise User Guide

• America/Santo_Domingo (UTC-04:00)

• US/Eastern (UTC-04:00)

• Canada/Eastern (UTC-04:00)

• America/Port-au-Prince (UTC-04:00)

• America/St_Barthelemy (UTC-04:00)

• America/Nipigon (UTC-04:00)

• US/East-Indiana (UTC-04:00)

• America/St_Lucia (UTC-04:00)

• America/Montserrat (UTC-04:00)

• America/Lower_Princes (UTC-04:00)

• America/Detroit (UTC-04:00)

• America/Tortola (UTC-04:00)

• America/Porto_Velho (UTC-04:00)

• America/Campo_Grande (UTC-04:00)

• America/Virgin (UTC-04:00)

• America/Pangnirtung (UTC-04:00)

• America/Montreal (UTC-04:00)

• America/Indiana/Winamac (UTC-04:00)

• America/Boa_Vista (UTC-04:00)

• America/Grenada (UTC-04:00)

• America/New_York (UTC-04:00)

• America/St_Kitts (UTC-04:00)

• America/Caracas (UTC-04:00)

• America/Guadeloupe (UTC-04:00)

• America/Toronto (UTC-04:00)

• SystemV/EST5EDT (UTC-04:00)

• America/Argentina/Catamarca (UTC-03:00)

• Canada/Atlantic (UTC-03:00)

• America/Argentina/Cordoba (UTC-03:00)

Define data properties 488

AWS IoT SiteWise User Guide

• America/Araguaina (UTC-03:00)

• America/Argentina/Salta (UTC-03:00)

• Etc/GMT+3 (UTC-03:00)

• America/Montevideo (UTC-03:00)

• Brazil/East (UTC-03:00)

• America/Argentina/Mendoza (UTC-03:00)

• America/Argentina/Rio_Gallegos (UTC-03:00)

• America/Catamarca (UTC-03:00)

• America/Cordoba (UTC-03:00)

• America/Sao_Paulo (UTC-03:00)

• America/Argentina/Jujuy (UTC-03:00)

• America/Cayenne (UTC-03:00)

• America/Recife (UTC-03:00)

• America/Buenos_Aires (UTC-03:00)

• America/Paramaribo (UTC-03:00)

• America/Moncton (UTC-03:00)

• America/Mendoza (UTC-03:00)

• America/Santarem (UTC-03:00)

• Atlantic/Bermuda (UTC-03:00)

• America/Maceio (UTC-03:00)

• Atlantic/Stanley (UTC-03:00)

• America/Halifax (UTC-03:00)

• Antarctica/Rothera (UTC-03:00)

• America/Argentina/San_Luis (UTC-03:00)

• America/Argentina/Ushuaia (UTC-03:00)

• Antarctica/Palmer (UTC-03:00)

• America/Punta_Arenas (UTC-03:00)

• America/Glace_Bay (UTC-03:00)

• America/Fortaleza (UTC-03:00)

Define data properties 489

AWS IoT SiteWise User Guide

• America/Thule (UTC-03:00)

• America/Argentina/La_Rioja (UTC-03:00)

• America/Belem (UTC-03:00)

• America/Jujuy (UTC-03:00)

• America/Bahia (UTC-03:00)

• America/Goose_Bay (UTC-03:00)

• America/Argentina/San_Juan (UTC-03:00)

• America/Argentina/ComodRivadavia (UTC-03:00)

• America/Argentina/Tucuman (UTC-03:00)

• America/Rosario (UTC-03:00)

• SystemV/AST4ADT (UTC-03:00)

• America/Argentina/Buenos_Aires (UTC-03:00)

• America/St_Johns (UTC-02:30)

• Canada/Newfoundland (UTC-02:30)

• America/Miquelon (UTC-02:00)

• Etc/GMT+2 (UTC-02:00)

• America/Godthab (UTC-02:00)

• America/Noronha (UTC-02:00)

• Brazil/DeNoronha (UTC-02:00)

• Atlantic/South_Georgia (UTC-02:00)

• Etc/GMT+1 (UTC-01:00)

• Atlantic/Cape_Verde (UTC-01:00)

• Pacific/Kiritimati (UTC+14:00)

• Etc/GMT-14 (UTC+14:00)

• Pacific/Fakaofo (UTC+13:00)

• Pacific/Enderbury (UTC+13:00)

• Pacific/Apia (UTC+13:00)

• Pacific/Tongatapu (UTC+13:00)

• Etc/GMT-13 (UTC+13:00)

Define data properties 490

AWS IoT SiteWise User Guide

• NZ-CHAT (UTC+12:45)

• Pacific/Chatham (UTC+12:45)

• Pacific/Kwajalein (UTC+12:00)

• Antarctica/McMurdo (UTC+12:00)

• Pacific/Wallis (UTC+12:00)

• Pacific/Fiji (UTC+12:00)

• Pacific/Funafuti (UTC+12:00)

• Pacific/Nauru (UTC+12:00)

• Kwajalein (UTC+12:00)

• NZ (UTC+12:00)

• Pacific/Wake (UTC+12:00)

• Antarctica/South_Pole (UTC+12:00)

• Pacific/Tarawa (UTC+12:00)

• Pacific/Auckland (UTC+12:00)

• Asia/Kamchatka (UTC+12:00)

• Etc/GMT-12 (UTC+12:00)

• Asia/Anadyr (UTC+12:00)

• Pacific/Majuro (UTC+12:00)

• Pacific/Ponape (UTC+11:00)

• Pacific/Bougainville (UTC+11:00)

• Antarctica/Macquarie (UTC+11:00)

• Pacific/Pohnpei (UTC+11:00)

• Pacific/Efate (UTC+11:00)

• Pacific/Norfolk (UTC+11:00)

• Asia/Magadan (UTC+11:00)

• Pacific/Kosrae (UTC+11:00)

• Asia/Sakhalin (UTC+11:00)

• Pacific/Noumea (UTC+11:00)

• Etc/GMT-11 (UTC+11:00)

Define data properties 491

AWS IoT SiteWise User Guide

• Asia/Srednekolymsk (UTC+11:00)

• Pacific/Guadalcanal (UTC+11:00)

• Australia/Lord_Howe (UTC+10:30)

• Australia/LHI (UTC+10:30)

• Australia/Hobart (UTC+10:00)

• Pacific/Yap (UTC+10:00)

• Australia/Tasmania (UTC+10:00)

• Pacific/Port_Moresby (UTC+10:00)

• Australia/ACT (UTC+10:00)

• Australia/Victoria (UTC+10:00)

• Pacific/Chuuk (UTC+10:00)

• Australia/Queensland (UTC+10:00)

• Australia/Canberra (UTC+10:00)

• Australia/Currie (UTC+10:00)

• Pacific/Guam (UTC+10:00)

• Pacific/Truk (UTC+10:00)

• Australia/NSW (UTC+10:00)

• Asia/Vladivostok (UTC+10:00)

• Pacific/Saipan (UTC+10:00)

• Antarctica/DumontDUrville (UTC+10:00)

• Australia/Sydney (UTC+10:00)

• Australia/Brisbane (UTC+10:00)

• Etc/GMT-10 (UTC+10:00)

• Asia/Ust-Nera (UTC+10:00)

• Australia/Melbourne (UTC+10:00)

• Australia/Lindeman (UTC+10:00)

• Australia/North (UTC+09:30)

• Australia/Yancowinna (UTC+09:30)

• Australia/Adelaide (UTC+09:30)

Define data properties 492

AWS IoT SiteWise User Guide

• Australia/Broken_Hill (UTC+09:30)

• Australia/South (UTC+09:30)

• Australia/Darwin (UTC+09:30)

• Etc/GMT-9 (UTC+09:00)

• Pacific/Palau (UTC+09:00)

• Asia/Chita (UTC+09:00)

• Asia/Dili (UTC+09:00)

• Asia/Jayapura (UTC+09:00)

• Asia/Yakutsk (UTC+09:00)

• Asia/Pyongyang (UTC+09:00)

• ROK (UTC+09:00)

• Asia/Seoul (UTC+09:00)

• Asia/Khandyga (UTC+09:00)

• Japan (UTC+09:00)

• Asia/Tokyo (UTC+09:00)

• Australia/Eucla (UTC+08:45)

• Asia/Kuching (UTC+08:00)

• Asia/Chungking (UTC+08:00)

• Etc/GMT-8 (UTC+08:00)

• Australia/Perth (UTC+08:00)

• Asia/Macao (UTC+08:00)

• Asia/Macau (UTC+08:00)

• Asia/Choibalsan (UTC+08:00)

• Asia/Shanghai (UTC+08:00)

• Antarctica/Casey (UTC+08:00)

• Asia/Ulan_Bator (UTC+08:00)

• Asia/Chongqing (UTC+08:00)

• Asia/Ulaanbaatar (UTC+08:00)

• Asia/Taipei (UTC+08:00)

Define data properties 493

AWS IoT SiteWise User Guide

• Asia/Manila (UTC+08:00)

• PRC (UTC+08:00)

• Asia/Ujung_Pandang (UTC+08:00)

• Asia/Harbin (UTC+08:00)

• Singapore (UTC+08:00)

• Asia/Brunei (UTC+08:00)

• Australia/West (UTC+08:00)

• Asia/Hong_Kong (UTC+08:00)

• Asia/Makassar (UTC+08:00)

• Hongkong (UTC+08:00)

• Asia/Kuala_Lumpur (UTC+08:00)

• Asia/Irkutsk (UTC+08:00)

• Asia/Singapore (UTC+08:00)

• Asia/Pontianak (UTC+07:00)

• Etc/GMT-7 (UTC+07:00)

• Asia/Phnom_Penh (UTC+07:00)

• Asia/Novosibirsk (UTC+07:00)

• Antarctica/Davis (UTC+07:00)

• Asia/Tomsk (UTC+07:00)

• Asia/Jakarta (UTC+07:00)

• Asia/Barnaul (UTC+07:00)

• Indian/Christmas (UTC+07:00)

• Asia/Ho_Chi_Minh (UTC+07:00)

• Asia/Hovd (UTC+07:00)

• Asia/Bangkok (UTC+07:00)

• Asia/Vientiane (UTC+07:00)

• Asia/Novokuznetsk (UTC+07:00)

• Asia/Krasnoyarsk (UTC+07:00)

• Asia/Saigon (UTC+07:00)

Define data properties 494

AWS IoT SiteWise User Guide

• Asia/Yangon (UTC+06:30)

• Asia/Rangoon (UTC+06:30)

• Indian/Cocos (UTC+06:30)

• Asia/Kashgar (UTC+06:00)

• Etc/GMT-6 (UTC+06:00)

• Asia/Almaty (UTC+06:00)

• Asia/Dacca (UTC+06:00)

• Asia/Omsk (UTC+06:00)

• Asia/Dhaka (UTC+06:00)

• Indian/Chagos (UTC+06:00)

• Asia/Qyzylorda (UTC+06:00)

• Asia/Bishkek (UTC+06:00)

• Antarctica/Vostok (UTC+06:00)

• Asia/Urumqi (UTC+06:00)

• Asia/Thimbu (UTC+06:00)

• Asia/Thimphu (UTC+06:00)

• Asia/Kathmandu (UTC+05:45)

• Asia/Katmandu (UTC+05:45)

• Asia/Kolkata (UTC+05:30)

• Asia/Colombo (UTC+05:30)

• Asia/Calcutta (UTC+05:30)

• Asia/Aqtau (UTC+05:00)

• Etc/GMT-5 (UTC+05:00)

• Asia/Samarkand (UTC+05:00)

• Asia/Karachi (UTC+05:00)

• Asia/Yekaterinburg (UTC+05:00)

• Asia/Dushanbe (UTC+05:00)

• Indian/Maldives (UTC+05:00)

• Asia/Oral (UTC+05:00)

Define data properties 495

AWS IoT SiteWise User Guide

• Asia/Tashkent (UTC+05:00)

• Antarctica/Mawson (UTC+05:00)

• Asia/Aqtobe (UTC+05:00)

• Asia/Ashkhabad (UTC+05:00)

• Asia/Ashgabat (UTC+05:00)

• Asia/Atyrau (UTC+05:00)

• Indian/Kerguelen (UTC+05:00)

• Iran (UTC+04:30)

• Asia/Tehran (UTC+04:30)

• Asia/Kabul (UTC+04:30)

• Asia/Yerevan (UTC+04:00)

• Etc/GMT-4 (UTC+04:00)

• Etc/GMT-4 (UTC+04:00)

• Asia/Dubai (UTC+04:00)

• Indian/Reunion (UTC+04:00)

• Europe/Saratov (UTC+04:00)

• Europe/Samara (UTC+04:00)

• Indian/Mahe (UTC+04:00)

• Asia/Baku (UTC+04:00)

• Asia/Muscat (UTC+04:00)

• Europe/Volgograd (UTC+04:00)

• Europe/Astrakhan (UTC+04:00)

• Asia/Tbilisi (UTC+04:00)

• Europe/Ulyanovsk (UTC+04:00)

• Asia/Aden (UTC+03:00)

• Africa/Nairobi (UTC+03:00)

• Europe/Istanbul (UTC+03:00)

• Etc/GMT-3 (UTC+03:00)

• Europe/Zaporozhye (UTC+03:00)

Define data properties 496

AWS IoT SiteWise User Guide

• Israel (UTC+03:00)

• Indian/Comoro (UTC+03:00)

• Antarctica/Syowa (UTC+03:00)

• Africa/Mogadishu (UTC+03:00)

• Europe/Bucharest (UTC+03:00)

• Africa/Asmera (UTC+03:00)

• Europe/Mariehamn (UTC+03:00)

• Asia/Istanbul (UTC+03:00)

• Europe/Tiraspol (UTC+03:00)

• Europe/Moscow (UTC+03:00)

• Europe/Chisinau (UTC+03:00)

• Europe/Helsinki (UTC+03:00)

• Asia/Beirut (UTC+03:00)

• Asia/Tel_Aviv (UTC+03:00)

• Africa/Djibouti (UTC+03:00)

• Europe/Simferopol (UTC+03:00)

• Europe/Sofia (UTC+03:00)

• Asia/Gaza (UTC+03:00)

• Africa/Asmara (UTC+03:00)

• Europe/Riga (UTC+03:00)

• Asia/Baghdad (UTC+03:00)

• Asia/Damascus (UTC+03:00)

• Africa/Dar_es_Salaam (UTC+03:00)

• Africa/Addis_Ababa (UTC+03:00)

• Europe/Uzhgorod (UTC+03:00)

• Asia/Jerusalem (UTC+03:00)

• Asia/Riyadh (UTC+03:00)

• Asia/Kuwait (UTC+03:00)

• Europe/Kirov (UTC+03:00)

Define data properties 497

AWS IoT SiteWise User Guide

• Africa/Kampala (UTC+03:00)

• Europe/Minsk (UTC+03:00)

• Asia/Qatar (UTC+03:00)

• Europe/Kiev (UTC+03:00)

• Asia/Bahrain (UTC+03:00)

• Europe/Vilnius (UTC+03:00)

• Indian/Antananarivo (UTC+03:00)

• Indian/Mayotte (UTC+03:00)

• Europe/Tallinn (UTC+03:00)

• Turkey (UTC+03:00)

• Africa/Juba (UTC+03:00)

• Asia/Nicosia (UTC+03:00)

• Asia/Famagusta (UTC+03:00)

• W-SU (UTC+03:00)

• EET (UTC+03:00)

• Asia/Hebron (UTC+03:00)

• Asia/Amman (UTC+03:00)

• Europe/Nicosia (UTC+03:00)

• Europe/Athens (UTC+03:00)

• Africa/Cairo (UTC+02:00)

• Africa/Mbabane (UTC+02:00)

• Europe/Brussels (UTC+02:00)

• Europe/Warsaw (UTC+02:00)

• CET (UTC+02:00)

• Europe/Luxembourg (UTC+02:00)

• Etc/GMT-2 (UTC+02:00)

• Libya (UTC+02:00)

• Africa/Kigali (UTC+02:00)

• Africa/Tripoli (UTC+02:00)

Define data properties 498

AWS IoT SiteWise User Guide

• Europe/Kaliningrad (UTC+02:00)

• Africa/Windhoek (UTC+02:00)

• Europe/Malta (UTC+02:00)

• Europe/Busingen (UTC+02:00)

•

• Europe/Skopje (UTC+02:00)

• Europe/Sarajevo (UTC+02:00)

• Europe/Rome (UTC+02:00)

• Europe/Zurich (UTC+02:00)

• Europe/Gibraltar (UTC+02:00)

• Africa/Lubumbashi (UTC+02:00)

• Europe/Vaduz (UTC+02:00)

• Europe/Ljubljana (UTC+02:00)

• Europe/Berlin (UTC+02:00)

• Europe/Stockholm (UTC+02:00)

• Europe/Budapest (UTC+02:00)

• Europe/Zagreb (UTC+02:00)

• Europe/Paris (UTC+02:00)

• Africa/Ceuta (UTC+02:00)

• Europe/Prague (UTC+02:00)

• Antarctica/Troll (UTC+02:00)

• Africa/Gaborone (UTC+02:00)

• Europe/Copenhagen (UTC+02:00)

• Europe/Vienna (UTC+02:00)

• Europe/Tirane (UTC+02:00)

• MET (UTC+02:00)

• Europe/Amsterdam (UTC+02:00)

• Africa/Maputo (UTC+02:00)

• Europe/San_Marino (UTC+02:00)

Define data properties 499

AWS IoT SiteWise User Guide

• Poland (UTC+02:00)

• Europe/Andorra (UTC+02:00)

• Europe/Oslo (UTC+02:00)

• Europe/Podgorica (UTC+02:00)

• Africa/Bujumbura (UTC+02:00)

• Atlantic/Jan_Mayen (UTC+02:00)

• Africa/Maseru (UTC+02:00)

• Europe/Madrid (UTC+02:00)

• Africa/Blantyre (UTC+02:00)

• Africa/Lusaka (UTC+02:00)

• Africa/Harare (UTC+02:00)

• Africa/Khartoum (UTC+02:00)

• Africa/Johannesburg (UTC+02:00)

• Europe/Belgrade (UTC+02:00)

• Europe/Bratislava (UTC+02:00)

• Arctic/Longyearbyen (UTC+02:00)

• Egypt (UTC+02:00)

• Europe/Vatican (UTC+02:00)

• Europe/Monaco (UTC+02:00)

• Europe/London (UTC+01:00)

• Etc/GMT-1 (UTC+01:00)

• Europe/Jersey (UTC+01:00)

• Europe/Guernsey (UTC+01:00)

• Europe/Isle_of_Man (UTC+01:00)

• Africa/Tunis (UTC+01:00)

• Africa/Malabo (UTC+01:00)

• GB-Eire (UTC+01:00)

• Africa/Lagos (UTC+01:00)

• Africa/Algiers (UTC+01:00)

Define data properties 500

AWS IoT SiteWise User Guide

• GB (UTC+01:00)

• Portugal (UTC+01:00)

• Africa/Sao_Tome (UTC+01:00)

• Africa/Ndjamena (UTC+01:00)

• Atlantic/Faeroe (UTC+01:00)

• Eire (UTC+01:00)

• Atlantic/Faroe (UTC+01:00)

• Europe/Dublin (UTC+01:00)

• Africa/Libreville (UTC+01:00)

• Africa/El_Aaiun (UTC+01:00)

• Africa/El_Aaiun (UTC+01:00)

• Africa/Douala (UTC+01:00)

• Africa/Brazzaville (UTC+01:00)

• Africa/Porto-Novo (UTC+01:00)

• Atlantic/Madeira (UTC+01:00)

• Europe/Lisbon (UTC+01:00)

• Atlantic/Canary (UTC+01:00)

• Africa/Casablanca (UTC+01:00)

• Europe/Belfast (UTC+01:00)

• Africa/Luanda (UTC+01:00)

• Africa/Kinshasa (UTC+01:00)

• Africa/Bangui (UTC+01:00)

• WET (UTC+01:00)

• Africa/Niamey (UTC+01:00)

• GMT (UTC+00:00)

• Etc/GMT-0 (UTC+00:00)

• Atlantic/St_Helena (UTC+00:00)

• Etc/GMT+0 (UTC+00:00)

• Africa/Banjul (UTC+00:00)

Define data properties 501

AWS IoT SiteWise User Guide

• Etc/GMT (UTC+00:00)

• Africa/Freetown (UTC+00:00)

• Africa/Bamako (UTC+00:00)

• Africa/Conakry (UTC+00:00)

• Universal (UTC+00:00)

• Africa/Nouakchott (UTC+00:00)

• UTC (UTC+00:00)

• Etc/Universal (UTC+00:00)

• Atlantic/Azores (UTC+00:00)

• Africa/Abidjan (UTC+00:00)

• Africa/Accra (UTC+00:00)

• Etc/UCT (UTC+00:00)

• GMT0 (UTC+00:00)

• Zulu (UTC+00:00)Zulu (UTC+00:00)

• Africa/Ouagadougou (UTC+00:00)

• Atlantic/Reykjavik (UTC+00:00)

• Etc/Zulu (UTC+00:00)

• Iceland (UTC+00:00)

• Africa/Lome (UTC+00:00)

• Greenwich (UTC+00:00)

• Etc/GMT0 (UTC+00:00)

• America/Danmarkshavn (UTC+00:00)

• Africa/Dakar (UTC+00:00)

• Africa/Bissau (UTC+00:00)

• Etc/Greenwich (UTC+00:00)

• Africa/Timbuktu (UTC+00:00)

• UCT (UTC+00:00)

• Africa/Monrovia (UTC+00:00)

• Etc/UTC (UTC+00:00)

Define data properties 502

AWS IoT SiteWise User Guide

Formula expression tutorials

You can follow these tutorials to use formula expressions in AWS IoT SiteWise.

Topics

• Use strings in formulas

• Filter data points

• Count data points that match a condition

• Late data in formulas

• Data quality in formulas

• Undefined, infinite, and overflow values

Use strings in formulas

You can operate on strings in your formula expressions. You also can input strings from variables
that reference attribute and measurement properties.

Important

Formula expressions can only output double or string values. Nested expressions can
output other data types, such as strings, but the formula as a whole must evaluate to a
number or string. You can use the jp function to convert a string to a number. The Boolean
value must be 1 (true) or 0 (false). For more information, see Undefined, infinite, and
overflow values.

AWS IoT SiteWise provides the following formula expression features that you can use to operate
on strings:

• String literals

• The index operator (s[index])

• The slice operator (s[start:end:step])

• Comparison functions, which you can use compare strings by lexicographic order

• String functions, which include the jp function that can parse serialized JSON objects and
convert strings to numbers

Define data properties 503

https://en.wikipedia.org/wiki/Lexicographic_order

AWS IoT SiteWise User Guide

Filter data points

You can use the if function to filter out data points that don't meet a condition. The if function
evaluates a condition and returns different values for true and false results. You can use the
none constant as an output for one case of an if function to discard the data point for that case.

To filter out data points that match a condition

• Create a transform that uses the if function to define a condition that checks if a condition is
met, and returns none as either the result_if_true or result_if_false value.

Example Example: Filter out data points where water isn't boiling

Consider a scenario where you have a measurement, temp_c, that provides the temperature (in
Celsius) of water in a machine. You can define the following transform to filter out data points
where the water isn't boiling:

• Transform: boiling_temps = if(gte(temp_c, 100), temp_c, none) – Returns the
temperature if it's greater than or equal to 100 degrees Celsius, otherwise returns no data point.

Count data points that match a condition

You can use comparison functions and sum() to count the number of data points for which a
condition is true.

To count data points that match a condition

1. Create a transform that uses a comparison function to define a filter condition on another
property.

2. Create a metric that sums the data points where that condition is met.

Example Example: Count the number of data points where water is boiling

Consider a scenario where you have a measurement, temp_c, that provides the temperature (in
Celsius) of water in a machine. You can define the following transform and metric properties to
count the number of data points where the water is boiling:

• Transform: is_boiling = gte(temp_c, 100) – Returns 1 if the temperature is greater than
or equal to 100 degrees Celsius, otherwise returns 0.

Define data properties 504

AWS IoT SiteWise User Guide

• Metric: boiling_count = sum(is_boiling) – Returns the number of data points where
water is boiling.

Late data in formulas

AWS IoT SiteWise supports late data ingestion of data that is up to 7 days old. When AWS IoT
SiteWise receives late data, it recalculates existing values for any metric that inputs the late data in
a past window. These recalculations result in data processing charges.

Note

When AWS IoT SiteWise computes properties that input late data, it uses each property's
current formula expression.

After AWS IoT SiteWise recalculates a past window for a metric, it replaces the previous value for
that window. If you enabled notifications for that metric, AWS IoT SiteWise also emits a property
value notification. This means that you can receive a new property value update notification for the
same property and timestamp for which you previously received a notification. If your applications
or data lakes consume property value notifications, you must update the previous value with the
new value so that their data is accurate.

Data quality in formulas

In AWS IoT SiteWise, each data point has a quality code, which can be one of the following:

• GOOD – The data isn't affected by any issues.

• BAD – The data is affected by an issue such as sensor failure.

• UNCERTAIN – The data is affected by an issue such as sensor inaccuracy.

AWS IoT SiteWise consumes only GOOD quality data when it computes transforms and metrics.
AWS IoT SiteWise outputs only GOOD quality data for successful computations. If a computation
is unsuccessful, then AWS IoT SiteWise doesn't output a data point for that computation. This can
occur if a computation results in an undefined, infinite, or overflow value.

For more information about how to query data and filter by data quality, see Query data from AWS
IoT SiteWise.

Define data properties 505

AWS IoT SiteWise User Guide

Undefined, infinite, and overflow values

Some formula expressions (such as x / 0, sqrt(-1), or log(0)) calculate values that are
undefined in a real number system, infinite, or outside the range supported by AWS IoT SiteWise.
When an asset property's expression computes an undefined, infinite, or overflow value, AWS IoT
SiteWise doesn't output a data point for that computation.

AWS IoT SiteWise also doesn't output a data point if it computes a non-numeric value as the result
of a formula expression. This means that if you define a formula that computes a string, array, or
the none constant, then AWS IoT SiteWise doesn't output a data point for that computation.

Example Examples

Each of the following formula expressions result in a value that AWS IoT SiteWise can't represent
as a number. AWS IoT SiteWise doesn't output a data point when it computes these formula
expressions.

• x / 0 is undefined.

• log(0) is undefined.

• sqrt(-1) is undefined in a real number system.

• "hello" + " world" is a string.

• jp('{"values":[3,6,7]}', '$.values') is an array.

• if(gte(temp, 300), temp, none) is none when temp is less than 300.

Create custom composite models (components)

Custom composite models, or components if you're using the console, provide another level of
organization for your asset models and component models. You can use them to structure your
models by grouping properties or referencing other models. For more information about working
with custom composite models, see Custom composite models (components).

You create a custom composite model within an existing asset model or component model. There
are two types of custom composite models. To group related properties within a model, you can
create an inline custom composite model. To reference a component model within your asset
model or component model, you can create a component-model-based custom composite model.

The following sections describe how to use the AWS IoT SiteWise API to create custom composite
models.

Create custom composite models (components) 506

AWS IoT SiteWise User Guide

Topics

• Create an inline component (console)

• Create an inline custom composite model (AWS CLI)

• Create a component-model-based component (console)

• Create a component-model-based custom composite model (AWS CLI)

Create an inline component (console)

You can use the AWS IoT SiteWise console to create an inline component that defines its own
properties.

Note

Because this is an inline component, these properties only apply to the current asset model
and aren't shared anywhere else.
If you need to produce a reusable model (for example, to share among multiple asset
models, or to include multiple instances within one asset model), you should create a
component based on a component model instead. See the following section for details.

To create a component (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Models.

3. Choose the asset model to which you want to add a component.

4. On the Properties tab, choose Components.

5. Choose Create component.

6. On the Create component page, do the following:

a. Enter a Name for the component, such as ServoMotor or ServoMotor Model. This
name must be unique across all components in your account in this Region.

b. (Optional) Add Attribute definitions for the model. Attributes represent information that
rarely changes. For more information, see Define static data (attributes).

Create custom composite models (components) 507

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

c. (Optional) Add Measurement definitions for the model. Measurements represent data
streams from your equipment. For more information, see Define data streams from
equipment (measurements).

d. (Optional) Add Transform definitions for the model. Transforms are formulas that map
data from one form to another. For more information, see Transform data (transforms).

e. (Optional) Add Metric definitions for the model. Metrics are formulas that aggregate
data over time intervals. Metrics can input data from associated assets, so that you can
calculate values that represent your operation or a subset of your operation. For more
information, see Aggregate data from properties and other assets (metrics).

f. Choose Create component.

Create an inline custom composite model (AWS CLI)

You can use the AWS Command Line Interface (AWS CLI) to create an inline custom composite
model that defines its own properties.

Use the CreateAssetModelCompositeModel operation to create an inline model with properties.
This operation expects a payload with the following structure.

Note

Because this is an inline composite model, these properties only apply to the current asset
model and aren't shared anywhere else. What makes it "inline" is that it doesn't provide a
value for the composedAssetModelId field.
If you need to produce a reusable model (for example, to share among multiple asset
models, or to include multiple instances within one asset model), you should create a
component-model-based composite model instead. See the following section for details.

{
 "assetModelCompositeModelName": "CNCLathe_ServoMotorA",
 "assetModelCompositeModelType": "CUSTOM",
 "assetModelCompositeModelProperties": [
 {
 "dataType": "DOUBLE",
 "name": "Servo Motor Temperature",
 "type": {

Create custom composite models (components) 508

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateAssetModelCompositeModel.html

AWS IoT SiteWise User Guide

 "measurement": {}
 },
 "unit": "Celsius"
 },
 {
 "dataType": "DOUBLE",
 "name": "Spindle speed",
 "type": {
 "measurement": {}
 },
 "unit": "rpm"
 }
]
}

Create a component-model-based component (console)

You can use the AWS IoT SiteWise console to create a component based on a component model.

To create a component-model-based component (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Models.

3. Choose the asset model to which you want to add a component.

4. On the Properties tab, choose Components.

5. Choose Create component.

6. On the Create component page, do the following:

a. Select the component model you want to based the component on.

b. Enter a Name for the component, such as ServoMotor or ServoMotor Model. This
name must be unique across all components in your account in this Region.

c. Choose Create component.

Create a component-model-based custom composite model (AWS CLI)

You can use the AWS CLI to create a component-model-based custom composite model within
your asset model. A component-model-based custom composite model is a reference to a
component model that you've already defined elsewhere.

Create custom composite models (components) 509

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

Use the CreateAssetModelCompositeModel operation to create a component-model-based custom
composite model. This operation expects a payload with the following structure.

Note

In this example, the value of composedAssetModelId is the asset model ID or external ID
of an existing component model. For more information, see Reference objects with external
IDs in the AWS IoT SiteWise User Guide. For an example of how to create a component
model, see Create a component model (AWS CLI).

{
 "assetModelCompositeModelName": "CNCLathe_ServoMotorA",
 "assetModelCompositeModelType": "CUSTOM",
 "composedAssetModelId": component model ID
]

Since it's just a reference, a component-model-based custom composite model has no properties of
its own, other than a name.

If you want to add multiple instances of the same component to your asset model (for example,
a CNC machine that has multiple servo motors), you can add multiple component-model-based
custom composite models that each have their own name but which all reference the same
composedAssetModelId.

You can nest components within other components. To do so, you can add a component-model-
based composite model, as shown in this example, to one of your component models.

Create assets for asset models in AWS IoT SiteWise

You can create an asset from an asset model. You must have an asset model before you can create
an asset. If you haven't created an asset model, see Create asset models in AWS IoT SiteWise.

Note

You can only create assets from ACTIVE models. If your model's state isn't ACTIVE, you
may need to wait for up to a few minutes before you can create assets from that model. For
more information, see Asset and model states.

Create assets 510

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateAssetModelCompositeModel.html

AWS IoT SiteWise User Guide

Topics

• Create an asset (console)

• Create an asset (AWS CLI)

• Configure a new asset

Create an asset (console)

You can use the AWS IoT SiteWise console to create an asset.

To create an asset (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Assets.

3. Choose Create asset.

4. On the Create asset page, do the following:

a. For Model, choose the asset model from which to create an asset.

Note

If your model isn't ACTIVE, you must wait until it's active, or resolve issues if it's
FAILED.

b. Enter a Name for your asset.

c. (Optional) Add tags for your asset. For more information, see Tag your AWS IoT SiteWise
resources.

d. Choose Create asset.

When you create an asset, the AWS IoT SiteWise console navigates to the new asset's page. On
this page, you can see the asset's Status, which is initially CREATING. This page automatically
updates, so you can wait for the asset's status to update.

Create an asset (console) 511

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

Note

The asset creation process can take up to a minute. After the Status is ACTIVE, you can
perform update operations on your asset. For more information, see Asset and model
states.

After you create an asset, see Configure a new asset.

Create an asset (AWS CLI)

You can use the AWS Command Line Interface (AWS CLI) to create an asset from an asset model.

You must have an assetModelId to create an asset. If you created an asset model, but don't know
its assetModelId, use the ListAssetModels API to view all of your asset models.

To create an asset from an asset model, use the CreateAsset API with the following parameters:

• assetName – The new asset's name. Give your asset a name to help you identify it.

• assetModelId – The ID of the asset. This is the actual ID in UUID format, or the
externalId:myExternalId if it has one. For more information, see Reference objects with
external IDs in the AWS IoT SiteWise User Guide.

To create an asset (AWS CLI)

• Run the following command to create an asset. Replace asset-name with a name for the
asset and asset-model-id with the ID or the external ID of the asset model.

aws iotsitewise create-asset \
 --asset-name asset-name \
 --asset-model-id asset-model-id

The operation returns a response that contains your new asset's details and status in the
following format.

{
 "assetId": "String",
 "assetArn": "String",

Create an asset (AWS CLI) 512

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListAssetModels.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateAsset.html

AWS IoT SiteWise User Guide

 "assetStatus": {
 "state": "String",
 "error": {
 "code": "String",
 "message": "String"
 }
 }
}

The asset's state is CREATING until the asset creates.

Note

The asset creation process can take up to a minute. To check your asset's status, use
the DescribeAsset operation with your asset's ID as the assetId parameter. After the
asset's state is ACTIVE, you can perform update operations on your asset. For more
information, see Asset and model states.

After you create an asset, see Configure a new asset.

Configure a new asset

After creating an asset in AWS IoT SiteWise, there are several next steps you can take to fully
utilize the asset and its data. These steps might include configuring data streams to ingest data
from the asset, setting up alarms and notifications to monitor the asset's performance, creating
visualizations and dashboards to display the asset's data, and integrating the asset with other AWS
services or third-party applications for further analysis or automation.

Finish configuring your asset with the following optional actions:

• Manage data streams for AWS IoT SiteWise if your asset has measurement properties.

• Update attribute values if your asset has unique attribute values.

• Associate and disassociate assets if your asset is a parent asset.

Search assets on AWS IoT SiteWise console

Use the AWS IoT SiteWise console search functionality to find assets based on metadata and real-
time property value filters.

Configure a new asset 513

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAsset.html

AWS IoT SiteWise User Guide

Prerequisites

AWS IoT SiteWise requires permissions to integrate with AWS IoT TwinMaker to better organize,
and model industrial data. If you have granted permissions to AWS IoT SiteWise, use the
ExecuteQuery API. If you have not granted permissions to AWS IoT SiteWise, and need assistance
getting started, see Integrate AWS IoT SiteWise and AWS IoT TwinMaker.

Advanced search on AWS IoT SiteWise console

Metadata search

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Advanced search under Assets.

3. Under Advanced search choose the Metadata search option.

4. Fill in the parameters. Fill in as many fields as possible for an efficient search.

a. Asset name — Enter a full asset name, or a partial name for a wide search.

b. Property name — Enter a full property name, or a partial name for a wide search.

c. Operator — Choose an operator from:

• =

• <

• >

• <=

• >=

d. Property value — This value is compared with the property's latest value.

e. Property value type — The data type of the property. Choose from the following:

• Double

• Integer

• String

• Boolean

5. Choose Search.

6. From the Search results table, choose the asset from the Name column. This takes you to the
detailed asset page for that asset.

Prerequisites 514

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ExecuteQuery.html
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

Partial search

All parameters do not need to be provided for an asset search. Here are some examples of partial
searches using the Metadata search option:

• Find assets by their name:

• Enter a value in the Asset name field alone.

• The Property name and Property value fields are empty.

• Find assets containing properties with a specific name:

• Enter a value in the Property name field alone.

• The Asset name and Property value fields are empty.

• Find assets based on the latest values of their properties:

• Enter values in the Property name and Property value fields.

• Select an Operator and Property value type.

Query builder search

1. Navigate to the AWS IoT SiteWise console.

Advanced search on AWS IoT SiteWise console 515

AWS IoT SiteWise User Guide

2. In the navigation pane, choose Advanced search under Assets.

3. Under Advanced search choose the Query builder option.

4. In the Query builder pane, write your SQL query to retrieve an asset_name, asset_id and
asset_description.

5. Choose Search.

6. From the Search results table, choose the asset from the Name column. This takes you to the
detailed asset page for that asset.

Note

• The SELECT clause in the SQL query must include the asset_name and asset_id fields
to ensure a valid asset in the Search results table.

• The Query builder only displays the Name, Asset id, and Description in the results table.
Adding more fields to the SELECT clause does not add more columns to the results table

Advanced search on AWS IoT SiteWise console 516

AWS IoT SiteWise User Guide

Update attribute values

Assets inherit the attributes of their asset model, including the default value of the attribute.
In some cases, you will want to keep the asset model's default attribute, such as for an asset
manufacturer property. In other cases, you will want to update the inherited attribute, such as for
an asset's latitude and longitude.

Updating an attribute value (console)

You can use the AWS IoT SiteWise console to update the value of an attribute asset property.

To update an attribute's value (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Assets.

3. Choose the asset for which you want to update an attribute.

Tip

You can choose the arrow icon to expand an asset hierarchy to find your asset.

4. Choose Edit.

5. Find the attribute to update, and then enter its new value.

6. Choose Save.

Updating an attribute value (AWS CLI)

You can use the AWS Command Line Interface (AWS CLI) to update an attribute value.

You must know your asset's assetId and property's propertyId to complete this procedure.
You can also use the external ID. If you created an asset and don't know its assetId, use the

Update attribute values 517

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

ListAssets API to list all the assets for a specific model. Use the DescribeAsset operation to view
your asset's properties including property IDs.

Use the BatchPutAssetPropertyValue operation to assign attribute values to your asset. You can
use this operation to set multiple attributes at once. This operation's payload contains a list of
entries, and each entry contains the asset ID, property ID, and attribute value.

To update an attribute's value (AWS CLI)

1. Create a file called batch-put-payload.json and copy the following JSON object
into the file. This example payload demonstrates how to set a wind turbine's latitude and
longitude. Update the IDs, values, and timestamps to modify the payload for your use case.

{
 "entries": [
 {
 "entryId": "windfarm3-turbine7-latitude",
 "assetId": "a1b2c3d4-5678-90ab-cdef-22222EXAMPLE",
 "propertyId": "a1b2c3d4-5678-90ab-cdef-33333EXAMPLE",
 "propertyValues": [
 {
 "value": {
 "doubleValue": 47.6204
 },
 "timestamp": {
 "timeInSeconds": 1575691200
 }
 }
]
 },
 {
 "entryId": "windfarm3-turbine7-longitude",
 "assetId": "a1b2c3d4-5678-90ab-cdef-22222EXAMPLE",
 "propertyId": "a1b2c3d4-5678-90ab-cdef-55555EXAMPLE",
 "propertyValues": [
 {
 "value": {
 "doubleValue": 122.3491
 },
 "timestamp": {
 "timeInSeconds": 1575691200
 }
 }

Update attribute values 518

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListAssets.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAsset.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html

AWS IoT SiteWise User Guide

]
 }
]
}

• Each entry in the payload contains an entryId that you can define as any unique string.
If any request entries fail, each error will contain the entryId of the corresponding
request so that you know which requests to retry.

• To set an attribute value, you can include one timestamp-quality-value (TQV) structure in
the list of propertyValues for each attribute property. This structure must contain the
new value and the current timestamp.

• value – A structure that contains one of the following fields, depending on the type of
the property being set:

• booleanValue

• doubleValue

• integerValue

• stringValue

• nullValue

• timestamp – A structure that contains the current Unix epoch time in seconds,
timeInSeconds. AWS IoT SiteWise rejects any data points with timestamps that
existed longer than 7 days in the past or newer than 5 minutes in the future.

For more information about how to prepare a payload for BatchPutAssetPropertyValue, see
Ingest data with AWS IoT SiteWise APIs.

2. Run the following command to send the attribute values to AWS IoT SiteWise:

aws iotsitewise batch-put-asset-property-value -\-cli-input-json file://batch-
put-payload.json

Associate and disassociate assets

If your asset's model defines any child asset model hierarchies, you can associate child assets
to your asset. Parent assets can access and aggregate data from associated assets. For more
information about hierarchical asset models, see Define asset model hierarchies. If you're using
Associate and disassociate assets 519

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html

AWS IoT SiteWise User Guide

interfaces, hierarchies defined in the interface are enforced on the asset models that implement
the interface. For more information about interfaces, see Asset model interfaces.

Topics

• Associate and disassociate assets (console)

• Associate and disassociate assets (AWS CLI)

Associate and disassociate assets (console)

You can use the AWS IoT SiteWise console to associate and disassociate assets.

To associate an asset (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Assets.

3. Choose the parent asset for which you want to associate a child asset.

Tip

You can choose the arrow icon to expand an asset hierarchy to find your asset.

4. Choose Edit.

5. In Assets associated to this asset, choose Add associated asset.

6. For Hierarchy, choose the hierarchy that defines the relationship between the parent asset and
the child asset.

7. For Asset, choose the child asset to associate.

8. Choose Save.

Associate and disassociate assets (console) 520

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

To disassociate an asset (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Assets.

3. Choose the parent asset for which you want to disassociate a child asset.

Tip

You can choose the arrow icon to expand an asset hierarchy to find your asset.

4. Choose Edit.

5. In Assets associated to this asset, choose Disassociate for the asset.

6. Choose Save.

Associate and disassociate assets (AWS CLI)

You can use the AWS Command Line Interface (AWS CLI) to associate and disassociate assets.

For this procedure, you must know the ID of the hierarchy (hierarchyId) in the parent asset
model that defines the relationship to the child asset model. Use the DescribeAsset operation to
find the hierarchy ID in the response.

To find a hierarchy ID

• Run the following command to describe the parent asset. Replace parent-asset-id with the
parent asset's ID or external ID.

aws iotsitewise describe-asset --asset-id parent-asset-id

Associate and disassociate assets (AWS CLI) 521

https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAsset.html

AWS IoT SiteWise User Guide

The operation returns a response that contains the asset's details. The response contains an
assetHierarchies list that has the following structure:

{
 ...
 "assetHierarchies": [
 {
 "id": "String",
 "name": "String"
 }
],
 ...
}

The hierarchy ID is the id value for a hierarchy in the list of asset hierarchies.

After you have the hierarchy ID, you can associate or disassociate an asset with that hierarchy.

To associate a child asset to a parent asset, use the AssociateAssets operation. To disassociate
a child asset from a parent asset, use the DisassociateAssets operation. Specify the following
parameters, which are the same for both operations:

• assetId – The parent asset's ID or external ID.

• hierarchyId – The hierarchy ID or external ID in the parent asset.

• childAssetId – The child asset's ID or external ID.

To associate an asset (AWS CLI)

• Run the following command to associate a child asset to a parent asset. Replace parent-
asset-id, hierarchy-id, and child-asset-id with the respective IDs:

aws iotsitewise associate-assets \
 --asset-id parent-asset-id \
 --hierarchy-id hierarchy-id \
 --child-asset-id child-asset-id

Associate and disassociate assets (AWS CLI) 522

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_AssociateAssets.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DisassociateAssets.html

AWS IoT SiteWise User Guide

To disassociate an asset (AWS CLI)

• Run the following command to disassociate a child asset from a parent asset. Replace
parent-asset-id, hierarchy-id, and child-asset-id with the respective IDs:

aws iotsitewise disassociate-assets \
 --asset-id parent-asset-id \
 --hierarchy-id hierarchy-id \
 --child-asset-id child-asset-id

Update assets and models

You can update your assets, asset models, component models, and interfaces in AWS IoT SiteWise
to modify their names and definitions. These update operations are asynchronous and take time
to propagate through AWS IoT SiteWise. Check the status of the asset or model before you make
additional changes. You must wait until the changes propagate before you can continue to use the
updated asset or model.

Topics

• Update assets in AWS IoT SiteWise

• Update asset models, component models, and interfaces

• Update custom composite models (components)

• Optimistic locking for asset model writes

Update assets in AWS IoT SiteWise

You can use the AWS IoT SiteWise console or API to update an asset's name.

When you update an asset, the asset's status is UPDATING until the changes propagate. For more
information, see Asset and model states.

Topics

• Update an asset (console)

• Update an asset (AWS CLI)

Update assets and models 523

AWS IoT SiteWise User Guide

Update an asset (console)

You can use the AWS IoT SiteWise console to update asset details.

To update an asset (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Assets.

3. Choose the asset to update.

Tip

You can choose the arrow icon to expand an asset hierarchy to find your asset.

4. Choose Edit.

5. Update the asset's Name.

6. (Optional) On this page, update other information for the asset. For more information, see the
following:

• Manage data streams for AWS IoT SiteWise

• Update attribute values

• Interact with other AWS services

7. Choose Save.

Update an asset (AWS CLI)

You can use the AWS Command Line Interface (AWS CLI) to update an asset's name.

Use the UpdateAsset operation to update an asset. Specify the following parameters:

• assetId – The ID of the asset. This is the actual ID in UUID format, or the
externalId:myExternalId if it has one. For more information, see Reference objects with
external IDs in the AWS IoT SiteWise User Guide.

• assetName – The asset's new name.

Update assets in AWS IoT SiteWise 524

https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateAsset.html

AWS IoT SiteWise User Guide

To update an asset's name (AWS CLI)

• Run the following command to update an asset's name. Replace asset-id with the ID or
external ID of the asset. Update the asset-name with the new name for the asset.

aws iotsitewise update-asset \
 --asset-id asset-id \
 --asset-name asset-name

Update asset models, component models, and interfaces

Use the AWS IoT SiteWise console or API to update an asset model, component model, or interface.

You can't change the type or data type of an existing property, or the window of an existing metric.
You also can't change the type of the model from asset model to component model or interface, or
the other way around.

Important

• If you remove a property from an asset model or component model, AWS IoT SiteWise
deletes all previous data for that property. For component models, this affects all asset
models using that component model, so be especially careful to understand how widely
your change may apply.

• If you remove a hierarchy definition from an asset model, AWS IoT SiteWise disassociates
all assets in that hierarchy.

When you update an asset model, every asset based on that model reflects any changes that you
make to the underlying model. Until the changes propagate, each asset has the UPDATING state.
You must wait until those assets return to the ACTIVE state before you interact with them. During
this time, the updated asset model's status will be PROPAGATING.

When you update a component model, every asset model that incorporates that component model
reflects the changes. Until the component model changes propagate, each affected asset model
has the UPDATING state, followed by PROPAGATING as it updates its associated assets, as described
in the preceding paragraph. You must wait until those asset models return to the ACTIVE state

Update asset models, component models, and interfaces 525

AWS IoT SiteWise User Guide

before you interact with them. During this time, the updated component model's status will be
PROPAGATING.

For more information, see Asset and model states.

Topics

• Updating an asset model, component model, or interface (console)

• Update an asset model, component model, or interface (AWS CLI)

Updating an asset model, component model, or interface (console)

You can use the AWS IoT SiteWise console to update an asset model, component model, or
interface.

To update an asset model, component model, or interface (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Models.

3. Choose the asset model, component model, or interface to update.

4. Choose Edit.

5. On the Edit model page, do any of the following:

• In Model details, change the Name of the model.

• Change any of the Attribute definitions. You can't change the Data type of existing
attributes. For more information, see Define static data (attributes).

• Change any of the Measurement definitions. You can't change the Data type of
existing measurements. For more information, see Define data streams from equipment
(measurements).

• Change any of the Transform definitions. For more information, see Transform data
(transforms).

• Change any of the Metric definitions. You can't change the Time interval of existing
metrics. For more information, see Aggregate data from properties and other assets
(metrics).

• (Asset models only) Change any of the Hierarchy definitions. You can't change the
Hierarchy model of existing hierarchies. For more information, see Define asset model
hierarchies.

Update asset models, component models, and interfaces 526

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

6. Choose Save.

Note

Update requests made in the console are rejected, if another user successfully updates the
asset model since you last opened the Edit model page. The console prompts the user to
Refresh the Edit model page, to fetch the updated model. You must make your updates
again, and retry your save. See Optimistic locking for asset model writes for more details.

Update an asset model, component model, or interface (AWS CLI)

Use the AWS Command Line Interface (AWS CLI) to update an asset model, component model, or
interface.

Use the UpdateAssetModel API to update the name, description, and properties of an asset model,
component model, or interface. For asset models only, you can update hierarchies. For interfaces,
you can update properties and hierarchies. Specify the following parameters:

• assetModelId – The ID of the asset. This is the actual ID in UUID format, or the
externalId:myExternalId if it has one. For more information, see Reference objects with
external IDs in the AWS IoT SiteWise User Guide.

Specify the updated model in the payload. To learn about the expected format of an asset model
or component model, see Create asset models in AWS IoT SiteWise.

Warning

The UpdateAssetModel API overwrites the existing model with the model that you provide
in the payload. To avoid deleting your model's properties or hierarchies, you must include
their IDs and definitions in the updated model payload. To learn how to query your model's
existing structure, see the DescribeAssetModel operation.

Update asset models, component models, and interfaces 527

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateAssetModel.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateAssetModel.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAssetModel.html

AWS IoT SiteWise User Guide

Note

The following procedure can only update composite models of type AWS/ALARM. If you
want to update CUSTOM composite models, use UpdateAssetModelCompositeModel
instead. For more information, see Update custom composite models (components).

To update an asset model or component model (AWS CLI)

1. Run the following command to retrieve the existing model definition. Replace asset-model-
id with the ID or the external ID of the asset model or component model to update.

aws iotsitewise describe-asset-model --asset-model-id asset-model-id

The above command returns the model definition corresponding to model’s latest version.

For an use case where an asset model is in a FAILED state, retrieve the valid model definition
corresponding to its active version to build your update request. See Asset model versions for
details. Run the following command to retrieve the active model definition:

aws iotsitewise describe-asset-model --asset-model-id asset-model-id --asset-model-
version ACTIVE

The operation returns a response that contains the model's details. The response has the
following structure.

{
 "assetModelId": "String",
 "assetModelArn": "String",
 "assetModelName": "String",
 "assetModelDescription": "String",
 "assetModelProperties": Array of AssetModelProperty,
 "assetModelHierarchies": Array of AssetModelHierarchyDefinition,
 "assetModelCompositeModels": Array of AssetModelCompositeModel,
 "assetModelCompositeModelSummaries": Array of AssetModelCompositeModelSummary,
 "assetModelCreationDate": "String",
 "assetModelLastUpdateDate": "String",
 "assetModelStatus": {
 "state": "String",
 "error": {

Update asset models, component models, and interfaces 528

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateAssetModelCompositeModel.html

AWS IoT SiteWise User Guide

 "code": "String",
 "message": "String"
 },
 "assetModelType": "String"
 },
 "assetModelVersion": "String",
 "eTag": "String"
}

For more information, see the DescribeAssetModel operation.

2. Create a file called update-asset-model.json and copy the previous command's response
into the file.

3. Remove the following key-value pairs from the JSON object in update-asset-model.json:

• assetModelId

• assetModelArn

• assetModelCompositeModelSummaries

• assetModelCreationDate

• assetModelLastUpdateDate

• assetModelStatus

• assetModelType

• assetModelVersion

• eTag

The UpdateAssetModel operation expects a payload with the following structure:

{
 "assetModelName": "String",
 "assetModelDescription": "String",
 "assetModelProperties": Array of AssetModelProperty,
 "assetModelHierarchies": Array of AssetModelHierarchyDefinition,
 "assetModelCompositeModels": Array of AssetModelCompositeModel
}

4. In update-asset-model.json, do any of the following:

• Change the asset model's name (assetModelName).

• Change, add, or remove the asset model's description (assetModelDescription).

Update asset models, component models, and interfaces 529

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAssetModel.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateAssetModel.html

AWS IoT SiteWise User Guide

• Change, add, or remove any of the asset model's properties (assetModelProperties).
You can't change the dataType of existing properties or the window of existing metrics.
For more information, see Define data properties.

• Change, add, or remove any of the asset model's hierarchies (assetModelHierarchies).
You can't change the childAssetModelId of existing hierarchies. For more information,
see Define asset model hierarchies.

• Change, add, or remove any of the asset model's composite models of type AWS/ALARM
(assetModelCompositeModels). Alarms monitor other properties so that you can
identify when equipment or processes require attention. Each alarm definition is a
composite model that standardizes the set of properties that the alarm uses. For more
information, see Monitor data with alarms in AWS IoT SiteWise and Define alarms on asset
models in AWS IoT SiteWise.

5. Run the following command to update the asset model with the definition stored in update-
asset-model.json. Replace asset-model-id with the ID of the asset model:

aws iotsitewise update-asset-model \
 --asset-model-id asset-model-id \
 --cli-input-json file://model-payload.json

Important

When multiple users update an asset model at the same time, an user's changes may be
inadvertently overwritten by another user. To prevent this, you must define a conditional
update request. See Optimistic locking for asset model writes.

Update custom composite models (components)

You can use the AWS IoT SiteWise API to update a custom composite model, or the AWS IoT
SiteWise console to update components.

Topics

• Update a component (console)

• Update a custom composite model (AWS CLI)

Update custom composite models (components) 530

AWS IoT SiteWise User Guide

Update a component (console)

You can use the AWS IoT SiteWise console to update a component.

To update a component (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Models.

3. Choose the asset model where the component is.

4. On the Properties tab, choose Components.

5. Choose the component that you want to update.

6. Choose Edit.

7. On the Edit component page, do any of the following:

• In Model details, change the Name of the model.

• Change any of the Attribute definitions. You can't change the Data type of existing
attributes. For more information, see Define static data (attributes).

• Change any of the Measurement definitions. You can't change the Data type of
existing measurements. For more information, see Define data streams from equipment
(measurements).

• Change any of the Transform definitions. For more information, see Transform data
(transforms).

• Change any of the Metric definitions. You can't change the Time interval of existing
metrics. For more information, see Aggregate data from properties and other assets
(metrics).

8. Choose Save.

Update a custom composite model (AWS CLI)

Use the AWS Command Line Interface (AWS CLI) to update a custom composite model.

To update the name or description, use the UpdateAssetModelCompositeModel operation. For
inline custom composite models only, you can also update the properties. You can't update
the properties of a component-model-based custom composite model, because its referenced
component model provides its associated properties.

Update custom composite models (components) 531

https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateAssetModelCompositeModel.html

AWS IoT SiteWise User Guide

Important

If you remove a property from a custom composite model, AWS IoT SiteWise deletes all
previous data for that property. You can’t change the type or data type of an existing
property.
To replace an existing composite model property with a new one with the same name, do
the following:

1. Submit an UpdateAssetModelCompositeModel request with the entire existing
property removed.

2. Submit a second UpdateAssetModelCompositeModel request that includes the new
property. The new asset property will have the same name as the previous one and
AWS IoT SiteWise will generate a new unique id.

To update a custom composite model (AWS CLI)

1. To retrieve the existing composite model definition, run the following command. Replace
composite-model-id with the ID or the external ID of the custom composite model to
update, and asset-model-id with the asset model that the custom composite model is
associated with. For more information, see the AWS IoT SiteWise User Guide.

a. Run the command below:

aws iotsitewise describe-asset-model-composite-model \
--asset-model-composite-model-id composite-model-id \
--asset-model-id asset-model-id

b. The above command returns the composite model definition corresponding to associated
model’s latest version. For an use case where an asset model is in a FAILED state, retrieve
the valid model definition corresponding to its active version to build your update request.
See Asset model versions for details.

c. Run the following command to retrieve the active model definition:

aws iotsitewise describe-asset-model-composite-model \
--asset-model-composite-model-id composite-model-id \
--asset-model-id asset-model-id \
--asset-model-version ACTIVE

Update custom composite models (components) 532

AWS IoT SiteWise User Guide

d. For more information, see the DescribeAssetModelCompositeModel operation.

2. Create a file called update-custom-composite-model.json, and then copy the previous
command's response into the file.

3. Remove every key-value pair from the JSON object in update-custom-composite-
model.json except for the following fields:

• assetModelCompositeModelName

• assetModelCompositeModelDescription (if present)

• assetModelCompositeModelProperties (if present)

4. In update-custom-composite-model.json, do any of the following:

• Change the value of assetModelCompositeModelName.

• Add or remove assetModelCompositeModelDescription, or change its value.

• For inline custom composite models only: Change, add, or remove any of the asset model's
properties in assetModelCompositeModelProperties.

For more information about the required format for this file, see the request syntax for
UpdateAssetModelCompositeModel.

5. Run the following command to update the custom composite model with the definition stored
in update-custom-composite-model.json. Replace composite-model-id with the ID
of the composite model, and asset-model-id with the ID of the asset model it's in.

aws iotsitewise update-asset-model-composite-model \
--asset-model-composite-model-id composite-model-id \
--asset-model-id asset-model-id \
--cli-input-json file://update-custom-composite-model.json

Important

When multiple users update an asset model at the same time, an user's changes may be
inadvertently overwritten by another user. To prevent this, you must define a conditional
update request. See Optimistic locking for asset model writes.

Update custom composite models (components) 533

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAssetModelCompositeModel.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateAssetModelCompositeModel.html

AWS IoT SiteWise User Guide

Optimistic locking for asset model writes

When updating an asset model, an user does the following:

1. Read the current asset model definition.

2. Edit the asset model definition with required changes.

3. Update asset model with the new definition.

In a scenario with two users updating a model, the following is possible:

• User A reads the asset model X definition.

• User B reads the asset model X definition and commits changes, modifying the definition of X.

• User A commits and overwrites the change made by user B for asset model X, without verifying
or incorporating User B's changes.

Optimistic locking is a mechanism used by AWS IoT SiteWise to prevent accidental overwrites like
the scenario above. Optimistic locking is a strategy to ensure the current version of asset model
being updated or deleted, is the same as its current version in AWS IoT SiteWise. This protects asset
model writes from being overwritten by accidental updates.

Follow these steps to perform asset model writes with optimistic locking:

Topics

• Performing asset model writes with optimistic lock (console)

• Performing asset model writes with optimistic lock (AWS CLI)

Performing asset model writes with optimistic lock (console)

The procedure below describes how to perform asset model writes with an optimistic lock on the
asset model's active version in the console.

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Models.

3. Choose the asset model or component model to update.

4. Choose Edit.

Optimistic locking for asset model writes 534

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

5. Make changes on the Edit model page.

6. Choose Save.

Note

Sometimes, one or more successful model updates have happened between when the
user starts editing the model, and saves the made edits to the model.
To ensure the user does not accidentally overwrite over new successful updates, the
user's write is rejected. The console disables the Save button, and prompts the user
to refresh the Edit model page. The user must update the new active version of the
model again. The user must perform the following additional steps:

7. Choose Refresh.

8. Follow steps 5 and 6 again.

Performing asset model writes with optimistic lock (AWS CLI)

The procedure below describes how to perform asset model writes with optimistic locking in the
AWS CLI.

1. Fetch the ETag associated with current model definition

ETag is a unique token generated for each new representation of an asset model. Call
DescribeAssetModel API to fetch the current asset model definition, and associated ETag from
the response.

During concurrent updates, users perform either successful updates (model in ACTIVE state),
or unsuccessful updates (model in FAILED state). To ensure that an user does not accidentally
overwrite a successful update, you must retrieve the active version of the asset model from
Asset model versions, and get the ETag value.

Run the following command:

aws iotsitewise describe-asset-model --asset-model-id asset-model-id \
--asset-model-version ACTIVE

The response returns the following structure:

Optimistic locking for asset model writes 535

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAssetModel.html

AWS IoT SiteWise User Guide

{
 "assetModelId": "String",
 "assetModelArn": "String",
 "assetModelName": "String",
 ...
 "eTag": "String"
}

Note

You must retrieve the latest version of the asset model and its ETag in order to not
overwrite any updates.

2. Perform UPDATE and DELETE operations with write conditions

The following asset model APIs support optimistic locking:

• UpdateAssetModel

• DeleteAssetModel

• CreateAssetModelCompositeModel

• UpdateAssetModelCompositeModel

• DeleteAssetModelCompositeModel

Note

The below scenarios use UpdateAssetModel API as a reference. The conditions apply
to all the operations listed above.

The below scenarios describe the different write conditions depending on concurrency control
requirements:

• Run the following command in order not to overwrite any successful updates. A new active
version must not exist, since the last read active version. Replace e-tag with the ETag
returned in the API operation used in the read of the active version.

Optimistic locking for asset model writes 536

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateAssetModel.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DeleteAssetModel.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateAssetModelCompositeModel.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateAssetModelCompositeModel.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DeleteAssetModelCompositeModel.html

AWS IoT SiteWise User Guide

aws iotsitewise update-asset-model \
 --asset-model-id asset-model-id \
 --if-match e-tag \
 --match-for-version-type ACTIVE \
 --cli-input-json file://model-payload.json

• When a model creation fails, an active version does not exist for it yet, because it's in a
FAILED state. It is still possible to overwrite a new active version that is present, before your
changes are committed. Run the following command to not overwrite a new active version,
when an active version does not exist during your last read.

aws iotsitewise update-asset-model \
 --asset-model-id asset-model-id \
 --if-none-match "*" \
 --match-for-version-type ACTIVE \
 --cli-input-json file://model-payload.json

• Run the following command to avoid overwriting any successful or unsuccessful updates.
This command defines a write condition which ensures that a latest version is not created
since your last read latest version. Replace e-tag with the ETag returned in the API
operation used in the read of the active version.

aws iotsitewise update-asset-model \
 --asset-model-id asset-model-id \
 --if-match eTag \
 --match-for-version-type LATEST \
 --cli-input-json file://model-payload.json

If the write condition evaluates to FALSE, the write request fails with the
PreconditionFailedException.

Delete assets and models in AWS IoT SiteWise

You can delete your assets, asset models, component models, and interfaces from AWS IoT
SiteWise when you're done with them. The delete operations are asynchronous and take time to
propagate through AWS IoT SiteWise.

Topics

Delete assets and models in AWS IoT SiteWise 537

AWS IoT SiteWise User Guide

• Delete assets in AWS IoT SiteWise

• Delete asset models, component models, and interfaces in AWS IoT SiteWise

Delete assets in AWS IoT SiteWise

You can use the AWS IoT SiteWise console or API to delete an asset no longer needed in your
environment. Deleting an asset model also deletes all associated assets and component models.
However, it's important to note that deleting an asset or model is a permanent action, and any
data associated with the deleted resources is also be removed. Before deleting assets or models, it's
recommended to review any dependencies or integrations that might be impacted and ensure that
you have a backup of any important data.

Before you can delete an asset, you must first disassociate its child assets and disassociate it from
its parent asset. For more information, see Associate and disassociate assets. If you use the AWS
Command Line Interface (AWS CLI), you can use the ListAssociatedAssets operation to list an asset's
children.

When you delete an asset, its status is DELETING until the changes propagate. For more
information, see Asset and model states. After the asset is deleted, you can't query that asset. If
you do, the API returns an HTTP 404 response.

Important

AWS IoT SiteWise deletes all property data for deleted assets.

Topics

• Delete an asset (console)

• Delete an asset (AWS CLI)

Delete an asset (console)

You can use the AWS IoT SiteWise console to delete an asset.

To delete an asset (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Assets.

Delete assets 538

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListAssociatedAssets.html
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

3. Choose the asset to delete.

Tip

You can choose the arrow icon to expand an asset hierarchy to find your asset.

4. If the asset has any Associated assets, delete each asset. You can choose an asset's name to
navigate to its page, where you can delete it.

5. On the asset's page, choose Delete.

6. In the Delete asset dialog box, do the following:

a. Enter Delete to confirm deletion.

b. Choose Delete.

Delete an asset (AWS CLI)

You can use the AWS Command Line Interface (AWS CLI) to delete an asset.

Use the DeleteAsset operation to delete an asset. Specify the following parameter:

• assetId – The ID of the asset. This is the actual ID in UUID format, or the
externalId:myExternalId if it has one. For more information, see Reference objects with
external IDs in the AWS IoT SiteWise User Guide.

To delete an asset (AWS CLI)

1. Run the following command to list the asset's hierarchies. Replace asset-id with the ID or
the external ID of the asset:

aws iotsitewise describe-asset --asset-id asset-id

The operation returns a response that contains the asset's details. The response contains an
assetHierarchies list that has the following structure:

{
 ...
 "assetHierarchies": [
 {

Delete assets 539

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DeleteAsset.html

AWS IoT SiteWise User Guide

 "id": "String",
 "name": "String"
 }
],
 ...
}

For more information, see the DescribeAsset operation.

2. For each hierarchy, run the following command to list the asset's children that are
associated with that hierarchy. Replace asset-id with the ID or external ID of the asset and
hierarchy-id with the ID or external ID of the hierarchy.

aws iotsitewise list-associated-assets \
 --asset-id asset-id \
 --hierarchy-id hierarchy-id

For more information, see the ListAssociatedAssets operation.

3. Run the following command to delete each associated asset and then to delete the asset.
Replace asset-id with the ID or external ID of the asset.

aws iotsitewise delete-asset --asset-id asset-id

Delete asset models, component models, and interfaces in AWS IoT
SiteWise

You can use the AWS IoT SiteWise console or API to delete an asset model, component model, or
interface.

Before you can delete an asset model, you must first delete all assets that were created from the
asset model. Before you can delete an interface, you must first unlink it from all asset models that
implement it.

When you delete an asset model or interface, its status is DELETING until the changes propagate.
For more information, see Asset and model states. After the asset model or interface is deleted,
you can't query that asset model or interface. If you do, the API returns an HTTP 404 response.

Topics

Delete models and interfaces 540

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAsset.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListAssociatedAssets.html

AWS IoT SiteWise User Guide

• Delete an asset model, component model, or interface (console)

• Delete an asset model, component model, or interface (AWS CLI)

Delete an asset model, component model, or interface (console)

You can use the AWS IoT SiteWise console to delete an asset model, component model, or
interface.

To delete an asset model, component model, or interface (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Models.

3. Choose the asset model, component model, or interface to delete.

4. If deleting an asset model and it has any Assets, delete each asset. Choose an asset's name
to navigate to its page, where you can delete it. For more information, see Delete an asset
(console).

5. On the model's page, choose Delete.

6. In the Delete model dialog box, do the following:

a. Enter Delete to confirm deletion.

b. Choose Delete.

Delete an asset model, component model, or interface (AWS CLI)

You can use the AWS Command Line Interface (AWS CLI) to delete an asset model, component
model, or interface.

Use the DeleteAssetModel operation to delete an asset model, component model, or interface.
Specify the following parameter:

• assetModelId – The ID of the asset. This is the actual ID in UUID format, or the
externalId:myExternalId if it has one. For more information, see Reference objects with
external IDs in the AWS IoT SiteWise User Guide.

Delete models and interfaces 541

https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DeleteAssetModel.html

AWS IoT SiteWise User Guide

To delete an asset model (AWS CLI)

1. Run the following command to list all assets created from the model. Replace asset-model-
id with the ID or the external ID of the asset model.

aws iotsitewise list-assets --asset-model-id asset-model-id

For more information, see the ListAssets operation.

2. If the previous command returns any assets from the model, delete each asset. For more
information, see Delete an asset (AWS CLI).

3. Run the following command to delete the asset model. Replace asset-model-id with the ID
or external ID of the asset model.

aws iotsitewise delete-asset-model --asset-model-id asset-model-id

Important

To avoid deleting an asset model that was concurrently updated since the last read
operation, you must define a conditional delete request. See Optimistic locking for asset
model writes.

Bulk operations with assets and models

To work with a large number of assets or asset models, use bulk operations to bulk import and
export resources to a different location. For example, you can create a data file that defines assets
or asset models in an Amazon S3 bucket, and use bulk import to create or update them in AWS IoT
SiteWise. Alternatively, if you have a large number of assets or asset models in AWS IoT SiteWise,
you can export them to Amazon S3.

Note

You perform bulk operations in AWS IoT SiteWise by calling operations in the AWS IoT
TwinMaker API. You can do this without setting up AWS IoT TwinMaker or creating an AWS
IoT TwinMaker workspace. All you need is an Amazon S3 bucket where you can place your
AWS IoT SiteWise content.

Bulk operations with assets and models 542

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListAssets.html

AWS IoT SiteWise User Guide

Topics

• Key concepts and terminology

• Supported functionality

• Bulk operation prerequisites

• Run a bulk import job

• Run a bulk export job

• Jobs progress tracking and error handling

• Import metadata examples

• Export metadata examples

• AWS IoT SiteWise metadata transfer job schema

Key concepts and terminology

AWS IoT SiteWise bulk import and export features rely on the following concepts and terminology:

• Import: The action of moving assets or asset models from a file in an Amazon S3 bucket to AWS
IoT SiteWise.

• Export: The action of moving assets or asset models from AWS IoT SiteWise to an Amazon S3
bucket.

• Source: The starting location of where you want to move content from.

For example, an Amazon S3 bucket is an import source, and AWS IoT SiteWise is an export
source.

• Destination: The desired location of where you want to move your content to.

For example, an Amazon S3 bucket is an export destination, and AWS IoT SiteWise is an import
destination.

• AWS IoT SiteWise Schema: This schema is used to import and export metadata from AWS IoT
SiteWise.

• Top-level resource: An AWS IoT SiteWise resource that you can individually create or update,
such as an asset or asset model.

• Sub-resource: A nested AWS IoT SiteWise resource within a top-level resource. Examples include
properties, hierarchies, and composite models.

Key concepts and terminology 543

AWS IoT SiteWise User Guide

• Metadata: Key information required to import or export resources successfully. Examples of
metadata are definitions of assets and asset models.

• metadataTransferJob: The object created when you run CreateMetadataTransferJob.

Supported functionality

This topic explains what you can do when you run a bulk operation. Bulk operations support the
following functionality:

• Top-level resource creation: When you import an asset or asset model that doesn't define an ID,
or whose ID doesn't match that of an existing one, then it will be created as a new resource.

• Top-level resource replacement: When you import an asset or asset model whose ID matches
one that already exists, then it will replace the existing resource.

• Subresource creation, replacement, or deletion: When your import replaces a top-level
resource such as an asset or asset model, then the new definition replaces all sub-resources, such
as properties, hierarchies, or composite models.

For example, if you update an asset model during a bulk import, and the updated version defines
a property that wasn't present on the original, then a new property is created. If it defines a
property that already exists, then the existing property will be updated. If the updated asset
model omits a property that was present on the original, then the property is deleted.

• No top-level resource deletion: Bulk operations don't delete an asset or asset model. Bulk
operations only create or update them.

Bulk operation prerequisites

This section explains bulk operation prerequisites, including AWS Identity and Access Management
(IAM) permissions for exchanging resources between AWS services and your local machine. Before
you start a bulk operation, complete the following prerequisite:

• Create an Amazon S3 bucket to store resources. For more information about using Amazon S3,
see What is Amazon S3?

Supported functionality 544

https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html

AWS IoT SiteWise User Guide

IAM permissions

To perform bulk operations, you must create an AWS Identity and Access Management (IAM)
policy with permissions that allow the exchange of AWS resources between Amazon S3, AWS IoT
SiteWise, and your local machine. For more information about creating IAM policies, see Creating
IAM policies.

To perform bulk operations, you need the following policies.

AWS IoT SiteWise policy

This policy allows access to the required AWS IoT SiteWise API actions for bulk operations:

{
 "Sid": "SiteWiseApiAccess",
 "Effect": "Allow",
 "Action": [
 "iotsitewise:CreateAsset",
 "iotsitewise:CreateAssetModel",
 "iotsitewise:UpdateAsset",
 "iotsitewise:UpdateAssetModel",
 "iotsitewise:UpdateAssetProperty",
 "iotsitewise:ListAssets",
 "iotsitewise:ListAssetModels",
 "iotsitewise:ListAssetProperties",
 "iotsitewise:ListAssetModelProperties",
 "iotsitewise:ListAssociatedAssets",
 "iotsitewise:DescribeAsset",
 "iotsitewise:DescribeAssetModel",
 "iotsitewise:DescribeAssetProperty",
 "iotsitewise:AssociateAssets",
 "iotsitewise:DisassociateAssets",
 "iotsitewise:AssociateTimeSeriesToAssetProperty",
 "iotsitewise:DisassociateTimeSeriesFromAssetProperty",
 "iotsitewise:BatchPutAssetPropertyValue",
 "iotsitewise:BatchGetAssetPropertyValue",
 "iotsitewise:TagResource",
 "iotsitewise:UntagResource",
 "iotsitewise:ListTagsForResource",
 "iotsitewise:CreateAssetModelCompositeModel",
 "iotsitewise:UpdateAssetModelCompositeModel",
 "iotsitewise:DescribeAssetModelCompositeModel",
 "iotsitewise:DeleteAssetModelCompositeModel",

Bulk operation prerequisites 545

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

AWS IoT SiteWise User Guide

 "iotsitewise:ListAssetModelCompositeModels",
 "iotsitewise:ListCompositionRelationships",
 "iotsitewise:DescribeAssetCompositeModel"
],
 "Resource": "*"
}

AWS IoT TwinMaker policy

This policy allows access to the AWS IoT TwinMaker API operations that you use to work with bulk
operations:

{
 "Sid": "MetadataTransferJobApiAccess",
 "Effect": "Allow",
 "Action": [
 "iottwinmaker:CreateMetadataTransferJob",
 "iottwinmaker:CancelMetadataTransferJob",
 "iottwinmaker:GetMetadataTransferJob",
 "iottwinmaker:ListMetadataTransferJobs"
],
 "Resource": "*"
}

Amazon S3 policy

This policy provides access to Amazon S3 buckets for transferring metadata for bulk operations.

For a specific Amazon S3 bucket

If you use one specific bucket for working with your bulk operations metadata, this policy
provides access to that bucket:

{
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:AbortMultipartUpload",
 "s3:ListBucketMultipartUploads",

Bulk operation prerequisites 546

AWS IoT SiteWise User Guide

 "s3:ListMultipartUploadParts"
],
 "Resource": [
 "arn:aws:s3:::bucket name",
 "arn:aws:s3:::bucket name/*"
]
}

To allow any Amazon S3 bucket

If you will use many different buckets to work with your bulk operations metadata, this policy
provides access to any bucket:

{
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:AbortMultipartUpload",
 "s3:ListBucketMultipartUploads",
 "s3:ListMultipartUploadParts"
],
 "Resource": "*"
}

For information about troubleshooting import and export operations, see Troubleshoot bulk
import and export.

Run a bulk import job

Bulk import is the action of moving metadata into an AWS IoT SiteWise workspace. For example,
bulk import can move metadata from a local file, or a file in an Amazon S3 bucket, to an AWS IoT
SiteWise workspace.

Step 1: Prepare the file to import

Download the AWS IoT SiteWise native format file to import assets and the asset models. See AWS
IoT SiteWise metadata transfer job schema for more details.

Run a bulk import job 547

AWS IoT SiteWise User Guide

Step 2: Upload the prepared file to Amazon S3

Upload the file to Amazon S3. See Uploading a file to Amazon S3 in the Amazon Simple Storage
Service User Guide for details.

Import metadata (console)

You can use the AWS IoT SiteWise console to bulk import metadata. Follow Step 1: Prepare the file
to import and Step 2: Upload the prepared file to Amazon S3 to prepare a file that is ready to be
imported.

Import data from Amazon S3 to AWS IoT SiteWise console

1. Navigate to the AWS IoT SiteWise console.

2. Choose Bulk operations New from the navigation pane.

3. Choose New import to start the import process.

4. On the Import metadata page:

• Choose Browse Amazon S3 to view the Amazon S3 bucket and files.

• Navigate to the Amazon S3 bucket that contains the prepared import file.

• Select the file to import.

• Review the selected file, and choose Import.

5. The Bulk operations on SiteWise metadata page of the AWS IoT SiteWise console displays the
newly created import job in the Jobs progress table.

Import metadata (AWS CLI)

To perform an import action, use the following procedure:

Import data from Amazon S3 to AWS CLI

1. Create a metadata file that specifies the resources you want to import, following the AWS IoT
SiteWise metadata transfer job schema. Store this file in your Amazon S3 bucket.

For examples of metadata files to import, see Import metadata examples.

2. Now create a JSON file with the request body. The request body specifies the source and
destination for the transfer job. This file is separate from the file from the previous step. Make
sure to specify your Amazon S3 bucket as a source and iotsitewise as the destination.

Run a bulk import job 548

https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html#uploading-an-object-bucket
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

The following example shows the request body:

{
 "metadataTransferJobId": "your-transfer-job-Id",
 "sources": [{
 "type": "s3",
 "s3Configuration": {
 "location": "arn:aws:s3:::amzn-s3-demo-bucket/
your_import_metadata.json"
 }
 }],
 "destination": {
 "type": "iotsitewise"
 }
 }

3. Invoke the CreateMetadataTransferJob by running the following AWS CLI
command. In this example, the request body file from the previous step is named
createMetadataTransferJobExport.json.

aws iottwinmaker create-metadata-transfer-job --region us-east-1 \
 --cli-input-json file://createMetadataTransferJobImport.json

This will create a metadata transfer job, and begin the process of the transferring your
selected resources.

Run a bulk export job

Bulk export is the action of moving metadata from an AWS IoT SiteWise workspace to an Amazon
S3 bucket.

When you perform a bulk export of your AWS IoT SiteWise content to Amazon S3, you can specify
filters to limit which specific asset models and assets you'd like to export.

The filters must be specified in an iotSiteWiseConfiguration section within the sources
section of your JSON request.

Run a bulk export job 549

AWS IoT SiteWise User Guide

Note

You can include multiple filters in your request. The bulk operation will export asset models
and assets that match any of the filters.
If you don't provide any filters, the bulk operation exports all of your asset models and
assets.

Example request body with filters

{
 "metadataTransferJobId": "your-transfer-job-id",
 "sources": [
 {
 "type": "iotsitewise",
 "iotSiteWiseConfiguration": {
 "filters": [
 {
 "filterByAssetModel": {
 "assetModelId": "asset model ID"
 }
 },
 {
 "filterByAssetModel": {
 "assetModelId": "asset model ID",
 "includeAssets": true
 }
 },
 {
 "filterByAssetModel": {
 "assetModelId": "asset model ID",
 "includeOffspring": true
 }
 }
]
 }
 }
],
 "destination": {
 "type": "s3",
 "s3Configuration": {

Run a bulk export job 550

AWS IoT SiteWise User Guide

 "location": "arn:aws:s3:::amzn-s3-demo-bucket"
 }
 }
}

Export metadata (console)

The following procedure explains the console export action:

Create an export job in the AWS IoT SiteWise console

1. Navigate to the AWS IoT SiteWise console.

2. Choose Bulk operations New from the navigation pane.

3. Choose New export to start the export process.

4. On the Export metadata page:

• Enter a name for the export job. This is the name used for the exported file in your Amazon
S3 bucket.

• Choose your resources to export, which sets the filters for the job:

• Export all assets and asset models. Use filters on assets and asset models.

• Export assets. Filter on your assets.

• Select the asset to use for the export filter.

• (Optional) Add the offspring or the associated asset model.

• Export asset models. Filter on your asset models.

• Select the asset model to use for the export filter.

• (Optional) Add the offspring, or the associated asset or both.

• Choose Next.

• Navigate to the Amazon S3 bucket:

• Choose Browse Amazon S3 to view the Amazon S3 bucket and files.

• Navigate to the Amazon S3 bucket where the file must be placed.

• Choose Next.

• Review the export job and choose Export.

5. The Bulk operations on SiteWise metadata page of the AWS IoT SiteWise console displays the
newly created import job in the Jobs progress table.Run a bulk export job 551

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

For the different ways to use filters when exporting metadata, see Export metadata examples.

Export metadata (AWS CLI)

The following procedure explains the AWS CLI export action:

Export data from AWS IoT SiteWise to Amazon S3

1. Create a JSON file with your request body. The request body specifies the source and
destination for the transfer job. The following example shows an example request body:

{
 "metadataTransferJobId": "your-transfer-job-Id",
 "sources": [{
 "type": "iotsitewise"
 }],
 "destination": {
 "type": "s3",
 "s3Configuration": {
 "location": "arn:aws:s3:::amzn-s3-demo-bucket"
 }
 }
}

Make sure to specify your Amazon S3 bucket as the destination of the metadata transfer job.

Note

This example will export all of your asset models and assets. To limit the export to
specific asset models or assets, you can include filters in your request body. For more
information about applying export filters, see Export metadata examples.

2. Save your request body file to use in the next step. In this example, the file is named
createMetadataTransferJobExport.json.

3. Invoke the CreateMetadataTransferJob by running the following AWS CLI command:

aws iottwinmaker create-metadata-transfer-job --region us-east-1 \
 --cli-input-json file://createMetadataTransferJobExport.json

Run a bulk export job 552

AWS IoT SiteWise User Guide

Replace the input JSON file createMetadataTransferJobExport.json with your own
transfer file name.

Jobs progress tracking and error handling

A bulk process job takes time to process. Each job is processed in the order of AWS IoT SiteWise
receiving the request. It is processed one-at-a-time for each account. When a job completes, the
next in queue automatically starts processing. AWS IoT SiteWise resolves the jobs asynchronously
and updates the status of each as it progresses. Each job has a status field that contains the state
of the resource and an error message, if applicable.

The state can be one of the following values:

• VALIDATING – Validating the job including the submitted file format, and its contents.

• PENDING – The job is in a queue. You can cancel jobs in this state from the AWS IoT SiteWise
console, but all other states will continue until the end.

• RUNNING – Processing the job. It is creating and updating resources as defined by the import file,
or exporting resources based on the chosen export job filters. If canceled, any resource imported
by this job is not deleted. See Review job progress and details (console) for more information.

• CANCELLING – The job is actively being cancelled.

• ERROR – One or more resources failed to process. Check the detailed job report for more
information. See Inspect error details (console) for more information.

• COMPLETED – Job completed without errors.

• CANCELLED – The job is cancelled and not queued. If you cancelled a RUNNING job, resources
already imported by this job at the time of cancellation is not deleted from AWS IoT SiteWise.

Topics

• Jobs progress tracking

• Inspect errors for AWS IoT SiteWise

Jobs progress tracking

Review job progress and details (console)

See Import metadata (console) or Export metadata (console) to start a bulk job.

Jobs progress tracking and error handling 553

AWS IoT SiteWise User Guide

Job progress overview in the AWS IoT SiteWise console:

1. Navigate to the AWS IoT SiteWise console.

2. Choose Bulk operations New from the navigation pane.

3. The Jobs progress table in the AWS IoT SiteWise console, displays the list of bulk operation
jobs.

4. The Job type column describes if it's an export or import job. The Date imported columns
display the date that the job started.

5. The Status column displays the status of the job. You can select a job to see details about the
job.

6. The selected job shows Success upon being successful, or a list of failure if the job failed. An
error description is also displayed with each resource type.

Job details overview in the AWS IoT SiteWise console:

The Jobs progress table in the AWS IoT SiteWise console, displays the list of bulk operation jobs.

1. Choose a job to see more details.

2. For an import job, the Data source ARN represents the Amazon S3 location of the import
file.

3. For an export job, the Data destination ARN represents the Amazon S3 location of the file
after the export.

4. The Status and Status reason, provide additional details on the current job. See Jobs
progress tracking and error handling for more details.

5. The Queued position represents the position of the job in the process queue. The jobs are
processed one at a time. A queued position of 1, indicates that the job will be processed next.

6. The jobs details page also displays the job progress counts.

• The job progress count types are:

i. Total resources – Indicates the total count of assets in the transfer process.

ii. Succeeded – Indicates the count of assets successfully transferred during the
process.

iii. Failed – Indicates the count assets that failed during the process.

iv. Skipped – Indicates the count of assets that were skipped during the process.

Jobs progress tracking and error handling 554

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

7. A job status of PENDING or VALIDATING, displays all the jobs progress counts as –. This
indicates that the jobs progress counts are being evaluated.

8. A job status of RUNNING displays the Total resources count, the job submitted for
processing. The detailed counts (Succeeded, Failed, and Skipped), apply to the processed
resources. The sum of the detailed counts is lesser than the Total resources count, until
the job's status is COMPLETED or ERROR.

9. If a job's status is COMPLETED or ERROR, the Total resources count equals the sum of the
detailed counts (Succeeded, Failed, and Skipped).

10. If a job's status is ERROR, check the Job failures table for details about the specific errors and
failures. See Inspect error details (console) for more details.

Review job progress and details (AWS CLI)

After starting a bulk operation, you can check or update its status using the following API actions:

• To retrieve information on a specific job, use the GetMetadataTransferJob API action.

Retrieve information with the GetMetadataTransferJob API:

1. Create and run a transfer job. Call the GetMetadataTransferJob API.

Example AWS CLI command:

aws iottwinmaker get-metadata-transfer-job \
 --metadata-transfer-job-id your_metadata_transfer_job_id \
 --region your_region

2. The GetMetadataTransferJob API returns a MetadataTransferJobProgress object
with the following parameters:

• succeededCount – Indicates the count of assets successfully transferred in the process.

• failedCount – Indicates the count of assets that failed during the process.

• skippedCount – Indicates the count of assets that were skipped during the process.

• totalCount – Indicates the total count of assets in the transfer process.

These parameters indicate the job progress status. If the status is RUNNING, they help track
the number of resources still to be processed.

Jobs progress tracking and error handling 555

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetMetadataTransferJob.html

AWS IoT SiteWise User Guide

If you encounter schema validation errors, or if failedCount is greater than or equal to 1, the
job progress state turns to ERROR. A full error report for the job is placed in your Amazon S3
bucket. See Inspect errors for AWS IoT SiteWise for more details.

• To list current jobs, use the ListMetadataTransferJobs API action.

Use a JSON file to filter the returned jobs based on their current state. See the following
procedure:

1. To specify the filters you want to use, create an AWS CLI input JSON file. want to use:

{
 "sourceType": "s3",
 "destinationType": "iottwinmaker",
 "filters": [{
 "state": "COMPLETED"
 }]
}

For a list of valid state values, see ListMetadataTransferJobsFilter in the AWS IoT
TwinMaker API Reference Guide.

2. Use the JSON file as an argument in the following AWS CLI example command:

aws iottwinmaker list-metadata-transfer-job --region your_region \
 --cli-input-json file://ListMetadataTransferJobsExample.json

• To cancel a job, use the CancelMetadataTransferJob API action. This API cancels the specific
metadata transfer job, without affecting any resources already exported or imported:

aws iottwinmaker cancel-metadata-transfer-job \
 --region your_region \
 --metadata-transfer-job-id job-to-cancel-id

Jobs progress tracking and error handling 556

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_ListMetadataTransferJobs.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_ListMetadataTransferJobsFilter.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_CancelMetadataTransferJob.html

AWS IoT SiteWise User Guide

Inspect errors for AWS IoT SiteWise

Inspect error details (console)

Error details in the AWS IoT SiteWise console:

1. Navigate to the AWS IoT SiteWise console.

2. See the Jobs progress table in AWS IoT SiteWise console for a list of bulk operation jobs.

3. Select a job to view the job details.

4. If a job's status is COMPLETED or ERROR, the Total resources count equals the sum of the
detailed counts (Succeeded, Failed, and Skipped).

5. If a job's status is ERROR, check the Job failures table for details about the specific errors and
failures.

6. The Job failures table displays the content from the job report. The Resource type field
indicates the location of the error or failures, such as the following:

• For example, a validation error in the Bulk operations template in the Resource
type field indicates that the import template and metadata schema file format don't match.
See AWS IoT SiteWise metadata transfer job schema for more information.

• A failed Asset in the Resource type field indicates that the asset is not created because
of a conflict with another asset. See Common errors for information on AWS IoT SiteWise
resource errors and conflicts.

Inspect error details (AWS CLI)

To handle and diagnose errors produced during a transfer job, see the following procedure about
using the GetMetadataTransferJob API action:

1. After creating and running a transfer job, call GetMetadataTransferJob:

aws iottwinmaker get-metadata-transfer-job \
 --metadata-transfer-job-id your_metadata_transfer_job_id \
 --region us-east-1

2. Once you see the state of the job turn to COMPLETED, you can start verifying the results of the
job.

3. When you call GetMetadataTransferJob, it returns an object called
MetadataTransferJobProgress.

Jobs progress tracking and error handling 557

https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/CommonErrors.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_GetMetadataTransferJob.html
https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_MetadataTransferJobProgress.html

AWS IoT SiteWise User Guide

The MetadataTransferJobProgress object contains the following parameters:

• failedCount: Indicates the count of assets that failed during the transfer process.

• skippedCount: Indicates the count of assets that were skipped during the transfer process.

• succeededCount: Indicates the count of assets that succeeded during the transfer process.

• totalCount: Indicates the total count of assets involved in the transfer process.

4. Additionally, the API call returns an element reportUrl, which contains a presigned URL. If
your transfer job has any issues that you need to investigate further, visit this url.

Import metadata examples

This section shows how to create metadata files to import asset models and assets with a single
bulk import operation.

Example of a bulk import

You can import many asset models and assets with a single bulk import operation. The following
example shows how to create a metadata file to do this.

In this example scenario, you have various work sites that contain industrial robots in work cells.

The example defines two asset models:

• RobotModel1: This asset model represents a particular type of robot that you have in your work
sites. The robot has a measurement property, Temperature.

• WorkCell: This asset model represents a collection of robots within one of your work sites. The
asset model defines a hierarchy, robotHierarchyOEM1, to represent the relationship that a
work cell contains robots.

The example also defines some assets:

• WorkCell1: a work cell within your Boston site

• RobotArm123456: a robot within that work cell

• RobotArm987654: another robot within that work cell

Import metadata examples 558

AWS IoT SiteWise User Guide

The following JSON metadata file defines these asset models and assets. Running a bulk import
with this metadata creates the asset models and assets within AWS IoT SiteWise, including their
hierarchical relationships.

Metadata file for import

{
 "assetModels": [
 {
 "assetModelExternalId": "Robot.OEM1.3536",
 "assetModelName": "RobotModel1",
 "assetModelProperties": [
 {
 "dataType": "DOUBLE",
 "externalId": "Temperature",
 "name": "Temperature",
 "type": {
 "measurement": {
 "processingConfig": {
 "forwardingConfig": {
 "state": "ENABLED"
 }
 }
 }
 },
 "unit": "fahrenheit"
 }
]
 },
 {
 "assetModelExternalId": "ISA95.WorkCell",
 "assetModelName": "WorkCell",
 "assetModelProperties": [],
 "assetModelHierarchies": [
 {
 "externalId": "workCellHierarchyWithOEM1Robot",
 "name": "robotHierarchyOEM1",
 "childAssetModelExternalId": "Robot.OEM1.3536"
 }
]
 }
],
 "assets": [

Import metadata examples 559

AWS IoT SiteWise User Guide

 {
 "assetExternalId": "Robot.OEM1.3536.123456",
 "assetName": "RobotArm123456",
 "assetModelExternalId": "Robot.OEM1.3536"
 },
 {
 "assetExternalId": "Robot.OEM1.3536.987654",
 "assetName": "RobotArm987654",
 "assetModelExternalId": "Robot.OEM1.3536"
 },
 {
 "assetExternalId": "BostonSite.Area1.Line1.WorkCell1",
 "assetName": "WorkCell1",
 "assetModelExternalId": "ISA95.WorkCell",
 "assetHierarchies": [
 {
 "externalId": "workCellHierarchyWithOEM1Robot",
 "childAssetExternalId": "Robot.OEM1.3536.123456"
 },
 {
 "externalId": "workCellHierarchyWithOEM1Robot",
 "childAssetExternalId": "Robot.OEM1.3536.987654"
 }
]
 }
]
}

Example of initial on-boarding of models and assets

In this example scenario, you have various work sites that contain industrial robots in a company.

The example defines multiple asset models:

• Sample_Enterprise – This asset model represents the company that the sites are part of. The
asset model defines a hierarchy, Enterprise to Site, to represent the relationship of the
sites to the enterprise.

• Sample_Site – This asset model represents the manufacturing sites within the company. The
asset model defines a hierarchy, Site to Line, to represent the relationship of the lines to the
site.

Import metadata examples 560

AWS IoT SiteWise User Guide

• Sample_Welding Line – This asset model represents an assembly line within work sites. The
asset model defines a hierarchy, Line to Robot, to represent the relationship of the robots to
the line.

• Sample_Welding Robot – This asset model represents a particular type of robot in your work
sites.

The example also defines assets based on the asset models.

• Sample_AnyCompany Motor – This asset is created from Sample_Enterprise asset model.

• Sample_Chicago – This asset is created from Sample_Site asset model.

• Sample_Welding Line 1 – This asset is created from Sample_Welding Line asset model.

• Sample_Welding Robot 1 – This asset is created from Sample_Welding Robot asset model.

• Sample_Welding Robot 2 – This asset is created from Sample_Welding Robot asset model.

The following JSON metadata file defines these asset models and assets. Running a bulk import
with this metadata creates the asset models and assets within AWS IoT SiteWise, including their
hierarchical relationships.

JSON file to onboard assets and models for import

{
 "assetModels": [
 {
 "assetModelExternalId": "External_Id_Welding_Robot",
 "assetModelName": "Sample_Welding Robot",
 "assetModelProperties": [
 {
 "dataType": "STRING",
 "externalId": "External_Id_Welding_Robot_Serial_Number",
 "name": "Serial Number",
 "type": {
 "attribute": {
 "defaultValue": "-"
 }
 },
 "unit": "-"
 },
 {

Import metadata examples 561

AWS IoT SiteWise User Guide

 "dataType": "DOUBLE",
 "externalId": "External_Id_Welding_Robot_Cycle_Count",
 "name": "CycleCount",
 "type": {
 "measurement": {}
 },
 "unit": "EA"
 },
 {
 "dataType": "DOUBLE",
 "externalId": "External_Id_Welding_Robot_Joint_1_Current",
 "name": "Joint 1 Current",
 "type": {
 "measurement": {}
 },
 "unit": "Amps"
 },
 {
 "dataType": "DOUBLE",
 "externalId": "External_Id_Welding_Robot_Joint_1_Max_Current",
 "name": "Max Joint 1 Current",
 "type": {
 "metric": {
 "expression": "max(joint1current)",
 "variables": [
 {
 "name": "joint1current",
 "value": {
 "propertyExternalId":
 "External_Id_Welding_Robot_Joint_1_Current"
 }
 }
],
 "window": {
 "tumbling": {
 "interval": "5m"
 }
 }
 }
 },
 "unit": "Amps"
 }
]
 },

Import metadata examples 562

AWS IoT SiteWise User Guide

 {
 "assetModelExternalId": "External_Id_Welding_Line",
 "assetModelName": "Sample_Welding Line",
 "assetModelProperties": [
 {
 "dataType": "DOUBLE",
 "externalId": "External_Id_Welding_Line_Availability",
 "name": "Availability",
 "type": {
 "measurement": {}
 },
 "unit": "%"
 }
],
 "assetModelHierarchies": [
 {
 "externalId": "External_Id_Welding_Line_TO_Robot",
 "name": "Line to Robot",
 "childAssetModelExternalId": "External_Id_Welding_Robot"
 }
]
 },
 {
 "assetModelExternalId": "External_Id_Site",
 "assetModelName": "Sample_Site",
 "assetModelProperties": [
 {
 "dataType": "STRING",
 "externalId": "External_Id_Site_Street_Address",
 "name": "Street Address",
 "type": {
 "attribute": {
 "defaultValue": "-"
 }
 },
 "unit": "-"
 }
],
 "assetModelHierarchies": [
 {
 "externalId": "External_Id_Site_TO_Line",
 "name": "Site to Line",
 "childAssetModelExternalId": "External_Id_Welding_Line"
 }

Import metadata examples 563

AWS IoT SiteWise User Guide

]
 },
 {
 "assetModelExternalId": "External_Id_Enterprise",
 "assetModelName": "Sample_Enterprise",
 "assetModelProperties": [
 {
 "dataType": "STRING",
 "name": "Company Name",
 "externalId": "External_Id_Enterprise_Company_Name",
 "type": {
 "attribute": {
 "defaultValue": "-"
 }
 },
 "unit": "-"
 }
],
 "assetModelHierarchies": [
 {
 "externalId": "External_Id_Enterprise_TO_Site",
 "name": "Enterprise to Site",
 "childAssetModelExternalId": "External_Id_Site"
 }
]
 }
],
 "assets": [
 {
 "assetExternalId": "External_Id_Welding_Robot_1",
 "assetName": "Sample_Welding Robot 1",
 "assetModelExternalId": "External_Id_Welding_Robot",
 "assetProperties": [
 {
 "externalId": "External_Id_Welding_Robot_Serial_Number",
 "attributeValue": "S1000"
 },
 {
 "externalId": "External_Id_Welding_Robot_Cycle_Count",
 "alias": "AnyCompany/Chicago/Welding Line/S1000/Count"
 },
 {
 "externalId": "External_Id_Welding_Robot_Joint_1_Current",
 "alias": "AnyCompany/Chicago/Welding Line/S1000/1/Current"

Import metadata examples 564

AWS IoT SiteWise User Guide

 }
]
 },
 {
 "assetExternalId": "External_Id_Welding_Robot_2",
 "assetName": "Sample_Welding Robot 2",
 "assetModelExternalId": "External_Id_Welding_Robot",
 "assetProperties": [
 {
 "externalId": "External_Id_Welding_Robot_Serial_Number",
 "attributeValue": "S2000"
 },
 {
 "externalId": "External_Id_Welding_Robot_Cycle_Count",
 "alias": "AnyCompany/Chicago/Welding Line/S2000/Count"
 },
 {
 "externalId": "External_Id_Welding_Robot_Joint_1_Current",
 "alias": "AnyCompany/Chicago/Welding Line/S2000/1/Current"
 }
]
 },
 {
 "assetExternalId": "External_Id_Welding_Line_1",
 "assetName": "Sample_Welding Line 1",
 "assetModelExternalId": "External_Id_Welding_Line",
 "assetProperties": [
 {
 "externalId": "External_Id_Welding_Line_Availability",
 "alias": "AnyCompany/Chicago/Welding Line/Availability"
 }
],
 "assetHierarchies": [
 {
 "externalId": "External_Id_Welding_Line_TO_Robot",
 "childAssetExternalId": "External_Id_Welding_Robot_1"
 },
 {
 "externalId": "External_Id_Welding_Line_TO_Robot",
 "childAssetExternalId": "External_Id_Welding_Robot_2"
 }
]
 },
 {

Import metadata examples 565

AWS IoT SiteWise User Guide

 "assetExternalId": "External_Id_Site_Chicago",
 "assetName": "Sample_Chicago",
 "assetModelExternalId": "External_Id_Site",
 "assetHierarchies": [
 {
 "externalId": "External_Id_Site_TO_Line",
 "childAssetExternalId": "External_Id_Welding_Line_1"
 }
]
 },
 {
 "assetExternalId": "External_Id_Enterprise_AnyCompany",
 "assetName": "Sample_AnyEnterprise Motor",
 "assetModelExternalId": "External_Id_Enterprise",
 "assetHierarchies": [
 {
 "externalId": "External_Id_Enterprise_TO_Site",
 "childAssetExternalId": "External_Id_Site_Chicago"
 }
]
 }
]
}

The following screenshot is of models that display in the AWS IoT SiteWise console after you run
the previous code example.

The following screenshot is of models, assets, and hierarchies that display in the AWS IoT SiteWise
console after you run the previous code example.

Import metadata examples 566

AWS IoT SiteWise User Guide

Example of onboarding additional assets

This example defines additional assets to import to an existing asset model in your account:

• Sample_Welding Line 2 – This asset is created from Sample_Welding Line asset model.

• Sample_Welding Robot 3– This asset is created from Sample_Welding Robot asset model.

• Sample_Welding Robot 4– This asset is created from Sample_Welding Robot asset model.

To create the initial assets for this example, see Example of initial on-boarding of models and
assets.

The following JSON metadata file defines these asset models and assets. Running a bulk import
with this metadata creates the asset models and assets within AWS IoT SiteWise, including their
hierarchical relationships.

JSON file to onboard additional assets

{
 "assets": [
 {
 "assetExternalId": "External_Id_Welding_Robot_3",
 "assetName": "Sample_Welding Robot 3",
 "assetModelExternalId": "External_Id_Welding_Robot",
 "assetProperties": [
 {
 "externalId": "External_Id_Welding_Robot_Serial_Number",
 "attributeValue": "S3000"

Import metadata examples 567

AWS IoT SiteWise User Guide

 },
 {
 "externalId": "External_Id_Welding_Robot_Cycle_Count",
 "alias": "AnyCompany/Chicago/Welding Line/S3000/Count"
 },
 {
 "externalId": "External_Id_Welding_Robot_Joint_1_Current",
 "alias": "AnyCompany/Chicago/Welding Line/S3000/1/Current"
 }
]
 },
 {
 "assetExternalId": "External_Id_Welding_Robot_4",
 "assetName": "Sample_Welding Robot 4",
 "assetModelExternalId": "External_Id_Welding_Robot",
 "assetProperties": [
 {
 "externalId": "External_Id_Welding_Robot_Serial_Number",
 "attributeValue": "S4000"
 },
 {
 "externalId": "External_Id_Welding_Robot_Cycle_Count",
 "alias": "AnyCompany/Chicago/Welding Line/S4000/Count"
 },
 {
 "externalId": "External_Id_Welding_Robot_Joint_1_Current",
 "alias": "AnyCompany/Chicago/Welding Line/S4000/1/Current"
 }
]
 },
 {
 "assetExternalId": "External_Id_Welding_Line_1",
 "assetName": "Sample_Welding Line 1",
 "assetModelExternalId": "External_Id_Welding_Line",
 "assetHierarchies": [
 {
 "externalId": "External_Id_Welding_Line_TO_Robot",
 "childAssetExternalId": "External_Id_Welding_Robot_1"
 },
 {
 "externalId": "External_Id_Welding_Line_TO_Robot",
 "childAssetExternalId": "External_Id_Welding_Robot_2"
 },
 {

Import metadata examples 568

AWS IoT SiteWise User Guide

 "externalId": "External_Id_Welding_Line_TO_Robot",
 "childAssetExternalId": "External_Id_Welding_Robot_3"
 }
]
 },
 {
 "assetExternalId": "External_Id_Welding_Line_2",
 "assetName": "Sample_Welding Line 2",
 "assetModelExternalId": "External_Id_Welding_Line",
 "assetHierarchies": [
 {
 "externalId": "External_Id_Welding_Line_TO_Robot",
 "childAssetExternalId": "External_Id_Welding_Robot_4"
 }
]
 },
 {
 "assetExternalId": "External_Id_Site_Chicago",
 "assetName": "Sample_Chicago",
 "assetModelExternalId": "External_Id_Site",
 "assetHierarchies": [
 {
 "externalId": "External_Id_Site_TO_Line",
 "childAssetExternalId": "External_Id_Welding_Line_1"
 },
 {
 "externalId": "External_Id_Site_TO_Line",
 "childAssetExternalId": "External_Id_Welding_Line_2"
 }
]
 }
]
}

The following screenshot is of models, assets, and hierarchies that display in the AWS IoT SiteWise
console after you run the previous code example.

Import metadata examples 569

AWS IoT SiteWise User Guide

Example of onboarding new properties

This example defines new properties on existing asset models. See Example of onboarding
additional assets to onboard additional assets and models.

• Joint 1 Temperature – This property is added to the Sample_Welding Robot asset model.
This new property will also propagate to each asset created from the Sample_Welding Robot
asset model.

To add a new property to an existing asset model, see the following JSON metadata file example.
As shown in the JSON, the entire existing Sample_Welding Robot asset model definition must
be provided along with the new property. If the entire property list from the existing definition is
not provided, AWS IoT SiteWise deletes the omitted properties.

JSON file to onboard new properties

This example adds a new property Joint 1 Temperature to the asset model.

{
 "assetModels": [
 {
 "assetModelExternalId": "External_Id_Welding_Robot",
 "assetModelName": "Sample_Welding Robot",
 "assetModelProperties": [

Import metadata examples 570

AWS IoT SiteWise User Guide

 {
 "dataType": "STRING",
 "externalId": "External_Id_Welding_Robot_Serial_Number",
 "name": "Serial Number",
 "type": {
 "attribute": {
 "defaultValue": "-"
 }
 },
 "unit": "-"
 },
 {
 "dataType": "DOUBLE",
 "externalId": "External_Id_Welding_Robot_Cycle_Count",
 "name": "CycleCount",
 "type": {
 "measurement": {}
 },
 "unit": "EA"
 },
 {
 "dataType": "DOUBLE",
 "externalId": "External_Id_Welding_Robot_Joint_1_Current",
 "name": "Joint 1 Current",
 "type": {
 "measurement": {}
 },
 "unit": "Amps"
 },
 {
 "dataType": "DOUBLE",
 "externalId": "External_Id_Welding_Robot_Joint_1_Max_Current",
 "name": "Max Joint 1 Current",
 "type": {
 "metric": {
 "expression": "max(joint1current)",
 "variables": [
 {
 "name": "joint1current",
 "value": {
 "propertyExternalId":
 "External_Id_Welding_Robot_Joint_1_Current"
 }
 }

Import metadata examples 571

AWS IoT SiteWise User Guide

],
 "window": {
 "tumbling": {
 "interval": "5m"
 }
 }
 }
 },
 "unit": "Amps"
 },
 {
 "dataType": "DOUBLE",
 "externalId": "External_Id_Welding_Robot_Joint_1_Temperature",
 "name": "Joint 1 Temperature",
 "type": {
 "measurement": {}
 },
 "unit": "degC"
 }
]
 }
]
}

Example of managing data streams

This example shows two ways of managing data streams associated with an asset property. When
renaming an asset property alias, there are two options for the historical data currently stored in
the asset property's data stream.

• Option one – Keep the current data stream and rename the alias alone, allowing the historical
data to be accessible with the new alias.

In the JSON metadata file example, the asset property with ID
External_Id_Welding_Robot_Cycle_Count changes its alias to AnyCompany/Chicago/
Welding Line/S3000/Count-Updated. The historical data for this asset property remains
the same after this change.

• Option two – Assign a new data stream to the asset property which is accessible with the new
alias. The old data stream along with its historical data is still accessible with the old alias, but
not associated with any asset property.

Import metadata examples 572

AWS IoT SiteWise User Guide

In the JSON metadata file example, the asset property with ID
External_Id_Welding_Robot_Joint_1_Current changes its alias to AnyCompany/
Chicago/Welding Line/S4999/1/Current. This time the additional value
retainDataOnAliasChange is present and set to False. With this setting, the original data
stream is disassociated from the asset property, and a new data stream is created containing no
historical data.

To access the old data stream with the original historical data, in the AWS Console Home, go to
the Data Streams page and search for the old alias AnyCompany/Chicago/Welding Line/
S3000/1/Current.

JSON file to update property aliases

{
 "assetExternalId": "External_Id_Welding_Robot_3",
 "assetName": "Sample_Welding Robot 3",
 "assetModelExternalId": "External_Id_Welding_Robot",
 "assetProperties": [
 {
 "externalId": "External_Id_Welding_Robot_Serial_Number",
 "attributeValue": "S3000"
 },
 {
 "externalId": "External_Id_Welding_Robot_Cycle_Count",
 "alias": "AnyCompany/Chicago/Welding Line/S3000/Count-Updated"
 },
 {
 "externalId": "External_Id_Welding_Robot_Joint_1_Current",
 "alias": "AnyCompany/Chicago/Welding Line/S4999/1/Current",
 "retainDataOnAliasChange": "FALSE"
 }
]
}

Export metadata examples

When you perform a bulk export of your AWS IoT SiteWise content to Amazon S3, you can specify
filters to limit which specific asset models and assets you'd like to export.

Export metadata examples 573

AWS IoT SiteWise User Guide

You specify the filters in an iotSiteWiseConfiguration section within the sources section of
your request body.

Note

You can include multiple filters. The bulk operation will export any asset model or asset
that matches any of the filters.
If you don't provide any filters, then the operation will export all of your asset models and
assets.

{
 "metadataTransferJobId": "your-transfer-job-id",
 "sources": [{
 "type": "iotsitewise",
 "iotSiteWiseConfiguration": {
 "filters": [{
 list of filters
 }]
 }
 }],
 "destination": {
 "type": "s3",
 "s3Configuration": {
 "location": "arn:aws:s3:::amzn-s3-demo-bucket"
 }
 }
}

Filter by asset model

You can filter a specific asset model. You can also include all assets using that model, or all asset
models within its hierarchy. You can't include both assets and hierarchy.

For more information about hierarchies, see Define asset model hierarchies.

Asset model

This filter includes the specified asset model:

"filterByAssetModel": {

Export metadata examples 574

AWS IoT SiteWise User Guide

 "assetModelId": "asset model ID"
}

Asset model and its assets

This filter includes the specified asset model, along with all assets using that asset model:

"filterByAssetModel": {
 "assetModelId": "asset model ID",
 "includeAssets": true
}

Asset model and its hierarchy

This filter includes the specified asset model, along with all associated asset models in its
hierarchy:

"filterByAssetModel": {
 "assetModelId": "asset model ID",
 "includeOffspring": true
}

Filter by asset

You can filter a specific asset. You can also include its asset model, or all associated assets within its
hierarchy. You can't include both asset model and hierarchy.

For more information about hierarchies, see Define asset model hierarchies.

Asset

This filter includes the specified asset:

"filterByAsset": {
 "assetId": "asset ID"
}

Asset and its asset model

This filter includes the specified asset, along with the asset model it uses:

"filterByAsset": {

Export metadata examples 575

AWS IoT SiteWise User Guide

 "assetId": "asset ID",
 "includeAssetModel": true
}

Asset and its hierarchy

This filter includes the specified asset, along with all associated assets in its hierarchy:

"filterByAsset": {
 "assetId": "asset ID",
 "includeOffspring": true
}

AWS IoT SiteWise metadata transfer job schema

Use the AWS IoT SiteWise metadata transfer job schema for reference when performing your own
bulk import and export operations:

{
 "$schema": "https://json-schema.org/draft/2020-12/schema",
 "title": "IoTSiteWise",
 "description": "Metadata transfer job resource schema for IoTSiteWise",
 "definitions": {
 "Name": {
 "type": "string",
 "minLength": 1,
 "maxLength": 256,
 "pattern": "[^\\u0000-\\u001F\\u007F]+"
 },
 "Description": {
 "type": "string",
 "minLength": 1,
 "maxLength": 2048,
 "pattern": "[^\\u0000-\\u001F\\u007F]+"
 },
 "ID": {
 "type": "string",
 "minLength": 36,
 "maxLength": 36,
 "pattern": "^[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$"
 },
 "ExternalId": {

Metadata transfer job schema 576

AWS IoT SiteWise User Guide

 "type": "string",
 "minLength": 2,
 "maxLength": 128,
 "pattern": "[a-zA-Z0-9_][a-zA-Z_\\-0-9.:]*[a-zA-Z0-9_]+"
 },
 "AttributeValue": {
 "description": "The value of the property attribute.",
 "type": "string",
 "pattern": "[^\\u0000-\\u001F\\u007F]+"
 },
 "PropertyUnit": {
 "description": "The unit of measure (such as Newtons or RPM) of the asset
 property.",
 "type": "string",
 "minLength": 1,
 "maxLength": 256,
 "pattern": "[^\\u0000-\\u001F\\u007F]+"
 },
 "PropertyAlias": {
 "description": "The property alias that identifies the property.",
 "type": "string",
 "minLength": 1,
 "maxLength": 1000,
 "pattern": "[^\\u0000-\\u001F\\u007F]+"
 },
 "AssetProperty": {
 "description": "The asset property's definition, alias, unit, and notification
 state.",
 "type": "object",
 "additionalProperties": false,
 "anyOf": [
 {
 "required": [
 "id"
]
 },
 {
 "required": [
 "externalId"
]
 }
],
 "properties": {
 "id": {

Metadata transfer job schema 577

AWS IoT SiteWise User Guide

 "description": "The ID of the asset property.",
 "$ref": "#/definitions/ID"
 },
 "externalId": {
 "description": "The ExternalID of the asset property.",
 "$ref": "#/definitions/ExternalId"
 },
 "alias": {
 "$ref": "#/definitions/PropertyAlias"
 },
 "unit": {
 "$ref": "#/definitions/PropertyUnit"
 },
 "attributeValue": {
 "$ref": "#/definitions/AttributeValue"
 },
 "retainDataOnAliasChange": {
 "type": "string",
 "default": "TRUE",
 "enum": [
 "TRUE",
 "FALSE"
]
 },
 "propertyNotificationState": {
 "description": "The MQTT notification state (ENABLED or DISABLED) for this
 asset property.",
 "type": "string",
 "enum": [
 "ENABLED",
 "DISABLED"
]
 }
 }
 },
 "AssetHierarchy": {
 "description": "A hierarchy specifies allowed parent/child asset relationships.",
 "type": "object",
 "additionalProperties": false,
 "anyOf": [
 {
 "required": [
 "id",
 "childAssetId"

Metadata transfer job schema 578

AWS IoT SiteWise User Guide

]
 },
 {
 "required": [
 "externalId",
 "childAssetId"
]
 },
 {
 "required": [
 "id",
 "childAssetExternalId"
]
 },
 {
 "required": [
 "externalId",
 "childAssetExternalId"
]
 }
],
 "properties": {
 "id": {
 "description": "The ID of a hierarchy in the parent asset's model.",
 "$ref": "#/definitions/ID"
 },
 "externalId": {
 "description": "The ExternalID of a hierarchy in the parent asset's model.",
 "$ref": "#/definitions/ExternalId"
 },
 "childAssetId": {
 "description": "The ID of the child asset to be associated.",
 "$ref": "#/definitions/ID"
 },
 "childAssetExternalId": {
 "description": "The ExternalID of the child asset to be associated.",
 "$ref": "#/definitions/ExternalId"
 }
 }
 },
 "Tag": {
 "type": "object",
 "additionalProperties": false,
 "required": [

Metadata transfer job schema 579

AWS IoT SiteWise User Guide

 "key",
 "value"
],
 "properties": {
 "key": {
 "type": "string"
 },
 "value": {
 "type": "string"
 }
 }
 },
 "AssetModelType": {
 "type": "string",
 "default": null,
 "enum": [
 "ASSET_MODEL",
 "COMPONENT_MODEL"
]
 },
 "AssetModelCompositeModel": {
 "description": "Contains a composite model definition in an asset model. This
 composite model definition is applied to all assets created from the asset model.",
 "type": "object",
 "additionalProperties": false,
 "anyOf": [
 {
 "required": [
 "id"
]
 },
 {
 "required": [
 "externalId"
]
 }
],
 "required": [
 "name",
 "type"
],
 "properties": {
 "id": {
 "description": "The ID of the asset model composite model.",

Metadata transfer job schema 580

AWS IoT SiteWise User Guide

 "$ref": "#/definitions/ID"
 },
 "externalId": {
 "description": "The ExternalID of the asset model composite model.",
 "$ref": "#/definitions/ExternalId"
 },
 "parentId": {
 "description": "The ID of the parent asset model composite model.",
 "$ref": "#/definitions/ID"
 },
 "parentExternalId": {
 "description": "The ExternalID of the parent asset model composite model.",
 "$ref": "#/definitions/ExternalId"
 },
 "composedAssetModelId": {
 "description": "The ID of the composed asset model.",
 "$ref": "#/definitions/ID"
 },
 "composedAssetModelExternalId": {
 "description": "The ExternalID of the composed asset model.",
 "$ref": "#/definitions/ExternalId"
 },
 "description": {
 "description": "A description for the asset composite model.",
 "$ref": "#/definitions/Description"
 },
 "name": {
 "description": "A unique, friendly name for the asset composite model.",
 "$ref": "#/definitions/Name"
 },
 "type": {
 "description": "The type of the composite model. For alarm composite models,
 this type is AWS/ALARM.",
 "$ref": "#/definitions/Name"
 },
 "properties": {
 "description": "The property definitions of the asset model.",
 "type": "array",
 "items": {
 "$ref": "#/definitions/AssetModelProperty"
 }
 }
 }
 },

Metadata transfer job schema 581

AWS IoT SiteWise User Guide

 "AssetModelProperty": {
 "description": "Contains information about an asset model property.",
 "type": "object",
 "additionalProperties": false,
 "anyOf": [
 {
 "required": [
 "id"
]
 },
 {
 "required": [
 "externalId"
]
 }
],
 "required": [
 "name",
 "dataType",
 "type"
],
 "properties": {
 "id": {
 "description": "The ID of the asset model property.",
 "$ref": "#/definitions/ID"
 },
 "externalId": {
 "description": "The ExternalID of the asset model property.",
 "$ref": "#/definitions/ExternalId"
 },
 "name": {
 "description": "The name of the asset model property.",
 "$ref": "#/definitions/Name"
 },
 "dataType": {
 "description": "The data type of the asset model property.",
 "$ref": "#/definitions/DataType"
 },
 "dataTypeSpec": {
 "description": "The data type of the structure for this property.",
 "$ref": "#/definitions/Name"
 },
 "unit": {

Metadata transfer job schema 582

AWS IoT SiteWise User Guide

 "description": "The unit of the asset model property, such as Newtons or
 RPM.",
 "type": "string",
 "minLength": 1,
 "maxLength": 256,
 "pattern": "[^\\u0000-\\u001F\\u007F]+"
 },
 "type": {
 "description": "The property type",
 "$ref": "#/definitions/PropertyType"
 }
 }
 },
 "DataType": {
 "type": "string",
 "enum": [
 "STRING",
 "INTEGER",
 "DOUBLE",
 "BOOLEAN",
 "STRUCT"
]
 },
 "PropertyType": {
 "description": "Contains a property type, which can be one of attribute,
 measurement, metric, or transform.",
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "attribute": {
 "$ref": "#/definitions/Attribute"
 },
 "transform": {
 "$ref": "#/definitions/Transform"
 },
 "metric": {
 "$ref": "#/definitions/Metric"
 },
 "measurement": {
 "$ref": "#/definitions/Measurement"
 }
 }
 },
 "Attribute": {

Metadata transfer job schema 583

AWS IoT SiteWise User Guide

 "type": "object",
 "additionalProperties": false,
 "properties": {
 "defaultValue": {
 "type": "string",
 "pattern": "[^\\u0000-\\u001F\\u007F]+"
 }
 }
 },
 "Transform": {
 "type": "object",
 "additionalProperties": false,
 "required": [
 "expression",
 "variables"
],
 "properties": {
 "expression": {
 "description": "The mathematical expression that defines the transformation
 function.",
 "type": "string",
 "minLength": 1,
 "maxLength": 1024
 },
 "variables": {
 "description": "The list of variables used in the expression.",
 "type": "array",
 "items": {
 "$ref": "#/definitions/ExpressionVariable"
 }
 },
 "processingConfig": {
 "$ref": "#/definitions/TransformProcessingConfig"
 }
 }
 },
 "TransformProcessingConfig": {
 "description": "The processing configuration for the given transform property.",
 "type": "object",
 "additionalProperties": false,
 "required": [
 "computeLocation"
],
 "properties": {

Metadata transfer job schema 584

AWS IoT SiteWise User Guide

 "computeLocation": {
 "description": "The compute location for the given transform property.",
 "$ref": "#/definitions/ComputeLocation"
 },
 "forwardingConfig": {
 "description": "The forwarding configuration for a given property.",
 "$ref": "#/definitions/ForwardingConfig"
 }
 }
 },
 "Metric": {
 "type": "object",
 "additionalProperties": false,
 "required": [
 "expression",
 "variables",
 "window"
],
 "properties": {
 "expression": {
 "description": "The mathematical expression that defines the metric
 aggregation function.",
 "type": "string",
 "minLength": 1,
 "maxLength": 1024
 },
 "variables": {
 "description": "The list of variables used in the expression.",
 "type": "array",
 "items": {
 "$ref": "#/definitions/ExpressionVariable"
 }
 },
 "window": {
 "description": "The window (time interval) over which AWS IoT SiteWise
 computes the metric's aggregation expression",
 "$ref": "#/definitions/MetricWindow"
 },
 "processingConfig": {
 "$ref": "#/definitions/MetricProcessingConfig"
 }
 }
 },
 "MetricProcessingConfig": {

Metadata transfer job schema 585

AWS IoT SiteWise User Guide

 "description": "The processing configuration for the metric.",
 "type": "object",
 "additionalProperties": false,
 "required": [
 "computeLocation"
],
 "properties": {
 "computeLocation": {
 "description": "The compute location for the given metric property.",
 "$ref": "#/definitions/ComputeLocation"
 }
 }
 },
 "ComputeLocation": {
 "type": "string",
 "enum": [
 "EDGE",
 "CLOUD"
]
 },
 "ForwardingConfig": {
 "type": "object",
 "additionalProperties": false,
 "required": [
 "state"
],
 "properties": {
 "state": {
 "type": "string",
 "enum": [
 "ENABLED",
 "DISABLED"
]
 }
 }
 },
 "MetricWindow": {
 "description": "Contains a time interval window used for data aggregate
 computations (for example, average, sum, count, and so on).",
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "tumbling": {
 "description": "The tumbling time interval window.",

Metadata transfer job schema 586

AWS IoT SiteWise User Guide

 "type": "object",
 "additionalProperties": false,
 "required": [
 "interval"
],
 "properties": {
 "interval": {
 "description": "The time interval for the tumbling window.",
 "type": "string",
 "minLength": 2,
 "maxLength": 23
 },
 "offset": {
 "description": "The offset for the tumbling window.",
 "type": "string",
 "minLength": 2,
 "maxLength": 25
 }
 }
 }
 }
 },
 "ExpressionVariable": {
 "type": "object",
 "additionalProperties": false,
 "required": [
 "name",
 "value"
],
 "properties": {
 "name": {
 "description": "The friendly name of the variable to be used in the
 expression.",
 "type": "string",
 "minLength": 1,
 "maxLength": 64,
 "pattern": "^[a-z][a-z0-9_]*$"
 },
 "value": {
 "description": "The variable that identifies an asset property from which to
 use values.",
 "$ref": "#/definitions/VariableValue"
 }
 }

Metadata transfer job schema 587

AWS IoT SiteWise User Guide

 },
 "VariableValue": {
 "type": "object",
 "additionalProperties": false,
 "anyOf": [
 {
 "required": [
 "propertyId"
]
 },
 {
 "required": [
 "propertyExternalId"
]
 }
],
 "properties": {
 "propertyId": {
 "$ref": "#/definitions/ID"
 },
 "propertyExternalId": {
 "$ref": "#/definitions/ExternalId"
 },
 "hierarchyId": {
 "$ref": "#/definitions/ID"
 },
 "hierarchyExternalId": {
 "$ref": "#/definitions/ExternalId"
 }
 }
 },
 "Measurement": {
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "processingConfig": {
 "$ref": "#/definitions/MeasurementProcessingConfig"
 }
 }
 },
 "MeasurementProcessingConfig": {
 "type": "object",
 "additionalProperties": false,
 "required": [

Metadata transfer job schema 588

AWS IoT SiteWise User Guide

 "forwardingConfig"
],
 "properties": {
 "forwardingConfig": {
 "description": "The forwarding configuration for the given measurement
 property.",
 "$ref": "#/definitions/ForwardingConfig"
 }
 }
 },
 "AssetModelHierarchy": {
 "description": "Contains information about an asset model hierarchy.",
 "type": "object",
 "additionalProperties": false,
 "anyOf": [
 {
 "required": [
 "id",
 "childAssetModelId"
]
 },
 {
 "required": [
 "id",
 "childAssetModelExternalId"
]
 },
 {
 "required": [
 "externalId",
 "childAssetModelId"
]
 },
 {
 "required": [
 "externalId",
 "childAssetModelExternalId"
]
 }
],
 "required": [
 "name"
],
 "properties": {

Metadata transfer job schema 589

AWS IoT SiteWise User Guide

 "id": {
 "description": "The ID of the asset model hierarchy.",
 "$ref": "#/definitions/ID"
 },
 "externalId": {
 "description": "The ExternalID of the asset model hierarchy.",
 "$ref": "#/definitions/ExternalId"
 },
 "name": {
 "description": "The name of the asset model hierarchy.",
 "$ref": "#/definitions/Name"
 },
 "childAssetModelId": {
 "description": "The ID of the asset model. All assets in this hierarchy must
 be instances of the child AssetModelId asset model.",
 "$ref": "#/definitions/ID"
 },
 "childAssetModelExternalId": {
 "description": "The ExternalID of the asset model. All assets in this
 hierarchy must be instances of the child AssetModelId asset model.",
 "$ref": "#/definitions/ExternalId"
 }
 }
 },
 "AssetModel": {
 "type": "object",
 "additionalProperties": false,
 "anyOf": [
 {
 "required": [
 "assetModelId"
]
 },
 {
 "required": [
 "assetModelExternalId"
]
 }
],
 "required": [
 "assetModelName"
],
 "properties": {
 "assetModelId": {

Metadata transfer job schema 590

AWS IoT SiteWise User Guide

 "description": "The ID of the asset model.",
 "$ref": "#/definitions/ID"
 },
 "assetModelExternalId": {
 "description": "The ID of the asset model.",
 "$ref": "#/definitions/ExternalId"
 },
 "assetModelName": {
 "description": "A unique, friendly name for the asset model.",
 "$ref": "#/definitions/Name"
 },
 "assetModelDescription": {
 "description": "A description for the asset model.",
 "$ref": "#/definitions/Description"
 },
 "assetModelType": {
 "description": "The type of the asset model.",
 "$ref": "#/definitions/AssetModelType"
 },
 "assetModelProperties": {
 "description": "The property definitions of the asset model.",
 "type": "array",
 "items": {
 "$ref": "#/definitions/AssetModelProperty"
 }
 },
 "assetModelCompositeModels": {
 "description": "The composite asset models that are part of this asset model.
 Composite asset models are asset models that contain specific properties.",
 "type": "array",
 "items": {
 "$ref": "#/definitions/AssetModelCompositeModel"
 }
 },
 "assetModelHierarchies": {
 "description": "The hierarchy definitions of the asset model. Each hierarchy
 specifies an asset model whose assets can be children of any other assets created from
 this asset model.",
 "type": "array",
 "items": {
 "$ref": "#/definitions/AssetModelHierarchy"
 }
 },
 "tags": {

Metadata transfer job schema 591

AWS IoT SiteWise User Guide

 "description": "A list of key-value pairs that contain metadata for the asset
 model.",
 "type": "array",
 "items": {
 "$ref": "#/definitions/Tag"
 }
 }
 }
 },
 "Asset": {
 "type": "object",
 "additionalProperties": false,
 "anyOf": [
 {
 "required": [
 "assetId",
 "assetModelId"
]
 },
 {
 "required": [
 "assetExternalId",
 "assetModelId"
]
 },
 {
 "required": [
 "assetId",
 "assetModelExternalId"
]
 },
 {
 "required": [
 "assetExternalId",
 "assetModelExternalId"
]
 }
],
 "required": [
 "assetName"
],
 "properties": {
 "assetId": {
 "description": "The ID of the asset",

Metadata transfer job schema 592

AWS IoT SiteWise User Guide

 "$ref": "#/definitions/ID"
 },
 "assetExternalId": {
 "description": "The external ID of the asset",
 "$ref": "#/definitions/ExternalId"
 },
 "assetModelId": {
 "description": "The ID of the asset model from which to create the asset.",
 "$ref": "#/definitions/ID"
 },
 "assetModelExternalId": {
 "description": "The ExternalID of the asset model from which to create the
 asset.",
 "$ref": "#/definitions/ExternalId"
 },
 "assetName": {
 "description": "A unique, friendly name for the asset.",
 "$ref": "#/definitions/Name"
 },
 "assetDescription": {
 "description": "A description for the asset",
 "$ref": "#/definitions/Description"
 },
 "assetProperties": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/AssetProperty"
 }
 },
 "assetHierarchies": {
 "type": "array",
 "items": {
 "$ref": "#/definitions/AssetHierarchy"
 }
 },
 "tags": {
 "description": "A list of key-value pairs that contain metadata for the
 asset.",
 "type": "array",
 "uniqueItems": false,
 "items": {
 "$ref": "#/definitions/Tag"
 }
 }

Metadata transfer job schema 593

AWS IoT SiteWise User Guide

 }
 }
 },
 "additionalProperties": false,
 "properties": {
 "assetModels": {
 "type": "array",
 "uniqueItems": false,
 "items": {
 "$ref": "#/definitions/AssetModel"
 }
 },
 "assets": {
 "type": "array",
 "uniqueItems": false,
 "items": {
 "$ref": "#/definitions/Asset"
 }
 }
 }
}

Metadata transfer job schema 594

AWS IoT SiteWise User Guide

Monitor data with alarms in AWS IoT SiteWise

You can configure alarms for your data to alert your team when equipment or processes perform
sub-optimally. Optimal performance of a machine or process means that the values for certain
metrics should be within a range of high and low limits. When these metrics are outside their
operating range, equipment operators must be notified so they can fix the issue. Use alarms to
quickly identify issues and notify operators to maximize performance of your equipment and
processes.

Topics

• Alarm types

• Alarm states

• Alarm state properties

• Define alarms on asset models in AWS IoT SiteWise

• Configure alarms on assets in AWS IoT SiteWise

• Respond to alarms in AWS IoT SiteWise

• Ingest an external alarm state in AWS IoT SiteWise

Alarm types

You can define alarms that detect in the AWS Cloud and alarms that you detect with external
processes. AWS IoT SiteWise supports the following types of alarms:

• AWS IoT Events alarms

Note

End of support notice: On May 20, 2026, AWS will end support for AWS IoT Events. After
May 20, 2026, you will no longer be able to access the AWS IoT Events console or AWS
IoT Events resources. For more information, see AWS IoT Events end of support.

AWS IoT Events alarms are alarms that detect in AWS IoT Events. AWS IoT SiteWise sends asset
property values to an alarm model in AWS IoT Events. Then, AWS IoT Events sends the alarm
state to AWS IoT SiteWise. You can configure options such as when the alarm detects and whom

Alarm types 595

https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-end-of-support.html

AWS IoT SiteWise User Guide

to notify when the alarm state changes. You can also define the AWS IoT Events actions that
occur when the alarm state changes.

Alarms in AWS IoT Events are instances of alarm models. The alarm model specifies the
threshold and severity of the alarm, what to do when the alarm state changes, and more.
When you configure each trait of the alarm model, you specify an attribute property from the
asset model that the alarm monitors. All assets based on the asset model use the value of the
attribute when AWS IoT Events evaluates that trait of the alarm. For more information, see Using
alarms in the AWS IoT Events Developer Guide.

You can respond to an AWS IoT Events alarm when it changes state. For example, you can
acknowledge or snooze an alarm when it becomes active. You can also enable, disable, and reset
alarms.

SiteWise Monitor users can visualize, configure, and respond to AWS IoT Events alarms in
SiteWise Monitor portals. For more information, see Monitoring with alarms in the AWS IoT
SiteWise Monitor Application Guide.

Note

AWS IoT Events charges apply to evaluate these alarms and transfer data between AWS
IoT SiteWise and AWS IoT Events. For more information, see AWS IoT Events pricing.

• External alarms

External alarms are alarms that you evaluate outside of AWS IoT SiteWise. Use external alarms
if you have a data source that reports alarm state. The external alarm contains a measurement
property to which you ingest the alarm state data.

You can't acknowledge or snooze an external alarm when it changes state.

SiteWise Monitor users can see the state of external alarms in SiteWise Monitor portals, but they
can't configure or respond to these alarms.

AWS IoT SiteWise doesn't evaluate the state of external alarms.

Alarm types 596

https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-supported-actions.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-alarms.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-alarms.html
https://docs.aws.amazon.com/iot-sitewise/latest/appguide/monitor-alarms.html
https://aws.amazon.com/iot-events/pricing/

AWS IoT SiteWise User Guide

Alarm states

Industrial alarms include information about the state of the equipment or process they monitor
and (optional) information about the operator's response to the alarm state.

When you define an AWS IoT Events alarm, you specify whether or not to enable the acknowledge
flow. The acknowledge flow is enabled by default. When you enable this option, operators can
acknowledge the alarm and leave a note with details about the alarm or the actions they took
to address it. If an operator doesn't acknowledge an active alarm before it becomes inactive, the
alarm becomes latched. The latched state indicates that the alarm became active and wasn't
acknowledged, so an operator needs to check on the equipment or process and acknowledge the
latched alarm.

Alarms have the following states:

• Normal (Normal) – The alarm is enabled but inactive. The industrial process or equipment
operates as expected.

• Active (Active) – The alarm is active. The industrial process or equipment is outside its
operating range and needs attention.

• Acknowledged (Acknowledged) – An operator acknowledged the state of the alarm.

This state applies to only alarms where you enable the acknowledge flow.

• Latched (Latched) – The alarm returned to normal but was active and no operator
acknowledged it. The industrial process or equipment requires attention from an operator to
reset the alarm to normal.

This state applies to only alarms where you enable the acknowledge flow.

• Snoozed (SnoozeDisabled) – The alarm is disabled because an operator snoozed the alarm.
The operator defines the duration for which the alarm snoozes. After that duration, the alarm
returns to normal state.

• Disabled (Disabled) – The alarm is disabled and won't detect.

Alarm state properties

AWS IoT SiteWise stores alarm state data as a JSON object serialized to a string. This object
contains the state and additional information about the alarm, such as operator response actions
and the rule that the alarm evaluates.

Alarm states 597

AWS IoT SiteWise User Guide

You identify the alarm state property by its name and structure type, AWS/ALARM_STATE. For
more information, see Define alarms on asset models in AWS IoT SiteWise.

The alarm state data object contains the following information:

stateName

The state of the alarm. For more information, see Alarm states.

Data type: STRING

customerAction

(Optional) An object that contains information about an operator's response to the alarm.
Operators can enable, disable, acknowledge, and snooze alarms. When they do so, the alarm
state data includes their response and the note that they can leave when they respond. This
object contains the following information:

actionName

The name of the action that the operator takes to respond to the alarm. This value contains
one of the following strings:

• ENABLE

• DISABLE

• SNOOZE

• ACKNOWLEDGE

• RESET

Data type: STRING

enable

(Optional) An object that is present in customerAction when the operator enables the
alarm. When an operator enables the alarm, the alarm state changes to Normal. This object
contains the following information:

note

(Optional) The note that the customer leaves when they enable the alarm.

Data type: STRING

Maximum length: 128 characters

Alarm state properties 598

AWS IoT SiteWise User Guide

disable

(Optional) An object that is present in customerAction when the operator disables the
alarm. When an operator enables the alarm, the alarm state changes to Disabled. This
object contains the following information:

note

(Optional) The note that the customer leaves when they disable the alarm.

Data type: STRING

Maximum length: 128 characters

acknowledge

(Optional) An object that is present in customerAction when the operator acknowledges
the alarm. When an operator enables the alarm, the alarm state changes to Acknowledged.
This object contains the following information:

note

(Optional) The note that the customer leaves when they acknowledge the alarm.

Data type: STRING

Maximum length: 128 characters

snooze

(Optional) An object that is present in customerAction when the operator snoozes the
alarm. When an operator enables the alarm, the alarm state changes to SnoozeDisabled.
This object contains the following information:

snoozeDuration

The duration in seconds that the operator snoozes the alarm. The alarm changes to
Normal state after this duration.

Data type: INTEGER

note

(Optional) The note that the customer leaves when they snooze the alarm.

Data type: STRING

Alarm state properties 599

AWS IoT SiteWise User Guide

Maximum length: 128 characters

ruleEvaluation

(Optional) An object that contains information about the rule that evaluates the alarm. This
object contains the following information:

simpleRule

An object that contains information about a simple rule, which compares a property
value to a threshold value with a comparison operator. This object contains the following
information:

inputProperty

The value of the property that this alarm evaluates.

Data type: DOUBLE

operator

The comparison operator that this alarm uses to compare the property with the
threshold. This value contains one of the following strings:

• < – Less than

• <= – Less than or equal

• == – Equal

• != – Not equal

• >= – Greater than or equal

• > – Greater than

Data type: STRING

threshold

The threshold value that this alarm compares the property value against.

Data type: DOUBLE

Define alarms on asset models in AWS IoT SiteWise

Asset models drive standardization of your industrial data and alarms. You can define alarm
definitions on asset models to standardize the alarms for all assets based on an asset model.

Define alarms on asset models 600

AWS IoT SiteWise User Guide

You use composite asset models to define alarms on asset models. Composite asset models are
asset models that standardize a specific set of properties on another asset model. Composite asset
models ensure that certain properties are present on an asset model. Alarms have type, state, and
(optional) source properties, so the alarm composite model enforces that these properties exist.

Each composite asset model has a type that defines the properties for that composite model.
Alarm composite models define properties for alarm type, alarm state, and (optional) alarm source.
When you create an asset from an asset model with composite models, the asset includes the
properties from the composite model alongside the properties that you specify in the asset model.

Each property in a composite model must have the name that identifies it for its type of composite
model. Composite model properties support properties with complex data types. These properties
have the STRUCT data type and a dataTypeSpec trait that specifies the complex data type of the
property. Complex data type properties contain JSON data serialized as strings.

Alarm composite models have the following properties. Each property must have the name that
identifies it for this type of composite model.

Alarm type

The type of the alarm. Specify one of the following:

• IOT_EVENTS – An AWS IoT Events alarm. AWS IoT SiteWise sends data to AWS IoT Events
to evaluate the state of this alarm. You must specify the alarm source property to define the
AWS IoT Events alarm model for this alarm definition.

Note

End of support notice: On May 20, 2026, AWS will end support for AWS IoT Events.
After May 20, 2026, you will no longer be able to access the AWS IoT Events console
or AWS IoT Events resources. For more information, see AWS IoT Events end of
support.

• EXTERNAL – An external alarm. You ingest the state of the alarm as a measurement.

Property name: AWS/ALARM_TYPE

Property type: attribute

Data type: STRING

Define alarms on asset models 601

https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-end-of-support.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-end-of-support.html

AWS IoT SiteWise User Guide

Alarm state

The time series data for the state of the alarm. This is an object serialized as a string that
contains the state and other information about the alarm. For more information, see Alarm
state properties.

Property name: AWS/ALARM_STATE

Property type: measurement

Data type: STRUCT

Data structure type: AWS/ALARM_STATE

Alarm source

(Optional) The Amazon Resource Name (ARN) of the resource that evaluates the state of the
alarm. For AWS IoT Events alarms, this is the ARN of the alarm model.

Property name: AWS/ALARM_SOURCE

Property type: attribute

Data type: STRING

Example Example alarm composite model

The following asset model represents a boiler that has an alarm to monitor its temperature. AWS
IoT SiteWise sends the temperature data to AWS IoT Events to detect the alarm.

{
 "assetModelName": "Boiler",
 "assetModelDescription": "A boiler that alarms when its temperature exceeds its
 limit.",
 "assetModelProperties": [
 {
 "name": "Temperature",
 "dataType": "DOUBLE",
 "unit": "Celsius",
 "type": {
 "measurement": {}
 }
 },
 {

Define alarms on asset models 602

AWS IoT SiteWise User Guide

 "name": "High Temperature",
 "dataType": "DOUBLE",
 "unit": "Celsius",
 "type": {
 "attribute": {
 "defaultValue": "105.0"
 }
 }
 }
],
 "assetModelCompositeModels": [
 {
 "name": "BoilerTemperatureHighAlarm",
 "type": "AWS/ALARM",
 "properties": [
 {
 "name": "AWS/ALARM_TYPE",
 "dataType": "STRING",
 "type": {
 "attribute": {
 "defaultValue": "IOT_EVENTS"
 }
 }
 },
 {
 "name": "AWS/ALARM_STATE",
 "dataType": "STRUCT",
 "dataTypeSpec": "AWS/ALARM_STATE",
 "type": {
 "measurement": {}
 }
 },
 {
 "name": "AWS/ALARM_SOURCE",
 "dataType": "STRING",
 "type": {
 "attribute": {}
 }
 }
]
 }
]
}

Define alarms on asset models 603

AWS IoT SiteWise User Guide

Topics

• Requirements for alarm notifications in AWS IoT SiteWise

• Define AWS IoT Events alarms for AWS IoT SiteWise

• Define external alarms in AWS IoT SiteWise

Requirements for alarm notifications in AWS IoT SiteWise

AWS IoT Events uses an AWS Lambda function in your AWS account to send alarm notifications.
You must create this Lambda function in the same AWS Region as your alarms to enable alarm
notifications. This Lambda function uses Amazon Simple Notification Service (Amazon SNS) to
send text notifications and Amazon Simple Email Service (Amazon SES) to send email notifications.
When you create the AWS IoT Events alarm, you configure the protocols and settings that the
alarm uses to send notifications.

Note

End of support notice: On May 20, 2026, AWS will end support for AWS IoT Events. After
May 20, 2026, you will no longer be able to access the AWS IoT Events console or AWS IoT
Events resources. For more information, see AWS IoT Events end of support.

AWS IoT Events provides an AWS CloudFormation stack template that you can use to create this
Lambda function in your account. For more information, see Alarm notification Lambda function in
the AWS IoT Events Developer Guide.

Define AWS IoT Events alarms for AWS IoT SiteWise

Note

End of support notice: On May 20, 2026, AWS will end support for AWS IoT Events. After
May 20, 2026, you will no longer be able to access the AWS IoT Events console or AWS IoT
Events resources. For more information, see AWS IoT Events end of support.

When you create an AWS IoT Events alarm, AWS IoT SiteWise sends asset property values to AWS
IoT Events to evaluate the state of the alarm. AWS IoT Events alarm definitions depend on an

Requirements for alarm notifications 604

https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/ses/latest/dg/Welcome.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-end-of-support.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/lambda-support.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-end-of-support.html

AWS IoT SiteWise User Guide

alarm model that you define in AWS IoT Events. To define an AWS IoT Events alarm on an asset
model, you define an alarm composite model that specifies the AWS IoT Events alarm model as its
alarm source property.

AWS IoT Events alarms depend on inputs such as alarm thresholds and alarm notification settings.
You define these inputs as attributes on the asset model. You can then customize these inputs on
each asset based on the model. The AWS IoT SiteWise console can create these attributes for you.
If you define alarms with the AWS CLI or API, you must manually define these attributes on the
asset model.

You can also define other actions that happen when your alarm detects, such as custom alarm
notification actions. For example, you can configure an action that sends a push notification to an
Amazon SNS topic. For more information the actions that you can define, see Working with other
AWS services in the AWS IoT Events Developer Guide.

When you update or delete an asset model, AWS IoT SiteWise can check if an alarm model in AWS
IoT Events is monitoring an asset property associated with this asset model. This prevents you
from deleting an asset property that an AWS IoT Events alarm is currently using. To enable this
feature in AWS IoT SiteWise, you must have the iotevents:ListInputRoutings permission.
This permission allows AWS IoT SiteWise to make calls to the ListInputRoutings API operation
supported by AWS IoT Events. For more information, see (Optional) ListInputRoutings permission.

Note

The alarm notifications feature isn't available in the China (Beijing) Region.

Topics

• Define an AWS IoT Events alarm (AWS IoT SiteWise console)

• Define an AWS IoT Events alarm (AWS IoT Events console)

• Define an AWS IoT Events alarm (AWS CLI)

Define an AWS IoT Events alarm (AWS IoT SiteWise console)

You can use the AWS IoT SiteWise console to define an AWS IoT Events alarm on an existing asset
model. To define an AWS IoT Events alarm on a new asset model, create the asset model, and then
complete these steps. For more information, see Create asset models in AWS IoT SiteWise.

Define AWS IoT Events alarms 605

https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-other-aws-services.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-other-aws-services.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_ListInputRoutings.html

AWS IoT SiteWise User Guide

Important

Each alarm requires an attribute that specifies the threshold value to compare against for
the alarm. You must define the threshold value attribute on the asset model before you can
define an alarm.
Consider an example where you want to define an alarm that detects when a wind turbine
exceeds its maximum wind speed rating of 50 mph. Before you define the alarm, you must
define an attribute (Maximum wind speed) with a default value of 50.

To define an AWS IoT Events alarm on an asset model

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Models.

3. Choose the asset model for which to define an alarm.

4. Choose the Alarm tab.

5. Choose Add alarm.

6. In the Alarm type options section, choose AWS IoT Events alarm.

7. In the Alarm details section, do the following:

a. Enter a name for your alarm.

b. (Optional) Enter a description for your alarm.

8. In the Threshold definitions section, you define when the alarm detects and the severity of
the alarm. Do the following:

a. Select the Property on which the alarm detects. Each time this property receives a new
value, AWS IoT SiteWise sends the value to AWS IoT Events to evaluate the state of the
alarm.

b. Select the Operator to use to compare the property with the threshold value. Choose
from the following options:

• < less than

• <= less than or equal

• == equal

• != not equal

Define AWS IoT Events alarms 606

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

• >= greater than or equal

• > greater than

c. For Value, select the attribute property to use as the threshold value. AWS IoT Events
compares the value of the property with the value of this attribute.

d. Enter the Severity of the alarm. Use a number that your team understands to reflect the
severity of this alarm.

9. (Optional) In the Notification settings - optional section, do the following:

a. Choose Active.

Note

If you choose Inactive, you and your team won't receive any alarm notifications.

b. For Recipient, choose the recipient.

Important

You can send alarm notifications to AWS IAM Identity Center users. To use this
feature, you must enable IAM Identity Center. You can only enable IAM Identity
Center in one AWS Region at a time. This means that you can define alarm
notifications only in the Region where you enable IAM Identity Center. For more
information, see Getting started in the AWS IAM Identity Center User Guide.

c. For Protocol, choose from the following options:

• Email & text – The alarm notifies IAM Identity Center users with an SMS message and
an email message.

• Email – The alarm notifies IAM Identity Center users with an email message.

• Text – The alarm notifies IAM Identity Center users with an SMS message.

d. For Sender, choose the sender.

Define AWS IoT Events alarms 607

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html

AWS IoT SiteWise User Guide

Important

You must verify the sender email address in Amazon Simple Email Service
(Amazon SES). For more information, see Verifying an email address identity, in
the Amazon Simple Email Service Developer Guide.

10. In the Default asset state section, you can set the default state for alarms created from this
asset model.

Note

You activate or deactivate this alarm for assets that you create from this asset model in
a later step.

11. In the Advanced settings section, you can configure the permissions, the additional
notification settings, the alarm state actions, the alarm model in SiteWise Monitor, and the
acknowledge flow.

Note

AWS IoT Events alarms require the following service roles:

• A role that AWS IoT Events assumes to send alarm state values to AWS IoT SiteWise.

• A role that AWS IoT Events assumes to send data to Lambda. You only need this role
if your alarm sends notifications.

In the Permissions section, do the following:

a. For AWS IoT Events role, use an existing role or create a role with the required
permissions. This role requires the iotsitewise:BatchPutAssetPropertyValue
permission and a trust relationship that allows iotevents.amazonaws.com to assume the
role.

b. For the AWS IoT Events Lambda role, use an existing role or create a role with
the required permissions. This role requires the lambda:InvokeFunction and
sso-directory:DescribeUser permissions and a trust relationship that allows
iotevents.amazonaws.com to assume the role.

Define AWS IoT Events alarms 608

https://docs.aws.amazon.com/ses/latest/dg/creating-identities.html#just-verify-email-proc

AWS IoT SiteWise User Guide

12. (Optional) In the Additional notification settings section, do the following:

a. For Recipient attribute, you define an attribute whose value specifies the recipient of the
notification. You can choose IAM Identity Center users as recipients.

You can create an attribute or use an existing attribute on the asset model.

• If you choose Create a new recipient attribute, specify the Recipient attribute name
and Recipient default value - optional for the attribute.

• If you choose Use an existing recipient attribute, choose the attribute in Recipient
attribute name. The alarm uses the default value of the attribute that you choose.

You can override the default value on each asset that you create from this asset model.

b. For Custom message attribute, you define an attribute whose value specifies the custom
message to send in addition to the default state change message. For example, you can
specify a message that helps your team understand how to address this alarm.

You can choose to create an attribute or use an existing attribute on the asset model.

• If you choose to Create a new custom message attribute, specify the Custom message
attribute name and Custom message default value - optional for the attribute.

• If you choose Use an existing custom message attribute, choose the attribute in
Custom message attribute name. The alarm uses the default value of the attribute that
you choose.

You can override the default value on each asset that you create from this asset model.

c. For Manage your Lambda function, do one of the following:

• To have AWS IoT SiteWise create a new Lambda function, choose Create a new lambda
from an AWS managed template.

• To use an existing Lambda function, choose Use an existing lambda and choose the
name of the function.

For more information, see Managing alarm notifications in the AWS IoT Events Developer
Guide.

13. (Optional) In the Set state action section, do the following:

Define AWS IoT Events alarms 609

https://docs.aws.amazon.com/iotevents/latest/developerguide/lambda-support.html

AWS IoT SiteWise User Guide

a. Choose Edit action.

b. Under Add alarm state actions, add actions. and the choose Save.

You can add up to 10 actions.

AWS IoT Events can perform actions when the alarm is active. You can define built-in actions
to use a timer or set a variable, or send data to other AWS resources. For more information, see
Supported actions in the AWS IoT Events Developer Guide.

14. (Optional) Under Manage alarm model in SiteWise Monitor - optional, choose Active or
Inactive.

Use this option so that you can update the alarm model in SiteWise Monitorss. This option is
enabled by default.

15. Under Acknowledge flow, choose Active or Inactive. For more information about the
acknowledge flow, see Alarm states.

16. Choose Add alarm.

Note

The AWS IoT SiteWise console makes multiple API requests to add the alarm to the
asset model. When you choose Add alarm, the console opens a dialog box that shows
the progress of these API requests. Stay on this page until each API requests succeeds
or until an API request fails. If a request fails, close the dialog box, fix the issue, and
choose Add alarm to try again.

Define an AWS IoT Events alarm (AWS IoT Events console)

You can use the AWS IoT Events console to define an AWS IoT Events alarm on an existing asset
model. To define an AWS IoT Events alarm on a new asset model, create the asset model, and then
complete these steps. For more information, see Create asset models in AWS IoT SiteWise.

Define AWS IoT Events alarms 610

https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-supported-actions.html

AWS IoT SiteWise User Guide

Important

Each alarm requires an attribute that specifies the threshold value to compare against for
the alarm. You must define the threshold value attribute on the asset model before you can
define an alarm.
Consider an example where you want to define an alarm that detects when a wind turbine
exceeds its maximum wind speed rating of 50 mph. Before you define the alarm, you must
define an attribute (Maximum wind speed) with a default value of 50.

To define an AWS IoT Events alarm on an asset model

1. Navigate to the AWS IoT Events console.

2. In the navigation pane, choose Alarm models.

3. Choose Create alarm model.

4. Enter a name for your alarm.

5. (Optional) Enter a description for your alarm.

6. In the Alarm target section, do the following:

a. For Target options, choose AWS IoT SiteWise asset property.

b. Choose the asset model for which you want to add the alarm.

7. In the Threshold definitions section, you define when the alarm detects and the severity of
the alarm. Do the following:

a. Select the Property on which the alarm detects. Each time this property receives a new
value, AWS IoT SiteWise sends the value to AWS IoT Events to evaluate the state of the
alarm.

b. Select the Operator to use to compare the property with the threshold value. Choose
from the following options:

• < less than

• <= less than or equal

• == equal

• != not equal

• >= greater than or equal

Define AWS IoT Events alarms 611

https://console.aws.amazon.com/iotevents/

AWS IoT SiteWise User Guide

• > greater than

c. For Value, select the attribute property to use as the threshold value. AWS IoT Events
compares the value of the property with the value of this attribute.

d. Enter the Severity of the alarm. Use a number that your team understands to reflect the
severity of this alarm.

8. (Optional) In the Notification settings - optional section, do the following:

a. For Protocol, choose from the following options:

• Email & text – The alarm notifies IAM Identity Center users with an SMS message and
an email message.

• Email – The alarm notifies IAM Identity Center users with an email message.

• Text – The alarm notifies IAM Identity Center users with an SMS message.

b. For Sender, choose the sender.

Important

You must verify the sender email address in Amazon Simple Email Service
(Amazon SES). For more information, see Verifying email addresses in Amazon
SES, in the Amazon Simple Email Service Developer Guide.

c. Choose the attribute in Recipient attribute - optional. The alarm uses the default value of
the attribute that you choose.

d. Choose the attribute in Custom message attribute - optional. The alarm uses the default
value of the attribute that you choose.

9. In the Instance section, specify the Default state for this alarm. You can activate or deactivate
this alarm for all assets that you create from this asset model in a later step.

10. In the Advanced settings settings, you can configure the permissions, the additional
notification settings, the alarm state actions, the alarm model in SiteWise Monitor, and the
acknowledge flow.

Note

AWS IoT Events alarms require the following service roles:

• A role that AWS IoT Events assumes to send alarm state values to AWS IoT SiteWise.

Define AWS IoT Events alarms 612

https://docs.aws.amazon.com/ses/latest/dg/verify-addresses-and-domains.html
https://docs.aws.amazon.com/ses/latest/dg/verify-addresses-and-domains.html

AWS IoT SiteWise User Guide

• A role that AWS IoT Events assumes to send data to Lambda. You only need this role
if your alarm sends notifications.

a. In the Acknowledge flow section, choose Enabled or Disabled. For more information
about the acknowledge flow, see Alarm states.

b. In the Permissions section, do the following:

i. For AWS IoT Events role, use an existing role or create a role with the required
permissions. This role requires the iotsitewise:BatchPutAssetPropertyValue
permission and a trust relationship that allows iotevents.amazonaws.com to assume
the role.

ii. For the Lambda role, use an existing role or create a role with the required
permissions. This role requires the lambda:InvokeFunction and sso-
directory:DescribeUser permissions and a trust relationship that allows
iotevents.amazonaws.com to assume the role.

c. (Optional) In the Additional notification settings pane, do the following:

• For Manage your Lambda function, do one of the following:

• To have AWS IoT Events create a new Lambda function, choose Create a new
Lambda function.

• To use an existing Lambda function, choose Use an existing Lambda function and
choose the name of the function.

For more information, see Managing alarm notifications in the AWS IoT Events
Developer Guide.

d. (Optional) In the Set state action - optional section, do the following:

• Under Alarm state actions, add actions. and the choose Save.

You can add up to 10 actions.

AWS IoT Events can perform actions when the alarm is active. You can define built-in
actions to use a timer or set a variable, or send data to other AWS resources. For more
information, see Supported actions in the AWS IoT Events Developer Guide.

Define AWS IoT Events alarms 613

https://docs.aws.amazon.com/iotevents/latest/developerguide/lambda-support.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-supported-actions.html

AWS IoT SiteWise User Guide

11. Choose Create.

Note

The AWS IoT Events console makes multiple API requests to add the alarm to the asset
model. When you choose Add alarm, the console opens a dialog box that shows the
progress of these API requests. Stay on this page until each API requests succeeds
or until an API request fails. If a request fails, close the dialog box, fix the issue, and
choose Add alarm to try again.

Define an AWS IoT Events alarm (AWS CLI)

You can use the AWS Command Line Interface (AWS CLI) to define an AWS IoT Events alarm that
monitors an asset property. You can define the alarm on a new or existing asset model. After you
define the alarm on the asset model, you create an alarm in AWS IoT Events and connect it to the
asset model. In this process, you do the following:

Steps

• Step 1: Define an alarm on an asset model

• Step 2: Define an AWS IoT Events alarm model

• Step 3: Enable data flow between AWS IoT SiteWise and AWS IoT Events

Step 1: Define an alarm on an asset model

Add an alarm definition and associated properties to a new or existing asset model.

To define an alarm on an asset model (CLI)

1. Create a file called asset-model-payload.json. Follow the steps in these other sections
to add your asset model's details to the file, but don't submit the request to create or update
the asset model. In this section, you add an alarm definition to the asset model details in the
asset-model-payload.json file.

• For more information about how to create an asset model, see Create an asset model
(AWS CLI).

• For more information about how to update an existing asset model, see Update an asset
model, component model, or interface (AWS CLI).

Define AWS IoT Events alarms 614

AWS IoT SiteWise User Guide

Note

Your asset model must define at least one asset property, including the asset property
to monitor with the alarm.

2. Add an alarm composite model (assetModelCompositeModels) to the asset model. An
AWS IoT Events alarm composite model specifies the IOT_EVENTS type and specifies an alarm
source property. You add the alarm source property after you create the alarm model in AWS
IoT Events.

Important

The alarm composite model must have the same name as the AWS IoT Events alarm
model you create later. Alarm model names can contain only alphanumeric characters.
Specify a unique, alphanumeric name so that you can use the same name for the alarm
model.

{
 ...
 "assetModelCompositeModels": [
 {
 "name": "BoilerTemperatureHighAlarm",
 "type": "AWS/ALARM",
 "properties": [
 {
 "name": "AWS/ALARM_TYPE",
 "dataType": "STRING",
 "type": {
 "attribute": {
 "defaultValue": "IOT_EVENTS"
 }
 }
 },
 {
 "name": "AWS/ALARM_STATE",
 "dataType": "STRUCT",
 "dataTypeSpec": "AWS/ALARM_STATE",
 "type": {

Define AWS IoT Events alarms 615

AWS IoT SiteWise User Guide

 "measurement": {}
 }
 }
]
 }
]
}

3. Add an alarm threshold attribute to the asset model. Specify the default value to use for this
threshold. You can override this default value on each asset based on this model.

Note

The alarm threshold attribute must be an INTEGER or a DOUBLE.

{
 ...
 "assetModelProperties": [
 ...
 {
 "name": "Temperature Max Threshold",
 "dataType": "DOUBLE",
 "type": {
 "attribute": {
 "defaultValue": "105.0"
 }
 }
 }
]
}

4. (Optional) Add alarm notification attributes to the asset model. These attributes specify the
IAM Identity Center recipient and other inputs that AWS IoT Events uses to send notifications
when the alarm changes state. You can override these defaults on each asset based on this
model.

Important

You can send alarm notifications to AWS IAM Identity Center users. To use this feature,
you must enable IAM Identity Center. You can only enable IAM Identity Center in one

Define AWS IoT Events alarms 616

AWS IoT SiteWise User Guide

AWS Region at a time. This means that you can define alarm notifications only in
the Region where you enable IAM Identity Center. For more information, see Getting
started in the AWS IAM Identity Center User Guide.

Do the following:

a. Add an attribute that specifies the ID of your IAM Identity Center identity store. You can
use the IAM Identity Center ListInstances API operation to list your identity stores. This
operation works only in the Region where you enable IAM Identity Center.

aws sso-admin list-instances

Then, specify the identity store ID (for example, d-123EXAMPLE) as the default value for
the attribute.

{
 ...
 "assetModelProperties": [
 ...
 {
 "name": "identityStoreId",
 "dataType": "STRING",
 "type": {
 "attribute": {
 "defaultValue": "d-123EXAMPLE"
 }
 }
 }
]
}

b. Add an attribute that specifies the ID of the IAM Identity Center user who receives
notifications. To define a default notification recipient, add an IAM Identity Center user ID
as the default value. Do one of the following to get an IAM Identity Center user ID:

i. You can use the IAM Identity Center ListUsers API to get the ID of a user whose user
name you know. Replace d-123EXAMPLE with the ID of your identity store, and
replace Name with the user name of the user.

Define AWS IoT Events alarms 617

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/APIReference/API_ListInstances.html
https://docs.aws.amazon.com/singlesignon/latest/IdentityStoreAPIReference/API_ListUsers.html

AWS IoT SiteWise User Guide

aws identitystore list-users \
 --identity-store-id d-123EXAMPLE \
 --filters AttributePath=UserName,AttributeValue=Name

ii. Use the IAM Identity Center console to browse your users and find a user ID.

Then, specify the user ID (for example, 123EXAMPLE-a1b2c3d4-5678-90ab-
cdef-33333EXAMPLE) as the default value for the attribute, or define the attribute
without a default value.

{
 ...
 "assetModelProperties": [
 ...
 {
 "name": "userId",
 "dataType": "STRING",
 "type": {
 "attribute": {
 "defaultValue": "123EXAMPLE-a1b2c3d4-5678-90ab-cdef-33333EXAMPLE"
 }
 }
 }
]
}

c. (Optional) Add an attribute that specifies the default sender ID for SMS (text) message
notifications. The sender ID displays as the message sender on messages that Amazon
Simple Notification Service (Amazon SNS) sends. For more information, see Request a
sender ID in AWS End User Messaging SMS in the AWS End User Messaging SMS User
Guide.

{
 ...
 "assetModelProperties": [
 ...
 {
 "name": "senderId",
 "dataType": "STRING",
 "type": {

Define AWS IoT Events alarms 618

https://console.aws.amazon.com/singlesignon
https://docs.aws.amazon.com/sms-voice/latest/userguide/sender-id-request.html
https://docs.aws.amazon.com/sms-voice/latest/userguide/sender-id-request.html

AWS IoT SiteWise User Guide

 "attribute": {
 "defaultValue": "MyFactory"
 }
 }
 }
]
}

d. (Optional) Add an attribute that specifies the default email address to use as the from
address in email notifications.

{
 ...
 "assetModelProperties": [
 ...
 {
 "name": "fromAddress",
 "dataType": "STRING",
 "type": {
 "attribute": {
 "defaultValue": "my.factory@example.com"
 }
 }
 }
]
}

e. (Optional) Add an attribute that specifies the default subject to use in email notifications.

{
 ...
 "assetModelProperties": [
 ...
 {
 "name": "emailSubject",
 "dataType": "STRING",
 "type": {
 "attribute": {
 "defaultValue": "[ALERT] High boiler temperature"
 }
 }
 }
]

Define AWS IoT Events alarms 619

AWS IoT SiteWise User Guide

}

f. (Optional) Add an attribute that specifies an additional message to include in
notifications. By default, notification messages include information about the alarm. You
can also include an additional message that gives the user more information..

{
 ...
 "assetModelProperties": [
 ...
 {
 "name": "additionalMessage",
 "dataType": "STRING",
 "type": {
 "attribute": {
 "defaultValue": "Turn off the power before you check the alarm."
 }
 }
 }
]
}

5. Create the asset model or update the existing asset model. Do one of the following:

• To create the asset model, run the following command.

aws iotsitewise create-asset-model --cli-input-json file://asset-model-
payload.json

• To update the existing asset model, run the following command. Replace asset-model-
id with the ID of the asset model.

aws iotsitewise update-asset-model \
 --asset-model-id asset-model-id \
 --cli-input-json file://asset-model-payload.json

After you run the command, note the assetModelId in the response.

Example: Boiler asset model

The following asset model represents a boiler that reports temperature data. This asset model
defines an alarm that detects when the boiler overheats.

Define AWS IoT Events alarms 620

AWS IoT SiteWise User Guide

{
 "assetModelName": "Boiler Model",
 "assetModelDescription": "Represents a boiler.",
 "assetModelProperties": [
 {
 "name": "Temperature",
 "dataType": "DOUBLE",
 "unit": "C",
 "type": {
 "measurement": {}
 }
 },
 {
 "name": "Temperature Max Threshold",
 "dataType": "DOUBLE",
 "type": {
 "attribute": {
 "defaultValue": "105.0"
 }
 }
 },
 {
 "name": "identityStoreId",
 "dataType": "STRING",
 "type": {
 "attribute": {
 "defaultValue": "d-123EXAMPLE"
 }
 }
 },
 {
 "name": "userId",
 "dataType": "STRING",
 "type": {
 "attribute": {
 "defaultValue": "123EXAMPLE-a1b2c3d4-5678-90ab-cdef-33333EXAMPLE"
 }
 }
 },
 {
 "name": "senderId",
 "dataType": "STRING",
 "type": {

Define AWS IoT Events alarms 621

AWS IoT SiteWise User Guide

 "attribute": {
 "defaultValue": "MyFactory"
 }
 }
 },
 {
 "name": "fromAddress",
 "dataType": "STRING",
 "type": {
 "attribute": {
 "defaultValue": "my.factory@example.com"
 }
 }
 },
 {
 "name": "emailSubject",
 "dataType": "STRING",
 "type": {
 "attribute": {
 "defaultValue": "[ALERT] High boiler temperature"
 }
 }
 },
 {
 "name": "additionalMessage",
 "dataType": "STRING",
 "type": {
 "attribute": {
 "defaultValue": "Turn off the power before you check the alarm."
 }
 }
 }
],
 "assetModelHierarchies": [

],
 "assetModelCompositeModels": [
 {
 "name": "BoilerTemperatureHighAlarm",
 "type": "AWS/ALARM",
 "properties": [
 {
 "name": "AWS/ALARM_TYPE",
 "dataType": "STRING",

Define AWS IoT Events alarms 622

AWS IoT SiteWise User Guide

 "type": {
 "attribute": {
 "defaultValue": "IOT_EVENTS"
 }
 }
 },
 {
 "name": "AWS/ALARM_STATE",
 "dataType": "STRUCT",
 "dataTypeSpec": "AWS/ALARM_STATE",
 "type": {
 "measurement": {}
 }
 }
]
 }
]
}

Step 2: Define an AWS IoT Events alarm model

Create the alarm model in AWS IoT Events. In AWS IoT Events, you use expressions to specify values
in alarm models. You can use expressions to specify values from AWS IoT SiteWise to evaluate
and use as inputs to the alarm. When AWS IoT SiteWise sends asset property values to the alarm
model, AWS IoT Events evaluates the expression to get the value of the property or the ID of the
asset. You can use the following expressions in the alarm model:

• Asset property values

To get the value of an asset property, use the following expression. Replace assetModelId with
the ID of the asset model and replace propertyId with the ID of the property.

$sitewise.assetModel.`assetModelId`.`propertyId`.propertyValue.value

• Asset IDs

To get the ID of the asset, use the following expression. Replace assetModelId with the ID of
the asset model and replace propertyId with the ID of the property.

$sitewise.assetModel.`assetModelId`.`propertyId`.assetId

Define AWS IoT Events alarms 623

AWS IoT SiteWise User Guide

Note

When you create the alarm model, you can define literals instead of expressions that
evaluate to AWS IoT SiteWise values. This can reduce the number of attributes that you
define on your asset model. However, if you define a value as a literal, you can't customize
that value on assets based on the asset model. Your AWS IoT SiteWise Monitor users also
can't customize the alarm, because they can configure alarm settings on assets only.

To create an AWS IoT Events alarm model (CLI)

1. When you create the alarm model in AWS IoT Events, you must specify the ID of each property
that the alarm uses, which includes the following:

• The alarm state property in the composite asset model

• The property that the alarm monitors

• The threshold attribute

• (Optional) The IAM Identity Center identity store ID attribute

• (Optional) The IAM Identity Center user ID attribute

• (Optional) The SMS sender ID attribute

• (Optional) The email from address attribute

• (Optional) The email subject attribute

• (Optional) The additional message attribute

Run the following command to retrieve the IDs of these properties on the asset model.
Replace asset-model-id with the ID of the asset model from the previous step.

aws iotsitewise describe-asset-model --asset-model-id asset-model-id

The operation returns a response that contains the asset model's details. Note the ID of each
property that the alarm uses. You use these IDs when you create the AWS IoT Events alarm
model in the next step.

2. Create the alarm model in AWS IoT Events. Do the following:

a. Create a file called alarm-model-payload.json.

Define AWS IoT Events alarms 624

AWS IoT SiteWise User Guide

b. Copy the following JSON object into the file.

c. Enter a name (alarmModelName), description (alarmModelDescription), and severity
(severity) for your alarm. For severity, specify an integer that reflects your company's
severity levels.

Important

The alarm model must have the same name as the alarm composite model that
you defined on your asset model earlier.
Alarm model names can contain only alphanumeric characters.

{
 "alarmModelName": "BoilerTemperatureHighAlarm",
 "alarmModelDescription": "Detects when the boiler temperature is high.",
 "severity": 3
}

d. Add the comparison rule (alarmRule) to the alarm. This rule defines the property to
monitor (inputProperty), the threshold value to compare (threshold), and the
comparison operator to use (comparisonOperator).

• Replace assetModelId with the ID of the asset model.

• Replace alarmPropertyId with the ID of the property that the alarm monitors.

• Replace thresholdAttributeId with the ID of the threshold attribute property.

• Replace GREATER with the operator to use to compare the property values with the
threshold. Choose from the following options:

• LESS

• LESS_OR_EQUAL

• EQUAL

• NOT_EQUAL

• GREATER_OR_EQUAL

• GREATER

{
Define AWS IoT Events alarms 625

AWS IoT SiteWise User Guide

 "alarmModelName": "BoilerTemperatureHighAlarm",
 "alarmModelDescription": "Detects when the boiler temperature is high.",
 "severity": 3,
 "alarmRule": {
 "simpleRule": {
 "inputProperty":
 "$sitewise.assetModel.`assetModelId`.`alarmPropertyId`.propertyValue.value",
 "comparisonOperator": "GREATER",
 "threshold":
 "$sitewise.assetModel.`assetModelId`.`thresholdAttributeId`.propertyValue.value"
 }
 }
}

e. Add an action (alarmEventActions) to send alarm state to the AWS IoT SiteWise when
the alarm changes state.

Note

For advanced configuration, you can define additional actions to perform when
the alarm changes state. For example, you might call an AWS Lambda function
or publish to an MQTT topic. For more information, see Working with other AWS
services in the AWS IoT Events Developer Guide.

• Replace assetModelId with the ID of the asset model.

• Replace alarmPropertyId with the ID of the property that the alarm monitors.

• Replace alarmStatePropertyId with the ID of the alarm state property in the alarm
composite model.

{
 "alarmModelName": "BoilerTemperatureHighAlarm",
 "alarmModelDescription": "Detects when the boiler temperature is high.",
 "severity": 3,
 "alarmRule": {
 "simpleRule": {
 "inputProperty":
 "$sitewise.assetModel.`assetModelId`.`alarmPropertyId`.propertyValue.value",
 "comparisonOperator": "GREATER",

Define AWS IoT Events alarms 626

https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-other-aws-services.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/iotevents-other-aws-services.html

AWS IoT SiteWise User Guide

 "threshold":
 "$sitewise.assetModel.`assetModelId`.`thresholdAttributeId`.propertyValue.value"
 }
 },
 "alarmEventActions": {
 "alarmActions": [
 {
 "iotSiteWise": {
 "assetId":
 "$sitewise.assetModel.`assetModelId`.`alarmPropertyId`.assetId",
 "propertyId": "'alarmStatePropertyId'"
 }
 }
]
 }
}

f. (Optional) Configure alarm notification settings. The alarm notification action uses a
Lambda function in your account to send alarm notifications. For more information,
see Requirements for alarm notifications in AWS IoT SiteWise. In the alarm notification
settings, you can configure SMS and email notifications to send to IAM Identity Center
users. Do the following:

i. Add the alarm notification configuration (alarmNotification) to the payload in
alarm-model-payload.json.

• Replace alarmNotificationFunctionArn with the ARN of the Lambda function
that handles alarm notifications.

{
 "alarmModelName": "BoilerTemperatureHighAlarm",
 "alarmModelDescription": "Detects when the boiler temperature is high.",
 "severity": 3,
 "alarmRule": {
 "simpleRule": {
 "inputProperty":
 "$sitewise.assetModel.`assetModelId`.`alarmPropertyId`.propertyValue.value",
 "comparisonOperator": "GREATER",
 "threshold":
 "$sitewise.assetModel.`assetModelId`.`thresholdAttributeId`.propertyValue.value"
 }

Define AWS IoT Events alarms 627

AWS IoT SiteWise User Guide

 },
 "alarmEventActions": {
 "alarmActions": [
 {
 "iotSiteWise": {
 "assetId":
 "$sitewise.assetModel.`assetModelId`.`alarmPropertyId`.assetId",
 "propertyId": "'alarmStatePropertyId'"
 }
 }
]
 },
 "alarmNotification": {
 "notificationActions": [
 {
 "action": {
 "lambdaAction": {
 "functionArn": "alarmNotificationFunctionArn"
 }
 }
 }
]
 }
}

ii. (Optional) Configure the SMS notifications (smsConfigurations) to send to an IAM
Identity Center user when the alarm changes state.

• Replace identityStoreIdAttributeId with the ID of the attribute that
contains the ID of the IAM Identity Center identity store.

• Replace userIdAttributeId with the ID of the attribute that contains the ID of
the IAM Identity Center user.

• Replace senderIdAttributeId with the ID of the attribute that contains the
Amazon SNS sender ID, or remove senderId from the payload.

• Replace additionalMessageAttributeId with the ID of the attribute that
contains the additional message, or remove additionalMessage from the
payload.

{
 "alarmModelName": "BoilerTemperatureHighAlarm",

Define AWS IoT Events alarms 628

AWS IoT SiteWise User Guide

 "alarmModelDescription": "Detects when the boiler temperature is high.",
 "severity": 3,
 "alarmRule": {
 "simpleRule": {
 "inputProperty":
 "$sitewise.assetModel.`assetModelId`.`alarmPropertyId`.propertyValue.value",
 "comparisonOperator": "GREATER",
 "threshold":
 "$sitewise.assetModel.`assetModelId`.`thresholdAttributeId`.propertyValue.value"
 }
 },
 "alarmEventActions": {
 "alarmActions": [
 {
 "iotSiteWise": {
 "assetId":
 "$sitewise.assetModel.`assetModelId`.`alarmPropertyId`.assetId",
 "propertyId": "'alarmStatePropertyId'"
 }
 }
]
 },
 "alarmNotification": {
 "notificationActions": [
 {
 "action": {
 "lambdaAction": {
 "functionArn": "alarmNotificationFunctionArn"
 }
 },
 "smsConfigurations": [
 {
 "recipients": [
 {
 "ssoIdentity": {
 "identityStoreId":
 "$sitewise.assetModel.`assetModelId`.`identityStoreIdAttributeId`.propertyValue.value",
 "userId":
 "$sitewise.assetModel.`assetModelId`.`userIdAttributeId`.propertyValue.value"
 }
 }
],
 "senderId":
 "$sitewise.assetModel.`assetModelId`.`senderIdAttributeId`.propertyValue.value",

Define AWS IoT Events alarms 629

AWS IoT SiteWise User Guide

 "additionalMessage":
 "$sitewise.assetModel.`assetModelId`.`additionalMessageAttributeId`.propertyValue.value"
 }
]
 }
]
 }
}

iii. (Optional) Configure the email notifications (emailConfigurations) to send to an
IAM Identity Center user when the alarm changes state.

• Replace identityStoreIdAttributeId with the ID of the IAM Identity Center
identity store ID attribute property.

• Replace userIdAttributeId with the ID of the IAM Identity Center user ID
attribute property.

• Replace fromAddressAttributeId with the ID of the "from" address attribute
property, or remove from from the payload.

• Replace emailSubjectAttributeId with the ID of the email subject attribute
property, or remove subject from the payload.

• Replace additionalMessageAttributeId with the ID of the additional message
attribute property, or remove additionalMessage from the payload.

{
 "alarmModelName": "BoilerTemperatureHighAlarm",
 "alarmModelDescription": "Detects when the boiler temperature is high.",
 "severity": 3,
 "alarmRule": {
 "simpleRule": {
 "inputProperty":
 "$sitewise.assetModel.`assetModelId`.`alarmPropertyId`.propertyValue.value",
 "comparisonOperator": "GREATER",
 "threshold":
 "$sitewise.assetModel.`assetModelId`.`thresholdAttributeId`.propertyValue.value"
 }
 },
 "alarmEventActions": {
 "alarmActions": [
 {
 "iotSiteWise": {

Define AWS IoT Events alarms 630

AWS IoT SiteWise User Guide

 "assetId":
 "$sitewise.assetModel.`assetModelId`.`alarmPropertyId`.assetId",
 "propertyId": "'alarmStatePropertyId'"
 }
 }
]
 },
 "alarmNotification": {
 "notificationActions": [
 {
 "action": {
 "lambdaAction": {
 "functionArn": "alarmNotificationFunctionArn"
 }
 },
 "smsConfigurations": [
 {
 "recipients": [
 {
 "ssoIdentity": {
 "identityStoreId":
 "$sitewise.assetModel.`assetModelId`.`identityStoreIdAttributeId`.propertyValue.value",
 "userId":
 "$sitewise.assetModel.`assetModelId`.`userIdAttributeId`.propertyValue.value"
 }
 }
],
 "senderId":
 "$sitewise.assetModel.`assetModelId`.`senderIdAttributeId`.propertyValue.value",
 "additionalMessage":
 "$sitewise.assetModel.`assetModelId`.`additionalMessageAttributeId`.propertyValue.value"
 }
],
 "emailConfigurations": [
 {
 "from":
 "$sitewise.assetModel.`assetModelId`.`fromAddressAttributeId`.propertyValue.value",
 "recipients": {
 "to": [
 {
 "ssoIdentity": {
 "identityStoreId":
 "$sitewise.assetModel.`assetModelId`.`identityStoreIdAttributeId`.propertyValue.value",

Define AWS IoT Events alarms 631

AWS IoT SiteWise User Guide

 "userId":
 "$sitewise.assetModel.`assetModelId`.`userIdAttributeId`.propertyValue.value"
 }
 }
]
 },
 "content": {
 "subject":
 "$sitewise.assetModel.`assetModelId`.`emailSubjectAttributeId`.propertyValue.value",
 "additionalMessage":
 "$sitewise.assetModel.`assetModelId`.`additionalMessageAttributeId`.propertyValue.value"
 }
 }
]
 }
]
 }
}

g. (Optional) Add the alarm capabilities (alarmCapabilities) to the payload in alarm-
model-payload.json. In this object, you can specify if the acknowledge flow is enabled
and the default enable state for assets based on the asset model. For more information
about the acknowledge flow, see Alarm states.

{
 "alarmModelName": "BoilerTemperatureHighAlarm",
 "alarmModelDescription": "Detects when the boiler temperature is high.",
 "severity": 3,
 "alarmRule": {
 "simpleRule": {
 "inputProperty":
 "$sitewise.assetModel.`assetModelId`.`alarmPropertyId`.propertyValue.value",
 "comparisonOperator": "GREATER",
 "threshold":
 "$sitewise.assetModel.`assetModelId`.`thresholdAttributeId`.propertyValue.value"
 }
 },
 "alarmEventActions": {
 "alarmActions": [
 {
 "iotSiteWise": {
 "assetId":
 "$sitewise.assetModel.`assetModelId`.`alarmPropertyId`.assetId",

Define AWS IoT Events alarms 632

AWS IoT SiteWise User Guide

 "propertyId": "'alarmStatePropertyId'"
 }
 }
]
 },
 "alarmNotification": {
 "notificationActions": [
 {
 "action": {
 "lambdaAction": {
 "functionArn": "alarmNotificationFunctionArn"
 }
 },
 "smsConfigurations": [
 {
 "recipients": [
 {
 "ssoIdentity": {
 "identityStoreId":
 "$sitewise.assetModel.`assetModelId`.`identityStoreIdAttributeId`.propertyValue.value",
 "userId":
 "$sitewise.assetModel.`assetModelId`.`userIdAttributeId`.propertyValue.value"
 }
 }
],
 "senderId":
 "$sitewise.assetModel.`assetModelId`.`senderIdAttributeId`.propertyValue.value",
 "additionalMessage":
 "$sitewise.assetModel.`assetModelId`.`additionalMessageAttributeId`.propertyValue.value"
 }
],
 "emailConfigurations": [
 {
 "from":
 "$sitewise.assetModel.`assetModelId`.`fromAddressAttributeId`.propertyValue.value",
 "recipients": {
 "to": [
 {
 "ssoIdentity": {
 "identityStoreId":
 "$sitewise.assetModel.`assetModelId`.`identityStoreIdAttributeId`.propertyValue.value",
 "userId":
 "$sitewise.assetModel.`assetModelId`.`userIdAttributeId`.propertyValue.value"
 }

Define AWS IoT Events alarms 633

AWS IoT SiteWise User Guide

 }
]
 },
 "content": {
 "subject":
 "$sitewise.assetModel.`assetModelId`.`emailSubjectAttributeId`.propertyValue.value",
 "additionalMessage":
 "$sitewise.assetModel.`assetModelId`.`additionalMessageAttributeId`.propertyValue.value"
 }
 }
]
 }
]
 },
 "alarmCapabilities": {
 "initializationConfiguration": {
 "disabledOnInitialization": false
 },
 "acknowledgeFlow": {
 "enabled": true
 }
 }
}

h. Add the IAM service role (roleArn) that AWS IoT Events can assume to send data to AWS
IoT SiteWise. This role requires the iotsitewise:BatchPutAssetPropertyValue
permission and a trust relationship that allows iotevents.amazonaws.com to assume
the role. To send notifications, this role also requires the lambda:InvokeFunction and
sso-directory:DescribeUser permissions. For more information, see Alarm service
roles in the AWS IoT Events Developer Guide.

• Replace the roleArn with the ARN of the role that AWS IoT Events can assume to
perform these actions.

{
 "alarmModelName": "BoilerTemperatureHighAlarm",
 "alarmModelDescription": "Detects when the boiler temperature is high.",
 "severity": 3,
 "alarmRule": {
 "simpleRule": {

Define AWS IoT Events alarms 634

https://docs.aws.amazon.com/iotevents/latest/developerguide/security-iam.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/security-iam.html

AWS IoT SiteWise User Guide

 "inputProperty":
 "$sitewise.assetModel.`assetModelId`.`alarmPropertyId`.propertyValue.value",
 "comparisonOperator": "GREATER",
 "threshold":
 "$sitewise.assetModel.`assetModelId`.`thresholdAttributeId`.propertyValue.value"
 }
 },
 "alarmEventActions": {
 "alarmActions": [
 {
 "iotSiteWise": {
 "assetId":
 "$sitewise.assetModel.`assetModelId`.`alarmPropertyId`.assetId",
 "propertyId": "'alarmStatePropertyId'"
 }
 }
]
 },
 "alarmNotification": {
 "notificationActions": [
 {
 "action": {
 "lambdaAction": {
 "functionArn": "alarmNotificationFunctionArn"
 }
 },
 "smsConfigurations": [
 {
 "recipients": [
 {
 "ssoIdentity": {
 "identityStoreId":
 "$sitewise.assetModel.`assetModelId`.`identityStoreIdAttributeId`.propertyValue.value",
 "userId":
 "$sitewise.assetModel.`assetModelId`.`userIdAttributeId`.propertyValue.value"
 }
 }
],
 "senderId":
 "$sitewise.assetModel.`assetModelId`.`senderIdAttributeId`.propertyValue.value",
 "additionalMessage":
 "$sitewise.assetModel.`assetModelId`.`additionalMessageAttributeId`.propertyValue.value"
 }
],

Define AWS IoT Events alarms 635

AWS IoT SiteWise User Guide

 "emailConfigurations": [
 {
 "from":
 "$sitewise.assetModel.`assetModelId`.`fromAddressAttributeId`.propertyValue.value",
 "recipients": {
 "to": [
 {
 "ssoIdentity": {
 "identityStoreId":
 "$sitewise.assetModel.`assetModelId`.`identityStoreIdAttributeId`.propertyValue.value",
 "userId":
 "$sitewise.assetModel.`assetModelId`.`userIdAttributeId`.propertyValue.value"
 }
 }
]
 },
 "content": {
 "subject":
 "$sitewise.assetModel.`assetModelId`.`emailSubjectAttributeId`.propertyValue.value",
 "additionalMessage":
 "$sitewise.assetModel.`assetModelId`.`additionalMessageAttributeId`.propertyValue.value"
 }
 }
]
 }
]
 },
 "alarmCapabilities": {
 "initializationConfiguration": {
 "disabledOnInitialization": false
 },
 "acknowledgeFlow": {
 "enabled": false
 }
 },
 "roleArn": "arn:aws:iam::123456789012:role/MyIoTEventsAlarmRole"
}

i. Run the following command to create the AWS IoT Events alarm model from the payload
in alarm-model-payload.json.

aws iotevents create-alarm-model --cli-input-json file://alarm-model-
payload.json

Define AWS IoT Events alarms 636

AWS IoT SiteWise User Guide

j. The operation returns a response that includes the ARN of the alarm model,
alarmModelArn. Copy this ARN to set in the alarm definition on your asset model in the
next step.

Step 3: Enable data flow between AWS IoT SiteWise and AWS IoT Events

After you create the required resources in AWS IoT SiteWise and AWS IoT Events, you can enable
data flow between the resources to enable your alarm. In this section, you update the alarm
definition in the asset model to use the alarm model that you created in the previous step.

To enable data flow between AWS IoT SiteWise and AWS IoT Events (CLI)

• Set the alarm model as the alarm's source in the asset model. Do the following:

a. Run the following command to retrieve the existing asset model definition. Replace
asset-model-id with the ID of the asset model.

aws iotsitewise describe-asset-model --asset-model-id asset-model-id

The operation returns a response that contains the asset model's details.

b. Create a file called update-asset-model-payload.json and copy the previous
command's response into the file.

c. Remove the following key-value pairs from the update-asset-model-payload.json
file:

• assetModelId

• assetModelArn

• assetModelCreationDate

• assetModelLastUpdateDate

• assetModelStatus

d. Add the alarm source property (AWS/ALARM_SOURCE) to the alarm composite model that
you defined earlier. Replace alarmModelArn with the ARN of the alarm model, which sets
the value of the alarm source property.

{
 ...
 "assetModelCompositeModels": [

Define AWS IoT Events alarms 637

AWS IoT SiteWise User Guide

 ...
 {
 "name": "BoilerTemperatureHighAlarm",
 "type": "AWS/ALARM",
 "properties": [
 {
 "id": "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE",
 "name": "AWS/ALARM_TYPE",
 "dataType": "STRING",
 "type": {
 "attribute": {
 "defaultValue": "IOT_EVENTS"
 }
 }
 },
 {
 "id": "a1b2c3d4-5678-90ab-cdef-22222EXAMPLE",
 "name": "AWS/ALARM_STATE",
 "dataType": "STRUCT",
 "dataTypeSpec": "AWS/ALARM_STATE",
 "type": {
 "measurement": {}
 }
 },
 {
 "name": "AWS/ALARM_SOURCE",
 "dataType": "STRING",
 "type": {
 "attribute": {
 "defaultValue": "alarmModelArn"
 }
 }
 }
]
 }
]
}

e. Run the following command to update the asset model with the definition stored in the
update-asset-model-payload.json file. Replace asset-model-id with the ID of
the asset model.

aws iotsitewise update-asset-model \

Define AWS IoT Events alarms 638

AWS IoT SiteWise User Guide

 --asset-model-id asset-model-id \
 --cli-input-json file://update-asset-model-payload.json

Your asset model now defines an alarm that detects in AWS IoT Events. The alarm monitors the
target property in all assets based on this asset model. You can configure the alarm on each asset
to customize properties such as the threshold or IAM Identity Center recipient for each asset. For
more information, see Configure alarms on assets in AWS IoT SiteWise.

Define external alarms in AWS IoT SiteWise

External alarms contain the state of an alarm that you detect outside of AWS IoT SiteWise.

Define an external alarm (console)

You can use the AWS IoT SiteWise console to define an external alarm on an existing asset model.
To define an external alarm on a new asset model, create the asset model, and then complete
these steps. For more information, see Create asset models in AWS IoT SiteWise.

To define an alarm on an asset model

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Models.

3. Choose the asset model for which to define an alarm.

4. Choose the Alarm definitions tab.

5. Choose Add alarm.

6. In Alarm type options, choose External alarm.

7. Enter a name for your alarm.

8. (Optional) Enter a description for your alarm.

9. Choose Add alarm.

Define an external alarm (CLI)

You can use the AWS CLI to define an external alarm on a new or existing asset model.

To add an external alarm to an asset model, you add an alarm composite model to the asset model.
An external alarm composite model specifies the EXTERNAL type and doesn't specify an alarm
source property. The following example composite alarm defines an external temperature alarm.

Define external alarms 639

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

{
 ...
 "assetModelCompositeModels": [
 {
 "name": "BoilerTemperatureHighAlarm",
 "type": "AWS/ALARM",
 "properties": [
 {
 "name": "AWS/ALARM_TYPE",
 "dataType": "STRING",
 "type": {
 "attribute": {
 "defaultValue": "EXTERNAL"
 }
 }
 },
 {
 "name": "AWS/ALARM_STATE",
 "dataType": "STRUCT",
 "dataTypeSpec": "AWS/ALARM_STATE",
 "type": {
 "measurement": {}
 }
 }
]
 }
]
}

For more information about how to add a composite model to a new or existing asset model, see
the following:

• Create an asset model (AWS CLI)

• Update an asset model, component model, or interface (AWS CLI)

After you define the external alarm, you can ingest alarm state to assets based on the asset model.
For more information, see Ingest an external alarm state in AWS IoT SiteWise.

Define external alarms 640

AWS IoT SiteWise User Guide

Configure alarms on assets in AWS IoT SiteWise

After you define an AWS IoT Events alarm on an asset model, you can configure the alarm on each
asset based on the asset model. You can edit the threshold value and the notification settings for
the alarm. Each of these values is an attribute on the asset, so you can update the default value of
the attribute to configure these values.

Note

You can configure these values for AWS IoT Events alarms, but not on external alarms.

Topics

• Configure a threshold value (console)

• Configure a threshold value (AWS CLI)

• Configure notification settings in AWS IoT SiteWise

Configure a threshold value (console)

You can use the AWS IoT SiteWise console to update the value of the attribute that specifies the
threshold value of an alarm.

To update an alarm's threshold value (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Assets.

3. Choose the asset for which you want to update an alarm threshold value.

Tip

You can choose the arrow icon to expand an asset hierarchy to find your asset.

4. Choose Edit.

5. Find the attribute that the alarm uses for its threshold value, and then enter its new value.

6. Choose Save.

Configure alarms on assets 641

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

Configure a threshold value (AWS CLI)

You can use the AWS Command Line Interface (AWS CLI) to update the value of the attribute that
specifies the threshold value of an alarm.

You must know your asset's assetId and property's propertyId to complete this procedure. You
can also use the external ID. If you created an asset and don't know its assetId, use the ListAssets
API to list all the assets for a specific model. Use the DescribeAsset operation to view your asset's
properties including property IDs.

Use the BatchPutAssetPropertyValue operation to assign attribute values to your asset. You can
use this operation to set multiple attributes at once. This operation's payload contains a list of
entries, and each entry contains the asset ID, property ID, and attribute value.

To update an attribute's value (AWS CLI)

1. Create a file called batch-put-payload.json and copy the following JSON object into the
file. This example payload demonstrates how to set a wind turbine's latitude and longitude.
Update the IDs, values, and timestamps to modify the payload for your use case.

{
 "entries": [
 {
 "entryId": "windfarm3-turbine7-latitude",
 "assetId": "a1b2c3d4-5678-90ab-cdef-22222EXAMPLE",
 "propertyId": "a1b2c3d4-5678-90ab-cdef-33333EXAMPLE",
 "propertyValues": [
 {
 "value": {
 "doubleValue": 47.6204
 },
 "timestamp": {
 "timeInSeconds": 1575691200
 }
 }
]
 },
 {
 "entryId": "windfarm3-turbine7-longitude",
 "assetId": "a1b2c3d4-5678-90ab-cdef-22222EXAMPLE",
 "propertyId": "a1b2c3d4-5678-90ab-cdef-55555EXAMPLE",
 "propertyValues": [

Configure a threshold value (AWS CLI) 642

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListAssets.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAsset.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html

AWS IoT SiteWise User Guide

 {
 "value": {
 "doubleValue": 122.3491
 },
 "timestamp": {
 "timeInSeconds": 1575691200
 }
 }
]
 }
]
}

• Each entry in the payload contains an entryId that you can define as any unique string. If
any request entries fail, each error will contain the entryId of the corresponding request so
that you know which requests to retry.

• To set an attribute value, you can include one timestamp-quality-value (TQV) structure in
the list of propertyValues for each attribute property. This structure must contain the
new value and the current timestamp.

• value – A structure that contains one of the following fields, depending on the type of
the property being set:

• booleanValue

• doubleValue

• integerValue

• stringValue

• nullValue

• timestamp – A structure that contains the current Unix epoch time in seconds,
timeInSeconds. AWS IoT SiteWise rejects any data points with timestamps that existed
longer than 7 days in the past or newer than 5 minutes in the future.

For more information about how to prepare a payload for BatchPutAssetPropertyValue, see
Ingest data with AWS IoT SiteWise APIs.

2. Run the following command to send the attribute values to AWS IoT SiteWise:

aws iotsitewise batch-put-asset-property-value -\-cli-input-json file://batch-put-
payload.json

Configure a threshold value (AWS CLI) 643

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html

AWS IoT SiteWise User Guide

Configure notification settings in AWS IoT SiteWise

You can configure alarm notification settings using either the AWS IoT SiteWise console or the AWS
Command Line Interface (AWS CLI).

Configure notification settings (console)

You can use the AWS IoT SiteWise console to update the value of the attributes that specify the
notification settings for an alarm.

To update an alarm's notification settings (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Assets.

3. Choose the asset for which you want to update the alarm settings.

4. Choose Edit.

5. Find the attribute that the alarm uses for the notification setting that you want to change, and
then enter its new value.

6. Choose Save.

Configure notification settings (CLI)

You can use the AWS Command Line Interface (AWS CLI) to update the value of the attribute that
specifies the notification settings for an alarm.

You must know your asset's assetId and property's propertyId to complete this procedure. You
can also use the external ID. If you created an asset and don't know its assetId, use the ListAssets
API to list all the assets for a specific model. Use the DescribeAsset operation to view your asset's
properties including property IDs.

Use the BatchPutAssetPropertyValue operation to assign attribute values to your asset. You can
use this operation to set multiple attributes at once. This operation's payload contains a list of
entries, and each entry contains the asset ID, property ID, and attribute value.

To update an attribute's value (AWS CLI)

1. Create a file called batch-put-payload.json and copy the following JSON object into the
file. This example payload demonstrates how to set a wind turbine's latitude and longitude.
Update the IDs, values, and timestamps to modify the payload for your use case.

Configure notification settings 644

https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListAssets.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAsset.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html

AWS IoT SiteWise User Guide

{
 "entries": [
 {
 "entryId": "windfarm3-turbine7-latitude",
 "assetId": "a1b2c3d4-5678-90ab-cdef-22222EXAMPLE",
 "propertyId": "a1b2c3d4-5678-90ab-cdef-33333EXAMPLE",
 "propertyValues": [
 {
 "value": {
 "doubleValue": 47.6204
 },
 "timestamp": {
 "timeInSeconds": 1575691200
 }
 }
]
 },
 {
 "entryId": "windfarm3-turbine7-longitude",
 "assetId": "a1b2c3d4-5678-90ab-cdef-22222EXAMPLE",
 "propertyId": "a1b2c3d4-5678-90ab-cdef-55555EXAMPLE",
 "propertyValues": [
 {
 "value": {
 "doubleValue": 122.3491
 },
 "timestamp": {
 "timeInSeconds": 1575691200
 }
 }
]
 }
]
}

• Each entry in the payload contains an entryId that you can define as any unique string. If
any request entries fail, each error will contain the entryId of the corresponding request so
that you know which requests to retry.

• To set an attribute value, you can include one timestamp-quality-value (TQV) structure in
the list of propertyValues for each attribute property. This structure must contain the
new value and the current timestamp.

Configure notification settings 645

AWS IoT SiteWise User Guide

• value – A structure that contains one of the following fields, depending on the type of
the property being set:

• booleanValue

• doubleValue

• integerValue

• stringValue

• nullValue

• timestamp – A structure that contains the current Unix epoch time in seconds,
timeInSeconds. AWS IoT SiteWise rejects any data points with timestamps that existed
longer than 7 days in the past or newer than 5 minutes in the future.

For more information about how to prepare a payload for BatchPutAssetPropertyValue, see
Ingest data with AWS IoT SiteWise APIs.

2. Run the following command to send the attribute values to AWS IoT SiteWise:

aws iotsitewise batch-put-asset-property-value -\-cli-input-json file://batch-put-
payload.json

Respond to alarms in AWS IoT SiteWise

When an AWS IoT Events alarm changes state, you can do the following to respond to the alarm:

• Acknowledge an alarm to indicate that you are handling the issue.

• Snooze an alarm to disable it temporarily.

• Disable an alarm to disable it permanently until you enable it again.

• Enable a disabled alarm to detect alarm state.

• Reset an alarm to clear its state and latest value.

You can use the AWS IoT SiteWise console or the AWS IoT Events API to respond to an alarm.

Note

You can respond to AWS IoT Events alarms, but not external alarms.

Respond to alarms 646

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html

AWS IoT SiteWise User Guide

Topics

• Respond to an alarm (console)

• Respond to an alarm (API)

Respond to an alarm (console)

You can use the AWS IoT SiteWise console to acknowledge, snooze, disable, or enable an alarm.

Topics

• Acknowledge an alarm (console)

• Snooze an alarm (console)

• Disable an alarm (console)

• Enable an alarm (console)

• Reset an alarm (console)

Acknowledge an alarm (console)

You can acknowledge an alarm to indicate that you're handling the issue.

Note

You must enable the acknowledge flow on the alarm so that you can acknowledge the
alarm. This option is enabled by default if you define the alarm from the AWS IoT SiteWise
console.

To acknowledge an alarm (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Assets.

3. Choose the asset to for which you want to acknowledge an alarm.

Tip

You can choose the arrow icon to expand an asset hierarchy to find your asset.

Respond to an alarm (console) 647

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

4. Choose the Alarms tab.

5. Select the alarm to acknowledge, and then choose Actions to open the response action menu.

6. Choose Acknowledge. The alarm's state changes to Acknowledged.

Snooze an alarm (console)

You can snooze an alarm to disable it temporarily. Specify the duration for which to snooze the
alarm.

To snooze an alarm (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Assets.

3. Choose the asset to for which you want to snooze an alarm.

Tip

You can choose the arrow icon to expand an asset hierarchy to find your asset.

4. Choose the Alarms tab.

5. Select the alarm to snooze, and then choose Actions to open the response action menu.

6. Choose Snooze. A model opens where you specify the duration to snooze.

7. Choose the Snooze length or enter a Custom snooze length.

8. Choose Save. The alarm's state changes to Snoozed.

Disable an alarm (console)

You can disable an alarm so that it doesn't detect anymore. After you disable the alarm, you must
enable it again if you want the alarm to detect.

To disable an alarm (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Assets.

3. Choose the asset to for which you want to disable an alarm.

Respond to an alarm (console) 648

https://console.aws.amazon.com/iotsitewise/
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

Tip

You can choose the arrow icon to expand an asset hierarchy to find your asset.

4. Choose the Alarms tab.

5. Select the alarm to disable, and then choose Actions to open the response action menu.

6. Choose Disable. The alarm's state changes to Disabled.

Enable an alarm (console)

You can enable an alarm to detect again after you disable or snooze it.

To enable an alarm (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Assets.

3. Choose the asset to for which you want to enable an alarm.

Tip

You can choose the arrow icon to expand an asset hierarchy to find your asset.

4. Choose the Alarms tab.

5. Select the alarm to enable, and then choose Actions to open the response action menu.

6. Choose Enable. The alarm's state changes to Normal.

Reset an alarm (console)

You can reset an alarm to clear its state and latest value.

To reset an alarm (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Assets.

3. Choose the asset to for which you want to reset an alarm.

Respond to an alarm (console) 649

https://console.aws.amazon.com/iotsitewise/
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

Tip

You can choose the arrow icon to expand an asset hierarchy to find your asset.

4. Choose the Alarms tab.

5. Select the alarm to enable, and then choose Actions to open the response action menu.

6. Choose Reset. The alarm's state changes to Normal.

Respond to an alarm (API)

You can use the AWS IoT Events API to acknowledge, snooze, disable, enable, or reset an alarm. For
more information, see the following operations in the AWS IoT Events API Reference:

• BatchAcknowledgeAlarm

• BatchSnoozeAlarm

• BatchDisableAlarm

• BatchEnableAlarm

• BatchResetAlarm

For more information, see Responding to alarms in the AWS IoT Events Developer Guide.

Ingest an external alarm state in AWS IoT SiteWise

External alarms are alarms that you evaluate outside of AWS IoT SiteWise. You can use external
alarms when you have a data source that reports alarm state that you want to ingest to AWS IoT
SiteWise.

Alarm state properties require a specific format for alarm state data values. Each data value must
be a JSON object serialized to a string. Then, you ingest the serialized string as a string value. For
more information, see Alarm state properties.

Example Example alarm state data value (not serialized)

{
 "stateName": "Active"

Respond to an alarm (API) 650

https://docs.aws.amazon.com/iotevents/latest/apireference/API_iotevents-data_BatchAcknowledgeAlarm.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_iotevents-data_BatchSnoozeAlarm.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_iotevents-data_BatchDisableAlarm.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_iotevents-data_BatchEnableAlarm.html
https://docs.aws.amazon.com/iotevents/latest/apireference/API_iotevents-data_BatchResetAlarm.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/respond-to-alarms.html

AWS IoT SiteWise User Guide

}

Example Example alarm state data value (serialized)

{\"stateName\":\"Active\"}

Note

If your data source can't report data in this format, or you can't convert your data to this
format before you ingest it, you might choose not to use an alarm property. Instead, you
can ingest the data as a measurement property with the string data type, for example. For
more information, see Define data streams from equipment (measurements) and Ingest
data to AWS IoT SiteWise.

Map external alarm state streams in AWS IoT SiteWise

You can define property aliases to map your data streams to your alarm state properties. This helps
you easily identify an alarm state property when you ingest or retrieve data. For more information
about property aliases, see Manage data streams for AWS IoT SiteWise.

Topics

• Map external alarm state streams (console)

• Map external alarm state streams (AWS CLI)

Map external alarm state streams (console)

You can define property aliases to map your data streams to your alarm state properties. This helps
you easily identify an alarm state property when you ingest or retrieve data. For more information
about property aliases, see Manage data streams for AWS IoT SiteWise.

You can use the AWS IoT SiteWise console to set an alias for an alarm state property.

To set a property alias for an alarm state property (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Assets.

Map external alarm state streams 651

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

3. Choose the asset for which you want to set a property alias.

Tip

You can choose the arrow icon to expand an asset hierarchy to find your asset.

4. Choose Edit.

5. Scroll to Alarms and expand the section.

6. Under External Alarms, enter the alias in Property alias – optional.

7. Choose Save.

Map external alarm state streams (AWS CLI)

You can define property aliases to map your data streams to your alarm state properties. This helps
you easily identify an alarm state property when you ingest or retrieve data. For more information
about property aliases, see Manage data streams for AWS IoT SiteWise.

You can use the AWS Command Line Interface (AWS CLI) to set an alias for an alarm state property.

You must know your asset's assetId and property's propertyId to complete this procedure. You
can also use the external ID. If you created an asset and don't know its assetId, use the ListAssets
API to list all the assets for a specific model. Use the DescribeAsset operation to view your asset's
properties including property IDs.

Note

The DescribeAsset response includes the list of composite asset models for the asset. Each
alarm is a composite model. To find the propertyId, find the composite model for the
alarm, and then find the AWS/ALARM_STATE property in that composite model.

For more information about how to set the property alias, see Update an asset property alias.

Ingest alarm state data in AWS IoT SiteWise

Alarm state properties expect alarm state as a serialized JSON string. To ingest alarm state to an
external alarm in AWS IoT SiteWise, you ingest this serialized string as a timestamped string value.
The following example demonstrates a state data value for an active alarm.

Ingest alarm state data 652

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListAssets.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAsset.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAsset.html

AWS IoT SiteWise User Guide

{\"stateName\":\"Active\"}

To identify an alarm state property, you can specify one of the following:

• The assetId and propertyId of the alarm property that you're sending data to.

• The propertyAlias, which is a data stream alias (for example, /company/windfarm/3/
turbine/7/temperature/high). To use this option, you must first set your alarm property's
alias. To learn how to set property aliases for alarm state properties, see Map external alarm
state streams in AWS IoT SiteWise.

The following example BatchPutAssetPropertyValue API payload demonstrates how to format the
state of an external alarm. This external alarm reports when a wind turbine's rotations per minute
(RPM) reading is too high.

Example Example BatchPutAssetPropertyValue payload for alarm state data

{
 "entries": [
 {
 "entryId": "unique entry ID",
 "propertyAlias": "/company/windfarm/3/turbine/7/temperature/high",
 "propertyValues": [
 {
 "value": {
 "stringValue": "{\"stateName\":\"Active\"}"
 },
 "timestamp": {
 "timeInSeconds": 1607550262
 }
 }
]
 }
]
 }

For more information about how to use the BatchPutAssetPropertyValue API to ingest data,
see Ingest data with AWS IoT SiteWise APIs.

For more information about other ways to ingest data, see Ingest data to AWS IoT SiteWise.

Ingest alarm state data 653

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html

AWS IoT SiteWise User Guide

AWS IoT SiteWise Assistant

The AWS IoT SiteWise Assistant is a generative AI-powered assistant. It allows users like plant
managers, quality engineers, and maintenance technicians to gain insights, solve problems, and
take actions directly from their operational and enterprise data.

The AWS IoT SiteWise Assistant consolidates information from AWS IoT data, asset models,
manuals and documentation into understandable summaries of critical events. It also enables
interactive deep dive question and answer sessions for easy diagnosis, root cause explorations and
guided recommendations.

Topics

• Configure the AWS IoT SiteWise Assistant

• Create a dataset

• Edit a dataset

• Delete a dataset

• AWS IoT SiteWise Assistant questions

Configure the AWS IoT SiteWise Assistant

AWS IoT SiteWise Assistant configuration

1. Sign in to the AWS IoT SiteWise console.

Note

Grant permissions to enable integration with AWS IoT TwinMaker service. This is
required for the AWS IoT SiteWise Assistant, and the dashboard to execute SQL
queries in AWS IoT SiteWise resources. See Integrate AWS IoT SiteWise and AWS IoT
TwinMaker.

Configure the AWS IoT SiteWise Assistant 654

https://console.aws.amazon.com/iotsitewise/home
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/integrate-tm.html#it-enable
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/integrate-tm.html#it-enable

AWS IoT SiteWise User Guide

2. Choose Assistant from the left navigation panel.

Configure the AWS IoT SiteWise Assistant 655

AWS IoT SiteWise User Guide

Create a dataset

Note

The AWS IoT SiteWise Assistant must use a dataset with an Amazon Kendra index for
enterprise level knowledge and guidance. If you do not have a Amazon Kendra index, see
Creating an index to create one. Adding a dataset improves the quality of the Assistant's
response, and minimizes hallucinations.

Create a dataset 656

https://docs.aws.amazon.com/kendra/latest/dg/what-is-kendra.html
https://docs.aws.amazon.com/kendra/latest/dg/create-index.html

AWS IoT SiteWise User Guide

Console

Create a dataset in the AWS IoT SiteWise console

1. Datasets are displayed in the Datasets section of the AWS IoT SiteWise Assistant page.

2. If no datasets exist, choose Create dataset.

3. In the Dataset details page, choose a Kendra index from the drop down menu to associate
with the dataset.

4. The dataset name is populated by the Kendra index selected in Step 3. Edit the name if
needed.

5. (Optional) The dataset description is populated by the Kendra index selected in Step 3. Edit
the description if needed.

6. In the Permissions section, choose from below:

a. Choose Create and use a new service role. By default, AWS IoT SiteWise automatically
creates a service role. This role allows the AWS IoT SiteWise Assistant to access your
Kendra indexes.

b. Choose Use an existing service role, and then choose the target role.

7. Choose Create.

Create a dataset 657

AWS IoT SiteWise User Guide

The service role created by AWS IoT SiteWise for the user, if the user chose to Create and use a
new service role.

Create a dataset 658

AWS IoT SiteWise User Guide

AWS CLI

Create a dataset in AWS CLI

1. Create an IAM role used to create a dataset. Use the following permissions policy:

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kendra:Retrieve"
],
 "Resource": "arn:aws:kendra:*:*:index/*"
 }
]
}

Create a dataset 659

AWS IoT SiteWise User Guide

Use the following trust relationship:

JSON

{
 "Version": "2008-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "iotsitewise.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Create a file create-dataset.json with the template provided in the example. Populate
datasetId, kendra knowledgeBaseArn and roleArn to connect with this dataset.

{
 "datasetId": "<UUID>",
 "datasetName": "DatasetForAssistant",
 "datasetSource": {
 "sourceType": "KENDRA",
 "sourceFormat": "KNOWLEDGE_BASE",
 "sourceDetail": {
 "kendra": {
 "knowledgeBaseArn": "arn:aws:kendra::%s:index/index",
 "roleArn": "arn:aws:iam::%s:role/role"
 }
 }
 }
}

3. Create the dataset with the following command:

Create a dataset 660

AWS IoT SiteWise User Guide

aws iotsitewise create-dataset --cli-input-json file://create-dataset.json —-
region us-east-1

Edit a dataset

Console

Edit a dataset

1. Datasets are displayed in the Datasets section of the Assistant page. Choose a dataset to
edit. Choose Edit to start editing.

2. In the Dataset details page, choose a Kendra index from the drop down menu to associate
with the dataset.

3. The dataset name is populated by the Kendra index selected in Step 2. Edit the name if
needed.

4. (Optional) The dataset description is populated by the Kendra index selected in Step 2. Edit
the description if needed.

5. In the Permissions section, choose from below:

a. Choose Create and use a new service role. By default, AWS IoT SiteWise automatically
creates a service role. This role allows the AWS IoT SiteWise Assistant to access your
Kendra indexes.

b. Choose Use an existing service role, and then choose the target role.

6. Choose Save changes to save your selection.

Edit a dataset 661

AWS IoT SiteWise User Guide

AWS CLI

Edit a dataset in AWS CLI

1. Create a file update-dataset.json with the template provided in the example. Populate
datasetId, kendra knowledgeBaseArn and roleArn to connect with this dataset.

{
 "datasetId": "<UUID>",
 "datasetName": "DatasetForAssistant",
 "datasetSource": {
 "sourceType": "KENDRA",
 "sourceFormat": "KNOWLEDGE_BASE",
 "sourceDetail": {
 "kendra": {
 "knowledgeBaseArn": "arn:aws:kendra::%s:index/index",
 "roleArn": "arn:aws:iam::%s:role/role"

Edit a dataset 662

AWS IoT SiteWise User Guide

 }
 }
 }
}

2. Update the dataset with the following command:

aws iotsitewise update-dataset --cli-input-json file://update-dataset.json —-
region us-east-1

Delete a dataset

Console

Delete a dataset

1. Datasets are displayed in the Datasets section of the Assistant page. Choose a dataset.
Choose Delete.

2. Type confirm in the popup to confirm the delete.

3. Choose Delete.

Delete a dataset 663

AWS IoT SiteWise User Guide

AWS CLI

Delete a dataset

• Delete the dataset with datasetId.

aws iotsitewise delete-dataset --region us-east-1 --dataset-id <UUID>

AWS IoT SiteWise Assistant questions

See Sample questions to ask AWS IoT SiteWise Assistant to learn more about querying AWS IoT
SiteWise Assistant.

AWS IoT SiteWise Assistant questions 664

AWS IoT SiteWise User Guide

Monitor data with AWS IoT SiteWise Monitor

You can use AWS IoT SiteWise to monitor the data from your processes, devices, and equipment by
creating SiteWise Monitor web portals. SiteWise Monitor is a feature of AWS IoT SiteWise that you
can use to create portals in the form of a managed web application. You can then use these portals
to view and share your operational data. You can create projects with dashboards to visualize data
from your processes, devices, and equipment that are connected to AWS IoT.

Domain experts, such as process engineers, can use these portals to quickly get insights into their
operational data to understand device and equipment behavior.

The following is an example dashboard that displays data for a wind farm.

665

AWS IoT SiteWise User Guide

Because AWS IoT SiteWise captures data over time, you can use SiteWise Monitor to view
operational data over time, or the last reported values at specific points in time. This lets you
uncover insights that might otherwise be difficult to find.

SiteWise Monitor roles

Four roles interact with SiteWise Monitor:

AWS administrator

The AWS administrator uses the AWS IoT SiteWise console to create portals. The AWS
administrator can also assign portal administrators and add portal users. Portal administrators
later assign portal users to projects as owners or viewers. The AWS administrator works
exclusively in the AWS console.

Portal administrator

Each SiteWise Monitor portal has one or more portal administrators. Portal administrators
use the portal to create projects that contain collections of assets and dashboards. The portal
administrator then assigns assets and owners to each project. By controlling access to the
project, portal administrators specify which assets that project owners and viewers can see.

Project owner

Each SiteWise Monitor project has owners. Project owners create visualizations in the form of
dashboards to represent operational data in a consistent manner. When dashboards are ready
to share, the project owner can invite viewers to the project. Project owners can also assign
other owners to the project. Project owners can configure thresholds and notification settings
for alarms.

Project viewer

Each SiteWise Monitor project has viewers. Project viewers can connect to the portal to view the
dashboards that project owners created. In each dashboard, project viewers can adjust the time
range to better understand operational data. Project viewers can only view dashboards in the
projects to which they have access. Project viewers can acknowledge and snooze alarms.

Depending on your organization, the same person might perform multiple roles.

The following image illustrates how these four roles interact in the SiteWise Monitor portal.

SiteWise Monitor roles 666

AWS IoT SiteWise User Guide

You can manage who has access to your data by using AWS IAM Identity Center or IAM. Your data
users can sign in to SiteWise Monitor from a desktop or mobile browser using their IAM Identity
Center or IAM credentials.

SAML federation

IAM Identity Center and IAM support identity federation with SAML (Security Assertion Markup
Language) 2.0. SAML 2.0 is an open standard that many external identity providers (IdPs) use
to authenticate users and pass their identity and security information to service providers (SPs).
SPs are typically applications or services. SAML federation enables your SiteWise Monitor portal
administrators and users to sign in to their assigned portals with external credentials, such as their
corporate usernames and passwords.

SAML federation 667

https://wiki.oasis-open.org/security
https://wiki.oasis-open.org/security

AWS IoT SiteWise User Guide

You can configure IAM Identity Center and IAM to use SAML-based federation for access to your
SiteWise Monitor portals.

IAM Identity Center

Your portal administrators and users can sign in to the AWS access portal with their corporate
usernames and passwords. They can then navigate to their assigned SiteWise Monitor portals.
IAM Identity Center uses certificates to set up a SAML trust relationship between your identity
provider and AWS. For more information, SCIM profile and SAML 2.0 implementation in the
AWS IAM Identity Center User Guide.

IAM

Your portal administrators and users can request temporary security credentials to access their
assigned SiteWise Monitor portals. You create a SAML identity provider identity in IAM to set up
a trust relationship between your identity provider and AWS. For more information, see Using
SAML-based federation for API access to AWS, in the IAM User Guide.

Your portal administrators and users can sign in to your company's portal and select the option
to go to the AWS Management console. They can then navigate to their assigned SiteWise
Monitor portals. Your company's portal handles the exchange of trust between your identity
provider and AWS. For more information, see Enabling SAML 2.0 federated users to access the
AWS Management Console in the IAM User Guide.

Note

When adding users or administrators to the portal, avoid creating IAM policies that
restrict user permissions, such as limited IP. Any attached policies with restricted
permissions will not be able to connect to the AWS IoT SiteWise portal.

SiteWise Monitor concepts

To use SiteWise Monitor, you should be familiar with the following concepts:

Portal

An AWS IoT SiteWise Monitor portal is a web application that you can use to visualize and share
your AWS IoT SiteWise data. A portal has one or more administrators and contains zero or more
projects.

SiteWise Monitor concepts 668

https://docs.aws.amazon.com/singlesignon/latest/userguide/scim-profile-saml.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_saml.html#CreatingSAML-configuring
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_saml.html#CreatingSAML-configuring
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_enable-console-saml.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_enable-console-saml.html

AWS IoT SiteWise User Guide

Project

Each SiteWise Monitor portal contains a set of projects. Each project has a subset of your
AWS IoT SiteWise assets associated with it. Project owners create one or more dashboards to
provide a consistent way to view the data associated with those assets. Project owners can
invite viewers to the project to allow them to view the assets and dashboards in the project. The
project is the basic unit of sharing within SiteWise Monitor. Project owners can invite users who
were given access to the portal by the AWS administrator. A user must have access to a portal
before a project in that portal can be shared with that user.

Asset

When data is ingested into AWS IoT SiteWise from your industrial equipment, your devices,
equipment, and processes are each represented as assets. Each asset has properties and alarms
associated with it. The portal administrator assigns sets of assets to each project.

Property

Properties are time series data associated with assets. For example, a piece of equipment might
have a serial number, a location, a make and model, and an install date. It might also have time
series values for availability, performance, quality, temperature, pressure, and so on.

Alarm

Alarms monitor properties to identify when equipment is outside of its operating range. Each
alarm defines a threshold and a property to monitor. When the property exceeds the threshold,
the alarm becomes active and indicates that you or someone on your team should address the
issue. Project owners can customize the thresholds and notification settings for alarms. Project
viewers can acknowledge and snooze alarms, and they can leave a message with details about
the alarm or the action that they took to address it.

Dashboard

Each project contains a set of dashboards. Dashboards provide a set of visualizations for the
values of a set of assets. Project owners create the dashboards and the visualizations that it
contains. When a project owner is ready to share the set of dashboards, the owner can invite
viewers to the project, which gives them access to all dashboards in the project. If you want
a different set of viewers for different dashboards, you must divide the dashboards between
projects. When viewers look at dashboards, they can customize time range to look at specific
data.

SiteWise Monitor concepts 669

AWS IoT SiteWise User Guide

Visualization

In each dashboard, project owners decide how to display the properties and alarms of the assets
associated with the project. Availability might be represented as a line chart, while other values
might be displayed as bar charts or key performance indicators (KPIs). Alarms are best displayed
as status grids and status timelines. Project owners customize each visualization to provide the
best understanding of the data for that asset.

Get started with AWS IoT SiteWise Monitor (Classic)

If you're the AWS administrator for your organization, you create portals from the AWS IoT
SiteWise console. Complete the following steps to create a portal so that members of your
organization can view your AWS IoT SiteWise data:

1. Configure and create a portal

2. Add portal administrators and send invitation emails

3. Add portal users

After you create a portal, the portal administrator can view your AWS IoT SiteWise assets and
assign them to projects in the portal. Project owners can then create dashboards to visualize the
properties of the assets that help project viewers understand how your devices, processes, and
equipment are performing.

Note

When adding users or administrators to the portal, avoid creating AWS Identity and Access
Management (IAM) policies that restrict user permissions, such as limited IP. Any attached
policies with restricted permissions will not be able to connect to the AWS IoT SiteWise
portal.

You can follow a tutorial that walks through the steps required to set up a portal with a project,
dashboards, and multiple users for a specific scenario using wind farm data. For more information,
see Visualize and share wind farm data in SiteWise Monitor.

Topics

• Create a portal in SiteWise Monitor

Get started with AWS IoT SiteWise Monitor (Classic) 670

AWS IoT SiteWise User Guide

• Configure your portal in SiteWise Monitor

• Invite administrators in SiteWise Monitor

• Add portal users in SiteWise Monitor

• Create AWS IoT SiteWise dashboards (AWS CLI)

• Turn on alarms for your portals in AWS IoT SiteWise

• Enabling your AWS IoT SiteWise portal at the edge

• Administer your SiteWise Monitor portals

Create a portal in SiteWise Monitor

You create a SiteWise Monitor portal in the AWS IoT SiteWise console.

To create a portal

1. Sign in to the AWS IoT SiteWise console.

2. In the navigation pane, choose Monitor, Getting started.

3. Choose Create Portal.

Create a portal 671

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

Next, you must provide some basic information to configure your portal.

Configure your portal in SiteWise Monitor

Your users use portals to view your data. You can customize a portal's name, description, branding,
user authentication, support contact email, and permissions.

Configure your portal 672

AWS IoT SiteWise User Guide

Configure your portal 673

AWS IoT SiteWise User Guide

To configure a portal

1. Enter a name for your portal.

2. (Optional) Enter a description for your portal. If you have multiple portals, use meaningful
descriptions to help you keep track of what each portal contains.

3. (Optional) Upload an image to display your brand in the portal. Choose a square, PNG image. If
you upload a non-square image, the portal scales the image down to a square.

4. Choose one of the following options:

• Choose IAM Identity Center if your portal users sign in to this portal with their corporate
user names and passwords.

If you haven't enabled IAM Identity Center in your account, do the following:

a. Choose Create user.

b. On the Create user page, to create the first portal, enter the user's email address, first
name, and last name, and then choose Create user.

Note

• AWS automatically enables IAM Identity Center in your account when you
create the first portal user.

• You can configure IAM Identity Center in only one Region at a time.
SiteWise Monitor connects to the Region that you configured for IAM
Identity Center. This means that you use one Region for IAM Identity Center
access, but you can create portals in any Region.

Configure your portal 674

AWS IoT SiteWise User Guide

• Choose IAM if your portal users sign in to this portal with their IAM credentials.

Important

Users or roles must have the iotsitewise:DescribePortal permission to
sign in to the portal.

5. Enter an email address that portal users can contact when they have an issue with the portal
and need help to resolve it.

6. (Optional) Add tags for your portal. For more information, see Tag your AWS IoT SiteWise
resources.

7. Choose one of the following options:

• Choose Create and use a new service role. By default, SiteWise Monitor automatically
creates a service role for each portal. This role allows your portal users to access your AWS
IoT SiteWise resources. For more information, see Use service roles for AWS IoT SiteWise
Monitor.

• Choose Use an existing service role, and then choose the target role.

8. Choose Next

9. (Optional) Enable alarms for your portal. For more information, see Turn on alarms for your
portals in AWS IoT SiteWise.

10. Choose Create. AWS IoT SiteWise will create your portal.

Note

If you close the console, you can finish the setup process by adding administrators
and users. For more information, see Add or remove portal administrators in AWS IoT
SiteWise. If you don't want to keep this portal, delete it so it doesn't use resources. For
more information, see Delete a portal in AWS IoT SiteWise.

The Status column can be one of the following values.

• CREATING - AWS IoT SiteWise is processing your request to create the portal. This process can
take several minutes to complete.

Configure your portal 675

AWS IoT SiteWise User Guide

• UPDATING - AWS IoT SiteWise is processing your request to update the portal. This process can
take several minutes to complete.

• PENDING - AWS IoT SiteWise is waiting for the DNS record propagation to finish. This process
can take several minutes to complete. You can delete the portal while the status is PENDING.

• DELETING - AWS IoT SiteWise is processing your request to delete the portal. This process can
take several minutes to complete.

• ACTIVE - When the portal becomes active, your portal users can access it.

• FAILED - AWS IoT SiteWise couldn't process your request to create, update, or delete the portal.
If you enabled AWS IoT SiteWise to send logs to Amazon CloudWatch Logs, you can use these
logs to troubleshoot issues. For more information, see Monitoring AWS IoT SiteWise with
CloudWatch Logs.

A message appears when your portal is created.

Next, you must invite one or more portal administrators to the portal. So far, you created a portal
but no one can access it.

Invite administrators in SiteWise Monitor

To get started in your new portal, you must assign a portal administrator. The portal administrator
creates projects, chooses project owners, and assigns assets to projects. Portal administrators can
see all of your AWS IoT SiteWise assets.

Based on the user authentication service, choose one of the following options:

IAM Identity Center

If you're using SiteWise Monitor for the first time, you can choose the user that you created
earlier to be the portal administrator. If you want to add another user as a portal administrator,
you can create an IAM Identity Center user from this page. Alternatively, you can connect an
external identity provider to IAM Identity Center. For more information, see the AWS IAM
Identity Center User Guide.

To invite administrators

1. Select the check boxes for the users that you want as your portal administrators. This adds
the users to the Portal administrators list.

Invite administrators 676

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/monitor-cloudwatch-logs.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/monitor-cloudwatch-logs.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/
https://docs.aws.amazon.com/singlesignon/latest/userguide/

AWS IoT SiteWise User Guide

Note

If you use IAM Identity Center as your identity store, and you're signed in to your
AWS Organizations management account, you can choose Create user to create
an IAM Identity Center user. IAM Identity Center sends the new user an email
for them to set their password. You can then assign the user to the portal as an
administrator. For more information, see Manage identities in IAM Identity Center.

2. (Optional) Choose Send invite to selected users. Your email client opens, and an invitation
is populated in the message body.

You can customize the email before you send it to your portal administrators. You can also
send the email to your portal administrators later. If you're trying SiteWise Monitor for
the first time and adding your new IAM Identity Center or IAM user or role as the portal
administrator, you don't need to email yourself.

3. If you add a user that you don't want as an administrator, clear the check box for that user.

4. When you're finished inviting portal administrators, choose Next.

IAM

You can choose a user or role to be the portal administrator. If you want to add another user
or role as a portal administrator, you can create a user or role in the IAM console. For more
information, see Creating an IAM user in your AWS account and Creating IAM roles in the IAM
User Guide.

To invite administrators

1. Do the following:

• Choose IAM users to add an IAM user as your portal administrator.

• Choose IAM roles to add an IAM role as your portal administrator.

2. Select the check boxes for the users or roles that you want as your portal administrators.
This adds the users or roles to the Portal administrators list.

3. If you add a user or role that you don't want as an administrator, clear the check box for
that user or role.

4. When you're finished inviting portal administrators, choose Next.

Invite administrators 677

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html

AWS IoT SiteWise User Guide

Important

Users or roles must have the iotsitewise:DescribePortal permission to sign in to
the portal.

Note

If you use IAM Identity Center as your identity store, and you're signed in to your AWS
Organizations management account, you can choose Create user to create an IAM
Identity Center user. IAM Identity Center sends the new user an email for them to set
their password. You can then assign the user to the portal as an administrator. For more
information, see Manage identities in IAM Identity Center.

You can change the list of portal administrators later. For more information, see Add or remove
portal administrators in AWS IoT SiteWise.

Note

Because only a portal administrator can create projects and assign assets to them, you
should specify at least one portal administrator.

As the last step, you add users who can access your new portal.

Add portal users in SiteWise Monitor

You control which users have access to your portals. In each portal, the portal administrators create
one or more projects and assign portal users as owners or viewers for each project. Each project
owner can invite additional portal users to own or view the project.

Based on the user authentication service, choose one of the following options:

IAM Identity Center

If you want to add a user to the Users list, complete the following steps.

Add portal users 678

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-sso.html

AWS IoT SiteWise User Guide

To add portal users

1. Choose users from the Users list to add to the portal. This adds the users to the Portal
users list. If you're using SiteWise Monitor for the first time, you don't need to add your
portal administrator as a portal user.

Note

If you use IAM Identity Center as your identity store, and you're signed in to your
AWS Organizations management account, you can choose Create user to create an
IAM Identity Center user. IAM Identity Center sends the new user an email for them
to set their password. You can then assign the user to the portal as a user. For more
information, see Manage identities in IAM Identity Center.

2. If you add a user that you don't want to have access to the portal, clear the check box for
that user.

3. When you're finished selecting users, choose Assign users.

IAM

If you see the user or role that you want to add in the IAM users or IAM roles list, complete the
following steps.

Add portal users 679

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-sso.html

AWS IoT SiteWise User Guide

To add portal users

1. Do the following options:

• Choose IAM users to add an IAM user as a portal user.

• Choose IAM roles to add an IAM role as a portal user.

If you're using SiteWise Monitor for the first time, you don't need to add your portal
administrator as a portal user.

2. Select the check boxes for the users or roles that you want as portal users. This adds the
users or roles to the Portal users list.

3. If you add a user that you don't want to have access to the portal, clear the check box for
that user.

4. When you're finished selecting users, choose Assign users.

Important

Users or roles must have the iotsitewise:DescribePortal permission to sign in to
the portal.

Add portal users 680

AWS IoT SiteWise User Guide

Add portal users 681

AWS IoT SiteWise User Guide

Congratulations! You successfully created a portal, assigned portal administrators, and assigned
users who can use that portal when invited to do so. Your portal administrators can now create
projects and add assets to those projects. Then, your project owners can create dashboards to
visualize the data for each project's assets.

You can change the list of portal users later. For more information, see Add or remove portal users
in AWS IoT SiteWise.

If you need to make changes to the portal, see Administer your SiteWise Monitor portals.

To get started in the portal, see Getting started in the SiteWise Monitor Application Guide.

Add portal users 682

https://docs.aws.amazon.com/iot-sitewise/latest/appguide/getting-started.html

AWS IoT SiteWise User Guide

Create AWS IoT SiteWise dashboards (AWS CLI)

When you define visualizations (or widgets) in dashboards using the AWS CLI, you must specify
the following information in the dashboardDefinition JSON document. This definition is a
parameter of the CreateDashboard and UpdateDashboard operations.

widgets

A list of widget definition structures that each contain the following information:

type

The type of widget. AWS IoT SiteWise provides the following widget types:

•
sc-line-chart – A line chart. For more information, see Line charts in the AWS IoT
SiteWise Monitor Application Guide.

•
sc-scatter-chart – A scatter chart. For more information, see Scatter charts in the
AWS IoT SiteWise Monitor Application Guide.

•
sc-bar-chart – A bar chart. For more information, see Bar charts in the AWS IoT
SiteWise Monitor Application Guide.

•
sc-status-grid – A status widget that shows the latest value of asset properties as a
grid. For more information, see Status widgets in the AWS IoT SiteWise Monitor Application
Guide.

•
sc-status-timeline – A status widget that shows the historical values of asset
properties as a timeline. For more information, see Status widgets in the AWS IoT SiteWise
Monitor Application Guide.

• sc-kpi – A key performance indicator (KPI) visualization. For more information, see KPI
widgets in the AWS IoT SiteWise Monitor Application Guide.

• sc-table – A table widget. For more information, see Table widgets in the AWS IoT
SiteWise Monitor Application Guide.

title

The title of the widget.

Create dashboards (CLI) 683

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateDashboard.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateDashboard.html
https://docs.aws.amazon.com/iot-sitewise/latest/appguide/choose-visualization-types.html#line-charts
https://docs.aws.amazon.com/iot-sitewise/latest/appguide/choose-visualization-types.html#scatter-charts
https://docs.aws.amazon.com/iot-sitewise/latest/appguide/choose-visualization-types.html#bar-charts
https://docs.aws.amazon.com/iot-sitewise/latest/appguide/choose-visualization-types.html#status-widgets
https://docs.aws.amazon.com/iot-sitewise/latest/appguide/choose-visualization-types.html#status-widgets
https://docs.aws.amazon.com/iot-sitewise/latest/appguide/choose-visualization-types.html#kpi-charts
https://docs.aws.amazon.com/iot-sitewise/latest/appguide/choose-visualization-types.html#kpi-charts
https://docs.aws.amazon.com/iot-sitewise/latest/appguide/choose-visualization-types.html#table-widgets

AWS IoT SiteWise User Guide

x

The horizontal position of the widget, starting from the left of the grid. This value refers to
the widget's position in the dashboard's grid.

y

The vertical position of the widget, starting from the top of the grid. This value refers to the
widget's position in the dashboard's grid.

width

The width of the widget, expressed in number of spaces on the dashboard's grid.

height

The height of the widget, expressed in number of spaces on the dashboard's grid.

metrics

A list of metric structures that each define a data stream for this widget. Each structure in
the list must contain the following information:

label

A label to display for this metric.

type

The type of data source for this metric. AWS IoT SiteWise provides the following metric
types:

• iotsitewise – The dashboard fetches data for an asset property in AWS IoT
SiteWise. If you choose this option, you must define assetId and propertyId for
this metric.

assetId

(Optional) The ID of an asset in AWS IoT SiteWise.

This field is required if you choose iotsitewise for type in this metric.

propertyId

(Optional) The ID of an asset property in AWS IoT SiteWise.

This field is required if you choose iotsitewise for type in this metric.

Create dashboards (CLI) 684

AWS IoT SiteWise User Guide

analysis

(Optional) A structure that defines the analysis, such as trend lines, to display for the
widget. For more information, see Configuring trend lines in the AWS IoT SiteWise
Monitor Application Guide. You can add one of each type of trend line per property in the
widget. The analysis structure contains the following information:

trends

(Optional) A list of trend structures that each define a trend analysis for this widget.
Each structure in the list contains the following information:

type

The type of trend line. Choose the following option:

• linear-regression – Display a linear regression line. SiteWise Monitor uses
the least squares method to calculate the linear regression.

annotations

(Optional) An annotations structure that defines thresholds for the widget. For more
information, see Configuring thresholds in the AWS IoT SiteWise Monitor Application Guide.
You can add up to six annotations per widget. The annotations structure contains the
following information:

y

(Optional) A list of annotation structures that each define a horizontal threshold for this
widget. Each structure in the list contains the following information:

comparisonOperator

The comparison operator for the threshold. Choose one of the following:

• LT – Highlight properties that have at least one data point less than the value.

• GT – Highlight properties that have at least one data point greater than the value.

• LTE – Highlight properties that have at least one data point less than or equal to
the value.

• GTE – Highlight properties that have at least one data point greater than or equal
to the value.

• EQ – Highlight properties that have at least one data point equal to the value.

Create dashboards (CLI) 685

https://docs.aws.amazon.com/iot-sitewise/latest/appguide/configure-trend-lines.html
https://en.wikipedia.org/wiki/Least_squares
https://docs.aws.amazon.com/iot-sitewise/latest/appguide/configure-thresholds.html

AWS IoT SiteWise User Guide

value

The threshold value to compare data points with the comparisonOperator.

color

(Optional) The 6-digit hexadecimal code of the threshold color. The visualization
displays property legends in this color for properties with at least one data point that
meets the threshold rule. Defaults to black (#000000).

showValue

(Optional) Whether or not to show the value of the threshold in the margins of the
widget. Defaults to true.

properties

(Optional) A flat dictionary of properties for the widget. The members of this structure are
context-dependent. AWS IoT SiteWise provides the following widgets that use properties:

• Line charts, scatter charts, and bar charts have the following property:

colorDataAcrossThresholds

(Optional) Whether or not to change the color of the data that crosses the thresholds
in this widget. When you enable this option, the data that crosses a threshold appears
in the color that you choose. Defaults to true.

• Status grids have the following property:

labels

(Optional) A structure that defines the labels to display on the status grid. The labels
structure contains the following information:

showValue

(Optional) Whether or not to display the unit and value for each asset property in
this widget. Defaults to true.

Example Example dashboard definition

The following example defines a dashboard from a payload stored in a JSON file.

aws iotsitewise create-dashboard \
 --project-id a1b2c3d4-5678-90ab-cdef-eeeeeEXAMPLE \

Create dashboards (CLI) 686

AWS IoT SiteWise User Guide

 --dashboard-name "Wind Farm Dashboard" \
 --dashboard-definition file://dashboard-definition.json

The following JSON example for dashboard-definition.json defines dashboard with the
following visualization widgets:

• A line chart that visualizes total wind farm power in the upper left of the dashboard. This
line chart includes a threshold that indicates when the wind farm outputs less power than its
minimum expected output. This line chart also includes a linear regression trend line.

• A bar chart that visualizes wind speed for four turbines in the upper right of the dashboard.

Note

This example represents line and bar chart visualizations on a dashboard. This dashboard is
similar to the example wind farm dashboard.

{
 "widgets": [
 {
 "type": "sc-line-chart",
 "title": "Total Average Power",
 "x": 0,
 "y": 0,
 "height": 3,
 "width": 3,
 "metrics": [
 {
 "label": "Power",
 "type": "iotsitewise",
 "assetId": "a1b2c3d4-5678-90ab-cdef-22222EXAMPLE",
 "propertyId": "a1b2c3d4-5678-90ab-cdef-33333EXAMPLE",
 "analysis": {
 "trends": [
 {
 "type": "linear-regression"
 }
]
 }
 }

Create dashboards (CLI) 687

AWS IoT SiteWise User Guide

],
 "annotations": {
 "y": [
 {
 "comparisonOperator": "LT",
 "value": 20000,
 "color": "#D13212",
 "showValue": true
 }
]
 }
 },
 {
 "type": "sc-bar-chart",
 "title": "Wind Speed",
 "x": 3,
 "y": 3,
 "height": 3,
 "width": 3,
 "metrics": [
 {
 "label": "Turbine 1",
 "type": "iotsitewise",
 "assetId": "a1b2c3d4-5678-90ab-cdef-2a2a2EXAMPLE",
 "propertyId": "a1b2c3d4-5678-90ab-cdef-55555EXAMPLE"
 },
 {
 "label": "Turbine 2",
 "type": "iotsitewise",
 "assetId": "a1b2c3d4-5678-90ab-cdef-2b2b2EXAMPLE",
 "propertyId": "a1b2c3d4-5678-90ab-cdef-55555EXAMPLE"
 },
 {
 "label": "Turbine 3",
 "type": "iotsitewise",
 "assetId": "a1b2c3d4-5678-90ab-cdef-2c2c2EXAMPLE",
 "propertyId": "a1b2c3d4-5678-90ab-cdef-55555EXAMPLE"
 },
 {
 "label": "Turbine 4",
 "type": "iotsitewise",
 "assetId": "a1b2c3d4-5678-90ab-cdef-2d2d2EXAMPLE",
 "propertyId": "a1b2c3d4-5678-90ab-cdef-55555EXAMPLE"
 }

Create dashboards (CLI) 688

AWS IoT SiteWise User Guide

]
 }
]
}

Turn on alarms for your portals in AWS IoT SiteWise

You can enable the alarms feature supported by AWS IoT Events for your portals so that portal
administrators can create, edit, and delete AWS IoT Events alarm models in your SiteWise Monitor
portals. Project owners can configure alarms. Project viewers can view alarm details. This section
explains how you can use the AWS IoT SiteWise console to enable the alarms feature for your
portals.

Important

• You can't create external alarms in your portals.

• If you want to send alarm notifications, you must choose IAM Identity Center for the user
authentication service.

• The alarm notifications feature isn't available in the China (Beijing) AWS Region.

When you configure and create a portal, you can enable alarms and alarm notifications in Step 2
Additional features. Based on the user authentication service, choose one of the following options:

Turn on alarms for your portals 689

AWS IoT SiteWise User Guide

IAM Identity Center

To enable alarms for a portal

1. (Optional) Choose Enable alarms.

• For AWS IoT SiteWise access role, use an existing role or create a role with the
required permissions. This role requires the iotevents:BatchPutMessage
permission and a trust relationship that allows iot.amazonaws.com and
iotevents.amazonaws.com to assume the role.

2. (Optional) Choose Enable alarm notifications.

a. For Sender, choose the sender.

Turn on alarms for your portals 690

AWS IoT SiteWise User Guide

Important

You must verify the sender email address in Amazon SES. For more
information, see Verifying email addresses in Amazon SES, in the Amazon
Simple Email Service Developer Guide.

b. For AWS Lambda role, use an existing role or create a role with the required
permissions. This role requires the lambda:InvokeFunction and sso-
directory:DescribeUserpermissions and a trust relationship that allows
iotevents.amazonaws.com and lambda.amazonaws.com to assume the role.

c. For AWS Lambda functions, choose an existing Lambda function or create a function
that manages alarm notifications. For more information, see Managing alarm
notifications in the AWS IoT Events Developer Guide.

IAM

To enable alarms for a portal

• (Optional) Choose Enable alarms.

Turn on alarms for your portals 691

https://docs.aws.amazon.com/ses/latest/dg/verify-addresses-and-domains.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/lambda-support.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/lambda-support.html

AWS IoT SiteWise User Guide

• For AWS IoT SiteWise access role, use an existing role or create a role with the
required permissions. This role requires the iotevents:BatchPutMessage
permission and a trust relationship that allows iot.amazonaws.com and
iotevents.amazonaws.com to assume the role.

For more information about alarms in SiteWise Monitor, see Monitoring with alarms in the AWS IoT
SiteWise Application Guide.

Enabling your AWS IoT SiteWise portal at the edge

After you enable your portal at the edge, this portal is available on all SiteWise Edge gateways with
the data processing pack enabled in your account.

To enable the portal at the edge

1. In the Edge configuration section, turn on Enable this portal at the edge.

2. Choose Create.

Administer your SiteWise Monitor portals

You have the ability to manage and configure various aspects of the portal. This includes adding
and removing users or administrators, setting user permissions and roles, customizing the
portal's URL, name, setting a support contact information, and sending email invitations to portal
administrators.

1. Sign in to the AWS IoT SiteWise console.

2. In the navigation pane, choose Monitor, Portals.

Enable your portal at the edge 692

https://docs.aws.amazon.com/iot-sitewise/latest/appguide/monitor-alarms.html
https://console.aws.amazon.com/iotsitewise/home

AWS IoT SiteWise User Guide

3. Choose a portal, and then choose View details (or choose the portal's Name).

4. You can perform any of the following administrative tasks:

• Change portal details in AWS IoT SiteWise

• Add or remove portal administrators in AWS IoT SiteWise

• Send email invitations to portal administrators

• Add or remove portal users in AWS IoT SiteWise

• Delete a portal in AWS IoT SiteWise

For information about how to create a portal, see Get started with AWS IoT SiteWise Monitor
(Classic).

Topics

• Change portal details in AWS IoT SiteWise

• Add or remove portal administrators in AWS IoT SiteWise

• Send email invitations to portal administrators

• Add or remove portal users in AWS IoT SiteWise

• Delete a portal in AWS IoT SiteWise

Administer your portals 693

AWS IoT SiteWise User Guide

Change portal details in AWS IoT SiteWise

You can change a portal's name, description, branding, support email, and permissions.

1. On the portal details page, in the Portal details section, choose Edit.

2. Update the Name, Description, Portal branding, Support contact email, or Permissions.

3. When you're finished, choose Save.

Add or remove portal administrators in AWS IoT SiteWise

In a few steps, you can add or remove users as administrators for a portal. Based on the user
authentication service, choose one of the following options.

IAM Identity Center

To add portal administrators

1. On the portal details page, in the Portal administrators section, choose Assign
administrators.

2. On the Assign administrators page, select the check boxes for the users to add to the
portal as administrators.

Note

If you use IAM Identity Center as your identity store, and you're signed in to your
AWS Organizations management account, you can choose Create user to create
an IAM Identity Center user. IAM Identity Center sends the new user an email

Administer your portals 694

AWS IoT SiteWise User Guide

for them to set their password. You can then assign the user to the portal as an
administrator. For more information, see Manage identities in IAM Identity Center.

3. Choose Assign administrators.

To remove portal administrators

• On the portal details page, in the Portal administrators section, select the check box for
each user to remove, and then choose Remove from portal.

Note

We recommend that you select at least one portal administrator.

IAM

To add portal administrators

1. On the portal details page, in the Portal administrators section, choose Assign
administrators.

2. On the Assign administrators page, do the following:

• Choose IAM users, if you want to add an IAM user as your portal administrator.

Administer your portals 695

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-sso.html

AWS IoT SiteWise User Guide

• Choose IAM roles, if you want to add an IAM role as your portal administrator.

3. Select the check boxes for the users or roles that you want as your portal administrators.
This adds the users or roles to the Portal administrators list.

4. Choose Assign administrators.

Important

Users or roles must have the iotsitewise:DescribePortal permission to sign in to
the portal.

Administer your portals 696

AWS IoT SiteWise User Guide

To remove portal administrators

• On the portal details page, in the Portal administrators section, select the check box for
each user to remove, and then choose Remove from portal.

Note

Leaving a portal without a portal administrator is not recommended.

Send email invitations to portal administrators

You can send email invitations to portal administrators.

1. On the portal details page, in the Portal administrators section, select the check boxes for the
portal administrators.

Administer your portals 697

AWS IoT SiteWise User Guide

2. Choose Send invitations. Your email client opens, and an invitation is populated in the
message body.

You can customize the email before you send it to your portal administrators.

Add or remove portal users in AWS IoT SiteWise

You choose which users have access to your portals. Portal users appear in the list of users within
a SiteWise Monitor portal. From this list, portal administrators can add project owners, and project
owners can add project viewers.

Note

Your portal administrators and portal users might contact you through a portal's support
email if they need you to add or remove a user.

Based on the user authentication service, choose one of the following options.

IAM Identity Center

To add portal users

1. On the portal details page, in the Portal users section, choose Assign users.

2. On the Assign users page, select the check box for the users to add to the portal.

Note

If you use IAM Identity Center as your identity store, and you're signed in to your
AWS Organizations management account, you can choose Create user to create an
IAM Identity Center user. IAM Identity Center sends the new user an email for them
to set their password. You can then assign the user to the portal as a user. For more
information, see Manage identities in IAM Identity Center.

3. Choose Assign users.

Administer your portals 698

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-sso.html

AWS IoT SiteWise User Guide

To remove portal users

• On the portal details page, in the Portal users section, select the check box for the users to
remove from the portal, and then choose Remove from portal.

IAM

To add portal users

1. On the portal details page, in the Portal users section, choose Assign users.

2. On the Assign users page, do the following:

• Choose IAM users to add an IAM user as your portal user.

• Choose IAM roles to add an IAM role as your portal user.

3. Select the check boxes for the users or roles that you want to add as your portal users. This
adds the users or roles to the Portal users list.

4. Choose Assign users.

Administer your portals 699

AWS IoT SiteWise User Guide

To remove portal users

• On the portal details page, in the Portal users section, select the check box for the users to
remove from the portal, and then choose Remove from portal.

Important

Users or roles must have the iotsitewise:DescribePortal permission to sign in to
the portal.

Administer your portals 700

AWS IoT SiteWise User Guide

Delete a portal in AWS IoT SiteWise

You might delete a portal if you created it for testing purposes or if you created a duplicate of a
portal that already exists.

Note

You must first manually delete all dashboards and projects in a portal before you can
delete a portal. For more information, see Deleting projects and Deleting dashboards in the
SiteWise Monitor Application Guide.

1. On the portal details page, choose Delete.

Important

When you delete a portal, you lose all projects that the portal contains, and all
dashboards in each project. This action can't be undone. Your asset data isn't affected.

2. In the Delete portals dialog box, choose Remove admins and users.

You must remove the administrators and users from a portal before you can delete it. If your
portal doesn't have administrators or users, the button doesn't appear, and you can skip to the
next step.

Administer your portals 701

https://docs.aws.amazon.com/iot-sitewise/latest/appguide/delete-projects.html
https://docs.aws.amazon.com/iot-sitewise/latest/appguide/delete-dashboards.html

AWS IoT SiteWise User Guide

3. If you're sure that you want to delete the entire portal, enter delete in the field to confirm
deletion.

4. Choose Delete.

Get started with AWS IoT SiteWise Monitor (AI-aware) - preview

As an AWS administrator for your organization, you can create portals from the AWS IoT SiteWise
console, enabling members of your organization to view your AWS IoT SiteWise data. Complete the
following steps to get started.

1. Configure and create a portal.

2. Add portal administrators and send invitation emails.

3. Add portal users.

Get started with AWS IoT SiteWise Monitor (AI-aware) 702

AWS IoT SiteWise User Guide

After you create a portal, the portal administrator can create projects and add user to the project.
Project members then create dashboards to visualize the connected data on AWS IoT SiteWise,
enable them to monitor how their connected devices, processes, and equipment are performing.

Note

When adding users or administrators to the portal, avoid creating AWS Identity and Access
Management (IAM) policies that restrict user permissions, such as limited IP. Any attached
policies with restricted permissions will not be able to connect to the AWS IoT SiteWise
portal.

Create projects to share with your teams. Project owners can then create dashboards to visualize
the properties of the assets that helps project viewers understand how devices, processes, and
equipment are performing. It also provides a consistent view of operations to your teams.

Dashboards help visualize and understand your project data. It helps businesses and application
users keep track of their AWS IoT devices and data. Choose a visualization type that best displays
your data for your needs. Rearrange and re-size visualizations to create a layout that fits your
team. Explore your device, process, and equipment assets and data, and quickly identify issues and
improve operational efficiency.

Topics

• Create a portal

• Configure your portal

• Administer your portals

• Delete a portal

• Create dashboards with AWS CLI

• Portal login

• Create a project

• Update a project

• Delete a project

• Create a dashboard

• Update a dashboard

• Delete a dashboard

Get started with AWS IoT SiteWise Monitor (AI-aware) 703

AWS IoT SiteWise User Guide

• Configure dashboard

Create a portal

You create a SiteWise Monitor portal in the AWS IoT SiteWise console.

To create a portal

1. Sign in to the AWS IoT SiteWise console.

2. In the navigation pane, choose Monitor, Get started.

3. Choose Create portal (AI-aware).

Next, you must provide some basic information to configure your portal.

Configure your portal

Your users use portals to view your data. You can customize a portal's name, description, branding,
user authentication, support contact email, and permissions.

Steps to configure a portal:

1. Enter a name for your portal.

2. (Optional) Enter a description for your portal. If you have multiple portals, use meaningful
descriptions to help you keep track of what each portal contains.

Create a portal 704

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

3. (Optional) Upload an image to display your brand in the portal. Choose a square, PNG image. If
you upload a non-square image, the portal scales the image down to a square.

4. Enter an email address in the Support contact email box for support issues.

5. In the User authentication box, choose the following option:

• Choose IAM Identity Center if your portal users sign in to this portal with their corporate
user names and passwords.

If you haven't enabled IAM Identity Center in your account, do the following:

a. Choose Create user.

b. On the Create user page, to create the first portal, enter the user's email address, first
name, and last name, and then choose Create user.

Note

Support for IAM credentials is coming soon.

6. Choose from one of the following options in the Service access section:

• Choose Create and use a new service role. By default, SiteWise Monitor automatically
creates a service role for each portal. This role allows your portal users to access your AWS
IoT SiteWise resources. For more information, see Use service roles for AWS IoT SiteWise
Monitor.

• Choose Use an existing service role, and then choose the target role.

7. Choose to enable the AWS IoT SiteWise Assistant for this portal. The AWS IoT SiteWise
Assistant provides fast data analysis, real-time insights, and guided recommendations.

Note

Enabling the AWS IoT SiteWise Assistant will incur charges. To use enterprise level
knowledge solutions and guidance, you must have a dataset associated with Amazon
Kendra index.

8. (Optional) Add tags for your portal. For more information, see Tag your AWS IoT SiteWise
resources.

9. Choose Create portal. AWS IoT SiteWise will create your portal.

Configure your portal 705

AWS IoT SiteWise User Guide

Note

If you close the console, you can finish the setup process by adding administrators and
users. For more information, see Add or remove portal administrators. If you don't
want to keep this portal, delete it so it doesn't use resources. For more information, see
Delete a portal.

A message appears when your portal is created.

Once a portal is created, it is listed in the Portals section. The Portal details section lists the name,
description, ID, URL, status, last updated and created dates, portal branding and support email for
each portal.

The Status column can be one of the following values.

• CREATING ‐ AWS IoT SiteWise is processing your request to create the portal. This process can
take several minutes to complete.

• UPDATING ‐ AWS IoT SiteWise is processing your request to update the portal. This process can
take several minutes to complete.

• PENDING ‐ AWS IoT SiteWise is waiting for the DNS record propagation to finish. This process
can take several minutes to complete. You can delete the portal while the status is PENDING.

• DELETING ‐ AWS IoT SiteWise is processing your request to delete the portal. This process can
take several minutes to complete.

• ACTIVE ‐ When the portal becomes active, your portal users can access it.

Configure your portal 706

AWS IoT SiteWise User Guide

• FAILED ‐ AWS IoT SiteWise couldn't process your request to create, update, or delete the portal.
If you enabled AWS IoT SiteWise to send logs to Amazon CloudWatch Logs, you can use these
logs to troubleshoot issues. For more information, see Monitoring AWS IoT SiteWise with
CloudWatch Logs.

Administer your portals

You have the ability to manage and configure various aspects of the portal. This includes adding
and removing administrators, setting permissions and roles, customizing the name, description,
setting up support email, and inviting to portal administrators.

1. Sign in to the AWS IoT SiteWise console.

2. In the navigation pane, choose Monitor, Portals.

Administer your portals 707

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/monitor-cloudwatch-logs.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/monitor-cloudwatch-logs.html
https://console.aws.amazon.com/iotsitewise/home

AWS IoT SiteWise User Guide

3. Choose a portal, and then choose Open portal (or choose the portal's Name).

4. You can perform any of the following administrative tasks:

• Edit portal attributes

• Add or remove portal administrators

Administer your portals 708

AWS IoT SiteWise User Guide

• Send email invitations to portal administrators

• Delete a portal in AWS IoT SiteWise

Edit portal attributes

You can change a portal's name, description, branding, support email, and service access.

1. On the portal details page, in the Portal details section, choose Edit.

2. Update the Name, Description, Portal branding, Support contact email, AWS IoT SiteWise
Assistant or Service access.

3. When you're finished, choose Save changes.

Add or remove portal administrators

In a few steps, you can add or remove users as administrators for a portal. Based on the user
authentication service, choose one of the following options.

IAM Identity Center

Administer your portals 709

AWS IoT SiteWise User Guide

To add portal administrators

1. On the portal details page, in the Administrators section, choose Assign administrators.

2. On the Assign administrators page, select the users to add to the portal as administrators.

Note

If you use IAM Identity Center as your identity store, and you're signed in to your
AWS Organizations management account, you can choose Create user to create
an IAM Identity Center user. IAM Identity Center sends the new user an email
for them to set their password. You can then assign the user to the portal as an
administrator. For more information, see Manage identities in IAM Identity Center.

3. Choose Assign administrators.

To remove portal administrators

• On the portal details page, in the Portal administrators section, select the check box for
each user to remove, and then choose Remove from portal.

Note

The Administrators(#) lists the number of administrators for the portal. You can
add multiple portal administrators to manage and work on projects.

Administer your portals 710

https://docs.aws.amazon.com/singlesignon/latest/userguide/manage-your-identity-source-sso.html

AWS IoT SiteWise User Guide

Send email invitations to portal administrators

You can send email invitations to portal administrators.

1. On the portal details page, in the Administrators section, select the check boxes for the portal
administrators.

2. Choose Send invitations. Your email client opens, and an invitation is populated in the
message body.

You can customize the email before you send it to your portal administrators.

Delete a portal

You might delete a portal if you created it for testing purposes or if you created a duplicate of a
portal that already exists.

Note

You must first manually delete all dashboards and projects in a portal before you can
delete a portal.

1. On the portal details page, choose Delete.

Important

When you delete a portal, you lose all projects that the portal contains, and all
dashboards in each project. This action can't be undone. Your asset data isn't affected.

Delete a portal 711

AWS IoT SiteWise User Guide

2. In the Delete portal dialog box, choose Remove admins and users.

You must remove the administrators and users from a portal before you can delete it. If your
portal doesn't have administrators or users, the button doesn't appear, and you can skip to the
next step.

3. If you're sure that you want to delete the entire portal, enter confirm in the field to confirm
deletion.

4. Choose Delete.

Create dashboards with AWS CLI

When you define visualizations (or widgets) in dashboards using the AWS CLI, you must specify
the following information in the dashboardDefinition JSON document. This definition is a
parameter of the CreateDashboard and UpdateDashboard operations.

displaySettings

The display settings with the following parameters:

• numRows – Number of rows in the dashboard layout. Each row is cellSize wide.

• numColumbs – Number of columns in the dashboard layout. Each column is cellSize wide.

• cellSize – (Optional) The size of a cell in the layout in pixels. It must be a positive number.
Default is 10.

• significantDigits – (Optional) Number of significan digits to display in the dashboard.
Default is 4.

Create dashboards with AWS CLI 712

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateDashboard.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateDashboard.html

AWS IoT SiteWise User Guide

querySettings

The query information with the following parameter:

• refreshRate – (Optional) The rate at which data refreshes in milliseconds. Accepts the
following values - 1000, 5000, 10000, 60000, 300000.

defaultViewport

If not supplied, defaults to the last five minutes. Contains the following parameters:

• duration – (Optional) Determines how far into the past to query data starting from the
present time.

• start – (Optional) It is of type Date. The start time range to query data. Needs an end date
specified.

• end – (Optional) It is of type Date. The end time range to query data. Needs an start date
specified.

widgets

A list of widget definition structures that contain the following information:

type

The type of widget. AWS IoT SiteWise provides the following widget types:

•
xy-plot – A line chart or a scatter plot depending on the configuration.

•
bar-chart – A bar chart.

•
kpi-chart – A key performance indicator chart.

•
status-timeline – A status widget that visualizes and navigates time series data from
one or more data sources.

•
text – A text widget.

•
table – A table widget.

id

An unique identifier for the widget.

Create dashboards with AWS CLI 713

AWS IoT SiteWise User Guide

x

The horizontal position of the widget, starting from the left of the dashboard. This value
refers to the widget's position in the dashboard's grid.

y

The vertical position of the widget, starting from the top of the dashboard. This value refers
to the widget's position in the dashboard's grid.

z

The relative ordering of the widgets. A larger Z value widget is displayed in front of the
lower Z value widget, if they overlap.

width

The width of the widget, expressed in number of cells on the dashboard.

height

The height of the widget, expressed in number of cells on the dashboard.

properties

A list of properties of the widget. It varies by the type of widget. See IoT App Kit for details.

Example Example dashboard definition

The following example defines a dashboard from a payload stored in a JSON file.

aws iotsitewise create-dashboard \
 --project-id a1b2c3d4-5678-90ab-cdef-eeeeeEXAMPLE \
 --dashboard-name "Example Dashboard" \
 --dashboard-definition file://dashboard-definition.json

The following JSON example for dashboard-definition.json defines dashboard with the
following visualization widgets:

{
 "displaySettings": {
 "numColumns": 200,
 "numRows": 1000,
 "cellSize": 20,

Create dashboards with AWS CLI 714

https://awslabs.github.io/iot-app-kit/?path=/docs/components-statustimeline--docs

AWS IoT SiteWise User Guide

 "significantDigits": 4
 },
 "widgets": [{
 "id": "Ot73JcxUoc6oEXAMPLE",
 "type": "xy-plot",
 "width": 33,
 "height": 20,
 "x": 0,
 "y": 0,
 "z": 0,
 "properties": {
 "aggregationType": "AVERAGE",
 "queryConfig": {
 "source": "iotsitewise",
 "query": {
 "assets": [{
 "assetId": "97c97abf-e883-47bb-a3f4-EXAMPLE",
 "properties": [{
 "propertyId": "97cc61f4-57a4-4c5f-a82c-EXAMPLE",
 "refId": "692ce941-f3d9-4074-a297-EXAMPLE",
 "aggregationType": "AVERAGE",
 "color": "#7d2105",
 "resolution": "1m"
 }]
 }],
 "properties": [],
 "assetModels": [],
 "alarms": [],
 "alarmModels": []
 }
 },
 "line": {
 "connectionStyle": "linear",
 "style": "solid"
 },
 "symbol": {
 "style": "filled-circle"
 },
 "axis": {
 "yVisible": true,
 "xVisible": true
 },
 "legend": {
 "visible": true,

Create dashboards with AWS CLI 715

AWS IoT SiteWise User Guide

 "position": "right",
 "width": "30%",
 "height": "30%",
 "visibleContent": {
 "unit": true,
 "asset": true,
 "latestValue": true,
 "latestAlarmStateValue": true,
 "maxValue": false,
 "minValue": false
 }
 }
 }
 }, {
 "id": "fto7rF40Ny1EXAMPLE-G",
 "type": "bar-chart",
 "width": 33,
 "height": 20,
 "x": 0,
 "y": 20,
 "z": 0,
 "properties": {
 "aggregationType": "AVERAGE",
 "queryConfig": {
 "source": "iotsitewise",
 "query": {
 "assets": [{
 "assetId": "97c97abf-e883-47bb-a3f4-EXAMPLE",
 "properties": [{
 "propertyId": "c84ca8f3-3dea-478a-afec-EXAMPLE",
 "aggregationType": "AVERAGE",
 "refId": "2960b958-2034-4d6e-bcc2-EXAMPLE"
 }]
 }],
 "properties": [],
 "assetModels": [],
 "alarms": [],
 "alarmModels": [],
 "requestSettings": {
 "aggregation": "AVERAGE"
 }
 }
 },
 "axis": {

Create dashboards with AWS CLI 716

AWS IoT SiteWise User Guide

 "showX": true,
 "showY": true
 },
 "styleSettings": {
 "2960b958-2034-4d6e-bcc2-360f1f02e505": {
 "color": "#7d2105"
 }
 }
 }
 }],
 "querySettings": {
 "refreshRate": 5000
 }
}

Portal login

User login

1. On your browser, enter the application URL.

2. Input your user name and password and click the Sign in button.

3. You are now logged into the application.

Create a project

Create project

1. A project is created in two ways:

a. In the Home page, in the Welcome section under Quick start, choose Create project.

b. From the left navigation pane, choose Projects. Choose Create in the top right hand
corner to create a project.

Portal login 717

AWS IoT SiteWise User Guide

2. In the Create Projects section, enter a Project name, and give an optional Description.

3. Choose Create.

Update a project

Edit project

1. Choose the Update button on the top right hand corner of the Project page, to edit project
details.

2. Change the name of the project by editing Project name.

3. Change the description of the project by editing the Description details.

4. Select Update to save your changes.

Update a project 718

AWS IoT SiteWise User Guide

Delete a project

Delete project

1. You can only delete the project after all the dashboards in the project are deleted.

2. Select the Delete button on the top right of the Project page.

3. Confirm again that you want to delete the project.

4. Select Delete to delete the project.

Create a dashboard

Create a dashboard

1. Create a dashboard in two ways:

a. Create a dashboard from Build a dashboard in the Home page.

i. To create the dashboard in an existing project, choose a project name from the drop
down menu in the Choose a project to host the dashboard.

ii. If you don’t have a project, choose Create project and select Confirm.

Delete a project 719

AWS IoT SiteWise User Guide

b. Create a dashboard from a project in the Projects section, under Dashboards.

2. Select Create in the upper right corner.

3. Enter a Dashboard name, and give an optional Dashboard description.

4. Select Create.

5. Configure your newly created dashboard.

Create a dashboard 720

AWS IoT SiteWise User Guide

Update a dashboard

The Dashboards section lists the dashboards in the project. Select a dashboard from the list.

Update a dashboard

1. Select a dashboard to update.

2. Update the Dashboard name and optionally the Dashboard description. Select Update to
save changes.

Delete a dashboard

The Dashboards section lists the dashboards in the project. Select a dashboard from the list.

Delete a dashboard

1. Select a dashboard to delete.

Update a dashboard 721

AWS IoT SiteWise User Guide

2. Select Delete to delete the dashboard. This cannot be undone.

Configure dashboard

The Dashboards section lists the dashboards in the project. Select a dashboard from the list. The
Edit mode allows you to configure your dashboard by adding widgets and configuring them. The
Preview button lets you visualize your changes.

Steps to configure your dashboard:

• Drag and drop different type of data widgets to the dashboard canvas for data visualization.

• Add data to the desired widgets, from the Resource explorer on the left. The Resource explorer
consists of Modeled, Unmodeled, and Dynamic assets sections. Search by asset name or
property name. Select the property to add and choose Add.

• Fine tune the layout and style by changing the Configurations on widgets. Configure
components including title, thresholds and other configuration specifics.

• Configure the time range over which data is displayed.

Configure dashboard 722

AWS IoT SiteWise User Guide

• Choose the time range over which data is displayed. Choose a Time range and Refresh rate
from the top right hand corner, and personalize the range. Choose a rate at which the data is
to be refreshed from the menu.

• Select the Time range on a widget, by using your trackball mouse scroll wheel or Right-click.
This moves the time range of display.

• Choose Save.

Topics

• Resource explorer

• Widgets

• Configure widgets

• Use widgets

• Alarms in widgets

• AWS IoT SiteWise Assistant use in widgets

• Sample questions to ask AWS IoT SiteWise Assistant

Resource explorer

This section describes Modeled, Unmodeled, and Dynamic assets. Choose assets from any of the
three and add them to your widgets and visualize them.

Topics

• Modeled

• Unmodeled

• Dynamic assets

Modeled

This section describes the process of selecting and visualization of modeled assets.

Selection of assets

Assets can be queried as follows:

Configure dashboard 723

AWS IoT SiteWise User Guide

• Search for an asset name. Use a wildcard *. For example, Wind* returns asset names that start
with the text Wind. You must integrate with AWS IoT TwinMaker to avail this feature.

• All assets are listed by default.

From the assets listed, filter by name, description, ID, or asset model ID. Select one asset to list its
properties (data streams) and alarms.

Data stream selection

Data streams are listed below the Data Streams menu. Filter the data streams listed by Property
metadata in the https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/. Select one or
more data streams depending on the selected widget.

• KPI and Gauge support only a single data stream.

• The remaining widgets support multiple data streams with multi-selection.

Alarm selection

AWS IoT SiteWise alarms are listed below the Alarm Data Streams menu. Filter the alarm data
streams listed by alarm metadata. name, input property, and composite model ID are some
metadata used for filtering. Select one or more data streams depending on the selected widget.

• KPI and Gauge support only a single alarm.

• The remaining widgets support multiple alarms with multi-selection.

Modeled assets visualization

1. Drag the widget to the canvas. Select the properties for each widget panel to construct a
dashboard.

2. The Filter option filters the assets to choose the asset to visualize. Filtering is done by text,
property or value. Filtering is for assets loaded into the browser, and not backend filtering.

3. Search to list an asset to add to your widget.

4. Add the asset to the widget in the canvas.

5. Choose Reset to select another asset, or make modifications to the asset chosen.

6. Save the dashboard. In the Preview mode, choose different assets from the drop down menu
to monitor the properties under each asset without reconstructing the data panels.

Configure dashboard 724

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/sql.html#prereqs
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_Property.html

AWS IoT SiteWise User Guide

Note

The configuration settings wheel on the right hand side displays Preferences for the user to
choose like Page size, Sticky first columns, Sticky last columns, and Column preferences.
Customize your preferences, and choose Confirm to apply the changes.

Configure dashboard 725

AWS IoT SiteWise User Guide

Unmodeled

This section describes searching for unmodeled data streams and adding them to the widgets to
visualize.

Configure dashboard 726

AWS IoT SiteWise User Guide

Unmodeled data streams visualization

1. Drag the widget to the canvas. Select the properties for each widget panel to construct a
dashboard.

2. Unmodeled data streams are listed under the Time series section. They have properties that
are customizable.

3. The Filter option filters the data streams to visualize. Filtering is for data streams loaded into
the browser, and not back end filtering.

4. Add the data stream to the widget in the canvas.

5. Choose Reset to deselect the data stream.

6. Save the dashboard. In the Preview mode, choose different assets from the drop down menu
to monitor the properties under each asset without reconstructing the data panels.

Note

The configuration settings wheel on the right hand side displays Preferences for the user to
choose like Page size, Sticky first columns, Sticky last columns, and Column preferences.
Customize your preferences, and choose Confirm to apply the changes.

Configure dashboard 727

AWS IoT SiteWise User Guide

Dynamic assets

The new SiteWise Monitor allows customers to dynamically switch assets for a selected asset
model. You can visualize properties from different assets by selecting from a drop down menu.

Dynamic assets visualization

1. Choose the Dynamic assets tab on the resource explorer.

2. Select an Asset model to list assets for from the drop down menu.

3. Select the Default asset from the drop down menu.

4. Choose Set asset model to select the asset model.

5. Save the dashboard. In the Preview mode, choose different assets from the drop down menu
to monitor the properties under each asset, without reconstructing the data panels.

Configure dashboard 728

AWS IoT SiteWise User Guide

Widgets

Widgets supports a wide range of features, including alarms, high-performance live-streaming, and
smooth synchronization with other IoT App Kit components. The dashboard supports the following
widgets:

• Line – The Line widget is a visualization widget that displays trends and changes over time. It
consists of a series of data points, each represented by a dot or marker, connected by straight
line segments to create a line graph. It supports a wide range of features, including alarms,
thresholds, high-performance live-streaming, and smooth synchronization with other IoT App Kit
components. This widget is customizable to communicate complex data clearly and concisely.

• Bar chart – The Bar chart is a powerful visualization tool that displays time-series data. It
supports a wide range of features, including alarms, high-performance live-streaming, and
smooth synchronization with other IoT App Kit components.

• Timeline – The Timeline widget provides a way to visualize and navigate time series data from
data sources. It is unique for displaying data stream values are distinct colors on the timeline. It
supports a rich set of features including alarms, high performance live-streaming and smooth
syncing across other IoT App Kit components. It is best used for displaying non-numerical data
types/

• KPI – The Key Performance Indicator (KPI) component provides a compact representation of
an overview of your asset properties. It supports alarms and thresholds. This overview provides
critical insights into the overall performance of your devices, equipment, and processes. KPI only
supports a single data stream or alarm, and not multiple data streams.

• Gauge – The Gauge component provides a compact representation of an overview of your asset
properties. It is used to visualize critical insights into the overall performance of your devices,
equipment, or processes. It is functionally the same as KPI, but visually different. Gauge displays
the data stream value, threshold, and range of values. You can interact with AWS IoT data from
one or more data sources with Gauge.

• Table – The Table component provides a compact form for viewing one or more data streams
from one or more time series data sources. It displays assets with Property, Latest value and
Unit in a tabular form. Supports AWS IoT SiteWise alarms.

• Text – The Text widget helps write text with various colors and fonts. You can create a link by
associating a text with an URL. The Properties and Thresholds fields are not enabled for this
widget.

Configure dashboard 729

AWS IoT SiteWise User Guide

Configure widgets

Once the widget is added to the dashboard, you can configure the widget by choosing the
Configuration icon in the right panel.

• Style – Add a title in the Widget title. Different widgets have different configurations. A few
examples are listed below.

• Bar widget :

• Resolution and Aggregation – Set values for resolution and aggregation here.

• Format data – Set Decimal places to the number of decimals to display.

• Display style – Select values to display.

• Axis – Choose to display the axis.

• Line widget :

• Resolution and Aggregation – Set values for resolution and aggregation here.

• Format data – Set Decimal places to the number of decimals to display.

• Y-axis – Add a Label, and Min and Maxvalues.

• Widget style – Select Line type, Line style, Line thickness, and Data point shapevalues.

• Legend – Choose Alignment, and Display.

• Gauge widget :

• Resolution and Aggregation – Set values for resolution and aggregation here.

• Format data – Set Decimal places to the number of decimals to display.

• Display style – Select values to display.

• Y-axis – Add a Label, and Min and Max values.

• Fonts – Select Font size, Unit font size, and Label font size values.

Configure dashboard 730

AWS IoT SiteWise User Guide

• Properties – All the properties of widgets are listed in this section. Different widgets have
different properties. A few examples are listed below.

• Line widget :

• Label – Choose to use the default datastream name or give a new name.

• Style – Set Line type, Line style to the number of decimals to display.

• Y-axis – Select values to default style, show Y-axis controls and set the Min and Max values.

• Table widget :

• Label – Choose to use the default datastream name or give a new name.

• Table widget :

• Label – Choose to use the default datastream name or give a new name.

Configure dashboard 731

AWS IoT SiteWise User Guide

• Thresholds – Add a Threshold for a widget. Different widgets have different configurations. A
few examples are listed below.

• Bar chart widget :

• Choose Add a threshold to add to the widget.

• Choose Operator and give a Value for the threshold. Customize the threshold with a color
from the color palette.

• You can choose to apply the threshold across all data.

• Line widget :

• Choose Add a threshold to add to the widget.

• Choose Operator and give a Value for the threshold. Customize the threshold with a color
from the color palette.

• Choose how to Show thresholds from the drop down menu.

• Gauge widget :

• Choose Add a threshold to add to the widget.

• Choose Operator and give a Value for the threshold. Customize the threshold with a color
from the color palette.

Configure dashboard 732

AWS IoT SiteWise User Guide

Use widgets

You can use widgets in the dashboard individually or by multi-selecting them.

Edit widgets in the dashboard

Choose a single widget and edit it. To edit multiple widgets in the dashboard, Shift + Left-click
and select all the widgets in the dashboard. Once selected, users can add new data-streams, and
modify Widget title in the Style configuration settings. The title is changed for all the widgets in
the dashboard.

Right-click on the canvas, and do the following:

• Copy – Add a copy of the widget to the canvas.

• Delete – Delete the widget.

• Bring to front – Bring the selected widget to the front of the canvas.

• Send to back – Send the selected widget to the back of the canvas.

Resize widgets

Re-size widgets individually, or in a group by multi-selecting the widgets in the dashboard.

To change the size of widgets:

• To change the size of a single widget, select the widget, and drag it by a corner to change its size.

Configure dashboard 733

AWS IoT SiteWise User Guide

• To change the size of multiple widgets, select multiple widgets by Shift + Left-click, and drag it
by a corner to change its size.

Delete widgets in the dashboard

Delete widgets individually, or in a group by multi-selecting the widgets in the dashboard.

To delete widgets:

• To delete a single widget, select the widget, and Right-click and choose Delete. You can also
select, and click X on the right hand top corner to delete the widget.

• To delete multiple widgets, select multiple widgets by Shift + Left-click, then Right-click and
choose Delete.

Alarms in widgets

Alarms alert you and your team when equipment or processes perform sub-optimally. Optimal
performance of a machine or process means that the values for certain metrics should be within
a range of high and low limits. When these metrics are outside their operating range, equipment
operators must be notified so that they can fix the issue. Alarms help you quickly identify issues
and notify operators to maximize performance of your equipment and processes.

You can find an alarm associated with an asset in the Modeled tab of the Resource explorer.

• Search for and select an asset.

• Scroll down past the Data Streams table to the Alarm Data Streams section and expand it.

• Select an alarm in the Alarms table and choose Add.

Topics

• Alarms in different widgets

Alarms in different widgets

For all widgets:

• Data stream property settings are dependent on what type of property is added to a widget.
Data stream properties have full property setting support while alarm properties do not
currently allow property setting configurations.

Configure dashboard 734

AWS IoT SiteWise User Guide

• If you add an alarm data stream, its associated input property data stream is added to the chart
as well. If you remove the alarm data stream, then its input property is also removed.

• To individually control the input property data stream of an alarm, you must add them both
separately.

The below examples state how some widgets use alarms.

• Line Chart

• The alarm and its input property data stream are added to the chart.

• You can see alarm state in the chart legend, and as icons hovering over the data stream when
the alarm changes state.

• You can toggle off alarm icons from the chart settings.

• KPI and Gauge

• The alarm and its input property data stream are added to the chosen widget.

• The alarm threshold is added to the widget, which changes color based on its configuration.

• You can select the alarm state on the widget, see the alarm details, and click Generate
summary to call the AWS IoT SiteWise to get an alarm summary.

Configure dashboard 735

AWS IoT SiteWise User Guide

• Table

• The alarm and its input property are added as a row on the table.

• Bar chart

• The alarm is added as a threshold to the chart, which changes the color of any data stream
breaching the threshold.

• You can add any associated data streams separately.

• You cannot interact with the AWS IoT SiteWise Assistant from the widget.

Configure dashboard 736

AWS IoT SiteWise User Guide

• Status timeline

• The alarm is added as a threshold to the timeline.

• Adding the alarm state and its input property data to the timeline is work in progress.

• You cannot interact with the AWS IoT SiteWise Assistant from the widget.

AWS IoT SiteWise Assistant use in widgets

The AWS IoT SiteWise Assistant is a generative AI-powered assistant. It allows users like plant
managers, quality engineers, and maintenance technicians to gain insights, solve problems, and
take actions directly from their operational and enterprise data. The AWS IoT SiteWise Assistant
consolidates information from AWS IoT data, asset models, manuals and documentation into
understandable summaries of critical events. It also enables interactive deep dive question and
answer sessions for easy diagnosis, root cause explorations and guided recommendations.

The AWS IoT SiteWise Assistant button is on the top right corner of the dashboard. Click on it to
activate the Assistant. Can only be used with the Preview mode of the dashboard.

Configure dashboard 737

AWS IoT SiteWise User Guide

Use the AWS IoT SiteWise Assistant in the following scenarios:

Topics

• Use case - Alarm summaries

• Use case - Situational summaries

• Use case - Deep dive summaries

Use case - Alarm summaries

Summarize the current alarm for a selected panel on the dashboard. Alarms are supported by Line,
KPI, Gauge and Table widgets. Choose a widget with an alarm and summarize it.

• Select Active alarm on widget.

• The Severity and Rule expression is displayed for the alarm.

• Choose Generate summary to generate a summary.

Configure dashboard 738

AWS IoT SiteWise User Guide

Use case - Situational summaries

Select up to three widgets to summarize. They can be a combination of widgets and properties. If
more than three are selected, the Assistant returns an error.

Generate a situation summary with AWS IoT SiteWise Assistant

1. Click on AI Assistant. It displays a menu with three options.

a. Items selected – Select only three. You cannot select more than three.

b. Clear all – Clear your selection.

c. Generate summary – Generate a summary about items selected.

2. Choose Generate summary to generate the summary about the selected items.

The image below has a widget selected and a summary from the AWS IoT SiteWise Assistant.

Configure dashboard 739

AWS IoT SiteWise User Guide

Use case - Deep dive summaries

This is the use case where the user can do a deep dive, and access SOPs (Standard Operation
Procedure), manuals, documentation, and consider next steps of action. For the example in
the previous section, if the user chooses to learn more about the SOP for this property, ask the
Assistant about the SOP for this property. This displays the deep dive information about SOP to
the user.

The example below displays the answer for "Is there any SOP for the alarm windSpeedAlarm?"

Configure dashboard 740

AWS IoT SiteWise User Guide

Sample questions to ask AWS IoT SiteWise Assistant

Note

• The AWS IoT SiteWise Assistant must use a dataset with an Amazon Kendra index for
enterprise level knowledge and guidance. If you do not have a Amazon Kendra index, see
Creating an index to create one. Adding a dataset improves the quality of the Assistant's
response. See Create a dataset to learn more.

• Some questions require AWS IoT TwinMaker integration. See Integrate AWS IoT
TwinMaker and AWS IoT SiteWise for details.

Some follow up questions to ask the Assistant after getting an alarm summary in the dashboard, as
part of the same conversation.

• Show the details of the asset from the summary above?

• What is the hierarchical path from root to the mentioned asset?

• What are the dependent descendant assets of the mentioned asset?

• What are the dependent assets of the mentioned asset that have active alarms?

Configure dashboard 741

https://docs.aws.amazon.com/kendra/latest/dg/what-is-kendra.html
https://docs.aws.amazon.com/kendra/latest/dg/create-index.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/assistant-console-create-dataset.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/integrate-tm.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/integrate-tm.html

AWS IoT SiteWise User Guide

• Find all assets that have active alarms.

Some follow up questions to ask the Assistant after getting an property summary in the
dashboard, as part of the same conversation.

• Perform the same analysis for the last 24 hours.

• Find documentation related to the above mentioned properties.

• Provide the details of asset id 1da67d28-14f8-4f71-a06a-386f0425a21d/asset name Demo
Turbine Asset 1.

Invoke the AWS IoT SiteWise Assistant from the API.

• Generate alarm summary for alarm name windSpeedAlarm in asset id d591e153-
e5cf-4206-96bb-ce3c119d9d2d.

• Generate alarm summary for the last 12 hours/2 days/1 week for alarm name windSpeedAlarm
in asset id d591e153-e5cf-4206-96bb-ce3c119d9d2d.

• Generate property summary for property id ab187fb7-d74b-44d9-bd9b-f2f19a9137cc in
asset id d591e153-e5cf-4206-96bb-ce3c119d9d2d

• Generate property summary for the last 12 hours/2 days/1 week for property id ab187fb7-
d74b-44d9-bd9b-f2f19a9137cc in asset id d591e153-e5cf-4206-96bb-ce3c119d9d2d.

• Find the assets with asset name Turbine.

• Give me the current property values of property id
5356168c-3390-456f-802c-9f6e047810d4 in asset id d591e153-e5cf-4206-96bb-
ce3c119d9d2d, 3cbb084e-1ded-4b08-9f21-1b47b2fb86fd.

• What is the relationship between asset id d591e153-e5cf-4206-96bb-ce3c119d9d2d and
asset id 3cbb084e-1ded-4b08-9f21-1b47b2fb86fd.

• Find documentation on how to fix wind turbine low RPM issue.

• Generate a property summary for property alias WindSpeed.

• What are the pre-operation checks according to my knowledge base?

Configure dashboard 742

AWS IoT SiteWise User Guide

Query data from AWS IoT SiteWise

You can use the AWS IoT SiteWise API operations to query your asset properties' current values,
historical values, and aggregates over specific time intervals. AWS IoT SiteWise provides multiple
query interfaces to meet different integration needs:

• Direct API operations - Simple, targeted API calls for specific data retrieval needs

• SQL-like query language - Powerful, flexible queries for complex data analysis

• ODBC driver - Integration with business intelligence tools and applications

Use these query capabilities to:

• Gain real-time insights into operational data

• Analyze historical trends and patterns

• Calculate performance metrics across your industrial assets

• Integrate IoT data with enterprise systems and dashboards

• Build custom applications that leverage industrial data

For example, you can discover all assets with specific property values, build custom representations
of your data, or develop software solutions that integrate with the industrial data stored in your
AWS IoT SiteWise assets. You can also explore your asset data live in AWS IoT SiteWise Monitor. To
learn how to configure SiteWise Monitor, see Monitor data with AWS IoT SiteWise Monitor.

The operations described in this section return property value objects that contain timestamp,
quality, value (TQV) structures:

• The timestamp contains the current Unix epoch time in seconds with nanosecond offset.

• The quality contains one of the following strings that indicate the quality of the data point:

• GOOD – The data isn't affected by any issues.

• BAD – The data is affected by an issue such as sensor failure.

• UNCERTAIN – The data is affected by an issue such as sensor inaccuracy.

• The value contains one of the following fields, depending on the type of the property:

• booleanValue

• doubleValue

743

AWS IoT SiteWise User Guide

• integerValue

• stringValue

• nullValue

Topics

• Query current asset property values in AWS IoT SiteWise

• Query historical asset property values in AWS IoT SiteWise

• Query asset property aggregates in AWS IoT SiteWise

• AWS IoT SiteWise query language

• Query optimization

• ODBC

Query current asset property values in AWS IoT SiteWise

This tutorial shows two ways to get the current value of an asset property. You can use the AWS IoT
SiteWise console or use API in the AWS Command Line Interface (AWS CLI).

Topics

• Query an asset property's current value (console)

• Query an asset property's current value (AWS CLI)

Query an asset property's current value (console)

You can use the AWS IoT SiteWise console to view the current value of an asset property.

To get the current value of an asset property (console)

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Assets.

3. Choose the asset with the property to query.

4. Choose the arrow icon to expand an asset hierarchy to find your asset.

5. Choose the tab for the type of property. For example, choose Measurements to view the
current value of a measurement property.

Query current asset values 744

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

6. Find the property to view. The current value appears in the Latest value column.

Query an asset property's current value (AWS CLI)

You can use the AWS Command Line Interface (AWS CLI) to query the current value of an asset
property.

Use the GetAssetPropertyValue operation to query an asset property's current value.

To identify an asset property, specify one of the following:

• The assetId and propertyId of the asset property that data is sent to.

• The propertyAlias, which is a data stream alias (for example, /company/windfarm/3/
turbine/7/temperature). To use this option, you must first set your asset property's alias. To
set property aliases, see Manage data streams for AWS IoT SiteWise.

To get the current value of an asset property (AWS CLI)

• Run the following command to get the current value of the asset property. Replace asset-id
with the ID of the asset and property-id with the ID of the property.

aws iotsitewise get-asset-property-value \
 --asset-id asset-id \
 --property-id property-id

The operation returns a response that contains the current TQV of the property in the
following format.

{
 "propertyValue": {
 "value": {
 "booleanValue": Boolean,
 "doubleValue": Number,
 "integerValue": Number,
 "stringValue": "String",
 "nullValue": {
 "valueType": "String"
 }
 },
 "timestamp": {

Query an asset property's current value (AWS CLI) 745

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyValue.html

AWS IoT SiteWise User Guide

 "timeInSeconds": Number,
 "offsetInNanos": Number
 },
 "quality": "String"
 }
}

Query historical asset property values in AWS IoT SiteWise

You can use the AWS IoT SiteWise API GetAssetPropertyValueHistory operation to query the
historical values of an asset property.

To identify an asset property, specify one of the following:

• The assetId and propertyId of the asset property that data is sent to.

• The propertyAlias, which is a data stream alias (for example, /company/windfarm/3/
turbine/7/temperature). To use this option, you must first set your asset property's alias. To
set property aliases, see Manage data streams for AWS IoT SiteWise.

Pass the following parameters to refine your results:

• startDate – The exclusive start of the range from which to query historical data, expressed in
seconds in Unix epoch time.

• endDate – The inclusive end of the range from which to query historical data, expressed in
seconds in Unix epoch time.

• maxResults – The maximum number of results to return in one request. Defaults to 20 results.

• nextToken – A pagination token returned from a previous call of this operation.

• timeOrdering – The ordering to apply to the returned values: ASCENDING or DESCENDING.

• qualities – The quality to filter results by: GOOD, BAD, or UNCERTAIN.

To query the value history for an asset property (AWS CLI)

1. Run the following command to get the value history for the asset property. This command
queries the property's history over a specific 10 minute interval. Replace asset-id with the ID
of the asset and property-id with the ID of the property. Replace the date parameters with
the interval to query.

Query historical asset property values 746

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyValueHistory.html

AWS IoT SiteWise User Guide

aws iotsitewise get-asset-property-value-history \
 --asset-id asset-id \
 --property-id property-id \
 --start-date 1575216000 \
 --end-date 1575216600

The operation returns a response that contains the historical TQVs of the property in the
following format:

{
 "assetPropertyValueHistory": [
 {
 "value": {
 "booleanValue": Boolean,
 "doubleValue": Number,
 "integerValue": Number,
 "stringValue": "String",
 "nullValue": {
 "valueType": "String"
 }
 },
 "timestamp": {
 "timeInSeconds": Number,
 "offsetInNanos": Number
 },
 "quality": "String"
 }
],
 "nextToken": "String"
}

2. If more value entries exist, you can pass the pagination token from the nextToken field to a
subsequent call to the GetAssetPropertyValueHistory operation.

Query asset property aggregates in AWS IoT SiteWise

AWS IoT SiteWise automatically computes aggregated asset property values, which are a set of
basic metrics calculated over multiple time intervals. AWS IoT SiteWise computes the following
aggregates every minute, hour, and day for your asset properties:

Query asset property aggregates 747

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyValueHistory.html

AWS IoT SiteWise User Guide

• average – The average (mean) of a property's values over a time interval.

• count – The number of data points for a property over a time interval.

• maximum – The maximum of a property's values over a time interval.

• minimum – The minimum of a property's values over a time interval.

• standard deviation – The standard deviation of a property's values over a time interval.

• sum – The sum of a property's values over a time interval.

For non-numeric properties, such as strings and Booleans, AWS IoT SiteWise computes only the
count aggregate.

You can also compute custom metrics for your asset data. With metric properties, you define
aggregations that are specific to your operation. Metric properties offer additional aggregation
functions and time intervals that aren't precomputed for the AWS IoT SiteWise API. For more
information, see Aggregate data from properties and other assets (metrics).

Topics

• Aggregates for an asset property (API)

• Aggregates for an asset property (AWS CLI)

Aggregates for an asset property (API)

Use the AWS IoT SiteWise API to get aggregates for an asset property.

Use the GetAssetPropertyAggregates operation to query aggregates of an asset property.

To identify an asset property, specify one of the following:

• The assetId and propertyId of the asset property that data is sent to.

• The propertyAlias, which is a data stream alias (for example, /company/windfarm/3/
turbine/7/temperature). To use this option, you must first set your asset property's alias. To
set property aliases, see Manage data streams for AWS IoT SiteWise.

You must pass the following required parameters:

• aggregateTypes – The list of aggregates to retrieve. You can specify any of AVERAGE, COUNT,
MAXIMUM, MINIMUM, STANDARD_DEVIATION, and SUM.

Aggregates for an asset property (API) 748

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyAggregates.html

AWS IoT SiteWise User Guide

• resolution – The time interval for which to retrieve the metric: 1m (1 minute), 15m (15
minutes), 1h (1 hour), or 1d (1 day).

• startDate – The exclusive start of the range from which to query historical data, expressed in
seconds in Unix epoch time.

• endDate – The inclusive end of the range from which to query historical data, expressed in
seconds in Unix epoch time.

You can also pass any of the following parameters to refine your results:

• maxResults – The maximum number of results to return in one request. Defaults to 20 results.

• nextToken – A pagination token returned from a previous call of this operation.

• timeOrdering – The ordering to apply to the returned values: ASCENDING or DESCENDING.

• qualities – The quality to filter results by: GOOD, BAD, or UNCERTAIN.

Note

The GetAssetPropertyAggregates operation returns a TQV with a different format than
other operations described in this section. The value structure contains a field for each
of the aggregateTypes in the request. The timestamp contains the time that the
aggregation occurred, in seconds in Unix epoch time.

Aggregates for an asset property (AWS CLI)

To query aggregates for an asset property (AWS CLI)

1. Run the following command to get aggregates for the asset property. This command queries
the average and sum with a 1 hour resolution for a specific 1 hour interval. Replace asset-id
with the ID of the asset and property-id with the ID of the property. Replace the parameters
with the aggregates and interval to query.

aws iotsitewise get-asset-property-aggregates \
 --asset-id asset-id \
 --property-id property-id \
 --start-date 1575216000 \
 --end-date 1575219600 \

Aggregates for an asset property (AWS CLI) 749

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyAggregates.html

AWS IoT SiteWise User Guide

 --aggregate-types AVERAGE SUM \
 --resolution 1h

The operation returns a response that contains the historical TQVs of the property in the
following format. The response includes only the requested aggregates.

{
 "aggregatedValues": [
 {
 "timestamp": Number,
 "quality": "String",
 "value": {
 "average": Number,
 "count": Number,
 "maximum": Number,
 "minimum": Number,
 "standardDeviation": Number,
 "sum": Number
 }
 }
],
 "nextToken": "String"
}

2. If more value entries exist, you can pass the pagination token from the nextToken field to a
subsequent call to the GetAssetPropertyAggregates operation.

Note

If your query range contains a null value TQVs, see AssetPropertyValue API. All statistics
except count, results in a null response, similar to statistics for String TQVs. If your query
range contains Double.NaN for double type TQVs, all calculations except count will result
in a Double.NaN.

AWS IoT SiteWise query language

With the AWS IoT SiteWise data retrieval ExecuteQuery API operation, you can retrieve information
about declarative structural definitions, and the timeseries data associated with them, from the
following:

AWS IoT SiteWise query language 750

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyAggregates.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_AssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ExecuteQuery.html

AWS IoT SiteWise User Guide

• models

• assets

• measurements

• metrics

• transforms

• aggregates

This can be done with SQL like query statements, in a single API request.

Note

This feature is available in all Regions where AWS IoT SiteWise is available, except AWS
GovCloud (US-West), Canada (Central), China (Beijing) and US East (Ohio).

Topics

• Query language reference for AWS IoT SiteWise

Query language reference for AWS IoT SiteWise

AWS IoT SiteWise supports a rich query language for working with your data. The available data
types, operators, functions and constructs are described in the following topics.

See Example queries to write queries with the AWS IoT SiteWise query language.

Topics

• Query reference views

• Supported data types

• Supported clauses

• Logical operators

• Comparison operators

• SQL functions

• Example queries

Query language reference 751

AWS IoT SiteWise User Guide

Query reference views

This section provides information to help you understand the views in AWS IoT SiteWise, such as
process metadata and telemetry data.

The following tables provide the view names and descriptions of the views:

Data model

View name View description

asset Contains information about the asset and
model derivation.

asset_property Contains information about the asset
property's structure.

raw_time_series Contains the historical data of the time series.

latest_value_time_series Contains the latest value of the time series.

precomputed_aggregates Contains the automatically computed
aggregated asset property values. They are a
set of basic metrics calculated over multiple
time intervals.

The following views list the column names and data types of each view.

View:asset

column name datatype

asset_id string

asset_name string

asset_description string

asset_model_id string

parent_asset_id string

Query language reference 752

AWS IoT SiteWise User Guide

column name datatype

asset_external_id string

asset_model_external_id string

hierarchy_id string

View:asset_property

column name datatype

asset_id string

property_id string

property_name string

property_alias string

property_
external_id

string

asset_com
posite_model_id

string

property_type string

property_
data_type

string

int_attri
bute_value

integer

double_at
tribute_value

double

boolean_a
ttribute_value

boolean

Query language reference 753

AWS IoT SiteWise User Guide

column name datatype

string_at
tribute_value

string

View:raw_time_series

column name datatype

asset_id string

property_id string

property_alias string

event_timestamp timestamp

quality string

boolean_value boolean

int_value integer

double_value double

string_value string

View:latest_value_time_series

column name datatype

asset_id string

property_id string

property_alias string

event_timestamp timestamp

quality string

Query language reference 754

AWS IoT SiteWise User Guide

column name datatype

boolean_value boolean

int_value integer

double_value double

string_value string

View:precomputed_aggregates

column name datatype

asset_id string

property_id string

property_alias string

event_timestamp timestamp

quality string

resolution string

sum_value double

count_value integer

average_value double

maximum_value double

minimum_value double

stdev_value double

Query language reference 755

AWS IoT SiteWise User Guide

Supported data types

AWS IoT SiteWise query language supports the following data types.

Scalar value

Data type Description

STRING A string of maximum length 1024 bytes.

INTEGER A signed 32-bit integer with a range from
-2,147,483,648 to 2,147,483,647 .

DOUBLE A floating point number with range from –
10^100 to 10^100, or Nan with IEEE 754
double precision.

BOOLEAN true or false.

TIMESTAMP ISO-8601 compliant timestamps:

• 'yyyy-MM-dd HH:mm:ss[.SSS] '

• TIMESTAMP 'yyyy-MM-dd[\s|T]HH
:mm:ss[.SSS][+HH:mm|'Z'] '

• 'yyyy-MM-dd'T'HH:mm:ss[.SSS]
[+HH:mm|'Z'] '

• 'yyyy-MM-dd'T'HH:mm:ss+[hh:mm] '

Note

Null: A boolean true indicating a lack of defined data.

Example

TIMESTAMP value examples:

TIMESTAMP '2025-12-21 23:59:59.999Z'
TIMESTAMP '2025-12-21 23:59:59+23:59'

Query language reference 756

AWS IoT SiteWise User Guide

'2025-12-21 23:59:59'
'2025-12-21T23:59:59.123+11:11'

Note

The double precision data is not exact. Some values are not converted exactly, and will not
represent all real numbers due to limited precision. Floating-point data in the query may
not be the same value represented internally. The value is rounded if the precision of an
input number is too high.

Supported clauses

The SELECT statement is used to retrieve data from one or more views. AWS IoT SiteWise supports
the JOIN and INNER JOIN operations.

Views are joined with an explicit JOIN syntax, or with comma-separated notations in the FROM
clause.

Example

A general SELECT statement:

SELECT expression [, ...]
 [FROM table_name AS alias [, ...]]
 [WHERE condition]
 [GROUP BY expression [, ...]]
 [HAVING condition]
 [ORDER BY expression [ASC | DESC] [NULLS FIRST | NULLS LAST] [, ...]]
 [LIMIT expression]

Example

A SELECT statement with the different clauses:

SELECT
 a.asset_name,
 a.asset_id,
 p.property_type,
 p.property_data_type,
 p.string_attribute_value,
 p.property_name

Query language reference 757

AWS IoT SiteWise User Guide

FROM asset a, asset_property p
WHERE a.asset_description LIKE '%description%'
AND p.property_type IN ('attribute', 'metric')
OR p.property_id IN (
 SELECT property_id
 FROM raw_time_series
 WHERE event_timestamp BETWEEN TIMESTAMP '2025-01-01 00:00:00' AND TIMESTAMP
 '2025-01-02 00:00:00'
 GROUP BY asset_id, property_id
 HAVING COUNT(*) > 100
)
GROUP BY p.property_type
HAVING COUNT(*) > 5
ORDER BY a.asset_name ASC
LIMIT 20;

Note

An implicit JOIN combines two or more different tables without using the JOIN keyword
based on AWS IoT SiteWise's internal schema. This is the equivalent of performing a JOIN
on the asset_id and property_id fields between metadata and raw data tables. This
pattern allows SiteWise to leverage any given metadata filters in the query, when fetching
from raw data tables in a way that results in less overall data scanned.

Example of a query:

SELECT a.asset_name, p.property_name, r.event_timestamp
FROM asset a, asset_property p, raw_time_series r
WHERE a.asset_name='my_asset' AND p.property_name='my_property'

The above example only scans data from the asset property belonging to the specified
metadata names.

Example of a less optimized equivalent of the above query:

SELECT a.asset_name, p.property_name, r.event_timestamp
FROM asset a
JOIN asset_property p ON a.asset_id=p.asset_id
JOIN raw_time_series r ON p.asset_id=r.asset_id AND p.property_id=r.property_id
WHERE a.asset_name='my_asset' AND p.property_name='my_property'

Query language reference 758

AWS IoT SiteWise User Guide

An explanation of each clause and it's description is listed below:

Clause Signature Description

LIMIT LIMIT { count } This clause limits the result
set to the specified number
of rows. You can use LIMIT
with or without ORDER BY
and OFFSET clauses.

LIMIT only works with
non-negative integers from
[0,2147483647].

ORDER BY ORDER BY expression
[ASC | DESC]
[NULLS FIRST | NULLS
 LAST]

The ORDER BY clause sorts
the result set of a query.

GROUP BY GROUP BY expression
 [, ...]

The GROUP BY clause
identifies the grouping
columns for the query. It is
used in conjunction with an
aggregate expression.

HAVING HAVING boolean-e
xpression

The HAVING clause filters
group rows created by the
GROUP BY clause.

SUB SELECT SELECT column1, column2
FROM table1
WHERE column3 IN
 (SELECT column4 FROM
 table2);

A SELECT statement
embedded within another
SELECT statement.

JOIN SELECT column1, column2
FROM table1 JOIN table2

Query language reference 759

AWS IoT SiteWise User Guide

Clause Signature Description

ON table1.column1 =
 table2.column1;

INNER JOIN SELECT columns
FROM table1
INNER JOIN table2
 ON table1.column =
 table2.column;

An INNER JOIN returns all
rows from both tables, that
match the join condition.

UNION query
 { UNION [ALL] }
another_query

The UNION operator
computes the set union of its
two arguments, automatically
removing duplicate records
from the result set.

Logical operators

AWS IoT SiteWise supports the following logical operators.

Operator Signature Description

AND a AND b TRUE if both values are true

OR a OR b TRUE if one value is true

NOT NOT expression TRUE if an expression is false,
and FALSE if an expression is
true

IN x IN expression TRUE if value in expression

BETWEEN BETWEEN a AND b TRUE if value between upper
and lower limit, and includes
both limits

LIKE LIKE pattern TRUE if value is in pattern

Query language reference 760

AWS IoT SiteWise User Guide

Operator Signature Description

LIKE supports wildcards. See
below for examples:

• % substitutes one or more
characters in a string.

• _ substitutes one character
in a string.

• ESCAPE is used with a
character to designate an
escape character in the LIKE
pattern.

Examples of all logical operators:

Function Example

AND SELECT a.asset_name
 FROM asset AS a, latest_value_time_
series AS t
 WHERE t.int_value > 30 AND
 t.event_timestamp > TIMESTAMP
 '2025-05-15 00:00:01'

OR SELECT a.asset_name
 FROM asset AS a
 WHERE a.asset_name like 'abc' OR
 a.asset_name like 'pqr'

NOT SELECT ma.asset_id AS a_id
 FROM asset AS ma
 WHERE (ma.asset_id NOT LIKE 'some
%patterna%' escape 'a') AND ma.asset_
id='abc'

Query language reference 761

AWS IoT SiteWise User Guide

Function Example

IN SELECT a.asset_name
 FROM asset AS a
 WHERE a.asset_name IN ('abc',
 'pqr')

BETWEEN SELECT asset_id, int_value, event_tim
estamp AS i_v
 FROM raw_time_series
 WHERE event_timestamp BETWEEN
 TIMESTAMP '2025-04-15 00:00:01' and
 TIMESTAMP '2025-05-15 00:00:01'

LIKE • % pattern:

SELECT POWER(rw.int_value, 5) AS
 raised_value
 FROM raw_time_series AS rw
 WHERE rw.asset_id LIKE 'some%pat
tern%' AND rw.int_value > 30

• _ pattern:

SELECT asset_id, property_id
 FROM asset_property
 WHERE string_attribute_value LIKE
 'Floor_'

• ESCAPE pattern:

SELECT asset_id
 FROM asset
 WHERE asset_name LIKE 'MyAsset/_
%' ESCAPE '/'

Query language reference 762

AWS IoT SiteWise User Guide

Comparison operators

AWS IoT SiteWise supports the following comparison operators. All comparison operations are
available for built in data types and evaluate to a boolean.

Logical operators

Operator Description

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

= Equals

!= Not equal

Comparison operation truth table for non numeric values

Type Type >= x Type <= x Type > x Type < x Type = x Type != x

NULL FALSE FALSE FALSE FALSE FALSE TRUE

Some predicates behave like operators but have special syntax. See below:

Comparision predicates

Operator Description

IS NULL Tests if a value is NULL.

IS NOT NULL Tests if a value is not NULL.

Query language reference 763

AWS IoT SiteWise User Guide

NaN operators

NaN, or 'Not a Number', is a special value in floating-point arithmetic. Here is a list of NaN
comparisions and how they work.

• NaN values must be enclosed within single quotes. For example, 'NaN'.

• NaN values are considered equal to each other.

• NaN is greater than other numeric values.

• In aggregate functions like AVG(), STDDEV(), and SUM(), if any values are NaN, the result is
NaN.

• In aggregate functions like MAX() and MIN(), NaN values are included in the calculations.

NaN value comparisions

Comparison Result

'NaN' ≥ x True

'NaN' ≤ x True if x equals NaN, False
otherwise

'NaN' > x False if x equals NaN, True
otherwise

'NaN' < x False

'NaN' = x True if x equals NaN, False
otherwise

'NaN' != x False if x equals NaN, True
otherwise

SQL functions

The function groups supported are:

Topics

• Scalar functions

Query language reference 764

AWS IoT SiteWise User Guide

• Aggregate functions

Scalar functions

Scalar functions take one or more input values and returns a single output value. They are widely
used in SQL (Structured Query Language) for data manipulation and retrieval, improving the
efficiency of data processing tasks.

Topics

• Null data functions

• String functions

• Math functions

• Date time functions

• Type conversion functions

Null data functions

Null data functions handle or manipulate NULL values, which represent the absence of a value.
The functions allow you to replace NULLs with other values, check if a value is NULL, or perform
operations that handle NULLs in a specific way.

Function Signature Description

COALESCE COALESCE (expression1,
expression2, ..., expressionN)

If all expressions evaluate to
null, COALESCE returns null.
Expressions must be of same
type.

Example of a COALESCE function

SELECT COALESCE (l.double_value, 100) AS non_double_value FROM latest_value_time_series
 AS l LIMIT 1

Query language reference 765

AWS IoT SiteWise User Guide

String functions

String functions are built-in tools used to manipulate and process text data. They enable tasks like
concatenation, extraction, formatting, and searching within strings. These functions are essential
for cleaning, transforming, and analyzing text-based data within a database.

String functions

Function Signature Description

LENGTH LENGTH (string) Returns the length of the
string.

CONCAT CONCAT (string, string) Concatenates arguments in a
string.

SUBSTR • SUBSTR (string, start)

• SUBSTR (string, start,
length)

• SUBSTR (string, regexp)

Returns one of the following:

• Returns the substring of
the input string starting
the specified location
and optionally having the
specified length.

• Returns the first substring
of the input string
matching the specified
 regular expression.

Uses 1-based indexing for
start parameter.

UPPER UPPER (string) Converts the characters in the
input string to uppercase.

LOWER LOWER (string) Converts the characters in the
input string to lowercase.

Query language reference 766

AWS IoT SiteWise User Guide

Function Signature Description

TRIM TRIM (string) Removes any space character
s from the beginning, end, or
both sides of string.

LTRIM LTRIM (string) Removes any space characters
from the beginning of string.

RTRIM RTRIM (string) Removes any space characters
from the end of string.

STR_REPLACE STR_REPLACE (string, from,
to)

Replaces all occurrences of
the specified substring with
another specified substring.

Examples of all the functions:

Function Example

LENGTH SELECT LENGTH(a.asset_id) AS
asset_id_length FROM asset AS a

CONCAT SELECT CONCAT(p.property_id,
p.property_name) FROM asset_pro
perty AS p

SUBSTR • SELECT SUBSTR(a.asset_name, 1,
3) AS substr-val FROM asset AS a

• SELECT SUBSTR(p.property_name,
3) AS substr_val1 FROM asset_pro
perty AS p

• SELECT SUBSTR(p.property_name,
'@[^.]*') AS substr_val2 FROM
asset_property AS p

Query language reference 767

AWS IoT SiteWise User Guide

Function Example

UPPER SELECT UPPER(d.string_value) AS
up_string FROM raw_time_series AS
d

LOWER SELECT LOWER(d.string_value) AS
low_string FROM raw_time_series
AS d

TRIM SELECT TRIM(d.string_value) AS
tm_string FROM raw_time_series AS
d

LTRIM SELECT LTRIM(d.string_value) AS
ltrim_string FROM raw_time_series
AS d

RTRIM SELECT RTRIM(d.string_value) AS
rtrim_string FROM raw_time_series
AS d

STR_REPLACE SELECT STR_REPLACE(d.stri
ng_value, 'abc', 'def') AS
replaced_string FROM raw_time_
series AS d

Concatenation operator

The concatenation operator ||, or pipe operator, joins two strings together. It provides an
alternative to the CONCAT function, and is more readable when combining multiple strings.

Example of the concatenation operator

SELECT a.asset_name || ' - ' || p.property_name
 AS full_name
 FROM asset a, asset_property p

Query language reference 768

AWS IoT SiteWise User Guide

Math functions

Math functions are pre-defined mathematical operations used within SQL queries to perform
calculations on numerical data. They provide ways to manipulate and transform data without
needing to extract it from the database and process it separately.

Math functions

Function Signature Description

POWER POWER (int|double, int|doubl
e)

Returns the value of first
argument raised to the power
of the second argument.

ROUND • ROUND (int|double,
decimal_places_int)

• ROUND (int|double)

Rounds to the nearest integer.

FLOOR FLOOR (int|double) Returns the largest integer
not greater than the value
given.

Examples of all functions:

Function Example

POWER • POWER (3, 77)

• POWER (2.3, 3.9)

• POWER (1.0, 4.2)

ROUND ROUND (32.12435, 3)

FLOOR FLOOR (21.2)

Date time functions

Date time functions work with dates and times. These functions allow extraction of specific
components of a date, perform calculations, and manipulate date values.

Query language reference 769

AWS IoT SiteWise User Guide

The allowed identifiers in these functions are:

• YEAR

• MONTH

• DAY

• HOUR

• MINUTE

• SECOND

Function Signature Description

NOW NOW () Returns the current
timestamp with milliseco
nd precision. It provides the
exact time at the moment it's
executed within a query.

DATE_ADD DATE_ADD (identifier,
interval_duration, column)

Returns the sum of a date/
time and a number of days/
hours, or of a date/time and
date/time interval.

DATE_SUB DATE_SUB (identifier,
interval_duration, column)

Returns the difference
between a date/time and a
number of days/hours, or
between a date/time and
date/time interval.

TIMESTAMP_ADD TIMESTAMP_ADD (identifier,
interval_duration, column)

Adds an interval of time, in
the given time units, to a
datetime expression.

TIMESTAMP_SUB TIMESTAMP_SUB (identifier,
interval_duration, column)

Subtracts an interval of time,
in the given time units, from a
datetime expression.

Query language reference 770

AWS IoT SiteWise User Guide

Function Signature Description

CAST CAST (expression AS
TIMESTAMP FORMAT pattern)

Converts a string expressio
n to a timestamp using the
specified format pattern.
Common patterns include
'yyyy-MM-dd HH:mm:ss'

 for standard datetime
format. For example,
SELECT CAST('202
3-12-25 14:30:00'
 AS TIMESTAMP) AS
converted_timestamp

Example of a SQL query using the listed functions:

SELECT r.asset_id, r.int_value,
 date_add(DAY, 7, r.event_timestamp) AS date_in_future,
 date_sub(YEAR, 2, r.event_timestamp) AS date_in_past,
 timestamp_add(DAY, 2, r.event_timestamp) AS timestamp_in_future,
 timestamp_sub(DAY, 2, r.event_timestamp) AS timestamp_in_past,
 now() AS time_now
FROM raw_time_series AS r

Type conversion functions

Type conversion functions are used to change the data type of a value from one to another. They
are essential for ensuring data compatibility and performing operations that require data in a
specific format.

Function Signature Description

TO_DATE • TO_DATE (integer)

• TO_DATE (expression,
format)

• Converts an epoch milliseco
nd integer into a date
value.

Query language reference 771

AWS IoT SiteWise User Guide

Function Signature Description

• Converts a character string
representation into a date
value.

TO_TIMESTAMP • TO_TIMESTAMP (double)

• TO_TIMESTAMP (string,
format)

• Converts an epoch second
integer into a timestamp
data type.

• Converts a string represent
ation of a date and time
into a timestamp data type.

TO_TIME • TO_TIME (int)

• TO_TIME (string, format)

• Converts an epoch milliseco
nd integer into a time
value.

• Converts a character string
representation into a time
value.

CAST CAST (<expression> AS <data
type>)

Converts an entity, or
expression that evaluates to a
single value, from one type to
another.

Supported data types are:

• BOOLEAN

• INTEGER

• INT

• TIMESTAMP

• DATE

• CHAR

• CHARACTER

• STRING

Query language reference 772

AWS IoT SiteWise User Guide

Example of a SQL query using the listed functions:

SELECT TO_TIMESTAMP (100) AS timestamp_value,
 TO_DATE(r.event_timestamp) AS date_value,
 TO_TIME(r.event_timestamp) AS time_value
FROM raw_time_series AS r

Aggregate functions

Aggregate functions are database operations that perform calculations across multiple rows of
data to produce a single summarized result. These functions analyze data sets to return computed
values like sums, averages, counts, or other statistical measures.

Function Signature Description

AVG AVG (expression) Returns the average of a
numerical expression.

COUNT COUNT (expression) Returns the number of rows
that match the given criteria.

MAX MAX (expression) Returns the largest value of
the selected expressions.

MIN MIN (expression) Returns the smallest value of
the selected expressions.

SUM SUM (expression) Returns the sum of a
numerical expression.

STDDEV STDDEV (expression) Returns the sample standard
deviation.

GROUP BY GROUP BY expression Returns a row created by the
grouping columns.

HAVING HAVING boolean-expression Returns group rows filtered
by GROUP BY clause.

Query language reference 773

AWS IoT SiteWise User Guide

Examples of all functions:

Function Example

AVG SELECT d.asset_id, d.property_id,
 AVG(d.int_value) FROM raw_time_
series AS d

COUNT SELECT COUNT(d.int_value) FROM
 raw_time_series AS d

MAX SELECT MAX(d.int_value) FROM raw_time_
series AS d

MIN SELECT MIN(d.int_value) FROM raw_time_
series AS d

SUM SELECT SUM(d.int_value) FROM raw_time_
series AS d

STDDEV SELECT STDDEV(d.int_value) FROM
 raw_time_series AS d

• GROUP BY

• HAVING
SELECT MAX(d.int_value) AS max_int_v
alue, d.asset_id
FROM raw_time_series AS d
GROUP BY d.asset_id
HAVING MAX(d.int_value) > 5

Query language reference 774

AWS IoT SiteWise User Guide

Example queries

Metadata filtering

The following example is for metadata filtering with a SELECT statement with the AWS IoT
SiteWise query language:

SELECT a.asset_name, p.property_name
FROM asset a, asset_property p
WHERE a.asset_name LIKE 'Windmill%'

Value filtering

The following is an example of value filtering using a SELECT statement with the AWS IoT SiteWise
query language:

SELECT a.asset_name, r.int_value
FROM asset a, raw_time_series r
WHERE r.int_value > 30
AND r.event_timestamp > TIMESTAMP '2022-01-05 12:15:00'
AND r.event_timestamp < TIMESTAMP '2022-01-05 12:20:00'

Query optimization

Metadata filters

When you query metadata or raw data, use the WHERE clause to filter by metadata fields to reduce
the amount of data scanned. Use the following operators to limit the metadata scan:

• Equals (=)

• Not equals (!=)

• LIKE

• IN

• AND

• OR

For attribute properties, use the following fields to filter results.:

Query optimization 775

AWS IoT SiteWise User Guide

• double_attribute_value

• int_attribute_value

• boolean_attribute_value

• string_attribute_value

These fields provide better performance than the latest_value_time_series table for asset
properties of attribute type.

Note

Use literals on the right side of operators to properly limit the data scan. For example, the
following query performs worse than using a strict string literal:

SELECT property_id FROM asset_property WHERE property_name = CONCAT('my',
 'property')

Example for metadata filters:

SELECT p.property_name FROM asset_property p
WHERE p.property_type = 'attribute' AND p.string_attribute_value LIKE 'my-property-%'

Raw data filters

All raw data tables (raw_time_series, latest_value_time_series, precomputed_aggregates) have
timestamps associated with their rows. In addition to metadata filters, use WHERE clause filters on
the event_timestamp field to reduce the amount of data scanned. Use the following operations
to limit the raw data scan:

• Equals (=)

• Greater than (>)

• Less than (<)

• Greater than or equals (>=)

• Less than or equals (<=)

• BETWEEN

Raw data filters 776

AWS IoT SiteWise User Guide

• AND

When querying the precomputed_aggregates table, always specify a quality filter in the WHERE
clause. This reduces the amount of data that the query scans, especially if you're looking for BAD
or UNCERTAIN data. We also highly recommend using a resolution filter (1m, 15m, 1h, or 1d) when
querying the precomputed_aggregates table. If you don't specify a resolution filter, AWS IoT
SiteWise will default to a full table scan across all resolutions, which is inefficient.

Note

Not equals (!=) and OR operators typically don't apply meaningful filters to the raw data
scan. Filters on raw data values (string_value, double_value, etc.) also don't limit the raw
data scan.

JOIN optimization

AWS IoT SiteWise SQL supports the JOIN keyword to merge two tables together. Only JOINs that
actively filter on a field (using the ON keyword) are supported. Full Cartesian joins are prohibited.

AWS IoT SiteWise also supports implicit JOINs without using the JOIN keyword. These are allowed
between different metadata tables and between a metadata table and a raw table. For example,
this query:

SELECT a.asset_name, p.property_name FROM asset a, asset_property p

Performs better than this equivalent query:

SELECT a.asset_name, p.property_name FROM asset a
JOIN asset_property p ON a.asset_id = p.asset_id

The following implicit joins are allowed (O is allowed, X is prohibited):

 asset asset_pro
perty

latest_va
lue_time_
series

raw_time_
series

precomput
ed_aggreg
ates

subquery

asset X O O O O X

JOIN optimization 777

AWS IoT SiteWise User Guide

 asset asset_pro
perty

latest_va
lue_time_
series

raw_time_
series

precomput
ed_aggreg
ates

subquery

asset_pro
perty

O X O O O X

latest_va
lue_time_
series

O O X X X X

raw_time_
series

O O X X X X

precomput
ed_aggreg
ates

O O X X X X

subquery X X X X X X

Use implicit JOINs where possible. If you must use the JOIN keyword, apply filters on the
individual JOINed tables to minimize data scanned. For example, instead of this query:

SELECT level1.asset_id, level2.asset_id, level3.asset_id
FROM asset AS level1
JOIN asset AS level2 ON level2.parent_asset_id = level1.asset_id
JOIN asset AS level3 ON level3.parent_asset_id = level2.asset_id
WHERE level1.asset_name LIKE 'level1%'
AND level2.asset_name LIKE 'level2%'
AND level3.asset_name LIKE 'level3%'

Use this more efficient query:

SELECT level1.asset_id, level2.asset_id, level3.asset_id
FROM asset AS level1
JOIN (SELECT asset_id, parent_asset_id FROM asset WHERE asset_name LIKE 'level2%') AS
 level2 ON level2.parent_asset_id = level1.asset_id
JOIN (SELECT asset_id, parent_asset_id FROM asset WHERE asset_name LIKE 'level3%') AS
 level3 ON level3.parent_asset_id = level2.asset_id

JOIN optimization 778

AWS IoT SiteWise User Guide

WHERE level1.asset_name LIKE 'level1%'

By pushing metadata filters into subqueries, you ensure that individual tables in the JOINs are
filtered during the scanning process. You can also use the LIMIT keyword in subqueries for the
same effect.

Large queries

For queries that produce more rows than the default, set the page size of the ExecuteQuery API to
the maximum value of 20000. This improves overall query performance.

Use the LIMIT clause to reduce the amount of data scanned for some queries. Note that aggregate
functions and certain table-wide clauses (GROUP BY, ORDER BY, JOIN) require a full scan to
complete before applying the LIMIT clause.

Note

AWS IoT SiteWise may scan a minimum amount of data even with the LIMIT clause
applied, especially for raw data queries that scan over multiple properties.

ODBC

The open-source ODBC driver for AWS IoT SiteWise provides an SQL-relational interface to AWS
IoT SiteWise for developers and enables connectivity from business intelligence (BI) tools such as
Power BI Desktop and Microsoft Excel. The AWS IoT SiteWise ODBC driver is currently available on
Windows, and supports SSO with Okta and Microsoft Azure Active Directory (AD).

For more information, see AWS IoT SiteWise ODBC driver documentation on GitHub.

Topics

• Connection string syntax and options for the ODBC driver

• Connection string examples for the AWS IoT SiteWise ODBC driver

• Troubleshooting connection with the ODBC driver

Connection string syntax and options for the ODBC driver

The syntax for specifying connection-string options for the ODBC driver is as follows:

Large queries 779

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ExecuteQuery.html
https://github.com/awslabs/aws-iotsitewise-odbc-driver
https://github.com/awslabs/aws-iotsitewise-odbc-driver/releases
https://github.com/awslabs/aws-iotsitewise-odbc-driver/blob/main/docs/markdown/index.md

AWS IoT SiteWise User Guide

Driver={AWS IoT SiteWise ODBC Driver};(option)=(value);

Available options are as follows:

Driver connection options

• Driver (required) – The driver being used with ODBC.

The default is AWS IoT SiteWise.

• DSN – The data source name (DSN) to use for configuring the connection.

The default is NONE.

• Auth – The authentication mode. This must be one of the following:

• AWS_PROFILE – Use the default credential chain.

• IAM – Use AWS IAM credentials.

• AAD – Use the Azure Active Directory (AD) identity provider.

• OKTA – Use the Okta identity provider.

The default is AWS_PROFILE.

Endpoint configuration options

• EndpointOverride – The endpoint override for the AWS IoT SiteWise service. This is an
advanced option that overrides the region. For example:

iotsitewise.us-east-1.amazonaws.com

• Region – The signing region for the AWS IoT SiteWise service endpoint.

The default is us-east-1.

Credentials provider option

• ProfileName – The profile name in the AWS config file.

The default is NONE.

Connection string syntax 780

AWS IoT SiteWise User Guide

AWS IAM authentication options

• UID or AccessKeyId – The AWS user access key id. If both UID and AccessKeyId are
provided in the connection string, the UID value will be used unless it is empty.

The default is NONE.

• PWD or SecretKey – The AWS user secret access key. If both PWD and SecretKey are provided
in the connection string, the PWD value with will be used unless it's empty.

The default is NONE.

• SessionToken – The temporary session token required to access a database with multi-factor
authentication (MFA) enabled. Do not include a trailing = in the input.

The default is NONE.

SAML-based authentication options for Okta

• IdPHost – The hostname of the specified IdP.

The default is NONE.

• UID or IdPUserName – The user name for the specified IdP account. If both UID and
IdPUserName are provided in the connection string, the UID value will be used unless it's empty.

The default is NONE.

• PWD or IdPPassword – The password for the specified IdP account. If both PWD and
IdPPassword are provided in the connection string, the PWD value will be used unless it's empty.

The default is NONE.

• OktaApplicationID – The unique Okta-provided ID associated with the AWS IoT SiteWise
application. A place to find the application ID (AppId) is in the entityID field provided in the
application metadata. An example is:

entityID="http://www.okta.com//(IdPAppID)

The default is NONE.

• RoleARN – The Amazon Resource Name (ARN) of the role that the caller is assuming.

The default is NONE.

Connection string syntax 781

AWS IoT SiteWise User Guide

• IdPARN – The Amazon Resource Name (ARN) of the SAML provider in IAM that describes the
IdP.

The default is NONE.

SAML-based authentication options for Azure Active Directory

• UID or IdPUserName – The user name for the specified IdP account..

The default is NONE.

• PWD or IdPPassword – The password for the specified IdP account.

The default is NONE.

• AADApplicationID – The unique id of the registered application on Azure AD.

The default is NONE.

• AADClientSecret – The client secret associated with the registered application on Azure AD
used to authorize fetching tokens.

The default is NONE.

• AADTenant – The Azure AD Tenant ID.

The default is NONE.

• RoleARN – The Amazon Resource Name (ARN) of the role that the caller is assuming.

The default is NONE.

• IdPARN – The Amazon Resource Name (ARN) of the SAML provider in IAM that describes the
IdP.

The default is NONE.

AWS SDK (advanced) Options

• RequestTimeout – The time in milliseconds that the AWS SDK waits for a query request
before timing out. Any non-positive value disables the request timeout.

The default is 3000.

Connection string syntax 782

AWS IoT SiteWise User Guide

• ConnectionTimeout – The time in milliseconds that the AWS SDK waits for data to be
transferred over an open connection before timing out. A value of 0 disables the connection
timeout. This value must not be negative.

The default is 1000.

• MaxRetryCountClient – The maximum number of retry attempts for retryable errors with
5xx error codes in the SDK. The value must not be negative.

The default is 0.

• MaxConnections – The maximum number of allowed concurrently open HTTP connections to
the AWS IoT SiteWise service. The value must be positive.

The default is 25.

ODBC driver logging Options

• LogLevel – The log level for driver logging. Must be one of:

• 0 (OFF).

• 1 (ERROR).

• 2 (WARNING).

• 3 (INFO).

• 4 (DEBUG).

The default is 1 (ERROR).

Warning: personal information could be logged by the driver when using the DEBUG logging
mode.

• LogOutput – Folder in which to store the log file.

The default is:

• Windows: %USERPROFILE%, or if not available, %HOMEDRIVE%%HOMEPATH%.

• macOS and Linux: $HOME, or if not available, the field pw_dir from the function
getpwuid(getuid()) return value.

SDK logging options

Connection string syntax 783

AWS IoT SiteWise User Guide

The AWS SDK log level is separate from the AWS IoT SiteWise ODBC driver log level. Setting one
does not affect the other.

The SDK Log Level is set using the environment variable SW_AWS_LOG_LEVEL. Valid values are:

• OFF

• ERROR

• WARN

• INFO

• DEBUG

• TRACE

• FATAL

If SW_AWS_LOG_LEVEL is not set, the SDK log level is set to the default, which is WARN.

Connecting through a proxy

The ODBC driver supports connecting to AWS IoT SiteWise through a proxy. To use this feature,
configure the following environment variables based on your proxy setting:

• SW_PROXY_HOST – the proxy host.

• SW_PROXY_PORT – The proxy port number.

• SW_PROXY_SCHEME – The proxy scheme, either http or https.

• SW_PROXY_USER – The user name for proxy authentication.

• SW_PROXY_PASSWORD – The user password for proxy authentication.

• SW_PROXY_SSL_CERT_PATH – The SSL Certificate file to use for connecting to an HTTPS
proxy.

• SW_PROXY_SSL_CERT_TYPE – The type of the proxy client SSL certificate.

• SW_PROXY_SSL_KEY_PATH – The private key file to use for connecting to an HTTPS proxy.

• SW_PROXY_SSL_KEY_TYPE – The type of the private key file used to connect to an HTTPS
proxy.

• SW_PROXY_SSL_KEY_PASSWORD – The passphrase to the private key file used to connect to
an HTTPS proxy.

Connection string syntax 784

AWS IoT SiteWise User Guide

Connection string examples for the AWS IoT SiteWise ODBC driver

Example of connecting to the ODBC driver with IAM credentials

Driver={AWS IoT SiteWise ODBC Driver};Auth=IAM;AccessKeyId=(your access key
 ID);SecretKey=(your secret key);SessionToken=(your session token);Region=us-east-1;

Example of connecting to the ODBC driver with a profile

Driver={AWS IoT SiteWise ODBC Driver};ProfileName=(the profile name);region=us-east-1;

The driver will attempt to connect using the credentials provided in ~/.aws/credentials, or
if a file is specified in the environment variable AWS_SHARED_CREDENTIALS_FILE, using the
credentials in that file.

Example of connecting to the ODBC driver with Okta

Driver={AWS IoT SiteWise ODBC Driver};Auth=OKTA;region=us-east-1;idPHost=(your host at
 Okta);idPUsername=(your user name);idPPassword=(your password);OktaApplicationID=(your
 Okta AppId);roleARN=(your role ARN);idPARN=(your Idp ARN);

Example of connecting to the ODBC driver with Azure Active Directory (AAD)

Driver={AWS IoT SiteWise ODBC Driver};Auth=AAD;region=us-east-1;idPUsername=(your
 user name);idPPassword=(your password);aadApplicationID=(your AAD
 AppId);aadClientSecret=(your AAD client secret);aadTenant=(your AAD
 tenant);roleARN=(your role ARN);idPARN=(your idP ARN);

Example of connecting to the ODBC driver with a specified endpoint and a log
level of 2 (WARNING)

Driver={AWS IoT SiteWise ODBC Driver};Auth=IAM;AccessKeyId=(your access
 key ID);SecretKey=(your secret key);EndpointOverride=iotsitewise.us-
east-1.amazonaws.com;Region=us-east-1;LogLevel=2;

Connection string examples 785

AWS IoT SiteWise User Guide

Troubleshooting connection with the ODBC driver

Note

If the username and password is already specified in the DSN, do not specify them again
when the ODBC driver manager asks for them.

An error code of 01S02 with a message, Re-writing (connection string option) (have
you specified it several times?) occurs when a connection string option is passed more
than once in the connection string. Specifying an option more than once raises an error. When
making a connection with a DSN and a connection string, if a connection option is already specified
in the DSN, do not specify it again in the connection string.

Troubleshooting 786

AWS IoT SiteWise User Guide

Interact with other AWS services

AWS IoT SiteWise can publish asset data to the AWS IoT MQTT publish-subscribe message broker,
so that you can interact with your asset data from other AWS services. AWS IoT SiteWise assigns
each asset property a unique MQTT topic that you can use to route your asset data to other AWS
services using AWS IoT Core rules. For example, you can configure AWS IoT Core rules to do the
following tasks:

• Identify equipment failure and notify appropriate personnel by sending data to AWS IoT Events.

• Historize select asset data for use in external software solutions by sending data to Amazon
DynamoDB.

• Generate weekly reports by triggering an AWS Lambda function.

You can follow a tutorial that walks through the steps required to set up a rule that stores property
values in DynamoDB. For more information, see Publish property value updates to Amazon
DynamoDB.

For more information about how to configure a rule, see Rules in the AWS IoT Developer Guide.

You can also consume data from other AWS services back into AWS IoT SiteWise. To ingest data
through the AWS IoT SiteWise rule action, see Ingest data to AWS IoT SiteWise using AWS IoT Core
rules.

Topics

• Understand asset properties in MQTT topics

• Turn on asset property notifications in AWS IoT SiteWise

• Query asset property notifications in AWS IoT SiteWise

• Export data to Amazon S3 with asset property notifications

• Integrate AWS IoT SiteWise with Grafana

• Integrate AWS IoT SiteWise and AWS IoT TwinMaker

• Detect anomalies with Lookout for Equipment

Understand asset properties in MQTT topics

Every asset property has a unique MQTT topic path in the following format.

Understand asset properties in MQTT topics 787

https://docs.aws.amazon.com/iotevents/latest/developerguide/
https://docs.aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/lambda/latest/dg/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html

AWS IoT SiteWise User Guide

$aws/sitewise/asset-models/assetModelId/assets/assetId/properties/propertyId

Note

AWS IoT SiteWise doesn't support the # (multi-level) topic filter wildcard in the AWS IoT
Core rules engine. You can use the + (single-level) wildcard. For example, you can use the
following topic filter to match all updates for a particular asset model.

$aws/sitewise/asset-models/assetModelId/assets/+/properties/+

To learn more about topic filter wildcards, see Topics in the AWS IoT Core Developer Guide.

Turn on asset property notifications in AWS IoT SiteWise

You can enable property notifications to publish asset data updates to AWS IoT Core, and then
run queries on your data. With asset property notifications, AWS IoT SiteWise provides an AWS
CloudFormation template that you can use to export AWS IoT SiteWise data to Amazon S3.

Note

Asset data is sent to AWS IoT Core every time it's received by AWS IoT SiteWise, regardless
of if the value has changed.

Topics

• Turn on asset property notifications (console)

• Turn on asset property notifications (AWS CLI)

Turn on asset property notifications (console)

By default, AWS IoT SiteWise doesn't publish property value updates. You can use the AWS IoT
SiteWise console to enable notifications for an asset property.

To enable or disable notifications for an asset property (console)

1. Navigate to the AWS IoT SiteWise console.

Work with notifications 788

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

2. In the navigation pane, choose Assets.

3. Choose the asset to enable a property's notifications.

Tip

You can choose the arrow icon to expand an asset hierarchy to find your asset.

4. Choose Edit.

5. For the asset property's Notification status, choose ENABLED.

You can also choose DISABLED to disable notifications for the asset property.

6. Choose Save.

Turn on asset property notifications (AWS CLI)

By default, AWS IoT SiteWise doesn't publish property value updates. You can use the AWS
Command Line Interface (AWS CLI) to enable or disable notifications for an asset property.

You must know your asset's assetId and property's propertyId to complete this procedure. You
can also use the external ID. If you created an asset and don't know its assetId, use the ListAssets
API to list all the assets for a specific model. Use the DescribeAsset operation to view your asset's
properties including property IDs.

Use the UpdateAssetProperty operation to enable or disable notifications for an asset property.
Specify the following parameters:

• assetId – The asset's ID.

• propertyId – The asset property's ID.

• propertyNotificationState – The property value notification state: ENABLED or DISABLED.

• propertyAlias – The alias of the property. Specify the property's existing alias when you
update the notification state. If you omit this parameter, the property's existing alias is removed.

Turn on asset property notifications (AWS CLI) 789

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListAssets.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAsset.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateAssetProperty.html

AWS IoT SiteWise User Guide

To enable or disable notifications for an asset property (CLI)

1. Run the following command to retrieve the asset property's alias. Replace asset-id with the
ID of the asset and property-id with the ID of the property.

aws iotsitewise describe-asset-property \
 --asset-id asset-id \
 --property-id property-id

The operation returns a response that contains the asset property's details in the following
format. The property alias is in assetProperty.alias in the JSON object.

{
 "assetId": "a1b2c3d4-5678-90ab-cdef-22222EXAMPLE",
 "assetName": "Wind Turbine 7",
 "assetModelId": "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE",
 "assetProperty": {
 "id": "a1b2c3d4-5678-90ab-cdef-33333EXAMPLE",
 "name": "Wind Speed",
 "alias": "/company/windfarm/3/turbine/7/windspeed",
 "notification": {
 "topic": "$aws/sitewise/asset-models/a1b2c3d4-5678-90ab-cdef-11111EXAMPLE/
assets/a1b2c3d4-5678-90ab-cdef-22222EXAMPLE/properties/a1b2c3d4-5678-90ab-
cdef-33333EXAMPLE",
 "state": "DISABLED"
 },
 "dataType": "DOUBLE",
 "unit": "m/s",
 "type": {
 "measurement": {}
 }
 }
}

2. Run the following command to enable notifications for the asset property. Replace
property-alias with the property alias from the previous command's response, or omit --
property-alias to update the property without an alias.

aws iotsitewise update-asset-property \
 --asset-id asset-id \
 --property-id property-id \
 --property-notification-state ENABLED \

Turn on asset property notifications (AWS CLI) 790

AWS IoT SiteWise User Guide

 --property-alias property-alias

You can also pass --property-notification-state DISABLED to disable notifications
for the asset property.

Query asset property notifications in AWS IoT SiteWise

To query asset property notifications, create AWS IoT Core rules made up of SQL statements.

AWS IoT SiteWise publishes asset property data updates to AWS IoT Core in the following format.

{
 "type": "PropertyValueUpdate",
 "payload": {
 "assetId": "String",
 "propertyId": "String",
 "values": [
 {
 "timestamp": {
 "timeInSeconds": Number,
 "offsetInNanos": Number
 },
 "quality": "String",
 "value": {
 "booleanValue": Boolean,
 "doubleValue": Number,
 "integerValue": Number,
 "stringValue": "String",
 "nullValue": {
 "valueType": "String
 }
 }
 }
]
 }
}

Each structure in the values list is a timestamp-quality-value (TQV) structure.

• The timestamp contains the current Unix epoch time in seconds with nanosecond offset.

• The quality contains one of the following strings that indicate the quality of the data point:

Query notifications 791

AWS IoT SiteWise User Guide

• GOOD – The data isn't affected by any issues.

• BAD – The data is affected by an issue such as sensor failure.

• UNCERTAIN – The data is affected by an issue such as sensor inaccuracy.

• The value contains one of the following fields, depending on the type of the property:

• booleanValue

• doubleValue

• integerValue

• stringValue

• nullValue

nullValue – A structure with the following field denoting the type of the property value with
value Null and quality of BAD or UNCERTAIN.

• valueType – Enum of {"B", "D", "S", "I"}

To parse values out of the values array, you need to use complex nested object queries in your
rules' SQL statements. For more information, see Nested object queries in the AWS IoT Developer
Guide, or see the Publish property value updates to Amazon DynamoDB tutorial for a specific
example of parsing asset property notification messages.

Example Example query to extract the array of values

The following statement demonstrates how to query the array of updated property values for a
specific double-type property on all assets with that property.

SELECT
 (SELECT VALUE (value.doubleValue) FROM payload.values) AS windspeed
FROM
 '$aws/sitewise/asset-models/a1b2c3d4-5678-90ab-cdef-11111EXAMPLE/assets/+/
properties/a1b2c3d4-5678-90ab-cdef-33333EXAMPLE'
WHERE
 type = 'PropertyValueUpdate'

The previous rule query statement outputs data in the following format.

{
 "windspeed": [

Query notifications 792

https://docs.aws.amazon.com/iot/latest/developerguide/iot-sql-nested-queries.html

AWS IoT SiteWise User Guide

 26.32020195042838,
 26.282584572975477,
 26.352566977372508,
 26.283084346171442,
 26.571883739599322,
 26.60684140743005,
 26.628738636715045,
 26.273486932802125,
 26.436379105473964,
 26.600590095377303
]
}

Example Example query to extract a single value

The following statement demonstrates how to query the first value from the array of property
values for a specific double-type property on all assets with that property.

SELECT
 get((SELECT VALUE (value.doubleValue) FROM payload.values), 0) AS windspeed
FROM
 '$aws/sitewise/asset-models/a1b2c3d4-5678-90ab-cdef-11111EXAMPLE/assets/+/
properties/a1b2c3d4-5678-90ab-cdef-33333EXAMPLE'
WHERE
 type = 'PropertyValueUpdate'

The previous rule query statement outputs data in the following format.

{
 "windspeed": 26.32020195042838
}

Important

This rule query statement ignores value updates other than the first in each batch. Each
batch can contain up to 10 values. If you need to include the remaining values, you must
set up a more complex solution to output asset property values to other services. For
example, you can set up a rule with an AWS Lambda action to republish each value in the
array to another topic, and set up another rule to query that topic and publish each value
to the desired rule action.

Query notifications 793

AWS IoT SiteWise User Guide

Export data to Amazon S3 with asset property notifications

You can export incoming data from AWS IoT SiteWise to an Amazon S3 bucket in your account. You
can back up your data in a format that you can use to create historical reports or to analyze your
data with complex methods.

To export time series data from AWS IoT SiteWise, enable the cold tier feature to have the data
stored in an Amazon S3 bucket. See Manage data storage in AWS IoT SiteWise for details.

To export asset model and asset metadata from AWS IoT SiteWise, use the bulk operations feature
to export metadata to an Amazon S3 bucket. See Bulk operations with assets and models for
details.

Integrate AWS IoT SiteWise with Grafana

Grafana is a data visualization platform used to visualize and monitor data in dashboards. In
Grafana version 10.4.0 and later, use the AWS IoT SiteWise plugin to visualize your AWS IoT
SiteWise asset data in Grafana dashboards. Users can visualize data from multiple AWS sources
(such as AWS IoT SiteWise, Amazon Timestream, and Amazon CloudWatch) and other data sources
with a single Grafana dashboard.

You have two options to use the AWS IoT SiteWise plugin:

• Local Grafana servers

You can set up the AWS IoT SiteWise plugin on a Grafana server that you manage. For more
information about how to add and use the plugin, see the AWS IoT SiteWise Datasource README
file on the GitHub website.

• AWS Managed Service for Grafana

You can use the AWS IoT SiteWise plugin in the AWS Managed Service for Grafana (AMG). AMG
manages Grafana servers for you so that you can visualize your data without having to build,
package, or deploy any hardware or any other Grafana infrastructure. For more information, see
the following topics in the AWS Managed Service for Grafana User Guide:

• What is Amazon Managed Service for Grafana (AMG)?

• Using the AWS IoT SiteWise data source

Export data to Amazon S3 794

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/manage-data-storage.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/bulk-operations-assets-and-models.html
https://github.com/grafana/iot-sitewise-datasource/blob/main/src/README.md
https://docs.aws.amazon.com/grafana/latest/userguide/what-is-Amazon-Managed-Service-Grafana.html
https://docs.aws.amazon.com/grafana/latest/userguide/using-iotsitewise-in-AMG.html

AWS IoT SiteWise User Guide

Example Example Grafana dashboard

The following Grafana dashboard visualizes the demo wind farm. You can access this demo
dashboard on the Grafana Play website.

Integrate AWS IoT SiteWise and AWS IoT TwinMaker

Integrating with AWS IoT TwinMaker grants access to robust functionality in AWS IoT SiteWise,
such as AWS IoT SiteWise data retrieval ExecuteQuery API and advanced asset search in the AWS
IoT SiteWise console. To integrate the services and use these features, you must first enable the
integration.

Topics

Integrate with AWS IoT TwinMaker 795

https://play.grafana.org/d/avzwehmz/demo-wind-farm?orgId=1

AWS IoT SiteWise User Guide

• Enabling the integration

• Integrating AWS IoT SiteWise and AWS IoT TwinMaker

Enabling the integration

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions. The Action element
of a JSON policy describes the actions that you can use to allow or deny access in a policy. For more
information about AWS IoT SiteWise supported actions, see Actions defined by AWS IoT SiteWise in
the Service Authorization Reference.

For more information about AWS IoT TwinMaker service-linked role, see Service-linked roles for
AWS IoT TwinMaker in the AWS IoT TwinMaker User Guide.

Before you can integrate AWS IoT SiteWise and AWS IoT TwinMaker, you must grant the following
permissions that allow AWS IoT SiteWise to integrate with an AWS IoT TwinMaker linked
workspace:

• iotsitewise:EnableSiteWiseIntegration – Allows AWS IoT SiteWise to integrate with
a linked AWS IoT TwinMaker workspace. This integration allows AWS IoT TwinMaker to read all
your modeling information in AWS IoT SiteWise through an AWS IoT TwinMaker service-linked
role. To enable this permission, add the following policy to your IAM role:

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iotsitewise:EnableSiteWiseIntegration"
],
 "Resource": "*"
 }
]
}

Enabling the integration 796

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotsitewise.html#awsiotsitewise-actions-as-permissions
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/security_iam_service-with-iam.html#security_iam_service-with-iam-roles-service-linked
https://docs.aws.amazon.com/iot-twinmaker/latest/guide/security_iam_service-with-iam.html#security_iam_service-with-iam-roles-service-linked

AWS IoT SiteWise User Guide

Integrating AWS IoT SiteWise and AWS IoT TwinMaker

To integrate AWS IoT SiteWise and AWS IoT TwinMaker, you must have the following:

• AWS IoT SiteWise service-linked role set up in your account

• AWS IoT TwinMaker service-linked role set up in your account

• AWS IoT TwinMaker workspace with ID IoTSiteWiseDefaultWorkspace in your account in
the Region.

To integrate by using the AWS IoT SiteWise console

When you see the Integration with AWS IoT TwinMaker banner in the console, choose Grant
permission. The prerequisites are created in your account.

To integrate by using the AWS CLI

To integrate AWS IoT SiteWise and AWS IoT TwinMaker by using the AWS CLI, enter the following
commands:

1. Call CreateServiceLinkedRole with an AWSServiceName of
iotsitewise.amazonaws.com.

aws iam create-service-linked-role --aws-service-name iotsitewise.amazonaws.com

2. Call CreateServiceLinkedRole with an AWSServiceName of
iottwinmaker.amazonaws.com.

aws iam create-service-linked-role --aws-service-name iottwinmaker.amazonaws.com

3. Call CreateWorkspace with an ID of IoTSiteWiseDefaultWorkspace.

 aws iottwinmaker create-workspace --workspace-id IoTSiteWiseDefaultWorkspace

Integrating AWS IoT SiteWise and AWS IoT TwinMaker 797

AWS IoT SiteWise User Guide

Detect anomalies with Lookout for Equipment

Note

Anomaly detection is only available in the Regions where Amazon Lookout for Equipment is
available.

You can integrate AWS IoT SiteWise with Amazon Lookout for Equipment to gain insights about
your industrial equipment through anomaly detection and predictive maintenance of industrial
equipment. Lookout for Equipment is a machine learning (ML) service for monitoring industrial
equipment that detects abnormal equipment behavior and identifies potential failures. With
Lookout for Equipment, you can implement predictive maintenance programs and identify
suboptimal equipment processes. For more information about Lookout for Equipment, see What is
Amazon Lookout for Equipment? in the Amazon Lookout for Equipment User Guide.

When you create a prediction to train an ML model to detect anomalous equipment behavior, AWS
IoT SiteWise sends asset property values to Lookout for Equipment to train an ML model to detect
anomalous equipment behavior. To define a prediction definition on an asset model, you specify
the IAM roles needed for Lookout for Equipment to access your data and the properties to send to
Lookout for Equipment and send processed data to Amazon S3. For more information, see Create
asset models in AWS IoT SiteWise.

To integrate AWS IoT SiteWise and Lookout for Equipment, you'll perform the following high-level
steps:

• Add a prediction definition on an asset model that outlines what properties you want to track.
The prediction definition is a reusable collection of measurements, transforms, and metrics that
is used to create predictions on the assets that are based on that asset model.

• Train the prediction based on historical data that you provide.

• Schedule inference, which tells AWS IoT SiteWise how often to run a specific prediction.

Once inference is scheduled, the Lookout for Equipment model monitors the data it receives from
your equipment and looks for anomalies in equipment behavior. You can view and analyze the
results in SiteWise Monitor, using the AWS IoT SiteWise GET API operations, or the Lookout for
Equipment console. You can also create alarms using alarm detectors from the asset model to alert
you about abnormal equipment behavior.

Detect equipment anomalies 798

https://docs.aws.amazon.com/lookout-for-equipment/latest/ug/what-is.html
https://docs.aws.amazon.com/lookout-for-equipment/latest/ug/what-is.html

AWS IoT SiteWise User Guide

Topics

• Add a prediction definition (console)

• Train a prediction (console)

• Start or stop inference on a prediction (console)

• Add a prediction definition (CLI)

• Train a prediction and starting inference (CLI)

• Train a prediction (CLI)

• Start or stop inference on a prediction (CLI)

Add a prediction definition (console)

To begin sending data collected by AWS IoT SiteWise to Lookout for Equipment, you must add an
AWS IoT SiteWise prediction definition to an asset model.

To add a prediction definition to an AWS IoT SiteWise asset model

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Models and select the asset model to which you want to add
the prediction definition.

3. Choose Predictions.

4. Choose Add prediction definition.

5. Define details about the prediction definition.

a. Enter a unique Name and a Description for your prediction definition. Choose the name
thoughtfully because after you create the prediction definition, you can't change its name.

b. Create or select an IAM permissions role that allows AWS IoT SiteWise to share your asset
data with Amazon Lookout for Equipment. The role should have the following IAM and
trust policies. For help creating the role, see Creating a role using custom trust policies
(console).

IAM policy

JSON

{

Add a prediction definition (console) 799

https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-custom.html

AWS IoT SiteWise User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "L4EPermissions",
 "Effect": "Allow",
 "Action": [
 "lookoutequipment:CreateDataset",
 "lookoutequipment:CreateModel",
 "lookoutequipment:CreateInferenceScheduler",
 "lookoutequipment:DescribeDataset",
 "lookoutequipment:DescribeModel",
 "lookoutequipment:DescribeInferenceScheduler",
 "lookoutequipment:ListInferenceExecutions",
 "lookoutequipment:StartDataIngestionJob",
 "lookoutequipment:StartInferenceScheduler",
 "lookoutequipment:UpdateInferenceScheduler",
 "lookoutequipment:StopInferenceScheduler"
],
 "Resource": [
 "arn:aws:lookoutequipment:us-
east-1:123456789012:inference-scheduler/IoTSiteWise_*",
 "arn:aws:lookoutequipment:us-east-1:123456789012:model/
IoTSiteWise_*",
 "arn:aws:lookoutequipment:us-east-1:123456789012:dataset/
IoTSiteWise_*"
]
 },
 {
 "Sid": "L4EPermissions2",
 "Effect": "Allow",
 "Action": [
 "lookoutequipment:DescribeDataIngestionJob"
],
 "Resource": "*"
 },
 {
 "Sid": "S3Permissions",
 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:ListBucket",
 "s3:PutObject",
 "s3:GetObject"
],

Add a prediction definition (console) 800

AWS IoT SiteWise User Guide

 "Resource": [
 "arn:aws:s3:::iotsitewise-*"
]
 },
 {
 "Sid": "IAMPermissions",
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::111122223333:role/Role_name"
 }
]
}

Trust policy

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "iotsitewise.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:iotsitewise:us-
east-1:123456789012:asset/*"
 }
 }
 },
 {
 "Effect": "Allow",

Add a prediction definition (console) 801

AWS IoT SiteWise User Guide

 "Principal": {
 "Service": "lookoutequipment.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 },
 "ArnEquals": {
 "aws:SourceArn": "arn:aws:lookoutequipment:us-
east-1:123456789012:*"
 }
 }
 }
]
}

c. Choose Next.

6. Select data attributes (measurements, transforms, and metrics) that you want to send to
Lookout for Equipment.

a. (Optional) Select measurements.

b. (Optional) Select transforms.

c. (Optional) Select metrics.

d. Choose Next.

7. Review your selections. To add the prediction definition to the asset model, on the summary
page, choose Add prediction definition.

You can also Edit or Delete an existing prediction definition that has active predictions attached.

Train a prediction (console)

After you've added a prediction definition to an asset model, you can train the predictions that are
on your assets.

To train a prediction in AWS IoT SiteWise

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Assets, and select the asset you want to monitor.

Train a prediction (console) 802

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

3. Choose Predictions.

4. Select the predictions that you want to train.

5. Under Actions, choose Start training, and do the following:

a. Under Prediction details, select an IAM permissions role that allows AWS IoT SiteWise
to share your asset data with Lookout for Equipment. If you need to create a new role,
choose Create a new role.

b. For Training data settings, enter a Training data time range to select which data to use
to train the prediction.

c. (Optional) Select sampling rate of the data after post processing.

d. (Optional) For Data labels, provide an Amazon S3 bucket and prefix that holds your
labeling data. For more information about labeling data, see Labeling your data in the
Amazon Lookout for Equipment User Guide.

e. Choose Next.

6. (Optional) If you want the prediction to be active as soon as it has completed training, under
Advanced settings, select Automatically activate the prediction after training, and then do
the following:

a. Under Input data, for Data upload frequency, define how often data is uploaded, and for
Offset delay time, define how much of a buffer to use.

b. Choose Next.

7. Review the details of the prediction and choose Save and start.

Start or stop inference on a prediction (console)

Note

Lookout for Equipment charges apply to scheduled inferences with the data transferred
between AWS IoT SiteWise and Lookout for Equipment. For more information, see Amazon
Lookout for Equipment pricing.

If you added the prediction lookoutequipment:CreateDataset, but did not choose to activate
it after training, you must activate it to start monitoring your assets.

Start or stop inference on a prediction (console) 803

https://docs.aws.amazon.com/lookout-for-equipment/latest/ug/labeling-data.html
https://aws.amazon.com/lookout-for-equipment/pricing/
https://aws.amazon.com/lookout-for-equipment/pricing/

AWS IoT SiteWise User Guide

To start inference for a prediction

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Assets, and select the asset the prediction is added to.

3. Choose Predictions.

4. Select the predictions that you want to activate.

5. Under Actions, choose Start inference, and do the following:

a. Under Input data, for Data upload frequency, define how often data is uploaded, and for
Offset delay time, define how much of a buffer to use.

b. Choose Save and start.

To stop inference for a prediction

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Assets, and select the asset the prediction is added to.

3. Choose Predictions.

4. Select the predictions that you want to stop.

5. Under Actions, choose Stop inference.

Add a prediction definition (CLI)

To define a prediction definition on a new or existing asset model, you can use the AWS Command
Line Interface (AWS CLI). After you define the prediction definition on the asset model, you train,
and schedule inference for, a prediction on an asset in AWS IoT SiteWise to do anomaly detection
with Lookout for Equipment.

Prerequisites

To complete these steps, you must have an asset model and at least one asset created. For more
information, see Create an asset model (AWS CLI) and Create an asset (AWS CLI).

If you are new to AWS IoT SiteWise, you must call the CreateBulkImportJob API operation to
import asset property values into AWS IoT SiteWise, which will be used to train the model. For
more information, see Create an AWS IoT SiteWise bulk import job (AWS CLI).

Add a prediction definition (CLI) 804

https://console.aws.amazon.com/iotsitewise/
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

To add a prediction definition

1. Create a file called asset-model-payload.json. Follow the steps in these other sections to
add your asset model's details to the file, but don't submit the request to create or update the
asset model.

• For more information about how to create an asset model, see Create an asset model (AWS
CLI)

• For more information about how to update an existing asset model, see Update an asset
model, component model, or interface (AWS CLI)

2. Add a Lookout for Equipment composite model (assetModelCompositeModels) to the asset
model by adding the following code.

• Replace Property with the ID of the properties that you want to include. To get those IDs,
call DescribeAssetModel.

• Replace RoleARN with the ARN of an IAM role that allows Lookout for Equipment to access
your AWS IoT SiteWise data.

{
 ...
 "assetModelCompositeModels": [
 {
 "name": "L4Epredictiondefinition",
 "type": "AWS/L4E_ANOMALY",
 "properties": [
 {
 "name": "AWS/L4E_ANOMALY_RESULT",
 "dataType": "STRUCT",
 "dataTypeSpec": "AWS/L4E_ANOMALY_RESULT",
 "unit": "none",
 "type": {
 "measurement": {}
 }
 },
 {
 "name": "AWS/L4E_ANOMALY_INPUT",
 "dataType": "STRUCT",
 "dataTypeSpec": "AWS/L4E_ANOMALY_INPUT",
 "type": {
 "attribute": {

Add a prediction definition (CLI) 805

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAssetModel.html

AWS IoT SiteWise User Guide

 "defaultValue": "{\"properties\": [\"Property1\", \"Property2\"]}"
 }
 }
 },
 {
 "name": "AWS/L4E_ANOMALY_PERMISSIONS",
 "dataType": "STRUCT",
 "dataTypeSpec": "AWS/L4E_ANOMALY_PERMISSIONS",
 "type": {
 "attribute": {
 "defaultValue": "{\"roleArn\": \"RoleARN\"}"
 }
 }
 },
 {
 "name": "AWS/L4E_ANOMALY_DATASET",
 "dataType": "STRUCT",
 "dataTypeSpec": "AWS/L4E_ANOMALY_DATASET",
 "type": {
 "attribute": {}
 }
 },
 {
 "name": "AWS/L4E_ANOMALY_MODEL",
 "dataType": "STRUCT",
 "dataTypeSpec": "AWS/L4E_ANOMALY_MODEL",
 "type": {
 "attribute": {}
 }
 },
 {
 "name": "AWS/L4E_ANOMALY_INFERENCE",
 "dataType": "STRUCT",
 "dataTypeSpec": "AWS/L4E_ANOMALY_INFERENCE",
 "type": {
 "attribute": {}
 }
 },
 {
 "name": "AWS/L4E_ANOMALY_TRAINING_STATUS",
 "dataType": "STRUCT",
 "dataTypeSpec": "AWS/L4E_ANOMALY_TRAINING_STATUS",
 "type": {
 "attribute": {

Add a prediction definition (CLI) 806

AWS IoT SiteWise User Guide

 "defaultValue": "{}"
 }
 }
 },
 {
 "name": "AWS/L4E_ANOMALY_INFERENCE_STATUS",
 "dataType": "STRUCT",
 "dataTypeSpec": "AWS/L4E_ANOMALY_INFERENCE_STATUS",
 "type": {
 "attribute": {
 "defaultValue": "{}"
 }
 }
 }
]
}

3. Create the asset model or update the existing asset model. Do one of the following:

• To create the asset model, run the following command:

aws iotsitewise create-asset-model --cli-input-json file://asset-model-
payload.json

• To update the existing asset model, run the following command. Replace asset-model-id
with the ID of the asset model that you want to update.

aws iotsitewise update-asset-model \
 --asset-model-id asset-model-id \
 --cli-input-json file://asset-model-payload.json

After you run the command, note the assetModelId in the response.

Train a prediction and starting inference (CLI)

Now that the prediction definition is defined, you can train assets based on it and start inference.
If you want to train your prediction but not start inference, skip to Train a prediction (CLI). To train
the prediction and start inference on the asset, you’ll need the assetId of the target resource.

Train a prediction and starting inference (CLI) 807

AWS IoT SiteWise User Guide

To train and start inference of the prediction

1. Run the following command to find the assetModelCompositeModelId under
assetModelCompositeModelSummaries. Replace asset-model-id with the ID of the
asset model that you created in Update an asset model, component model, or interface (AWS
CLI).

aws iotsitewise describe-asset-model \
 --asset-model-id asset-model-id \

2. Run the following command to find the actionDefinitionId of the
TrainingWithInference action. Replace asset-model-id with the ID used in previous
step and replace asset-model-composite-model-id with the ID returned in the previous
step.

aws iotsitewise describe-asset-model-composite-model \
 --asset-model-id asset-model-id \
 --asset-model-composite-model-id asset-model-composite-model-id \

3. Create a file called train-start-inference-prediction.json and add the following
code, replacing the following:

• asset-id with the ID of the target asset

• action-definition-id with the ID of the TrainingWithInference action

• StartTime with the start of the training data, provided in epoch seconds

• EndTime with the end of the training data, provided in epoch seconds

• TargetSamplingRate with the sampling rate of the data after post processing by Lookout
for Equipment. Allowed values are: PT1S | PT5S | PT10S | PT15S | PT30S | PT1M
| PT5M | PT10M | PT15M | PT30M | PT1H.

{
 "targetResource": {
 "assetId": "asset-id"
 },
 "actionDefinitionId": "action-definition-Id",
 "actionPayload":{
 "stringValue": "{\"l4ETrainingWithInference\":{\"trainingWithInferenceMode
\":\"START\",\"trainingPayload\":{\"exportDataStartTime\":StartTime,

Train a prediction and starting inference (CLI) 808

AWS IoT SiteWise User Guide

\"exportDataEndTime\":EndTime},\"targetSamplingRate\":\"TargetSamplingRate\"},
\"inferencePayload\":{\"dataDelayOffsetInMinutes\":0,\"dataUploadFrequency\":\"PT5M
\"}}}"
 }
}

4. Run the following command to start training and inference:

aws iotsitewise execute-action --cli-input-json file://train-start-inference-
prediction.json

Train a prediction (CLI)

Now that the prediction definition is defined, you can train assets based on it. To train the
prediction on the asset, you’ll need the assetId of the target resource.

To train the prediction

1. Run the following command to find the assetModelCompositeModelId under
assetModelCompositeModelSummaries. Replace asset-model-id with the ID of the
asset model that you created in Update an asset model, component model, or interface (AWS
CLI).

aws iotsitewise describe-asset-model \
 --asset-model-id asset-model-id \

2. Run the following command to find the actionDefinitionId of the Training action.
Replace asset-model-id with the ID used in previous step and replace asset-model-
composite-model-id with the ID returned in the previous step.

aws iotsitewise describe-asset-model-composite-model \
 --asset-model-id asset-model-id \
 --asset-model-composite-model-id asset-model-composite-model-id \

3. Create a file called train-prediction.json and add the following code, replacing the
following:

• asset-id with the ID of the target asset

• action-definition-id with the ID of the training action

Train a prediction (CLI) 809

AWS IoT SiteWise User Guide

• StartTime with the start of the training data, provided in epoch seconds

• EndTime with the end of the training data, provided in epoch seconds

• (Optional) BucketName with the name of the Amazon S3 bucket that holds your label data

• (Optional) Prefix with the prefix associated with the Amazon S3 bucket.

• TargetSamplingRate with the sampling rate of the data after post processing by Lookout
for Equipment. Allowed values are: PT1S | PT5S | PT10S | PT15S | PT30S | PT1M
| PT5M | PT10M | PT15M | PT30M | PT1H.

Note

Include both the bucket name and prefix or neither.

{
 "targetResource": {
 "assetId": "asset-id"
 },
 "actionDefinitionId": "action-definition-Id",
 "actionPayload":{ "stringValue": "{\"l4ETraining\": {\"trainingMode\":
\"START\",\"exportDataStartTime\": StartTime, \"exportDataEndTime\": EndTime,
 \"targetSamplingRate\":\"TargetSamplingRate\"}, \"labelInputConfiguration\":
 {\"bucketName\": \"BucketName\", \"prefix\": \"Prefix\"}}}"
}
}

4. Run the following command to start training:

aws iotsitewise execute-action --cli-input-json file://train-prediction.json

Before you can start inference, training must be completed. To check the status of the training, do
one of the following:

• From the console, navigate to the asset the prediction is on.

• From the AWS CLI, call BatchGetAssetPropertyValue using the propertyId of the
trainingStatus property.

Train a prediction (CLI) 810

AWS IoT SiteWise User Guide

Start or stop inference on a prediction (CLI)

Once the prediction is trained, you can start inference to tell Lookout for Equipment to start
monitoring your assets. To start or stop inference, you’ll need the assetId of the target resource.

To start inference

1. Run the following command to find the assetModelCompositeModelId under
assetModelCompositeModelSummaries. Replace asset-model-id with the ID of the
asset model that you created in Update an asset model, component model, or interface (AWS
CLI).

aws iotsitewise describe-asset-model \
 --asset-model-id asset-model-id \

2. Run the following command to find the actionDefinitionId of the Inference action.
Replace asset-model-id with the ID used in previous step and replace asset-model-
composite-model-id with the ID returned in the previous step.

aws iotsitewise describe-asset-model-composite-model \
 --asset-model-id asset-model-id \
 --asset-model-composite-model-id asset-model-composite-model-id \

3. Create a file called start-inference.json and add the following code, replacing the
following:

• asset-id with the ID of the target asset

• action-definition-id with the ID of the start inference action

• Offset with the amount of buffer to use

• Frequency with how often data is uploaded

{
 "targetResource": {
 "assetId": "asset-id"
 },
 "actionDefinitionId": "action-definition-Id",
 "actionPayload":{ "stringValue": "{\"l4EInference\": {\"inferenceMode\":\"START
\",\"dataDelayOffsetInMinutes\": Offset, \"dataUploadFrequency\": \"Frequency\"}}"

Start or stop inference on a prediction (CLI) 811

AWS IoT SiteWise User Guide

}}

4. Run the following command to start inference:

aws iotsitewise execute-action --cli-input-json file://start-inference.json

To stop inference

1. Run the following command to find the assetModelCompositeModelId under
assetModelCompositeModelSummaries. Replace asset-model-id with the ID of the
asset model that you created in Update an asset model, component model, or interface (AWS
CLI).

aws iotsitewise describe-asset-model \
 --asset-model-id asset-model-id \

2. Run the following command to find the actionDefinitionId of the Inference action.
Replace asset-model-id with the ID used in previous step and replace asset-model-
composite-model-id with the ID returned in the previous step.

aws iotsitewise describe-asset-model-composite-model \
 --asset-model-id asset-model-id \
 --asset-model-composite-model-id asset-model-composite-model-id \

3. Create a file called stop-inference.json and add the following code, replacing the
following:

• asset-id with the ID of the target asset

• action-definition-id with the ID of the start inference action

{
 "targetResource": {
 "assetId": "asset-id"
 },
 "actionDefinitionId": "action-definition-Id",
 "actionPayload":{ "stringValue": "{\"l4EInference\":{\"inferenceMode\":\"STOP
\"}}"
}}

Start or stop inference on a prediction (CLI) 812

AWS IoT SiteWise User Guide

4. Run the following command to stop inference:

aws iotsitewise execute-action --cli-input-json file://stop-inference.json

Start or stop inference on a prediction (CLI) 813

AWS IoT SiteWise User Guide

Native anomaly detection

AWS IoT SiteWise native anomaly detection is a machine learning (ML) feature for monitoring
industrial equipment that detects abnormal equipment behavior and identifies potential failures.
With native anomaly detection, you can implement predictive maintenance programs and identify
suboptimal equipment processes.

AWS IoT SiteWise native anomaly detection doesn’t require extensive ML knowledge or experience.
You simply select the properties to train a custom ML model that finds potential failures for you.
AWS IoT SiteWise native anomaly detection automatically creates the best model to learn your
equipment’s normal operating conditions. The model is optimized to find abnormal equipment
behavior that occurred in the historical data. Using either the AWS IoT SiteWise console or the SDK,
you run the model to process new time-series data according to your desired schedule.

To use AWS IoT SiteWise native anomaly detection, you do the following:

• Select the properties and the time period that you would like to train against.

• Add the periods of historical failures shown in the data (label data), if it exists.

• Train your ML model using AWS IoT SiteWise native anomaly detection.

• Setup your inference schedule to test your live data streams against your trained model.

Native anomaly detection monitors fixed and stationary industrial equipment that operates with
limited variability in operating conditions. Supported equipment includes rotating machinery
such as pumps, compressors, motors, computer numerical control (CNC) machines, and turbines.
Process industry applications include heat exchangers, boilers, and inverters. Native anomaly
detection is a back-end analytics service integrated into AWS IoT SiteWise and supplements
existing maintenance systems.

Topics

• Native anomaly detection features

• Prerequisites

• Enable anomaly detection on sensors of an asset

• Enable anomaly detection on sensors across assets

• Advanced training configurations

• Advanced inference configurations

814

AWS IoT SiteWise User Guide

• Review inference results

• Trigger custom actions on anomalous behavior (AWS Management Console)

• Best practices

Native anomaly detection features

The AWS IoT SiteWise platform offers a range of powerful features that can transform your
industrial operations:

• Predictive maintenance: Detect failures early, and integrates with work order systems to act on
insights.

• Tight integration with AWS IoT SiteWise: Leverage the tight integration into your existing
infrastructure, eliminating the need to move your data to an external service.

• Automatic model selection and training: Benefit from this support from AWS IoT SiteWise,
without requiring any machine learning expertise.

• Customize your inference scheduling: Schedule inference jobs to align with your operational
needs and shift timings.

• Labeled data: Improve accuracy with known failure intervals during model training.

• Model evaluation with pointwise diagnostics: Evaluate model performance at the event level.

• Scalable across assets: Create computation models for individual assets or across multiple assets
to achieve scalability.

• Sensor-level insights: Gain detailed diagnostics that identify the specific sensor(s) contributing
to an anomaly.

• Faster time to value: Move from sensor modeling to anomaly detection in a matter of hours, not
weeks.

Prerequisites

To complete these steps, you must have an asset model and at least one asset created. For more
information, see Create an asset model (AWS CLI), and Create an asset (AWS CLI). We do not
support external IDs at this time.

If you are new to AWS IoT SiteWise (and do not have historical data), you must call the
CreateBulkImportJob API to import asset property values into AWS IoT SiteWise. This is used to
train the model. For more information, see Create an AWS IoT SiteWise bulk import job (AWS CLI).

Native anomaly detection features 815

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/create-asset-models.html#create-asset-model-cli
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/create-assets.html#create-asset-cli
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateBulkImportJob.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateBulkImportJob.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/CreateBulkImportJob.html

AWS IoT SiteWise User Guide

Setup AWS CLI for Computation Model APIs

Follow these steps to update your AWS CLI configuration, and access the computation model APIs:

• Install the latest awscli version aws-cli.

• Verify the installation by checking for the new APIs:

aws iotsitewise help

The command output displays the complete list of AWS IoT SiteWise APIs, including the newly
added computation model operations.

Property requirements

To set up anomaly detection, you must have the following requirements and the
UpdateAssetModel (AWS CLI):

• At least one input property that is of either DOUBLE or INTEGER data type. It is either a
measurement or transform property, and is used to train the model.

• A result property of STRING data type. It must be a measurement property, and stores the
anomaly detection results.

Labeling prerequisites

• Upload your data labels to an Amazon S3 bucket.

• Update the bucket policy of this bucket to allow AWS IoT SiteWise to read your labels.

On console, go to Permissions -> Bucket policy. Paste the following policy and replace bucket-
arn with ARN of your bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SiteWiseReadAccess",
 "Effect": "Allow",
 "Principal": {
 "Service": "iotsitewise.amazonaws.com"

Setup AWS CLI for Computation Model APIs 816

https://docs.aws.amazon.com/cli/latest/reference/iotsitewise/update-asset-model.html

AWS IoT SiteWise User Guide

 },
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": [
 "bucket-arn",
 "bucket-arn/*"
]
 }
]
 }

Model evaluation prerequisites

• Model evaluation generates pointwise model diagnostics in the Amazon S3 bucket location
provided by you.

• In order for the pointwise diagnostic results to be written to your Amazon S3 bucket, update the
bucket policy of this bucket to allow AWS IoT SiteWise to write the results.

On console, go to Permissions -> Bucket policy. Paste the following policy and replace:
bucket-arn with ARN of your bucket

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SiteWiseWriteAccess",
 "Effect": "Allow",
 "Principal": {
 "Service": "iotsitewise.amazonaws.com"
 },
 "Action": [
 "s3:GetObject",
 "s3:ListBucket",
 "s3:PutObject"
],
 "Resource": [
 "bucket-arn",
 "bucket-arn/*"
]

Model evaluation prerequisites 817

AWS IoT SiteWise User Guide

 }
]
 }

Enable anomaly detection on sensors of an asset

Create a computation model (AWS CLI)

To create a computation model, use the AWS Command Line Interface (AWS CLI). After you define
the computation model, train the model, and schedule inference to do anomaly detection on an
asset in AWS IoT SiteWise.

• Create a file anomaly-detection-computation-model-payload.json with the following
content:

{
 "computationModelName": "anomaly-detection-computation-model-name",
 "computationModelConfiguration": {
 "anomalyDetection": {
 "inputProperties": "${input_properties}",
 "resultProperty": "${result_property}"
 }
 },
 "computationModelDataBinding": {
 "input_properties": {
 "list": [{
 "assetModelProperty": {
 "assetModelId": "asset-model-id",
 "propertyId": "input-property-id-1"
 }
 },
 {
 "assetModelProperty": {
 "assetModelId": "asset-model-id",
 "propertyId": "input-property-id-2"
 }
 }
]
 },
 "result_property": {
 "assetModelProperty": {

Enable anomaly detection on sensors of an asset 818

AWS IoT SiteWise User Guide

 "assetModelId": "asset-model-id",
 "propertyId": "results-property-id"
 }
 }
 }
}

• Run the following command to create a computation model:

aws iotsitewise create-computation-model \
 --cli-input-json file://anomaly-detection-computation-model-payload.json

ExecuteAction API payload preparation

The next steps to execute training and inference is performed with the ExecuteAction API. Both
training and inference are configured with a JSON action payload configuration. When invoking the
ExecuteAction API, the action payload must be provided as a value with a stringValue payload.

The payload must strictly adhere to the API requirements. Specifically, the value must be a flat
string, with no control characters (for example, newlines, tabs, or carriage returns).

The following options provide two reliable ways to supply a valid action-payload:

Option 1: Use a clean payload file

The following procedure describes the steps for a clean payload file:

1. Clean the file to remove control characters.

tr -d '\n\r\t' < original-action-payload.json > training-or-inference-action-
payload.json

2. Execute the action with the file @=file://....

aws iotsitewise execute-action \
 --target-resource computationModelId=<MODEL_ID> \
 --action-definition-id <ACTION_DEFINITION_ID> \
 --resolve-to assetId=<ASSET_ID> \
 --action-payload stringValue@=file://training-or-inference-action-payload.json

ExecuteAction API payload preparation 819

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ExecuteAction.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ExecuteAction.html

AWS IoT SiteWise User Guide

Option 2: Inline string with escaped quotes

The following steps describes the steps to supply the payload inline, and avoid intermediary files:

• Use escaped double quotes (\") inside the JSON string.

• Wrap the entire StringValue=.. expression within double quotes.

Example of an escaped action payload:

aws iotsitewise execute-action \
 --target-resource computationModelId=<MODEL_ID> \
 --action-definition-id <ACTION_DEFINITION_ID> \
 --resolve-to assetId=<ASSET_ID> \
 --action-payload "stringValue={\"exportDataStartTime\":1717225200,
\"exportDataEndTime\":1722789360,\"targetSamplingRate\":\"PT1M\"}"

Train the AWS CLI

With a computation model created, you can train a model against the assets. Follow the below
steps to train a model for an asset:

1. Run the following command to find the actionDefinitionId of the AWS/
ANOMALY_DETECTION_TRAINING action. Replace computation-model-id with the ID
returned in the previous step.

aws iotsitewise describe-computation-model \
 --computation-model-id computation-model-id

2. Create a file called anomaly-detection-training-payload.json and add the following
values:

Note

The payload must conform to Option 1: Use a clean payload file.

a. StartTime with the start of the training data, provided in epoch seconds.

b. EndTime with the end of the training data, provided in epoch seconds.

Train the AWS CLI 820

AWS IoT SiteWise User Guide

c. You can optionally configure Advanced training configurations, to improve the model
performance.

i. (Optional) TargetSamplingRate with the sampling rate of the data.

ii. (Optional) LabelInputConfiguration to specify time periods when anomalous
behavior occurred for improved model training.

iii. (Optional) ModelEvaluationConfiguration to evaluate model performance by
running inference on a specified time range after training completes.

{
 "exportDataStartTime": StartTime,
 "exportDataEndTime": EndTime
}

Example of a training payload example:

{
 "exportDataStartTime": 1717225200,
 "exportDataEndTime": 1722789360
}

3. Run the following command to start training. Replace the following parameters in the
command:

a. computation-model-id with the ID of the target computation model.

b. asset-id with the ID of the asset against which you'll train the model.

c. training-action-definition-id with the ID of the AWS/
ANOMALY_DETECTION_TRAINING action from Step 1.

aws iotsitewise execute-action \
 --target-resource computationModelId=computation-model-id \
 --resolve-to assetId=asset-id \
 --action-definition-id training-action-definition-id \
 --action-payload stringValue@=file://anomaly-detection-training-payload.json

Train the AWS CLI 821

AWS IoT SiteWise User Guide

Example of an execute action:

aws iotsitewise execute-action --target-resource computationModelId=27cb824c-
fd84-45b0-946b-0a5b0466d890 --resolve-to assetId=cefd4b68-481b-4735-
b466-6a4220cd19ee --action-definition-id e54cea94-5d1c-4230-a59e-4f54dcbc972d --
action-payload stringValue@=file://anomaly-detection-training-payload.json

4. Run the following command to check for status of the model training process. The latest
execution summary shows the execution status (RUNNING/COMPLETED/FAILED).

aws iotsitewise list-executions \
 --target-resource-type COMPUTATION_MODEL \
 --target-resource-id computation-model-id\
 --resolve-to-resource-type ASSET \
 --resolve-to-resource-id asset-id

5. Run the following command to check the configuration of the latest trained model. This
command produces an output only if atleast one model was trained successfully.

aws iotsitewise describe-computation-model-execution-summary \
 --computation-model-id computation-model-id \
 --resolve-to-resource-type ASSET \
 --resolve-to-resource-id asset-id

6. When a ComputationModel is using AssetModelProperty, use the
ListComputationModelResolveToResources API to identify the assets with executed actions.

aws iotsitewise list-computation-model-resolve-to-resources \
 --computation-model-id computation-model-id

Start and stop inference (AWS CLI)

After training the model, start the inference. This instructs AWS IoT SiteWise to actively monitor
your industrial assets for anomalies.

Start and stop inference (AWS CLI) 822

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListComputationModelResolveToResources.html

AWS IoT SiteWise User Guide

Start inference

1. Run the following command to find the actionDefinitionId of the AWS/
ANOMALY_DETECTION_INFERENCE action. Replace computation-model-id with the actual
ID of computation model created earlier.

aws iotsitewise describe-computation-model \
 --computation-model-id computation-model-id

2. Create a file anomaly-detection-start-inference-payload.json and add the
following values:

Note

The payload must conform to Option 1: Use a clean payload file.

"inferenceMode": "START",
"dataUploadFrequency": "DataUploadFrequency"

a. DataUploadFrequency: Configure the frequency at which the inference schedule runs
to perform anomaly detection. Allowed values are: PT5M, PT10M, PT15M, PT30M,
PT1H, PT2H..PT12H, PT1D.

b. (Optional) DataDelayOffsetInMinutes with the delay offset in minutes. Set this value
between 0 and 60 minutes.

c. (Optional) TargetModelVersion with the model version to activate.

d. (Optional) Configure the weeklyOperatingWindow with a shift configuration.

e. You can optionally configure Advanced inference configurations.

i. High frequency inferencing (5 minutes – 1 hour).

ii. Low frequency inferencing (2 hours – 1 day).

iii. Flexible scheduling.

3. Run the following command to start inference. Replace the following parameters in the
payload file.

a. computation-model-id with the ID of the target computation model.

Start and stop inference (AWS CLI) 823

AWS IoT SiteWise User Guide

b. asset-id with the ID of the asset against which the model was trained.

c. inference-action-definition-id with the ID of the AWS/
ANOMALY_DETECTION_INFERENCE action from Step 1.

aws iotsitewise execute-action \
 --target-resource computationModelId=computation-model-id \
 --resolve-to assetId=asset-id \
 --action-definition-id inference-action-definition-id \
 --action-payload stringValue@=file://anomaly-detection-inference-payload.json

4. Run the following command to check if inference is still running. The
inferenceTimerActive field is set to TRUE when inference is active.

aws iotsitewise describe-computation-model-execution-summary \
 --computation-model-id computation-model-id \
 --resolve-to-resource-type ASSET \
 --resolve-to-resource-id asset-id

5. The following command lists all the inference executions:

aws iotsitewise list-executions \
 --target-resource-type COMPUTATION_MODEL \
 --target-resource-id computation-model-id \
 --resolve-to-resource-type ASSET \
 --resolve-to-resource-id asset-id

6. Run the following command to describe an individual execution. Replace execution-id with
the id from previous Step 5.

aws iotsitewise describe-execution \
 --execution-id execution-id

Stop inference

1. Run the following command to find the actionDefinitionId of the AWS/
ANOMALY_DETECTION_INFERENCE action. Replace computation-model-id with the actual
ID of computation model created earlier.

Start and stop inference (AWS CLI) 824

AWS IoT SiteWise User Guide

aws iotsitewise describe-computation-model \
 --computation-model-id computation-model-id

2. Create a file anomaly-detection-stop-inference-payload.json and add the following
code.

{
 "inferenceMode": "STOP"
}

Note

The payload must conform to Option 1: Use a clean payload file.

3. Run the following command to stop inference. Replace the following parameter in the payload
file:

a. computation-model-id with the ID of the target computation model.

b. asset-id with the ID of the asset against which the model was trained.

c. inference-action-definition-id with the ID of the AWS/
ANOMALY_DETECTION_INFERENCE action from Step 1.

Example of the stop inference command:

aws iotsitewise execute-action \
 --target-resource computationModelId=computation-model-id \
 --resolve-to assetId=asset-id \
 --action-definition-id inference-action-definition-id \
 --action-payload stringValue@=file://anomaly-detection-stop-inference-
payload.json

Find computation models that uses a given resource in data binding

To list computation models which are bound to a given resource:

• asset model (fetch all computation models where any of this asset model's properties are
bound).

Find data bindings 825

AWS IoT SiteWise User Guide

• asset (fetch all computation models where any of this asset's properties are bound)

• asset model property (fetch all computation models where this property is bound)

• asset property (fetch all computation models where this property is bound. This could be
for informational purposes, or required when user tries to bind this property to another
computation model but it is already bound somewhere else)

Use ListComputationModelDataBindingUsages API to fetch a list of ComputationModelIds that
take the asset (property) or asset model (property) as data binding.

Prepare a request.json with the following information:

{
 "dataBindingValueFilter": {
 "asset": {
 "assetId": "<string>"
 }
 // OR
 "assetModel": {
 "assetModelId": "<string>"
 }
 // OR
 "assetProperty": {
 "assetId": "<string>",
 "propertyId": "<string>"
 }
 // OR
 "assetModelProperty": {
 "assetModelId": "<string>",
 "propertyId": "<string>"
 }
 },
 "nextToken": "<string>",
 "maxResults": "<number>"
}

Use the list-computation-model-data-binding-usages command to retrieve the models
with assets or asset models as data bindings.

aws iotsitewise list-computation-model-data-binding-usages \
--cli-input-json file://request.json

Find data bindings 826

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListComputationModelDataBindingUsages.html

AWS IoT SiteWise User Guide

Enable anomaly detection on sensors across assets

Create a computation model (AWS CLI)

To create a computation model, use the AWS Command Line Interface (AWS CLI). After you define
the computation model, train the model and schedule inference to do anomaly detection across
assets in AWS IoT SiteWise.

The following steps explain this process:

1. To set up anomaly detection, use the UpdateAssetModel (AWS CLI), and meet the following
requirements:

a. At least one input property that is of either DOUBLE or INTEGER data type. It is either a
measurement or transform property, and is used to train the model.

b. A result property of STRING data type. It must be a measurement property, and stores the
anomaly detection results.

2. Create a file anomaly-detection-computation-model-payload.json with the
following content:

Note

Create a computation model by directly providing assetProperty as the data source.

{
 "computationModelName": "name of ComputationModel",
 "computationModelConfiguration": {
 "anomalyDetection": {
 "inputProperties": "${properties}",
 "resultProperty": "${p3}"
 }
 },
 "computationModelDataBinding": {
 "properties": {
 "list": [
 {
 "assetProperty": {
 "assetId": "asset-id",
 "propertyId": "input-property-id-1"

Enable anomaly detection on sensors across assets 827

https://docs.aws.amazon.com/cli/latest/reference/iotsitewise/update-asset-model.html

AWS IoT SiteWise User Guide

 }
 },
 {
 "assetProperty": {
 "assetId": "asset-id",
 "propertyId": "input-property-id-2"
 }
 }
]
 },
 "p3": {
 "assetProperty": {
 "assetId": "asset-id",
 "propertyId": "results-property-id"
 }
 }
 }
}

3. Run the following command to create a computation model:

aws iotsitewise create-computation-model \
 --cli-input-json file://anomaly-detection-computation-model-payload.json

ExecuteAction API payload preparation

The next steps to execute training and inference is performed with the ExecuteAction API. Both
training and inference are configured with a JSON action payload configuration. When invoking the
ExecuteAction API, the action payload must be provided as a value with a stringValue payload.

The payload must strictly adhere to the API requirements. Specifically, the value must be a flat
string with no control characters (for example, newlines, tabs, or carriage returns). The following
options provides two reliable ways to supply a valid action-payload.

Option 1: Use a clean payload file

The following procedure describes the steps for a clean payload file:

1. Clean the file to remove control characters.

ExecuteAction API payload preparation 828

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ExecuteAction.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ExecuteAction.html

AWS IoT SiteWise User Guide

tr -d '\n\r\t' < original-action-payload.json > training-or-inference-action-
payload.json

2. Execute the action with the file @=file://....

aws iotsitewise execute-action \
 --target-resource computationModelId=<MODEL_ID> \
 --action-definition-id <ACTION_DEFINITION_ID> \
 --action-payload stringValue@=file://training-or-inference-action-payload.json

Option 2: Inline string with escaped quotes

The following steps describes the steps to supply the payload inline, and avoid intermediary files:

• Use escaped double quotes (\") inside the JSON string.

• Wrap the entire StringValue=.. expression within double quotes.

Example of an escaped action payload:

aws iotsitewise execute-action \
 --target-resource computationModelId=<MODEL_ID> \
 --action-definition-id <ACTION_DEFINITION_ID> \
 --action-payload "stringValue={\"exportDataStartTime\":1717225200,
\"exportDataEndTime\":1722789360,\"targetSamplingRate\":\"PT1M\"}"

Train the AWS CLI

1. Run the following command to find the actionDefinitionId of the AWS/
ANOMALY_DETECTION_TRAINING action. Replace computation-model-id with the ID
returned in the previous step.

aws iotsitewise describe-computation-model \
 --computation-model-id computation-model-id

2. Create a file called anomaly-detection-training-payload.json and add the following
values:

Train the AWS CLI 829

AWS IoT SiteWise User Guide

Note

The payload must conform to Option 1: Use a clean payload file.

a. StartTime with the start of the training data, provided in epoch seconds.

b. EndTime with the end of the training data, provided in epoch seconds.

c. You can optionally configure Advanced inference configurations.

i. (Optional) TargetSamplingRate with the sampling rate of the data.

ii. (Optional) LabelInputConfiguration to specify time periods when anomalous
behavior occurred for improved model training.

iii. (Optional) ModelEvaluationConfiguration to evaluate model performance by
running inference on a specified time range after training completes.

{
 "exportDataStartTime": StartTime,
 "exportDataEndTime": EndTime
}

Example of a training payload example:

{
 "exportDataStartTime": 1717225200,
 "exportDataEndTime": 1722789360
}

3. Run the following command to start training (without providing asset as a target resource).
Replace the following parameters in the command:

aws iotsitewise execute-action \
 --target-resource computationModelId=computation-model-id \
 --action-definition-id training-action-definition-id \
 --action-payload stringValue@=file://anomaly-detection-training-payload.json

4. Run the following command to check for status of the model training process. The latest
execution summary shows the execution status (RUNNING/COMPLETED/FAILED).

Train the AWS CLI 830

AWS IoT SiteWise User Guide

aws iotsitewise list-executions \
 --target-resource-type COMPUTATION_MODEL \
 --target-resource-id computation-model-id

5. Run the following command to check the configuration of the latest trained model. This
command produces an output only if at least one model has completed training successfully.

aws iotsitewise describe-computation-model-execution-summary \
 --computation-model-id computation-model-id

Start and stop inference (AWS CLI)

After training the model, start the inference, which instructs AWS IoT SiteWise to begin monitoring
your industrial assets for anomalies.

Start inference

1. Run the following command to find the actionDefinitionId of the AWS/
ANOMALY_DETECTION_INFERENCE action. Replace computation-model-id with the actual
ID of computation model created earlier.

aws iotsitewise describe-computation-model \
 --computation-model-id computation-model-id

2. Create a file anomaly-detection-start-inference-payload.json and add the
following code. Replace the following parameters as described:

Note

The payload must conform to Option 1: Use a clean payload file.

a. DataUploadFrequency: Configure the frequency at which the inference schedule runs
to perform anomaly detection. Allowed values are: PT5M, PT10M, PT15M, PT30M,
PT1H, PT2H..PT12H, PT1D.

"inferenceMode": "START",

Start and stop inference (AWS CLI) 831

AWS IoT SiteWise User Guide

"dataUploadFrequency": "DataUploadFrequency"

b. (Optional) DataDelayOffsetInMinutes with the delay offset in minutes. Set this value
between 0 and 60 minutes.

c. (Optional) TargetModelVersion with the model version to activate.

d. (Optional) Configure the weeklyOperatingWindow with a shift configuration.

e. You can optionally configure Advanced inference configurations.

i. High frequency inferencing (5 minutes – 1 hour).

ii. Low frequency inferencing (2 hours – 1 day).

iii. Flexible scheduling.

3. Run the following command to start inference. Replace the following parameters in the
payload file.

a. computation-model-id with the ID of the target computation model.

b. inference-action-definition-id with the ID of the AWS/
ANOMALY_DETECTION_INFERENCE action from Step 1.

aws iotsitewise execute-action \
 --target-resource computationModelId=computation-model-id \
 --action-definition-id inference-action-definition-id \
 --action-payload stringValue@=file://anomaly-detection-inference-payload.json

4. Run the following command to check if inference is still running. The
inferenceTimerActive field is set to TRUE when inference is active.

aws iotsitewise describe-computation-model-execution-summary \
 --computation-model-id computation-model-id

5. The following command lists all the inference executions:

aws iotsitewise list-executions \
 --target-resource-type COMPUTATION_MODEL \
 --target-resource-id computation-model-id

6. Run the following command to describe an individual execution. Replace execution-id with
the id from previous Step 5.

Start and stop inference (AWS CLI) 832

AWS IoT SiteWise User Guide

aws iotsitewise describe-execution \
 --execution-id execution-id

Stop inference

1. Run the following command to find the actionDefinitionId of the AWS/
ANOMALY_DETECTION_INFERENCE action. Replace computation-model-id with the actual
ID of computation model created earlier.

aws iotsitewise describe-computation-model \
 --computation-model-id computation-model-id

2. Create a file anomaly-detection-stop-inference-payload.json and add the following
code.

{
 "inferenceMode": "STOP"
}

Note

The payload must conform to Option 1: Use a clean payload file.

3. Run the following command to stop inference. Replace the following parameter in the payload
file:

a. computation-model-id with the ID of the target computation model.

b. inference-action-definition-id with the ID of the AWS/
ANOMALY_DETECTION_INFERENCE action from Step 1.

Example of the stop inference command:

aws iotsitewise execute-action \
--target-resource computationModelId=computation-model-id \
--action-definition-id inference-action-definition-id \
--action-payload stringValue@=file://anomaly-detection-stop-inference-payload.json

Start and stop inference (AWS CLI) 833

AWS IoT SiteWise User Guide

Advanced training configurations

Sample rate configuration

The sample rate defines how frequently sensor readings are recorded (for example, once every
second, or once every minute). This setting directly impacts the granularity of the training data,
and influences the model's ability to capture short-term variations in sensor behavior.

Visit Sampling for high-frequency data and consistency between training and inference to learn
about best practices.

Configure target sampling rate

You can optionally specify a TargetSamplingRate in your training configuration, to control the
frequency at which data is sampled. Supported values are:

PT1S | PT5S | PT10S | PT15S | PT30S | PT1M | PT5M | PT10M | PT15M | PT30M | PT1H

These are ISO 8601 duration formats, representing the following time formats:

• PT1S = 1 second

• PT1M = 1 minute

• PT1H = 1 hour

Choose a sampling rate that strikes the right balance between data resolution, and training
efficiency. The following rates are available:

• Higher sampling rates (PT1S) offer finer detail but may increase data volume and training time.

• Lower sampling rates (PT10M, PT1H) reduce data size and cost but may miss short-lived
anomalies.

Handling timestamp misalignment

AWS IoT SiteWise automatically compensates for timestamp misalignment across multiple data
streams during training. This ensures consistent model behavior even if input signals are not
perfectly aligned in time.

Advanced training configurations 834

AWS IoT SiteWise User Guide

Visit Sampling for high-frequency data and consistency between training and inference to learn
about best practices.

Enable sampling

Add the following code to anomaly-detection-training-payload.json.

Configure sampling by adding TargetSamplingRate in the training action payload, with the
sampling rate of the data. The allowed values are: PT1S | PT5S | PT10S | PT15S | PT30S
| PT1M | PT5M | PT10M | PT15M | PT30M | PT1H.

{
 "exportDataStartTime": StartTime,
 "exportDataEndTime": EndTime,
 "targetSamplingRate": "TargetSamplingRate"
}

Example of a sample rate configuration:

{
 "exportDataStartTime": 1717225200,
 "exportDataEndTime": 1722789360,
 "targetSamplingRate": "PT1M"
}

Label your data

When labeling your data, you must define time intervals that represent periods of abnormal
equipment behavior. This labeling information is provided as a CSV file, where each row specifies a
time range during which the equipment was not operating correctly.

Each row contains two timestamps:

• The start time, indicating when abnormal behavior is believed to have begun.

• The end time, representing when the failure or issue was first observed.

This CSV file is stored in an Amazon S3 bucket and is used during model training to help the
system learn from known examples of abnormal behavior. The following example shows how your
label data should appear as a .csv file. The file has no header.

Label your data 835

AWS IoT SiteWise User Guide

Example of a CSV file:

2024-06-21T00:00:00.000000,2024-06-21T12:00:00.000000
2024-07-11T00:00:00.000000,2024-07-11T12:00:00.000000
2024-07-31T00:00:00.000000,2024-07-31T12:00:00.000000

Row 1 represents a maintenance event on June 21, 2024, with a 12-hour window (from
2024-06-21T00:00:00.000000Z to 2024-06-21T12:00:00.000000Z) for AWS IoT SiteWise
to look for abnormal behavior.

Row 2 represents a maintenance event on July 11, 2024, with a 12-hour window (from
2024-07-11T00:00:00.000000Z to 2024-07-11T12:00:00.000000Z) for AWS IoT SiteWise
to look for abnormal behavior.

Row 3 represents a maintenance event on July 31, 2024, with a 12-hour window (from
2024-07-31T00:00:00.000000Z to 2024-07-31T12:00:00.000000Z) for AWS IoT SiteWise
to look for abnormal behavior.

AWS IoT SiteWise uses all of these time windows to train and evaluate models that can identify
abnormal behavior around these events. Note that not all events are detectable, and results are
highly dependent on the quality and characteristics of the underlying data.

For details about best practices for sampling, see Best practices.

Data labeling steps

• Configure your Amazon S3 bucket according to the labeling prerequisites at Labeling data
prerequisites.

• Upload the file to your labeling bucket.

• Add the following to anomaly-detection-training-payload.json.

• Provide the locations in the labelInputConfiguration section of the file. Replace
labels-bucket with bucket name and files-prefix with file(s) path or any part of prefix.
All files at the location are parsed, and (on success) used as label files.

{
 "exportDataStartTime": StartTime,
 "exportDataEndTime": EndTime,
 "labelInputConfiguration":

Label your data 836

AWS IoT SiteWise User Guide

 {
 "bucketName": "label-bucket",
 "prefix": "files-prefix"
 }
}

Example of a label configuration:

{
 "exportDataStartTime": 1717225200,
 "exportDataEndTime": 1722789360,
 "labelInputConfiguration": {
 "bucketName": "anomaly-detection-customer-data-278129555252-iad",
 "prefix": "Labels/model=b2d8ab3e-73af-48d8-9b8f-a290bef931b4/
asset[d3347728-4796-4c5c-afdb-ea2f551ffe7a]/Lables.csv"
 }
}

Evaluate your model

Pointwise model diagnostics for an AWS IoT SiteWise training model is an evaluation of the model
performance at the individual events. During training, AWS IoT SiteWise generates an anomaly
score, and sensor contribution diagnostics for each row in the input dataset. A higher anomaly
score indicates a higher likelihood of an abnormal event.

Pointwise diagnostics are available, when you train a model with ExecuteAction API, and AWS/
ANOMALY_DETECTION_TRAINING action type.

To configure model evaluation,

• Configure your Amazon S3 bucket according to the labelling prerequisites at Labeling data
prerequisites.

• Add the following to anomaly-detection-training-payload.json.

• Provide the evaluationStartTime and evaluationEndTime (both in epoch seconds) for
the data in the window used to evaluate the performance of the model.

• Provide the Amazon S3 bucket location (resultDestination) in order for the the evaluation
diagnostics to be written to.

Evaluate your model 837

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ExecuteAction.html

AWS IoT SiteWise User Guide

Note

The model evaluation interval (dataStartTime to dataEndtime) must either overlap, or
be contiguous to the training interval. No gaps are permitted.

{
 "exportDataStartTime": StartTime,
 "exportDataEndTime": EndTime,
 "modelEvaluationConfiguration": {
 "dataStartTime": evaluationStartTime,
 "dataEndTime": evaluationEndTime
 "resultDestination": {
 "bucketName": "s3BucketName",
 "prefix": "bucketPrefix"
 }
 }
}

Example of a model evaluation configuration:

{
 "exportDataStartTime": 1717225200,
 "exportDataEndTime": 1722789360,
 "modelEvaluationConfiguration": {
 "dataStartTime": 1722789360,
 "dataEndTime": 1725174000,
 "resultDestination": {
 "bucketName": "anomaly-detection-customer-data-278129555252-iad",
 "prefix": "Evaluation/asset[d3347728-4796-4c5c-afdb-ea2f551ffe7a]/1747681026-
evaluation_results.jsonl"
 }
 }
}

Evaluate your model 838

AWS IoT SiteWise User Guide

Advanced inference configurations

AWS IoT SiteWise allows customers to configure model inference schedules tailored to their
operational needs.

Inference scheduling is broadly categorized into three modes:

• High frequency inferencing (5 minutes – 1 hour)

• Low frequency inferencing (2 hours – 1 day)

• Flexible scheduling

High frequency inferencing (5 minutes – 1 hour)

This mode is ideal for processes that operate continuously, or have a high rate of change in sensor
values. In this configuration, inference runs frequently as often as every 5 minutes.

Use cases:

• It is used in monitoring fast-changing equipment like compressors or conveyors.

• It is helpful in catching short-lived anomalies that require immediate response.

• It's an always-on operation where data is consistently flowing.

Conditional offset support:

You can define a conditional offset (0 - 60 minutes) to delay inference after data ingestion. This
ensures late-arriving data is still included in the analysis window.

To configure high frequency inferencing:

• Configure AWS/ANOMALY_DETECTION_INFERENCE action payload value with
DataUploadFrequency with values: PT5M, PT10M, PT15M, PT30M, PT1H while starting
inference.

• (Optional) Configure DataDelayOffsetInMinutes with the delay offset in minutes. Set this
value between 0 and 60 minutes.

{

Advanced inference configurations 839

AWS IoT SiteWise User Guide

 "inferenceMode": "START",
 "dataDelayOffsetInMinutes": "DataDelayOffsetInMinutes",
 "dataUploadFrequency": "DataUploadFrequency"
}

Example of high frequency inference configuration:

{
 "inferenceMode": "START",
 "dataDelayOffsetInMinutes": "2",
 "dataUploadFrequency": "PT5M"
}

Low frequency inferencing (2 hours – 1 day)

This mode is suited for slower-moving processes or use cases where daily evaluations are sufficient.
Customers configure inference to run hourly or once per day.

Start time support for 1-day interval:

For daily inference, optionally specify a startTime (8 AM every day), along with timezone
awareness.

Timezone support:

When a startTime is provided, AWS IoT SiteWise uses Time Zone Database, maintained by the
Internet Assigned Numbers Authority (IANA). This ensures your inference aligns with local working
hours even across regions.

Conditional offset support:

As with other modes, a conditional offset of 0 – 60 minutes is configured.

Use cases:

• Daily health checks for batch processes or shift-based operations.

• Avoids inference during maintenance or downtime.

• It's helpful in resource-constrained environments, where compute usage must be minimized.

To configure low frequency inferencing:

Low frequency inferencing (2 hours – 1 day) 840

https://www.iana.org/time-zones

AWS IoT SiteWise User Guide

• Configure AWS/ANOMALY_DETECTION_INFERENCE action payload value with
DataUploadFrequency with values: PT2H..PT12H.

• In the case of 1 day, DataUploadFrequency is P1D.

• (Optional) Configure DataDelayOffsetInMinutes with the delay offset in minutes. Set this
value between 0 and 60 minutes.

Example of low frequency inference configuration:

{
 "inferenceMode": "START",
 "dataUploadFrequency": "P1D",
 "inferenceStartTime": "13:00",
 "inferenceTimeZone": "America/Chicago"
}

Flexible scheduling

Flexible scheduling allows customers to define specific days and time ranges, during which
inference is run. This gives customers complete control over scheduling based on production hours,
shift timings, and planned downtimes.

The weeklyOperatingWindow helps when:

• The equipment runs only during specific hours (8 AM – 4 PM).

• There is no production on weekends.

• Daily maintenance is scheduled during known time blocks.

Timezone support:

When a startTime is provided, AWS IoT SiteWise uses Time Zone Database, maintained by the
Internet Assigned Numbers Authority (IANA). This ensures the inference aligns with local working
hours even across regions.

Conditional offset support:

As with other modes, a conditional offset of 0 – 60 minutes can be configured.

Benefits of weeklyOperatingWindow:

Flexible scheduling 841

https://www.iana.org/time-zones

AWS IoT SiteWise User Guide

• It avoids inference during idle or maintenance periods, reducing false positives.

• It aligns anomaly detection with operational priorities and shift-based workflows.

To configure flexible scheduling:

• Configure AWS/ANOMALY_DETECTION_INFERENCE action payload value with
DataUploadFrequency.

• (Optional) DataDelayOffsetInMinutes with the delay offset in minutes. Set this value
between 0 and 60 minutes.

• Configure weeklyOperatingWindow with a shift configuration:

• Keys for the weeklyOperatingWindow are days of the week: monday|tuesday|
wednesday|thursday|friday|saturday|sunday.

• Each time range must be in 24-hour format as "HH:MM-HH:MM" ("08:00-16:00").

• Multiple ranges can be specified per day.

Example of flexible scheduling configuration:

{
 "inferenceMode": "START",
 "dataUploadFrequency": "PT5M",
 "weeklyOperatingWindow": {
 "tuesday": ["11:00-13:00"],
 "monday": ["10:00-11:00", "13:00-15:00"]
 }
}

Model version activation

When starting inference, you can optionally activate a specific model version to use for anomaly
detection. This feature allows you to select a particular trained model version, roll back to previous
versions, or override automatic model promotion decisions.

Use cases:

• Production rollback: Quickly revert to a stable model version when the current version shows
degraded performance or unexpected behavior.

Model version activation 842

AWS IoT SiteWise User Guide

• A/B testing: Compare performance between different model versions by switching between
them during controlled time periods.

• Manual model selection: Override automatic promotion decisions, and manually select your
preferred model version based on business requirements.

• Staged deployment: Test newer model versions in non-critical time windows before promoting
them to full production use.

• Performance optimization: Select model versions that perform better for specific operational
conditions, or seasonal patterns.

• Rollback during maintenance: Use older, well-tested model versions during system
maintenance, or upgrades to ensure stability.

Model version selection behavior

When targetModelVersion is specified:

• The system activates the requested model version for inference.

• Validates that the specified model version exists.

• Overrides any automatic promotion settings.

When targetModelVersion is not specified:

• Activates the last active model version if inference was previously started.

• If inference was never activated, uses the latest trained model version.

To activate a specific model version:

• Configure the inference action payload, with targetModelVersion set to your desired model
version number.

• The specified model version is validated and activated if it exists.

Example of model version activation:

{
 "inferenceMode": "START",
 "dataUploadFrequency": "PT15M",
 "targetModelVersion": 2

Model version activation 843

AWS IoT SiteWise User Guide

}

Checking model versions

To verify the currently active model version:

• Use the DescribeComputationModelExecutionSummary API, which includes the active model
version in the response.

To view all available model versions:

• Use the ListExecutions API to retrieve a complete list of historical model versions.

• Use the Use the DescribeExecution API to retrieve trained model information including export
data time range, computation model version, and billable duration in minutes.

Model version characteristics

• Model version numbers are assigned sequentially starting from 1.

• You can activate any previously trained model versions.

• The activated model version persists until explicitly changed.

• Model version activation works with all inference scheduling modes (high-frequency, low-
frequency, and flexible).

• If the specified model version doesn't exist, the inference action fails with an error.

Review inference results

Retrieve inference results

Latest inference results

Run the following command to fetch the most recent inference result for an asset property. For
more information, see get-asset-property-value in the AWS CLI Command Reference Guide.

aws iotsitewise get-asset-property-value \
 —asset-id asset-id \
 —property-id result-property-id

Checking model versions 844

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeComputationModelExecutionSummary.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListExecutions.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeExecution.html
https://docs.aws.amazon.com/cli/latest/reference/iotsitewise/get-asset-property-value.html

AWS IoT SiteWise User Guide

Inference results history

Run the following command to fetch the history of inference results for a specified time window.
For more information, see get-asset-property-value-history in the AWS CLI Command Reference
Guide.

aws iotsitewise get-asset-property-value-history \
 —asset-id asset-id \
 —property-id result-property-id \
 —start-date start-time \
 —end-date end-time

Example response

Example of an inference result response:

{
 "value": {
 "stringValue": "{\"timestamp\": \"2025-02-10T22:42:00.000000\", \"prediction\": 0,
 \"prediction_reason\": \"NO_ANOMALY_DETECTED\", \"diagnostics\": [{\"name\": \"asset-
id\\\\property-id\", \"value\": 0.53528}]}"
 },
 "timestamp": {
 "timeInSeconds": 1739227320,
 "offsetInNanos": 0
 },
 "quality": "GOOD"
}

Response fields

• value.stringValue – A JSON string containing the inference result with the following fields:

• timestamp – The timestamp of the TQV against which inference is performed.

• prediction – The prediction result (0 for no anomaly, 1 for anomaly detected).

• prediction_reason – The reason for the prediction (NO_ANOMALY_DETECTED or
ANOMALY_DETECTED).

• diagnostics – An array of diagnostic information showing contributing factors.

• timestamp – The timestamp when the result is recorded in AWS IoT SiteWise.

• quality – The quality of the data point (typically GOOD).

Retrieve inference results 845

https://docs.aws.amazon.com/cli/latest/reference/iotsitewise/get-asset-property-value-history.html

AWS IoT SiteWise User Guide

Understand inference results

An inference result returned by AWS IoT SiteWise anomaly detection includes key information
about the model's prediction at a specific timestamp, including whether an anomaly was detected
and which sensors contributed to the anomaly.

Example of a detailed inference result:

{
 "timestamp": "2021-03-11T22:25:00.000000",
 "prediction": 1,
 "prediction_reason": "ANOMALY_DETECTED",
 "anomaly_score": 0.72385,
 "diagnostics": [
 { "name": "asset_id_1\\\\property_id_1", "value": 0.02346 },
 { "name": "asset_id_2\\\\property_id_2", "value": 0.10011 },
 { "name": "asset_id_3\\\\property_id_3", "value": 0.11162 }
]
}

The diagnostics field is useful for interpreting why the model makes a certain prediction. Each
entry in the list includes:

• name: The sensor that contributed to the prediction (format: asset_id\\\\property_id).

• value: A floating-point number between 0 and 1, representing the relative weight or
importance, of that sensor at that point in time.

User benefits:

• Understand which sensors had the strongest impact on an anomaly.

• Correlate high-weight sensors with physical equipment behavior.

• Inform root cause analysis.

Note

Even when prediction = 0 (normal behavior), the diagnostics list is returned. This helps
assess which sensors are currently influencing the model's decisions, even in healthy states.

Understand inference results 846

AWS IoT SiteWise User Guide

Trigger custom actions on anomalous behavior (AWS
Management Console)

You can enable custom actions in response to anomalous behavior by using AWS IoT SiteWise
MQTT notifications in combination with AWS IoT Core.

Follow these steps to configure MQTT notifications in AWS IoT SiteWise, and trigger a custom
action in AWS IoT Core based on inference results:

• Locate the asset in AWS IoT SiteWise, where the inference runs.

• Identify the property you used as the resultProperty when creating the computation model.
Enable MQTT Notification for this property.

• Once you enable MQTT Notification, copy the Notification Topic that AWS IoT SiteWise
generates.

• Navigate to AWS IoT Core. Under MQTT test client, subscribe to the copied Notification Topic to
monitor the incoming messages.

• Create an AWS IoT Core Rule to Process Inference Results. (This ensures that actions are
triggered only if the system detects an anomaly). Replace notification-topic with the
Notification Topic that AWS IoT SiteWise generates.

SELECT * FROM "notification-topic"
 WHERE indexof(get(get(payload.values, 0).value, 'stringValue'),
 "NO_ANOMALY_DETECTED") < 0

Configure the rule to trigger any of the actions that AWS IoT Core supports. Learn more about the
actions supported by AWS IoT Core.

Best practices

Understand the minimum date range

Use a minimum of 14 days for training data duration. However, we recommend that you include a
longer period of data in many cases.

Trigger custom actions on anomalous behavior (AWS Management Console) 847

https://docs.aws.amazon.com/iot/latest/developerguide/iot-rule-actions.html

AWS IoT SiteWise User Guide

Ensure that your training dataset spans a timeframe during which the asset operated under all of
its normal operating modes. This approach helps AWS IoT SiteWise accurately distinguish between
expected behavior and true anomalies.

If your training data doesn't represent all typical operating modes, AWS IoT SiteWise might
incorrectly flag unfamiliar but normal patterns as anomalies, which increases false positives.

Sampling for high-frequency data and consistency between training
and inference

If your sensors generate data at a frequency higher than 1 Hz (more than one reading per second),
apply sampling during training. Sampling reduces data volume while preserving essential trends,
which enables efficient processing and improves model generalization by minimizing the impact of
noise or transient fluctuations.

AWS IoT SiteWise native anomaly detection currently doesn't support data ingested at rates below
1 Hz. Verify that your data meets this minimum frequency requirement before you configure
anomaly detection.

Additionally, AWS IoT SiteWise uses the sampling rate that you configure during training for
inference as well. To maintain consistency and ensure accurate anomaly detection results, choose a
sampling rate that aligns with both your operational needs and the behavior of your sensor data.

Find more details about how to set sampling rate at Sample rate configuration.

Labeling recommendations

Accurate and consistent labeling of anomalies is essential for effective model evaluation and
continuous improvement. Consider the following best practices when you label anomalies:

• Consolidate related anomalies: Don't label closely occurring anomalies as separate events, if
they're part of the same underlying issue. For example, if anomalies occur within 1–2 days of
each other and the same root cause drives them, treat them as a single anomaly window. This
approach helps the model better learn the pattern of abnormal behavior, and reduces noise in
your evaluation data.

• Label anomaly windows, not just points: Instead of marking individual data points as
anomalous, label the entire window that reflects abnormal behavior from deviation onset to
recovery. This approach provides clearer boundaries and improves model alignment with actual
operational issues.

Sampling for high-frequency data and consistency between training and inference 848

AWS IoT SiteWise User Guide

• Exclude uncertain periods: If you're unsure whether a period is anomalous, leave it unlabeled.
Ambiguous labels can confuse the model and degrade its accuracy over time.

Find more details about how to add labels at Label your data.

Labeling recommendations 849

AWS IoT SiteWise User Guide

Manage data storage in AWS IoT SiteWise

You can configure AWS IoT SiteWise to save your data in the following storage tiers:

Hot tier

The hot storage tier is an AWS IoT SiteWise managed time series storage. Hot tier is most
effective for frequently accessed data, with low write-to-read latency. Data stored in the hot tier
is used by industrial applications that need quick access to the latest values of measurements in
your equipment. This includes applications that visualize real-time metrics with an interactive
dashboard, or applications that monitor operations and launch alarms to identify performance
issues.

By default, data ingested into AWS IoT SiteWise is stored in the hot tier. You can define a
retention period for the hot tier, after which AWS IoT SiteWise moves data in the hot tier to
either warm or cold tier storage, based on your configuration. For best performance and cost
efficiency, set your hot tier retention period to be longer than the time taken to retrieve data
often. This is used for real time metrics, alarms, and monitoring scenarios. If a retention period
is not set, your data is stored indefinitely in the hot tier.

Warm tier

The warm storage tier is an AWS IoT SiteWise managed tier that's effective for cost-efficient
storage of historical data. It's best used to retrieve large volumes of data with medium write-
to-read latency characteristics. Use the warm tier to store historical data that's needed for
large workloads. For example, it's used for data retrieval for analytics, business intelligence
applications (BI), reporting tools, and training of machine learning (ML) models. If you enable
the cold storage tier, you can define a warm tier retention period. After the retention period
ends, AWS IoT SiteWise deletes data from the warm tier.

Cold tier

The cold storage tier uses an Amazon S3 bucket to store data that's rarely used. With cold
tier enabled, AWS IoT SiteWise replicates the time series, including measurements, metrics,
transforms and aggregates, and asset model definitions every 6 hours. Cold tier is used to store
data that tolerates high read latency for historical reports and backups.

Topics

850

AWS IoT SiteWise User Guide

• Configure storage settings in AWS IoT SiteWise

• Troubleshoot storage settings for AWS IoT SiteWise

• File paths and schemas of data saved in the cold tier

Configure storage settings in AWS IoT SiteWise

You can configure storage settings to opt in to service managed warm tier storage, and also to
replicate data to the cold tier. To learn more about the retention period for the warm and hot tier,
see Data retention impact. While configuring the storage settings, do the following:

• Hot tier retention — Set a retention period for how long your data is stored in the hot tier
before it's deleted, and moved to the service managed warm tier storage or cold tier storage
based on your storage settings. AWS IoT SiteWise will delete any data in the hot tier that
existed before the retention period ends. If you don't set a retention period, your data is stored
indefinitely in the hot tier.

• Warm tier retention — Set a retention period for how long your data is stored in the warm tier
before it’s deleted from AWS IoT SiteWise storage and moved to the customer managed cold tier
storage. AWS IoT SiteWise deletes any data from the warm tier that existed before the retention
period ends. If a retention period is not set, your data is stored indefinitely in the warm tier.

Note

To improve query performance, set a hot tier retention period with warm tier storage.

Impact of data retention in hot and warm tier storage

• When you decrease the retention period of the hot tier storage, data is permanently moved from
the hot tier to the warm or cold tier. When you decrease the retention period of the warm tier,
data is moved to the cold tier, and permanently deleted from the warm tier.

• When you increase the retention period of the hot or warm tier storage, the change affects data
that's sent to AWS IoT SiteWise from then on. AWS IoT SiteWise does not retrieve data from the
warm or cold storage to populate the hot tier. For example, if the retention period of the hot tier
storage is initially set for 30 days and then increased to 60 days, it takes 30 days for the hot tier
storage to contain 60 days worth of data.

Configure storage settings 851

AWS IoT SiteWise User Guide

Topics

• Configure storage settings for warm tier (console)

• Configure storage settings for warm tier (AWS CLI)

• Configure storage settings for cold tier (console)

• Configure storage settings for cold tier (AWS CLI)

Configure storage settings for warm tier (console)

The following procedure shows you how to configure the storage settings to replicate data to the
warm tier in the AWS IoT SiteWise console.

To configure storage settings in the console

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, under Settings, choose Storage.

3. In the upper-right corner, choose Edit.

4. On the Edit storage page, do the following:

5. For Hot tier settings, do the following:

• If you want to set a retention period for how long your data is stored in the hot tier before
it's deleted, and moved to the service managed warm tier storage, choose Enable retention
period.

• To configure a retention period, enter a whole number and choose a unit. The retention
period must be greater than or equal to 30 days.

AWS IoT SiteWise deletes any data in the hot tier that's older than the retention period. If you
don't set a retention period, your data is stored indefinitely.

6. (Recommended) For Warm tier settings, do the following:

• To opt in to warm tier storage, select I confirm to the opt-in of warm tier storage to opt in
for the warm tier storage.

• (Optional) To configure a retention period, enter a whole number and choose a unit. The
retention period must be greater than or equal to 365 days.

Configure for warm tier (console) 852

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

AWS IoT SiteWise deletes data in the warm tier that existed earlier than the retention period. If
you don't set a retention period, your data is stored indefinitely.

Note

• When you opt in for warm tier, the configuration displays once only.

• To set hot tier retention, you must have either warm or cold tier storage. For cost
efficiency and historical data retrieval, AWS IoT SiteWise recommends that you store
long term data in the warm tier.

• To set warm tier retention, you must have cold tier storage.

7. Choose Save to save your storage settings.

In the AWS IoT SiteWise storage section, the Warm tier storage is in one of these states:

• Enabled – If your data existed before the hot tier retention period, AWS IoT SiteWise moves the
data to the warm tier."

• Disabled – The warm tier storage is disabled.

Configure storage settings for warm tier (AWS CLI)

You can configure storage settings to move data to the warm tier by using the AWS CLI and the
following commands.

To prevent overriding the existing configuration, retrieve the current storage configuration
information by running the following command:

aws iotsitewise describe-storage-configuration

Example response without existing cold tier configuration

{
 "storageType": "SITEWISE_DEFAULT_STORAGE",
 "disassociatedDataStorage": "ENABLED",
 "configurationStatus": {

Configure for warm tier (AWS CLI)(853

AWS IoT SiteWise User Guide

 "state": "ACTIVE"
 },
 "lastUpdateDate": "2021-10-14T15:53:35-07:00",
 "warmTier": "DISABLED"
}

Example response with existing cold tier configuration

{
 "storageType": "MULTI_LAYER_STORAGE",
 "multiLayerStorage": {
 "customerManagedS3Storage": {
 "s3ResourceArn": "arn:aws:s3:::amzn-s3-demo-bucket/prefix/",
 "roleArn": "arn:aws:iam::aws-account-id:role/role-name"
 }
 },
 "disassociatedDataStorage": "ENABLED",
 "retentionPeriod": {
 "numberOfDays": retention-in-days
 },
 "configurationStatus": {
 "state": "ACTIVE"
 },
 "lastUpdateDate": "2023-10-25T15:59:46-07:00",
 "warmTier": "DISABLED"
}

Configure storage settings for warm tier with AWS CLI

Run the following command to configure the storage settings. Replace file-name with the name
of the file that contains the AWS IoT SiteWise storage configuration.

aws iotsitewise put-storage-configuration --cli-input-json file://file-name.json

Example AWS IoT SiteWise configuration with hot and warm tier

{
 "storageType": "SITEWISE_DEFAULT_STORAGE",
 "disassociatedDataStorage": "ENABLED",
 "warmTier": "ENABLED",
 "retentionPeriod": {

Configure for warm tier (AWS CLI)(854

AWS IoT SiteWise User Guide

 "numberOfDays": hot-tier-retention-in-days
 }

}

hot-tier-retention-in-days must be a whole number greater than or equal to 30 days.

Example response

{
 "storageType": "SITEWISE_DEFAULT_STORAGE",
 "configurationStatus": {
 "state": "UPDATE_IN_PROGRESS"
 }
}

If you have cold tier storage enabled, see Configure storage settings with AWS CLI and existing cold
tier.

Configure storage settings with AWS CLI and existing cold tier

Configure storage settings using AWS CLI with existing cold tier storage

• Run the following command to configure the storage settings. Replace file-name with the
name of the file that contains the AWS IoT SiteWise storage configuration.

aws iotsitewise put-storage-configuration --cli-input-json file://file-name.json

Example AWS IoT SiteWise storage configuration

• Replace amzn-s3-demo-bucket with your Amazon S3 bucket name.

• Replace prefix with your Amazon S3 prefix.

• Replace aws-account-id with your AWS account ID.

• Replace role-name with the name of the Amazon S3 access role that allows AWS IoT
SiteWise to send data to Amazon S3.

• Replace hot-tier-retention-in-days with a whole number greater than or equal to 30
days.

• Replace warm-tier-retention-in-days with a whole number greater than or equal to
365 days.

Configure for warm tier (AWS CLI)(855

AWS IoT SiteWise User Guide

Note

AWS IoT SiteWise will delete any data in the warm tier that's older than the retention
period of the cold tier. If you don't set a retention period, your data is stored
indefinitely.

{
 "storageType": "MULTI_LAYER_STORAGE",
 "multiLayerStorage": {
 "customerManagedS3Storage": {
 "s3ResourceArn": "arn:aws:s3:::amzn-s3-demo-bucket/prefix/",
 "roleArn": "arn:aws:iam::aws-account-id:role/role-name"
 }
 },
 "disassociatedDataStorage": "ENABLED",
 "retentionPeriod": {
 "numberOfDays": hot-tier-retention-in-days
 },
 "warmTier": "ENABLED",
 "warmTierRetentionPeriod": {
 "numberOfDays": warm-tier-retention-in-days
 }
}

Example response

{
 "storageType": "MULTI_LAYER_STORAGE",
 "configurationStatus": {
 "state": "UPDATE_IN_PROGRESS"
 }
}

Configure storage settings for cold tier (console)

The following procedure shows you how to configure the storage settings to replicate data to the
cold tier in the AWS IoT SiteWise console.

Configure for cold tier (console) 856

AWS IoT SiteWise User Guide

To configure storage settings in the console

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, under Settings, choose Storage.

3. In the upper-right corner, choose Edit.

4. On the Edit storage page, do the following:

a. For Storage settings, choose Enable cold tier storage. The cold tier storage is disabled by
default.

b. For S3 bucket location, enter the name of an existing Amazon S3 bucket and a prefix.

Note

• Amazon S3 uses the prefix as a folder name in the Amazon S3 bucket. The prefix
must have 1-255 characters and end with a forward slash (/). Your AWS IoT
SiteWise data is saved in this folder.

• If you don't have an Amazon S3 bucket, choose View, and then create one in the
Amazon S3 console. For more information, see Create your first S3 bucket in the
Amazon S3 User Guide.

c. For S3 access role, do one of the following:

• Choose Create a role from an AWS managed template, AWS automatically creates an
IAM role that allows AWS IoT SiteWise to send data to Amazon S3.

• Choose Use an existing role, and then choose the role that you created from the list.

Note

• You must use the same Amazon S3 bucket name for the S3 bucket location
that you used in the previous step and in your IAM policy.

• Make sure that your role has the permissions shown in the following example.

Example permissions policy:

JSON

{
 "Version": "2012-10-17",

Configure for cold tier (console) 857

https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html#creating-bucket

AWS IoT SiteWise User Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:DeleteObject",
 "s3:GetBucketLocation",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 }
]
 }

Replace amzn-s3-demo-bucket with the name of your Amazon S3 bucket.

• If the Amazon S3 bucket is encrypted using a customer managed KMS key, the
KMS key must have an access policy with an IAM role for kms:Decrypt and
kms:GenerateDataKey operations.

d. To setup hot tier, see Step 5 in Configure storage settings for warm tier (console).

e. (Optional) For AWS IoT Analytics integration, do the following.

Note

End of support notice: On December 15, 2025, AWS will end support for AWS IoT
Analytics. After December 15, 2025, you will no longer be able to access the AWS
IoT Analytics console or AWS IoT Analytics resources. For more information, see
AWS IoT Analytics end of support.

i. If you want to use AWS IoT Analytics to query your data, choose Enabled AWS IoT
Analytics data store.

ii. AWS IoT SiteWise generates a name for your data store or you can enter a different
name.

Configure for cold tier (console) 858

https://docs.aws.amazon.com/iotanalytics/latest/userguide/iotanalytics-end-of-support.html

AWS IoT SiteWise User Guide

AWS IoT SiteWise automatically creates a data store in AWS IoT Analytics to save your
data. To query the data, you can use AWS IoT Analytics to create datasets. For more
information, see Working with AWS IoT SiteWise data in the AWS IoT Analytics User Guide.

f. Choose Save.

In the AWS IoT SiteWise storage section, the Cold tier storage can be one of the following values:

• Enabled – AWS IoT SiteWise replicates your data to the specified Amazon S3 bucket.

• Enabling – AWS IoT SiteWise is processing your request to enable the cold tier storage. This
process can take several minutes to complete.

• Enable_Failed – AWS IoT SiteWise couldn't process your request to enable the cold tier storage.
If you enabled AWS IoT SiteWise to send logs to Amazon CloudWatch Logs, you can use these
logs to troubleshoot issues. For more information, see Monitor with Amazon CloudWatch Logs.

• Disabled – The cold tier storage is disabled.

Configure storage settings for cold tier (AWS CLI)

The following procedure shows you how to configure the storage settings to replicate data to the
cold tier using AWS CLI.

To configure storage settings using AWS CLI

1. To export data to an Amazon S3 bucket in your account, run the following command to
configure the storage settings. Replace file-name with the name of the file that contains the
AWS IoT SiteWise storage configuration.

aws iotsitewise put-storage-configuration --cli-input-json file://file-name.json

Example AWS IoT SiteWise storage configuration

• Replace amzn-s3-demo-bucket with your Amazon S3 bucket name.

• Replace prefix with your Amazon S3 prefix.

• Replace aws-account-id with your AWS account ID.

• Replace role-name with the name of the Amazon S3 access role that allows AWS IoT
SiteWise to send data to Amazon S3.

Configure for cold tier (AWS CLI) 859

https://docs.aws.amazon.com/iotanalytics/latest/userguide/dataset-itsw.html

AWS IoT SiteWise User Guide

• Replace retention-in-days with a whole number than is greater than or equal to 30
days.

{
 "storageType": "MULTI_LAYER_STORAGE",
 "multiLayerStorage": {
 "customerManagedS3Storage": {
 "s3ResourceArn": "arn:aws:s3:::amzn-s3-demo-bucket/prefix/",
 "roleArn": "arn:aws:iam::aws-account-id:role/role-name"
 }
 },
 "retentionPeriod": {
 "numberOfDays": retention-in-days,
 "unlimited": false
 }
 }

Note

• You must use the same Amazon S3 bucket name in the AWS IoT SiteWise storage
configuration and IAM policy.

• Make sure that your role has the permissions shown in the following example.

Example permissions policy:

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:DeleteObject",
 "s3:GetBucketLocation",
 "s3:ListBucket"
],
 "Resource": [

Configure for cold tier (AWS CLI) 860

AWS IoT SiteWise User Guide

 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 }
]
 }

Replace amzn-s3-demo-bucket with the name of your Amazon S3 bucket.

• If the Amazon S3 bucket is encrypted using a customer managed KMS key, the
KMS key must have an access policy with an IAM role for kms:Decrypt and
kms:GenerateDataKey operations.

Example response

{
 "storageType": "MULTI_LAYER_STORAGE",
 "retentionPeriod": {
 "numberOfDays": 100,
 "unlimited": false
 },
 "configurationStatus": {
 "state": "UPDATE_IN_PROGRESS"
 }
}

Note

It can take a few minutes for AWS IoT SiteWise to update the storage configuration.

2. To retrieve the storage configuration information, run the following command.

aws iotsitewise describe-storage-configuration

Example response

{
 "storageType": "MULTI_LAYER_STORAGE",
 "multiLayerStorage": {

Configure for cold tier (AWS CLI) 861

AWS IoT SiteWise User Guide

 "customerManagedS3Storage": {
 "s3ResourceArn": "arn:aws:s3:::amzn-s3-demo-bucket/torque/",
 "roleArn": "arn:aws:iam::123456789012:role/SWAccessS3Role"
 }
 },
 "retentionPeriod": {
 "numberOfDays": 100,
 "unlimited": false
 },
 "configurationStatus": {
 "state": "ACTIVE"
 },
 "lastUpdateDate": "2021-03-30T15:54:14-07:00"
 }

3. To stop exporting data to the Amazon S3 bucket, run the following command to configure
storage settings.

aws iotsitewise put-storage-configuration --storage-type SITEWISE_DEFAULT_STORAGE

Note

By default, your data is only stored in the hot tier of AWS IoT SiteWise.

Example response

{
 "storageType": "SITEWISE_DEFAULT_STORAGE",
 "configurationStatus": {
 "state": "UPDATE_IN_PROGRESS"
 }
 }

4. To retrieve the storage configuration information, run the following command.

aws iotsitewise describe-storage-configuration

Example response

{

Configure for cold tier (AWS CLI) 862

AWS IoT SiteWise User Guide

 "storageType": "SITEWISE_DEFAULT_STORAGE",
 "configurationStatus": {
 "state": "ACTIVE"
 },
 "lastUpdateDate": "2021-03-30T15:57:14-07:00"
 }

(Optional) Create an AWS IoT Analytics data store (AWS CLI)

Note

End of support notice: On December 15, 2025, AWS will end support for AWS IoT Analytics.
After December 15, 2025, you will no longer be able to access the AWS IoT Analytics
console or AWS IoT Analytics resources. For more information, see AWS IoT Analytics end of
support.

An AWS IoT Analytics data store is a scalable and queryable repository that receives and stores
data. You can use the AWS IoT SiteWise console or AWS IoT Analytics APIs to create an AWS IoT
Analytics data store to save your AWS IoT SiteWise data. To query the data, you create datasets
by using AWS IoT Analytics. For more information, see Working with AWS IoT SiteWise data in the
AWS IoT Analytics User Guide.

The following steps use AWS CLI to create a data store in AWS IoT Analytics.

To create a data store, run the following command. Replace file-name with the name of the file
that contains the data store configuration.

aws iotanalytics create-datastore --cli-input-json file://file-name.json

Note

• You must specify the name of an existing Amazon S3 bucket. If you don't have an
Amazon S3 bucket, create one first. For more information, see Create your first S3 bucket
in the Amazon S3 User Guide.

• You must use the same Amazon S3 bucket name in the AWS IoT SiteWise storage
configuration, IAM policy, and AWS IoT Analytics data store configuration.

Configure for cold tier (AWS CLI) 863

https://docs.aws.amazon.com/iotanalytics/latest/userguide/iotanalytics-end-of-support.html
https://docs.aws.amazon.com/iotanalytics/latest/userguide/iotanalytics-end-of-support.html
https://docs.aws.amazon.com/iotanalytics/latest/userguide/dataset-itsw.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/GetStartedWithS3.html#creating-bucket

AWS IoT SiteWise User Guide

Example AWS IoT Analytics data store configuration

Replace data-store-name and amzn-s3-demo-bucket with your AWS IoT Analytics data store
name and Amazon S3 bucket name.

{
 "datastoreName": "data-store-name",
 "datastoreStorage": {
 "iotSiteWiseMultiLayerStorage": {
 "customerManagedS3Storage": {
 "bucket": "amzn-s3-demo-bucket"
 }
 }
 },
 "retentionPeriod": {
 "numberOfDays": 90
 }
 }

Example response

{
 "datastoreName": "datastore_IoTSiteWise_demo",
 "datastoreArn": "arn:aws:iotanalytics:us-west-2:123456789012:datastore/
datastore_IoTSiteWise_demo",
 "retentionPeriod": {
 "numberOfDays": 90,
 "unlimited": false
 }
 }

Troubleshoot storage settings for AWS IoT SiteWise

Use the following information to troubleshoot and resolve issues with the storage configuration.

Issues

• Error: Bucket doesn't exist

• Error: Access denied to Amazon S3 path

• Error: Role ARN can't be assumed

Troubleshoot storage settings 864

AWS IoT SiteWise User Guide

• Error: Failed to access cross-Region Amazon S3 bucket

Error: Bucket doesn't exist

Solution: AWS IoT SiteWise couldn't find your Amazon S3 bucket. Make sure you enter the name of
an existing Amazon S3 bucket in the current Region.

Error: Access denied to Amazon S3 path

Solution: AWS IoT SiteWise couldn't access your Amazon S3 bucket. Do the following:

• Make sure that you use the same Amazon S3 bucket that you specified in the IAM policy.

• Make sure that your role has the permissions shown in the following example.

Example permissions policy

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:DeleteObject",
 "s3:GetBucketLocation",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 }
]
 }

Replace amzn-s3-demo-bucket with the name of your Amazon S3 bucket.

Error: Bucket doesn't exist 865

AWS IoT SiteWise User Guide

Error: Role ARN can't be assumed

Solution: AWS IoT SiteWise couldn't assume the IAM role on your behalf. Make sure that your role
trusts the following service: iotsitewise.amazonaws.com. For more information, see I can't
assume a role see IAM User Guide.

Error: Failed to access cross-Region Amazon S3 bucket

Solution: The Amazon S3 bucket that you specified is in a different AWS Region. Make sure that
your Amazon S3 bucket and AWS IoT SiteWise assets are in the same Region.

File paths and schemas of data saved in the cold tier

AWS IoT SiteWise stores your data in the cold tier by replicating time series, including
measurements, metrics, transforms and aggregates, and also asset and asset model definitions.
The following describes the file paths and schemas of data that is sent to the cold tier.

Topics

• Equipment data (measurements)

• Metrics, transforms, and aggregates

• Asset metadata

• Asset hierarchy metadata

• Storage data index files

Equipment data (measurements)

AWS IoT SiteWise exports equipment data (measurements) to the cold tier once every six hours.
Raw data is saved in the cold tier in the Apache AVRO (.avro) format.

File path

AWS IoT SiteWise stores equipment data (measurements) in the cold tier using the following
template.

{keyPrefix}/raw/startYear={startYear}/startMonth={startMonth}/startDay={startDay}/
seriesBucket={seriesBucket}/raw_{timeseriesId}_{startTimestamp}_{quality}.avro

Error: Role ARN can't be assumed 866

https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_cant-assume-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot_roles.html#troubleshoot_roles_cant-assume-role
https://avro.apache.org

AWS IoT SiteWise User Guide

Every file path to raw data in Amazon S3 contains the following components.

Path component Description

keyPrefix The Amazon S3 prefix that you specified in
the AWS IoT SiteWise storage configuration.
Amazon S3 uses the prefix as a folder name in
the bucket.

raw The folder that stores time series data from
equipment (measurements). The raw folder is
saved in the prefix folder.

seriesBucket A hexadecimal number between 00 and ff.
This number is derived from timeSeriesId .
This partition is used to increase throughpu
t when AWS IoT SiteWise writes to the cold
tier. When you use Amazon Athena to run
queries, you can use the partition for fine-grai
n partitioning to improve query performance.

seriesBucket and timeSeriesBucket
in the asset metadata are the same number.

startYear The year of the exclusive start time associated
with the time series data.

startMonth The month of the exclusive start time
associated with the time series data.

startDay The day of the month of the exclusive start
time associated with the time series data.

fileName The file name uses the underscore (_)
character as a delimiter to separate the
following:

• The raw prefix.

• The timeSeriesId value.

Equipment data (measurements) 867

AWS IoT SiteWise User Guide

Path component Description

• The epoch timestamp of the exclusive start
time associated with the time series data.

• The quality of the data. Valid values: GOOD,
BAD, and UNCERTAIN . For more informati
on, see AssetPropertyValue in the AWS IoT
SiteWise API Reference.

The file is saved in the .avro format by using
the Snappy compression.

Example file path to raw data in the cold tier

keyPrefix/raw/startYear=2021/startMonth=1/startDay=2/seriesBucket=a2/
raw_7020c8e2-e6db-40fa-9845-ed0dddd4c77d_95e63da7-d34e-43e1-
bc6f-1b490154b07a_1609577700_GOOD.avro

Fields

The schema of raw data that is exported to the cold tier contains the following fields.

AWS IoT SiteWise advises customers to implement support for schema evolution on systems that
read raw data from cold tier, as there may be additional fields introduced in the future.

Null data is represented as all value fields being null. However, customers will still receive the
correct data type when querying with AWS IoT SiteWise APIs.

Field name Supported types Default type Description

seriesId string N/A The ID that identifie
s the time series data
from equipment
 (measurements). You
can use this field to
join raw data and

Equipment data (measurements) 868

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_AssetPropertyValue.html
https://github.com/google/snappy

AWS IoT SiteWise User Guide

Field name Supported types Default type Description

asset metadata in
queries.

timeInSeconds long N/A The timestamp date,
in seconds, in the
Unix epoch format.
Fractional nanosecon
d data is provided by
offsetInNanos .

offsetInNanos long N/A The nanosecon
d offset from
timeInSeconds .

quality string N/A The quality of the
time series value.

doubleValue double or null null Time series data of
type double (floating
point number).

stringValue string or null null Time series data of
type string (sequence
of characters).

integerValue int or null null Time series data of
type integer (whole
number).

booleanValue boolean or null null Time series data of
type Boolean (true or
false).

jsonValue string or null null Time series data of
type JSON (complex
data types stored as a
string).

Equipment data (measurements) 869

AWS IoT SiteWise User Guide

Field name Supported types Default type Description

recordVersion long or null null The version number
for the record. You
can use the version
number to select the
latest record. Newer
records have larger
version numbers.

Example raw data in the cold tier

 {"seriesId":"e9687d2a-0dbe-4f65-9ed6-6f443cba41f7_95e63da7-d34e-43e1-
bc6f-1b490154b07a","timeInSeconds":1625675887,"offsetInNanos":0,"quality":"GOOD","doubleValue":
{"double":0.75},"stringValue":null,"integerValue":null,"booleanValue":null,"jsonValue":null,"recordVersion":null}
 {"seriesId":"e9687d2a-0dbe-4f65-9ed6-6f443cba41f7_95e63da7-d34e-43e1-
bc6f-1b490154b07a","timeInSeconds":1625675889,"offsetInNanos":0,"quality":"GOOD","doubleValue":
{"double":0.69},"stringValue":null,"integerValue":null,"booleanValue":null,"jsonValue":null,"recordVersion":null}
 {"seriesId":"e9687d2a-0dbe-4f65-9ed6-6f443cba41f7_95e63da7-d34e-43e1-
bc6f-1b490154b07a","timeInSeconds":1625675890,"offsetInNanos":0,"quality":"GOOD","doubleValue":
{"double":0.66},"stringValue":null,"integerValue":null,"booleanValue":null,"jsonValue":null,"recordVersion":null}
 {"seriesId":"e9687d2a-0dbe-4f65-9ed6-6f443cba41f7_95e63da7-d34e-43e1-
bc6f-1b490154b07a","timeInSeconds":1625675891,"offsetInNanos":0,"quality":"GOOD","doubleValue":
{"double":0.92},"stringValue":null,"integerValue":null,"booleanValue":null,"jsonValue":null,"recordVersion":null}
 {"seriesId":"e9687d2a-0dbe-4f65-9ed6-6f443cba41f7_95e63da7-d34e-43e1-
bc6f-1b490154b07a","timeInSeconds":1625675892,"offsetInNanos":0,"quality":"GOOD","doubleValue":
{"double":0.73},"stringValue":null,"integerValue":null,"booleanValue":null,"jsonValue":null,"recordVersion":null}

Metrics, transforms, and aggregates

AWS IoT SiteWise exports metrics, transforms, and aggregates to the cold tier once every six hours.
Metrics, transforms, and aggregates are saved in the cold tier in the Apache AVRO (.avro) format.

File path

AWS IoT SiteWise stores metrics, transforms, and aggregates in the cold tier using the following
template.

Metrics, transforms, and aggregates 870

https://avro.apache.org

AWS IoT SiteWise User Guide

{keyPrefix}/agg/startYear={startYear}/startMonth={startMonth}/startDay={startDay}/
seriesBucket={seriesBucket}/agg_{timeseriesId}_{startTimestamp}_{quality}.avro

Every file path to metrics, transforms, and aggregates in Amazon S3 contains the following
components.

Path component Description

keyPrefix The Amazon S3 prefix that you specified in
the AWS IoT SiteWise storage configuration.
Amazon S3 uses the prefix as a folder name in
the bucket.

agg The folder that stores time series data from
metrics. The agg folder is saved in the prefix
folder.

seriesBucket A hexadecimal number between 00 and ff.
This number is derived from timeSeriesId .
This partition is used to increase throughpu
t when AWS IoT SiteWise writes to the cold
tier. When you use Amazon Athena to run
queries, you can use the partition for fine-grai
n partitioning to improve query performance.

seriesBucket and timeSeriesBucket
in the asset metadata are the same number.

startYear The year of the exclusive start time associated
with the time series data.

startMonth The month of the exclusive start time
associated with the time series data.

startDay The day of the month of the exclusive start
time associated with the time series data.

Metrics, transforms, and aggregates 871

AWS IoT SiteWise User Guide

Path component Description

fileName The file name uses the underscore (_)
character as a delimiter to separate the
following:

• The raw prefix.

• The timeSeriesId value.

• The epoch timestamp of the exclusive start
time associated with the time series data.

• The quality of the data. Valid values: GOOD,
BAD, and UNCERTAIN . For more informati
on, see AssetPropertyValue in the AWS IoT
SiteWise API Reference.

The file is saved in the .avro format by using
the Snappy compression.

Example file path to metrics in the cold tier

keyPrefix/agg/startYear=2021/startMonth=1/startDay=2/seriesBucket=a2/
agg_7020c8e2-e6db-40fa-9845-ed0dddd4c77d_95e63da7-d34e-43e1-
bc6f-1b490154b07a_1609577700_GOOD.avro

Fields

The schema of metrics, transforms, and aggregates that are exported to the cold tier contains the
following fields.

Field name Supported types Default type Description

seriesId string N/A The ID that identifie
s the time series data
from equipment,
metrics, or transform
s. You can use this

Metrics, transforms, and aggregates 872

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_AssetPropertyValue.html
https://github.com/google/snappy

AWS IoT SiteWise User Guide

Field name Supported types Default type Description

field to join raw data
and asset metadata
in queries.

timeInSeconds long N/A The timestamp date,
in seconds, in the
Unix epoch format.
Fractional nanosecon
d data is provided by
offsetInNanos .

offsetInNanos long N/A The nanosecon
d offset from
timeInSeconds .

quality string N/A The quality by which
to filter asset data.

resolution string N/A The time interval
over which to
aggregate data.

count double or null null The total number
of data points for
the given variables
over the current time
interval.

average double or null null The mean of the
given variables
' values over the
current time interval.

min double or null null The minimum of
the given variables
' values over the
current time interval.

Metrics, transforms, and aggregates 873

AWS IoT SiteWise User Guide

Field name Supported types Default type Description

max boolean or null null The maximum of
the given variables
' values over the
current time interval.

sum string or null null The sum of the given
variables' values
over the current time
interval.

recordVersion long or null null The version number
for the record. You
can use the version
number to select the
latest record. Newer
records have larger
version numbers.

Example Metric data in the cold tier

{"seriesId":"f74c2828-5317-4df3-
ba16-6d41b5bcb531","timeInSeconds":1637334060,"offsetInNanos":0,"quality":"GOOD","resolution":"PT1M","count":31.0,"average":
{"double":16.0},"min":{"double":1.0},"max":{"double":31.0},"sum":
{"double":496.0},"recordVersion":null}
 {"seriesId":"f74c2828-5317-4df3-
ba16-6d41b5bcb531","timeInSeconds":1637334120,"offsetInNanos":0,"quality":"GOOD","resolution":"PT1M","count":29.0,"average":
{"double":46.0},"min":{"double":32.0},"max":{"double":60.0},"sum":
{"double":1334.0},"recordVersion":null}
 {"seriesId":"f74c2828-5317-4df3-
ba16-6d41b5bcb531","timeInSeconds":1637334540,"offsetInNanos":0,"quality":"GOOD","resolution":"PT1M","count":31.0,"average":
{"double":16.0},"min":{"double":1.0},"max":{"double":31.0},"sum":
{"double":496.0},"recordVersion":null}
 {"seriesId":"f74c2828-5317-4df3-
ba16-6d41b5bcb531","timeInSeconds":1637334600,"offsetInNanos":0,"quality":"GOOD","resolution":"PT1M","count":29.0,"average":
{"double":46.0},"min":{"double":32.0},"max":{"double":60.0},"sum":
{"double":1334.0},"recordVersion":null}

Metrics, transforms, and aggregates 874

AWS IoT SiteWise User Guide

 {"seriesId":"f74c2828-5317-4df3-
ba16-6d41b5bcb531","timeInSeconds":1637335020,"offsetInNanos":0,"quality":"GOOD","resolution":"PT1M","count":31.0,"average":
{"double":16.0},"min":{"double":1.0},"max":{"double":31.0},"sum":
{"double":496.0},"recordVersion":null}

Asset metadata

When you enable AWS IoT SiteWise to export data to the cold tier for the first time, asset metadata
is exported to the cold tier. After the initial configuration, AWS IoT SiteWise exports asset metadata
to the tier only when you change asset model definitions or asset definitions. Asset metadata is
saved in the cold tier in the newline delimited JSON (.ndjson) format.

File path

AWS IoT SiteWise stores asset metadata in the cold tier using the following template.

{keyPrefix}/asset_metadata/asset_{assetId}.ndjson

Every file path to asset metadata in the cold tier contains the following components.

Path component Description

keyPrefix The Amazon S3 prefix that you specified in
the AWS IoT SiteWises storage configuration.
Amazon S3 uses the prefix as a folder name in
the bucket.

asset_metadata The folder that stores asset metadata. The
asset_metadata folder is saved in the
prefix folder.

fileName The file name uses the underscore (_)
character as a delimiter to separate the
following:

• The asset prefix.

• The assetId value.

Asset metadata 875

AWS IoT SiteWise User Guide

Path component Description

The file is saved in the .ndjson format.

Example file path to asset metadata in the colder tier

keyPrefix/asset_metadata/asset_35901915-d476-4dca-8637-d9ed4df939ed.ndjson

Fields

The schema of asset metadata that is exported to the cold tier contains the following fields.

Field name Description

assetId The ID of the asset.

assetName The name of the asset.

assetExternalId The external ID of the asset.

assetModelId The ID of the asset model used to create this
asset.

assetModelName The name of the asset model.

assetModelExternalId The external ID of the asset model.

assetPropertyId The ID of the asset property.

assetPropertyName The name of the asset property.

assetPropertyExternalId The external ID of the asset property.

assetPropertyDataType The data type of the asset property.

assetPropertyUnit The unit of the asset property (for example,
Newtons and RPM).

assetPropertyAlias The alias that identifies the asset property,
such as an OPC UA server data stream path

Asset metadata 876

AWS IoT SiteWise User Guide

Field name Description

(for example, /company/windfarm/3/
turbine/7/temperature).

timeSeriesId The ID that identifies the time series data
from equipment, metrics, or transforms. You
can use this field to join raw data and asset
metadata in queries.

timeSeriesBucket A hexadecimal number between 00 and ff.
This number is derived from timeSeriesId .
This partition is used to increase throughpu
t when AWS IoT SiteWise writes to the cold
tier. When you use Amazon Athena to run
queries, you can use the partition for fine-grai
n partitioning to improve query performance.

timeSeriesBucket and seriesBucket
in the file path to raw data are the same
number.

assetCompositeModelId The ID of the composite model.

assetCompositeModelExternalId The external ID of the composite model.

assetCompositeModelDescription The description of the composite model.

assetCompositeModelName The name of the composite model.

assetCompositeModelType The type of the composite model. For alarm
composite models, this type is AWS/ALARM .

assetCreationDate The date the asset was created, in Unix epoch
time.

assetLastUpdateDate The date the asset was last updated, in Unix
epoch time.

assetStatusErrorCode The error code.

Asset metadata 877

AWS IoT SiteWise User Guide

Field name Description

assetStatusErrorMessage The error message.

assetStatusState The current status of the asset.

Example asset metadata in the cold tier

 {"assetId":"7020c8e2-e6db-40fa-9845-
ed0dddd4c77d","assetExternalId":null,"assetName":"Wind Turbine Asset
 2","assetModelId":"ec1d924f-f07d-444f-b072-
e2994c165d35","assetModelExternalId":null,"assetModelName":"Wind
 Turbine Asset Model","assetPropertyId":"95e63da7-d34e-43e1-
bc6f-1b490154b07a","assetPropertyExternalId":null,"assetPropertyName":"Temperature","assetPropertyDataType":"DOUBLE","assetPropertyUnit":"Celsius","assetPropertyAlias":"USA/
Washington/Seattle/WT2/temp","timeSeriesId":"7020c8e2-e6db-40fa-9845-
ed0dddd4c77d_95e63da7-d34e-43e1-
bc6f-1b490154b07a","timeSeriesBucket":"f6","assetArn":null,"assetCompositeModelDescription":null,"assetCompositeModelName":null,"assetCompositeModelType":null,"assetCompositeModelId":null,"assetCompositeModelExternalId":null,"assetCreationDate":1619466323,"assetLastUpdateDate":1623859856,"assetStatusErrorCode":null,"assetStatusErrorMessage":null,"assetStatusState":"ACTIVE"}
 {"assetId":"7020c8e2-e6db-40fa-9845-
ed0dddd4c77d","assetExternalId":null,"assetName":"Wind Turbine Asset
 2","assetModelId":"ec1d924f-f07d-444f-b072-
e2994c165d35","assetModelExternalId":null,"assetModelName":"Wind Turbine Asset
 Model","assetPropertyId":"c706d54d-4c11-42dc-9a01-63662fc697b4","assetPropertyExternalId":null,"assetPropertyName":"Pressure","assetPropertyDataType":"DOUBLE","assetPropertyUnit":"KiloPascal","assetPropertyAlias":"USA/
Washington/Seattle/WT2/pressure","timeSeriesId":"7020c8e2-e6db-40fa-9845-
ed0dddd4c77d_c706d54d-4c11-42dc-9a01-63662fc697b4","timeSeriesBucket":"1e","assetArn":null,"assetCompositeModelDescription":null,"assetCompositeModelName":null,"assetCompositeModelType":null,"assetCompositeModelId":null,"assetCompositeModelExternalId":null,"assetCreationDate":1619466323,"assetLastUpdateDate":1623859856,"assetStatusErrorCode":null,"assetStatusErrorMessage":null,"assetStatusState":"ACTIVE"}
 {"assetId":"7020c8e2-e6db-40fa-9845-
ed0dddd4c77d","assetExternalId":null,"assetName":"Wind Turbine Asset
 2","assetModelId":"ec1d924f-f07d-444f-b072-
e2994c165d35","assetModelExternalId":null,"assetModelName":"Wind
 Turbine Asset Model","assetPropertyId":"8cf1162f-dead-4fbe-b468-
c8e24cde9f50","assetPropertyExternalId":null,"assetPropertyName":"Max
 Temperature","assetPropertyDataType":"DOUBLE","assetPropertyUnit":null,"assetPropertyAlias":null,"timeSeriesId":"7020c8e2-
e6db-40fa-9845-ed0dddd4c77d_8cf1162f-dead-4fbe-b468-
c8e24cde9f50","timeSeriesBucket":"d7","assetArn":null,"assetCompositeModelDescription":null,"assetCompositeModelName":null,"assetCompositeModelType":null,"assetCompositeModelId":null,"assetCompositeModelExternalId":null,"assetCreationDate":1619466323,"assetLastUpdateDate":1623859856,"assetStatusErrorCode":null,"assetStatusErrorMessage":null,"assetStatusState":"ACTIVE"}

 {"assetId":"3a5f2a22-3b37-4332-9c1c-404ea1d73fab","assetExternalId":null,"assetName":"BatchAssetDouble1","assetModelId":"814bdfd8-24db-4a33-8d9b-
ebc75e75e827","assetModelExternalId":null,"assetModelName":"FlashTestAssetModelDouble","assetPropertyId":"6b7e1532-175b-4c02-
b410-
ab401a9176ed","assetPropertyExternalId":null,"assetPropertyName":"measurementProperty","assetPropertyDataType":"DOUBLE","assetPropertyUnit":"u","assetPropertyAlias":null,"timeSeriesId":"ab19f4fa-7e7b-4247-
ae89-
ff316f5ff8aa","timeSeriesBucket":"af","assetArn":null,"assetCompositeModelDescription":null,"assetCompositeModelName":null,"assetCompositeModelType":null,"assetCompositeModelId":null,"assetCompositeModelExternalId":null,"assetCreationDate":1646960106,"assetLastUpdateDate":1646960106,"assetStatusErrorCode":null,"assetStatusErrorMessage":null,"assetStatusState":"ACTIVE"}

Asset metadata 878

AWS IoT SiteWise User Guide

Asset hierarchy metadata

When you enable AWS IoT SiteWise to save data the in cold tier for the first time, asset hierarchy
metadata is exported to the cold tier. After the initial configuration, AWS IoT SiteWise exports
asset hierarchy metadata to the cold tier only when you make changes to asset model or asset
definitions. Asset hierarchy metadata is saved in the cold tier in the newline delimited JSON
(.ndjson) format.

An external identifier for the hierarchy, target asset, or source asset is retrieved by calling the
DescribeAsset API.

File path

AWS IoT SiteWise stores asset hierarchy metadata in the cold tier using the following template.

{keyPrefix}/asset_hierarchy_metadata/{parentAssetId}_{hierarchyId}.ndjson

Every file path to asset hierarchy metadata in the cold tier contains the following components.

Path component Description

keyPrefix The Amazon S3 prefix that you specified in
the AWS IoT SiteWise storage configuration.
Amazon S3 uses the prefix as a folder name in
the bucket.

asset_hierarchy_metadata The folder that stores asset hierarchy
metadata. The asset_hierarchy_me
tadata folder is saved in the prefix folder.

fileName The file name uses the underscore (_)
character as a delimiter to separate the
following:

• The parentAssetId value.

• The hierarchyId value.

Asset hierarchy metadata 879

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAsset.html

AWS IoT SiteWise User Guide

Path component Description

The file is saved in the .ndjson format.

Example file path to asset hierarchy metadata in the cold tier

keyPrefix/asset_hierarchy_metadata/35901915-d476-4dca-8637-
d9ed4df939ed_c5b3ced8-589a-48c7-9998-cdccfc9747a0.ndjson

Fields

The schema of asset hierarchy metadata that is exported to the cold tier contains the following
fields.

Field name Description

sourceAssetId The ID of the source asset in this asset
relationship.

targetAssetId The ID of the target asset in this asset
relationship.

hierarchyId The ID of the hierarchy.

associationType The association type of this asset relationship.

The value must be CHILD. The target asset is a
child asset of the source asset.

Example asset hierarchy metadata in the cold tier

{"sourceAssetId":"80388e72-2284-44fb-9c89-
bfbaf0dfedd2","targetAssetId":"2b866c25-0c74-4750-bdf5-
b73683c8a2a2","hierarchyId":"bbed9f59-0412-4585-
a61d-6044db526aee","associationType":"CHILD"}
 {"sourceAssetId":"80388e72-2284-44fb-9c89-
bfbaf0dfedd2","targetAssetId":"6b51246e-984d-460d-
bc0b-470ea47d1e31","hierarchyId":"bbed9f59-0412-4585-
a61d-6044db526aee","associationType":"CHILD"}

Asset hierarchy metadata 880

AWS IoT SiteWise User Guide

To view your data in the cold tier

1. Navigate to the Amazon S3 console.

2. In the navigation pane, choose Buckets, and then choose your Amazon S3 bucket.

3. Navigate to the folder that contains the raw data, asset metadata, or asset hierarchy metadata.

4. Select the files, and then from Actions, choose Download.

Storage data index files

AWS IoT SiteWise uses these files to optimize data query performance. They appear in your
Amazon S3 bucket, but you don't need to use them.

File path

AWS IoT SiteWise stores data index files in the cold tier using the following template.

keyPrefix/index/series=timeseriesId/startYear=startYear/startMonth=startMonth/
startDay=startDay/index_timeseriesId_startTimestamp_quality

Example file path to data storage index file

keyPrefix/index/series=7020c8e2-e6db-40fa-9845-ed0dddd4c77d_95e63da7-
d34e-43e1-bc6f-1b490154b07a/startYear=2022/startMonth=02/startDay=03/
index_7020c8e2-e6db-40fa-9845-ed0dddd4c77d_95e63da7-d34e-43e1-
bc6f-1b490154b07a_1643846400_GOOD

Storage data index files 881

https://console.aws.amazon.com/s3/

AWS IoT SiteWise User Guide

Code examples for AWS IoT SiteWise using AWS SDKs

The following code examples show how to use AWS IoT SiteWise with an AWS software
development kit (SDK).

Basics are code examples that show you how to perform the essential operations within a service.

Actions are code excerpts from larger programs and must be run in context. While actions show you
how to call individual service functions, you can see actions in context in their related scenarios.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Get started

Hello AWS IoT SiteWise

The following code examples show how to get started using AWS IoT SiteWise.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

public class HelloSitewise {
 private static final Logger logger =
 LoggerFactory.getLogger(HelloSitewise.class);
 public static void main(String[] args) {
 fetchAssetModels();
 }

 /**
 * Fetches asset models using the provided {@link IoTSiteWiseAsyncClient}.
 */

882

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 public static void fetchAssetModels() {
 IoTSiteWiseAsyncClient siteWiseAsyncClient =
 IoTSiteWiseAsyncClient.create();
 ListAssetModelsRequest assetModelsRequest =
 ListAssetModelsRequest.builder()
 .assetModelTypes(AssetModelType.ASSET_MODEL)
 .build();

 // Asynchronous paginator - process paginated results.
 ListAssetModelsPublisher listModelsPaginator =
 siteWiseAsyncClient.listAssetModelsPaginator(assetModelsRequest);
 CompletableFuture<Void> future = listModelsPaginator.subscribe(response -
> {
 response.assetModelSummaries().forEach(assetSummary ->
 logger.info("Asset Model Name: {} ", assetSummary.name())
);
 });

 // Wait for the asynchronous operation to complete
 future.join();
 }
}

• For API details, see ListAssetModels in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {
 paginateListAssetModels,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";

// Call ListDocuments and display the result.

883

https://docs.aws.amazon.com/goto/SdkForJavaV2/iotsitewise-2019-12-02/ListAssetModels
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

export const main = async () => {
 const client = new IoTSiteWiseClient();
 const listAssetModelsPaginated = [];
 console.log(
 "Hello, AWS Systems Manager! Let's list some of your documents:\n",
);
 try {
 // The paginate function is a wrapper around the base command.
 const paginator = paginateListAssetModels({ client }, { maxResults: 5 });
 for await (const page of paginator) {
 listAssetModelsPaginated.push(...page.assetModelSummaries);
 }
 } catch (caught) {
 console.error(`There was a problem saying hello: ${caught.message}`);
 throw caught;
 }
 for (const { name, creationDate } of listAssetModelsPaginated) {
 console.log(`${name} - ${creationDate}`);
 }
};

// Call function if run directly.
import { fileURLToPath } from "node:url";
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 main();
}

• For API details, see ListAssetModels in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import boto3

884

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/ListAssetModelsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

def hello_iot_sitewise(iot_sitewise_client):
 """
 Use the AWS SDK for Python (Boto3) to create an AWS IoT SiteWise
 client and list the asset models in your account.
 This example uses the default settings specified in your shared credentials
 and config files.

 :param iot_sitewise_client: A Boto3 AWS IoT SiteWise Client object. This
 object wraps
 the low-level AWS IoT SiteWise service API.
 """
 print("Hello, AWS IoT SiteWise! Let's list some of your asset models:\n")
 paginator = iot_sitewise_client.get_paginator("list_asset_models")
 page_iterator = paginator.paginate(PaginationConfig={"MaxItems": 10})

 asset_model_names: [str] = []
 for page in page_iterator:
 for asset_model in page["assetModelSummaries"]:
 asset_model_names.append(asset_model["name"])

 print(f"{len(asset_model_names)} asset model(s) retrieved.")
 for asset_model_name in asset_model_names:
 print(f"\t{asset_model_name}")

if __name__ == "__main__":
 hello_iot_sitewise(boto3.client("iotsitewise"))

• For API details, see ListAssetModels in AWS SDK for Python (Boto3) API Reference.

Code examples

• Basic examples for AWS IoT SiteWise using AWS SDKs

• Hello AWS IoT SiteWise

• Learn the basics of AWS IoT SiteWise with an AWS SDK

• Actions for AWS IoT SiteWise using AWS SDKs

• Use BatchPutAssetPropertyValue with an AWS SDK or CLI

• Use CreateAsset with an AWS SDK or CLI

• Use CreateAssetModel with an AWS SDK or CLI

885

https://docs.aws.amazon.com/goto/boto3/iotsitewise-2019-12-02/ListAssetModels

AWS IoT SiteWise User Guide

• Use CreateGateway with an AWS SDK or CLI

• Use CreatePortal with an AWS SDK or CLI

• Use DeleteAsset with an AWS SDK or CLI

• Use DeleteAssetModel with an AWS SDK or CLI

• Use DeleteGateway with an AWS SDK or CLI

• Use DeletePortal with an AWS SDK or CLI

• Use DescribeAssetModel with an AWS SDK or CLI

• Use DescribeGateway with an AWS SDK or CLI

• Use DescribePortal with an AWS SDK or CLI

• Use GetAssetPropertyValue with an AWS SDK or CLI

• Use ListAssetModels with an AWS SDK or CLI

Basic examples for AWS IoT SiteWise using AWS SDKs

The following code examples show how to use the basics of AWS IoT SiteWise with AWS SDKs.

Examples

• Hello AWS IoT SiteWise

• Learn the basics of AWS IoT SiteWise with an AWS SDK

• Actions for AWS IoT SiteWise using AWS SDKs

• Use BatchPutAssetPropertyValue with an AWS SDK or CLI

• Use CreateAsset with an AWS SDK or CLI

• Use CreateAssetModel with an AWS SDK or CLI

• Use CreateGateway with an AWS SDK or CLI

• Use CreatePortal with an AWS SDK or CLI

• Use DeleteAsset with an AWS SDK or CLI

• Use DeleteAssetModel with an AWS SDK or CLI

• Use DeleteGateway with an AWS SDK or CLI

• Use DeletePortal with an AWS SDK or CLI

• Use DescribeAssetModel with an AWS SDK or CLI

• Use DescribeGateway with an AWS SDK or CLI
Basics 886

AWS IoT SiteWise User Guide

• Use DescribePortal with an AWS SDK or CLI

• Use GetAssetPropertyValue with an AWS SDK or CLI

• Use ListAssetModels with an AWS SDK or CLI

Hello AWS IoT SiteWise

The following code examples show how to get started using AWS IoT SiteWise.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

public class HelloSitewise {
 private static final Logger logger =
 LoggerFactory.getLogger(HelloSitewise.class);
 public static void main(String[] args) {
 fetchAssetModels();
 }

 /**
 * Fetches asset models using the provided {@link IoTSiteWiseAsyncClient}.
 */
 public static void fetchAssetModels() {
 IoTSiteWiseAsyncClient siteWiseAsyncClient =
 IoTSiteWiseAsyncClient.create();
 ListAssetModelsRequest assetModelsRequest =
 ListAssetModelsRequest.builder()
 .assetModelTypes(AssetModelType.ASSET_MODEL)
 .build();

 // Asynchronous paginator - process paginated results.
 ListAssetModelsPublisher listModelsPaginator =
 siteWiseAsyncClient.listAssetModelsPaginator(assetModelsRequest);

Hello AWS IoT SiteWise 887

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 CompletableFuture<Void> future = listModelsPaginator.subscribe(response -
> {
 response.assetModelSummaries().forEach(assetSummary ->
 logger.info("Asset Model Name: {} ", assetSummary.name())
);
 });

 // Wait for the asynchronous operation to complete
 future.join();
 }
}

• For API details, see ListAssetModels in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {
 paginateListAssetModels,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";

// Call ListDocuments and display the result.
export const main = async () => {
 const client = new IoTSiteWiseClient();
 const listAssetModelsPaginated = [];
 console.log(
 "Hello, AWS Systems Manager! Let's list some of your documents:\n",
);
 try {
 // The paginate function is a wrapper around the base command.
 const paginator = paginateListAssetModels({ client }, { maxResults: 5 });
 for await (const page of paginator) {
 listAssetModelsPaginated.push(...page.assetModelSummaries);

Hello AWS IoT SiteWise 888

https://docs.aws.amazon.com/goto/SdkForJavaV2/iotsitewise-2019-12-02/ListAssetModels
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 }
 } catch (caught) {
 console.error(`There was a problem saying hello: ${caught.message}`);
 throw caught;
 }
 for (const { name, creationDate } of listAssetModelsPaginated) {
 console.log(`${name} - ${creationDate}`);
 }
};

// Call function if run directly.
import { fileURLToPath } from "node:url";
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 main();
}

• For API details, see ListAssetModels in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import boto3

def hello_iot_sitewise(iot_sitewise_client):
 """
 Use the AWS SDK for Python (Boto3) to create an AWS IoT SiteWise
 client and list the asset models in your account.
 This example uses the default settings specified in your shared credentials
 and config files.

 :param iot_sitewise_client: A Boto3 AWS IoT SiteWise Client object. This
 object wraps
 the low-level AWS IoT SiteWise service API.

Hello AWS IoT SiteWise 889

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/ListAssetModelsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 """
 print("Hello, AWS IoT SiteWise! Let's list some of your asset models:\n")
 paginator = iot_sitewise_client.get_paginator("list_asset_models")
 page_iterator = paginator.paginate(PaginationConfig={"MaxItems": 10})

 asset_model_names: [str] = []
 for page in page_iterator:
 for asset_model in page["assetModelSummaries"]:
 asset_model_names.append(asset_model["name"])

 print(f"{len(asset_model_names)} asset model(s) retrieved.")
 for asset_model_name in asset_model_names:
 print(f"\t{asset_model_name}")

if __name__ == "__main__":
 hello_iot_sitewise(boto3.client("iotsitewise"))

• For API details, see ListAssetModels in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Learn the basics of AWS IoT SiteWise with an AWS SDK

The following code examples show how to:

• Create an AWS IoT SiteWise Asset Model.

• Create an AWS IoT SiteWise Asset.

• Retrieve the property ID values.

• Send data to an AWS IoT SiteWise Asset.

• Retrieve the value of the AWS IoT SiteWise Asset property.

• Create an AWS IoT SiteWise Portal.

• Create an AWS IoT SiteWise Gateway.

• Describe the AWS IoT SiteWise Gateway.

• Delete the AWS IoT SiteWise Assets.

Learn the basics 890

https://docs.aws.amazon.com/goto/boto3/iotsitewise-2019-12-02/ListAssetModels

AWS IoT SiteWise User Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Run an interactive scenario demonstrating AWS IoT SiteWise features.

public class SitewiseScenario {

 public static final String DASHES = new String(new char[80]).replace("\0",
 "-");

 private static final Logger logger =
 LoggerFactory.getLogger(SitewiseScenario.class);
 static Scanner scanner = new Scanner(System.in);

 private static final String ROLES_STACK = "RoleSitewise";

 static SitewiseActions sitewiseActions = new SitewiseActions();

 public static void main(String[] args) throws Throwable {
 Scanner scanner = new Scanner(System.in);
 String contactEmail = "user@mydomain.com"; // Change email address.
 String assetModelName = "MyAssetModel1";
 String assetName = "MyAsset1" ;
 String portalName = "MyPortal1" ;
 String gatewayName = "MyGateway1" ;
 String myThing = "MyThing1" ;

 logger.info("""
 AWS IoT SiteWise is a fully managed software-as-a-service (SaaS)
 that
 makes it easy to collect, store, organize, and monitor data from
 industrial equipment and processes.
 It is designed to help industrial and manufacturing organizations
 collect data from their equipment and
 processes, and use that data to make informed decisions about their
 operations.

Learn the basics 891

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 One of the key features of AWS IoT SiteWise is its ability to connect
 to a wide range of industrial
 equipment and systems, including programmable logic controllers
 (PLCs), sensors, and other
 industrial devices. It can collect data from these devices and
 organize it into a unified data model,
 making it easier to analyze and gain insights from the data. AWS IoT
 SiteWise also provides tools for
 visualizing the data, setting up alarms and alerts, and generating
 reports.

 Another key feature of AWS IoT SiteWise is its ability to scale to
 handle large volumes of data.
 It can collect and store data from thousands of devices and process
 millions of data points per second,
 making it suitable for large-scale industrial operations.
 Additionally, AWS IoT SiteWise is designed
 to be secure and compliant, with features like role-based access
 controls, data encryption,
 and integration with other AWS services for additional security and
 compliance features.

 Let's get started...
 """);

 waitForInputToContinue(scanner);
 logger.info(DASHES);

 try {
 runScenario(assetModelName, assetName, portalName, contactEmail,
 gatewayName, myThing);
 } catch (RuntimeException e) {
 logger.info(e.getMessage());
 }
 }

 public static void runScenario(String assetModelName, String assetName,
 String portalName, String contactEmail, String gatewayName, String myThing)
 throws Throwable {
 logger.info("Use AWS CloudFormation to create an IAM role that is
 required for this scenario.");
 CloudFormationHelper.deployCloudFormationStack(ROLES_STACK);

Learn the basics 892

AWS IoT SiteWise User Guide

 Map<String, String> stackOutputs =
 CloudFormationHelper.getStackOutputsAsync(ROLES_STACK).join();
 String iamRole = stackOutputs.get("SitewiseRoleArn");
 logger.info("The ARN of the IAM role is {}",iamRole);
 logger.info(DASHES);

 logger.info(DASHES);
 logger.info("1. Create an AWS SiteWise Asset Model");
 logger.info("""
 An AWS IoT SiteWise Asset Model is a way to represent the physical
 assets, such as equipment,
 processes, and systems, that exist in an industrial environment.
 This model provides a structured and
 hierarchical representation of these assets, allowing users to
 define the relationships and properties
 of each asset.

 This scenario creates two asset model properties: temperature and
 humidity.
 """);
 waitForInputToContinue(scanner);
 String assetModelId = null;
 try {
 CreateAssetModelResponse response =
 sitewiseActions.createAssetModelAsync(assetModelName).join();
 assetModelId = response.assetModelId();
 logger.info("Asset Model successfully created. Asset Model ID: {}. ",
 assetModelId);
 } catch (CompletionException ce) {
 Throwable cause = ce.getCause();
 if (cause instanceof ResourceAlreadyExistsException) {
 try {
 assetModelId =
 sitewiseActions.getAssetModelIdAsync(assetModelName).join();
 logger.info("The Asset Model {} already exists. The id of the
 existing model is {}. Moving on...", assetModelName, assetModelId);
 } catch (CompletionException cex) {
 logger.error("Exception thrown acquiring the asset model id:
 {}", cex.getCause().getCause(), cex);
 return;
 }
 } else {
 logger.info("An unexpected error occurred: " +
 cause.getMessage(), cause);

Learn the basics 893

AWS IoT SiteWise User Guide

 return;
 }
 }
 waitForInputToContinue(scanner);

 logger.info(DASHES);
 logger.info("2. Create an AWS IoT SiteWise Asset");
 logger.info("""
 The IoT SiteWise model that we just created defines the structure
 and metadata for your physical assets.
 Now we create an asset from the asset model.

 """);
 logger.info("Let's wait 30 seconds for the asset to be ready.");
 countdown(30);
 waitForInputToContinue(scanner);
 String assetId;
 try {
 CreateAssetResponse response =
 sitewiseActions.createAssetAsync(assetName, assetModelId).join();
 assetId = response.assetId();
 logger.info("Asset created with ID: {}", assetId);
 } catch (CompletionException ce) {
 Throwable cause = ce.getCause();
 if (cause instanceof ResourceNotFoundException) {
 logger.info("The asset model id was not found: {}",
 cause.getMessage(), cause);
 } else {
 logger.info("An unexpected error occurred: {}",
 cause.getMessage(), cause);
 }
 return;
 }
 waitForInputToContinue(scanner);
 logger.info(DASHES);

 logger.info(DASHES);
 logger.info("3. Retrieve the property ID values");
 logger.info("""
 To send data to an asset, we need to get the property ID values. In
 this scenario, we access the
 temperature and humidity property ID values.
 """);
 waitForInputToContinue(scanner);

Learn the basics 894

AWS IoT SiteWise User Guide

 Map<String, String> propertyIds = null;
 try {
 propertyIds = sitewiseActions.getPropertyIds(assetModelId).join();
 } catch (CompletionException ce) {
 Throwable cause = ce.getCause();
 if (cause instanceof IoTSiteWiseException) {
 logger.error("IoTSiteWiseException occurred: {}",
 cause.getMessage(), ce);
 } else {
 logger.error("An unexpected error occurred: {}",
 cause.getMessage(), ce);
 }
 return;
 }
 String humPropId = propertyIds.get("Humidity");
 logger.info("The Humidity property Id is {}", humPropId);
 String tempPropId = propertyIds.get("Temperature");
 logger.info("The Temperature property Id is {}", tempPropId);

 waitForInputToContinue(scanner);
 logger.info(DASHES);

 logger.info(DASHES);
 logger.info("4. Send data to an AWS IoT SiteWise Asset");
 logger.info("""
 By sending data to an IoT SiteWise Asset, you can aggregate data
 from
 multiple sources, normalize the data into a standard format, and
 store it in a
 centralized location. This makes it easier to analyze and gain
 insights from the data.

 In this example, we generate sample temperature and humidity data and
 send it to the AWS IoT SiteWise asset.

 """);
 waitForInputToContinue(scanner);
 try {
 sitewiseActions.sendDataToSiteWiseAsync(assetId, tempPropId,
 humPropId).join();
 logger.info("Data sent successfully.");
 } catch (CompletionException ce) {
 Throwable cause = ce.getCause();
 if (cause instanceof ResourceNotFoundException) {

Learn the basics 895

AWS IoT SiteWise User Guide

 logger.error("The AWS resource was not found: {}",
 cause.getMessage(), cause);
 } else {
 logger.error("An unexpected error occurred: {}",
 cause.getMessage(), cause);
 }
 return;
 }
 waitForInputToContinue(scanner);
 logger.info(DASHES);

 logger.info(DASHES);
 logger.info("5. Retrieve the value of the IoT SiteWise Asset property");
 logger.info("""
 IoT SiteWise is an AWS service that allows you to collect, process,
 and analyze industrial data
 from connected equipment and sensors. One of the key benefits of
 reading an IoT SiteWise property
 is the ability to gain valuable insights from your industrial data.

 """);
 waitForInputToContinue(scanner);
 try {
 Double assetVal = sitewiseActions.getAssetPropValueAsync(tempPropId,
 assetId).join();
 logger.info("The property name is: {}", "Temperature");
 logger.info("The value of this property is: {}", assetVal);

 waitForInputToContinue(scanner);

 assetVal = sitewiseActions.getAssetPropValueAsync(humPropId,
 assetId).join();
 logger.info("The property name is: {}", "Humidity");
 logger.info("The value of this property is: {}", assetVal);
 } catch (CompletionException ce) {
 Throwable cause = ce.getCause();
 if (cause instanceof ResourceNotFoundException) {
 logger.info("The AWS resource was not found: {}",
 cause.getMessage(), cause);
 } else {
 logger.info("An unexpected error occurred: {}",
 cause.getMessage(), cause);
 }
 return;

Learn the basics 896

AWS IoT SiteWise User Guide

 }
 waitForInputToContinue(scanner);
 logger.info(DASHES);

 logger.info(DASHES);
 logger.info("6. Create an IoT SiteWise Portal");
 logger.info("""
 An IoT SiteWise Portal allows you to aggregate data from multiple
 industrial sources,
 such as sensors, equipment, and control systems, into a centralized
 platform.
 """);
 waitForInputToContinue(scanner);
 String portalId;
 try {
 portalId = sitewiseActions.createPortalAsync(portalName, iamRole,
 contactEmail).join();
 logger.info("Portal created successfully. Portal ID {}", portalId);
 } catch (CompletionException ce) {
 Throwable cause = ce.getCause();
 if (cause instanceof IoTSiteWiseException siteWiseEx) {
 logger.error("IoT SiteWise error occurred: Error message: {},
 Error code {}",
 siteWiseEx.getMessage(),
 siteWiseEx.awsErrorDetails().errorCode(), siteWiseEx);
 } else {
 logger.error("An unexpected error occurred: {}",
 cause.getMessage());
 }
 return;
 }
 waitForInputToContinue(scanner);
 logger.info(DASHES);

 logger.info(DASHES);
 logger.info("7. Describe the Portal");
 logger.info("""
 In this step, we get a description of the portal and display the
 portal URL.
 """);
 waitForInputToContinue(scanner);
 try {
 String portalUrl =
 sitewiseActions.describePortalAsync(portalId).join();

Learn the basics 897

AWS IoT SiteWise User Guide

 logger.info("Portal URL: {}", portalUrl);
 } catch (CompletionException ce) {
 Throwable cause = ce.getCause();
 if (cause instanceof ResourceNotFoundException notFoundException) {
 logger.error("A ResourceNotFoundException occurred: Error
 message: {}, Error code {}",
 notFoundException.getMessage(),
 notFoundException.awsErrorDetails().errorCode(), notFoundException);
 } else {
 logger.error("An unexpected error occurred: {}",
 cause.getMessage());
 }
 return;
 }
 waitForInputToContinue(scanner);
 logger.info(DASHES);

 logger.info(DASHES);
 logger.info("8. Create an IoT SiteWise Gateway");
 logger.info(
 """
 IoT SiteWise Gateway serves as the bridge between industrial
 equipment, sensors, and the
 cloud-based IoT SiteWise service. It is responsible for securely
 collecting, processing, and
 transmitting data from various industrial assets to the IoT
 SiteWise platform,
 enabling real-time monitoring, analysis, and optimization of
 industrial operations.

 """);
 waitForInputToContinue(scanner);
 String gatewayId = "";
 try {
 gatewayId = sitewiseActions.createGatewayAsync(gatewayName,
 myThing).join();
 logger.info("Gateway creation completed successfully. id is {}",
 gatewayId);
 } catch (CompletionException ce) {
 Throwable cause = ce.getCause();
 if (cause instanceof IoTSiteWiseException siteWiseEx) {
 logger.error("IoT SiteWise error occurred: Error message: {},
 Error code {}",

Learn the basics 898

AWS IoT SiteWise User Guide

 siteWiseEx.getMessage(),
 siteWiseEx.awsErrorDetails().errorCode(), siteWiseEx);
 } else {
 logger.error("An unexpected error occurred: {}",
 cause.getMessage());
 }
 return;
 }
 logger.info(DASHES);
 logger.info(DASHES);

 logger.info("9. Describe the IoT SiteWise Gateway");
 waitForInputToContinue(scanner);
 try {
 sitewiseActions.describeGatewayAsync(gatewayId)
 .thenAccept(response -> {
 logger.info("Gateway Name: {}", response.gatewayName());
 logger.info("Gateway ARN: {}", response.gatewayArn());
 logger.info("Gateway Platform: {}",
 response.gatewayPlatform());
 logger.info("Gateway Creation Date: {}",
 response.creationDate());
 }).join();
 } catch (CompletionException ce) {
 Throwable cause = ce.getCause();
 if (cause instanceof ResourceNotFoundException notFoundException) {
 logger.error("A ResourceNotFoundException occurred: Error
 message: {}, Error code {}",
 notFoundException.getMessage(),
 notFoundException.awsErrorDetails().errorCode(), notFoundException);
 } else {
 logger.error("An unexpected error occurred: {}",
 cause.getMessage(), cause);
 }
 return;
 }
 logger.info(DASHES);

 logger.info(DASHES);
 logger.info("10. Delete the AWS IoT SiteWise Assets");
 logger.info(
 """
 Before you can delete the Asset Model, you must delete the assets.

Learn the basics 899

AWS IoT SiteWise User Guide

 """);
 logger.info("Would you like to delete the IoT SiteWise Assets? (y/n)");
 String delAns = scanner.nextLine().trim();
 if (delAns.equalsIgnoreCase("y")) {
 logger.info("You selected to delete the SiteWise assets.");
 waitForInputToContinue(scanner);
 try {
 sitewiseActions.deletePortalAsync(portalId).join();
 logger.info("Portal {} was deleted successfully.", portalId);

 } catch (CompletionException ce) {
 Throwable cause = ce.getCause();
 if (cause instanceof ResourceNotFoundException notFoundException)
 {
 logger.error("A ResourceNotFoundException occurred: Error
 message: {}, Error code {}",
 notFoundException.getMessage(),
 notFoundException.awsErrorDetails().errorCode(), notFoundException);
 } else {
 logger.error("An unexpected error occurred: {}",
 cause.getMessage());
 }
 }

 try {
 sitewiseActions.deleteGatewayAsync(gatewayId).join();
 logger.info("Gateway {} was deleted successfully.", gatewayId);
 } catch (CompletionException ce) {
 Throwable cause = ce.getCause();
 if (cause instanceof ResourceNotFoundException notFoundException)
 {
 logger.error("A ResourceNotFoundException occurred: Error
 message: {}, Error code {}",
 notFoundException.getMessage(),
 notFoundException.awsErrorDetails().errorCode(), notFoundException);
 } else {
 logger.error("An unexpected error occurred: {}",
 cause.getMessage());
 }
 }

 try {
 sitewiseActions.deleteAssetAsync(assetId).join();

Learn the basics 900

AWS IoT SiteWise User Guide

 logger.info("Request to delete asset {} sent successfully",
 assetId);
 } catch (CompletionException ce) {
 Throwable cause = ce.getCause();
 if (cause instanceof ResourceNotFoundException notFoundException)
 {
 logger.error("A ResourceNotFoundException occurred: Error
 message: {}, Error code {}",
 notFoundException.getMessage(),
 notFoundException.awsErrorDetails().errorCode(), notFoundException);
 } else {
 logger.error("An unexpected error occurred: {}",
 cause.getMessage());
 }
 }
 logger.info("Let's wait 1 minute for the asset to be deleted.");
 countdown(60);
 waitForInputToContinue(scanner);
 logger.info("Delete the AWS IoT SiteWise Asset Model");
 try {
 sitewiseActions.deleteAssetModelAsync(assetModelId).join();
 logger.info("Asset model deleted successfully.");
 } catch (CompletionException ce) {
 Throwable cause = ce.getCause();
 if (cause instanceof ResourceNotFoundException notFoundException)
 {
 logger.error("A ResourceNotFoundException occurred: Error
 message: {}, Error code {}",
 notFoundException.getMessage(),
 notFoundException.awsErrorDetails().errorCode(), notFoundException);
 } else {
 logger.error("An unexpected error occurred: {}",
 cause.getMessage());
 }
 }
 waitForInputToContinue(scanner);

 } else {
 logger.info("The resources will not be deleted.");
 }
 logger.info(DASHES);

 logger.info(DASHES);
 CloudFormationHelper.destroyCloudFormationStack(ROLES_STACK);

Learn the basics 901

AWS IoT SiteWise User Guide

 logger.info("This concludes the AWS IoT SiteWise Scenario");
 logger.info(DASHES);
 }

 private static void waitForInputToContinue(Scanner scanner) {
 while (true) {
 logger.info("");
 logger.info("Enter 'c' followed by <ENTER> to continue:");
 String input = scanner.nextLine();

 if (input.trim().equalsIgnoreCase("c")) {
 logger.info("Continuing with the program...");
 logger.info("");
 break;
 } else {
 logger.info("Invalid input. Please try again.");
 }
 }
 }

 public static void countdown(int totalSeconds) throws InterruptedException {
 for (int i = totalSeconds; i >= 0; i--) {
 int displayMinutes = i / 60;
 int displaySeconds = i % 60;
 System.out.printf("\r%02d:%02d", displayMinutes, displaySeconds);
 Thread.sleep(1000); // Wait for 1 second
 }
 System.out.println(); // Move to the next line after countdown
 logger.info("Countdown complete!");
 }
}

A wrapper class for AWS IoT SiteWise SDK methods.

public class SitewiseActions {

 private static final Logger logger =
 LoggerFactory.getLogger(SitewiseActions.class);

 private static IoTSiteWiseAsyncClient ioTSiteWiseAsyncClient;

 private static IoTSiteWiseAsyncClient getAsyncClient() {

Learn the basics 902

AWS IoT SiteWise User Guide

 if (ioTSiteWiseAsyncClient == null) {
 SdkAsyncHttpClient httpClient = NettyNioAsyncHttpClient.builder()
 .maxConcurrency(100)
 .connectionTimeout(Duration.ofSeconds(60))
 .readTimeout(Duration.ofSeconds(60))
 .writeTimeout(Duration.ofSeconds(60))
 .build();

 ClientOverrideConfiguration overrideConfig =
 ClientOverrideConfiguration.builder()
 .apiCallTimeout(Duration.ofMinutes(2))
 .apiCallAttemptTimeout(Duration.ofSeconds(90))
 .retryStrategy(RetryMode.STANDARD)
 .build();

 ioTSiteWiseAsyncClient = IoTSiteWiseAsyncClient.builder()
 .httpClient(httpClient)
 .overrideConfiguration(overrideConfig)
 .build();
 }
 return ioTSiteWiseAsyncClient;
 }

 /**
 * Creates an asset model.
 *
 * @param name the name of the asset model to create.
 * @return a {@link CompletableFuture} that represents a {@link
 CreateAssetModelResponse} result. The calling code
 * can attach callbacks, then handle the result or exception by
 calling {@link CompletableFuture#join()} or
 * {@link CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps it
 * available to the calling code as a {@link CompletionException}. By
 calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<CreateAssetModelResponse>
 createAssetModelAsync(String name) {
 PropertyType humidity = PropertyType.builder()

Learn the basics 903

AWS IoT SiteWise User Guide

 .measurement(Measurement.builder().build())
 .build();

 PropertyType temperaturePropertyType = PropertyType.builder()
 .measurement(Measurement.builder().build())
 .build();

 AssetModelPropertyDefinition temperatureProperty =
 AssetModelPropertyDefinition.builder()
 .name("Temperature")
 .dataType(PropertyDataType.DOUBLE)
 .type(temperaturePropertyType)
 .build();

 AssetModelPropertyDefinition humidityProperty =
 AssetModelPropertyDefinition.builder()
 .name("Humidity")
 .dataType(PropertyDataType.DOUBLE)
 .type(humidity)
 .build();

 CreateAssetModelRequest createAssetModelRequest =
 CreateAssetModelRequest.builder()
 .assetModelName(name)
 .assetModelDescription("This is my asset model")
 .assetModelProperties(temperatureProperty, humidityProperty)
 .build();

 return getAsyncClient().createAssetModel(createAssetModelRequest)
 .whenComplete((response, exception) -> {
 if (exception != null) {
 logger.error("Failed to create asset model: {} ",
 exception.getCause().getMessage());
 }
 });
 }

 /**
 * Creates an asset with the specified name and asset model Id.
 *
 * @param assetName the name of the asset to create.
 * @param assetModelId the Id of the asset model to associate with the asset.

Learn the basics 904

AWS IoT SiteWise User Guide

 * @return a {@link CompletableFuture} that represents a {@link
 CreateAssetResponse} result. The calling code can
 * attach callbacks, then handle the result or exception by calling
 {@link CompletableFuture#join()} or
 * {@link CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps it
 * available to the calling code as a {@link CompletionException}. By
 calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<CreateAssetResponse> createAssetAsync(String
 assetName, String assetModelId) {
 CreateAssetRequest createAssetRequest = CreateAssetRequest.builder()
 .assetModelId(assetModelId)
 .assetDescription("Created using the AWS SDK for Java")
 .assetName(assetName)
 .build();

 return getAsyncClient().createAsset(createAssetRequest)
 .whenComplete((response, exception) -> {
 if (exception != null) {
 logger.error("Failed to create asset: {}",
 exception.getCause().getMessage());
 }
 });
 }

 /**
 * Sends data to the SiteWise service.
 *
 * @param assetId the ID of the asset to which the data will be sent.
 * @param tempPropertyId the ID of the temperature property.
 * @param humidityPropId the ID of the humidity property.
 * @return a {@link CompletableFuture} that represents a {@link
 BatchPutAssetPropertyValueResponse} result. The
 * calling code can attach callbacks, then handle the result or
 exception by calling
 * {@link CompletableFuture#join()} or {@link
 CompletableFuture#get()}.
 * <p>

Learn the basics 905

AWS IoT SiteWise User Guide

 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps it
 * available to the calling code as a {@link CompletionException}. By
 calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<BatchPutAssetPropertyValueResponse>
 sendDataToSiteWiseAsync(String assetId, String tempPropertyId, String
 humidityPropId) {
 Map<String, Double> sampleData = generateSampleData();
 long timestamp = Instant.now().toEpochMilli();

 TimeInNanos time = TimeInNanos.builder()
 .timeInSeconds(timestamp / 1000)
 .offsetInNanos((int) ((timestamp % 1000) * 1000000))
 .build();

 BatchPutAssetPropertyValueRequest request =
 BatchPutAssetPropertyValueRequest.builder()
 .entries(Arrays.asList(
 PutAssetPropertyValueEntry.builder()
 .entryId("entry-3")
 .assetId(assetId)
 .propertyId(tempPropertyId)
 .propertyValues(Arrays.asList(
 AssetPropertyValue.builder()
 .value(Variant.builder()
 .doubleValue(sampleData.get("Temperature"))
 .build())
 .timestamp(time)
 .build()
))
 .build(),
 PutAssetPropertyValueEntry.builder()
 .entryId("entry-4")
 .assetId(assetId)
 .propertyId(humidityPropId)
 .propertyValues(Arrays.asList(
 AssetPropertyValue.builder()
 .value(Variant.builder()
 .doubleValue(sampleData.get("Humidity"))
 .build())
 .timestamp(time)

Learn the basics 906

AWS IoT SiteWise User Guide

 .build()
))
 .build()
))
 .build();

 return getAsyncClient().batchPutAssetPropertyValue(request)
 .whenComplete((response, exception) -> {
 if (exception != null) {
 logger.error("An exception occurred: {}",
 exception.getCause().getMessage());
 }
 });
 }

 /**
 * Fetches the value of an asset property.
 *
 * @param propId the ID of the asset property to fetch.
 * @param assetId the ID of the asset to fetch the property value for.
 * @return a {@link CompletableFuture} that represents a {@link Double}
 result. The calling code can attach
 * callbacks, then handle the result or exception by calling {@link
 CompletableFuture#join()} or
 * {@link CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<Double> getAssetPropValueAsync(String propId, String
 assetId) {
 GetAssetPropertyValueRequest assetPropertyValueRequest =
 GetAssetPropertyValueRequest.builder()
 .propertyId(propId)
 .assetId(assetId)
 .build();

 return getAsyncClient().getAssetPropertyValue(assetPropertyValueRequest)
 .handle((response, exception) -> {
 if (exception != null) {

Learn the basics 907

AWS IoT SiteWise User Guide

 logger.error("Error occurred while fetching property
 value: {}.", exception.getCause().getMessage());
 throw (CompletionException) exception;
 }
 return response.propertyValue().value().doubleValue();
 });
 }

 /**
 * Retrieves the property IDs associated with a specific asset model.
 *
 * @param assetModelId the ID of the asset model that defines the properties.
 * @return a {@link CompletableFuture} that represents a {@link Map} result
 that associates the property name to the
 * propert ID. The calling code can attach callbacks, then handle the
 result or exception by calling
 * {@link CompletableFuture#join()} or {@link
 CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<Map<String, String>> getPropertyIds(String
 assetModelId) {
 ListAssetModelPropertiesRequest modelPropertiesRequest =
 ListAssetModelPropertiesRequest.builder().assetModelId(assetModelId).build();
 return getAsyncClient().listAssetModelProperties(modelPropertiesRequest)
 .handle((response, throwable) -> {
 if (response != null) {
 return response.assetModelPropertySummaries().stream()
 .collect(Collectors
 .toMap(AssetModelPropertySummary::name,
 AssetModelPropertySummary::id));
 } else {
 logger.error("Error occurred while fetching property IDs:
 {}.", throwable.getCause().getMessage());
 throw (CompletionException) throwable;
 }
 });
 }

Learn the basics 908

AWS IoT SiteWise User Guide

 /**
 * Deletes an asset.
 *
 * @param assetId the ID of the asset to be deleted.
 * @return a {@link CompletableFuture} that represents a {@link
 DeleteAssetResponse} result. The calling code can
 * attach callbacks, then handle the result or exception by calling
 {@link CompletableFuture#join()} or
 * {@link CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<DeleteAssetResponse> deleteAssetAsync(String
 assetId) {
 DeleteAssetRequest deleteAssetRequest = DeleteAssetRequest.builder()
 .assetId(assetId)
 .build();

 return getAsyncClient().deleteAsset(deleteAssetRequest)
 .whenComplete((response, exception) -> {
 if (exception != null) {
 logger.error("An error occurred deleting asset with id: {}",
 assetId);
 }
 });
 }

 /**
 * Deletes an Asset Model with the specified ID.
 *
 * @param assetModelId the ID of the Asset Model to delete.
 * @return a {@link CompletableFuture} that represents a {@link
 DeleteAssetModelResponse} result. The calling code
 * can attach callbacks, then handle the result or exception by
 calling {@link CompletableFuture#join()} or
 * {@link CompletableFuture#get()}.
 * <p>

Learn the basics 909

AWS IoT SiteWise User Guide

 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<DeleteAssetModelResponse>
 deleteAssetModelAsync(String assetModelId) {
 DeleteAssetModelRequest deleteAssetModelRequest =
 DeleteAssetModelRequest.builder()
 .assetModelId(assetModelId)
 .build();

 return getAsyncClient().deleteAssetModel(deleteAssetModelRequest)
 .whenComplete((response, exception) -> {
 if (exception != null) {
 logger.error("Failed to delete asset model with ID:{}.",
 exception.getMessage());
 }
 });
 }

 /**
 * Creates a new IoT SiteWise portal.
 *
 * @param portalName the name of the portal to create.
 * @param iamRole the IAM role ARN to use for the portal.
 * @param contactEmail the email address of the portal contact.
 * @return a {@link CompletableFuture} that represents a {@link String}
 result of the portal ID. The calling code
 * can attach callbacks, then handle the result or exception by
 calling {@link CompletableFuture#join()} or
 * {@link CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<String> createPortalAsync(String portalName, String
 iamRole, String contactEmail) {

Learn the basics 910

AWS IoT SiteWise User Guide

 CreatePortalRequest createPortalRequest = CreatePortalRequest.builder()
 .portalName(portalName)
 .portalDescription("This is my custom IoT SiteWise portal.")
 .portalContactEmail(contactEmail)
 .roleArn(iamRole)
 .build();

 return getAsyncClient().createPortal(createPortalRequest)
 .handle((response, exception) -> {
 if (exception != null) {
 logger.error("Failed to create portal: {} ",
 exception.getCause().getMessage());
 throw (CompletionException) exception;
 }
 return response.portalId();
 });
 }

 /**
 * Deletes a portal.
 *
 * @param portalId the ID of the portal to be deleted.
 * @return a {@link CompletableFuture} that represents a {@link
 DeletePortalResponse}. The calling code can attach
 * callbacks, then handle the result or exception by calling {@link
 CompletableFuture#join()} or
 * {@link CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<DeletePortalResponse> deletePortalAsync(String
 portalId) {
 DeletePortalRequest deletePortalRequest = DeletePortalRequest.builder()
 .portalId(portalId)
 .build();

 return getAsyncClient().deletePortal(deletePortalRequest)
 .whenComplete((response, exception) -> {
 if (exception != null) {

Learn the basics 911

AWS IoT SiteWise User Guide

 logger.error("Failed to delete portal with ID: {}. Error:
 {}", portalId, exception.getCause().getMessage());
 }
 });
 }

 /**
 * Retrieves the asset model ID for the given asset model name.
 *
 * @param assetModelName the name of the asset model for the ID.
 * @return a {@link CompletableFuture} that represents a {@link String}
 result of the asset model ID or null if the
 * asset model cannot be found. The calling code can attach
 callbacks, then handle the result or exception
 * by calling {@link CompletableFuture#join()} or {@link
 CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<String> getAssetModelIdAsync(String assetModelName)
 {
 ListAssetModelsRequest listAssetModelsRequest =
 ListAssetModelsRequest.builder().build();
 return getAsyncClient().listAssetModels(listAssetModelsRequest)
 .handle((listAssetModelsResponse, exception) -> {
 if (exception != null) {
 logger.error("Failed to retrieve Asset Model ID: {}",
 exception.getCause().getMessage());
 throw (CompletionException) exception;
 }
 for (AssetModelSummary assetModelSummary :
 listAssetModelsResponse.assetModelSummaries()) {
 if (assetModelSummary.name().equals(assetModelName)) {
 return assetModelSummary.id();
 }
 }
 return null;
 });
 }

Learn the basics 912

AWS IoT SiteWise User Guide

 /**
 * Retrieves a portal's description.
 *
 * @param portalId the ID of the portal to describe.
 * @return a {@link CompletableFuture} that represents a {@link String}
 result of the portal's start URL
 * (see: {@link DescribePortalResponse#portalStartUrl()}). The
 calling code can attach callbacks, then handle the
 * result or exception by calling {@link CompletableFuture#join()} or
 {@link CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<String> describePortalAsync(String portalId) {
 DescribePortalRequest request = DescribePortalRequest.builder()
 .portalId(portalId)
 .build();

 return getAsyncClient().describePortal(request)
 .handle((response, exception) -> {
 if (exception != null) {
 logger.error("An exception occurred retrieving the portal
 description: {}", exception.getCause().getMessage());
 throw (CompletionException) exception;
 }
 return response.portalStartUrl();
 });
 }

 /**
 * Creates a new IoT Sitewise gateway.
 *
 * @param gatewayName The name of the gateway to create.
 * @param myThing The name of the core device thing to associate with the
 gateway.
 * @return a {@link CompletableFuture} that represents a {@link String}
 result of the gateways ID. The calling code

Learn the basics 913

AWS IoT SiteWise User Guide

 * can attach callbacks, then handle the result or exception by
 calling {@link CompletableFuture#join()} or
 * {@link CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<String> createGatewayAsync(String gatewayName,
 String myThing) {
 GreengrassV2 gg = GreengrassV2.builder()
 .coreDeviceThingName(myThing)
 .build();

 GatewayPlatform platform = GatewayPlatform.builder()
 .greengrassV2(gg)
 .build();

 Map<String, String> tag = new HashMap<>();
 tag.put("Environment", "Production");

 CreateGatewayRequest createGatewayRequest =
 CreateGatewayRequest.builder()
 .gatewayName(gatewayName)
 .gatewayPlatform(platform)
 .tags(tag)
 .build();

 return getAsyncClient().createGateway(createGatewayRequest)
 .handle((response, exception) -> {
 if (exception != null) {
 logger.error("Error creating the gateway.");
 throw (CompletionException) exception;
 }
 logger.info("The ARN of the gateway is {}" ,
 response.gatewayArn());
 return response.gatewayId();
 });
 }

 /**

Learn the basics 914

AWS IoT SiteWise User Guide

 * Deletes the specified gateway.
 *
 * @param gatewayId the ID of the gateway to delete.
 * @return a {@link CompletableFuture} that represents a {@link
 DeleteGatewayResponse} result.. The calling code
 * can attach callbacks, then handle the result or exception by
 calling {@link CompletableFuture#join()} or
 * {@link CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<DeleteGatewayResponse> deleteGatewayAsync(String
 gatewayId) {
 DeleteGatewayRequest deleteGatewayRequest =
 DeleteGatewayRequest.builder()
 .gatewayId(gatewayId)
 .build();

 return getAsyncClient().deleteGateway(deleteGatewayRequest)
 .whenComplete((response, exception) -> {
 if (exception != null) {
 logger.error("Failed to delete gateway: {}",
 exception.getCause().getMessage());
 }
 });
 }

 /**
 * Describes the specified gateway.
 *
 * @param gatewayId the ID of the gateway to describe.
 * @return a {@link CompletableFuture} that represents a {@link
 DescribeGatewayResponse} result. The calling code
 * can attach callbacks, then handle the result or exception by
 calling {@link CompletableFuture#join()} or
 * {@link CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps

Learn the basics 915

AWS IoT SiteWise User Guide

 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<DescribeGatewayResponse> describeGatewayAsync(String
 gatewayId) {
 DescribeGatewayRequest request = DescribeGatewayRequest.builder()
 .gatewayId(gatewayId)
 .build();

 return getAsyncClient().describeGateway(request)
 .whenComplete((response, exception) -> {
 if (exception != null) {
 logger.error("An error occurred during the describeGateway
 method: {}", exception.getCause().getMessage());
 }
 });
 }

 private static Map<String, Double> generateSampleData() {
 Map<String, Double> data = new HashMap<>();
 data.put("Temperature", 23.5);
 data.put("Humidity", 65.0);
 return data;
 }
}

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {
 Scenario,

Learn the basics 916

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 ScenarioAction,
 ScenarioInput,
 ScenarioOutput,
 //} from "@aws-doc-sdk-examples/lib/scenario/index.js";
} from "../../libs/scenario/index.js";
import {
 IoTSiteWiseClient,
 CreateAssetModelCommand,
 CreateAssetCommand,
 ListAssetModelPropertiesCommand,
 BatchPutAssetPropertyValueCommand,
 GetAssetPropertyValueCommand,
 CreatePortalCommand,
 DescribePortalCommand,
 CreateGatewayCommand,
 DescribeGatewayCommand,
 DeletePortalCommand,
 DeleteGatewayCommand,
 DeleteAssetCommand,
 DeleteAssetModelCommand,
 DescribeAssetModelCommand,
} from "@aws-sdk/client-iotsitewise";
import {
 CloudFormationClient,
 CreateStackCommand,
 DeleteStackCommand,
 DescribeStacksCommand,
 waitUntilStackExists,
 waitUntilStackCreateComplete,
 waitUntilStackDeleteComplete,
} from "@aws-sdk/client-cloudformation";
import { wait } from "@aws-doc-sdk-examples/lib/utils/util-timers.js";
import { parseArgs } from "node:util";
import { readFileSync } from "node:fs";
import { fileURLToPath } from "node:url";
import { dirname } from "node:path";

const __filename = fileURLToPath(import.meta.url);
const __dirname = dirname(__filename);
const stackName = "SiteWiseBasicsStack";

/**
 * @typedef {{
 * iotSiteWiseClient: import('@aws-sdk/client-iotsitewise').IotSiteWiseClient,

Learn the basics 917

AWS IoT SiteWise User Guide

 * cloudFormationClient: import('@aws-sdk/client-
cloudformation').CloudFormationClient,
 * stackName,
 * stack,
 * askToDeleteResources: true,
 * asset: {assetName: "MyAsset1"},
 * assetModel: {assetModelName: "MyAssetModel1"},
 * portal: {portalName: "MyPortal1"},
 * gateway: {gatewayName: "MyGateway1"},
 * propertyIds: [],
 * contactEmail: "user@mydomain.com",
 * thing: "MyThing1",
 * sampleData: { temperature: 23.5, humidity: 65.0}
 * }} State
 */

/**
 * Used repeatedly to have the user press enter.
 * @type {ScenarioInput}
 */
const pressEnter = new ScenarioInput("continue", "Press Enter to continue", {
 type: "confirm",
});

const greet = new ScenarioOutput(
 "greet",
 `AWS IoT SiteWise is a fully managed industrial software-as-a-service (SaaS)
 that makes it easy to collect, store, organize, and monitor data from industrial
 equipment and processes. It is designed to help industrial and manufacturing
 organizations collect data from their equipment and processes, and use that data
 to make informed decisions about their operations.
One of the key features of AWS IoT SiteWise is its ability to connect to a
 wide range of industrial equipment and systems, including programmable logic
 controllers (PLCs), sensors, and other industrial devices. It can collect data
 from these devices and organize it into a unified data model, making it easier
 to analyze and gain insights from the data. AWS IoT SiteWise also provides tools
 for visualizing the data, setting up alarms and alerts, and generating reports.
Another key feature of AWS IoT SiteWise is its ability to scale to handle large
 volumes of data. It can collect and store data from thousands of devices and
 process millions of data points per second, making it suitable for large-scale
 industrial operations. Additionally, AWS IoT SiteWise is designed to be secure
 and compliant, with features like role-based access controls, data encryption,
 and integration with other AWS services for additional security and compliance
 features.

Learn the basics 918

AWS IoT SiteWise User Guide

Let's get started...`,
 { header: true },
);

const displayBuildCloudFormationStack = new ScenarioOutput(
 "displayBuildCloudFormationStack",
 "This scenario uses AWS CloudFormation to create an IAM role that is required
 for this scenario. The stack will now be deployed.",
);

const sdkBuildCloudFormationStack = new ScenarioAction(
 "sdkBuildCloudFormationStack",
 async (/** @type {State} */ state) => {
 try {
 const data = readFileSync(
 `${__dirname}/../../../../resources/cfn/iotsitewise_basics/SitewiseRoles-
template.yml`,
 "utf8",
);
 await state.cloudFormationClient.send(
 new CreateStackCommand({
 StackName: stackName,
 TemplateBody: data,
 Capabilities: ["CAPABILITY_IAM"],
 }),
);
 await waitUntilStackExists(
 { client: state.cloudFormationClient },
 { StackName: stackName },
);
 await waitUntilStackCreateComplete(
 { client: state.cloudFormationClient },
 { StackName: stackName },
);
 const stack = await state.cloudFormationClient.send(
 new DescribeStacksCommand({
 StackName: stackName,
 }),
);
 state.stack = stack.Stacks[0].Outputs[0];
 console.log(`The ARN of the IAM role is ${state.stack.OutputValue}`);
 } catch (caught) {
 console.error(caught.message);

Learn the basics 919

AWS IoT SiteWise User Guide

 throw caught;
 }
 },
);

const displayCreateAWSSiteWiseAssetModel = new ScenarioOutput(
 "displayCreateAWSSiteWiseAssetModel",
 `1. Create an AWS SiteWise Asset Model
An AWS IoT SiteWise Asset Model is a way to represent the physical assets, such
 as equipment, processes, and systems, that exist in an industrial environment.
 This model provides a structured and hierarchical representation of these
 assets, allowing users to define the relationships and properties of each asset.

This scenario creates two asset model properties: temperature and humidity.`,
);

const sdkCreateAWSSiteWiseAssetModel = new ScenarioAction(
 "sdkCreateAWSSiteWiseAssetModel",
 async (/** @type {State} */ state) => {
 let assetModelResponse;
 try {
 assetModelResponse = await state.iotSiteWiseClient.send(
 new CreateAssetModelCommand({
 assetModelName: state.assetModel.assetModelName,
 assetModelProperties: [
 {
 name: "Temperature",
 dataType: "DOUBLE",
 type: {
 measurement: {},
 },
 },
 {
 name: "Humidity",
 dataType: "DOUBLE",
 type: {
 measurement: {},
 },
 },
],
 }),
);
 state.assetModel.assetModelId = assetModelResponse.assetModelId;
 console.log(

Learn the basics 920

AWS IoT SiteWise User Guide

 `Asset Model successfully created. Asset Model ID:
 ${state.assetModel.assetModelId}`,
);
 } catch (caught) {
 if (caught.name === "ResourceAlreadyExistsException") {
 console.log(
 `The Asset Model ${state.assetModel.assetModelName} already exists.`,
);
 throw caught;
 }
 console.error(`${caught.message}`);
 throw caught;
 }
 },
);

const displayCreateAWSIoTSiteWiseAssetModel = new ScenarioOutput(
 "displayCreateAWSIoTSiteWiseAssetModel",
 `2. Create an AWS IoT SiteWise Asset
The IoT SiteWise model that we just created defines the structure and metadata
 for your physical assets. Now we create an asset from the asset model.

Let's wait 30 seconds for the asset to be ready.`,
);

const waitThirtySeconds = new ScenarioAction("waitThirtySeconds", async () => {
 await wait(30); // wait 30 seconds
 console.log("Time's up! Let's check the asset's status.");
});

const sdkCreateAWSIoTSiteWiseAssetModel = new ScenarioAction(
 "sdkCreateAWSIoTSiteWiseAssetModel",
 async (/** @type {State} */ state) => {
 try {
 const assetResponse = await state.iotSiteWiseClient.send(
 new CreateAssetCommand({
 assetModelId: state.assetModel.assetModelId,
 assetName: state.asset.assetName,
 }),
);
 state.asset.assetId = assetResponse.assetId;
 console.log(`Asset created with ID: ${state.asset.assetId}`);
 } catch (caught) {
 if (caught.name === "ResourceNotFoundException") {

Learn the basics 921

AWS IoT SiteWise User Guide

 console.log(
 `The Asset ${state.assetModel.assetModelName} was not found.`,
);
 throw caught;
 }
 console.error(`${caught.message}`);
 throw caught;
 }
 },
);

const displayRetrievePropertyId = new ScenarioOutput(
 "displayRetrievePropertyId",
 `3. Retrieve the property ID values

To send data to an asset, we need to get the property ID values. In this
 scenario, we access the temperature and humidity property ID values.`,
);

const sdkRetrievePropertyId = new ScenarioAction(
 "sdkRetrievePropertyId",
 async (state) => {
 try {
 const retrieveResponse = await state.iotSiteWiseClient.send(
 new ListAssetModelPropertiesCommand({
 assetModelId: state.assetModel.assetModelId,
 }),
);
 for (const retrieveResponseKey in
 retrieveResponse.assetModelPropertySummaries) {
 if (
 retrieveResponse.assetModelPropertySummaries[retrieveResponseKey]
 .name === "Humidity"
) {
 state.propertyIds.Humidity =
 retrieveResponse.assetModelPropertySummaries[
 retrieveResponseKey
].id;
 }
 if (
 retrieveResponse.assetModelPropertySummaries[retrieveResponseKey]
 .name === "Temperature"
) {
 state.propertyIds.Temperature =

Learn the basics 922

AWS IoT SiteWise User Guide

 retrieveResponse.assetModelPropertySummaries[
 retrieveResponseKey
].id;
 }
 }
 console.log(`The Humidity propertyId is ${state.propertyIds.Humidity}`);
 console.log(
 `The Temperature propertyId is ${state.propertyIds.Temperature}`,
);
 } catch (caught) {
 if (caught.name === "IoTSiteWiseException") {
 console.log(
 `There was a problem retrieving the properties: ${caught.message}`,
);
 throw caught;
 }
 console.error(`${caught.message}`);
 throw caught;
 }
 },
);

const displaySendDataToIoTSiteWiseAsset = new ScenarioOutput(
 "displaySendDataToIoTSiteWiseAsset",
 `4. Send data to an AWS IoT SiteWise Asset

By sending data to an IoT SiteWise Asset, you can aggregate data from multiple
 sources, normalize the data into a standard format, and store it in a
 centralized location. This makes it easier to analyze and gain insights from the
 data.

In this example, we generate sample temperature and humidity data and send it to
 the AWS IoT SiteWise asset.`,
);

const sdkSendDataToIoTSiteWiseAsset = new ScenarioAction(
 "sdkSendDataToIoTSiteWiseAsset",
 async (state) => {
 try {
 const sendResponse = await state.iotSiteWiseClient.send(
 new BatchPutAssetPropertyValueCommand({
 entries: [
 {
 entryId: "entry-3",

Learn the basics 923

AWS IoT SiteWise User Guide

 assetId: state.asset.assetId,
 propertyId: state.propertyIds.Humidity,
 propertyValues: [
 {
 value: {
 doubleValue: state.sampleData.humidity,
 },
 timestamp: {
 timeInSeconds: Math.floor(Date.now() / 1000),
 },
 },
],
 },
 {
 entryId: "entry-4",
 assetId: state.asset.assetId,
 propertyId: state.propertyIds.Temperature,
 propertyValues: [
 {
 value: {
 doubleValue: state.sampleData.temperature,
 },
 timestamp: {
 timeInSeconds: Math.floor(Date.now() / 1000),
 },
 },
],
 },
],
 }),
);
 console.log("The data was sent successfully.");
 } catch (caught) {
 if (caught.name === "ResourceNotFoundException") {
 console.log(`The Asset ${state.asset.assetName} was not found.`);
 throw caught;
 }
 console.error(`${caught.message}`);
 throw caught;
 }
 },
);

const displayRetrieveValueOfIoTSiteWiseAsset = new ScenarioOutput(

Learn the basics 924

AWS IoT SiteWise User Guide

 "displayRetrieveValueOfIoTSiteWiseAsset",
 `5. Retrieve the value of the IoT SiteWise Asset property

IoT SiteWise is an AWS service that allows you to collect, process, and analyze
 industrial data from connected equipment and sensors. One of the key benefits of
 reading an IoT SiteWise property is the ability to gain valuable insights from
 your industrial data.`,
);

const sdkRetrieveValueOfIoTSiteWiseAsset = new ScenarioAction(
 "sdkRetrieveValueOfIoTSiteWiseAsset",
 async (/** @type {State} */ state) => {
 try {
 const temperatureResponse = await state.iotSiteWiseClient.send(
 new GetAssetPropertyValueCommand({
 assetId: state.asset.assetId,
 propertyId: state.propertyIds.Temperature,
 }),
);
 const humidityResponse = await state.iotSiteWiseClient.send(
 new GetAssetPropertyValueCommand({
 assetId: state.asset.assetId,
 propertyId: state.propertyIds.Humidity,
 }),
);
 console.log(
 `The property value for Temperature is
 ${temperatureResponse.propertyValue.value.doubleValue}`,
);
 console.log(
 `The property value for Humidity is
 ${humidityResponse.propertyValue.value.doubleValue}`,
);
 } catch (caught) {
 if (caught.name === "ResourceNotFoundException") {
 console.log(`The Asset ${state.asset.assetName} was not found.`);
 throw caught;
 }
 console.error(`${caught.message}`);
 throw caught;
 }
 },
);

Learn the basics 925

AWS IoT SiteWise User Guide

const displayCreateIoTSiteWisePortal = new ScenarioOutput(
 "displayCreateIoTSiteWisePortal",
 `6. Create an IoT SiteWise Portal

An IoT SiteWise Portal allows you to aggregate data from multiple industrial
 sources, such as sensors, equipment, and control systems, into a centralized
 platform.`,
);

const sdkCreateIoTSiteWisePortal = new ScenarioAction(
 "sdkCreateIoTSiteWisePortal",
 async (/** @type {State} */ state) => {
 try {
 const createPortalResponse = await state.iotSiteWiseClient.send(
 new CreatePortalCommand({
 portalName: state.portal.portalName,
 portalContactEmail: state.contactEmail,
 roleArn: state.stack.OutputValue,
 }),
);
 state.portal = { ...state.portal, ...createPortalResponse };
 await wait(5); // Allow the portal to properly propagate.
 console.log(
 `Portal created successfully. Portal ID
 ${createPortalResponse.portalId}`,
);
 } catch (caught) {
 if (caught.name === "IoTSiteWiseException") {
 console.log(
 `There was a problem creating the Portal: ${caught.message}.`,
);
 throw caught;
 }
 console.error(`${caught.message}`);
 throw caught;
 }
 },
);

const displayDescribePortal = new ScenarioOutput(
 "displayDescribePortal",
 `7. Describe the Portal

In this step, we get a description of the portal and display the portal URL.`,

Learn the basics 926

AWS IoT SiteWise User Guide

);

const sdkDescribePortal = new ScenarioAction(
 "sdkDescribePortal",
 async (/** @type {State} */ state) => {
 try {
 const describePortalResponse = await state.iotSiteWiseClient.send(
 new DescribePortalCommand({
 portalId: state.portal.portalId,
 }),
);
 console.log(`Portal URL: ${describePortalResponse.portalStartUrl}`);
 } catch (caught) {
 if (caught.name === "ResourceNotFoundException") {
 console.log(`The Portal ${state.portal.portalName} was not found.`);
 throw caught;
 }
 console.error(`${caught.message}`);
 throw caught;
 }
 },
);

const displayCreateIoTSiteWiseGateway = new ScenarioOutput(
 "displayCreateIoTSiteWiseGateway",
 `8. Create an IoT SiteWise Gateway

IoT SiteWise Gateway serves as the bridge between industrial equipment, sensors,
 and the cloud-based IoT SiteWise service. It is responsible for securely
 collecting, processing, and transmitting data from various industrial assets
 to the IoT SiteWise platform, enabling real-time monitoring, analysis, and
 optimization of industrial operations.`,
);

const sdkCreateIoTSiteWiseGateway = new ScenarioAction(
 "sdkCreateIoTSiteWiseGateway",
 async (/** @type {State} */ state) => {
 try {
 const createGatewayResponse = await state.iotSiteWiseClient.send(
 new CreateGatewayCommand({
 gatewayName: state.gateway.gatewayName,
 gatewayPlatform: {
 greengrassV2: {
 coreDeviceThingName: state.thing,

Learn the basics 927

AWS IoT SiteWise User Guide

 },
 },
 }),
);
 console.log(
 `Gateway creation completed successfully. ID is
 ${createGatewayResponse.gatewayId}`,
);
 state.gateway.gatewayId = createGatewayResponse.gatewayId;
 } catch (caught) {
 if (caught.name === "IoTSiteWiseException") {
 console.log(
 `There was a problem creating the gateway: ${caught.message}.`,
);
 throw caught;
 }
 console.error(`${caught.message}`);
 throw caught;
 }
 },
);

const displayDescribeIoTSiteWiseGateway = new ScenarioOutput(
 "displayDescribeIoTSiteWiseGateway",
 "9. Describe the IoT SiteWise Gateway",
);

const sdkDescribeIoTSiteWiseGateway = new ScenarioAction(
 "sdkDescribeIoTSiteWiseGateway",
 async (/** @type {State} */ state) => {
 try {
 const describeGatewayResponse = await state.iotSiteWiseClient.send(
 new DescribeGatewayCommand({
 gatewayId: state.gateway.gatewayId,
 }),
);
 console.log("Gateway creation completed successfully.");
 console.log(`Gateway Name: ${describeGatewayResponse.gatewayName}`);
 console.log(`Gateway ARN: ${describeGatewayResponse.gatewayArn}`);
 console.log(
 `Gateway Platform:
 ${Object.keys(describeGatewayResponse.gatewayPlatform)}`,
);
 console.log(

Learn the basics 928

AWS IoT SiteWise User Guide

 `Gateway Creation Date: ${describeGatewayResponse.creationDate}`,
);
 } catch (caught) {
 if (caught.name === "ResourceNotFoundException") {
 console.log(`The Gateway ${state.gateway.gatewayId} was not found.`);
 throw caught;
 }
 console.error(`${caught.message}`);
 throw caught;
 }
 },
);

const askToDeleteResources = new ScenarioInput(
 "askToDeleteResources",
 `10. Delete the AWS IoT SiteWise Assets

Before you can delete the Asset Model, you must delete the assets.`,
 { type: "confirm" },
);

const displayConfirmDeleteResources = new ScenarioAction(
 "displayConfirmDeleteResources",
 async (/** @type {State} */ state) => {
 if (state.askToDeleteResources) {
 return "You selected to delete the SiteWise assets.";
 }
 return "The resources will not be deleted. Please delete them manually to
 avoid charges.";
 },
);

const sdkDeleteResources = new ScenarioAction(
 "sdkDeleteResources",
 async (/** @type {State} */ state) => {
 await wait(10); // Give the portal status time to catch up.
 try {
 await state.iotSiteWiseClient.send(
 new DeletePortalCommand({
 portalId: state.portal.portalId,
 }),
);
 console.log(
 `Portal ${state.portal.portalName} was deleted successfully.`,

Learn the basics 929

AWS IoT SiteWise User Guide

);
 } catch (caught) {
 if (caught.name === "ResourceNotFoundException") {
 console.log(`The Portal ${state.portal.portalName} was not found.`);
 } else {
 console.log(`When trying to delete the portal: ${caught.message}`);
 }
 }

 try {
 await state.iotSiteWiseClient.send(
 new DeleteGatewayCommand({
 gatewayId: state.gateway.gatewayId,
 }),
);
 console.log(
 `Gateway ${state.gateway.gatewayName} was deleted successfully.`,
);
 } catch (caught) {
 if (caught.name === "ResourceNotFoundException") {
 console.log(`The Gateway ${state.gateway.gatewayId} was not found.`);
 } else {
 console.log(`When trying to delete the gateway: ${caught.message}`);
 }
 }

 try {
 await state.iotSiteWiseClient.send(
 new DeleteAssetCommand({
 assetId: state.asset.assetId,
 }),
);
 await wait(5); // Allow the delete to finish.
 console.log(`Asset ${state.asset.assetName} was deleted successfully.`);
 } catch (caught) {
 if (caught.name === "ResourceNotFoundException") {
 console.log(`The Asset ${state.asset.assetName} was not found.`);
 } else {
 console.log(`When deleting the asset: ${caught.message}`);
 }
 }

 await wait(30); // Allow asset deletion to finish.
 try {

Learn the basics 930

AWS IoT SiteWise User Guide

 await state.iotSiteWiseClient.send(
 new DeleteAssetModelCommand({
 assetModelId: state.assetModel.assetModelId,
 }),
);
 console.log(
 `Asset Model ${state.assetModel.assetModelName} was deleted
 successfully.`,
);
 } catch (caught) {
 if (caught.name === "ResourceNotFoundException") {
 console.log(
 `The Asset Model ${state.assetModel.assetModelName} was not found.`,
);
 } else {
 console.log(`When deleting the asset model: ${caught.message}`);
 }
 }

 try {
 await state.cloudFormationClient.send(
 new DeleteStackCommand({
 StackName: stackName,
 }),
);
 await waitUntilStackDeleteComplete(
 { client: state.cloudFormationClient },
 { StackName: stackName },
);
 console.log("The stack was deleted successfully.");
 } catch (caught) {
 console.log(
 `${caught.message}. The stack was NOT deleted. Please clean up the
 resources manually.`,
);
 }
 },
 { skipWhen: (/** @type {{}} */ state) => !state.askToDeleteResources },
);

const goodbye = new ScenarioOutput(
 "goodbye",
 "This concludes the IoT Sitewise Basics scenario for the AWS Javascript SDK v3.
 Thank you!",

Learn the basics 931

AWS IoT SiteWise User Guide

);

const myScenario = new Scenario(
 "IoTSiteWise Basics",
 [
 greet,
 pressEnter,
 displayBuildCloudFormationStack,
 sdkBuildCloudFormationStack,
 pressEnter,
 displayCreateAWSSiteWiseAssetModel,
 sdkCreateAWSSiteWiseAssetModel,
 displayCreateAWSIoTSiteWiseAssetModel,
 pressEnter,
 waitThirtySeconds,
 sdkCreateAWSIoTSiteWiseAssetModel,
 pressEnter,
 displayRetrievePropertyId,
 sdkRetrievePropertyId,
 pressEnter,
 displaySendDataToIoTSiteWiseAsset,
 sdkSendDataToIoTSiteWiseAsset,
 pressEnter,
 displayRetrieveValueOfIoTSiteWiseAsset,
 sdkRetrieveValueOfIoTSiteWiseAsset,
 pressEnter,
 displayCreateIoTSiteWisePortal,
 sdkCreateIoTSiteWisePortal,
 pressEnter,
 displayDescribePortal,
 sdkDescribePortal,
 pressEnter,
 displayCreateIoTSiteWiseGateway,
 sdkCreateIoTSiteWiseGateway,
 pressEnter,
 displayDescribeIoTSiteWiseGateway,
 sdkDescribeIoTSiteWiseGateway,
 pressEnter,
 askToDeleteResources,
 displayConfirmDeleteResources,
 sdkDeleteResources,
 goodbye,
],
 {

Learn the basics 932

AWS IoT SiteWise User Guide

 iotSiteWiseClient: new IoTSiteWiseClient({}),
 cloudFormationClient: new CloudFormationClient({}),
 asset: { assetName: "MyAsset1" },
 assetModel: { assetModelName: "MyAssetModel1" },
 portal: { portalName: "MyPortal1" },
 gateway: { gatewayName: "MyGateway1" },
 propertyIds: [],
 contactEmail: "user@mydomain.com",
 thing: "MyThing1",
 sampleData: { temperature: 23.5, humidity: 65.0 },
 },
);

/** @type {{ stepHandlerOptions: StepHandlerOptions }} */
export const main = async (stepHandlerOptions) => {
 await myScenario.run(stepHandlerOptions);
};

// Invoke main function if this file was run directly.
if (process.argv[1] === fileURLToPath(import.meta.url)) {
 const { values } = parseArgs({
 options: {
 yes: {
 type: "boolean",
 short: "y",
 },
 },
 });
 main({ confirmAll: values.yes });
}

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Learn the basics 933

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

Run an interactive scenario at a command prompt.

class IoTSitewiseGettingStarted:
 """
 A scenario that demonstrates how to use Boto3 to manage IoT physical assets
 using
 the AWS IoT SiteWise.
 """

 def __init__(
 self,
 iot_sitewise_wrapper: IoTSitewiseWrapper,
 cloud_formation_resource: ServiceResource,
):
 self.iot_sitewise_wrapper = iot_sitewise_wrapper
 self.cloud_formation_resource = cloud_formation_resource
 self.stack = None
 self.asset_model_id = None
 self.asset_id = None
 self.portal_id = None
 self.gateway_id = None

 def run(self) -> None:
 """
 Runs the scenario.
 """
 print(
 """
AWS IoT SiteWise is a fully managed software-as-a-service (SaaS) that
makes it easy to collect, store, organize, and monitor data from industrial
 equipment and processes.
It is designed to help industrial and manufacturing organizations collect data
 from their equipment and
processes, and use that data to make informed decisions about their operations.

One of the key features of AWS IoT SiteWise is its ability to connect to a wide
 range of industrial
equipment and systems, including programmable logic controllers (PLCs), sensors,
 and other
industrial devices. It can collect data from these devices and organize it into a
 unified data model,
making it easier to analyze and gain insights from the data. AWS IoT SiteWise
 also provides tools for
visualizing the data, setting up alarms and alerts, and generating reports.

Learn the basics 934

AWS IoT SiteWise User Guide

Another key feature of AWS IoT SiteWise is its ability to scale to handle large
 volumes of data.
It can collect and store data from thousands of devices and process millions of
 data points per second,
making it suitable for large-scale industrial operations. Additionally, AWS IoT
 SiteWise is designed
to be secure and compliant, with features like role-based access controls, data
 encryption,
and integration with other AWS services for additional security and compliance
 features.

Let's get started...
 """
)
 press_enter_to_continue()
 print_dashes()
 print(f"")
 print(
 f"Use AWS CloudFormation to create an IAM role that is required for
 this scenario."
)
 template_file = IoTSitewiseGettingStarted.get_template_as_string()

 self.stack = self.deploy_cloudformation_stack(
 "python-iot-sitewise-basics", template_file
)
 outputs = self.stack.outputs
 iam_role = None

 for output in outputs:
 if output.get("OutputKey") == "SitewiseRoleArn":
 iam_role = output.get("OutputValue")

 if iam_role is None:
 error_string = f"Failed to retrieve iam_role from CloudFormation
 stack."
 logger.error(error_string)
 raise ValueError(error_string)

 print(f"The ARN of the IAM role is {iam_role}")
 print_dashes()
 print_dashes()
 print(f"1. Create an AWS SiteWise Asset Model")

Learn the basics 935

AWS IoT SiteWise User Guide

 print(
 """
An AWS IoT SiteWise Asset Model is a way to represent the physical assets, such
 as equipment,
processes, and systems, that exist in an industrial environment. This model
 provides a structured and
hierarchical representation of these assets, allowing users to define the
 relationships and values
of each asset.

This scenario creates two asset model values: temperature and humidity.
 """
)
 press_enter_to_continue()
 asset_model_name = "MyAssetModel1"
 temperature_property_name = "temperature"
 humidity_property_name = "humidity"
 try:
 properties = [
 {
 "name": temperature_property_name,
 "dataType": "DOUBLE",
 "type": {
 "measurement": {},
 },
 },
 {
 "name": humidity_property_name,
 "dataType": "DOUBLE",
 "type": {
 "measurement": {},
 },
 },
]
 self.asset_model_id = self.iot_sitewise_wrapper.create_asset_model(
 asset_model_name, properties
)
 print(
 f"Asset Model successfully created. Asset Model ID:
 {self.asset_model_id}. "
)
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceAlreadyExistsException":

Learn the basics 936

AWS IoT SiteWise User Guide

 self.asset_model_id =
 self.get_model_id_for_model_name(asset_model_name)
 print(
 f"Asset Model {asset_model_name} already exists. Asset Model
 ID: {self.asset_model_id}. "
)
 else:
 raise

 press_enter_to_continue()
 print_dashes()
 print(f"2. Create an AWS IoT SiteWise Asset")
 print(
 """
The IoT SiteWise model that we just created defines the structure and metadata
 for your physical assets.
Now we create an asset from the asset model.

 """
)
 press_enter_to_continue()

 self.asset_id = self.iot_sitewise_wrapper.create_asset(
 "MyAsset1", self.asset_model_id
)

 print(f"Asset created with ID: {self.asset_id}")
 press_enter_to_continue()
 print_dashes()
 print_dashes()
 print(f"3. Retrieve the property ID values")
 print(
 """
To send data to an asset, we need to get the property ID values. In this
 scenario, we access the
temperature and humidity property ID values.
 """
)
 press_enter_to_continue()
 property_ids = self.iot_sitewise_wrapper.list_asset_model_properties(
 self.asset_model_id
)
 humidity_property_id = None
 temperature_property_id = None

Learn the basics 937

AWS IoT SiteWise User Guide

 for property_id in property_ids:
 if property_id.get("name") == humidity_property_name:
 humidity_property_id = property_id.get("id")
 elif property_id.get("name") == temperature_property_name:
 temperature_property_id = property_id.get("id")
 if humidity_property_id is None or temperature_property_id is None:
 error_string = f"Failed to retrieve property IDs from Asset Model."
 logger.error(error_string)
 raise ValueError(error_string)

 print(f"The Humidity property Id is {humidity_property_id}")
 print(f"The Temperature property Id is {temperature_property_id}")
 press_enter_to_continue()
 print_dashes()
 print_dashes()

 print(f"4. Send data to an AWS IoT SiteWise Asset")
 print(
 """
By sending data to an IoT SiteWise Asset, you can aggregate data from
multiple sources, normalize the data into a standard format, and store it in a
centralized location. This makes it easier to analyze and gain insights from the
 data.

In this example, we generate sample temperature and humidity data and send it to
 the AWS IoT SiteWise asset.

 """
)
 press_enter_to_continue()

 values = [
 {
 "propertyId": humidity_property_id,
 "valueType": "doubleValue",
 "value": 65.0,
 },
 {
 "propertyId": temperature_property_id,
 "valueType": "doubleValue",
 "value": 23.5,
 },
]

Learn the basics 938

AWS IoT SiteWise User Guide

 self.iot_sitewise_wrapper.batch_put_asset_property_value(self.asset_id,
 values)
 print(f"Data sent successfully.")

 press_enter_to_continue()
 print_dashes()
 print_dashes()

 print(f"5. Retrieve the value of the IoT SiteWise Asset property")
 print(
 """
IoT SiteWise is an AWS service that allows you to collect, process, and analyze
 industrial data
from connected equipment and sensors. One of the key benefits of reading an IoT
 SiteWise property
is the ability to gain valuable insights from your industrial data.

 """
)
 press_enter_to_continue()

 property_value = self.iot_sitewise_wrapper.get_asset_property_value(
 self.asset_id, temperature_property_id
)
 print(f"The property name is '{temperature_property_name}'.")

 print(
 f"The value of this property is: {property_value['value']
['doubleValue']}"
)
 press_enter_to_continue()

 property_value = self.iot_sitewise_wrapper.get_asset_property_value(
 self.asset_id, humidity_property_id
)
 print(f"The property name is '{humidity_property_name}'.")
 print(
 f"The value of this property is: {property_value['value']
['doubleValue']}"
)
 press_enter_to_continue()
 print_dashes()
 print_dashes()

Learn the basics 939

AWS IoT SiteWise User Guide

 print(f"6. Create an IoT SiteWise Portal")
 print(
 """
An IoT SiteWise Portal allows you to aggregate data from multiple industrial
 sources,
such as sensors, equipment, and control systems, into a centralized platform.
 """
)

 press_enter_to_continue()
 contact_email = q.ask("Enter a contact email for the portal:",
 q.non_empty)
 print("Creating the portal. The portal may take a while to become
 active.")
 self.portal_id = self.iot_sitewise_wrapper.create_portal(
 "MyPortal1", iam_role, contact_email
)
 print(f"Portal created successfully. Portal ID {self.portal_id}")
 press_enter_to_continue()
 print_dashes()
 print_dashes()

 print(f"7. Describe the Portal")
 print(
 """
In this step, we get a description of the portal and display the portal URL.
 """
)
 press_enter_to_continue()
 portal_description =
 self.iot_sitewise_wrapper.describe_portal(self.portal_id)
 print(f"Portal URL: {portal_description['portalStartUrl']}")
 press_enter_to_continue()
 print_dashes()
 print_dashes()

 print(f"8. Create an IoT SiteWise Gateway")
 press_enter_to_continue()
 self.gateway_id = self.iot_sitewise_wrapper.create_gateway(
 "MyGateway1", "MyThing1"
)
 print(f"Gateway creation completed successfully. id is
 {self.gateway_id}")
 print_dashes()

Learn the basics 940

AWS IoT SiteWise User Guide

 print_dashes()
 print(f"9. Describe the IoT SiteWise Gateway")
 press_enter_to_continue()

 gateway_description = self.iot_sitewise_wrapper.describe_gateway(
 self.gateway_id
)
 print(f"Gateway Name: {gateway_description['gatewayName']}")
 print(f"Gateway ARN: {gateway_description['gatewayArn']}")
 print(f"Gateway Platform:\n{gateway_description['gatewayPlatform']}")
 print(f"Gateway Creation Date: {gateway_description['gatewayArn']}")
 print_dashes()
 print_dashes()

 print(f"10. Delete the AWS IoT SiteWise Assets")
 if q.ask("Would you like to delete the IoT SiteWise Assets? (y/n)",
 q.is_yesno):
 self.cleanup()
 else:
 print(f"The resources will not be deleted.")
 print_dashes()
 print_dashes()
 print(f"This concludes the AWS IoT SiteWise Scenario")

 def cleanup(self) -> None:
 """
 Deletes the CloudFormation stack and the resources created for the demo.
 """

 if self.gateway_id is not None:
 self.iot_sitewise_wrapper.delete_gateway(self.gateway_id)
 print(f"Deleted gateway with id {self.gateway_id}.")
 self.gateway_id = None
 if self.portal_id is not None:
 self.iot_sitewise_wrapper.delete_portal(self.portal_id)
 print(f"Deleted portal with id {self.portal_id}.")
 self.portal_id = None
 if self.asset_id is not None:
 self.iot_sitewise_wrapper.delete_asset(self.asset_id)
 print(f"Deleted asset with id {self.asset_id}.")
 self.iot_sitewise_wrapper.wait_asset_deleted(self.asset_id)
 self.asset_id = None
 if self.asset_model_id is not None:
 self.iot_sitewise_wrapper.delete_asset_model(self.asset_model_id)

Learn the basics 941

AWS IoT SiteWise User Guide

 print(f"Deleted asset model with id {self.asset_model_id}.")
 self.asset_model_id = None
 if self.stack is not None:
 stack = self.stack
 self.stack = None
 self.destroy_cloudformation_stack(stack)

 def deploy_cloudformation_stack(
 self, stack_name: str, cfn_template: str
) -> ServiceResource:
 """
 Deploys prerequisite resources used by the scenario. The resources are
 defined in the associated `SitewiseRoles-template.yaml` AWS
 CloudFormation script and are deployed
 as a CloudFormation stack, so they can be easily managed and destroyed.

 :param stack_name: The name of the CloudFormation stack.
 :param cfn_template: The CloudFormation template as a string.
 :return: The CloudFormation stack resource.
 """
 print(f"Deploying CloudFormation stack: {stack_name}.")
 stack = self.cloud_formation_resource.create_stack(
 StackName=stack_name,
 TemplateBody=cfn_template,
 Capabilities=["CAPABILITY_NAMED_IAM"],
)
 print(f"CloudFormation stack creation started: {stack_name}")
 print("Waiting for CloudFormation stack creation to complete...")
 waiter = self.cloud_formation_resource.meta.client.get_waiter(
 "stack_create_complete"
)
 waiter.wait(StackName=stack.name)
 stack.load()
 print("CloudFormation stack creation complete.")

 return stack

 def destroy_cloudformation_stack(self, stack: ServiceResource) -> None:
 """
 Destroys the resources managed by the CloudFormation stack, and the
 CloudFormation
 stack itself.

Learn the basics 942

AWS IoT SiteWise User Guide

 :param stack: The CloudFormation stack that manages the example
 resources.
 """
 print(
 f"CloudFormation stack '{stack.name}' is being deleted. This may take
 a few minutes."
)
 stack.delete()
 waiter = self.cloud_formation_resource.meta.client.get_waiter(
 "stack_delete_complete"
)
 waiter.wait(StackName=stack.name)
 print(f"CloudFormation stack '{stack.name}' has been deleted.")

 @staticmethod
 def get_template_as_string() -> str:
 """
 Returns a string containing this scenario's CloudFormation template.
 """
 template_file_path = os.path.join(script_dir, "SitewiseRoles-
template.yaml")
 file = open(template_file_path, "r")
 return file.read()

 def get_model_id_for_model_name(self, model_name: str) -> str:
 """
 Returns the model ID for the given model name.

 :param model_name: The name of the model.
 :return: The model ID.
 """
 model_id = None
 asset_models = self.iot_sitewise_wrapper.list_asset_models()
 for asset_model in asset_models:
 if asset_model["name"] == model_name:
 model_id = asset_model["id"]
 break
 return model_id

IoTSitewiseWrapper class that wraps AWS IoT SiteWise actions.

Learn the basics 943

AWS IoT SiteWise User Guide

class IoTSitewiseWrapper:
 """Encapsulates AWS IoT SiteWise actions using the client interface."""

 def __init__(self, iotsitewise_client: client) -> None:
 """
 Initializes the IoTSitewiseWrapper with an AWS IoT SiteWise client.

 :param iotsitewise_client: A Boto3 AWS IoT SiteWise client. This client
 provides low-level
 access to AWS IoT SiteWise services.
 """
 self.iotsitewise_client = iotsitewise_client
 self.entry_id = 0 # Incremented to generate unique entry IDs for
 batch_put_asset_property_value.

 @classmethod
 def from_client(cls) -> "IoTSitewiseWrapper":
 """
 Creates an IoTSitewiseWrapper instance with a default AWS IoT SiteWise
 client.

 :return: An instance of IoTSitewiseWrapper initialized with the default
 AWS IoT SiteWise client.
 """
 iotsitewise_client = boto3.client("iotsitewise")
 return cls(iotsitewise_client)

 def create_asset_model(
 self, asset_model_name: str, properties: List[Dict[str, Any]]
) -> str:
 """
 Creates an AWS IoT SiteWise Asset Model.

 :param asset_model_name: The name of the asset model to create.
 :param properties: The property definitions of the asset model.
 :return: The ID of the created asset model.
 """
 try:
 response = self.iotsitewise_client.create_asset_model(
 assetModelName=asset_model_name,
 assetModelDescription="This is a sample asset model
 description.",

Learn the basics 944

AWS IoT SiteWise User Guide

 assetModelProperties=properties,
)
 asset_model_id = response["assetModelId"]
 waiter = self.iotsitewise_client.get_waiter("asset_model_active")
 waiter.wait(assetModelId=asset_model_id)
 return asset_model_id
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceAlreadyExistsException":
 logger.error("Asset model %s already exists.", asset_model_name)
 else:
 logger.error(
 "Error creating asset model %s. Here's why %s",
 asset_model_name,
 err.response["Error"]["Message"],
)
 raise

 def create_asset(self, asset_name: str, asset_model_id: str) -> str:
 """
 Creates an AWS IoT SiteWise Asset.

 :param asset_name: The name of the asset to create.
 :param asset_model_id: The ID of the asset model to associate with the
 asset.
 :return: The ID of the created asset.
 """
 try:
 response = self.iotsitewise_client.create_asset(
 assetName=asset_name, assetModelId=asset_model_id
)
 asset_id = response["assetId"]
 waiter = self.iotsitewise_client.get_waiter("asset_active")
 waiter.wait(assetId=asset_id)
 return asset_id
 except ClientError as err:
 if err.response["Error"] == "ResourceNotFoundException":
 logger.error("Asset model %s does not exist.", asset_model_id)
 else:
 logger.error(
 "Error creating asset %s. Here's why %s",
 asset_name,
 err.response["Error"]["Message"],
)

Learn the basics 945

AWS IoT SiteWise User Guide

 raise

 def list_asset_models(self) -> List[Dict[str, Any]]:
 """
 Lists all AWS IoT SiteWise Asset Models.

 :return: A list of dictionaries containing information about each asset
 model.

 """
 try:
 asset_models = []
 paginator =
 self.iotsitewise_client.get_paginator("list_asset_models")
 pages = paginator.paginate()
 for page in pages:
 asset_models.extend(page["assetModelSummaries"])
 return asset_models
 except ClientError as err:
 logger.error(
 "Error listing asset models. Here's why %s",
 err.response["Error"]["Message"],
)
 raise

 def list_asset_model_properties(self, asset_model_id: str) -> List[Dict[str,
 Any]]:
 """
 Lists all AWS IoT SiteWise Asset Model Properties.

 :param asset_model_id: The ID of the asset model to list values for.
 :return: A list of dictionaries containing information about each asset
 model property.
 """
 try:
 asset_model_properties = []
 paginator = self.iotsitewise_client.get_paginator(
 "list_asset_model_properties"
)
 pages = paginator.paginate(assetModelId=asset_model_id)
 for page in pages:

Learn the basics 946

AWS IoT SiteWise User Guide

 asset_model_properties.extend(page["assetModelPropertySummaries"])
 return asset_model_properties
 except ClientError as err:
 logger.error(
 "Error listing asset model values. Here's why %s",
 err.response["Error"]["Message"],
)
 raise

 def batch_put_asset_property_value(
 self, asset_id: str, values: List[Dict[str, str]]
) -> None:
 """
 Sends data to an AWS IoT SiteWise Asset.

 :param asset_id: The asset ID.
 :param values: A list of dictionaries containing the values in the form
 {propertyId : property_id,
 valueType : [stringValue|integerValue|doubleValue|
booleanValue],
 value : the_value}.
 """
 try:
 entries = self.properties_to_values(asset_id, values)

 self.iotsitewise_client.batch_put_asset_property_value(entries=entries)
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.error("Asset %s does not exist.", asset_id)
 else:
 logger.error(
 "Error sending data to asset. Here's why %s",
 err.response["Error"]["Message"],
)
 raise

 def properties_to_values(
 self, asset_id: str, values: list[dict[str, Any]]
) -> list[dict[str, Any]]:
 """

Learn the basics 947

AWS IoT SiteWise User Guide

 Utility function to convert a values list to the entries parameter for
 batch_put_asset_property_value.
 :param asset_id : The asset ID.
 :param values : A list of dictionaries containing the values in the form
 {propertyId : property_id,
 valueType : [stringValue|integerValue|doubleValue|
booleanValue],
 value : the_value}.
 :return: An entries list to pass as the 'entries' parameter to
 batch_put_asset_property_value.
 """
 entries = []
 for value in values:
 epoch_ns = time.time_ns()
 self.entry_id += 1
 if value["valueType"] == "stringValue":
 property_value = {"stringValue": value["value"]}
 elif value["valueType"] == "integerValue":
 property_value = {"integerValue": value["value"]}
 elif value["valueType"] == "booleanValue":
 property_value = {"booleanValue": value["value"]}
 elif value["valueType"] == "doubleValue":
 property_value = {"doubleValue": value["value"]}
 else:
 raise ValueError("Invalid valueType: %s", value["valueType"])
 entry = {
 "entryId": f"{self.entry_id}",
 "assetId": asset_id,
 "propertyId": value["propertyId"],
 "propertyValues": [
 {
 "value": property_value,
 "timestamp": {
 "timeInSeconds": int(epoch_ns / 1000000000),
 "offsetInNanos": epoch_ns % 1000000000,
 },
 }
],
 }
 entries.append(entry)
 return entries

 def get_asset_property_value(

Learn the basics 948

AWS IoT SiteWise User Guide

 self, asset_id: str, property_id: str
) -> Dict[str, Any]:
 """
 Gets the value of an AWS IoT SiteWise Asset Property.

 :param asset_id: The ID of the asset.
 :param property_id: The ID of the property.
 :return: A dictionary containing the value of the property.
 """
 try:
 response = self.iotsitewise_client.get_asset_property_value(
 assetId=asset_id, propertyId=property_id
)
 return response["propertyValue"]
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.error(
 "Asset %s or property %s does not exist.", asset_id,
 property_id
)
 else:
 logger.error(
 "Error getting asset property value. Here's why %s",
 err.response["Error"]["Message"],
)
 raise

 def create_portal(
 self, portal_name: str, iam_role_arn: str, portal_contact_email: str
) -> str:
 """
 Creates an AWS IoT SiteWise Portal.

 :param portal_name: The name of the portal to create.
 :param iam_role_arn: The ARN of an IAM role.
 :param portal_contact_email: The contact email of the portal.
 :return: The ID of the created portal.
 """
 try:
 response = self.iotsitewise_client.create_portal(
 portalName=portal_name,
 roleArn=iam_role_arn,
 portalContactEmail=portal_contact_email,

Learn the basics 949

AWS IoT SiteWise User Guide

)
 portal_id = response["portalId"]
 waiter = self.iotsitewise_client.get_waiter("portal_active")
 waiter.wait(portalId=portal_id, WaiterConfig={"MaxAttempts": 40})
 return portal_id
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceAlreadyExistsException":
 logger.error("Portal %s already exists.", portal_name)
 else:
 logger.error(
 "Error creating portal %s. Here's why %s",
 portal_name,
 err.response["Error"]["Message"],
)
 raise

 def describe_portal(self, portal_id: str) -> Dict[str, Any]:
 """
 Describes an AWS IoT SiteWise Portal.

 :param portal_id: The ID of the portal to describe.
 :return: A dictionary containing information about the portal.
 """
 try:
 response =
 self.iotsitewise_client.describe_portal(portalId=portal_id)
 return response
 except ClientError as err:
 logger.error(
 "Error describing portal %s. Here's why %s",
 portal_id,
 err.response["Error"]["Message"],
)
 raise

 def create_gateway(self, gateway_name: str, my_thing: str) -> str:
 """
 Creates an AWS IoT SiteWise Gateway.

 :param gateway_name: The name of the gateway to create.
 :param my_thing: The core device thing name.
 :return: The ID of the created gateway.

Learn the basics 950

AWS IoT SiteWise User Guide

 """
 try:
 response = self.iotsitewise_client.create_gateway(
 gatewayName=gateway_name,
 gatewayPlatform={
 "greengrassV2": {"coreDeviceThingName": my_thing},
 },
 tags={"Environment": "Production"},
)
 gateway_id = response["gatewayId"]
 return gateway_id
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceAlreadyExistsException":
 logger.error("Gateway %s already exists.", gateway_name)
 else:
 logger.error(
 "Error creating gateway %s. Here's why %s",
 gateway_name,
 err.response["Error"]["Message"],
)
 raise

 def describe_gateway(self, gateway_id: str) -> Dict[str, Any]:
 """
 Describes an AWS IoT SiteWise Gateway.

 :param gateway_id: The ID of the gateway to describe.
 :return: A dictionary containing information about the gateway.
 """
 try:
 response =
 self.iotsitewise_client.describe_gateway(gatewayId=gateway_id)
 return response
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.error("Gateway %s does not exist.", gateway_id)
 else:
 logger.error(
 "Error describing gateway %s. Here's why %s",
 gateway_id,
 err.response["Error"]["Message"],
)
 raise

Learn the basics 951

AWS IoT SiteWise User Guide

 def delete_gateway(self, gateway_id: str) -> None:
 """
 Deletes an AWS IoT SiteWise Gateway.

 :param gateway_id: The ID of the gateway to delete.
 """
 try:
 self.iotsitewise_client.delete_gateway(gatewayId=gateway_id)
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.error("Gateway %s does not exist.", gateway_id)
 else:
 logger.error(
 "Error deleting gateway %s. Here's why %s",
 gateway_id,
 err.response["Error"]["Message"],
)
 raise

 def delete_portal(self, portal_id: str) -> None:
 """
 Deletes an AWS IoT SiteWise Portal.

 :param portal_id: The ID of the portal to delete.
 """
 try:
 self.iotsitewise_client.delete_portal(portalId=portal_id)
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.error("Portal %s does not exist.", portal_id)
 else:
 logger.error(
 "Error deleting portal %s. Here's why %s",
 portal_id,
 err.response["Error"]["Message"],
)
 raise

 def delete_asset(self, asset_id: str) -> None:
 """

Learn the basics 952

AWS IoT SiteWise User Guide

 Deletes an AWS IoT SiteWise Asset.

 :param asset_id: The ID of the asset to delete.
 """
 try:
 self.iotsitewise_client.delete_asset(assetId=asset_id)
 except ClientError as err:
 logger.error(
 "Error deleting asset %s. Here's why %s",
 asset_id,
 err.response["Error"]["Message"],
)
 raise

 def delete_asset_model(self, asset_model_id: str) -> None:
 """
 Deletes an AWS IoT SiteWise Asset Model.

 :param asset_model_id: The ID of the asset model to delete.
 """
 try:

 self.iotsitewise_client.delete_asset_model(assetModelId=asset_model_id)
 except ClientError as err:
 logger.error(
 "Error deleting asset model %s. Here's why %s",
 asset_model_id,
 err.response["Error"]["Message"],
)
 raise

 def wait_asset_deleted(self, asset_id: str) -> None:
 """
 Waits for an AWS IoT SiteWise Asset to be deleted.

 :param asset_id: The ID of the asset to wait for.
 """
 try:
 waiter = self.iotsitewise_client.get_waiter("asset_not_exists")
 waiter.wait(assetId=asset_id)
 except ClientError as err:
 logger.error(

Learn the basics 953

AWS IoT SiteWise User Guide

 "Error waiting for asset %s to be deleted. Here's why %s",
 asset_id,
 err.response["Error"]["Message"],
)
 raise

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Actions for AWS IoT SiteWise using AWS SDKs

The following code examples demonstrate how to perform individual AWS IoT SiteWise actions
with AWS SDKs. Each example includes a link to GitHub, where you can find instructions for setting
up and running the code.

The following examples include only the most commonly used actions. For a complete list, see the
AWS IoT SiteWise API Reference.

Examples

• Use BatchPutAssetPropertyValue with an AWS SDK or CLI

• Use CreateAsset with an AWS SDK or CLI

• Use CreateAssetModel with an AWS SDK or CLI

• Use CreateGateway with an AWS SDK or CLI

• Use CreatePortal with an AWS SDK or CLI

• Use DeleteAsset with an AWS SDK or CLI

• Use DeleteAssetModel with an AWS SDK or CLI

• Use DeleteGateway with an AWS SDK or CLI

• Use DeletePortal with an AWS SDK or CLI

• Use DescribeAssetModel with an AWS SDK or CLI

• Use DescribeGateway with an AWS SDK or CLI

• Use DescribePortal with an AWS SDK or CLI

• Use GetAssetPropertyValue with an AWS SDK or CLI

Actions 954

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/Welcome.html

AWS IoT SiteWise User Guide

• Use ListAssetModels with an AWS SDK or CLI

Use BatchPutAssetPropertyValue with an AWS SDK or CLI

The following code examples show how to use BatchPutAssetPropertyValue.

CLI

AWS CLI

To send data to asset properties

The following batch-put-asset-property-value example sends power and
temperature data to the asset properties identified by property aliases.

aws iotsitewise batch-put-asset-property-value \
 --cli-input-json file://batch-put-asset-property-value.json

Contents of batch-put-asset-property-value.json:

{
 "entries": [
 {
 "entryId": "1575691200-company-windfarm-3-turbine-7-power",
 "propertyAlias": "company-windfarm-3-turbine-7-power",
 "propertyValues": [
 {
 "value": {
 "doubleValue": 4.92
 },
 "timestamp": {
 "timeInSeconds": 1575691200
 },
 "quality": "GOOD"
 }
]
 },
 {
 "entryId": "1575691200-company-windfarm-3-turbine-7-temperature",
 "propertyAlias": "company-windfarm-3-turbine-7-temperature",
 "propertyValues": [
 {

Actions 955

AWS IoT SiteWise User Guide

 "value": {
 "integerValue": 38
 },
 "timestamp": {
 "timeInSeconds": 1575691200
 }
 }
]
 }
]
}

Output:

{
 "errorEntries": []
}

For more information, see Ingesting data using the AWS IoT SiteWise API in the AWS IoT
SiteWise User Guide.

• For API details, see BatchPutAssetPropertyValue in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Sends data to the SiteWise service.
 *
 * @param assetId the ID of the asset to which the data will be sent.
 * @param tempPropertyId the ID of the temperature property.
 * @param humidityPropId the ID of the humidity property.
 * @return a {@link CompletableFuture} that represents a {@link
 BatchPutAssetPropertyValueResponse} result. The

Actions 956

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/ingest-api.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotsitewise/batch-put-asset-property-value.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 * calling code can attach callbacks, then handle the result or
 exception by calling
 * {@link CompletableFuture#join()} or {@link
 CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps it
 * available to the calling code as a {@link CompletionException}. By
 calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<BatchPutAssetPropertyValueResponse>
 sendDataToSiteWiseAsync(String assetId, String tempPropertyId, String
 humidityPropId) {
 Map<String, Double> sampleData = generateSampleData();
 long timestamp = Instant.now().toEpochMilli();

 TimeInNanos time = TimeInNanos.builder()
 .timeInSeconds(timestamp / 1000)
 .offsetInNanos((int) ((timestamp % 1000) * 1000000))
 .build();

 BatchPutAssetPropertyValueRequest request =
 BatchPutAssetPropertyValueRequest.builder()
 .entries(Arrays.asList(
 PutAssetPropertyValueEntry.builder()
 .entryId("entry-3")
 .assetId(assetId)
 .propertyId(tempPropertyId)
 .propertyValues(Arrays.asList(
 AssetPropertyValue.builder()
 .value(Variant.builder()
 .doubleValue(sampleData.get("Temperature"))
 .build())
 .timestamp(time)
 .build()
))
 .build(),
 PutAssetPropertyValueEntry.builder()
 .entryId("entry-4")
 .assetId(assetId)
 .propertyId(humidityPropId)
 .propertyValues(Arrays.asList(

Actions 957

AWS IoT SiteWise User Guide

 AssetPropertyValue.builder()
 .value(Variant.builder()
 .doubleValue(sampleData.get("Humidity"))
 .build())
 .timestamp(time)
 .build()
))
 .build()
))
 .build();

 return getAsyncClient().batchPutAssetPropertyValue(request)
 .whenComplete((response, exception) -> {
 if (exception != null) {
 logger.error("An exception occurred: {}",
 exception.getCause().getMessage());
 }
 });
 }

• For API details, see BatchPutAssetPropertyValue in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {
 BatchPutAssetPropertyValueCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * Batch put asset property values.
 * @param {{ entries : array }}

Actions 958

https://docs.aws.amazon.com/goto/SdkForJavaV2/iotsitewise-2019-12-02/BatchPutAssetPropertyValue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 */
export const main = async ({ entries }) => {
 const client = new IoTSiteWiseClient({});
 try {
 const result = await client.send(
 new BatchPutAssetPropertyValueCommand({
 entries: entries,
 }),
);
 console.log("Asset properties batch put successfully.");
 return result;
 } catch (caught) {
 if (caught instanceof Error && caught.name === "ResourceNotFound") {
 console.warn(`${caught.message}. A resource could not be found.`);
 } else {
 throw caught;
 }
 }
};

• For API details, see BatchPutAssetPropertyValue in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class IoTSitewiseWrapper:
 """Encapsulates AWS IoT SiteWise actions using the client interface."""

 def __init__(self, iotsitewise_client: client) -> None:
 """
 Initializes the IoTSitewiseWrapper with an AWS IoT SiteWise client.

 :param iotsitewise_client: A Boto3 AWS IoT SiteWise client. This client
 provides low-level

Actions 959

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/BatchPutAssetPropertyValueCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 access to AWS IoT SiteWise services.
 """
 self.iotsitewise_client = iotsitewise_client
 self.entry_id = 0 # Incremented to generate unique entry IDs for
 batch_put_asset_property_value.

 @classmethod
 def from_client(cls) -> "IoTSitewiseWrapper":
 """
 Creates an IoTSitewiseWrapper instance with a default AWS IoT SiteWise
 client.

 :return: An instance of IoTSitewiseWrapper initialized with the default
 AWS IoT SiteWise client.
 """
 iotsitewise_client = boto3.client("iotsitewise")
 return cls(iotsitewise_client)

 def batch_put_asset_property_value(
 self, asset_id: str, values: List[Dict[str, str]]
) -> None:
 """
 Sends data to an AWS IoT SiteWise Asset.

 :param asset_id: The asset ID.
 :param values: A list of dictionaries containing the values in the form
 {propertyId : property_id,
 valueType : [stringValue|integerValue|doubleValue|
booleanValue],
 value : the_value}.
 """
 try:
 entries = self.properties_to_values(asset_id, values)

 self.iotsitewise_client.batch_put_asset_property_value(entries=entries)
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.error("Asset %s does not exist.", asset_id)
 else:
 logger.error(
 "Error sending data to asset. Here's why %s",
 err.response["Error"]["Message"],
)

Actions 960

AWS IoT SiteWise User Guide

 raise

A helper function to generate the entries parameter from a values list.

 def properties_to_values(
 self, asset_id: str, values: list[dict[str, Any]]
) -> list[dict[str, Any]]:
 """
 Utility function to convert a values list to the entries parameter for
 batch_put_asset_property_value.
 :param asset_id : The asset ID.
 :param values : A list of dictionaries containing the values in the form
 {propertyId : property_id,
 valueType : [stringValue|integerValue|doubleValue|
booleanValue],
 value : the_value}.
 :return: An entries list to pass as the 'entries' parameter to
 batch_put_asset_property_value.
 """
 entries = []
 for value in values:
 epoch_ns = time.time_ns()
 self.entry_id += 1
 if value["valueType"] == "stringValue":
 property_value = {"stringValue": value["value"]}
 elif value["valueType"] == "integerValue":
 property_value = {"integerValue": value["value"]}
 elif value["valueType"] == "booleanValue":
 property_value = {"booleanValue": value["value"]}
 elif value["valueType"] == "doubleValue":
 property_value = {"doubleValue": value["value"]}
 else:
 raise ValueError("Invalid valueType: %s", value["valueType"])
 entry = {
 "entryId": f"{self.entry_id}",
 "assetId": asset_id,
 "propertyId": value["propertyId"],
 "propertyValues": [
 {
 "value": property_value,
 "timestamp": {

Actions 961

AWS IoT SiteWise User Guide

 "timeInSeconds": int(epoch_ns / 1000000000),
 "offsetInNanos": epoch_ns % 1000000000,
 },
 }
],
 }
 entries.append(entry)
 return entries

Here is an example of a values list to pass to the helper function.

 values = [
 {
 "propertyId": humidity_property_id,
 "valueType": "doubleValue",
 "value": 65.0,
 },
 {
 "propertyId": temperature_property_id,
 "valueType": "doubleValue",
 "value": 23.5,
 },
]

• For API details, see BatchPutAssetPropertyValue in AWS SDK for Python (Boto3) API
Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateAsset with an AWS SDK or CLI

The following code examples show how to use CreateAsset.

Actions 962

https://docs.aws.amazon.com/goto/boto3/iotsitewise-2019-12-02/BatchPutAssetPropertyValue

AWS IoT SiteWise User Guide

CLI

AWS CLI

To create an asset

The following create-asset example creates a wind turbine asset from a wind turbine
asset model.

aws iotsitewise create-asset \
 --asset-model-id a1b2c3d4-5678-90ab-cdef-11111EXAMPLE \
 --asset-name "Wind Turbine 1"

Output:

{
 "assetId": "a1b2c3d4-5678-90ab-cdef-33333EXAMPLE",
 "assetArn": "arn:aws:iotsitewise:us-west-2:123456789012:asset/
a1b2c3d4-5678-90ab-cdef-33333EXAMPLE",
 "assetStatus": {
 "state": "CREATING"
 }
}

For more information, see Creating assets in the AWS IoT SiteWise User Guide.

• For API details, see CreateAsset in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**

Actions 963

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/create-assets.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotsitewise/create-asset.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 * Creates an asset with the specified name and asset model Id.
 *
 * @param assetName the name of the asset to create.
 * @param assetModelId the Id of the asset model to associate with the asset.
 * @return a {@link CompletableFuture} that represents a {@link
 CreateAssetResponse} result. The calling code can
 * attach callbacks, then handle the result or exception by calling
 {@link CompletableFuture#join()} or
 * {@link CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps it
 * available to the calling code as a {@link CompletionException}. By
 calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<CreateAssetResponse> createAssetAsync(String
 assetName, String assetModelId) {
 CreateAssetRequest createAssetRequest = CreateAssetRequest.builder()
 .assetModelId(assetModelId)
 .assetDescription("Created using the AWS SDK for Java")
 .assetName(assetName)
 .build();

 return getAsyncClient().createAsset(createAssetRequest)
 .whenComplete((response, exception) -> {
 if (exception != null) {
 logger.error("Failed to create asset: {}",
 exception.getCause().getMessage());
 }
 });
 }

• For API details, see CreateAsset in AWS SDK for Java 2.x API Reference.

Actions 964

https://docs.aws.amazon.com/goto/SdkForJavaV2/iotsitewise-2019-12-02/CreateAsset

AWS IoT SiteWise User Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {
 CreateAssetCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * Create an Asset.
 * @param {{ assetName : string, assetModelId: string }}
 */
export const main = async ({ assetName, assetModelId }) => {
 const client = new IoTSiteWiseClient({});
 try {
 const result = await client.send(
 new CreateAssetCommand({
 assetName: assetName, // The name to give the Asset.
 assetModelId: assetModelId, // The ID of the asset model from which to
 create the asset.
 }),
);
 console.log("Asset created successfully.");
 return result;
 } catch (caught) {
 if (caught instanceof Error && caught.name === "ResourceNotFound") {
 console.warn(
 `${caught.message}. The asset model could not be found. Please check the
 asset model id.`,
);
 } else {
 throw caught;
 }
 }

Actions 965

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

};

• For API details, see CreateAsset in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class IoTSitewiseWrapper:
 """Encapsulates AWS IoT SiteWise actions using the client interface."""

 def __init__(self, iotsitewise_client: client) -> None:
 """
 Initializes the IoTSitewiseWrapper with an AWS IoT SiteWise client.

 :param iotsitewise_client: A Boto3 AWS IoT SiteWise client. This client
 provides low-level
 access to AWS IoT SiteWise services.
 """
 self.iotsitewise_client = iotsitewise_client
 self.entry_id = 0 # Incremented to generate unique entry IDs for
 batch_put_asset_property_value.

 @classmethod
 def from_client(cls) -> "IoTSitewiseWrapper":
 """
 Creates an IoTSitewiseWrapper instance with a default AWS IoT SiteWise
 client.

 :return: An instance of IoTSitewiseWrapper initialized with the default
 AWS IoT SiteWise client.
 """
 iotsitewise_client = boto3.client("iotsitewise")
 return cls(iotsitewise_client)

Actions 966

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/CreateAssetCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 def create_asset(self, asset_name: str, asset_model_id: str) -> str:
 """
 Creates an AWS IoT SiteWise Asset.

 :param asset_name: The name of the asset to create.
 :param asset_model_id: The ID of the asset model to associate with the
 asset.
 :return: The ID of the created asset.
 """
 try:
 response = self.iotsitewise_client.create_asset(
 assetName=asset_name, assetModelId=asset_model_id
)
 asset_id = response["assetId"]
 waiter = self.iotsitewise_client.get_waiter("asset_active")
 waiter.wait(assetId=asset_id)
 return asset_id
 except ClientError as err:
 if err.response["Error"] == "ResourceNotFoundException":
 logger.error("Asset model %s does not exist.", asset_model_id)
 else:
 logger.error(
 "Error creating asset %s. Here's why %s",
 asset_name,
 err.response["Error"]["Message"],
)
 raise

• For API details, see CreateAsset in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateAssetModel with an AWS SDK or CLI

The following code examples show how to use CreateAssetModel.

Actions 967

https://docs.aws.amazon.com/goto/boto3/iotsitewise-2019-12-02/CreateAsset

AWS IoT SiteWise User Guide

CLI

AWS CLI

To create an asset model

The following create-asset-model example creates an asset model that defines a wind
turbine with the following properties:

Serial number - The serial number of a wind turbineGenerated power - The generated power
data stream from a wind turbineTemperature C - The temperature data stream from a wind
turbine in CelsiusTemperature F - The mapped temperature data points from Celsius to
Fahrenheit

aws iotsitewise create-asset-model \
 --cli-input-json file://create-wind-turbine-model.json

Contents of create-wind-turbine-model.json:

{
 "assetModelName": "Wind Turbine Model",
 "assetModelDescription": "Represents a wind turbine",
 "assetModelProperties": [
 {
 "name": "Serial Number",
 "dataType": "STRING",
 "type": {
 "attribute": {}
 }
 },
 {
 "name": "Generated Power",
 "dataType": "DOUBLE",
 "unit": "kW",
 "type": {
 "measurement": {}
 }
 },
 {
 "name": "Temperature C",
 "dataType": "DOUBLE",
 "unit": "Celsius",
 "type": {

Actions 968

AWS IoT SiteWise User Guide

 "measurement": {}
 }
 },
 {
 "name": "Temperature F",
 "dataType": "DOUBLE",
 "unit": "Fahrenheit",
 "type": {
 "transform": {
 "expression": "temp_c * 9 / 5 + 32",
 "variables": [
 {
 "name": "temp_c",
 "value": {
 "propertyId": "Temperature C"
 }
 }
]
 }
 }
 },
 {
 "name": "Total Generated Power",
 "dataType": "DOUBLE",
 "unit": "kW",
 "type": {
 "metric": {
 "expression": "sum(power)",
 "variables": [
 {
 "name": "power",
 "value": {
 "propertyId": "Generated Power"
 }
 }
],
 "window": {
 "tumbling": {
 "interval": "1h"
 }
 }
 }
 }
 }

Actions 969

AWS IoT SiteWise User Guide

]
}

Output:

{
 "assetModelId": "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE",
 "assetModelArn": "arn:aws:iotsitewise:us-west-2:123456789012:asset-model/
a1b2c3d4-5678-90ab-cdef-11111EXAMPLE",
 "assetModelStatus": {
 "state": "CREATING"
 }
}

For more information, see Defining asset models in the AWS IoT SiteWise User Guide.

• For API details, see CreateAssetModel in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Creates an asset model.
 *
 * @param name the name of the asset model to create.
 * @return a {@link CompletableFuture} that represents a {@link
 CreateAssetModelResponse} result. The calling code
 * can attach callbacks, then handle the result or exception by
 calling {@link CompletableFuture#join()} or
 * {@link CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps it

Actions 970

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/define-models.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotsitewise/create-asset-model.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 * available to the calling code as a {@link CompletionException}. By
 calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<CreateAssetModelResponse>
 createAssetModelAsync(String name) {
 PropertyType humidity = PropertyType.builder()
 .measurement(Measurement.builder().build())
 .build();

 PropertyType temperaturePropertyType = PropertyType.builder()
 .measurement(Measurement.builder().build())
 .build();

 AssetModelPropertyDefinition temperatureProperty =
 AssetModelPropertyDefinition.builder()
 .name("Temperature")
 .dataType(PropertyDataType.DOUBLE)
 .type(temperaturePropertyType)
 .build();

 AssetModelPropertyDefinition humidityProperty =
 AssetModelPropertyDefinition.builder()
 .name("Humidity")
 .dataType(PropertyDataType.DOUBLE)
 .type(humidity)
 .build();

 CreateAssetModelRequest createAssetModelRequest =
 CreateAssetModelRequest.builder()
 .assetModelName(name)
 .assetModelDescription("This is my asset model")
 .assetModelProperties(temperatureProperty, humidityProperty)
 .build();

 return getAsyncClient().createAssetModel(createAssetModelRequest)
 .whenComplete((response, exception) -> {
 if (exception != null) {
 logger.error("Failed to create asset model: {} ",
 exception.getCause().getMessage());
 }
 });
 }

Actions 971

AWS IoT SiteWise User Guide

• For API details, see CreateAssetModel in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {
 CreateAssetModelCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * Create an Asset Model.
 * @param {{ assetName : string, assetModelId: string }}
 */
export const main = async ({ assetModelName, assetModelId }) => {
 const client = new IoTSiteWiseClient({});
 try {
 const result = await client.send(
 new CreateAssetModelCommand({
 assetModelName: assetModelName, // The name to give the Asset Model.
 }),
);
 console.log("Asset model created successfully.");
 return result;
 } catch (caught) {
 if (caught instanceof Error && caught.name === "IoTSiteWiseError") {
 console.warn(
 `${caught.message}. There was a problem creating the asset model.`,
);
 } else {
 throw caught;
 }

Actions 972

https://docs.aws.amazon.com/goto/SdkForJavaV2/iotsitewise-2019-12-02/CreateAssetModel
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 }
};

• For API details, see CreateAssetModel in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class IoTSitewiseWrapper:
 """Encapsulates AWS IoT SiteWise actions using the client interface."""

 def __init__(self, iotsitewise_client: client) -> None:
 """
 Initializes the IoTSitewiseWrapper with an AWS IoT SiteWise client.

 :param iotsitewise_client: A Boto3 AWS IoT SiteWise client. This client
 provides low-level
 access to AWS IoT SiteWise services.
 """
 self.iotsitewise_client = iotsitewise_client
 self.entry_id = 0 # Incremented to generate unique entry IDs for
 batch_put_asset_property_value.

 @classmethod
 def from_client(cls) -> "IoTSitewiseWrapper":
 """
 Creates an IoTSitewiseWrapper instance with a default AWS IoT SiteWise
 client.

 :return: An instance of IoTSitewiseWrapper initialized with the default
 AWS IoT SiteWise client.
 """
 iotsitewise_client = boto3.client("iotsitewise")
 return cls(iotsitewise_client)

Actions 973

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/CreateAssetModelCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 def create_asset_model(
 self, asset_model_name: str, properties: List[Dict[str, Any]]
) -> str:
 """
 Creates an AWS IoT SiteWise Asset Model.

 :param asset_model_name: The name of the asset model to create.
 :param properties: The property definitions of the asset model.
 :return: The ID of the created asset model.
 """
 try:
 response = self.iotsitewise_client.create_asset_model(
 assetModelName=asset_model_name,
 assetModelDescription="This is a sample asset model
 description.",
 assetModelProperties=properties,
)
 asset_model_id = response["assetModelId"]
 waiter = self.iotsitewise_client.get_waiter("asset_model_active")
 waiter.wait(assetModelId=asset_model_id)
 return asset_model_id
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceAlreadyExistsException":
 logger.error("Asset model %s already exists.", asset_model_name)
 else:
 logger.error(
 "Error creating asset model %s. Here's why %s",
 asset_model_name,
 err.response["Error"]["Message"],
)
 raise

Here is an example of a properties list to pass to the function.

 properties = [
 {
 "name": temperature_property_name,
 "dataType": "DOUBLE",
 "type": {

Actions 974

AWS IoT SiteWise User Guide

 "measurement": {},
 },
 },
 {
 "name": humidity_property_name,
 "dataType": "DOUBLE",
 "type": {
 "measurement": {},
 },
 },
]

• For API details, see CreateAssetModel in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreateGateway with an AWS SDK or CLI

The following code examples show how to use CreateGateway.

CLI

AWS CLI

To create a gateway

The following create-gateway example creates a gateway that runs on AWS IoT
Greengrass.

aws iotsitewise create-gateway \
 --gateway-name ExampleCorpGateway \
 --gateway-platform greengrass={groupArn=arn:aws:greengrass:us-
west-2:123456789012:/greengrass/groups/a1b2c3d4-5678-90ab-cdef-1b1b1EXAMPLE}

Output:

{
 "gatewayId": "a1b2c3d4-5678-90ab-cdef-1a1a1EXAMPLE",

Actions 975

https://docs.aws.amazon.com/goto/boto3/iotsitewise-2019-12-02/CreateAssetModel

AWS IoT SiteWise User Guide

 "gatewayArn": "arn:aws:iotsitewise:us-west-2:123456789012:gateway/
a1b2c3d4-5678-90ab-cdef-1a1a1EXAMPLE"
}

For more information, see Configuring a gateway in the AWS IoT SiteWise User Guide.

• For API details, see CreateGateway in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Creates a new IoT Sitewise gateway.
 *
 * @param gatewayName The name of the gateway to create.
 * @param myThing The name of the core device thing to associate with the
 gateway.
 * @return a {@link CompletableFuture} that represents a {@link String}
 result of the gateways ID. The calling code
 * can attach callbacks, then handle the result or exception by
 calling {@link CompletableFuture#join()} or
 * {@link CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<String> createGatewayAsync(String gatewayName,
 String myThing) {
 GreengrassV2 gg = GreengrassV2.builder()
 .coreDeviceThingName(myThing)

Actions 976

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/configure-gateway.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotsitewise/create-gateway.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 .build();

 GatewayPlatform platform = GatewayPlatform.builder()
 .greengrassV2(gg)
 .build();

 Map<String, String> tag = new HashMap<>();
 tag.put("Environment", "Production");

 CreateGatewayRequest createGatewayRequest =
 CreateGatewayRequest.builder()
 .gatewayName(gatewayName)
 .gatewayPlatform(platform)
 .tags(tag)
 .build();

 return getAsyncClient().createGateway(createGatewayRequest)
 .handle((response, exception) -> {
 if (exception != null) {
 logger.error("Error creating the gateway.");
 throw (CompletionException) exception;
 }
 logger.info("The ARN of the gateway is {}" ,
 response.gatewayArn());
 return response.gatewayId();
 });
 }

• For API details, see CreateGateway in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {

Actions 977

https://docs.aws.amazon.com/goto/SdkForJavaV2/iotsitewise-2019-12-02/CreateGateway
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 CreateGatewayCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * Create a Gateway.
 * @param {{ }}
 */
export const main = async ({ gatewayName }) => {
 const client = new IoTSiteWiseClient({});
 try {
 const result = await client.send(
 new CreateGatewayCommand({
 gatewayName: gatewayName, // The name to give the created Gateway.
 }),
);
 console.log("Gateway created successfully.");
 return result;
 } catch (caught) {
 if (caught instanceof Error && caught.name === "IoTSiteWiseError") {
 console.warn(
 `${caught.message}. There was a problem creating the Gateway.`,
);
 } else {
 throw caught;
 }
 }
};

• For API details, see CreateGateway in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 978

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/CreateGatewayCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

class IoTSitewiseWrapper:
 """Encapsulates AWS IoT SiteWise actions using the client interface."""

 def __init__(self, iotsitewise_client: client) -> None:
 """
 Initializes the IoTSitewiseWrapper with an AWS IoT SiteWise client.

 :param iotsitewise_client: A Boto3 AWS IoT SiteWise client. This client
 provides low-level
 access to AWS IoT SiteWise services.
 """
 self.iotsitewise_client = iotsitewise_client
 self.entry_id = 0 # Incremented to generate unique entry IDs for
 batch_put_asset_property_value.

 @classmethod
 def from_client(cls) -> "IoTSitewiseWrapper":
 """
 Creates an IoTSitewiseWrapper instance with a default AWS IoT SiteWise
 client.

 :return: An instance of IoTSitewiseWrapper initialized with the default
 AWS IoT SiteWise client.
 """
 iotsitewise_client = boto3.client("iotsitewise")
 return cls(iotsitewise_client)

 def create_gateway(self, gateway_name: str, my_thing: str) -> str:
 """
 Creates an AWS IoT SiteWise Gateway.

 :param gateway_name: The name of the gateway to create.
 :param my_thing: The core device thing name.
 :return: The ID of the created gateway.
 """
 try:
 response = self.iotsitewise_client.create_gateway(
 gatewayName=gateway_name,
 gatewayPlatform={
 "greengrassV2": {"coreDeviceThingName": my_thing},
 },
 tags={"Environment": "Production"},

Actions 979

AWS IoT SiteWise User Guide

)
 gateway_id = response["gatewayId"]
 return gateway_id
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceAlreadyExistsException":
 logger.error("Gateway %s already exists.", gateway_name)
 else:
 logger.error(
 "Error creating gateway %s. Here's why %s",
 gateway_name,
 err.response["Error"]["Message"],
)
 raise

• For API details, see CreateGateway in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use CreatePortal with an AWS SDK or CLI

The following code examples show how to use CreatePortal.

CLI

AWS CLI

To create a portal

The following create-portal example creates a web portal for a wind farm company. You
can create portals only in the same Region where you enabled AWS Single Sign-On.

aws iotsitewise create-portal \
 --portal-name WindFarmPortal \
 --portal-description "A portal that contains wind farm projects for Example
 Corp." \
 --portal-contact-email support@example.com \
 --role-arn arn:aws:iam::123456789012:role/service-role/
MySiteWiseMonitorServiceRole

Actions 980

https://docs.aws.amazon.com/goto/boto3/iotsitewise-2019-12-02/CreateGateway

AWS IoT SiteWise User Guide

Output:

{
 "portalId": "a1b2c3d4-5678-90ab-cdef-aaaaaEXAMPLE",
 "portalArn": "arn:aws:iotsitewise:us-west-2:123456789012:portal/
a1b2c3d4-5678-90ab-cdef-aaaaaEXAMPLE",
 "portalStartUrl": "https://a1b2c3d4-5678-90ab-cdef-
aaaaaEXAMPLE.app.iotsitewise.aws",
 "portalStatus": {
 "state": "CREATING"
 },
 "ssoApplicationId": "ins-a1b2c3d4-EXAMPLE"
}

For more information, see Getting started with AWS IoT SiteWise Monitor in the AWS IoT
SiteWise User Guide and Enabling AWS SSO in the AWS IoT SiteWise User Guide..

• For API details, see CreatePortal in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Creates a new IoT SiteWise portal.
 *
 * @param portalName the name of the portal to create.
 * @param iamRole the IAM role ARN to use for the portal.
 * @param contactEmail the email address of the portal contact.
 * @return a {@link CompletableFuture} that represents a {@link String}
 result of the portal ID. The calling code
 * can attach callbacks, then handle the result or exception by
 calling {@link CompletableFuture#join()} or
 * {@link CompletableFuture#get()}.
 * <p>

Actions 981

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/monitor-getting-started.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/monitor-getting-started.html#monitor-enable-sso
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotsitewise/create-portal.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<String> createPortalAsync(String portalName, String
 iamRole, String contactEmail) {
 CreatePortalRequest createPortalRequest = CreatePortalRequest.builder()
 .portalName(portalName)
 .portalDescription("This is my custom IoT SiteWise portal.")
 .portalContactEmail(contactEmail)
 .roleArn(iamRole)
 .build();

 return getAsyncClient().createPortal(createPortalRequest)
 .handle((response, exception) -> {
 if (exception != null) {
 logger.error("Failed to create portal: {} ",
 exception.getCause().getMessage());
 throw (CompletionException) exception;
 }
 return response.portalId();
 });
 }

• For API details, see CreatePortal in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {
 CreatePortalCommand,

Actions 982

https://docs.aws.amazon.com/goto/SdkForJavaV2/iotsitewise-2019-12-02/CreatePortal
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * Create a Portal.
 * @param {{ portalName: string, portalContactEmail: string, roleArn: string }}
 */
export const main = async ({ portalName, portalContactEmail, roleArn }) => {
 const client = new IoTSiteWiseClient({});
 try {
 const result = await client.send(
 new CreatePortalCommand({
 portalName: portalName, // The name to give the created Portal.
 portalContactEmail: portalContactEmail, // A valid contact email.
 roleArn: roleArn, // The ARN of a service role that allows the portal's
 users to access the portal's resources.
 }),
);
 console.log("Portal created successfully.");
 return result;
 } catch (caught) {
 if (caught instanceof Error && caught.name === "IoTSiteWiseError") {
 console.warn(
 `${caught.message}. There was a problem creating the Portal.`,
);
 } else {
 throw caught;
 }
 }
};

• For API details, see CreatePortal in AWS SDK for JavaScript API Reference.

Actions 983

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/CreatePortalCommand

AWS IoT SiteWise User Guide

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class IoTSitewiseWrapper:
 """Encapsulates AWS IoT SiteWise actions using the client interface."""

 def __init__(self, iotsitewise_client: client) -> None:
 """
 Initializes the IoTSitewiseWrapper with an AWS IoT SiteWise client.

 :param iotsitewise_client: A Boto3 AWS IoT SiteWise client. This client
 provides low-level
 access to AWS IoT SiteWise services.
 """
 self.iotsitewise_client = iotsitewise_client
 self.entry_id = 0 # Incremented to generate unique entry IDs for
 batch_put_asset_property_value.

 @classmethod
 def from_client(cls) -> "IoTSitewiseWrapper":
 """
 Creates an IoTSitewiseWrapper instance with a default AWS IoT SiteWise
 client.

 :return: An instance of IoTSitewiseWrapper initialized with the default
 AWS IoT SiteWise client.
 """
 iotsitewise_client = boto3.client("iotsitewise")
 return cls(iotsitewise_client)

 def create_portal(
 self, portal_name: str, iam_role_arn: str, portal_contact_email: str
) -> str:
 """

Actions 984

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 Creates an AWS IoT SiteWise Portal.

 :param portal_name: The name of the portal to create.
 :param iam_role_arn: The ARN of an IAM role.
 :param portal_contact_email: The contact email of the portal.
 :return: The ID of the created portal.
 """
 try:
 response = self.iotsitewise_client.create_portal(
 portalName=portal_name,
 roleArn=iam_role_arn,
 portalContactEmail=portal_contact_email,
)
 portal_id = response["portalId"]
 waiter = self.iotsitewise_client.get_waiter("portal_active")
 waiter.wait(portalId=portal_id, WaiterConfig={"MaxAttempts": 40})
 return portal_id
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceAlreadyExistsException":
 logger.error("Portal %s already exists.", portal_name)
 else:
 logger.error(
 "Error creating portal %s. Here's why %s",
 portal_name,
 err.response["Error"]["Message"],
)
 raise

• For API details, see CreatePortal in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteAsset with an AWS SDK or CLI

The following code examples show how to use DeleteAsset.

Actions 985

https://docs.aws.amazon.com/goto/boto3/iotsitewise-2019-12-02/CreatePortal

AWS IoT SiteWise User Guide

CLI

AWS CLI

To delete an asset

The following delete-asset example deletes a wind turbine asset.

aws iotsitewise delete-asset \
 --asset-id a1b2c3d4-5678-90ab-cdef-33333EXAMPLE

Output:

{
 "assetStatus": {
 "state": "DELETING"
 }
}

For more information, see Deleting assets in the AWS IoT SiteWise User Guide.

• For API details, see DeleteAsset in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Deletes an asset.
 *
 * @param assetId the ID of the asset to be deleted.
 * @return a {@link CompletableFuture} that represents a {@link
 DeleteAssetResponse} result. The calling code can
 * attach callbacks, then handle the result or exception by calling
 {@link CompletableFuture#join()} or

Actions 986

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/delete-assets-and-models.html#delete-assets
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotsitewise/delete-asset.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 * {@link CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<DeleteAssetResponse> deleteAssetAsync(String
 assetId) {
 DeleteAssetRequest deleteAssetRequest = DeleteAssetRequest.builder()
 .assetId(assetId)
 .build();

 return getAsyncClient().deleteAsset(deleteAssetRequest)
 .whenComplete((response, exception) -> {
 if (exception != null) {
 logger.error("An error occurred deleting asset with id: {}",
 assetId);
 }
 });
 }

• For API details, see DeleteAsset in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {
 DeleteAssetCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

Actions 987

https://docs.aws.amazon.com/goto/SdkForJavaV2/iotsitewise-2019-12-02/DeleteAsset
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

/**
 * Delete an asset.
 * @param {{ assetId : string }}
 */
export const main = async ({ assetId }) => {
 const client = new IoTSiteWiseClient({});
 try {
 await client.send(
 new DeleteAssetCommand({
 assetId: assetId, // The model id to delete.
 }),
);
 console.log("Asset deleted successfully.");
 return { assetDeleted: true };
 } catch (caught) {
 if (caught instanceof Error && caught.name === "ResourceNotFound") {
 console.warn(
 `${caught.message}. There was a problem deleting the asset.`,
);
 } else {
 throw caught;
 }
 }
};

• For API details, see DeleteAsset in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class IoTSitewiseWrapper:
 """Encapsulates AWS IoT SiteWise actions using the client interface."""

Actions 988

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/DeleteAssetCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 def __init__(self, iotsitewise_client: client) -> None:
 """
 Initializes the IoTSitewiseWrapper with an AWS IoT SiteWise client.

 :param iotsitewise_client: A Boto3 AWS IoT SiteWise client. This client
 provides low-level
 access to AWS IoT SiteWise services.
 """
 self.iotsitewise_client = iotsitewise_client
 self.entry_id = 0 # Incremented to generate unique entry IDs for
 batch_put_asset_property_value.

 @classmethod
 def from_client(cls) -> "IoTSitewiseWrapper":
 """
 Creates an IoTSitewiseWrapper instance with a default AWS IoT SiteWise
 client.

 :return: An instance of IoTSitewiseWrapper initialized with the default
 AWS IoT SiteWise client.
 """
 iotsitewise_client = boto3.client("iotsitewise")
 return cls(iotsitewise_client)

 def delete_asset(self, asset_id: str) -> None:
 """
 Deletes an AWS IoT SiteWise Asset.

 :param asset_id: The ID of the asset to delete.
 """
 try:
 self.iotsitewise_client.delete_asset(assetId=asset_id)
 except ClientError as err:
 logger.error(
 "Error deleting asset %s. Here's why %s",
 asset_id,
 err.response["Error"]["Message"],
)
 raise

• For API details, see DeleteAsset in AWS SDK for Python (Boto3) API Reference.

Actions 989

https://docs.aws.amazon.com/goto/boto3/iotsitewise-2019-12-02/DeleteAsset

AWS IoT SiteWise User Guide

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteAssetModel with an AWS SDK or CLI

The following code examples show how to use DeleteAssetModel.

CLI

AWS CLI

To delete an asset model

The following delete-asset-model example deletes a wind turbine asset model.

aws iotsitewise delete-asset-model \
 --asset-model-id a1b2c3d4-5678-90ab-cdef-11111EXAMPLE

Output:

{
 "assetModelStatus": {
 "state": "DELETING"
 }
}

For more information, see Deleting asset models in the AWS IoT SiteWise User Guide.

• For API details, see DeleteAssetModel in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

Actions 990

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/delete-assets-and-models.html#delete-asset-models
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotsitewise/delete-asset-model.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 /**
 * Deletes an Asset Model with the specified ID.
 *
 * @param assetModelId the ID of the Asset Model to delete.
 * @return a {@link CompletableFuture} that represents a {@link
 DeleteAssetModelResponse} result. The calling code
 * can attach callbacks, then handle the result or exception by
 calling {@link CompletableFuture#join()} or
 * {@link CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<DeleteAssetModelResponse>
 deleteAssetModelAsync(String assetModelId) {
 DeleteAssetModelRequest deleteAssetModelRequest =
 DeleteAssetModelRequest.builder()
 .assetModelId(assetModelId)
 .build();

 return getAsyncClient().deleteAssetModel(deleteAssetModelRequest)
 .whenComplete((response, exception) -> {
 if (exception != null) {
 logger.error("Failed to delete asset model with ID:{}.",
 exception.getMessage());
 }
 });
 }

• For API details, see DeleteAssetModel in AWS SDK for Java 2.x API Reference.

Actions 991

https://docs.aws.amazon.com/goto/SdkForJavaV2/iotsitewise-2019-12-02/DeleteAssetModel

AWS IoT SiteWise User Guide

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {
 DeleteAssetModelCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * Delete an asset model.
 * @param {{ assetModelId : string }}
 */
export const main = async ({ assetModelId }) => {
 const client = new IoTSiteWiseClient({});
 try {
 await client.send(
 new DeleteAssetModelCommand({
 assetModelId: assetModelId, // The model id to delete.
 }),
);
 console.log("Asset model deleted successfully.");
 return { assetModelDeleted: true };
 } catch (caught) {
 if (caught instanceof Error && caught.name === "ResourceNotFound") {
 console.warn(
 `${caught.message}. There was a problem deleting the asset model.`,
);
 } else {
 throw caught;
 }
 }
};

Actions 992

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

• For API details, see DeleteAssetModel in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class IoTSitewiseWrapper:
 """Encapsulates AWS IoT SiteWise actions using the client interface."""

 def __init__(self, iotsitewise_client: client) -> None:
 """
 Initializes the IoTSitewiseWrapper with an AWS IoT SiteWise client.

 :param iotsitewise_client: A Boto3 AWS IoT SiteWise client. This client
 provides low-level
 access to AWS IoT SiteWise services.
 """
 self.iotsitewise_client = iotsitewise_client
 self.entry_id = 0 # Incremented to generate unique entry IDs for
 batch_put_asset_property_value.

 @classmethod
 def from_client(cls) -> "IoTSitewiseWrapper":
 """
 Creates an IoTSitewiseWrapper instance with a default AWS IoT SiteWise
 client.

 :return: An instance of IoTSitewiseWrapper initialized with the default
 AWS IoT SiteWise client.
 """
 iotsitewise_client = boto3.client("iotsitewise")
 return cls(iotsitewise_client)

 def delete_asset_model(self, asset_model_id: str) -> None:
 """

Actions 993

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/DeleteAssetModelCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 Deletes an AWS IoT SiteWise Asset Model.

 :param asset_model_id: The ID of the asset model to delete.
 """
 try:

 self.iotsitewise_client.delete_asset_model(assetModelId=asset_model_id)
 except ClientError as err:
 logger.error(
 "Error deleting asset model %s. Here's why %s",
 asset_model_id,
 err.response["Error"]["Message"],
)
 raise

• For API details, see DeleteAssetModel in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeleteGateway with an AWS SDK or CLI

The following code examples show how to use DeleteGateway.

CLI

AWS CLI

To delete a gateway

The following delete-gateway example deletes a gateway.

aws iotsitewise delete-gateway \
 --gateway-id a1b2c3d4-5678-90ab-cdef-1a1a1EXAMPLE

This command produces no output.

For more information, see Ingesting data using a gateway in the AWS IoT SiteWise User
Guide.

Actions 994

https://docs.aws.amazon.com/goto/boto3/iotsitewise-2019-12-02/DeleteAssetModel
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/gateways.html

AWS IoT SiteWise User Guide

• For API details, see DeleteGateway in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Deletes the specified gateway.
 *
 * @param gatewayId the ID of the gateway to delete.
 * @return a {@link CompletableFuture} that represents a {@link
 DeleteGatewayResponse} result.. The calling code
 * can attach callbacks, then handle the result or exception by
 calling {@link CompletableFuture#join()} or
 * {@link CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<DeleteGatewayResponse> deleteGatewayAsync(String
 gatewayId) {
 DeleteGatewayRequest deleteGatewayRequest =
 DeleteGatewayRequest.builder()
 .gatewayId(gatewayId)
 .build();

 return getAsyncClient().deleteGateway(deleteGatewayRequest)
 .whenComplete((response, exception) -> {
 if (exception != null) {
 logger.error("Failed to delete gateway: {}",
 exception.getCause().getMessage());
 }

Actions 995

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotsitewise/delete-gateway.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 });
 }

• For API details, see DeleteGateway in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {
 DeleteGatewayCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * Create an SSM document.
 * @param {{ content: string, name: string, documentType?: DocumentType }}
 */
export const main = async ({ gatewayId }) => {
 const client = new IoTSiteWiseClient({});
 try {
 await client.send(
 new DeleteGatewayCommand({
 gatewayId: gatewayId, // The ID of the Gateway to describe.
 }),
);
 console.log("Gateway deleted successfully.");
 return { gatewayDeleted: true };
 } catch (caught) {
 if (caught instanceof Error && caught.name === "ResourceNotFound") {
 console.warn(
 `${caught.message}. The Gateway could not be found. Please check the
 Gateway Id.`,
);

Actions 996

https://docs.aws.amazon.com/goto/SdkForJavaV2/iotsitewise-2019-12-02/DeleteGateway
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 } else {
 throw caught;
 }
 }
};

• For API details, see DeleteGateway in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class IoTSitewiseWrapper:
 """Encapsulates AWS IoT SiteWise actions using the client interface."""

 def __init__(self, iotsitewise_client: client) -> None:
 """
 Initializes the IoTSitewiseWrapper with an AWS IoT SiteWise client.

 :param iotsitewise_client: A Boto3 AWS IoT SiteWise client. This client
 provides low-level
 access to AWS IoT SiteWise services.
 """
 self.iotsitewise_client = iotsitewise_client
 self.entry_id = 0 # Incremented to generate unique entry IDs for
 batch_put_asset_property_value.

 @classmethod
 def from_client(cls) -> "IoTSitewiseWrapper":
 """
 Creates an IoTSitewiseWrapper instance with a default AWS IoT SiteWise
 client.

 :return: An instance of IoTSitewiseWrapper initialized with the default
 AWS IoT SiteWise client.

Actions 997

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/DeleteGatewayCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 """
 iotsitewise_client = boto3.client("iotsitewise")
 return cls(iotsitewise_client)

 def delete_gateway(self, gateway_id: str) -> None:
 """
 Deletes an AWS IoT SiteWise Gateway.

 :param gateway_id: The ID of the gateway to delete.
 """
 try:
 self.iotsitewise_client.delete_gateway(gatewayId=gateway_id)
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.error("Gateway %s does not exist.", gateway_id)
 else:
 logger.error(
 "Error deleting gateway %s. Here's why %s",
 gateway_id,
 err.response["Error"]["Message"],
)
 raise

• For API details, see DeleteGateway in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DeletePortal with an AWS SDK or CLI

The following code examples show how to use DeletePortal.

CLI

AWS CLI

To delete a portal

The following delete-portal example deletes a web portal for a wind farm company.

Actions 998

https://docs.aws.amazon.com/goto/boto3/iotsitewise-2019-12-02/DeleteGateway

AWS IoT SiteWise User Guide

aws iotsitewise delete-portal \
 --portal-id a1b2c3d4-5678-90ab-cdef-aaaaaEXAMPLE

Output:

{
 "portalStatus": {
 "state": "DELETING"
 }
}

For more information, see Deleting a portal in the AWS IoT SiteWise User Guide.

• For API details, see DeletePortal in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Deletes a portal.
 *
 * @param portalId the ID of the portal to be deleted.
 * @return a {@link CompletableFuture} that represents a {@link
 DeletePortalResponse}. The calling code can attach
 * callbacks, then handle the result or exception by calling {@link
 CompletableFuture#join()} or
 * {@link CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.

Actions 999

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/administer-portals.html#portal-delete-portal
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotsitewise/delete-portal.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 */
 public CompletableFuture<DeletePortalResponse> deletePortalAsync(String
 portalId) {
 DeletePortalRequest deletePortalRequest = DeletePortalRequest.builder()
 .portalId(portalId)
 .build();

 return getAsyncClient().deletePortal(deletePortalRequest)
 .whenComplete((response, exception) -> {
 if (exception != null) {
 logger.error("Failed to delete portal with ID: {}. Error:
 {}", portalId, exception.getCause().getMessage());
 }
 });
 }

• For API details, see DeletePortal in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {
 DeletePortalCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * List asset models.
 * @param {{ portalId : string }}
 */
export const main = async ({ portalId }) => {
 const client = new IoTSiteWiseClient({});
 try {

Actions 1000

https://docs.aws.amazon.com/goto/SdkForJavaV2/iotsitewise-2019-12-02/DeletePortal
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 await client.send(
 new DeletePortalCommand({
 portalId: portalId, // The id of the portal.
 }),
);
 console.log("Portal deleted successfully.");
 return { portalDeleted: true };
 } catch (caught) {
 if (caught instanceof Error && caught.name === "ResourceNotFound") {
 console.warn(
 `${caught.message}. There was a problem deleting the portal. Please check
 the portal id.`,
);
 } else {
 throw caught;
 }
 }
};

• For API details, see DeletePortal in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class IoTSitewiseWrapper:
 """Encapsulates AWS IoT SiteWise actions using the client interface."""

 def __init__(self, iotsitewise_client: client) -> None:
 """
 Initializes the IoTSitewiseWrapper with an AWS IoT SiteWise client.

 :param iotsitewise_client: A Boto3 AWS IoT SiteWise client. This client
 provides low-level
 access to AWS IoT SiteWise services.

Actions 1001

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/DeletePortalCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 """
 self.iotsitewise_client = iotsitewise_client
 self.entry_id = 0 # Incremented to generate unique entry IDs for
 batch_put_asset_property_value.

 @classmethod
 def from_client(cls) -> "IoTSitewiseWrapper":
 """
 Creates an IoTSitewiseWrapper instance with a default AWS IoT SiteWise
 client.

 :return: An instance of IoTSitewiseWrapper initialized with the default
 AWS IoT SiteWise client.
 """
 iotsitewise_client = boto3.client("iotsitewise")
 return cls(iotsitewise_client)

 def delete_portal(self, portal_id: str) -> None:
 """
 Deletes an AWS IoT SiteWise Portal.

 :param portal_id: The ID of the portal to delete.
 """
 try:
 self.iotsitewise_client.delete_portal(portalId=portal_id)
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.error("Portal %s does not exist.", portal_id)
 else:
 logger.error(
 "Error deleting portal %s. Here's why %s",
 portal_id,
 err.response["Error"]["Message"],
)
 raise

• For API details, see DeletePortal in AWS SDK for Python (Boto3) API Reference.

Actions 1002

https://docs.aws.amazon.com/goto/boto3/iotsitewise-2019-12-02/DeletePortal

AWS IoT SiteWise User Guide

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DescribeAssetModel with an AWS SDK or CLI

The following code examples show how to use DescribeAssetModel.

CLI

AWS CLI

To describe an asset model

The following describe-asset-model example describes a wind farm asset model.

aws iotsitewise describe-asset-model \
 --asset-model-id a1b2c3d4-5678-90ab-cdef-22222EXAMPLE

Output:

{
 "assetModelId": "a1b2c3d4-5678-90ab-cdef-22222EXAMPLE",
 "assetModelArn": "arn:aws:iotsitewise:us-west-2:123456789012:asset-model/
a1b2c3d4-5678-90ab-cdef-22222EXAMPLE",
 "assetModelName": "Wind Farm Model",
 "assetModelDescription": "Represents a wind farm that comprises many wind
 turbines",
 "assetModelProperties": [
 {
 "id": "a1b2c3d4-5678-90ab-cdef-99999EXAMPLE",
 "name": "Total Generated Power",
 "dataType": "DOUBLE",
 "unit": "kW",
 "type": {
 "metric": {
 "expression": "sum(power)",
 "variables": [
 {
 "name": "power",
 "value": {
 "propertyId": "a1b2c3d4-5678-90ab-
cdef-66666EXAMPLE",

Actions 1003

AWS IoT SiteWise User Guide

 "hierarchyId": "a1b2c3d4-5678-90ab-
cdef-77777EXAMPLE"
 }
 }
],
 "window": {
 "tumbling": {
 "interval": "1h"
 }
 }
 }
 }
 },
 {
 "id": "a1b2c3d4-5678-90ab-cdef-88888EXAMPLE",
 "name": "Region",
 "dataType": "STRING",
 "type": {
 "attribute": {
 "defaultValue": " "
 }
 }
 }
],
 "assetModelHierarchies": [
 {
 "id": "a1b2c3d4-5678-90ab-cdef-77777EXAMPLE",
 "name": "Wind Turbines",
 "childAssetModelId": "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE"
 }
],
 "assetModelCreationDate": 1575671284.0,
 "assetModelLastUpdateDate": 1575671988.0,
 "assetModelStatus": {
 "state": "ACTIVE"
 }
}

For more information, see Describing a specific asset model in the AWS IoT SiteWise User
Guide.

• For API details, see DescribeAssetModel in AWS CLI Command Reference.

Actions 1004

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/discover-asset-resources.html#describe-asset-model
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotsitewise/describe-asset-model.html

AWS IoT SiteWise User Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Retrieves the property IDs associated with a specific asset model.
 *
 * @param assetModelId the ID of the asset model that defines the properties.
 * @return a {@link CompletableFuture} that represents a {@link Map} result
 that associates the property name to the
 * propert ID. The calling code can attach callbacks, then handle the
 result or exception by calling
 * {@link CompletableFuture#join()} or {@link
 CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<Map<String, String>> getPropertyIds(String
 assetModelId) {
 ListAssetModelPropertiesRequest modelPropertiesRequest =
 ListAssetModelPropertiesRequest.builder().assetModelId(assetModelId).build();
 return getAsyncClient().listAssetModelProperties(modelPropertiesRequest)
 .handle((response, throwable) -> {
 if (response != null) {
 return response.assetModelPropertySummaries().stream()
 .collect(Collectors
 .toMap(AssetModelPropertySummary::name,
 AssetModelPropertySummary::id));
 } else {
 logger.error("Error occurred while fetching property IDs:
 {}.", throwable.getCause().getMessage());

Actions 1005

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 throw (CompletionException) throwable;
 }
 });
 }

• For API details, see DescribeAssetModel in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {
 DescribeAssetModelCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * Describe an asset model.
 * @param {{ assetModelId : string }}
 */
export const main = async ({ assetModelId }) => {
 const client = new IoTSiteWiseClient({});
 try {
 const { assetModelDescription } = await client.send(
 new DescribeAssetModelCommand({
 assetModelId: assetModelId, // The ID of the Gateway to describe.
 }),
);
 console.log("Asset model information retrieved successfully.");
 return { assetModelDescription: assetModelDescription };
 } catch (caught) {
 if (caught instanceof Error && caught.name === "ResourceNotFound") {
 console.warn(

Actions 1006

https://docs.aws.amazon.com/goto/SdkForJavaV2/iotsitewise-2019-12-02/DescribeAssetModel
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 `${caught.message}. The asset model could not be found. Please check the
 asset model id.`,
);
 } else {
 throw caught;
 }
 }
};

• For API details, see DescribeAssetModel in AWS SDK for JavaScript API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DescribeGateway with an AWS SDK or CLI

The following code examples show how to use DescribeGateway.

CLI

AWS CLI

To describe a gateway

The following describe-gateway example describes a gateway.

aws iotsitewise describe-gateway \
 --gateway-id a1b2c3d4-5678-90ab-cdef-1a1a1EXAMPLE

Output:

{
 "gatewayId": "a1b2c3d4-5678-90ab-cdef-1a1a1EXAMPLE",
 "gatewayName": "ExampleCorpGateway",
 "gatewayArn": "arn:aws:iotsitewise:us-west-2:123456789012:gateway/
a1b2c3d4-5678-90ab-cdef-1a1a1EXAMPLE",
 "gatewayPlatform": {
 "greengrass": {
 "groupArn": "arn:aws:greengrass:us-west-2:123456789012:/greengrass/
groups/a1b2c3d4-5678-90ab-cdef-1b1b1EXAMPLE"

Actions 1007

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/DescribeAssetModelCommand

AWS IoT SiteWise User Guide

 }
 },
 "gatewayCapabilitySummaries": [
 {
 "capabilityNamespace": "iotsitewise:opcuacollector:1",
 "capabilitySyncStatus": "IN_SYNC"
 }
],
 "creationDate": 1588369971.457,
 "lastUpdateDate": 1588369971.457
}

For more information, see Ingesting data using a gateway in the AWS IoT SiteWise User
Guide.

• For API details, see DescribeGateway in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Describes the specified gateway.
 *
 * @param gatewayId the ID of the gateway to describe.
 * @return a {@link CompletableFuture} that represents a {@link
 DescribeGatewayResponse} result. The calling code
 * can attach callbacks, then handle the result or exception by
 calling {@link CompletableFuture#join()} or
 * {@link CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling

Actions 1008

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/gateways.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotsitewise/describe-gateway.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<DescribeGatewayResponse> describeGatewayAsync(String
 gatewayId) {
 DescribeGatewayRequest request = DescribeGatewayRequest.builder()
 .gatewayId(gatewayId)
 .build();

 return getAsyncClient().describeGateway(request)
 .whenComplete((response, exception) -> {
 if (exception != null) {
 logger.error("An error occurred during the describeGateway
 method: {}", exception.getCause().getMessage());
 }
 });
 }

• For API details, see DescribeGateway in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {
 DescribeGatewayCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * Create an SSM document.
 * @param {{ content: string, name: string, documentType?: DocumentType }}
 */
export const main = async ({ gatewayId }) => {

Actions 1009

https://docs.aws.amazon.com/goto/SdkForJavaV2/iotsitewise-2019-12-02/DescribeGateway
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 const client = new IoTSiteWiseClient({});
 try {
 const { gatewayDescription } = await client.send(
 new DescribeGatewayCommand({
 gatewayId: gatewayId, // The ID of the Gateway to describe.
 }),
);
 console.log("Gateway information retrieved successfully.");
 return { gatewayDescription: gatewayDescription };
 } catch (caught) {
 if (caught instanceof Error && caught.name === "ResourceNotFound") {
 console.warn(
 `${caught.message}. The Gateway could not be found. Please check the
 Gateway Id.`,
);
 } else {
 throw caught;
 }
 }
};

• For API details, see DescribeGateway in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class IoTSitewiseWrapper:
 """Encapsulates AWS IoT SiteWise actions using the client interface."""

 def __init__(self, iotsitewise_client: client) -> None:
 """
 Initializes the IoTSitewiseWrapper with an AWS IoT SiteWise client.

Actions 1010

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/DescribeGatewayCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 :param iotsitewise_client: A Boto3 AWS IoT SiteWise client. This client
 provides low-level
 access to AWS IoT SiteWise services.
 """
 self.iotsitewise_client = iotsitewise_client
 self.entry_id = 0 # Incremented to generate unique entry IDs for
 batch_put_asset_property_value.

 @classmethod
 def from_client(cls) -> "IoTSitewiseWrapper":
 """
 Creates an IoTSitewiseWrapper instance with a default AWS IoT SiteWise
 client.

 :return: An instance of IoTSitewiseWrapper initialized with the default
 AWS IoT SiteWise client.
 """
 iotsitewise_client = boto3.client("iotsitewise")
 return cls(iotsitewise_client)

 def describe_gateway(self, gateway_id: str) -> Dict[str, Any]:
 """
 Describes an AWS IoT SiteWise Gateway.

 :param gateway_id: The ID of the gateway to describe.
 :return: A dictionary containing information about the gateway.
 """
 try:
 response =
 self.iotsitewise_client.describe_gateway(gatewayId=gateway_id)
 return response
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.error("Gateway %s does not exist.", gateway_id)
 else:
 logger.error(
 "Error describing gateway %s. Here's why %s",
 gateway_id,
 err.response["Error"]["Message"],
)
 raise

Actions 1011

AWS IoT SiteWise User Guide

• For API details, see DescribeGateway in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use DescribePortal with an AWS SDK or CLI

The following code examples show how to use DescribePortal.

CLI

AWS CLI

To describe a portal

The following describe-portal example describes a web portal for a wind farm company.

aws iotsitewise describe-portal \
 --portal-id a1b2c3d4-5678-90ab-cdef-aaaaaEXAMPLE

Output:

{
 "portalId": "a1b2c3d4-5678-90ab-cdef-aaaaaEXAMPLE",
 "portalArn": "arn:aws:iotsitewise:us-west-2:123456789012:portal/
a1b2c3d4-5678-90ab-cdef-aaaaaEXAMPLE",
 "portalName": "WindFarmPortal",
 "portalDescription": "A portal that contains wind farm projects for Example
 Corp.",
 "portalClientId": "E-a1b2c3d4e5f6_a1b2c3d4e5f6EXAMPLE",
 "portalStartUrl": "https://a1b2c3d4-5678-90ab-cdef-
aaaaaEXAMPLE.app.iotsitewise.aws",
 "portalContactEmail": "support@example.com",
 "portalStatus": {
 "state": "ACTIVE"
 },
 "portalCreationDate": "2020-02-04T23:01:52.90248068Z",
 "portalLastUpdateDate": "2020-02-04T23:01:52.90248078Z",

Actions 1012

https://docs.aws.amazon.com/goto/boto3/iotsitewise-2019-12-02/DescribeGateway

AWS IoT SiteWise User Guide

 "roleArn": "arn:aws:iam::123456789012:role/MySiteWiseMonitorServiceRole"
}

For more information, see Administering your portals in the AWS IoT SiteWise User Guide.

• For API details, see DescribePortal in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Retrieves a portal's description.
 *
 * @param portalId the ID of the portal to describe.
 * @return a {@link CompletableFuture} that represents a {@link String}
 result of the portal's start URL
 * (see: {@link DescribePortalResponse#portalStartUrl()}). The
 calling code can attach callbacks, then handle the
 * result or exception by calling {@link CompletableFuture#join()} or
 {@link CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<String> describePortalAsync(String portalId) {
 DescribePortalRequest request = DescribePortalRequest.builder()
 .portalId(portalId)
 .build();

 return getAsyncClient().describePortal(request)
 .handle((response, exception) -> {

Actions 1013

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/administer-portals.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotsitewise/describe-portal.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 if (exception != null) {
 logger.error("An exception occurred retrieving the portal
 description: {}", exception.getCause().getMessage());
 throw (CompletionException) exception;
 }
 return response.portalStartUrl();
 });
 }

• For API details, see DescribePortal in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {
 DescribePortalCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * Describe a portal.
 * @param {{ portalId: string }}
 */
export const main = async ({ portalId }) => {
 const client = new IoTSiteWiseClient({});
 try {
 const result = await client.send(
 new DescribePortalCommand({
 portalId: portalId, // The ID of the Gateway to describe.
 }),
);
 console.log("Portal information retrieved successfully.");
 return result;

Actions 1014

https://docs.aws.amazon.com/goto/SdkForJavaV2/iotsitewise-2019-12-02/DescribePortal
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 } catch (caught) {
 if (caught instanceof Error && caught.name === "ResourceNotFound") {
 console.warn(
 `${caught.message}. The Portal could not be found. Please check the
 Portal Id.`,
);
 } else {
 throw caught;
 }
 }
};

• For API details, see DescribePortal in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class IoTSitewiseWrapper:
 """Encapsulates AWS IoT SiteWise actions using the client interface."""

 def __init__(self, iotsitewise_client: client) -> None:
 """
 Initializes the IoTSitewiseWrapper with an AWS IoT SiteWise client.

 :param iotsitewise_client: A Boto3 AWS IoT SiteWise client. This client
 provides low-level
 access to AWS IoT SiteWise services.
 """
 self.iotsitewise_client = iotsitewise_client
 self.entry_id = 0 # Incremented to generate unique entry IDs for
 batch_put_asset_property_value.

 @classmethod
 def from_client(cls) -> "IoTSitewiseWrapper":

Actions 1015

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/DescribePortalCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 """
 Creates an IoTSitewiseWrapper instance with a default AWS IoT SiteWise
 client.

 :return: An instance of IoTSitewiseWrapper initialized with the default
 AWS IoT SiteWise client.
 """
 iotsitewise_client = boto3.client("iotsitewise")
 return cls(iotsitewise_client)

 def create_gateway(self, gateway_name: str, my_thing: str) -> str:
 """
 Creates an AWS IoT SiteWise Gateway.

 :param gateway_name: The name of the gateway to create.
 :param my_thing: The core device thing name.
 :return: The ID of the created gateway.
 """
 try:
 response = self.iotsitewise_client.create_gateway(
 gatewayName=gateway_name,
 gatewayPlatform={
 "greengrassV2": {"coreDeviceThingName": my_thing},
 },
 tags={"Environment": "Production"},
)
 gateway_id = response["gatewayId"]
 return gateway_id
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceAlreadyExistsException":
 logger.error("Gateway %s already exists.", gateway_name)
 else:
 logger.error(
 "Error creating gateway %s. Here's why %s",
 gateway_name,
 err.response["Error"]["Message"],
)
 raise

• For API details, see DescribePortal in AWS SDK for Python (Boto3) API Reference.

Actions 1016

https://docs.aws.amazon.com/goto/boto3/iotsitewise-2019-12-02/DescribePortal

AWS IoT SiteWise User Guide

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use GetAssetPropertyValue with an AWS SDK or CLI

The following code examples show how to use GetAssetPropertyValue.

CLI

AWS CLI

To retrieve an asset property's current value

The following get-asset-property-value example retrieves a wind turbine asset's
current total power.

aws iotsitewise get-asset-property-value \
 --asset-id a1b2c3d4-5678-90ab-cdef-33333EXAMPLE \
 --property-id a1b2c3d4-5678-90ab-cdef-66666EXAMPLE

Output:

{
 "propertyValue": {
 "value": {
 "doubleValue": 6890.8677520453875
 },
 "timestamp": {
 "timeInSeconds": 1580853000,
 "offsetInNanos": 0
 },
 "quality": "GOOD"
 }
}

For more information, see Querying current asset property values in the AWS IoT SiteWise
User Guide.

• For API details, see GetAssetPropertyValue in AWS CLI Command Reference.

Actions 1017

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/query-industrial-data.html#current-values
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotsitewise/get-asset-property-value.html

AWS IoT SiteWise User Guide

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Fetches the value of an asset property.
 *
 * @param propId the ID of the asset property to fetch.
 * @param assetId the ID of the asset to fetch the property value for.
 * @return a {@link CompletableFuture} that represents a {@link Double}
 result. The calling code can attach
 * callbacks, then handle the result or exception by calling {@link
 CompletableFuture#join()} or
 * {@link CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */
 public CompletableFuture<Double> getAssetPropValueAsync(String propId, String
 assetId) {
 GetAssetPropertyValueRequest assetPropertyValueRequest =
 GetAssetPropertyValueRequest.builder()
 .propertyId(propId)
 .assetId(assetId)
 .build();

 return getAsyncClient().getAssetPropertyValue(assetPropertyValueRequest)
 .handle((response, exception) -> {
 if (exception != null) {
 logger.error("Error occurred while fetching property
 value: {}.", exception.getCause().getMessage());
 throw (CompletionException) exception;

Actions 1018

https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 }
 return response.propertyValue().value().doubleValue();
 });
 }

• For API details, see GetAssetPropertyValue in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {
 GetAssetPropertyValueCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * Describe an asset property value.
 * @param {{ entryId : string }}
 */
export const main = async ({ entryId }) => {
 const client = new IoTSiteWiseClient({});
 try {
 const result = await client.send(
 new GetAssetPropertyValueCommand({
 entryId: entryId, // The ID of the Gateway to describe.
 }),
);
 console.log("Asset property information retrieved successfully.");
 return result;
 } catch (caught) {
 if (caught instanceof Error && caught.name === "ResourceNotFound") {
 console.warn(

Actions 1019

https://docs.aws.amazon.com/goto/SdkForJavaV2/iotsitewise-2019-12-02/GetAssetPropertyValue
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 `${caught.message}. The asset property entry could not be found. Please
 check the entry id.`,
);
 } else {
 throw caught;
 }
 }
};

• For API details, see GetAssetPropertyValue in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class IoTSitewiseWrapper:
 """Encapsulates AWS IoT SiteWise actions using the client interface."""

 def __init__(self, iotsitewise_client: client) -> None:
 """
 Initializes the IoTSitewiseWrapper with an AWS IoT SiteWise client.

 :param iotsitewise_client: A Boto3 AWS IoT SiteWise client. This client
 provides low-level
 access to AWS IoT SiteWise services.
 """
 self.iotsitewise_client = iotsitewise_client
 self.entry_id = 0 # Incremented to generate unique entry IDs for
 batch_put_asset_property_value.

 @classmethod
 def from_client(cls) -> "IoTSitewiseWrapper":
 """
 Creates an IoTSitewiseWrapper instance with a default AWS IoT SiteWise
 client.

Actions 1020

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/GetAssetPropertyValueCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 :return: An instance of IoTSitewiseWrapper initialized with the default
 AWS IoT SiteWise client.
 """
 iotsitewise_client = boto3.client("iotsitewise")
 return cls(iotsitewise_client)

 def get_asset_property_value(
 self, asset_id: str, property_id: str
) -> Dict[str, Any]:
 """
 Gets the value of an AWS IoT SiteWise Asset Property.

 :param asset_id: The ID of the asset.
 :param property_id: The ID of the property.
 :return: A dictionary containing the value of the property.
 """
 try:
 response = self.iotsitewise_client.get_asset_property_value(
 assetId=asset_id, propertyId=property_id
)
 return response["propertyValue"]
 except ClientError as err:
 if err.response["Error"]["Code"] == "ResourceNotFoundException":
 logger.error(
 "Asset %s or property %s does not exist.", asset_id,
 property_id
)
 else:
 logger.error(
 "Error getting asset property value. Here's why %s",
 err.response["Error"]["Message"],
)
 raise

• For API details, see GetAssetPropertyValue in AWS SDK for Python (Boto3) API Reference.

Actions 1021

https://docs.aws.amazon.com/goto/boto3/iotsitewise-2019-12-02/GetAssetPropertyValue

AWS IoT SiteWise User Guide

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Use ListAssetModels with an AWS SDK or CLI

The following code examples show how to use ListAssetModels.

CLI

AWS CLI

To list all asset models

The following list-asset-models example lists all asset models that are defined in your
AWS account in the current Region.

aws iotsitewise list-asset-models

Output:

{
 "assetModelSummaries": [
 {
 "id": "a1b2c3d4-5678-90ab-cdef-22222EXAMPLE",
 "arn": "arn:aws:iotsitewise:us-west-2:123456789012:asset-model/
a1b2c3d4-5678-90ab-cdef-22222EXAMPLE",
 "name": "Wind Farm Model",
 "description": "Represents a wind farm that comprises many wind
 turbines",
 "creationDate": 1575671284.0,
 "lastUpdateDate": 1575671988.0,
 "status": {
 "state": "ACTIVE"
 }
 },
 {
 "id": "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE",
 "arn": "arn:aws:iotsitewise:us-west-2:123456789012:asset-model/
a1b2c3d4-5678-90ab-cdef-11111EXAMPLE",
 "name": "Wind Turbine Model",
 "description": "Represents a wind turbine manufactured by Example
 Corp",

Actions 1022

AWS IoT SiteWise User Guide

 "creationDate": 1575671207.0,
 "lastUpdateDate": 1575686273.0,
 "status": {
 "state": "ACTIVE"
 }
 }
]
}

For more information, see Listing all asset models in the AWS IoT SiteWise User Guide.

• For API details, see ListAssetModels in AWS CLI Command Reference.

Java

SDK for Java 2.x

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

 /**
 * Retrieves the asset model ID for the given asset model name.
 *
 * @param assetModelName the name of the asset model for the ID.
 * @return a {@link CompletableFuture} that represents a {@link String}
 result of the asset model ID or null if the
 * asset model cannot be found. The calling code can attach
 callbacks, then handle the result or exception
 * by calling {@link CompletableFuture#join()} or {@link
 CompletableFuture#get()}.
 * <p>
 * If any completion stage in this method throws an exception, the
 method logs the exception cause and keeps
 * it available to the calling code as a {@link CompletionException}.
 By calling
 * {@link CompletionException#getCause()}, the calling code can
 access the original exception.
 */

Actions 1023

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/discover-asset-resources.html#list-asset-models
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/iotsitewise/list-asset-models.html
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javav2/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 public CompletableFuture<String> getAssetModelIdAsync(String assetModelName)
 {
 ListAssetModelsRequest listAssetModelsRequest =
 ListAssetModelsRequest.builder().build();
 return getAsyncClient().listAssetModels(listAssetModelsRequest)
 .handle((listAssetModelsResponse, exception) -> {
 if (exception != null) {
 logger.error("Failed to retrieve Asset Model ID: {}",
 exception.getCause().getMessage());
 throw (CompletionException) exception;
 }
 for (AssetModelSummary assetModelSummary :
 listAssetModelsResponse.assetModelSummaries()) {
 if (assetModelSummary.name().equals(assetModelName)) {
 return assetModelSummary.id();
 }
 }
 return null;
 });
 }

• For API details, see ListAssetModels in AWS SDK for Java 2.x API Reference.

JavaScript

SDK for JavaScript (v3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

import {
 ListAssetModelsCommand,
 IoTSiteWiseClient,
} from "@aws-sdk/client-iotsitewise";
import { parseArgs } from "node:util";

/**
 * List asset models.

Actions 1024

https://docs.aws.amazon.com/goto/SdkForJavaV2/iotsitewise-2019-12-02/ListAssetModels
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/javascriptv3/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 * @param {{ assetModelTypes : array }}
 */
export const main = async ({ assetModelTypes = [] }) => {
 const client = new IoTSiteWiseClient({});
 try {
 const result = await client.send(
 new ListAssetModelsCommand({
 assetModelTypes: assetModelTypes, // The model types to list
 }),
);
 console.log("Asset model types retrieved successfully.");
 return result;
 } catch (caught) {
 if (caught instanceof Error && caught.name === "IoTSiteWiseError") {
 console.warn(
 `${caught.message}. There was a problem listing the asset model types.`,
);
 } else {
 throw caught;
 }
 }
};

• For API details, see ListAssetModels in AWS SDK for JavaScript API Reference.

Python

SDK for Python (Boto3)

Note

There's more on GitHub. Find the complete example and learn how to set up and run
in the AWS Code Examples Repository.

class IoTSitewiseWrapper:
 """Encapsulates AWS IoT SiteWise actions using the client interface."""

 def __init__(self, iotsitewise_client: client) -> None:
 """
 Initializes the IoTSitewiseWrapper with an AWS IoT SiteWise client.

Actions 1025

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/iotsitewise/command/ListAssetModelsCommand
https://github.com/awsdocs/aws-doc-sdk-examples/tree/main/python/example_code/iotsitewise#code-examples

AWS IoT SiteWise User Guide

 :param iotsitewise_client: A Boto3 AWS IoT SiteWise client. This client
 provides low-level
 access to AWS IoT SiteWise services.
 """
 self.iotsitewise_client = iotsitewise_client
 self.entry_id = 0 # Incremented to generate unique entry IDs for
 batch_put_asset_property_value.

 @classmethod
 def from_client(cls) -> "IoTSitewiseWrapper":
 """
 Creates an IoTSitewiseWrapper instance with a default AWS IoT SiteWise
 client.

 :return: An instance of IoTSitewiseWrapper initialized with the default
 AWS IoT SiteWise client.
 """
 iotsitewise_client = boto3.client("iotsitewise")
 return cls(iotsitewise_client)

 def list_asset_models(self) -> List[Dict[str, Any]]:
 """
 Lists all AWS IoT SiteWise Asset Models.

 :return: A list of dictionaries containing information about each asset
 model.

 """
 try:
 asset_models = []
 paginator =
 self.iotsitewise_client.get_paginator("list_asset_models")
 pages = paginator.paginate()
 for page in pages:
 asset_models.extend(page["assetModelSummaries"])
 return asset_models
 except ClientError as err:
 logger.error(
 "Error listing asset models. Here's why %s",
 err.response["Error"]["Message"],
)
 raise

Actions 1026

AWS IoT SiteWise User Guide

• For API details, see ListAssetModels in AWS SDK for Python (Boto3) API Reference.

For a complete list of AWS SDK developer guides and code examples, see Using this service with
an AWS SDK. This topic also includes information about getting started and details about previous
SDK versions.

Actions 1027

https://docs.aws.amazon.com/goto/boto3/iotsitewise-2019-12-02/ListAssetModels

AWS IoT SiteWise User Guide

Security in AWS IoT SiteWise

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
compliance programs. To learn about the compliance programs that apply to AWS IoT SiteWise,
see AWS services in scope by compliance program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using AWS IoT SiteWise. The following topics show you how to configure AWS IoT SiteWise to meet
your security and compliance objectives. You also learn how to use other AWS services that help
you to monitor and secure your AWS IoT SiteWise resources.

Topics

• Data protection in AWS IoT SiteWise

• Data encryption in AWS IoT SiteWise

• Identity and access management for AWS IoT SiteWise

• Compliance validation for AWS IoT SiteWise

• Resilience in AWS IoT SiteWise

• Infrastructure security in AWS IoT SiteWise

• Configuration and vulnerability analysis in AWS IoT SiteWise

• VPC endpoints for AWS IoT SiteWise

• Security best practices for AWS IoT SiteWise

1028

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AWS IoT SiteWise User Guide

Data protection in AWS IoT SiteWise

The AWS shared responsibility model applies to data protection in AWS IoT SiteWise. As described
in this model, AWS is responsible for protecting the global infrastructure that runs all of the
AWS Cloud. You are responsible for maintaining control over your content that is hosted on this
infrastructure. You are also responsible for the security configuration and management tasks for
the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ.
For information about data protection in Europe, see the AWS Shared Responsibility Model and
GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail. For information about using CloudTrail
trails to capture AWS activities, see Working with CloudTrail trails in the AWS CloudTrail User
Guide.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with AWS IoT SiteWise or other AWS services using the console, API, AWS CLI, or
AWS SDKs. Any data that you enter into tags or free-form text fields used for names may be used
for billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend
that you do not include credentials information in the URL to validate your request to that server.

Topics

• Internetwork traffic privacy for AWS IoT SiteWise

Data protection 1029

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://aws.amazon.com/compliance/fips/

AWS IoT SiteWise User Guide

• AWS IoT SiteWise Assistant Business Service improvement

Internetwork traffic privacy for AWS IoT SiteWise

Connections between AWS IoT SiteWise and on-premises applications, such as SiteWise Edge
gateways, are secured over Transport Layer Security (TLS) connections. For more information, see
Data encryption in transit for AWS IoT SiteWise.

AWS IoT SiteWise doesn't support connections between Availability Zones within an AWS Region or
connections between AWS accounts.

You can configure IAM Identity Center in only one Region at a time. SiteWise Monitor connects to
the Region that you configured for IAM Identity Center. This means that you use one Region for
IAM Identity Center access, but you can create portals in any Region.

AWS IoT SiteWise Assistant Business Service improvement

AWS IoT SiteWise Assistant does not use customer data for service improvement or for improving
underlying LLMs.

Data encryption in AWS IoT SiteWise

Data encryption refers to protecting data while in-transit (as it travels to and from AWS IoT
SiteWise, and between SiteWise Edge gateways and servers), and at rest (while it is stored on local
devices or in AWS services). You can protect data in transit using Transport Layer Security (TLS) or
at rest using client-side encryption.

Note

AWS IoT SiteWise edge processing exposes APIs that are hosted within SiteWise Edge
gateways and accessible over the local network. These APIs are exposed over a TLS
connection backed by a server-certificate owned by the AWS IoT SiteWise Edge connector.
For client authentication, these APIs use an access-control password. The server-certificate
private-key and the access-control password are both stored on disk. AWS IoT SiteWise
edge processing relies on file-system encryption for the security of these credentials at rest.

For more information about server-side encryption and client-side encryption, review the topics
listed below.

Internetwork traffic privacy 1030

AWS IoT SiteWise User Guide

Topics

• Encryption at rest in AWS IoT SiteWise

• Data encryption in transit for AWS IoT SiteWise

• Key management in AWS IoT SiteWise

Encryption at rest in AWS IoT SiteWise

AWS IoT SiteWise stores your data in the AWS Cloud and on AWS IoT SiteWise Edge gateways.

Data at rest in the AWS Cloud

AWS IoT SiteWise stores data in other AWS services that encrypt data at rest by default. Encryption
at rest integrates with AWS Key Management Service (AWS KMS) for managing the encryption key
that is used to encrypt your asset property values and aggregate values in AWS IoT SiteWise. You
can choose to use a customer managed key to encrypt asset property values and aggregate values
in AWS IoT SiteWise. You can create, manage, and view your encryption key through AWS KMS.

You can choose an AWS owned key to encrypt your data, or choose a customer managed keyto
encrypt your asset property values and aggregate values:

How it works

Encryption at rest integrates with AWS KMS for managing the encryption key that is used to
encrypt your data.

• AWS owned key – Default encryption key. AWS IoT SiteWise owns this key. You can't view this key
in your AWS account. You also can't see operations on the key in AWS CloudTrail logs. You can
use this key at no additional charge.

• Customer managed key – The key is stored in your account, which you create, own, and manage.
You have full control over the KMS key. Additional AWS KMS charges apply.

AWS owned keys

AWS owned keys aren't stored in your account. They're part of a collection of KMS keys that AWS
owns and manages for use in multiple AWS accounts. AWS services can use AWS owned keys to
protect your data.

You can't view, manage, use AWS owned keys, or audit their use. However, you don't need to do any
work or change any programs to protect the keys that encrypt your data.

Encryption at rest 1031

AWS IoT SiteWise User Guide

You're not charged a monthly fee or a usage fee if you use AWS owned keys, and they don't count
against AWS KMS quotas for your account.

Customer managed keys

Customer managed keys are KMS keys in your account that you create, own, and manage. You have
full control over these KMS keys, such as the following:

• Establishing and maintaining their key policies, IAM policies, and grants

• Enabling and disabling them

• Rotating their cryptographic material

• Adding tags

• Creating aliases that refer to them

• Scheduling them for deletion

You can also use CloudTrail and Amazon CloudWatch Logs to track the requests that AWS IoT
SiteWise sends to AWS KMS on your behalf.

If you're using customer managed keys, you need to grant AWS IoT SiteWise access to the KMS key
stored in your account. AWS IoT SiteWise uses envelope encryption and key hierarchy to encrypt
data. Your AWS KMS encryption key is used to encrypt the root key of this key hierarchy. For more
information, see Envelope encryption in the AWS Key Management Service Developer Guide.

The following example policy grants AWS IoT SiteWise permissions to a create customer managed
key on your behalf. When you create your key, you need to allow the kms:CreateGrant and
kms:DescribeKey actions.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1603902045292",
 "Action": [
 "kms:CreateGrant",
 "kms:DescribeKey"
],

Encryption at rest 1032

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping

AWS IoT SiteWise User Guide

 "Effect": "Allow",
 "Resource": "*"
 }
]
}

The encryption context for your created grant uses your aws:iotsitewise:subscriberId and
account ID.

Data at rest on SiteWise Edge gateways

AWS IoT SiteWise gateways store the following data on the local file system:

• OPC UA source configuration information

• The set of OPC UA data stream paths from connected OPC UA sources

• Industrial data cached when the SiteWise Edge gateway loses connection to the internet

SiteWise Edge gateways run on AWS IoT Greengrass. AWS IoT Greengrass relies on Unix file
permissions and full-disk encryption (if enabled) to protect data at rest on the core. It's your
responsibility to secure the file system and device.

However, AWS IoT Greengrass does encrypt local copies of your OPC UA server secrets retrieved
from Secrets Manager. For more information, see Secrets encryption in the AWS IoT Greengrass
Version 1 Developer Guide.

For more information about encryption at rest on AWS IoT Greengrass cores, see Encryption at rest
in the AWS IoT Greengrass Version 1 Developer Guide.

Data encryption in transit for AWS IoT SiteWise

AWS IoT SiteWise uses encryption in transit to secure the data transmitted between your devices,
gateways, and the AWS Cloud. Communication with AWS IoT SiteWise is encrypted using HTTPS
and TLS 1.2, ensuring that your data remains confidential and protected from unauthorized access
or interception.

There are three modes of communication where data is in transit:

• Over the internet – Communication between local devices (including SiteWise Edge gateways)
and AWS IoT SiteWise is encrypted.

Encryption in transit 1033

https://docs.aws.amazon.com/greengrass/v1/developerguide/secrets.html#secrets-encryption
https://docs.aws.amazon.com/greengrass/v1/developerguide/encryption-at-rest.html

AWS IoT SiteWise User Guide

• Over the local network – Communication between OpsHub for SiteWise application and SiteWise
Edge gateways is always encrypted. Communication between the SiteWise monitor application
running within your browser and SiteWise Edge gateways is always encrypted. Communication
between SiteWise Edge gateways and OPC UA sources can be encrypted.

• Between components on SiteWise Edge gateways – Communication between AWS IoT
Greengrass components on SiteWise Edge gateways isn't encrypted.

Topics

• Data in transit over the internet

• Data in transit over the local network

• Data in transit between local components on SiteWise Edge

Data in transit over the internet

AWS IoT SiteWise uses Transport Layer Security (TLS) to encrypt all communication over the
internet. All data sent to the AWS Cloud is sent over a TLS connection using MQTT or HTTPS
protocols, so it's secure by default. SiteWise Edge gateways, which run on AWS IoT Greengrass, and
property value notifications use the AWS IoT transport security model. For more information, see
Transport security in the AWS IoT Developer Guide.

Data in transit over the local network

SiteWise Edge gateways follow OPC UA specifications for communication with local OPC UA
sources. It's your responsibility to configure your sources to use a message security mode that
encrypts data in transit.

If you choose a sign message security mode, data in transit between SiteWise Edge gateways and
sources is signed but not encrypted. If you choose a sign and encrypt message security mode,
the data in transit between SiteWise Edge gateways and sources is signed and encrypted. For
more information about configuring sources, see Add data sources to your AWS IoT SiteWise Edge
gateway.

The communication between the edge console application and SiteWise Edge gateways is always
encrypted by TLS. The SiteWise Edge connector on the SiteWise Edge gateway generates and
stores a self-signed certificate to be able to establish a TLS connection with the edge console
for AWS IoT SiteWise application. You will need to copy this certificate from your SiteWise Edge
gateway to the edge console for AWS IoT SiteWise application before you connect the application

Encryption in transit 1034

https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html

AWS IoT SiteWise User Guide

to the SiteWise Edge gateway. This ensures that the edge console for AWS IoT SiteWise application
is able to verify that it has connected to your trusted SiteWise Edge gateway.

In addition to TLS for secrecy and server authenticity, SiteWise Edge uses the SigV4 protocol to
establish the authenticity of the edge console application. The SiteWise Edge connector on the
SiteWise Edge gateway accepts and stores a password to be able to verify incoming connections
from the edge console application, SiteWise Monitor application running within browsers, and
other clients based on the AWS IoT SiteWise SDK.

For more information about generating the password and server certificate, see the section called
“Manage gateways”.

Data in transit between local components on SiteWise Edge

SiteWise Edge gateways run on AWS IoT Greengrass, which doesn't encrypt data exchanged
locally on the AWS IoT Greengrass core because the data doesn't leave the device. This includes
communication between AWS IoT Greengrass components such as the AWS IoT SiteWise connector.
For more information, see Data on the core device in the AWS IoT Greengrass Version 1 Developer
Guide.

Key management in AWS IoT SiteWise

AWS IoT SiteWise cloud key management

By default, AWS IoT SiteWise uses AWS managed keys to protect your data in the AWS Cloud.
You can update your settings to use a customer managed key to encrypt some data in AWS IoT
SiteWise. You can create, manage, and view your encryption key through AWS Key Management
Service (AWS KMS).

AWS IoT SiteWise supports server-side encryption with customer managed keys stored in AWS KMS
to encrypt the following data:

• Asset property values

• Aggregate values

Note

Other data and resources are encrypted using the default encryption with keys managed by
AWS IoT SiteWise. This key is stored in the AWS IoT SiteWise account.

Key management 1035

https://docs.aws.amazon.com/greengrass/v1/developerguide/encryption-in-transit.html#data-in-transit-locally

AWS IoT SiteWise User Guide

For more information, see What is AWS Key Management Service? in the AWS Key Management
Service Developer Guide.

Enable encryption using customer managed keys

To use customer managed keys with AWS IoT SiteWise, you need to update your AWS IoT SiteWise
settings.

To enable encryption using KMS keys

1.
Navigate to the AWS IoT SiteWise console.

2. Choose Account Settings and choose Edit to open the Edit account settings page.

3. For Encryption key type, choose Choose a different AWS KMS key. This enables encryption
with customer managed keys stored in AWS KMS.

Note

Currently, you can only use customer managed key encryption for asset property
values and aggregate values.

4. Choose your KMS key with one of the following options:

• To use an existing KMS key – Choose your KMS key alias from the list.

• To create a new KMS key – Choose Create an AWS KMS key.

Note

This opens the AWS KMS dashboard. For more information about creating a KMS key,
see Creating keys in the AWS Key Management Service Developer Guide.

5. Choose Save to update your settings.

SiteWise Edge gateway key management

SiteWise Edge gateways run on AWS IoT Greengrass, and AWS IoT Greengrass core devices use
public and private keys to authenticate with the AWS Cloud and encrypt local secrets, such as OPC
UA authentication secrets. For more information, see Key management in the AWS IoT Greengrass
Version 1 Developer Guide.

Key management 1036

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://console.aws.amazon.com/iotsitewise/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/key-management.html

AWS IoT SiteWise User Guide

Identity and access management for AWS IoT SiteWise

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS IoT SiteWise resources. IAM is an AWS service that
you can use with no additional charge.

Topics

• Audience for AWS IoT SiteWise security

• Authenticate with identities in AWS IoT SiteWise

• How AWS IoT SiteWise works with IAM

• AWS managed policies for AWS IoT SiteWise

• Use service-linked roles for AWS IoT SiteWise

• Set up permissions for event alarms in AWS IoT SiteWise

• Cross-service confused deputy prevention in AWS IoT SiteWise

• Troubleshoot AWS IoT SiteWise identity and access

Audience for AWS IoT SiteWise security

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AWS IoT SiteWise.

Service user – If you use the AWS IoT SiteWise service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more AWS IoT
SiteWise features to do your work, you might need additional permissions. Understanding how
access is managed can help you request the right permissions from your administrator. If you
cannot access a feature in AWS IoT SiteWise, see Troubleshoot AWS IoT SiteWise identity and
access.

Service administrator – If you're in charge of AWS IoT SiteWise resources at your company, you
probably have full access to AWS IoT SiteWise. It's your job to determine which AWS IoT SiteWise
features and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
AWS IoT SiteWise, see How AWS IoT SiteWise works with IAM.

Identity and access management 1037

AWS IoT SiteWise User Guide

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to AWS IoT SiteWise. To view example AWS IoT SiteWise
identity-based policies that you can use in IAM, see AWS IoT SiteWise identity-based policy
examples.

Authenticate with identities in AWS IoT SiteWise

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your

Authenticate with identities 1038

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

AWS IoT SiteWise User Guide

root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. To temporarily assume an IAM role in the
AWS Management Console, you can switch from a user to an IAM role (console). You can assume a
role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information
about methods for using roles, see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates

Authenticate with identities 1039

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html

AWS IoT SiteWise User Guide

the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the IAM User
Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an

Authenticate with identities 1040

https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

AWS IoT SiteWise User Guide

IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

How AWS IoT SiteWise works with IAM

Before you use AWS Identity and Access Management (IAM) to manage access to AWS IoT SiteWise,
you should understand what IAM features are available to use with AWS IoT SiteWise.

IAM feature Supported
by
AWS
IoT
SiteWise?

Identity-based policies with resource-level permissions Yes

Policy actions Yes

Policy resources Yes

Policy condition keys Yes

Resource-based policies No

Access control lists (ACLs) No

Tags-based authorization (ABAC) Yes

Temporary credentials Yes

Forward access sessions (FAS) Yes

Service-linked roles Yes

Service roles Yes

To get a high-level view of how AWS IoT SiteWise and other AWS services work with IAM, see AWS
services that work with IAM in the IAM User Guide.

How AWS IoT SiteWise works with IAM 1041

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS IoT SiteWise User Guide

Contents

• AWS IoT SiteWise IAM roles

• Use temporary credentials with AWS IoT SiteWise

• Forward access sessions (FAS) for AWS IoT SiteWise

• Service-linked roles

• Service roles

• Choose an IAM role in AWS IoT SiteWise

• Authorization based on AWS IoT SiteWise tags

• AWS IoT SiteWise identity-based policies

• Policy actions

• BatchPutAssetPropertyValue authorization

• Policy resources

• Policy condition keys

• Examples

• AWS IoT SiteWise identity-based policy examples

• Policy best practices

• Use the AWS IoT SiteWise console

• Allow users to view their own permissions

• Allow users to ingest data to assets in one hierarchy

• View AWS IoT SiteWise assets based on tags

• Manage access using policies in AWS IoT SiteWise

• Identity-based policies

• Resource-based policies

• Access control lists (ACLs)

• Other policy types

• Multiple policy types

AWS IoT SiteWise IAM roles

An IAM role is an entity within your AWS account that has specific permissions.How AWS IoT SiteWise works with IAM 1042

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

AWS IoT SiteWise User Guide

Use temporary credentials with AWS IoT SiteWise

You can use temporary credentials to sign in with federation, assume an IAM role, or to assume a
cross-account role. You obtain temporary security credentials by calling AWS STS API operations
such as AssumeRole or GetFederationToken.

AWS IoT SiteWise supports using temporary credentials.

SiteWise Monitor supports federated users to access portals. Portal users authenticate with their
IAM Identity Center or IAM credentials.

Important

Users or roles must have the iotsitewise:DescribePortal permission to sign in to the
portal.

When a user signs in to a portal, SiteWise Monitor generates a session policy that provides the
following permissions:

• Read-only access to the assets and asset data in AWS IoT SiteWise in your account to which that
portal's role provides access.

• Access to projects in that portal to which the user has administrator (project owner) or read-only
(project viewer) access.

For more information about federated portal user permissions, see Use service roles for AWS IoT
SiteWise Monitor.

Forward access sessions (FAS) for AWS IoT SiteWise

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

How AWS IoT SiteWise works with IAM 1043

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html

AWS IoT SiteWise User Guide

Service-linked roles

Service-linked roles allow AWS services to access resources in other services to complete an action
on your behalf. service-linked roles appear in your AWS account and are owned by the service. An
IAM administrator can view but not edit the permissions for service-linked roles.

AWS IoT SiteWise supports service-linked roles. For details about creating or managing AWS IoT
SiteWise service-linked roles, see Use service-linked roles for AWS IoT SiteWise.

Service roles

This feature allows a service to assume a service role on your behalf. This role allows the service to
access resources in other services to complete an action on your behalf. Service roles appear in your
AWS account and are owned by the account. This means that an IAM administrator can change the
permissions for this role. However, doing so might break the functionality of the service.

AWS IoT SiteWise uses a service role to allow SiteWise Monitor portal users to access some of your
AWS IoT SiteWise resources on your behalf. For more information, see Use service roles for AWS IoT
SiteWise Monitor.

You must have required permissions before you can create AWS IoT Events alarm models in AWS
IoT SiteWise. For more information, see Set up permissions for event alarms in AWS IoT SiteWise.

Choose an IAM role in AWS IoT SiteWise

When you create a portal resource in AWS IoT SiteWise, you must choose a role to allow the
federated users of your SiteWise Monitor portal to access AWS IoT SiteWise on your behalf. If you
have previously created a service role, then AWS IoT SiteWise provides you with a list of roles to
choose from. Otherwise, you can create a role with the required permissions when you create a
portal. It's important to choose a role that allows access to your assets and asset data. For more
information, see Use service roles for AWS IoT SiteWise Monitor.

Authorization based on AWS IoT SiteWise tags

You can attach tags to AWS IoT SiteWise resources or pass tags in a request to AWS IoT SiteWise.
To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys. For more information about tagging AWS IoT SiteWise resources, see Tag your AWS
IoT SiteWise resources.

How AWS IoT SiteWise works with IAM 1044

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS IoT SiteWise User Guide

To view an example identity-based policy for limiting access to a resource based on the tags on
that resource, see View AWS IoT SiteWise assets based on tags.

AWS IoT SiteWise identity-based policies

IAM policies let you control who can do what in AWS IoT SiteWise. You can decide what actions
are allowed or not and set specific conditions for these actions. For example, you can make rules
about who can see or change information in AWS IoT SiteWise. AWS IoT SiteWise supports specific
actions, resources, and condition keys. To learn about all of the elements that you use in a JSON
policy, see IAM JSON policy elements reference in the IAM User Guide.

Policy actions

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

Policy actions in AWS IoT SiteWise use the following prefix before the action: iotsitewise:.
For example, to grant someone permission to upload asset property data to AWS IoT
SiteWise with the BatchPutAssetPropertyValue API operation, you include the
iotsitewise:BatchPutAssetPropertyValue action in their policy. Policy statements must
include either an Action or NotAction element. AWS IoT SiteWise defines its own set of actions
that describe tasks that you can perform with this service.

To specify multiple actions in a single statement, separate them with commas as follows.

"Action": [
 "iotsitewise:action1",
 "iotsitewise:action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Describe, include the following action.

How AWS IoT SiteWise works with IAM 1045

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

AWS IoT SiteWise User Guide

"Action": "iotsitewise:Describe*"

To see a list of AWS IoT SiteWise actions, see Actions defined by AWS IoT SiteWise in the IAM User
Guide.

BatchPutAssetPropertyValue authorization

AWS IoT SiteWise authorizes access to the BatchPutAssetPropertyValue action in an unusual way.
For most actions, when you allow or deny access, that action returns an error if permissions aren't
granted. With BatchPutAssetPropertyValue, you can send multiple data entries to different
assets and asset properties in a single API request. AWS IoT SiteWise authorizes each data entry
independently. For any individual entry that fails authorization in the request, AWS IoT SiteWise
includes an AccessDeniedException in the returned list of errors. AWS IoT SiteWise receives the
data for any entry that authorizes and succeeds, even if another entry in the same request fails.

Important

Before you ingest data to a data stream, do the following:

• Authorize the time-series resource if you use a property alias to identify the data
stream.

• Authorize the asset resource if you use an asset ID to identify the asset that contains
the associated asset property.

Policy resources

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

How AWS IoT SiteWise works with IAM 1046

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotsitewise.html#awsiotsitewise-actions-as-permissions
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html

AWS IoT SiteWise User Guide

"Resource": "*"

Each IAM policy statement applies to the resources that you specify using their ARNs. An ARN has
the following general syntax.

arn:${Partition}:${Service}:${Region}:${Account}:${ResourceType}/${ResourcePath}

For more information about the format of ARNs, see Identify AWS resources with Amazon Resource
Names (ARNs).

For example, to specify the asset with ID a1b2c3d4-5678-90ab-cdef-22222EXAMPLE in your
statement, use the following ARN.;

"Resource": "arn:aws:iotsitewise:region:123456789012:asset/a1b2c3d4-5678-90ab-
cdef-22222EXAMPLE"

To specify all data streams that belong to a specific account, use the wildcard (*):

"Resource": "arn:aws:iotsitewise:region:123456789012:time-series/*"

To specify all assets that belong to a specific account, use the wildcard (*):

"Resource": "arn:aws:iotsitewise:region:123456789012:asset/*"

Some AWS IoT SiteWise actions, such as those for creating resources, can't be performed on a
specific resource. In those cases, you must use the wildcard (*).

"Resource": "*"

To specify multiple resources in a single statement, separate the ARNs with commas.

"Resource": [
 "resource1",
 "resource2"
]

How AWS IoT SiteWise works with IAM 1047

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html

AWS IoT SiteWise User Guide

To see a list of AWS IoT SiteWise resource types and their ARNs, see Resource types defined by AWS
IoT SiteWise in the IAM User Guide. To learn with which actions you can specify the ARN of each
resource, see Actions defined by AWS IoT SiteWise.

Policy condition keys

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

Important

Many condition keys are specific to a resource, and some API actions use multiple resources.
If you write a policy statement with a condition key, use the Resource element of the
statement to specify the resource to which the condition key applies. If you don't do so, the
policy might prevent users from performing the action at all, because the condition check
fails for the resources to which the condition key doesn't apply. If you don't want to specify
a resource, or if you've written the Action element of your policy to include multiple API
actions, then you must use the ...IfExists condition type to ensure that the condition
key is ignored for resources that don't use it. For more information, see ...IfExists conditions
in the IAM User Guide.

How AWS IoT SiteWise works with IAM 1048

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotsitewise.html#awsiotsitewise-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotsitewise.html#awsiotsitewise-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotsitewise.html#awsiotsitewise-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Conditions_IfExists

AWS IoT SiteWise User Guide

AWS IoT SiteWise defines its own set of condition keys and also supports using some global
condition keys. To see all AWS global condition keys, see AWS global condition context keys in the
IAM User Guide.

AWS IoT SiteWise condition keys

Condition key Description Types

iotsitewise:isAsso
ciatedWithAssetPro
perty

Whether data streams are
associated with an asset
property. Use this condition
key to define permissions
based on the existence of an
associated asset property for
data streams.

Example value: true

String

iotsitewise:assetH
ierarchyPath

The asset's hierarchy path,
which is a string of asset IDs
each separated by a forward
slash. Use this condition key
to define permissions based
on a subset of your hierarchy
of all assets in your account.

Example value: /a1b2c3d4
-5678-90ab-cdef-22
222EXAMPLE/a1b2c3d
4-5678-90ab-cdef-6
6666EXAMPLE

String

iotsitewise:proper
tyId

The ID of an asset property.
Use this condition key to
define permissions based on a
specified property of an asset
model. This condition key
applies to all assets of that
model.

String

How AWS IoT SiteWise works with IAM 1049

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

AWS IoT SiteWise User Guide

Condition key Description Types

Example value: a1b2c3d4-
5678-90ab-cdef-333
33EXAMPLE

iotsitewise:childA
ssetId

The ID of an asset being
associated as a child to
another asset. Use this
condition key to define
permissions based on child
assets. To define permissio
ns based on parent assets,
use the resource section of a
policy statement.

Example value: a1b2c3d4-
5678-90ab-cdef-666
66EXAMPLE

String

iotsitewise:iam The ARN of an IAM identity
when listing access policies.
Use this condition key to
define access policy permissio
ns for an IAM identity.

Example value: arn:aws:i
am::123456789012:u
ser/JohnDoe

String, Null

iotsitewise:proper
tyAlias

The alias that identifies an
asset property or data stream.
Use this condition key to
define permissions based on
the alias.

String

How AWS IoT SiteWise works with IAM 1050

AWS IoT SiteWise User Guide

Condition key Description Types

iotsitewise:user The ID of an IAM Identity
Center user when listing
access policies. Use this
condition key to define access
policy permissions for an IAM
Identity Center user.

Example value: a1b2c3d4e
5-a1b2c3d4-5678-90
ab-cdef-aaaaaEXAMP
LE

String, Null

iotsitewise:group The ID of an IAM Identity
Center group when listing
access policies. Use this
condition key to define access
policy permissions for an IAM
Identity Center group.

Example value: a1b2c3d4e
5-a1b2c3d4-5678-90
ab-cdef-bbbbbEXAMP
LE

String, Null

iotsitewise:portal The ID of a portal in an access
policy. Use this condition
key to define access policy
permissions based on a
portal.

Example value: a1b2c3d4-
5678-90ab-cdef-777
77EXAMPLE

String, Null

How AWS IoT SiteWise works with IAM 1051

AWS IoT SiteWise User Guide

Condition key Description Types

iotsitewise:project The ID of a project in an
access policy, or the ID of
a project for a dashboard
. Use this condition key to
define dashboard or access
policy permissions based on a
project.

Example value: a1b2c3d4-
5678-90ab-cdef-888
88EXAMPLE

String, Null

To learn with which actions and resources you can use a condition key, see Actions defined by AWS
IoT SiteWise.

Examples

To view examples of AWS IoT SiteWise identity-based policies, see AWS IoT SiteWise identity-based
policy examples.

AWS IoT SiteWise identity-based policy examples

By default, entities (users and roles) don't have permission to create or modify AWS IoT SiteWise
resources. They also can't perform tasks using the AWS Management Console, AWS Command Line
Interface (AWS CLI), or AWS API. To adjust permissions, an AWS Identity and Access Management
(IAM) administrator must do the following:

1. Create IAM policies that grant users and roles permission to perform specific API operations on
resources they need.

2. Attach those policies to the users or groups that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Creating policies on the JSON tab in the IAM User Guide.

Topics

How AWS IoT SiteWise works with IAM 1052

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotsitewise.html#awsiotsitewise-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotsitewise.html#awsiotsitewise-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor

AWS IoT SiteWise User Guide

• Policy best practices

• Use the AWS IoT SiteWise console

• Allow users to view their own permissions

• Allow users to ingest data to assets in one hierarchy

• View AWS IoT SiteWise assets based on tags

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AWS IoT SiteWise
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

How AWS IoT SiteWise works with IAM 1053

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html

AWS IoT SiteWise User Guide

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API
operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Use the AWS IoT SiteWise console

To access the AWS IoT SiteWise console, you need a basic set of permissions. These permissions let
you see and manage details about the AWS IoT SiteWise resources in your AWS account.

If you make a policy that's too restrictive, the console might not work as expected for users or roles
(entities) with that policy. To ensure that those entities can still use the AWS IoT SiteWise console,
attach the AWSIoTSiteWiseConsoleFullAccess managed policy to them or define equivalent
permissions for those entities. For more information, see Adding permissions to a user in the IAM
User Guide.

If entities are only using the AWS Command Line Interface (CLI) or the AWS IoT SiteWise API, and
not the console, they don't need these minimum permissions. In that case, just give them access to
the specific actions they need for their API tasks.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"

How AWS IoT SiteWise works with IAM 1054

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://console.aws.amazon.com/iam/home#/policies/policies/arn:aws:iam::aws:policy/AWSIoTSiteWiseConsoleFullAccess
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS IoT SiteWise User Guide

],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Allow users to ingest data to assets in one hierarchy

In this example, you want to grant a user in your AWS account access to write data to all asset
properties in a specific hierarchy of assets, starting from the root asset a1b2c3d4-5678-90ab-
cdef-22222EXAMPLE. The policy grants the iotsitewise:BatchPutAssetPropertyValue
permission to the user. This policy uses the iotsitewise:assetHierarchyPath condition key
to restrict access to assets whose hierarchy path matches the asset or its descendants.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PutAssetPropertyValuesForHierarchy",
 "Effect": "Allow",
 "Action": "iotsitewise:BatchPutAssetPropertyValue",
 "Resource": "arn:aws:iotsitewise:*:*:asset/*",
 "Condition": {
 "StringLike": {
 "iotsitewise:assetHierarchyPath": [

How AWS IoT SiteWise works with IAM 1055

AWS IoT SiteWise User Guide

 "/a1b2c3d4-5678-90ab-cdef-22222EXAMPLE",
 "/a1b2c3d4-5678-90ab-cdef-22222EXAMPLE/*"
]
 }
 }
 }
]
}

View AWS IoT SiteWise assets based on tags

Use conditions in your identity-based policy to control access to AWS IoT SiteWise resources based
on tags. This example shows how to create a policy that allows asset viewing. However, permission
is granted only if the asset tag Owner has the value of that user's user name. This policy also grants
permission to complete this action on the console.

Attach this policy to the users in your account. If a user named richard-roe attempts to view an
AWS IoT SiteWise asset, the asset must be tagged Owner=richard-roe or owner=richard-roe.
Otherwise, Richard is denied access. The condition tag key names are not case-sensitive. So, Owner
matches both Owner and owner. For more information, see IAM JSON Policy Elements: Condition
in the IAM User Guide.

Manage access using policies in AWS IoT SiteWise

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A

How AWS IoT SiteWise works with IAM 1056

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

AWS IoT SiteWise User Guide

user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choose between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

How AWS IoT SiteWise works with IAM 1057

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html

AWS IoT SiteWise User Guide

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached
to each resource that you own. The RCP limits permissions for resources in member accounts
and can impact the effective permissions for identities, including the AWS account root
user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control
policies (RCPs) in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS IoT SiteWise works with IAM 1058

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

AWS IoT SiteWise User Guide

AWS managed policies for AWS IoT SiteWise

Simplify adding permissions to users, groups, and roles using AWS managed policies rather
than to writing policies yourself. It takes time and expertise to create IAM customer managed
policies that provide your team precise permissions. For a faster setup, consider using our AWS
managed policies for common use cases. Find AWS managed policies in your AWS account. For
more information about AWS managed policies, see AWS managed policies in the IAM User Guide.

AWS services take care of updating and maintaining AWS managed policies, meaning you cannot
modify these policies' permissions. Occasionally, AWS IoT SiteWise may add permissions to
accommodate new features, impacting all identities with the policy attached. Such updates
are common with the introduction of new services or features. However, permissions are never
removed, ensuring your setups remain intact.

Additionally, AWS supports managed policies for job functions that span multiple services. For
example, the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services
and resources. When a service launches a new feature, AWS adds read-only permissions for new
operations and resources. For a list with descriptions of job function policies, see AWS managed
policies for job functions in the IAM User Guide.

AWS managed policy: AWSIoTSiteWiseReadOnlyAccess

Use the AWSIoTSiteWiseReadOnlyAccess AWS managed policy to allow read-only access to
AWS IoT SiteWise.

You can attach the AWSIoTSiteWiseReadOnlyAccess policy to your IAM identities.

Service-level permissions

This policy provides read-only access to AWS IoT SiteWise. No other service permissions are
included in this policy.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iotsitewise:Describe*",

Managed policies 1059

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html

AWS IoT SiteWise User Guide

 "iotsitewise:List*",
 "iotsitewise:BatchGet*",
 "iotsitewise:Get*"
],
 "Resource": "*"
 }
]
}

AWS managed policy: AWSServiceRoleForIoTSiteWise

The AWSServiceRoleForIoTSiteWise role uses the AWSServiceRoleForIoTSiteWise policy
with the following permissions. This policy:

• Allows AWS IoT SiteWise to deploy SiteWise Edge gateways (which run on AWS IoT
Greengrass).

• Allows AWS IoT SiteWise to perform logging.

• Allows AWS IoT SiteWise to run a metadata search query, against the AWS IoT TwinMaker
database.

If you are using AWS IoT SiteWise with a singe user account,the
AWSServiceRoleForIoTSiteWise role creates the AWSServiceRoleForIoTSiteWise policy
in your IAM account, and attaches it to the AWSServiceRoleForIoTSiteWise Service-linked
roles for AWS IoT SiteWise.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowSiteWiseReadGreenGrass",
 "Effect": "Allow",
 "Action": [
 "greengrass:GetAssociatedRole",
 "greengrass:GetCoreDefinition",
 "greengrass:GetCoreDefinitionVersion",
 "greengrass:GetGroup",

Managed policies 1060

AWS IoT SiteWise User Guide

 "greengrass:GetGroupVersion"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowSiteWiseAccessLogGroup",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:DescribeLogGroups"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/iotsitewise*"
 },
 {
 "Sid": "AllowSiteWiseAccessLog",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/iotsitewise*:log-stream:*"
 },
 {
 "Sid": "AllowSiteWiseAccessSiteWiseManagedWorkspaceInTwinMaker",
 "Effect": "Allow",
 "Action": [
 "iottwinmaker:GetWorkspace",
 "iottwinmaker:ExecuteQuery"
],
 "Resource": "arn:aws:iottwinmaker:*:*:workspace/*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "iottwinmaker:linkedServices": [
 "IOTSITEWISE"
]
 }
 }
 }
]
}

Managed policies 1061

AWS IoT SiteWise User Guide

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowSiteWiseReadGreenGrass",
 "Effect": "Allow",
 "Action": [
 "greengrass:GetAssociatedRole",
 "greengrass:GetCoreDefinition",
 "greengrass:GetCoreDefinitionVersion",
 "greengrass:GetGroup",
 "greengrass:GetGroupVersion"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowSiteWiseAccessLogGroup",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:DescribeLogGroups"
],
 "Resource": "arn:aws-us-gov:logs:*:*:log-group:/aws/iotsitewise*"
 },
 {
 "Sid": "AllowSiteWiseAccessLog",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws-us-gov:logs:*:*:log-group:/aws/iotsitewise*:log-stream:*"
 },
 {
 "Sid": "AllowSiteWiseAccessSiteWiseManagedWorkspaceInTwinMaker",
 "Effect": "Allow",
 "Action": [
 "iottwinmaker:GetWorkspace",
 "iottwinmaker:ExecuteQuery"

Managed policies 1062

AWS IoT SiteWise User Guide

],
 "Resource": "arn:aws-us-gov:iottwinmaker:*:*:workspace/*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "iottwinmaker:linkedServices": [
 "IOTSITEWISE"
]
 }
 }
 }
]
}

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowSiteWiseReadGreenGrass",
 "Effect": "Allow",
 "Action": [
 "greengrass:GetAssociatedRole",
 "greengrass:GetCoreDefinition",
 "greengrass:GetCoreDefinitionVersion",
 "greengrass:GetGroup",
 "greengrass:GetGroupVersion"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowSiteWiseAccessLogGroup",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:DescribeLogGroups"
],
 "Resource": "arn:aws-cn:logs:*:*:log-group:/aws/iotsitewise*"
 },
 {

Managed policies 1063

AWS IoT SiteWise User Guide

 "Sid": "AllowSiteWiseAccessLog",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws-cn:logs:*:*:log-group:/aws/iotsitewise*:log-stream:*"
 },
 {
 "Sid": "AllowSiteWiseAccessSiteWiseManagedWorkspaceInTwinMaker",
 "Effect": "Allow",
 "Action": [
 "iottwinmaker:GetWorkspace",
 "iottwinmaker:ExecuteQuery"
],
 "Resource": "arn:aws-cn:iottwinmaker:*:*:workspace/*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "iottwinmaker:linkedServices": [
 "IOTSITEWISE"
]
 }
 }
 }
]
}

AWS IoT SiteWise updates to AWS managed policies

You can view details about updates to AWS managed policies for AWS IoT SiteWise, beginning from
when this service began tracking the changes. For automatic alerts about changes to this page,
subscribe to the RSS feed on the AWS IoT SiteWise Document history page.

Change Description Date

AWSServiceRoleForIoTSiteWis
e – Update to an existing
policy

AWS IoT SiteWise now
can run a metadata search

November 6, 2023

Managed policies 1064

AWS IoT SiteWise User Guide

Change Description Date

query, against the AWS IoT
TwinMaker database.

AWSIoTSiteWiseRead
OnlyAccess – Update to an
existing policy

AWS IoT SiteWise added a
new policy prefix, BatchGet*

, that enables you to do
batch read operations.

September 16, 2022

AWSIoTSiteWiseRead
OnlyAccess – New policy

AWS IoT SiteWise added a
new policy to grant read-only
access to AWS IoT SiteWise.

November 24, 2021

AWS IoT SiteWise started
tracking changes

AWS IoT SiteWise started
tracking changes for its AWS
managed policies.

November 24, 2021

Use service-linked roles for AWS IoT SiteWise

AWS IoT SiteWise uses AWS Identity and Access Management (IAM) service-linked roles. A service-
linked role is a unique type of IAM role that is linked directly to AWS IoT SiteWise. service-linked
roles are predefined by AWS IoT SiteWise and include all the permissions that the service requires
to call other AWS services on your behalf.

Service-linked roles simplify the configuration of AWS IoT SiteWise by automatically including all
necessary permissions. AWS IoT SiteWise defines the permissions of its service-linked roles, and
unless defined otherwise, only AWS IoT SiteWise can assume its roles. The defined permissions
include the trust policy and the permissions policy. And that permissions policy can't be attached
to any other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects
your AWS IoT SiteWise resources because you can't inadvertently remove permission to access the
resources.

For information about other services that support service-linked roles, see AWS services that work
with IAM and look for the services that have Yes in the Service-linked Role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked roles 1065

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create-service-linked-role.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS IoT SiteWise User Guide

Topics

• Service-linked role permissions for AWS IoT SiteWise

• Create a service-linked role for AWS IoT SiteWise

• Update a service-linked role for AWS IoT SiteWise

• Delete a service-linked role for AWS IoT SiteWise

• Supported Regions for AWS IoT SiteWise service-linked roles

• Use service roles for AWS IoT SiteWise Monitor

Service-linked role permissions for AWS IoT SiteWise

AWS IoT SiteWise uses the service-linked role named AWSServiceRoleForIoTSiteWise. AWS IoT
SiteWise uses this service-linked role to deploy SiteWise Edge gateways (which run on AWS IoT
Greengrass) and perform logging.

The AWSServiceRoleForIoTSiteWise service-linked role uses the
AWSServiceRoleForIoTSiteWise policy with the following permissions. This policy:

• Allows AWS IoT SiteWise to deploy SiteWise Edge gateways (which run on AWS IoT
Greengrass).

• Allows AWS IoT SiteWise to perform logging.

• Allows AWS IoT SiteWise to run a metadata search query, against the AWS IoT TwinMaker
database.

For more information on the allowed actions in AWSServiceRoleForIoTSiteWise, see AWS
managed policies for AWS IoT SiteWise.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowSiteWiseReadGreenGrass",
 "Effect": "Allow",
 "Action": [
 "greengrass:GetAssociatedRole",
 "greengrass:GetCoreDefinition",

Service-linked roles 1066

AWS IoT SiteWise User Guide

 "greengrass:GetCoreDefinitionVersion",
 "greengrass:GetGroup",
 "greengrass:GetGroupVersion"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowSiteWiseAccessLogGroup",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:DescribeLogGroups"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/iotsitewise*"
 },
 {
 "Sid": "AllowSiteWiseAccessLog",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:*:log-group:/aws/iotsitewise*:log-stream:*"
 },
 {
 "Sid": "AllowSiteWiseAccessSiteWiseManagedWorkspaceInTwinMaker",
 "Effect": "Allow",
 "Action": [
 "iottwinmaker:GetWorkspace",
 "iottwinmaker:ExecuteQuery"
],
 "Resource": "arn:aws:iottwinmaker:*:*:workspace/*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "iottwinmaker:linkedServices": [
 "IOTSITEWISE"
]
 }
 }
 }
]
}

Service-linked roles 1067

AWS IoT SiteWise User Guide

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowSiteWiseReadGreenGrass",
 "Effect": "Allow",
 "Action": [
 "greengrass:GetAssociatedRole",
 "greengrass:GetCoreDefinition",
 "greengrass:GetCoreDefinitionVersion",
 "greengrass:GetGroup",
 "greengrass:GetGroupVersion"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowSiteWiseAccessLogGroup",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:DescribeLogGroups"
],
 "Resource": "arn:aws-us-gov:logs:*:*:log-group:/aws/iotsitewise*"
 },
 {
 "Sid": "AllowSiteWiseAccessLog",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws-us-gov:logs:*:*:log-group:/aws/iotsitewise*:log-stream:*"
 },
 {
 "Sid": "AllowSiteWiseAccessSiteWiseManagedWorkspaceInTwinMaker",
 "Effect": "Allow",

Service-linked roles 1068

AWS IoT SiteWise User Guide

 "Action": [
 "iottwinmaker:GetWorkspace",
 "iottwinmaker:ExecuteQuery"
],
 "Resource": "arn:aws-us-gov:iottwinmaker:*:*:workspace/*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "iottwinmaker:linkedServices": [
 "IOTSITEWISE"
]
 }
 }
 }
]
}

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowSiteWiseReadGreenGrass",
 "Effect": "Allow",
 "Action": [
 "greengrass:GetAssociatedRole",
 "greengrass:GetCoreDefinition",
 "greengrass:GetCoreDefinitionVersion",
 "greengrass:GetGroup",
 "greengrass:GetGroupVersion"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowSiteWiseAccessLogGroup",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:DescribeLogGroups"
],

Service-linked roles 1069

AWS IoT SiteWise User Guide

 "Resource": "arn:aws-cn:logs:*:*:log-group:/aws/iotsitewise*"
 },
 {
 "Sid": "AllowSiteWiseAccessLog",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws-cn:logs:*:*:log-group:/aws/iotsitewise*:log-stream:*"
 },
 {
 "Sid": "AllowSiteWiseAccessSiteWiseManagedWorkspaceInTwinMaker",
 "Effect": "Allow",
 "Action": [
 "iottwinmaker:GetWorkspace",
 "iottwinmaker:ExecuteQuery"
],
 "Resource": "arn:aws-cn:iottwinmaker:*:*:workspace/*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "iottwinmaker:linkedServices": [
 "IOTSITEWISE"
]
 }
 }
 }
]
}

You can use the logs to monitor and troubleshoot your SiteWise Edge gateways. For more
information, see Monitor SiteWise Edge gateway logs.

To allow an IAM entity (such as a user, group, or role) to create, edit, or delete a service-linked role,
first configure permissions. For more information, see Service-linked role permissions in the IAM
User Guide.

Service-linked roles 1070

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create-service-linked-role.html#service-linked-role-permissions

AWS IoT SiteWise User Guide

Create a service-linked role for AWS IoT SiteWise

AWS IoT SiteWise requires a service-linked role to perform certain actions and to access resources
on your behalf. A service-linked role is a unique type of AWS Identity and Access Management
(IAM) role that is linked directly to AWS IoT SiteWise. By creating this role, you grant AWS IoT
SiteWise the necessary permissions to access other AWS services and resources required for its
operation, such as Amazon S3 for data storage or AWS IoT for device communication.

You don't need to manually create a service-linked role. When you perform the following
operations in the AWS IoT SiteWise console, AWS IoT SiteWise creates the service-linked role for
you.

• Create a Greengrass V1 gateway.

• Configure the logging option.

• Choosing the opt-in button in the execute query banner.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you perform any operation in the AWS IoT SiteWise
console, AWS IoT SiteWise creates the service-linked role for you again.

You can also use the IAM console or API to create a service-linked role for AWS IoT SiteWise.

• To do so in the IAM console, create a role with the AWSServiceRoleForIoTSiteWise policy and a
trust relationship with iotsitewise.amazonaws.com.

• To do so using the AWS CLI or IAM API, create a role with the arn:aws:iam::aws:policy/
aws-service-role/AWSServiceRoleForIoTSiteWise policy and a trust relationship with
iotsitewise.amazonaws.com.

For more information, see Create a service-linked role in the IAM User Guide.

If you delete this service-linked role, you can use this same process to create the role again.

Update a service-linked role for AWS IoT SiteWise

AWS IoT SiteWise doesn't allow you to edit the AWSServiceRoleForIoTSiteWise service-linked
role. After you create a service-linked role, you can't change the name of the role because various
entities might reference the role. However, you can edit the description of the role using IAM. For
more information, see Update a service-linked role in the IAM User Guide.

Service-linked roles 1071

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create-service-linked-role.html#create-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_update-service-linked-role.html

AWS IoT SiteWise User Guide

Delete a service-linked role for AWS IoT SiteWise

If a feature or service requiring a service-linked role is no longer in use, it's advisable to delete the
associated role. This is to avoid having an inactive entity that isn't being monitored or maintained.
However, you must clean up the resources for your service-linked role before you can manually
delete it.

Note

If the AWS IoT SiteWise service is using the role when you try to delete the resources, then
the deletion might fail. If that happens, wait for a few minutes and try again.

To delete AWS IoT SiteWise resources used by the AWSServiceRoleForIoTSiteWise

1. Disable logging for AWS IoT SiteWise. For more information, see Change your logging level

2. Delete any active SiteWise Edge gateways.

To manually delete the service-linked role using IAM

Use the IAM console, the AWS CLI, or the AWS API to delete the AWSServiceRoleForIoTSiteWise
service-linked role. For more information, see Delete roles or instance profiles in the IAM User
Guide.

Supported Regions for AWS IoT SiteWise service-linked roles

AWS IoT SiteWise supports using service-linked roles in all of the Regions where the service is
available. For more information, see AWS IoT SiteWise Endpoints and Quotas.

Use service roles for AWS IoT SiteWise Monitor

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Create a role to delegate permissions to an AWS service in the IAM User Guide.

To allow federated SiteWise Monitor portal users to access your AWS IoT SiteWise and
AWS IAM Identity Center resources, you must attach a service role to each portal that you
create. The service role must specify SiteWise Monitor as a trusted entity and include the

Service-linked roles 1072

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create-service-linked-role.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS IoT SiteWise User Guide

AWSIoTSiteWiseMonitorPortalAccess managed policy or define equivalent permissions. This policy
is maintained by AWS and defines the set of permissions that SiteWise Monitor uses to access your
AWS IoT SiteWise and IAM Identity Center resources.

When you create a SiteWise Monitor portal, you must choose a role that allows users of that portal
to access your AWS IoT SiteWise and IAM Identity Center resources. The AWS IoT SiteWise console
can create and configure the role for you. You can edit the role in IAM later. Your portal users will
have issues using their SiteWise Monitor portals if you remove the required permissions from the
role or delete the role.

Note

Portals created before April 29, 2020 didn't require service roles. If you created portals
before this date, you must attach service roles to continue using them. To do so, navigate
to the Portals page in the AWS IoT SiteWise console, and then choose Migrate all portals
to use IAM roles.

The following sections describe how to create and manage the SiteWise Monitor service role in the
AWS Management Console or the AWS Command Line Interface.

Contents

• Service role permissions for SiteWise Monitor (Classic)

• Service role permissions for SiteWise Monitor (AI-aware)

• Manage the SiteWise Monitor service role (console)

• Find a portal's service role (console)

• Create a SiteWise Monitor service role (AWS IoT SiteWise console)

• Create a SiteWise Monitor service role (IAM console)

• Change a portal's service role (console)

• Manage the SiteWise Monitor service role (CLI)

• Find a portal's service role (CLI)

• Create the SiteWise Monitor service role (CLI)

• SiteWise Monitor updates to AWSIoTSiteWiseMonitorServiceRole

Service-linked roles 1073

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSIoTSiteWiseMonitorPortalAccess
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

Service role permissions for SiteWise Monitor (Classic)

When you create a portal, AWS IoT SiteWise lets you create a role whose name starts with
AWSIoTSiteWiseMonitorServiceRole. This role allows federated SiteWise Monitor users to access
your portal configuration, assets, asset data, and IAM Identity Center configuration.

The role trusts the following service to assume the role:

• monitor.iotsitewise.amazonaws.com

The role uses the following permissions policy, which starts with
AWSIoTSiteWiseMonitorServicePortalPolicy, to allow SiteWise Monitor users to complete actions
on resources in your account. The AWSIoTSiteWiseMonitorPortalAccess managed policy defines
equivalent permissions.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iotsitewise:DescribePortal",
 "iotsitewise:CreateProject",
 "iotsitewise:DescribeProject",
 "iotsitewise:UpdateProject",
 "iotsitewise:DeleteProject",
 "iotsitewise:ListProjects",
 "iotsitewise:BatchAssociateProjectAssets",
 "iotsitewise:BatchDisassociateProjectAssets",
 "iotsitewise:ListProjectAssets",
 "iotsitewise:CreateDashboard",
 "iotsitewise:DescribeDashboard",
 "iotsitewise:UpdateDashboard",
 "iotsitewise:DeleteDashboard",
 "iotsitewise:ListDashboards",
 "iotsitewise:CreateAccessPolicy",
 "iotsitewise:DescribeAccessPolicy",
 "iotsitewise:UpdateAccessPolicy",
 "iotsitewise:DeleteAccessPolicy",

Service-linked roles 1074

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSIoTSiteWiseMonitorPortalAccess

AWS IoT SiteWise User Guide

 "iotsitewise:ListAccessPolicies",
 "iotsitewise:DescribeAsset",
 "iotsitewise:ListAssets",
 "iotsitewise:ListAssociatedAssets",
 "iotsitewise:DescribeAssetProperty",
 "iotsitewise:GetAssetPropertyValue",
 "iotsitewise:GetAssetPropertyValueHistory",
 "iotsitewise:GetAssetPropertyAggregates",
 "iotsitewise:BatchPutAssetPropertyValue",
 "iotsitewise:ListAssetRelationships",
 "iotsitewise:DescribeAssetModel",
 "iotsitewise:ListAssetModels",
 "iotsitewise:UpdateAssetModel",
 "iotsitewise:UpdateAssetModelPropertyRouting",
 "sso-directory:DescribeUsers",
 "sso-directory:DescribeUser",
 "iotevents:DescribeAlarmModel",
 "iotevents:ListTagsForResource"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iotevents:BatchAcknowledgeAlarm",
 "iotevents:BatchSnoozeAlarm",
 "iotevents:BatchEnableAlarm",
 "iotevents:BatchDisableAlarm"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "iotevents:keyValue": "false"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iotevents:CreateAlarmModel",
 "iotevents:TagResource"
],
 "Resource": "*",
 "Condition": {

Service-linked roles 1075

AWS IoT SiteWise User Guide

 "Null": {
 "aws:RequestTag/iotsitewisemonitor": "false"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iotevents:UpdateAlarmModel",
 "iotevents:DeleteAlarmModel"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "aws:ResourceTag/iotsitewisemonitor": "false"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "iotevents.amazonaws.com"
]
 }
 }
 }
]
}

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Service-linked roles 1076

AWS IoT SiteWise User Guide

 "Action": [
 "iotsitewise:CreateProject",
 "iotsitewise:DescribeProject",
 "iotsitewise:UpdateProject",
 "iotsitewise:DeleteProject",
 "iotsitewise:ListProjects",
 "iotsitewise:BatchAssociateProjectAssets",
 "iotsitewise:BatchDisassociateProjectAssets",
 "iotsitewise:ListProjectAssets",
 "iotsitewise:CreateDashboard",
 "iotsitewise:DescribeDashboard",
 "iotsitewise:UpdateDashboard",
 "iotsitewise:DeleteDashboard",
 "iotsitewise:ListDashboards",
 "iotsitewise:CreateAccessPolicy",
 "iotsitewise:DescribeAccessPolicy",
 "iotsitewise:UpdateAccessPolicy",
 "iotsitewise:DeleteAccessPolicy",
 "iotsitewise:ListAccessPolicies",
 "iotsitewise:DescribeAsset",
 "iotsitewise:ListAssets",
 "iotsitewise:ListAssociatedAssets",
 "iotsitewise:DescribeAssetProperty",
 "iotsitewise:GetAssetPropertyValue",
 "iotsitewise:GetAssetPropertyValueHistory",
 "iotsitewise:GetAssetPropertyAggregates"
],
 "Resource": "*"
 }
]
}

For more information about the required permissions for alarms, see Set up permissions for event
alarms in AWS IoT SiteWise.

When a portal user signs in, SiteWise Monitor creates a session policy based on the intersection of
the service role and that user's access policies. Access policies define identities' level of access to
your portals and projects. For more information about portal permissions and access policies, see
Administer your SiteWise Monitor portals and CreateAccessPolicy.

Service-linked roles 1077

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateAccessPolicy.html

AWS IoT SiteWise User Guide

Service role permissions for SiteWise Monitor (AI-aware)

When you create a portal, AWS IoT SiteWise lets you create a role whose name starts with
IoTSiteWisePortalRole. This role allows federated SiteWise Monitor users to access your portal
configuration, assets, asset data, and IAM Identity Center configuration.

Warning

Project owner and Project viewer roles are not supported for SiteWise Monitor (AI-aware).

The role trusts the following service to assume the role:

• monitor.iotsitewise.amazonaws.com

The role uses the following permissions policy, which starts with IoTSiteWiseAIPortalAccessPolicy,
to allow SiteWise Monitor users to complete actions on resources in your account.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iotsitewise:CreateProject",
 "iotsitewise:DescribePortal",
 "iotsitewise:ListProjects",
 "iotsitewise:DescribeProject",
 "iotsitewise:UpdateProject",
 "iotsitewise:DeleteProject",
 "iotsitewise:CreateDashboard",
 "iotsitewise:DescribeDashboard",
 "iotsitewise:UpdateDashboard",
 "iotsitewise:DeleteDashboard",
 "iotsitewise:ListDashboards",
 "iotsitewise:ListAssets",
 "iotsitewise:DescribeAsset",
 "iotsitewise:ListAssociatedAssets",
 "iotsitewise:ListAssetProperties",

Service-linked roles 1078

AWS IoT SiteWise User Guide

 "iotsitewise:DescribeAssetProperty",
 "iotsitewise:GetAssetPropertyValue",
 "iotsitewise:GetAssetPropertyValueHistory",
 "iotsitewise:GetAssetPropertyAggregates",
 "iotsitewise:GetInterpolatedAssetPropertyValues",
 "iotsitewise:BatchGetAssetPropertyAggregates",
 "iotsitewise:BatchGetAssetPropertyValue",
 "iotsitewise:BatchGetAssetPropertyValueHistory",
 "iotsitewise:ListAssetRelationships",
 "iotsitewise:DescribeAssetModel",
 "iotsitewise:ListAssetModels",
 "iotsitewise:DescribeAssetCompositeModel",
 "iotsitewise:DescribeAssetModelCompositeModel",
 "iotsitewise:ListAssetModelProperties",
 "iotsitewise:ExecuteQuery",
 "iotsitewise:ListTimeSeries",
 "iotsitewise:DescribeTimeSeries",
 "iotsitewise:InvokeAssistant",
 "iotsitewise:DescribeDataset",
 "iotsitewise:ListDatasets",
 "iotevents:DescribeAlarmModel",
 "iotevents:ListTagsForResource",
 "iottwinmaker:ListWorkspaces",
 "iottwinmaker:ExecuteQuery",
 "iottwinmaker:GetWorkspace",
 "identitystore:DescribeUser"
],
 "Resource": "*"
 }
]
}

When a portal user signs in, SiteWise Monitor creates a session policy based on the intersection of
the service role and that user's access policies.

Manage the SiteWise Monitor service role (console)

The AWS IoT SiteWise console facilitates the management of the SiteWise Monitor service role
for portals. Upon creating a portal, the console checks for existing roles suitable for attachment.
If none are available, the console can create and configure a service role for you. For more
information, see Create a portal in SiteWise Monitor.

Service-linked roles 1079

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

AWS IoT SiteWise User Guide

Topics

• Find a portal's service role (console)

• Create a SiteWise Monitor service role (AWS IoT SiteWise console)

• Create a SiteWise Monitor service role (IAM console)

• Change a portal's service role (console)

Find a portal's service role (console)

Use the following steps to find the service role attached to a SiteWise Monitor portal.

To find a portal's service role

1. Navigate to the AWS IoT SiteWise console.

2. In the left navigation pane, choose Portals.

3. Choose the portal for which you want to find the service role.

The role attached to the portal appears under Permissions, Service role.

Create a SiteWise Monitor service role (AWS IoT SiteWise console)

When you create a SiteWise Monitor portal, you can create a service role for your portal. For more
information, see Create a portal in SiteWise Monitor.

You can also create a service role for an existing portal in the AWS IoT SiteWise console. This
replaces the portal's existing service role.

To create a service role for an existing portal

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Portals.

3. Choose the portal for which you want to create a new service role.

4. Under Portal details, choose Edit.

5. Under Permissions, choose Create and use a new service role from the list.

6. Enter a name for your new role.

7. Choose Save.

Service-linked roles 1080

https://console.aws.amazon.com/iotsitewise/
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

Create a SiteWise Monitor service role (IAM console)

You can create a service role from the service role template in the IAM console. This role template
includes the AWSIoTSiteWiseMonitorPortalAccess managed policy and specifies SiteWise Monitor
as a trusted entity.

To create a service role from the portal service role template

1. Navigate to the IAM console.

2. In the navigation pane, choose Roles.

3. Choose Create role.

4. In Choose a use case, choose IoT SiteWise.

5. In Select your use case, choose IoT SiteWise Monitor - Portal.

6. Choose Next: Permissions.

7. Choose Next: Tags.

8. Choose Next: Review.

9. Enter a Role name for the new service role.

10. Choose Create role.

Change a portal's service role (console)

Use the following procedure to choose a different SiteWise Monitor service role for a portal.

To change a portal's service role

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Portals.

3. Choose the portal for which you want to change the service role.

4. Under Portal details, choose Edit.

5. Under Permissions, choose Use an existing role.

6. Choose an existing role to attach to this portal.

7. Choose Save.

Manage the SiteWise Monitor service role (CLI)

You can use the AWS CLI for the following portal service role management tasks:

Service-linked roles 1081

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSIoTSiteWiseMonitorPortalAccess
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

Topics

• Find a portal's service role (CLI)

• Create the SiteWise Monitor service role (CLI)

Find a portal's service role (CLI)

To find the service role attached to a SiteWise Monitor portal, run the following command to list all
of your portals in the current Region.

aws iotsitewise list-portals

The operation returns a response that contains your portal summaries in the following format.

{
 "portalSummaries": [
 {
 "id": "a1b2c3d4-5678-90ab-cdef-aaaaaEXAMPLE",
 "name": "WindFarmPortal",
 "description": "A portal that contains wind farm projects for Example Corp.",
 "roleArn": "arn:aws:iam::123456789012:role/service-role/role-name",
 "startUrl": "https://a1b2c3d4-5678-90ab-cdef-aaaaaEXAMPLE.app.iotsitewise.aws",
 "creationDate": "2020-02-04T23:01:52.90248068Z",
 "lastUpdateDate": "2020-02-04T23:01:52.90248078Z"
 }
]
}

You can also use the DescribePortal operation to find your portal's role if you know the ID of your
portal.

Create the SiteWise Monitor service role (CLI)

Use the following steps to create a new SiteWise Monitor service role.

To create a SiteWise Monitor service role

1. Create a role with a trust policy that allows SiteWise Monitor to assume the role. This example
creates a role named MySiteWiseMonitorPortalRole from a trust policy stored in a JSON
string.

Service-linked roles 1082

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribePortal.html

AWS IoT SiteWise User Guide

Linux, macOS, or Unix

aws iam create-role --role-name MySiteWiseMonitorPortalRole --assume-role-
policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "monitor.iotsitewise.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}'

Windows command prompt

aws iam create-role --role-name MySiteWiseMonitorPortalRole --assume-role-
policy-document "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Effect\":\"Allow
\",\"Principal\":{\"Service\":\"monitor.iotsitewise.amazonaws.com\"},\"Action\":
\"sts:AssumeRole\"}]}"

2. Copy the role ARN from the role metadata in the output. When you create a portal, you use
this ARN to associate the role with your portal. For more information about creating a portal,
see CreatePortal in the AWS IoT SiteWise API Reference.

3. a. For the SiteWise Monitor (Classic) – Attach the AWSIoTSiteWiseMonitorPortalAccess
policy to the role, or attach a policy that defines equivalent permissions.

aws iam attach-role-policy --role-name MySiteWiseMonitorPortalRole --policy-arn
 arn:aws:iam::aws:policy/service-role/AWSIoTSiteWiseMonitorPortalAccess

b. For the SiteWise Monitor (AI-aware) – Attach the IoTSiteWiseAIPortalAccessPolicy
policy to the role, or attach a policy that defines equivalent permissions. For example,
create a policy with portal access permissions. The following example creates a policy
named MySiteWiseMonitorPortalAccess.

aws iam create-policy \
 --policy-name MySiteWiseMonitorPortalAccess \

Service-linked roles 1083

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreatePortal.html

AWS IoT SiteWise User Guide

 --policy-document '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iotsitewise:CreateProject",
 "iotsitewise:DescribePortal",
 "iotsitewise:ListProjects",
 "iotsitewise:DescribeProject",
 "iotsitewise:UpdateProject",
 "iotsitewise:DeleteProject",
 "iotsitewise:CreateDashboard",
 "iotsitewise:DescribeDashboard",
 "iotsitewise:UpdateDashboard",
 "iotsitewise:DeleteDashboard",
 "iotsitewise:ListDashboards",
 "iotsitewise:ListAssets",
 "iotsitewise:DescribeAsset",
 "iotsitewise:ListAssociatedAssets",
 "iotsitewise:ListAssetProperties",
 "iotsitewise:DescribeAssetProperty",
 "iotsitewise:GetAssetPropertyValue",
 "iotsitewise:GetAssetPropertyValueHistory",
 "iotsitewise:GetAssetPropertyAggregates",
 "iotsitewise:GetInterpolatedAssetPropertyValues",
 "iotsitewise:BatchGetAssetPropertyAggregates",
 "iotsitewise:BatchGetAssetPropertyValue",
 "iotsitewise:BatchGetAssetPropertyValueHistory",
 "iotsitewise:ListAssetRelationships",
 "iotsitewise:DescribeAssetModel",
 "iotsitewise:ListAssetModels",
 "iotsitewise:DescribeAssetCompositeModel",
 "iotsitewise:DescribeAssetModelCompositeModel",
 "iotsitewise:ListAssetModelProperties",
 "iotsitewise:ExecuteQuery",
 "iotsitewise:ListTimeSeries",
 "iotsitewise:DescribeTimeSeries",
 "iotsitewise:InvokeAssistant",
 "iotsitewise:DescribeDataset",
 "iotsitewise:ListDatasets",
 "iotevents:DescribeAlarmModel",
 "iotevents:ListTagsForResource",
 "iottwinmaker:ListWorkspaces",

Service-linked roles 1084

AWS IoT SiteWise User Guide

 "iottwinmaker:ExecuteQuery",
 "iottwinmaker:GetWorkspace",
 "identitystore:DescribeUser"
],
 "Resource": "*"
 }
]
}'

To attach a service role to an existing portal

1. To retrieve the portal's existing details, run the following command. Replace portal-id with
the ID of the portal.

aws iotsitewise describe-portal --portal-id portal-id

The operation returns a response that contains the portal's details in the following format.

{
 "portalId": "a1b2c3d4-5678-90ab-cdef-aaaaaEXAMPLE",
 "portalArn": "arn:aws:iotsitewise:region:account-id:portal/a1b2c3d4-5678-90ab-
cdef-aaaaaEXAMPLE",
 "portalName": "WindFarmPortal",
 "portalDescription": "A portal that contains wind farm projects for Example
 Corp.",
 "portalClientId": "E-1a2b3c4d5e6f_sn6tbqHVzLWVEXAMPLE",
 "portalStartUrl": "https://a1b2c3d4-5678-90ab-cdef-
aaaaaEXAMPLE.app.iotsitewise.aws",
 "portalContactEmail": "support@example.com",
 "portalStatus": {
 "state": "ACTIVE"
 },
 "portalCreationDate": "2020-04-29T23:01:52.90248068Z",
 "portalLastUpdateDate": "2020-04-29T00:28:26.103548287Z",
 "roleArn": "arn:aws:iam::123456789012:role/service-role/
AWSIoTSiteWiseMonitorServiceRole_1aEXAMPLE"
}

2. To attach a service role to a portal, run the following command. Replace role-arn with the
service role ARN, and replace the remaining parameters with the portal's existing values.

Service-linked roles 1085

AWS IoT SiteWise User Guide

aws iotsitewise update-portal \
 --portal-id portal-id \
 --role-arn role-arn \
 --portal-name portal-name \
 --portal-description portal-description \
 --portal-contact-email portal-contact-email

SiteWise Monitor updates to AWSIoTSiteWiseMonitorServiceRole

You can view details about updates to AWSIoTSiteWiseMonitorServiceRole for SiteWise Monitor,
beginning from when this service began tracking the changes. For automatic alerts about changes
to this page, subscribe to the RSS feed on the AWS IoT SiteWise Document history page.

Change Description Date

AWSIoTSiteWiseMoni
torPortalAccess – Updated
policy

AWS IoT SiteWise updated
the AWSIoTSiteWiseMoni
torPortalAccess managed
policy for the alarms feature.

May 27, 2021

AWS IoT SiteWise started
tracking changes

AWS IoT SiteWise started
tracking changes for its
service role.

December 15, 2020

Set up permissions for event alarms in AWS IoT SiteWise

When you use an AWS IoT Events alarm model to monitor an AWS IoT SiteWise asset property, you
must have the following IAM permissions:

• An AWS IoT Events service role that allows AWS IoT Events to send data to AWS IoT SiteWise.
For more information, see Identity and access management for AWS IoT Events in the AWS IoT
Events Developer Guide.

• You must have the following AWS IoT SiteWise action permissions:
iotsitewise:DescribeAssetModel and
iotsitewise:UpdateAssetModelPropertyRouting. These permissions allow AWS IoT
SiteWise to send asset property values to AWS IoT Events alarm models.

Set up permissions for alarms 1086

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSIoTSiteWiseMonitorPortalAccess
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSIoTSiteWiseMonitorPortalAccess
https://docs.aws.amazon.com/iotevents/latest/developerguide/security-iam.html

AWS IoT SiteWise User Guide

For more information, see Resource-based policies in the IAM User Guide.

Required action permissions

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions. The Action
element of a JSON policy describes the actions that you can use to allow or deny access in a policy.

Before you define an AWS IoT Events alarm model, you must grant the following permissions that
allow AWS IoT SiteWise to send asset property values to the alarm model.

• iotsitewise:DescribeAssetModel, iotsitewise:ListAssetModels – Allows AWS IoT
Events to check if an asset property exists.

• iotsitewise:UpdateAssetModelPropertyRouting – Allows AWS IoT SiteWise to
automatically create subscriptions that enable AWS IoT SiteWise to send data to AWS IoT Events.

For more information about AWS IoT SiteWise supported actions, see Actions defined by AWS IoT
SiteWise in the Service Authorization Reference.

Example Example permissions policy 1

The following policy allows AWS IoT SiteWise to send asset property values to any AWS IoT Events
alarm models.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iotevents:CreateAlarmModel",
 "iotevents:UpdateAlarmModel"
],
 "Resource": "arn:aws:iotevents:us-east-1:123456789012:alarmModel/*"
 },
 {
 "Effect": "Allow",
 "Action": [

Set up permissions for alarms 1087

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_resource-based
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotsitewise.html#awsiotsitewise-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotsitewise.html#awsiotsitewise-actions-as-permissions

AWS IoT SiteWise User Guide

 "iotsitewise:DescribeAssetModel",
 "iotsitewise:ListAssetModels",
 "iotsitewise:UpdateAssetModelPropertyRouting"
],
 "Resource": "arn:aws:iotsitewise:us-east-1:123456789012:asset-model/
*"
 }
]
}

Example Example permissions policy 2

The following policy allows AWS IoT SiteWise to send values of a specified asset property to a
specified AWS IoT Events alarm model.

(Optional) ListInputRoutings permission

When you update or delete an asset model, AWS IoT SiteWise can check if an alarm model in AWS
IoT Events is monitoring an asset property associated with this asset model. This prevents you
from deleting an asset property that an AWS IoT Events alarm is currently using. To enable this
feature in AWS IoT SiteWise, you must have the iotevents:ListInputRoutings permission.
This permission allows AWS IoT SiteWise to make calls to the ListInputRoutings API operation
supported by AWS IoT Events.

Note

We strongly recommend that you add the ListInputRoutings permission.

Example Example permissions policy

The following policy allows you to update and delete asset models, and use the
ListInputRoutings API in AWS IoT SiteWise.

JSON

{
 "Version": "2012-10-17",
 "Statement": [

Set up permissions for alarms 1088

https://docs.aws.amazon.com/iotevents/latest/apireference/API_ListInputRoutings.html

AWS IoT SiteWise User Guide

 {
 "Effect": "Allow",
 "Action": [
 "iotsitewise:UpdateAssetModel",
 "iotsitewise:DeleteAssetModel",
 "iotevents:ListInputRoutings"
],
 "Resource": "arn:aws:iotsitewise:us-east-1:123456789012:asset-model/
*"
 }
]
}

Required permissions for SiteWise Monitor

If you want to use the alarms feature in SiteWise Monitor portals, you must update the SiteWise
Monitor service role with the following policy:

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iotsitewise:DescribePortal",
 "iotsitewise:CreateProject",
 "iotsitewise:DescribeProject",
 "iotsitewise:UpdateProject",
 "iotsitewise:DeleteProject",
 "iotsitewise:ListProjects",
 "iotsitewise:BatchAssociateProjectAssets",
 "iotsitewise:BatchDisassociateProjectAssets",
 "iotsitewise:ListProjectAssets",
 "iotsitewise:CreateDashboard",
 "iotsitewise:DescribeDashboard",
 "iotsitewise:UpdateDashboard",
 "iotsitewise:DeleteDashboard",
 "iotsitewise:ListDashboards",
 "iotsitewise:CreateAccessPolicy",

Set up permissions for alarms 1089

AWS IoT SiteWise User Guide

 "iotsitewise:DescribeAccessPolicy",
 "iotsitewise:UpdateAccessPolicy",
 "iotsitewise:DeleteAccessPolicy",
 "iotsitewise:ListAccessPolicies",
 "iotsitewise:DescribeAsset",
 "iotsitewise:ListAssets",
 "iotsitewise:ListAssociatedAssets",
 "iotsitewise:DescribeAssetProperty",
 "iotsitewise:GetAssetPropertyValue",
 "iotsitewise:GetAssetPropertyValueHistory",
 "iotsitewise:GetAssetPropertyAggregates",
 "iotsitewise:BatchPutAssetPropertyValue",
 "iotsitewise:ListAssetRelationships",
 "iotsitewise:DescribeAssetModel",
 "iotsitewise:ListAssetModels",
 "iotsitewise:UpdateAssetModel",
 "iotsitewise:UpdateAssetModelPropertyRouting",
 "sso-directory:DescribeUsers",
 "sso-directory:DescribeUser",
 "iotevents:DescribeAlarmModel",
 "iotevents:ListTagsForResource"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iotevents:BatchAcknowledgeAlarm",
 "iotevents:BatchSnoozeAlarm",
 "iotevents:BatchEnableAlarm",
 "iotevents:BatchDisableAlarm"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "iotevents:keyValue": "false"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iotevents:CreateAlarmModel",
 "iotevents:TagResource"

Set up permissions for alarms 1090

AWS IoT SiteWise User Guide

],
 "Resource": "*",
 "Condition": {
 "Null": {
 "aws:RequestTag/iotsitewisemonitor": "false"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iotevents:UpdateAlarmModel",
 "iotevents:DeleteAlarmModel"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "aws:ResourceTag/iotsitewisemonitor": "false"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": [
 "iotevents.amazonaws.com"
]
 }
 }
 }
]
}

Cross-service confused deputy prevention in AWS IoT SiteWise

The confused deputy problem is a security issue where an entity that doesn't have permission
to perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-

Cross-service confused deputy prevention in AWS IoT SiteWise 1091

AWS IoT SiteWise User Guide

service impersonation can result in the confused deputy problem. Cross-service impersonation can
occur when one service (the calling service) calls another service (the called service). The calling
service can be manipulated to use its permissions to act on another customer's resources in a way
it shouldn't otherwise have permission to access. To prevent this, AWS provides tools that help you
protect your data for all services with service principals that have been given access to resources in
your account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource policies to limit the permissions that AWS IoT SiteWise gives another service to
the resource. If the aws:SourceArn value doesn't contain the account ID, such as an Amazon S3
bucket Amazon Resource Name (ARN), you must use both global condition context keys to limit
permissions. If you use both global condition context keys and the aws:SourceArn value contains
the account ID, the aws:SourceAccount value and the account in the aws:SourceArn value
must use the same account ID when used in the same policy statement.

• Use aws:SourceArn if you want only one resource to be associated with the cross-service
access.

• Use aws:SourceAccount if you want to allow any resource in that account to be associated
with the cross-service use.

The value of aws:SourceArn must be the AWS IoT SiteWise customer resource that is associated
with the sts:AssumeRole request.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you're specifying multiple resources, use the aws:SourceArn
global context condition key with wildcards (*) for the unknown portions of the ARN. For example,
arn:aws:servicename:*:123456789012:*.

Example – Confused Deputy Prevention

The following example shows how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in AWS IoT SiteWise to prevent the confused deputy problem.

JSON

{
 "Version": "2012-10-17",

Cross-service confused deputy prevention in AWS IoT SiteWise 1092

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

AWS IoT SiteWise User Guide

 "Statement": {
 "Sid": "ConfusedDeputyPreventionExamplePolicy",
 "Effect": "Allow",
 "Principal": {
 "Service": "iotsitewise.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:iotsitewise:*:123456789012:*"
 },
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
 }
}

Troubleshoot AWS IoT SiteWise identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AWS IoT SiteWise and AWS Identity and Access Management (IAM).

Topics

• I am not authorized to perform an action in AWS IoT SiteWise

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my AWS IoT SiteWise resources

I am not authorized to perform an action in AWS IoT SiteWise

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your user name and password.

The following example error occurs when the mateojackson IAM user tries to use the console to
view details about an asset but does not have iotsitewise:DescribeAsset permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 iotsitewise:DescribeAsset on resource: a1b2c3d4-5678-90ab-cdef-22222EXAMPLE

Troubleshoot identity and access 1093

AWS IoT SiteWise User Guide

In this case, Mateo asks his administrator to update his policies to allow him to access
the asset resource with ID a1b2c3d4-5678-90ab-cdef-22222EXAMPLE using the
iotsitewise:DescribeAsset action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to AWS IoT SiteWise.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in AWS IoT SiteWise. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my AWS IoT SiteWise
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether AWS IoT SiteWise supports these features, see How AWS IoT SiteWise works
with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

Troubleshoot identity and access 1094

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html

AWS IoT SiteWise User Guide

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Compliance validation for AWS IoT SiteWise

AWS IoT SiteWise is not in scope of any AWS compliance programs.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading reports in AWS Artifact.

Your compliance responsibility when using AWS IoT SiteWise is determined by the sensitivity
of your data, your company's compliance objectives, and applicable laws and regulations. AWS
provides the following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• Evaluating resources with rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

• Ten security golden rules for Industrial IoT solutions – This blog post introduces ten golden rules
that help secure your industrial control systems (ICS), industrial Internet of Things (IIoT), and
cloud environments.

Compliance validation 1095

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/solutions/security/
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://aws.amazon.com/blogs/iot/ten-security-golden-rules-for-industrial-iot-solutions/

AWS IoT SiteWise User Guide

• Security Best Practices for Manufacturing OT – This whitepaper describes security best practices
to design, deploy, and architect these on-premises hybrid manufacturing workloads for the AWS
Cloud.

Resilience in AWS IoT SiteWise

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

AWS IoT SiteWise is fully managed and uses highly available and durable AWS services, such as
Amazon S3 and Amazon EC2. To ensure availability in the event of an availability zone disruption,
AWS IoT SiteWise operates across multiple availability zones.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, AWS IoT SiteWise offers several features to help
support your data resiliency and backup needs:

• You can publish property value updates to AWS IoT Core through MQTT messages, then
configure rules to act upon that data. With this feature, you can back up data in other AWS
services such as Amazon S3 and Amazon DynamoDB. For more information, see Interact with
other AWS services and Export data to Amazon S3 with asset property notifications.

• You can use the AWS IoT SiteWise Get* APIs to retrieve and backup historical asset property
data. For more information, see Query historical asset property values in AWS IoT SiteWise.

• You can use the AWS IoT SiteWise Describe* APIs to retrieve the definitions for your resources,
such as assets and models. You can backup these definitions and later use them to recreate your
resources. For more information, see the AWS IoT SiteWise API Reference.

Infrastructure security in AWS IoT SiteWise

As a managed service, AWS IoT SiteWise is protected by AWS global network security. For
information about AWS security services and how AWS protects infrastructure, see AWS Cloud

Resilience 1096

https://d1.awsstatic.com/whitepapers/security-bp-for-manufacturing-ot.pdf
https://aws.amazon.com/about-aws/global-infrastructure/
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/
https://aws.amazon.com/security/

AWS IoT SiteWise User Guide

Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access AWS IoT SiteWise through the network. Clients must
support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

SiteWise Edge gateways, which run on AWS IoT Greengrass, use X.509 certificates and
cryptographic keys to connect and authenticate to the AWS Cloud. For more information, see
Device authentication and authorization for AWS IoT Greengrass in the AWS IoT Greengrass Version
1 Developer Guide.

Configuration and vulnerability analysis in AWS IoT SiteWise

IoT fleets can consist of large numbers of devices that have diverse capabilities, are long-lived, and
are geographically distributed. These characteristics make fleet setup complex and error-prone.
Because devices usually have limited processing power, memory, and storage, they can't always
support encryption and other security measures. Also, devices often use software with known
vulnerabilities. These factors make IoT fleets an attractive target for hackers and make it difficult to
secure your device fleet on an ongoing basis.

AWS IoT Device Defender addresses these challenges by providing tools to identify security
issues and deviations from best practices. Use AWS IoT Device Defender to analyze, audit, and
monitor connected devices to detect abnormal behavior, and mitigate security risks. AWS IoT
Device Defender can audit device fleets to ensure they adhere to security best practices and
detect abnormal behavior on devices. This makes it possible to enforce consistent security policies
across your AWS IoT device fleet and respond quickly when devices are compromised. For more
information, see What is AWS IoT Device Defender in the AWS IoT Device Defender Developer Guide.

Configuration and vulnerability analysis 1097

https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/device-auth.html
https://docs.aws.amazon.com/iot-device-defender/latest/devguide/what-is-device-defender.html

AWS IoT SiteWise User Guide

If you use SiteWise Edge gateways to ingest data to the service, it's your responsibility to configure
and maintain your SiteWise Edge gateway's environment. This responsibility includes upgrading to
the latest versions of the SiteWise Edge gateway's system software, AWS IoT Greengrass software,
and the AWS IoT SiteWise connector. For more information, see Configure the AWS IoT Greengrass
core in the AWS IoT Greengrass Version 1 Developer Guide and Manage SiteWise Edge gateways.

VPC endpoints for AWS IoT SiteWise

An interface VPC endpoint establishes a private connection between your virtual private cloud
(VPC) and AWS IoT SiteWise. AWS PrivateLink powers interface endpoints, enabling private access
to AWS IoT SiteWise API operations. AWS IoT SiteWise supports both IPv4 and IPv6 (dual-stack)
through its interface endpoints. You can bypass the need for an internet gateway, NAT device,
VPN connection, or AWS Direct Connect. Instances in your VPC don't need public IP addresses
to communicate with AWS IoT SiteWise API operations. Traffic between your VPC and AWS IoT
SiteWise doesn't leave the AWS network.

Each interface endpoint is represented by one or more elastic network interfaces in your subnets.

Before you set up an interface VPC endpoint for AWS IoT SiteWise, review the Access an AWS
service using an interface VPC endpoint in the AWS PrivateLink Guide.

API operations for VPC endpoints in AWS IoT SiteWise

AWS IoT SiteWise supports making calls to the following AWS IoT SiteWise API operations from
your VPC:

• For all the data plane API operations, use the following endpoint: Replace region with your
AWS Region

data.iotsitewise.region.amazonaws.com

The data plane API operations include the following:

• BatchGetAssetPropertyValue

• BatchGetAssetPropertyValueHistory

• BatchPutAssetPropertyValue

• GetAssetPropertyAggregates

• GetAssetPropertyValue

VPC endpoints 1098

https://docs.aws.amazon.com/greengrass/v1/developerguide/gg-core.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/gg-core.html
https://aws.amazon.com/privatelink/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchGetAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchGetAssetPropertyValueHistory.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyAggregates.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyValue.html

AWS IoT SiteWise User Guide

• GetAssetPropertyValueHistory

• GetInterpolatedAssetPropertyValues

• For the control plane API operations that you use to manage asset models, assets, SiteWise Edge
gateways, tags, and account configurations, use the following endpoint. Replace region with
your AWS Region.

api.iotsitewise.region.amazonaws.com

The supported control plane API operations include the following:

• AssociateAssets

• CreateAsset

• CreateAssetModel

• DeleteAsset

• DeleteAssetModel

• DeleteDashboard

• DescribeAsset

• DescribeAssetModel

• DescribeAssetProperty

• DescribeDashboard

• DescribeLoggingOptions

• DisassociateAssets

• ListAssetModels

• ListAssetRelationships

• ListAssets

• ListAssociatedAssets

• PutLoggingOptions

• UpdateAsset

• UpdateAssetModel

• UpdateAssetProperty

• CreateGateway

• DeleteGateway
Supported API operations 1099

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyValueHistory.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetInterpolatedAssetPropertyValues.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_AssociateAssets.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateAsset.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateAssetModel.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DeleteAsset.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DeleteAssetModel.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DeleteDashboard.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAsset.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAssetModel.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAssetProperty.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeDashboard.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeLoggingOptions.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DisassociateAssets.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListAssetModels.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListAssetRelationships.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListAssets.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListAssociatedAssets.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_PutLoggingOptions.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateAsset.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateAssetModel.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateAssetProperty.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateGateway.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DeleteGateway.html

AWS IoT SiteWise User Guide

• DescribeDefaultEncryptionConfiguration

• DescribeGateway

• DescribeGatewayCapabilityConfiguration

• DescribeStorageConfiguration

• ListGateways

• ListTagsForResource

• UpdateGateway

• UpdateGatewayCapabilityConfiguration

• PutDefaultEncryptionConfiguration

• PutStorageConfiguration

• TagResource

• UntagResource

Note

The interface VPC endpoint for the control plane API operations currently doesn't
support making calls to the following SiteWise Monitor API operations:

• BatchAssociateProjectAssets

• BatchDisassociateProjectAssets

• CreateAccessPolicy

• CreateDashboard

• CreatePortal

• CreateProject

• DeleteAccessPolicy

• DeletePortal

• DeleteProject

• DescribeAccessPolicy

• DescribePortal

• DescribeProject

• ListAccessPolicies

• ListDashboardsSupported API operations 1100

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeDefaultEncryptionConfiguration.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeGateway.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeGatewayCapabilityConfiguration.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeStorageConfiguration.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListGateways.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateGateway.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateGatewayCapabilityConfiguration.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_PutDefaultEncryptionConfiguration.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_PutStorageConfiguration.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UntagResource.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchAssociateProjectAssets.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchDisassociateProjectAssets.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateAccessPolicy.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateDashboard.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreatePortal.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateProject.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DeleteAccessPolicy.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DeletePortal.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DeleteProject.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAccessPolicy.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribePortal.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeProject.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListAccessPolicies.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListDashboards.html

AWS IoT SiteWise User Guide

• ListPortals

• ListProjects

• ListProjectAssets

• UpdateAccessPolicy

• UpdateDashboard

• UpdatePortal

• UpdateProject

Create an interface VPC endpoint for AWS IoT SiteWise

To create a VPC endpoint for the AWS IoT SiteWise service, use either the Amazon VPC console
or the AWS Command Line Interface (AWS CLI). For more information, see Access an AWS service
using an interface VPC endpoint in the AWS PrivateLink Guide.

Create a VPC endpoint for AWS IoT SiteWise by using one of the following service names:

• For the data plane API operations, use the following service name:

com.amazonaws.region.iotsitewise.data

• For the control plane API operations, use the following service name:

com.amazonaws.region.iotsitewise.api

Access AWS IoT SiteWise through an interface VPC endpoint

When you create an interface endpoint, we generate endpoint-specific DNS hostnames that you
can use to communicate with AWS IoT SiteWise. The private DNS option is enabled by default. For
more information, see Using private hosted zones in the Amazon VPC User Guide.

If you enable private DNS for the endpoint, you can make API requests to AWS IoT SiteWise through
one of the following VPC endpoints.

• For the data plane API operations, use the following endpoint: Replace region with your AWS
Region.

Create an interface VPC endpoint 1101

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListPortals.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListProjects.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListProjectAssets.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateAccessPolicy.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateDashboard.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdatePortal.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UpdateProject.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint
https://docs.aws.amazon.com/vpc/latest/userguide/AmazonDNS-concepts.html#vpc-private-hosted-zones

AWS IoT SiteWise User Guide

data.iotsitewise.region.amazonaws.com

• For the control plane API operations, use the following endpoint: Replace region with your
AWS Region.

api.iotsitewise.region.amazonaws.com

If you disable private DNS for the endpoint, you must do the following to access AWS IoT SiteWise
through the endpoint:

1. Specify the VPC endpoint url in API requests.

• For the data plane API operations, use the following endpoint url. Replace vpc-endpoint-
id and region with your VPC endpoint ID and Region.

vpc-endpoint-id.data.iotsitewise.region.vpce.amazonaws.com

• For the control plane API operations, use the following endpoint url. Replace vpc-
endpoint-id and region with your VPC endpoint ID and Region.

vpc-endpoint-id.api.iotsitewise.region.vpce.amazonaws.com

2. Disable host prefix injection. The AWS CLI and AWS SDKs prepend the service endpoint with
various host prefixes when you call each API operation. This feature causes the AWS CLI and
AWS SDKs to produce URLs that are not valid for AWS IoT SiteWise when you specify a VPC
endpoint.

Important

You can't disable host prefix injection in the AWS CLI or the AWS Tools for PowerShell.
This means that if you disable private DNS, then you can't use these tools to access AWS
IoT SiteWise through the VPC endpoint. Enable private DNS to use the AWS CLI or the
AWS Tools for PowerShell to access AWS IoT SiteWise through the endpoint.

For more information about how to disable host prefix injection in the AWS SDKs, see the
following documentation sections for each SDK:

• AWS SDK for C++

Access AWS IoT SiteWise through an interface VPC endpoint 1102

https://sdk.amazonaws.com/cpp/api/LATEST/struct_aws_1_1_client_1_1_client_configuration.html#a3579c1a2f2e1c9d54e99c59d27643499

AWS IoT SiteWise User Guide

• AWS SDK for Go

• AWS SDK for Go v2

• AWS SDK for Java

• AWS SDK for Java 2.x

• AWS SDK for JavaScript

• AWS SDK for .NET

• AWS SDK for PHP

• AWS SDK for Python (Boto3)

• AWS SDK for Ruby

For more information, see Access an AWS service using an interface VPC endpoint in the AWS
PrivateLink Guide.

Create a VPC endpoint policy for AWS IoT SiteWise

You can attach an endpoint policy to your VPC endpoint that controls access to AWS IoT SiteWise.
The policy specifies the following information:

• The principal that can perform operations.

• The operations that can be performed.

• The resources on which operations can be performed.

For more information, see Control access to VPC endpoints using endpoint policies in the Amazon
VPC User Guide.

Example: VPC endpoint policy for AWS IoT SiteWise actions

The following is an example of an endpoint policy for AWS IoT SiteWise. When attached
to an endpoint, this policy grants access to the listed AWS IoT SiteWise actions for the user
iotsitewiseadmin in AWS account 123456789012 on the specified asset.

{
 "Statement": [
 {
 "Action": [
 "iotsitewise:CreateAsset",

Create a VPC endpoint policy 1103

https://docs.aws.amazon.com/sdk-for-go/api/aws/#Config.WithDisableEndpointHostPrefix
https://pkg.go.dev/github.com/aws/aws-sdk-go-v2/config
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html#setDisableHostPrefixInjection-boolean-
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/core/client/config/SdkAdvancedClientOption.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Config.html#hostPrefixEnabled-property
https://docs.aws.amazon.com/sdkfornet/v4/apidocs/items/Runtime/TClientConfig.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.AwsClient.html#___construct
https://botocore.amazonaws.com/v1/documentation/api/latest/reference/config.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/IoTSiteWise/Client.html#initialize-instance_method
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#access-service-though-endpoint
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html

AWS IoT SiteWise User Guide

 "iotsitewise:ListGateways",
 "iotsitewise:ListTagsForResource"
],
 "Effect": "Allow",
 "Resource": "arn:aws:iotsitewise:us-west-2:123456789012:asset/
a1b2c3d4-5678-90ab-cdef-33333EXAMPLE",
 "Principal": {
 "AWS": [
 "123456789012:user/iotsitewiseadmin"
]
 }
 }
]
}

Security best practices for AWS IoT SiteWise

This topic contains security best practices for AWS IoT SiteWise.

Use authentication credentials on your OPC UA servers

Require authentication credentials to connect to your OPC UA servers. Consult the documentation
for your servers to do so. Then, to allow your SiteWise Edge gateway to connect to your OPC UA
servers, add server authentication secrets to your SiteWise Edge gateway. For more information,
see Configure data source authentication for SiteWise Edge.

Use encrypted communication modes for your OPC UA servers

Choose a non-deprecated, encrypted message security mode when you configure your OPC UA
sources for your SiteWise Edge gateway. This helps secure your industrial data as it moves from
your OPC UA servers to the SiteWise Edge gateway. For more information, see Data in transit over
the local network and Set up an OPC UA source in SiteWise Edge.

Keep your components up to date

If you use SiteWise Edge gateways to ingest data to the service, it's your responsibility to configure
and maintain your SiteWise Edge gateway's environment. This responsibility includes upgrading
to the latest versions of the gateway's system software, AWS IoT Greengrass software, and
connectors.

Security best practices 1104

AWS IoT SiteWise User Guide

Note

The AWS IoT SiteWise Edge connector stores secrets on your file system. These secrets
control who can view the data cached within your SiteWise Edge gateway. It's strongly
recommended that you turn on disk or file-system encryption for the system running your
SiteWise Edge gateway.

For information on how to upgrade components in the AWS IoT SiteWise console, see Change the
version of SiteWise Edge gateway component packs.

Encrypt your SiteWise Edge gateway's file system

Encrypt and secure your SiteWise Edge gateway, so your industrial data is secure as it moves
through the SiteWise Edge gateway. If your SiteWise Edge gateway has a hardware security
module, you can configure AWS IoT Greengrass to secure your SiteWise Edge gateway. For more
information, see Hardware security integration in the AWS IoT Greengrass Version 1 Developer
Guide. Otherwise, consult the documentation for your operating system to learn how to encrypt
and secure your file system.

Secure access to your edge configuration

Don't share your edge console application password or your SiteWise Monitor application
password. Don't put this password in places where anyone can see them. Implement a healthy
password rotation policy by configuring an appropriate expiration for your password.

Securing data on Siemens Industrial Edge Management

The device data you choose to share with AWS IoT SiteWise Edge is determined in your Siemens
IEM Databus configuration topics. By electing topics to share with SiteWise Edge, you are sharing
topic-level data with AWS IoT SiteWise. The Siemens Industrial Edge Marketplace is an independent
marketplace, separate from AWS. To protect your shared data, the SiteWise Edge application will
not run unless you utilize Siemens Secured Storage. For more information, see Secure Storage, in
Siemens documentation.

Grant SiteWise Monitor users minimum possible permissions

Follow the principle of least privilege by using the minimum set of access policy permissions for
your portal users.

Encrypt your SiteWise Edge gateway's file system 1105

https://docs.aws.amazon.com/greengrass/v1/developerguide/hardware-security.html
https://docs.eu1.edge.siemens.cloud/build_a_device/device_building/development/development/secure-storage.html

AWS IoT SiteWise User Guide

• When you create a portal, define a role that allows the minimum set of assets needed for that
portal. For more information, see Use service roles for AWS IoT SiteWise Monitor.

• When you and your portal administrators create and share projects, use the minimum set of
assets needed for that project.

• When an identity no longer needs access to a portal or project, remove them from that resource.
If that identity is no longer applicable to your organization, delete that identity from your
identity store.

The least principle best practice also applies to IAM roles. For more information, see Policy best
practices.

Don't expose sensitive information

You should prevent the logging of credentials and other sensitive information, such as personally
identifiable information (PII). We recommend that you implement the following safeguards even
though access to local logs on a SiteWise Edge gateway requires root privileges and access to
CloudWatch Logs requires IAM permissions.

• Don't use sensitive information in names, descriptions, or properties of your assets or models.

• Don't use sensitive information in SiteWise Edge gateway or source names.

• Don't use sensitive information in names or descriptions of your portals, projects, or dashboards.

Follow AWS IoT Greengrass security best practices

Follow AWS IoT Greengrass security best practices for your SiteWise Edge gateway. For more
information, see Security best practices in the AWS IoT Greengrass Version 1 Developer Guide.

See also

• Security best practices in the AWS IoT Developer Guide

• Ten security golden rules for Industrial IoT solutions

Don't expose sensitive information 1106

https://docs.aws.amazon.com/greengrass/v1/developerguide/security-best-practices.html
https://docs.aws.amazon.com/iot/latest/developerguide/security-best-practices.html
https://aws.amazon.com/blogs/iot/ten-security-golden-rules-for-industrial-iot-solutions/

AWS IoT SiteWise User Guide

Log and monitor in AWS IoT SiteWise

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS
IoT SiteWise and your other AWS solutions. AWS IoT SiteWise supports the following monitoring
tools to watch the service, report when something is wrong, and take automatic actions when
appropriate:

• Amazon CloudWatch monitors your AWS resources and the applications that you run on AWS
in real time. Collect and track metrics, create customized dashboards, and set alarms that
notify you or take actions when a specified metric reaches a certain threshold. For example,
you can have CloudWatch track CPU usage or other metrics of your Amazon EC2 instances
and automatically launch new instances when needed. For more information, see the Amazon
CloudWatch User Guide.

• Amazon CloudWatch Logs monitors, stores, and accesses your log files from SiteWise Edge
gateways, CloudTrail, and other sources. CloudWatch Logs can monitor information in the log
files and notify you when certain thresholds are met. You can also archive your log data in highly
durable storage. For more information, see the Amazon CloudWatch Logs User Guide.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account.
Then CloudTrail delivers the log files to an Amazon S3 bucket that you specify. You can identify
which users and accounts called AWS, the source IP address from which the calls were made, and
when the calls occurred. For more information, see the AWS CloudTrail User Guide.

Topics

• Monitor with Amazon CloudWatch Logs

• Monitor SiteWise Edge gateway logs

• Monitor AWS IoT SiteWise with Amazon CloudWatch metrics

• Log AWS IoT SiteWise API calls with AWS CloudTrail

Monitor with Amazon CloudWatch Logs

Configure AWS IoT SiteWise to log information to CloudWatch Logs to monitor and troubleshoot
the service.

When you use the AWS IoT SiteWise console, AWS IoT SiteWise creates a service-linked role that
allows the service to log information on your behalf. If you don't use the AWS IoT SiteWise console,

Monitor service logs 1107

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

AWS IoT SiteWise User Guide

you must create a service-linked role manually to receive logs. For more information, see Create a
service-linked role for AWS IoT SiteWise.

You must have a resource policy that allows AWS IoT SiteWise to put log events into CloudWatch
streams. To create and update a resource policy for CloudWatch Logs, run the following command.
Replace logging-policy-name with the name of the policy to create.

aws logs put-resource-policy --policy-name logging-policy-name --policy-
document "{ \"Version\": \"2012-10-17\", \"Statement\": [{ \"Sid\":
 \"IoTSiteWiseToCloudWatchLogs\", \"Effect\": \"Allow\", \"Principal\": { \"Service\":
 [\"iotsitewise.amazonaws.com\"] }, \"Action\":\"logs:PutLogEvents\", \"Resource\":
 \"*\" }] }"

CloudWatch Logs also supports aws:SourceArn and aws:SourceAccount condition context keys.
These condition context keys are optional.

To create or update a resource policy that allows AWS IoT SiteWise to only put logs associated with
the specified AWS IoT SiteWise resource into CloudWatch streams, run the command and do the
following:

• Replace logging-policy-name with the name of the policy to create.

• Replace source-ARN with the ARN of your AWS IoT SiteWise resource, such as an asset model
or asset. To find the ARN for each AWS IoT SiteWise resource type, see Resource types defined by
AWS IoT SiteWise in the Service Authorization Reference.

• Replace account-ID with the AWS account ID associated with the specified AWS IoT SiteWise
resource.

aws logs put-resource-policy --policy-name logging-policy-name --policy-
document "{ \"Version\": \"2012-10-17\", \"Statement\": [{ \"Sid\":
 \"IoTSiteWiseToCloudWatchLogs\", \"Effect\": \"Allow\", \"Principal\": { \"Service
\": [\"iotsitewise.amazonaws.com\"] }, \"Action\":\"logs:PutLogEvents\", \"Resource
\": \"*\", \"Condition\":{\"StringLike\":{\"aws:SourceArn\":[\"source-ARN\"],
\"aws:SourceAccount\":[\"account-ID\"]}}}]}"

By default, AWS IoT SiteWise doesn't log information to CloudWatch Logs. To activate logging,
choose a logging level other than Disabled (OFF). AWS IoT SiteWise supports the following logging
levels:

• OFF – Logging is turned off.

Monitor service logs 1108

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-ke-sourceaccount
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotsitewise.html#awsiotsitewise-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiotsitewise.html#awsiotsitewise-resources-for-iam-policies

AWS IoT SiteWise User Guide

• ERROR – Errors are logged.

• INFO – Errors and informational messages are logged.

You can configure SiteWise Edge gateways to log information to CloudWatch Logs through AWS
IoT Greengrass. For more information, see Monitor SiteWise Edge gateway logs.

You can also configure AWS IoT Core to log information to CloudWatch Logs if you are
troubleshooting an AWS IoT SiteWise rule action. For more information, see Troubleshoot an AWS
IoT SiteWise rule action.

Contents

• Manage logging in AWS IoT SiteWise

• Find your logging level

• Change your logging level

• Example: AWS IoT SiteWise log file entries

Manage logging in AWS IoT SiteWise

Use the AWS IoT SiteWise console or AWS CLI for the following logging configuration tasks.

Find your logging level

Console

Use the following procedure to find your current logging level in the AWS IoT SiteWise console.

To find your current AWS IoT SiteWise logging level

1. Navigate to the AWS IoT SiteWise console.

2. In the left navigation pane, choose Logging options.

The current logging status appears under Logging status. If logging is activated, the
current logging level appears under Level of verbosity.

AWS CLI

Run the following command to find your current AWS IoT SiteWise logging level with the AWS
CLI.

Manage logging in AWS IoT SiteWise 1109

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

aws iotsitewise describe-logging-options

The operation returns a response that contains your logging level in the following format.

{
 "loggingOptions": {
 "level": "String"
 }
}

Change your logging level

Use the following procedure to change your logging level in the AWS IoT SiteWise console or using
AWS CLI.

Console

To change your AWS IoT SiteWise logging level

1. Navigate to the AWS IoT SiteWise console.

2. In the left navigation pane, choose Logging options.

3. Choose Edit.

4. Choose the Level of verbosity to activate.

5. Choose Save.

AWS CLI

Run the following AWS CLI command to change your AWS IoT SiteWise logging level. Replace
logging-level with the logging level you want.

aws iotsitewise put-logging-options --logging-options level=logging-level

Example: AWS IoT SiteWise log file entries

Each AWS IoT SiteWise log entry includes event information and relevant resources for that event,
so you can understand and analyze log data.

Example: AWS IoT SiteWise log file entries 1110

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

The following example shows a CloudWatch Logs entry that AWS IoT SiteWise logs when you
successfully create an asset model.

{
 "eventTime": "2020-05-05T00:10:22.902Z",
 "logLevel": "INFO",
 "eventType": "AssetModelCreationSuccess",
 "message": "Successfully created asset model.",
 "resources": {
 "assetModelId": "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE"
 }
}

Monitor SiteWise Edge gateway logs

You can configure your AWS IoT SiteWise Edge gateway to log information to Amazon CloudWatch
Logs or the local file system.

Topics

• Use Amazon CloudWatch Logs

• Use service logs in AWS IoT SiteWise

Use Amazon CloudWatch Logs

You can configure your SiteWise Edge gateway to send logs to CloudWatch Logs. For more
information, see Enable logging for CloudWatch Logs in the AWS IoT Greengrass Version 2
Developer Guide.

To configure and access CloudWatch Logs (Console)

1. Navigate to the CloudWatch console.

2. In the navigation pane, choose Log groups.

3. You can find the AWS IoT SiteWise component logs in the following log groups:

• /aws/greengrass/UserComponent/region/
aws.iot.SiteWiseEdgeCollectorOpcua – The logs for the SiteWise Edge gateway's
component that collects data from the SiteWise Edge gateway's OPC UA sources.

Monitor SiteWise Edge gateway logs 1111

https://docs.aws.amazon.com/greengrass/v2/developerguide/monitor-logs.html#enable-cloudwatch-logs
https://console.aws.amazon.com/cloudwatch/

AWS IoT SiteWise User Guide

• /aws/greengrass/UserComponent/region/aws.iot.SiteWiseEdgePublisher –
The logs for the SiteWise Edge gateway's component that publishes OPC UA data streams to
AWS IoT SiteWise.

Choose the log group for the function to debug.

4. Choose a log stream that has a name that ends with the name of your AWS IoT Greengrass
group. By default, CloudWatch displays the most recent log stream first.

5. To show logs from the last 5 minutes, do the following:

a. Choose custom in the upper-right corner.

b. Choose Relative.

c. Choose 5 minutes.

d. Choose Apply.

Use Amazon CloudWatch Logs 1112

AWS IoT SiteWise User Guide

6. (Optional) To see fewer logs, you can choose 1m from the upper-right corner.

7. Scroll to the bottom of the log entries to show the most recent logs.

Use service logs in AWS IoT SiteWise

SiteWise Edge gateway devices include service log files to help debug issues. The following sections
will help you find and utilize the service log files for the AWS IoT SiteWise OPC UA Collector and
AWS IoT SiteWise Publisher components.

AWS IoT SiteWise OPC UA Collector service log file

The AWS IoT SiteWise OPC UA Collector component uses the following log file.

Linux

/greengrass/v2/logs/aws.iot.SiteWiseEdgeCollectorOpcua.log

Windows

C:\greengrass\v2\logs\aws.iot.SiteWiseEdgeCollectorOpcua.log

Use service logs 1113

AWS IoT SiteWise User Guide

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/aws.iot.SiteWiseEdgeCollectorOpcua.log

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\aws.iot.SiteWiseEdgeCollectorOpcua.log -Tail
 10 -Wait

AWS IoT SiteWise Publisher service log file

The AWS IoT SiteWise Publisher component uses the following log file.

Linux

/greengrass/v2/logs/aws.iot.SiteWiseEdgePublisher.log

Windows

C:\greengrass\v2\logs\aws.iot.SiteWiseEdgePublisher.log

To view this component's logs

• Run the following command on the core device to view this component's log file in real time.
Replace /greengrass/v2 or C:\greengrass\v2 with the path to the AWS IoT Greengrass
root folder.

Linux

sudo tail -f /greengrass/v2/logs/aws.iot.SiteWiseEdgePublisher.log

Use service logs 1114

AWS IoT SiteWise User Guide

Windows (PowerShell)

Get-Content C:\greengrass\v2\logs\aws.iot.SiteWiseEdgePublisher.log -Tail 10 -
Wait

Monitor AWS IoT SiteWise with Amazon CloudWatch metrics

You can monitor AWS IoT SiteWise using CloudWatch, which collects raw data and processes it into
readable, near real-time metrics. These statistics are kept for 15 months, so that you can access
historical information and gain a better perspective on how your web application or service is
performing. You can also set alarms that watch for certain thresholds, and send notifications or
take actions when those thresholds are met. For more information, see the Amazon CloudWatch
User Guide.

AWS IoT SiteWise publishes the metrics and dimensions listed in the sections below to the AWS/
IoTSiteWise namespace.

Tip

AWS IoT SiteWise publishes metrics on a one minute interval. When you view these metrics
in graphs in the CloudWatch console, we recommend that you choose a Period of 1
minute. This lets you see the highest available resolution of your metric data.

Topics

• AWS IoT Greengrass Version 2 gateway metrics

AWS IoT Greengrass Version 2 gateway metrics

AWS IoT SiteWise publishes gateway metrics for Classic streams, V2 gateways and MQTT-enabled,
V3 gateways. Unless otherwise indicated, each metric is applicable to both self-hosted gateway
versions. All SiteWise Edge gateway metrics are published on a one minute interval.

Monitor with Amazon CloudWatch metrics 1115

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/

AWS IoT SiteWise User Guide

SiteWise Edge gateway metrics

Metric Description

Gateway.AvailableMemory The available memory of a SiteWise Edge
gateway.

Unit: Bytes

Dimension: None

Gateway.AvailableDiskSpace The available disk space of a SiteWise Edge
gateway.

Unit: Bytes

Dimension: None

Gateway.CloudConnectivity The cloud connectivity status of a SiteWise
Edge gateway.

Unit: None

Dimension: GatewayId

Gateway.CpuUsage The CPU usage of a SiteWise Edge gateway.

Unit: Percentage

Dimension: None

Gateway.TotalDiskSpace The total disk space of a SiteWise Edge
gateway.

Unit: Bytes

Dimension: None

Gateway.TotalMemory The total memory of a SiteWise Edge gateway.

Unit: Bytes

AWS IoT Greengrass Version 2 gateway metrics 1116

AWS IoT SiteWise User Guide

Metric Description

Dimension: None

Gateway.UsedDiskSpace The used disk space of a SiteWise Edge
gateway.

Unit: Bytes

Dimension: None

Gateway.UsedMemory The used memory of a SiteWise Edge gateway.

Unit: Bytes

Dimension: None

Gateway.UsedPercentageDiskSpace The used percentage of disk space of a
SiteWise Edge gateway.

Unit: Bytes

Dimension: None

Gateway.UsedPercentageMemory The used percentage memory of a SiteWise
Edge gateway.

Unit: Bytes

Dimension: None

AWS IoT SiteWise publisher metrics

Metric Description

IoTSiteWisePublisher.Compon
entBuildVersion

This metric indicates the build version of the
IoT SiteWise publisher component running
on the gateway. A value of 1 signifies that the
gateway is running a version of the publisher
corresponding to the ComponentBuildVers
ion dimension.

AWS IoT Greengrass Version 2 gateway metrics 1117

AWS IoT SiteWise User Guide

Metric Description

Unit: 1

Dimensions: GatewayId, ComponentBuildVers
ion

IoTSiteWisePublisher.Droppe
dCount

The number of data points that are dropped
by a SiteWise Edge gateway (GatewayId)
and not published to the cloud, generated
every minute.

Unit: Count

Dimensions: GatewayId

IoTSiteWisePublisher.Heartbeat Generated every minute by the Publisher in
the SiteWise Edge gateway.

Unit: 1 (1 representing the Publisher is running
and missing the data point representing the
Publisher is not running.)

Dimensions: GatewayId

IoTSiteWisePublisher.IsConn
ectedToMqttBroker

Generated every minute by the Publisher in
the SiteWise Edge gateway.

Unit: 1 (1 representing the Publisher is
connected to a MQTT broker.)

Dimensions: GatewayId

IoTSiteWisePublisher.Messag
eCheckpointPersistenceError
Count

The metric indicates that the gateway has
detected an issue with the checkpoint file used
to track data processed by the publisher. A
value of 1 signifies that a failure has occurred.

Unit: None

Dimensions: AccountId, GatewayId

AWS IoT Greengrass Version 2 gateway metrics 1118

AWS IoT SiteWise User Guide

Metric Description

IoTSiteWisePublisher.MqttMe
ssageReceivedSuccessCount

The number of messages successfully received
by the Publisher from the MQTT broker,
generated every minute.

Unit: Count

Dimensions: GatewayId

IoTSiteWisePublisher.MqttRe
ceivedSuccessBytes

The number of bytes of message data
successfully received by the Publisher from the
MQTT broker, generated every minute.

Unit: Count

Dimensions: GatewayId

IoTSiteWisePublisher.Number
OfSubscriptionsToMqttBroker

The number of topics subscribed to the MQTT
broker by the Publisher, generated every
minute. A multilevel wild card topic is counted
as 1.

Unit: Count

Dimensions: GatewayId

IoTSiteWisePublisher.Number
OfUniqueMqttTopicsReceived

The number of unique topics received by the
Publisher from the MQTT broker, generated
every minute.

Unit: Count

Dimensions: GatewayId

AWS IoT Greengrass Version 2 gateway metrics 1119

AWS IoT SiteWise User Guide

Metric Description

IoTSiteWisePublisher.Publis
hFailureCount

The number of data points that a SiteWise
Edge gateway (GatewayId) failed to publish,
generated every minute.

Unit: Count

Dimensions: GatewayId

IoTSiteWisePublisher.Publis
hRejectedCount

The number of data points that a SiteWise
Edge gateway (GatewayId) rejected from
the cloud side, generated every minute.

Unit: Count

Dimensions: GatewayId

IoTSiteWisePublisher.Publis
hSuccessCount

The number of data points that a SiteWise
Edge gateway (GatewayId) successfully
published to the cloud, generated every
minute.

Unit: Count

Dimensions: GatewayId

IoTSiteWisePublisher.Publis
hToS3FailureCount

The number of data points that a gateway
(GatewayId) failed to publish to an Amazon
S3 bucket.

Unit: Count

Dimensions: GatewayId

AWS IoT Greengrass Version 2 gateway metrics 1120

AWS IoT SiteWise User Guide

Metric Description

IoTSiteWisePublisher.Publis
hToS3SuccessCount

The number of data points that a gateway
(GatewayId) successfully published to an
Amazon S3 bucket.

Unit: Count

Dimensions: GatewayId

OPC UA collector metrics

Metric Description

OpcUaCollector.ActiveDataSt
reamCount

The number of data streams that a SiteWise
Edge gateway (gatewayId) subscribed to for
an OPC UA source (sourceName).

Unit: Count

Dimensions: GatewayId, SourceName,
PropertyGroup

OpcUaCollector.ComponentBui
ldVersion (not available on Classic
streams, V2 gateways)

This metric indicates the build version of the
IoT SiteWise OPC UA collector component
running on the gateway. A value of 1 signifies
that the gateway is running a version of the
collector corresponding to the Component
BuildVersion dimension.

Unit: 1

Dimensions: GatewayId, ComponentBuildVers
ion

OpcUaCollector.ConversionErrors The number of data points that a SiteWise
Edge gateway (gatewayId) received for an
OPC UA source (sourceName) which resulted
in conversion errors while sending the data to

AWS IoT Greengrass Version 2 gateway metrics 1121

AWS IoT SiteWise User Guide

Metric Description

AWS IoT SiteWise. These data points will not
be ingested by OPC UA Collector.

Unit: Count

Dimensions: GatewayId, SourceName

OpcUaCollector.Heartbeat Generated every minute for each OPC UA
source (sourceName) connected to a
SiteWise Edge gateway (gatewayId).

Unit: Count (1 representing the source is
connected and 0 representing the source is
disconnected.)

Dimensions: GatewayId, SourceName

OpcUaCollector.IncomingValu
esCount

The number of data points that a SiteWise
Edge gateway (gatewayId) received for an
OPC UA source (sourceName), generated
every minute.

Unit: Count

Dimensions: GatewayId, SourceName,
PropertyGroup

OpcUaCollector.IncomingValu
eErrors

The number of data points that a SiteWise
Edge gateway (gatewayId) receives from
an OPC UA source (sourceName) that are
not valid values. These data points are not
ingested by the OPC UA Collector, generated
every minute.

Unit: Count

Dimensions: GatewayId, SourceName,
PropertyGroup

AWS IoT Greengrass Version 2 gateway metrics 1122

AWS IoT SiteWise User Guide

Metric Description

OpcUaCollector.IsConnectedT
oMqttBroker (not available on Classic
streams, V2 gateways)

Generated every minute by the IoT SiteWise
OPC UA collector component in the SiteWise
Edge gateway.

Unit: 1 (1 representing the IoT SiteWise OPC
UA collector component is connected to an
MQTT broker)

Dimensions: GatewayId

OpcUaCollector.MqttMessages
DroppedCount (not available on Classic
streams, V2 gateways)

The number of MQTT messages dropped by
the IoT SiteWise OPC UA collector component.

Unit: Count

Dimensions: GatewayId, SourceName

OpcUaCollector.MqttMessages
PublishedBytes (not available on Classic
streams, V2 gateways)

The number of bytes of MQTT message data
successfully published by the IoT SiteWise
OPC UA collector component to the MQTT
broker.

Unit: Count

Dimensions: GatewayId, SourceName

OpcUaCollector.MqttMessages
PublishedCount (not available on Classic
streams, V2 gateways)

The number of MQTT messages successfu
lly published by the IoT SiteWise OPC UA
collector component to the MQTT broker.

Unit: Count

Dimensions: GatewayId, SourceName

AWS IoT Greengrass Version 2 gateway metrics 1123

AWS IoT SiteWise User Guide

Metric Description

OpcUaCollector.NullValueCou
nt (not available on Classic streams, V2
gateways)

The number of null values received by the IoT
SiteWise OPC UA collector component from
the OPC UA server.

Unit: Count

Dimensions: GatewayId, SourceName,
PropertyGroup

OpcUaCollector.NumberOfUniq
ueMqttTopicsPublished (not available
on Classic streams, V2 gateways)

The number of unique MQTT topics published
by the IoT SiteWise OPC UA collector to the
MQTT broker.

Unit: Count

Dimensions: GatewayId, SourceName

AWS IoT SiteWise processor metrics

Metric Description

Gateway.DataProcessor.Inges
tionThrottled (not available on MQTT-
enabled, V3 gateways)

The number of data points that were throttled
, generated every minute.

Unit: Count

Dimensions: ThrottledAt

Gateway.DataProcessor.Measu
rementRejected (not available on MQTT-
enabled, V3 gateways)

The number of measurements that were
rejected, generated every minute.

Unit: Count

Dimensions: Reason

Gateway.DataProcessor.Messa
gesRemaining (not available on MQTT-
enabled, V3 gateways)

The number of messages remaining in a
stream, generated every minute.

AWS IoT Greengrass Version 2 gateway metrics 1124

AWS IoT SiteWise User Guide

Metric Description

Unit: Count

Dimensions: StreamName

Gateway.DataProcessor.Proce
ssingError (not available on MQTT-enab
led, V3 gateways)

The number of processing errors, generated
every minute.

Unit: Count

Dimensions: Reason

Log AWS IoT SiteWise API calls with AWS CloudTrail

AWS IoT SiteWise is integrated with AWS CloudTrail, a service that provides a record of actions
taken by a user, role, or an AWS service in AWS IoT SiteWise. CloudTrail captures API calls for AWS
IoT SiteWise as events. The calls captured include calls from the AWS IoT SiteWise console and
code calls to the AWS IoT SiteWise API operations. If you create a trail, you can activate continuous
delivery of CloudTrail events to an Amazon S3 bucket, including events for AWS IoT SiteWise. If
you don't configure a trail, you can still view the most recent events in the CloudTrail console in
Event history. Using the information collected by CloudTrail, you can determine the request that
was made to AWS IoT SiteWise, the IP address from which the request was made, who made the
request, when it was made, and additional details.

For more information about CloudTrail, see the AWS CloudTrail User Guide.

AWS IoT SiteWise information in CloudTrail

CloudTrail is activated on your AWS account when you create the account. When supported event
activity occurs in AWS IoT SiteWise, that activity is recorded in a CloudTrail event along with other
AWS service events in Event history. You can view, search, and download recent events in your
AWS account. For more information, see Viewing events with CloudTrail event history.

For an ongoing record of events in your AWS account, including events for AWS IoT SiteWise, create
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when
you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.

Log API calls with AWS CloudTrail 1125

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

AWS IoT SiteWise User Guide

Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple Regions and Receiving CloudTrail log files from
multiple accounts

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

AWS IoT SiteWise data events in CloudTrail

Data events provide information about the resource operations performed on or in a resource
(for example, reading or writing to an Amazon S3 object). These are also known as data plane
operations. Data events are often high-volume activities. By default, CloudTrail doesn’t log data
events. The CloudTrail Event history doesn't record data events.

Additional charges apply for data events. For more information about CloudTrail pricing, see AWS
CloudTrail Pricing.

You can log data events for the AWS IoT SiteWise resource types by using the CloudTrail console,
AWS CLI, or CloudTrail API operations. The table in this section shows the resource types available
for AWS IoT SiteWise.

• To log data events using the CloudTrail console, create a trail or event data store to log data
events, or update an existing trail or event data store to log data events.

1. Choose Data events to log data events.

AWS IoT SiteWise data events in CloudTrail 1126

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events
https://aws.amazon.com/cloudtrail/pricing/
https://aws.amazon.com/cloudtrail/pricing/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html#creating-a-trail-in-the-console
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/query-event-data-store-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-console

AWS IoT SiteWise User Guide

2. From the Data event type list, choose the resource type for which you want to log data
events.

3. Choose the log selector template you want to use. You can log all data events for the
resource type, log all readOnly events, log all writeOnly events, or create a custom log
selector template to filter on the readOnly, eventName, and resources.ARN fields.

• To log data events using the AWS CLI, configure the --advanced-event-selectors
parameter to set the eventCategory field equal to Data and the resources.type field
equal to the resource type value (see table). You can add conditions to filter on the values of the
readOnly, eventName, and resources.ARN fields.

• To configure a trail to log data events, run the AWS CloudTrail put-event-selectors command.
For more information, see Logging data events for trails with the AWS CLI.

• To configure an event data store to log data events, run the AWS CloudTrail create-event-
data-store command to create a new event data store to log data events, or run the AWS
CloudTrail update-event-data-store command to update an existing event data store. For more
information, see Logging data events for event data stores with the AWS CLI.

The following table lists the AWS IoT SiteWise resource types. The Data event type (console)
column shows the value to choose from the Data event type list on the CloudTrail console. The
resources.type value column shows the resources.type value, which you would specify when
configuring advanced event selectors using the AWS CLI or CloudTrail APIs. The Data APIs logged
to CloudTrail column shows the API calls logged to CloudTrail for the resource type.

Data event type (console) resources.type value Data APIs logged to
CloudTrail*

AWS IoT SiteWise asset AWS::IoTSiteWise::
Asset

• BatchPutAssetPrope
rtyValue

• GetAssetPropertyValue

• GetAssetPropertyVa
lueHistory

• GetAssetPropertyAg
gregates

• GetInterpolatedAss
etPropertyValues

AWS IoT SiteWise data events in CloudTrail 1127

https://docs.aws.amazon.com/cli/latest/reference/cloudtrail/put-event-selectors.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-CLI-trail-examples
https://docs.aws.amazon.com/cli/latest/reference/cloudtrail/create-event-data-store.html
https://docs.aws.amazon.com/cli/latest/reference/cloudtrail/create-event-data-store.html
https://docs.aws.amazon.com/cli/latest/reference/cloudtrail/update-event-data-store.html
https://docs.aws.amazon.com/cli/latest/reference/cloudtrail/update-event-data-store.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-CLI-eds-examples
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyValueHistory.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyValueHistory.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyAggregates.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyAggregates.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetInterpolatedAssetPropertyValues.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetInterpolatedAssetPropertyValues.html

AWS IoT SiteWise User Guide

Data event type (console) resources.type value Data APIs logged to
CloudTrail*

• BatchGetAssetPrope
rtyValue

• BatchGetAssetPrope
rtyValueHistory

• BatchGetAssetPrope
rtyAggregates

AWS IoT SiteWise time series AWS::IoTSiteWise::
TimeSeries

• BatchPutAssetPrope
rtyValue

• GetAssetPropertyValue

• GetAssetPropertyVa
lueHistory

• GetAssetPropertyAg
gregates

• GetInterpolatedAss
etPropertyValues

• BatchGetAssetPrope
rtyValue

• BatchGetAssetPrope
rtyValueHistory

• BatchGetAssetPrope
rtyAggregates

AWS IoT SiteWise Assistant AWS::SitewiseAssis
tant::Conversation

• InvokeAssistant

Note

The resources.type logged in the Cloudtrail event depends on the identifier used in the API
request. If an asset id is specified in the request then the Asset resources.type is logged,
else the TimeSeries resources.type is logged.

AWS IoT SiteWise data events in CloudTrail 1128

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchGetAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchGetAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchGetAssetPropertyValueHistory.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchGetAssetPropertyValueHistory.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchGetAssetPropertyAggregates.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchGetAssetPropertyAggregates.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyValueHistory.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyValueHistory.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyAggregates.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetAssetPropertyAggregates.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetInterpolatedAssetPropertyValues.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetInterpolatedAssetPropertyValues.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchGetAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchGetAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchGetAssetPropertyValueHistory.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchGetAssetPropertyValueHistory.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchGetAssetPropertyAggregates.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchGetAssetPropertyAggregates.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_InvokeAssistant.html

AWS IoT SiteWise User Guide

*You can configure advanced event selectors to filter on the eventName, readOnly, and
resources.ARN fields to log only those events that are important to you. For more information
about these fields, see AdvancedFieldSelector.

AWS IoT SiteWise management events in CloudTrail

Logging management events provide information about management operations that are
performed on resources in your AWS account. These are also known as control plane operations. By
default, CloudTrail logs management events.

AWS IoT SiteWise logs all AWS IoT SiteWise control plane operations as management events. For a
list of the AWS IoT SiteWise control plane operations that AWS IoT SiteWise logs to CloudTrail, see
the AWS IoT SiteWise API Reference.

Example: AWS IoT SiteWise log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested operation, the date and
time of the operation, request parameters, and so on. CloudTrail log files aren't an ordered stack
trace of the public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateAsset
operation.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/Administrator",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "Administrator",
 "sessionContext": {
 "sessionIssuer": {},
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2020-03-11T17:26:40Z"
 }

AWS IoT SiteWise management events in CloudTrail 1129

https://docs.aws.amazon.com/awscloudtrail/latest/APIReference/API_AdvancedFieldSelector.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_Operations.html

AWS IoT SiteWise User Guide

 },
 "invokedBy": "signin.amazonaws.com"
 },
 "eventTime": "2020-03-11T18:01:22Z",
 "eventSource": "iotsitewise.amazonaws.com",
 "eventName": "CreateAsset",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "signin.amazonaws.com",
 "requestParameters": {
 "assetName": "Wind Turbine 1",
 "assetModelId": "a1b2c3d4-5678-90ab-cdef-11111EXAMPLE",
 "clientToken": "a1b2c3d4-5678-90ab-cdef-00000EXAMPLE"
 },
 "responseElements": {
 "assetId": "a1b2c3d4-5678-90ab-cdef-22222EXAMPLE",
 "assetArn": "arn:aws:iotsitewise:us-east-1:123456789012:asset/a1b2c3d4-5678-90ab-
cdef-22222EXAMPLE",
 "assetStatus": {
 "state": "CREATING"
 }
 },
 "requestID": "a1b2c3d4-5678-90ab-cdef-aaaaaEXAMPLE",
 "eventID": "a1b2c3d4-5678-90ab-cdef-bbbbbEXAMPLE",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Example: AWS IoT SiteWise log file entries 1130

AWS IoT SiteWise User Guide

Tag your AWS IoT SiteWise resources

Tagging your AWS IoT SiteWise resources provides a powerful way to categorize, manage, and
retrieve organizational assets efficiently. By assigning tags, which consist of key-value pairs,
you can attach descriptive metadata to your resources. The metadata from tags can be used to
streamline operations. For example, in a wind farm scenario, tags allow you to label turbines with
specific attributes like location, capacity, and operational status, enabling quick identification and
management within AWS IoT SiteWise.

Integrating tags with AWS Identity and Access Management (IAM) policies enhances security and
operational control by defining conditional access rules. This means you can specify that only users
with certain tags. For example, only those tagged with a certain role or department, can access or
modify particular resources.

Use tags in AWS IoT SiteWise

Use tags to categorize your AWS IoT SiteWise resources by purpose, owner, environment, or any
other classification for your use case. When you have many resources of the same type, you can
quickly identify a specific resource based on its tags.

Each tag is made up of a key and an optional value that you specify. For example, you can establish
a series of tags for your asset models to track them according to the industrial processes they
support. It's recommended to develop a tailored set of tag keys for each type of resource you
manage. Using a consistent set of tag keys can makes it easier manage resources.

Tag with the AWS Management Console

The Tag Editor in the AWS Management Console provides a central, unified way for you to create
and manage your tags for resources from all AWS services. For more information, see Getting
started with Tag Editor in the Tagging AWS Resources and Tag Editor User Guide.

Tag with the AWS IoT SiteWise API

The AWS IoT SiteWise API also uses tags. Before you create tags, be aware of tagging restrictions.
For more information, see Tag naming and usage conventions in the AWS General Reference.

• To add tags when you create a resource, define them in the tags property of the resource.

Use tags in AWS IoT SiteWise 1131

https://docs.aws.amazon.com/tag-editor/latest/userguide/gettingstarted.html
https://docs.aws.amazon.com/tag-editor/latest/userguide/gettingstarted.html
https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html#tag-conventions

AWS IoT SiteWise User Guide

• To add tags to an existing resource, or to update tag values, use the TagResource operation.

• To remove tags from a resource, use the UntagResource operation.

• To retrieve the tags that are associated with a resource, use the ListTagsForResource operation,
or describe the resource and inspect its tags property.

The following table lists resources you can tag using the AWS IoT SiteWise API and their
corresponding Create and Describe operations.

Taggable AWS IoT SiteWise resources

Resource Create operation Describe operation

Asset model or component
model

CreateAssetModel DescribeAssetModel

Asset CreateAsset DescribeAsset

SiteWise Edge gateway CreateGateway DescribeGateway

Portal CreatePortal DescribePortal

Project CreateProject DescribeProject

Dashboard CreateDashboard DescribeDashboard

Access policy CreateAccessPolicy DescribeAccessPolicy

Time series BatchPutAssetPropertyValue DescribeTimeSeries

For BatchPutAssetPropertyValue, you can configure your data sources to send industrial data
to AWS IoT SiteWise before you create asset models and assets. AWS IoT SiteWise automatically
creates data streams to receive streams of raw data from your equipment. For more information,
see Managing data ingestion.

Use the following operations to view and manage tags for resources that support tagging:

• TagResource – Adds tags to a resource, or updates an existing tag's value.

• ListTagsForResource – Lists the tags for a resource.

• UntagResource – Removes tags from a resource.

Tag with the AWS IoT SiteWise API 1132

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UntagResource.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateAssetModel.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAssetModel.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateAsset.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAsset.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateGateway.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeGateway.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreatePortal.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribePortal.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateProject.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeProject.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateDashboard.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeDashboard.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_CreateAccessPolicy.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeAccessPolicy.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_DescribeTimeSeries.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_BatchPutAssetPropertyValue.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/data-streams.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_UntagResource.html

AWS IoT SiteWise User Guide

Add or remove tags from a resource at any time. To update the value of an existing tag key, add a
new tag with the same key and your desired new value to the resource. This action replaces the old
value with the new one. While it's possible to assign an empty string as a tag value, you can't assign
a null value.

Deleting a resource also removes any tags linked to it.

Use tags with IAM policies

Use resource tags in your IAM policies to control user access and permissions. For example, policies
can allow users to only create resources that have a specific tag attached. Policies can also restrict
users from creating or modifying resources that have certain tags.

Note

If you use tags to allow or deny users' access to resources, you should deny users the ability
to add or remove those tags for the same resources. Otherwise, a user could bypass your
restrictions and gain access to a resource by modifying its tags.

You can use the following condition context keys and values in the Condition element (also
called the Condition block) of a policy statement.

aws:ResourceTag/tag-key: tag-value

Allow or deny actions on resources with specific tags.

aws:RequestTag/tag-key: tag-value

Require that a specific tag be used (or not used) when creating or modifying a taggable
resource.

aws:TagKeys: [tag-key, ...]

Require that a specific set of tag keys be used (or not used) when creating or modifying a
taggable resource.

Note

The condition context keys and values in an IAM policy apply only to actions that have a
taggable resource as a required parameter. For example, you can set tag-based conditional

Use tags with IAM policies 1133

AWS IoT SiteWise User Guide

access for ListAssets. You can't set tag-based conditional access on PutLoggingOptions
because no taggable resource is referenced in the request.

For more information, see Controlling access to AWS resources using resource tags and IAM JSON
policy reference in the IAM User Guide.

Example IAM policies using tags

• View AWS IoT SiteWise assets based on tags

Use tags with IAM policies 1134

https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_ListAssets.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_PutLoggingOptions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html

AWS IoT SiteWise User Guide

Troubleshooting AWS IoT SiteWise

Use the following information to troubleshoot issues with AWS IoT SiteWise.

Topics

• Troubleshooting a SiteWise Edge gateway

• Troubleshoot an AWS IoT SiteWise portal

• Troubleshoot an AWS IoT SiteWise rule action

• Troubleshooting bulk import and export operations

Troubleshooting a SiteWise Edge gateway

Troubleshoot common AWS IoT SiteWise Edge gateway issues by exploring relevant topics.

You can also view CloudWatch metrics reported by your SiteWise Edge gateways to troubleshoot
issues with connectivity or data streams. For more information, see Monitor AWS IoT SiteWise with
Amazon CloudWatch metrics.

Topics

• Configure and access SiteWise Edge gateway logs

• Troubleshooting SiteWise Edge gateway issues

• Troubleshooting the AWS IoT SiteWise Edge application on Siemens Industrial Edge

• Troubleshooting open-source integrations at the Edge

• Troubleshooting AWS IoT Greengrass issues

Configure and access SiteWise Edge gateway logs

Before you can view SiteWise Edge gateway logs, you must configure your SiteWise Edge gateway
to send logs to Amazon CloudWatch Logs or store logs on the local file system.

• Use CloudWatch Logs if you want to use the AWS Management Console to view your SiteWise
Edge gateway's log files. For more information, see Use Amazon CloudWatch Logs.

• Use local file system logs if you want to use the command line or local software to view your
SiteWise Edge gateway's log files. For more information, see Use service logs in AWS IoT
SiteWise.

Troubleshooting a gateway 1135

AWS IoT SiteWise User Guide

Troubleshooting SiteWise Edge gateway issues

Use the following information to troubleshoot SiteWise Edge gateway issues.

Issues

• Unable to deploy packs to SiteWise Edge gateways

• AWS IoT SiteWise doesn't receive data from OPC UA servers

• No data shows in the dashboard

• "Could not find or load main class" showing up in the aws.iot.SiteWiseEdgePublisher logs at /
greengrass/v2/logs error

• I see 'SESSION_TAKEN_OVER' or 'com.aws.greengrass.mqttclient.MqttClient: Failed to publish the
message via Spooler and will retry.' in the logs

• I see 'com.aws.greengrass.deployment.IotJobsHelper: No deployment job found.' or 'Deployment
result already reported.' in the logs

• I see a 'SYNC_FAILED' status when attempting to configure the timestamp setting in a property
group on an OPC UA data source

• Converted data types are not included

• Trust store issues

• Proxy-enabled installation issues

Unable to deploy packs to SiteWise Edge gateways

If the AWS IoT Greengrass nucleus component (aws.greengrass.Nucleus) is out of date,
you might not be able to deploy packs to your SiteWise Edge gateway. You can use the AWS IoT
Greengrass V2 console to upgrade the AWS IoT Greengrass nucleus component.

To upgrade the AWS IoT Greengrass nucleus component (console)

1. Navigate to the AWS IoT Greengrass console.

2. In the navigation pane, under AWS IoT Greengrass, choose Deployments.

3. In the Deployments list, select the deployment that you want to revise.

4. Choose Revise.

5. On the Specify target page, choose Next.

Troubleshooting SiteWise Edge gateway issues 1136

https://console.aws.amazon.com/greengrassIntro

AWS IoT SiteWise User Guide

6. On the Select components page, under Public components, in the search box, enter
aws.greengrass.Nucleus, and then select aws.greengrass.Nucleus.

7. Choose Next.

8. On the Configure components page, choose Next.

9. On the Configure advanced settings page, choose Next.

10. On the Review page, choose Deploy.

AWS IoT SiteWise doesn't receive data from OPC UA servers

If your AWS IoT SiteWise assets aren't receiving data sent by your OPC UA servers, you can search
your SiteWise Edge gateway's logs to troubleshoot issues. Look for info-level swPublisher logs
that contain the following message.

Emitting diagnostic name=PublishError.SomeException

Based on the type of SomeException in the log, use the following exception types and
corresponding issues to troubleshoot your SiteWise Edge gateway:

• ResourceNotFoundException – Your OPC UA servers are sending data that doesn't match a
property alias for any asset. This exception can occur in two cases:

• Your property aliases don't exactly match your OPC UA variables, including any source prefix
you defined. Check that your property aliases and source prefixes are correct.

• You haven't mapped your OPC UA variables to asset properties. For more information, see
Manage data streams for AWS IoT SiteWise.

If you already mapped all of the OPC UA variables that you want in AWS IoT SiteWise, you can
filter which OPC UA variables the SiteWise Edge gateway sends. For more information, see Use
OPC UA node filters in SiteWise Edge.

• InvalidRequestException – Your OPC UA variables data types don't match your asset property
data types. For example, if an OPC UA variable has an integer data type, your corresponding
asset property must be integer data type. A double-type asset property can't receive OPC UA
integer values. To fix this issue, define new properties with the correct data types.

• TimestampOutOfRangeException – Your SiteWise Edge gateway is sending data that is
outside the range that AWS IoT SiteWise accepts. AWS IoT SiteWise rejects any data points with
timestamps earlier than 7 days in the past or newer than 5 minutes in the future. If your SiteWise

Troubleshooting SiteWise Edge gateway issues 1137

AWS IoT SiteWise User Guide

Edge gateway lost power or connection to the AWS Cloud, you might need to clear your SiteWise
Edge gateway's cache.

• ThrottlingException or LimitExceededException – Your request exceeded an AWS IoT SiteWise
service quota, such as rate of data points ingested or request rate for asset property data API
operations. Check that your configuration doesn't exceed the AWS IoT SiteWise quotas.

No data shows in the dashboard

If there is no data shown in your dashboard, the Publisher configuration and the Data Source of
the SiteWise Edge gateway may be out of sync. If they are out of sync, updating the name of the
data source may expedite the sync from the cloud to the edge, fixing the Out of sync error.

To update the name of a data source

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. Select the SiteWise Edge gateway connected to the dashboard.

4. Under Data sources, select Edit.

5. Select a new source Name, and select Save to confirm your change.

6. Verify your changes by confirming the the data source name has been updated in the Data
sources table.

"Could not find or load main class" showing up in the
aws.iot.SiteWiseEdgePublisher logs at /greengrass/v2/logs error

If you see this error, you may need to update the java version of your SiteWise Edge gateway.

• From a terminal, run the following command:

java -version

The version of java your SiteWise Edge gateway is running with will show up under OpenJDK
Runtime Environment. You'll see a response like the following:

openjdk version "11.0.20" 2023-07-18 LTS
OpenJDK Runtime Environment Corretto011.0.20.8.1 (build 11.0.20+8-LTS

Troubleshooting SiteWise Edge gateway issues 1138

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

OpenJDK 64-Bit Server VM Corretto-11.0.20.8.1 (build 11.0.20+8-LTS, mixed node)

If you are running Java version 11.0.20.8.1 you must update the IoT SiteWise Publisher pack to
version 2.4.1 or newer. Only java version 11.0.20.8.1 is affected, environments with other java
versions can continue to use older versions of the IoT SiteWise Publisher component. For more
information about updating a component pack, see Change the version of SiteWise Edge gateway
component packs.

I see 'SESSION_TAKEN_OVER' or 'com.aws.greengrass.mqttclient.MqttClient:
Failed to publish the message via Spooler and will retry.' in the logs

If you see a warning that includes SESSION_TAKEN_OVER or an error that includes
com.aws.greengrass.mqttclient.MqttClient: Failed to publish the message via
Spooler and will retry. in your logs at /greengrass/v2/logs/greengrass.log, you
may be trying to use the same configuration file for multiple SiteWise Edge gateways on multiple
devices. Each SiteWise Edge gateway needs a unique configuration file to connect to your AWS
account.

I see 'com.aws.greengrass.deployment.IotJobsHelper: No deployment job found.'
or 'Deployment result already reported.' in the logs

If you see com.aws.greengrass.deployment.IotJobsHelper: No deployment job
found. or Deployment result already reported. in your logs at /greengrass/v2/
logs/greengrass.log, you may be trying to reuse the same configuration file.

There are multiple solutions:

• If you want to reuse the configuration file, do the following:

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. Choose the SiteWise Edge gateway you want to reuse.

4. Choose the Updates tab.

5. Select a different Publisher version and choose Deploy.

Follow the steps in Create a gateway for Siemens Industrial Edge to create a new configuration file.

Troubleshooting SiteWise Edge gateway issues 1139

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

I see a 'SYNC_FAILED' status when attempting to configure the timestamp setting
in a property group on an OPC UA data source

When AWS IoT SiteWise updated the OPC UA collector component for AWS IoT Greengrass in
version 2.5.0, we introduced a new timestamp configuration option. You can use the timestamp
from either your device, or the timestamp from the server. Older versions of the OPC UA collector
component do not support this option and fail to sync.

There are two ways to resolve a failing data source sync status. The recommended way is to
upgrade the IoT SiteWise OPC UA collector component to version 2.5.0 or above. Alternatively,
you can continue to use the older OPC UA collector component version, if you set the timestamp
to Source. To learn how to upgrade the IoT SiteWise OPC UA collector component, see Update
the version of an AWS IoT SiteWise component. We recommend using the latest versions of all
components.

Note

There is no data interruption when a data source sync status fails. The source data
continues to flow into AWS IoT SiteWise. The configuration simply isn't syncing with the IoT
SiteWise OPC UA collector component on your AWS IoT Greengrass V2 deployment.

To change the timestamp configuration for a property group

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. Select the gateway to edit.

4. In the Data sources section, select the data source with the failed sync status, and choose Edit.

5. Expand Advanced configuration, then expand Group settings.

6. In Timestamp, select Source. Selecting Source removes the timestampToReturn property
from the configuration. This setting enables the collection of the data source timestamp from
your device by default, allowing the data source to sync with the IoT SiteWise OPC UA collector
component.

7. Choose Save.

Troubleshooting SiteWise Edge gateway issues 1140

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

Converted data types are not included

If you see an error when converting unsupported OPC UA data types to strings in AWS IoT
SiteWise, there are a few possible reasons:

• The data type you're attempting to convert is a complex data type. Complex data types are not
supported.

• When using Destinations as AWS IoT SiteWise Buffered using Amazon S3, the full string value
is preserved in files pushed to an Amazon S3 bucket. When you later ingest data into AWS IoT
SiteWise, full string values longer than 1024 bytes are rejected.

Trust store issues

If you encounter issues related to trust stores in SiteWise Edge, consider the following
troubleshooting steps:

• Verify that the AWS IoT Greengrass root CA certificate is present and correctly formatted in the
appropriate trust stores

• Ensure that the Java KeyStore password is correctly set and accessible to SiteWise Edge
components

• Check that any custom certificates (such as for HTTPS proxies) are in the correct format (typically
PEM) and properly imported into the trust stores

• Confirm that the trust stores have the correct file permissions and are accessible to the SiteWise
Edge processes

• Review the SiteWise Edge logs for any SSL/TLS related errors, which may indicate trust store
issues

• Test SSL/TLS connections independently using tools like openssl to verify trust store
functionality

Proxy-enabled installation issues

If you encounter issues during the proxy configuration process, consider the following
troubleshooting steps:

• Verify that the proxy URL is correctly formatted and includes the proper scheme (http:// or
https://)

Troubleshooting SiteWise Edge gateway issues 1141

AWS IoT SiteWise User Guide

• Ensure that any proxy credentials are URL-encoded if they contain special characters

• Confirm that the no-proxy list includes all necessary local addresses and AWS service endpoints

• For HTTPS proxies, verify that the provided CA certificate is in PEM format

• Review the installation logs for specific error messages that may indicate the source of the
problem

• Test the proxy connection independently to ensure it's functioning correctly

Troubleshooting the AWS IoT SiteWise Edge application on Siemens
Industrial Edge

To troubleshoot the AWS IoT SiteWise Edge application on your Siemens Industrial Edge device,
you can access the logs for the application through the Siemens Industrial Edge Management or
Siemens Industrial Edge Device (IED) portals. For more information, see Downloading Logs in the
Siemens documentation.

My data doesn't display in AWS IoT SiteWise

• Ensure that there are no issues with your Databus users and that the checkmark icon for the
Databus_Configuration is green rather than gray.

• You may not be running Siemens Industrial Edge Management on a version that contains Secure
Storage. Upgrade your version of Siemens OS. For more information, see Siemens Secure
Storage and the AWS IoT SiteWise Edge application.

I see 'Config file missing AWS_REGION' in the logs

If you see Config file missing AWS_REGION in the Siemens logs, the JSON of the
configuration file has been corrupted. You'll need to create a new configuration file. Follow the
steps in Create a gateway for Siemens Industrial Edge to create a new configuration file.

I see an 'Out of sync' error message on the Edge gateway configuration

If you see an Out of sync error message on your Siemens Industrial Edge gateway after
deployment is complete, it means that IoT SiteWise publisher component is out of sync with
your gateway. The IoT SiteWise publisher component works in the background on Siemens
Industrial Edge gateways to provide MQTT topic functionality. We upgraded Siemens Industrial
Edge gateways to use the capability namespace iotsitewise:publisher:3 rather than

Troubleshooting the AWS IoT SiteWise Edge application on Siemens Industrial Edge 1142

https://docs.eu1.edge.siemens.cloud/build_a_device/device_building/concepts/howto-download-edge-device-logs.html

AWS IoT SiteWise User Guide

iotsitewise:publisher:2. You can update to the latest version of the publisher to resolve this
issue.

To upgrade to the latest version of the IoT SiteWise publisher

1. Navigate to the AWS IoT SiteWise console.

2. In the navigation pane, choose Edge gateways.

3. Select the Siemens Industrial Edge gateway to edit.

4. In the Edge capabilities section, select the View software versions.

5. Select the latest version of the IoT SiteWise publisher under the Publisher dropdown menu.

6. Choose Done.

Troubleshooting open-source integrations at the Edge

This section provides solutions for common issues you might encounter when integrating open-
source tools with SiteWise Edge.

Note

Node-RED®, InfluxDB®, and Grafana® are not vendors or suppliers for SiteWise Edge.

Connection issues

Node-RED can't connect to MQTT broker

Verify that the MQTT broker is running and accessible on the specified port. Check your network
configuration and ensure that the broker address is correct.

To verify the MQTT broker status, run:

docker ps | grep emqx

InfluxDB connection errors

Ensure that your authentication token is valid and that you've specified the correct organization
and bucket names. Check that InfluxDB is running and accessible.

Troubleshooting open-source integrations at the Edge 1143

https://console.aws.amazon.com/iotsitewise/

AWS IoT SiteWise User Guide

To verify InfluxDB status, run:

curl -I http://localhost:8086

Grafana can't connect to InfluxDB

Verify that the InfluxDB data source configuration in Grafana is correct, including the URL,
authentication token, organization, and bucket.

Data flow issues

No data appearing in AWS IoT SiteWise

Check that your property alias in the Node-RED flow matches the expected format. Verify that
the MQTT topic structure is correct and that the SiteWise Edge gateway is properly configured
to receive data from the MQTT broker.

No SiteWise Edge data stored in InfluxDB

Verify that the Node-RED retention flow is correctly configured and that the InfluxDB writer
node has the proper bucket and measurement settings. Check the Node-RED debug output for
any errors.

Data format errors

Ensure that your data transformation functions correctly convert data between formats. Use
the Node-RED debug nodes to inspect the data at each stage of the flow.

Performance issues

High CPU or memory usage

Monitor resource usage and adjust the configuration of your components as needed. Consider
reducing the data collection frequency or implementing data filtering to reduce the processing
load.

To monitor resource usage, run:

docker stats

Troubleshooting open-source integrations at the Edge 1144

AWS IoT SiteWise User Guide

Slow Grafana dashboard loading

Optimize your InfluxDB queries and consider adding time range limitations to your dashboard
panels. Reduce the number of data points displayed by using appropriate aggregation
functions.

Logging and diagnostics

To troubleshoot issues, check the logs for each component:

Node-RED logs

View logs in the Node-RED console or run:

docker logs node-red

InfluxDB logs

Access logs by running:

docker logs influxdb

Grafana logs

View logs by running:

docker logs grafana

SiteWise Edge logs

Check the SiteWise Edge gateway logs for MQTT connection and data processing issues. For
more information, see Troubleshooting a SiteWise Edge gateway.

Troubleshooting AWS IoT Greengrass issues

To find solutions to many issues configuring or deploying your SiteWise Edge gateway on AWS IoT
Greengrass, see Troubleshooting AWS IoT Greengrass in the AWS IoT Greengrass Developer Guide.

Troubleshooting AWS IoT Greengrass issues 1145

https://docs.aws.amazon.com/greengrass/v1/developerguide/gg-troubleshooting.html

AWS IoT SiteWise User Guide

Troubleshoot an AWS IoT SiteWise portal

Troubleshoot common issues with your AWS IoT SiteWise portals.

Users and administrators can't access AWS IoT SiteWise portal

If users or administrators cannot access your AWS IoT SiteWise portal, you may have restricted
permissions in attached AWS Identity and Access Management (IAM) policies that prevent
successful logins.

See the following examples of IAM policies that will result in login failure:

Note

Any attached IAM policies that include a "Condition" element will cause a login failure.

Example 1: The condition here is a limited IP, and this will cause a login failure.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iotsitewise:DescribePortal"
],
 "Resource": "*",
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": [
 "203.0.113.0/24"
]
 }
 }
 }
]
}

Troubleshoot a portal 1146

AWS IoT SiteWise User Guide

Example 2: The condition here is an included tag, and this will cause a login failure.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iotsitewise:DescribePortal"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "aws:ResourceTag/project": "*"
 }
 }
 }
]
}

When adding users or administrators to the portal, avoid creating IAM policies that restrict user
permissions, such as limited IP. Any attached policies with restricted permissions will not be able to
connect to the AWS IoT SiteWise portal.

Troubleshoot an AWS IoT SiteWise rule action

To troubleshoot your AWS IoT SiteWise rule action in AWS IoT Core, you can do one of the
following procedures:

• Configure Amazon CloudWatch Logs

• Configure a republish error action for your rule

Then, compare the error messages with the errors in this topic to troubleshoot your issue.

Topics

• Configure AWS IoT Core logs

Troubleshoot an AWS IoT SiteWise rule action 1147

AWS IoT SiteWise User Guide

• Configure a republish error action

• Troubleshoot rule issues

• Troubleshoot a rule (AWS IoT SiteWise)

• Troubleshoot a rule (DynamoDB)

Configure AWS IoT Core logs

You can configure AWS IoT to log various levels of information to CloudWatch Logs.

To configure and access CloudWatch Logs

1. To configure logging for AWS IoT Core, see Monitoring with CloudWatch Logs in the AWS IoT
Developer Guide.

2. Navigate to the CloudWatch console.

3. In the navigation pane, choose Log groups.

4. Choose the AWSIotLogs group.

5. Choose a recent log stream. By default, CloudWatch displays the most recent log stream first.

6. Choose a log entry to expand the log message. Your log entry might look like the following
screenshot.

7. Compare the error messages with the errors in this topic to troubleshoot your issue.

Configure AWS IoT Core logs 1148

https://docs.aws.amazon.com/iot/latest/developerguide/cloud-watch-logs.html
https://console.aws.amazon.com/cloudwatch/

AWS IoT SiteWise User Guide

Configure a republish error action

You can configure an error action on your rule to handle error messages. In this procedure, you
configure the republish rule action as an error action to view error messages in the MQTT test
client.

Note

The republish error action outputs only the equivalent of ERROR level logs. If you want
more verbose logs, you must configure CloudWatch Logs.

To add a republish error action to a rule

1. Navigate to the AWS IoT console.

2. In the left navigation pane, choose Act and then choose Rules.

3. Choose your rule.

4. Under Error action, choose Add action.

5. Choose Republish a message to an AWS IoT topic.

6. Choose Configure action at the bottom of the page.

7. In Topic, enter a unique topic (for example, sitewise/windfarm/rule/error). AWS IoT
Core will republish error messages to this topic.

8. Choose Select to grant AWS IoT Core access to perform the error action.

9. Choose Select next to the role that you created for the rule.

10. Choose Update Role to add the additional permissions to the role.

11. Choose Add action.

Your rule's error action should look similar to the following screenshot.

Configure a republish error action 1149

https://console.aws.amazon.com/iot/

AWS IoT SiteWise User Guide

12. Choose the back arrow in the upper left of the console to return to the AWS IoT console home.

After you set up the republish error action, you can view the error messages in the MQTT test client
in AWS IoT Core.

In the following procedure, you subscribe to the error topic in the MQTT test client. In the MQTT
test client, you can receive your rule's error messages to troubleshoot the issue.

To subscribe to the error action topic

1. Navigate to the AWS IoT console.

2. In the left navigation page, choose Test to open the MQTT test client.

3. In the Subscription topic field, enter the error topic that you configured earlier (for example,
sitewise/windfarm/rule/error) and choose Subscribe to topic.

4. Watch for error messages to appear and then expand the failures array in any error
message.

Next, compare the error messages with the errors in this topic to troubleshoot your issue.

Configure a republish error action 1150

https://console.aws.amazon.com/iot/

AWS IoT SiteWise User Guide

Troubleshoot rule issues

Use the following information to troubleshoot rule issues.

Issues

• Error: Member must be within 604800 seconds before and 300 seconds after the current
timestamp

• Error: Property value does not match data type <type>

• Error: User: <role-arn> is not authorized to perform: iotsitewise:BatchPutAssetPropertyValue on
resource

• Error: iot.amazonaws.com is unable to perform: sts:AssumeRole on resource: <role-arn>

• Info: No requests were sent. PutAssetPropertyValueEntries was empty after performing
substitution templates.

Error: Member must be within 604800 seconds before and 300 seconds after the
current timestamp

Your timestamp is older than 7 days or newer than 5 minutes, compared to current Unix epoch
time. Try the following:

• Check that your timestamp is in Unix epoch (UTC) time. If you provide a timestamp with a
different timezone, you receive this error.

• Check that your timestamp is in seconds. AWS IoT SiteWise expects timestamps split into time in
seconds (in Unix epoch time) and offset in nanoseconds.

• Check that you're uploading data that is timestamped no later than 7 days in the past.

Error: Property value does not match data type <type>

An entry in your rule action has a different data type than the target asset property. For example,
your target asset property is a DOUBLE and your selected data type is Integer or you passed the
value in integerValue. Try the following:

• If you configure the rule from the AWS IoT console, check that you chose the correct Data type
for each entry.

Troubleshoot rule issues 1151

AWS IoT SiteWise User Guide

• If you configure the rule from the API or AWS Command Line Interface (AWS CLI), check that
your value object uses the correct type field (for example, doubleValue for a DOUBLE
property).

Error: User: <role-arn> is not authorized to perform:
iotsitewise:BatchPutAssetPropertyValue on resource

Your rule isn't authorized to access the target asset property, or the target asset property doesn't
exist. Try the following:

• Check that your property alias is correct and that you have an asset property with the given
property alias. For more information, see Manage data streams for AWS IoT SiteWise.

• Check that your rule has a role and that the role allows
iotsitewise:BatchPutAssetPropertyValue permission to the targeted asset property,
such as through the target asset's hierarchy. For more information, see Grant AWS IoT the
required access.

Error: iot.amazonaws.com is unable to perform: sts:AssumeRole on resource:
<role-arn>

Your user isn't authorized to assume the role on your rule in AWS Identity and Access Management
(IAM).

Check that your user is allowed iam:PassRole permission to the role on your rule. For more
information, see Pass role permissions in the AWS IoT Developer Guide.

Info: No requests were sent. PutAssetPropertyValueEntries was empty after
performing substitution templates.

Note

This message is an INFO level log.

Your request must have at least one entry with all of the required parameters.

Troubleshoot rule issues 1152

https://docs.aws.amazon.com/iot/latest/developerguide/pass-role.html

AWS IoT SiteWise User Guide

Check that your rule's parameters, including substitution templates, result in non-empty values.
Substitution templates can't access values defined in AS clauses in your rule query statement. For
more information, see Substitution templates in the AWS IoT Developer Guide.

Troubleshoot a rule (AWS IoT SiteWise)

Follow the steps in this procedure to troubleshoot your rule if the CPU and memory usage data
isn't appearing in AWS IoT SiteWise as expected. In this procedure, you configure the republish rule
action as an error action to view error messages in the MQTT test client. You can also configure
logging to CloudWatch Logs to troubleshoot. For more information, see Troubleshoot an AWS IoT
SiteWise rule action.

To add a republish error action to a rule

1. Navigate to the AWS IoT console.

2. In the left navigation pane, choose Message routing and then choose Rules.

3. Choose the rule that you created earlier and choose Edit.

4. Under Error action - optional, choose Add error action.

5. Choose Republish a message to an AWS IoT topic.

6. In Topic, enter the path to your error (for example, sitewise/rule/tutorial/error). AWS
IoT Core will republish error messages to this topic.

7. Choose the role that you created earlier (for example, SiteWiseTutorialDeviceRuleRole).

8. Choose Update.

After you set up the republish error action, you can view the error messages in the MQTT test client
in AWS IoT Core.

In the following procedure, you subscribe to the error topic in the MQTT test client.

To subscribe to the error action topic

1. Navigate to the AWS IoT console.

2. In the left navigation page, choose MQTT test client to open the MQTT test client.

3. In the Topic filter field, enter sitewise/rule/tutorial/error and choose Subscribe.

Troubleshoot a rule (AWS IoT SiteWise) 1153

https://docs.aws.amazon.com/iot/latest/developerguide/iot-substitution-templates.html
https://console.aws.amazon.com/iot/
https://console.aws.amazon.com/iot/

AWS IoT SiteWise User Guide

When error messages appear, view the failures array in any error message to diagnose issues.
For more information about possible issues and how to resolve them, see Troubleshoot an AWS IoT
SiteWise rule action.

If errors don't appear, check that your rule is enabled and that you subscribed to the same topic
that you configured in the republish error action. If errors still don't appear after you do that, check
that the device script is running and updating the device's shadow successfully.

Note

You can also subscribe to your device's shadow update topic to view the payload that your
AWS IoT SiteWise action parses. To do so, subscribe to the following topic.

$aws/things/+/shadow/update/accepted

Troubleshoot a rule (DynamoDB)

Follow the steps in this procedure to troubleshoot your rule if the demo asset data isn't appearing
in the DynamoDB table as expected. In this procedure, you configure the republish rule action as
an error action to view error messages in the MQTT test client. You can also configure logging to
CloudWatch Logs to troubleshoot. For more information, see Monitoring with CloudWatch Logs in
the AWS IoT Developer Guide.

To add a republish error action to a rule

1. Navigate to the AWS IoT console.

2. In the left navigation pane, choose Act and then choose Rules.

3. Choose the rule that you created earlier.

Troubleshoot a rule (DynamoDB) 1154

https://docs.aws.amazon.com/iot/latest/developerguide/cloud-watch-logs.html
https://console.aws.amazon.com/iot/

AWS IoT SiteWise User Guide

4. Under Error action, choose Add action.

5. Choose Republish a message to an AWS IoT topic.

6. Choose Configure action at the bottom of the page.

7. In Topic, enter windspeed/error. AWS IoT Core will republish error messages to this topic.

Troubleshoot a rule (DynamoDB) 1155

AWS IoT SiteWise User Guide

8. Choose Select to grant AWS IoT Core access to perform the error action using the role that you
created earlier.

9. Choose Select next to your role.

10. Choose Update Role to add the additional permissions to the role.

Troubleshoot a rule (DynamoDB) 1156

AWS IoT SiteWise User Guide

11. Choose Add action to finish adding the error action.

12. Choose the back arrow in the upper left of the console to return to the AWS IoT Core console
home.

After you set up the republish error action, you can view the error messages in the MQTT test client
in AWS IoT Core.

In the following procedure, you subscribe to the error topic in the MQTT test client.

To subscribe to the error action topic

1. In the AWS IoT Core console's left navigation page, choose Test.

2. In the Subscription topic field, enter windspeed/error and choose Subscribe to topic.

3. Watch for error messages to appear and explore the failures array in an error message to
diagnose the following common issues:

• Typos in the rule query statement

• Insufficient role permissions

Troubleshoot a rule (DynamoDB) 1157

AWS IoT SiteWise User Guide

If errors don't appear, check that your rule is enabled and that you subscribed to the same
topic that you configured in the republish error action. If errors still don't appear, check that
your demo wind farm assets still exist and that you enabled notifications on the wind speed
properties. If your demo assets expired and disappeared from AWS IoT SiteWise, you can
create a new demo and update the rule query statement to reflect the updated asset model
and property IDs.

Troubleshooting bulk import and export operations

To handle and diagnose errors produced during a transfer job, see the AWS IoT TwinMaker
GetMetadataTransferJob API:

1. After creating and running a transfer job, call the GetMetadataTransferJob API:

aws iottwinmaker get-metadata-transfer-job \
--metadata-transfer-job-id your_metadata_transfer_job_id \
--region us-east-1

2. The state of the job changes to one of the below states:

• COMPLETED

• CANCELLED

• ERROR

3. The GetMetadataTransferJob API returns a MetadataTransferJobProgress object.

4. The MetadataTransferJobProgress object contains the following parameters:

• failedCount : Indicates the count of assets that failed during the transfer process.

• skippedCount : Indicates the count of assets that were skipped during the transfer process.

• succeededCount : Indicates the count of assets that succeeded during the transfer process.

• totalCount : Indicates the total count of assets involved in the transfer process.

5. Additionally a reportUrl element is returned by the API call, which contains a pre-signed URL.
If your transfer job has errors that needs investigation, you can download a full error report at
this URL.

Troubleshoot bulk import and export 1158

https://docs.aws.amazon.com/iot-twinmaker/latest/apireference/API_MetadataTransferJobProgress.html

AWS IoT SiteWise User Guide

AWS IoT SiteWise endpoints and quotas

The following sections describe the endpoints and quotas for AWS IoT SiteWise.

Topics

• AWS IoT SiteWise endpoints

• AWS IoT SiteWise quotas

AWS IoT SiteWise endpoints

The AWS General Reference Guide lists the AWS IoT SiteWise endpoints for an AWS account. For
more information, see AWS IoT SiteWise endpoints and quotas in the AWS General Reference Guide.

AWS IoT SiteWise quotas

The following tables describe quotas in AWS IoT SiteWise. For more information about quotas
and how to request quota increases, see AWS service quotas in the AWS General Reference. For
more information about AWS IoT SiteWise quotas, see AWS IoT SiteWise service quotas in the AWS
General Reference.

Quotas for AWS IoT SiteWise assets and asset models

Resource Description Quota Adjustable

Number of asset
models in each AWS
Region for each AWS
account

The maximum
number of asset
models that you can
create in an AWS
Region for an AWS
account.

10000 Yes

Number of assets in
each asset model

The maximum
number of assets that
you can create for
each asset model.

10,000 Yes

Endpoints 1159

https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html#limits_iot_sitewise

AWS IoT SiteWise User Guide

Resource Description Quota Adjustable

Number of child
assets in each parent
asset

The maximum
number of child
assets that you can
associate with a
parent asset.

2000 Yes

Depth of asset model
hierarchy tree

The maximum asset
hierarchy tree depth
for an asset model.

30 Yes

Number of hierarchy
definitions in each
asset model

The maximum
number of hierarchy
definitions you can
have in an asset
model.

30 Yes

Number of propertie
s in the root level in
each asset model

The maximum
number of
assetMode
lProperties for
each asset model.
This count does not
include composite
ModelProp
erties . This quota
also applies to any
unique asset created
from this asset
model.

500 Yes

Quotas for AWS IoT SiteWise assets and asset models 1160

AWS IoT SiteWise User Guide

Resource Description Quota Adjustable

Number of properties
in an asset model

The maximum
number of propertie
s of an asset model
of type ASSET_MOD
EL or COMPONENT
_MODEL . This
number is determine
d by combining the
properties of the root
asset model and any
included component-
model-based or inline
composite models.
This quota also
applies to any unique
asset created from
this asset model.

5000 Yes

Number of propertie
s in each composite
model

The maximum
number of propertie
s allowed for
composite models.
Also, the maximum
number of propertie
s allowed for an
asset model of type
COMPONENT_MODEL .

100 Yes

Quotas for AWS IoT SiteWise assets and asset models 1161

AWS IoT SiteWise User Guide

Resource Description Quota Adjustable

Depth of property
tree in an asset
model

For example, a
model with a
transform property
C that consumes a
transform property
B that consumes
a measurement
property A has a
depth of 3.

10 No

Number of asset
models in each
hierarchy tree

The maximum
number of asset
models you can
include in a single
hierarchy tree.

100 Yes

Quotas for AWS IoT SiteWise assets and asset models 1162

AWS IoT SiteWise User Guide

Resource Description Quota Adjustable

Number of directly
dependent properties
for an asset model

This quota limits how
many properties can
directly depend on
a single property, as
defined in property
formula expressio
ns. The number of
dependent propertie
s must be greater
than the number of
directly dependent
properties for an
asset model. Request
an increase for
both quotas if there
are more directly
dependent propertie
s than dependent
properties for an
asset model.

20 Yes

Number of
dependent properties
in an asset model

This quota limits how
many properties can
directly or indirectl
y depend on a single
property, as defined
in property formula
expressions.

30 No

Number of composite
models in an asset
model

The maximum
number of composite
models you can have
on a single asset
model.

50 Yes

Quotas for AWS IoT SiteWise assets and asset models 1163

AWS IoT SiteWise User Guide

Resource Description Quota Adjustable

Composite model
depth

The maximum depth
of the composite
model tree in
each asset model,
including inline and
component-model-
based composite
models.

2 Yes

Number of unique
asset models that use
the same component
model

The maximum
number of unique
asset models that
have at least one
component-model-
based composite
model that directly
references a specific
asset model of
type COMPONENT
_MODEL.

20 Yes

Number of property
variables in a
property formula
expression

For example,
there are two
property variables
, power and temp,
in the expressio
n avg(power)
+ max(temp) .
This also applies for
transform computati
on results.

10 No

Quotas for AWS IoT SiteWise assets and asset models 1164

AWS IoT SiteWise User Guide

Resource Description Quota Adjustable

Number of functions
in a property formula
expression

For example, there
are two functions
, avg and max,
in the expression
avg(power) +
max(temp) .

10 No

Quotas for AWS IoT SiteWise interfaces

Quotas for AWS IoT SiteWise interfaces

Resource Description Quota Adjustable

Number of interface
s in each AWS Region
for each AWS account

The maximum
number of interfaces
that you can create in
an AWS Region for an
AWS account.

100 Yes

Number of properties
in each interface

The maximum
number of properties
that you can define in
an interface.

200 Yes

Number of unique
asset models that use
the same interface
model

The maximum
number of unique
asset models that
can use the same
interface model.

500 Yes

Number of interfaces
in each hierarchy tree

The maximum
number of interface
s you can include in a
single hierarchy tree.

100 Yes

Interface quotas 1165

AWS IoT SiteWise User Guide

Resource Description Quota Adjustable

Depth of interface
hierarchy tree

The maximum
interface hierarchy
tree depth.

30 Yes

Number of hierarchy
definitions in each
interface

The maximum
number of hierarchy
definitions you can
have in an interface.

20 Yes

Quotas for AWS IoT SiteWise asset property data

Resource Description Quota Adjustable

Request rate for asset
property data API
operations

The maximum
number of asset
property data API
requests each second
that you can perform
in each AWS Region
in each AWS account.
This quota applies
to API operations
such as GetAssetP
ropertyValue
and BatchPutA
ssetPrope
rtyValue .

1000 Yes

Number of data
points each second
for each data quality
for each asset
property

This quota applies
to the maximum
number of timestamp
-quality-value (TQV)
data points with the
same timestamp in

10 No

Quotas for AWS IoT SiteWise asset property data 1166

AWS IoT SiteWise User Guide

Resource Description Quota Adjustable

seconds for each
data quality for each
asset property. You
can store up to this
number of good-qual
ity, uncertain-quality,
and bad-quality data
points for any given
second for each asset
property.

Number of
BatchPutA
ssetPrope
rtyValue entries
ingested each second
in each non-attribute
asset property for
each AWS Region for
an AWS account.

The maximum
number of entries
in each non-attre
ibute asset property
for BatchPutA
ssetPrope
rtyValue from all
sources, including
SiteWise Edge
gateways, AWS IoT
Core rules, and API
calls.

10 No

Quotas for AWS IoT SiteWise asset property data 1167

AWS IoT SiteWise User Guide

Resource Description Quota Adjustable

Number of
BatchPutA
ssetPrope
rtyValue entries
ingested each second
for each attribute
asset property for
each AWS Region in
an AWS account.

This quota applies
to entries in
each attribute
asset property
for BatchPutA
ssetPrope
rtyValue from all
sources, including
SiteWise Edge
gateways, AWS IoT
Core rules, and API
calls.

1 No

Rate of data points
ingested

The maximum
number of timestamp
-quality-value (TQV)
data points ingested
per second in each
AWS Region for an
AWS account.

5000 Yes

Request rate
for BatchGetA
ssetPrope
rtyAggregates

The maximum
number of
BatchGetA
ssetPrope
rtyAggregates
requests each second
that you can perform
in each AWS Region
in each AWS account.

200 Yes

Quotas for AWS IoT SiteWise asset property data 1168

AWS IoT SiteWise User Guide

Resource Description Quota Adjustable

Request rate
for BatchGetA
ssetPrope
rtyValue

The maximum
number of
BatchGetA
ssetPrope
rtyValue requests
each second that you
can perform in each
AWS Region in each
AWS account.

500 Yes

Request rate
for BatchGetA
ssetPrope
rtyValueH
istory

The maximum
number of
BatchGetA
ssetPrope
rtyValueH
istory requests
each second that you
can perform .

200 Yes

Number of
BatchPutA
ssetPrope
rtyValue entries
ingested each second
for each asset
property for each
AWS Region in an
AWS account.

This quota applies
to entries in each
asset property
for BatchPutA
ssetPrope
rtyValue from all
sources, including
SiteWise Edge
gateways, AWS IoT
Core rules, and API
calls.

10 No

Quotas for AWS IoT SiteWise asset property data 1169

AWS IoT SiteWise User Guide

Resource Description Quota Adjustable

Rate of GetAssetP
ropertyAg
gregates requests
and BatchGetA
ssetPrope
rtyAggregates
entry queries for each
asset property

The maximum
number of total
GetAssetP
ropertyAg
gregates requests
and BatchGetA
ssetPrope
rtyAggregates
entries for each asset
property per second
in each AWS Region
in each AWS account.

50 No

Rate of GetAssetP
ropertyVa
lue requests
and BatchGetA
ssetPrope
rtyValue entry
queries for each asset
property

The maximum
number of total
GetAssetP
ropertyVa
lue requests
and BatchGetA
ssetPrope
rtyValue entries
for each asset
property each second
in each AWS Region
in each AWS account.

500 No

Quotas for AWS IoT SiteWise asset property data 1170

AWS IoT SiteWise User Guide

Resource Description Quota Adjustable

Rate of GetAssetP
ropertyVa
lueHistor
y requests and
BatchGetA
ssetPrope
rtyValueH
istory entry
queries for each asset
property

The maximum
number of total
GetAssetP
ropertyVa
lueHistor
y requests and
BatchGetA
ssetPrope
rtyValueH
istory entries for
each asset property
each second in each
AWS Region in each
AWS account.

30 No

Rate of GetInterp
olatedAss
etPropert
yValues requests

The maximum
number of
GetInterp
olatedAss
etPropert
yValues requests
each second that you
can perform in each
AWS Region in each
AWS account.

500 Yes

Number of results
in each GetInterp
olatedAss
etPropert
yValues request

The maximum
number of results
to return for
a paginated
 GetInterp
olatedAss
etPropert
yValues request.

10 Yes

Quotas for AWS IoT SiteWise asset property data 1171

AWS IoT SiteWise User Guide

Resource Description Quota Adjustable

Rate of data
points retrieved
from GetAssetP
ropertyVa
lueHistory
and BatchGetA
ssetPrope
rtyValueH
istory

The maximum byte
rate (MB/second) of
datapoints retrieved
each second for
each AWS Region
in an AWS account
across GetAssetP
ropertyVa
lueHistory
and BatchGetA
ssetPrope
rtyValueH
istory . The
response payload
evaluated for
this quota uses
Timestamp-Quality-
Value (TQV) fields
for each datapoint
and rounds the byte
size for each API
request to the next
4KB increment.

Timestamp-
quality-value (TQV)
datapoints retrieved
each second varies
for each data type:

• Integer – up to 5
Million TQV per
second

100 Yes

Quotas for AWS IoT SiteWise asset property data 1172

AWS IoT SiteWise User Guide

Resource Description Quota Adjustable

• Double – up to 4
Million TQV per
second

• Boolean – up to
6 Million TQV per
second

• String – varies
based on each
string value size.

Number of propertie
s that depend on
a single property
within a linked asset
model

The maximum
number of propertie
s that directly or
indirectly depend
on a single property
within a linked asset
model.

10 Yes

Quotas for SiteWise Edge gateways

Resource Description Quota Adjustable

Number of SiteWise
Edge gateways in
each AWS Region for
an AWS account

The maximum
number of SiteWise
Edge gateways that
you can create in an
AWS Region for an
AWS account.

100 Yes

Number of OPC UA
sources in a SiteWise
Edge gateway

The maximum
number of OPC
UA sources you
can configure in

100 No

Quotas for SiteWise Edge gateways 1173

AWS IoT SiteWise User Guide

Resource Description Quota Adjustable

an SiteWise Edge
gateway.

Total number of
destinations in
a SiteWise Edge
gateway

The maximum
number of destinati
ons that you can
configure in an
SiteWise Edge
gateway.

100 No

Quotas for AWS IoT SiteWise Monitor

Resource Description Quota Adjustable

Number of portals in
each AWS Region for
an AWS account

The maximum
number of SiteWise
Monitor portals that
you can create in an
AWS Region for an
AWS account.

100 Yes

Number of projects in
a portal

The maximum
number of projects
that you can create
within a SiteWise
Monitor portal.

100 Yes

Number of dashboard
s in a project

The maximum
number of dashboard
s that you can create
within a project in
SiteWise Monitor.

100 Yes

Number of root
assets in a project

The maximum
number of top-level

1 No

Quotas for AWS IoT SiteWise Monitor 1174

AWS IoT SiteWise User Guide

Resource Description Quota Adjustable

assets that you can
add to a project in
SiteWise Monitor.

Number of visualiza
tions in a dashboard

The maximum
number of visual
elements (such as
charts, graphs, or
tables) that you can
add to a dashboard in
SiteWise Monitor.

10 Yes

Number of metrics
in each dashboard
visualization

The maximum
number of metrics
or data points that
you can display in a
single visualization
on a dashboard in
SiteWise Monitor.

5 Yes

Number of threshold
s for each dashboard
visualization

The maximum
number of threshold
levels that you can
set for each visualiza
tion on a dashboard
in SiteWise Monitor.

12 No

Quotas for AWS IoT SiteWise bulk import and export of metadata

Resource Description Quota Adjustable

Number of metadata
transfer jobs in queue

The maximum
number of PENDING

10 Yes

Quotas for AWS IoT SiteWise bulk import and export of metadata 1175

AWS IoT SiteWise User Guide

Resource Description Quota Adjustable

metadata transfer
jobs in the queue.

Size of the metadata
transfer job import
file

The maximum size of
the imported file (in
MB).

100 Yes

Number of AWS IoT
SiteWise import
resources in a job

The maximum
number of AWS IoT
SiteWise import
resources in a single
job. A resource
includes assets, and
asset models.

5000 Yes

Number of AWS
IoT SiteWise export
resources in a job

The maximum
number of AWS
IoT SiteWise export
resources in a single
job. A resource
includes assets, and
asset models.

5000 Yes

Quotas for AWS IoT SiteWise bulk import of data

Resource Description Quota Adjustable

Number of running
bulk import jobs

The maximum
number of bulk
import jobs that can
concurrently run.

100 No

Size of the CSV file The maximum CSV
file size (in GB) in a
bulk import job.

10 No

Quotas for AWS IoT SiteWise bulk import of data 1176

AWS IoT SiteWise User Guide

Resource Description Quota Adjustable

Size of the
uncompressed
parquet file

The maximum file
size (in MB) for
an uncompressed
parquet file in a bulk
import job.

256 MB No

Size of the CSV file
for buffered ingestion

The maximum CSV
file size (in MB)
when using buffered
ingestion on a bulk
import job.

256 MB No

Size of the
uncompressed
parquet row group

The maximum size
of an uncompressed
parquet row group.

64 MB No

Number of unique
measurements in a
parquet file

The maximum
number of unique
measurements in a
parquet file.

10000 No

Number of days
between the
timestamp in the
past and today for
buffered ingestion

The maximum
number of days
between a timestamp
in the past and
today's date when
using buffered
ingestion.

30 Yes

Request rate
for CreateBul
kImportJobs in
each AWS Region in
each AWS account

 10 Yes

Quotas for AWS IoT SiteWise bulk import of data 1177

AWS IoT SiteWise User Guide

Resource Description Quota Adjustable

Request rate
for ListBulkI
mportJobs for
each AWS Region in
each AWS account

 50 Yes

Request rate
for DescribeB
ulkImportJobs
for each AWS Region
in each AWS account

 50 Yes

Quotas for AWS IoT SiteWise Assistant API throttling

Quotas for AWS IoT SiteWise Assistant API throttling limits

Resource Description Quota Adjustable

Request rate for
InvokeAssistant
operation

The maximum
number of transacti
ons each minute
(TPM) that can be
made to the AWS IoT
SiteWise InvokeAss
istant API in an
AWS account. The
TPM limits apply to
all supported regions,
and are adjustable in
some regions.

10 No

AWS IoT SiteWise Assistant API throttling limits 1178

AWS IoT SiteWise User Guide

Quotas for anomaly detection

Quotas for AWS IoT SiteWise native anomaly detection

Resource Description Quota Adjustable

Maximum number
of computational
models

The maximum
number of computati
onal models.

1000 Yes

Maximum number of
input properties for
each computational
model

The maximum
number of input
properties a
computational model
can have.

80 No

Maximum number of
TQV's in training data
(after resampling)

The maximum
number of TQV's in
training data after
resampling.

1,500,000 No

Maximum number of
TQV's in evaluation
data (after resamplin
g)

The maximum
number of TQV's in
evaluation data after
resampling.

1,500,000 No

Minimum timespan
of training data

The minimum time
range for training
data. See Understan
d the minimum date
range for details.

14 days No

Maximum number of
simultaneous ACTIVE
training jobs

The maximum
number of simultane
ous ACTIVE training
jobs at any given
time.

25 Yes

Quotas for anomaly detection 1179

AWS IoT SiteWise User Guide

Resource Description Quota Adjustable

Maximum size of
label data file

The maximum size of
the label data file.

2 MB No

Maximum number
of ACTIVE high
frequency inferences

The maximum
number of ACTIVE
high frequency
inferences at any
given time.

250 Yes

Maximum number
of ACTIVE low
frequency inferences

The maximum
number of ACTIVE
low frequency
inferences at any
given time.

500 Yes

Maximum time for
ACTIVE training
duration

The maximum time
that ACTIVE training
can take place for.

24 hours Yes

Quotas for anomaly detection 1180

AWS IoT SiteWise User Guide

Document history for the AWS IoT SiteWise User Guide

The following table describes the documentation for this release of AWS IoT SiteWise.

• API version: 2019-12-02

Change Description Date

Interfaces for asset models Define a common structure
that ensures consistency
across asset models while
allowing for variations in
implementation.

August 5, 2025

Added native anomaly
support to AWS IoT SiteWise

AWS IoT SiteWise native
anomaly detection is a
machine learning (ML)
service for monitoring
industrial equipment that
detects abnormal equipment
behavior and identifies
potential failures. With native
anomaly detection, you
can implement predictiv
e maintenance programs
and identify suboptimal
equipment processes.

July 28, 2025

Added Rich SQL functions
, and new SQL datayptes
, clauses and operators to
existing SQL

Added support for new
dataypes, clauses and
operators.

July 22, 2025

Process and visualize data
with SiteWise Edge and open-
source tools

Integrate open source tools
like Node-RED®, InfluxDB®
, and Grafana® on AWS
IoT SiteWise MQTT-enab

July 3, 2025

1181

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/asset-model-interfaces.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/sitewise-anomaly-detection.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/sitewise-anomaly-detection.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/query-reference.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/query-reference.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/query-reference.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/query-reference.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/open-source-edge-integrations.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/open-source-edge-integrations.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/open-source-edge-integrations.html

AWS IoT SiteWise User Guide

led, V3 gateways. Use local
processing and visualization
to enhance your industrial
data management capabilit
ies.

Connect external applicati
ons to the EMQX broker with
usernames and passwords

Added support for connectin
g external applications using
usernames and passwords
to the AWS IoT Greengrass
EMQX broker that is deployed
by default when creating
a new MQTT-enabled, V3
gateway.

May 1, 2025

1182

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/connect-external-applications-emqx.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/connect-external-applications-emqx.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/connect-external-applications-emqx.html

AWS IoT SiteWise User Guide

Support for MQTT-enabled,
V3 gateways on SiteWise
Edge

Added new features and
removed deprecated content

• Added support for MQTT-
enabled, V3 gateways.
Enhanced destination
configuration using path
filters to subscribe to MQTT
topics, including real-time
data ingestion directly
to AWS IoT SiteWise or
buffered data ingestion
using Amazon S3.

• Released version 3.0.0
of the IoT SiteWise OPC
UA collector and version
4.0.0 of the IoT SiteWise
publisher component for
AWS IoT Greengrass V2.

• Renamed the previous
version of self-hosted
SiteWise Edge gateways
to Classic streams, V2
gateways.

• Removed references to
AWS IoT Greengrass V1 in
SiteWise Edge documenta
tion because it's no longer
supported for use with AWS
IoT SiteWise.

February 26, 2025

Support for AWS IoT SiteWise
Assistant

Added support for the AWS
IoT SiteWise Assistant -
a generative AI-powered
assistant.

November 18, 2024

1183

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/mqtt-enabled-v3-gateway.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/mqtt-enabled-v3-gateway.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/mqtt-enabled-v3-gateway.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/assistant-get-started.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/assistant-get-started.html

AWS IoT SiteWise User Guide

Added configurable session
timeouts for SiteWise Edge
APIs

Added configurable session
timeout settings to manage
inactivity periods for AWS
OpsHub and SiteWise Edge
APIs.

October 31, 2024

Added configurable proxy
settings for SiteWise Edge
APIs

Added managing trust store
information to enable HTTPS
proxy support for SiteWise
Edge gateways.

October 31, 2024

Enable CORS on for SiteWise
Edge APIs

Added CORS support for
SiteWise Edge APIs to enable
secure cross-domain web
application access.

September 30, 2024

Support for CloudRail and
Litmus Edge partner data
sources

Added support for both
CloudRail and Litmus Edge as
partner data sources.

September 5, 2024

General availability for
running SiteWise Edge on
Siemens Industrial Edge

AWS IoT SiteWise now
supports general availabil
ity of running SiteWise Edge
on Siemens Industrial Edge
devices.

July 24, 2024

Added support for timestamp
configuration on OPC UA data
sources

AWS IoT SiteWise now
supports timestamp configura
tion for OPC UA data sources.

July 24, 2024

Added support for data type
conversion on OPC UA data
sources

AWS IoT SiteWise now
supports data type conversion
for unsupported OPC UA data
types.

July 24, 2024

1184

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/edge-apis-session-timeout.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/edge-apis-session-timeout.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/edge-apis-session-timeout.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/edge-apis-manage-trust-stores-proxy.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/edge-apis-manage-trust-stores-proxy.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/edge-apis-manage-trust-stores-proxy.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/enable-cors-edge-apis.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/enable-cors-edge-apis.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/connect-partner-data-source.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/connect-partner-data-source.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/connect-partner-data-source.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/sitewise-edge-on-siemens.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/sitewise-edge-on-siemens.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/sitewise-edge-on-siemens.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/sitewise-edge-on-siemens.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/sitewise-edge-on-siemens.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/sitewise-edge-on-siemens.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/string-conversion.html.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/string-conversion.html.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/string-conversion.html.html

AWS IoT SiteWise User Guide

Added support for running a
preview of SiteWise Edge on
Siemens Industrial Edge

AWS IoT SiteWise now
supports running a preview
of SiteWise Edge on Siemens
Industrial Edge devices.

November 26, 2023

Added support for warm tier
storage

AWS IoT SiteWise now
supports warm storage,
a fully-managed storage
tier that makes it easy for
customers to securely store
and access industrial data.

November 15, 2023

Added support for user-defi
ned unique identifiers

AWS IoT SiteWise now
supports the use of user-defi
ned unique identifiers for
asset, asset models, propertie
s and hierarchies.

November 15, 2023

Added support for multi
variate anomaly detection of
industrial assets

AWS IoT SiteWise now
supports multi variate
anomaly detection of
industrial assets by integrati
on of historical and real time
equipment data with Amazon
Lookout for Equipment.

November 15, 2023

Added support for cost-effi
cient and scalable ingestion
of time-series data in AWS IoT
SiteWise

AWS IoT SiteWise now
supports cost-efficient and
scalable ingestion of time-seri
es data needed for analytical
use cases.

November 15, 2023

Added support for bulk
import, export, and update

AWS IoT SiteWise now
supports bulk import,
export, and update industrial
equipment metadata.

November 15, 2023

1185

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/sitewise-edge-on-siemens.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/sitewise-edge-on-siemens.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/sitewise-edge-on-siemens.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/manage-data-storage.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/manage-data-storage.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/object-ids.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/object-ids.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/object-ids.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/object-ids.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/object-ids.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/CreateBulkImportJob.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/CreateBulkImportJob.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/CreateBulkImportJob.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/CreateBulkImportJob.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/bulk-operations-assets-and-models.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/bulk-operations-assets-and-models.html

AWS IoT SiteWise User Guide

Added support for asset
model components

AWS IoT SiteWise now
supports Asset model
components to help industria
l customers create reusable
components.

November 15, 2023

Added support for IoT
dashboard application

AWS IoT SiteWise now
supports an open source
dashboard application where
you can visualize and interact
with operational data.

November 15, 2023

Updated the service-linked
roles for AWS IoT SiteWise

AWS IoT SiteWise has new
service-linked roles, and
can run a metadata search
query, against the AWS IoT
TwinMaker database.

November 6, 2023

Updated tagging for AWS
IoT SiteWise data stream
resources

Added support for tagging
data stream resources.

August 18, 2022

Updated SiteWise Edge
gateways

You can now configure the
publisher to control what
data is sent from the edge to
the cloud and the order that
it's sent to the cloud.

January 12, 2022

Updated the AWS IoT
SiteWise demo

You can now use the demo
to create a SiteWise Monitor
portal.

January 10, 2022

Updated storage managemen
t

You can now define a
retention period to control
how long your data is kept in
the hot tier.

November 29, 2021

1186

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/custom-composite-models.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/custom-composite-models.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/insight-data.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/insight-data.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/tag-resources.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/tag-resources.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/tag-resources.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/create-gateway-ggv2.html#configure-publisher
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/create-gateway-ggv2.html#configure-publisher
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/getting-started-demo.html#create-getting-started-demo
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/getting-started-demo.html#create-getting-started-demo
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/configure-hot-tier-retention.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/configure-hot-tier-retention.html

AWS IoT SiteWise User Guide

Added support for data
stream management

You can now ingest data to
AWS IoT SiteWise before
you create asset models and
assets.

November 24, 2021

Updated asset model
hierarchies

A child asset model now can
be associated with multiple
parent asset models.

October 28, 2021

Region launch Launched AWS IoT SiteWise in
AWS GovCloud (US-West).

September 29, 2021

Updated functions Added the following features

• In metrics, you can use
nested expressions in
aggregation functions and
temporal functions.

• In transforms, you can use
the pretrigger() function
to retrieve the value of
a variable prior to the
property update that
triggered the current
transform calculation.

August 10, 2021

Custom metric time interval Added support for custom
time intervals and offsets in
metrics.

August 3, 2021

Using AWS IoT SiteWise at the
edge

The edge processing feature is
now generally available.

July 29, 2021

Exporting data to Amazon S3 AWS IoT SiteWise now can
export data to Amazon S3.

July 27, 2021

1187

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/data-streams.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/data-streams.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/asset-hierarchies.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/asset-hierarchies.html
https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/govcloud-iotsitewise.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/expression-functions.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/expression-aggregation-functions.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/expression-temporal-functions.html#temporal-functions-in-metrics
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/expression-temporal-functions.html#temporal-functions-in-transforms
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/metrics.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/gateways.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/gateways.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/manage-data-storage.html

AWS IoT SiteWise User Guide

VPC endpoints (AWS PrivateLi
nk)

The interface VPC endpoint
for the control plane API
operations is now generally
 available.

July 15, 2021

Transforms Transforms now can input
multiple asset property
variables.

July 8, 2021

Updated the timestamp()
function

In transforms, you can now
provide a variable as an
argument to the timestamp
() function.

June 16, 2021

Alarms general availability The alarms feature is now
generally available.

May 27, 2021

Modbus-TCP Protocol Adapter
version 2 released

Version 2 of the Modbus-TCP
Protocol Adapter connector is
available. This release added
support for ASCII, UTF8, and
ISO8859 encoded source
strings.

May 24, 2021

Updated service quotas Added the following quotas
for the GetInterpolatedAss
etPropertyValues API: rate
of GetInterpolatedAss
etPropertyValues
requests, number of results
per GetInterpolatedAss
etPropertyValues
request, and number of
days between the start date
in the past and today for
GetInterpolatedAss
etPropertyValues .

April 29, 2021

1188

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/transforms.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/expression-date-and-time-functions.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/expression-date-and-time-functions.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/industrial-alarms.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/configure-modbus-source.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/configure-modbus-source.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/modbus-tcp-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/modbus-tcp-connector.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/endpoints-and-quotas.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetInterpolatedAssetPropertyValues.html
https://docs.aws.amazon.com/iot-sitewise/latest/APIReference/API_GetInterpolatedAssetPropertyValues.html

AWS IoT SiteWise User Guide

Updated formula expressions Added the following
operators and functions:

• Added the following
operators: <, >, <=, >=, ==,
!=, !, and, or, and not.

• Added the following
comparison function:
neq(x, y).

• Added the following
string functions: join(),
format(), and f''.

April 22, 2021

VPC endpoints (AWS PrivateLi
nk)

Added information about
how to establish a private
connection between your
virtual private cloud (VPC)
and the AWS IoT SiteWise
control plane APIs by creating
an interface VPC endpoint.

March 16, 2021

IAM federation Your SiteWise Monitor portal
administrators and users
can now log in to their
assigned portals with their
IAM credentials.

March 16, 2021

Region launch Launched AWS IoT SiteWise in
China (Beijing).

February 3, 2021

1189

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/formula-expressions.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/expression-operators.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/expression-comparison-functions.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/expression-string-functions.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/monitor-getting-started.html
https://docs.aws.amazon.com/general/latest/gr/iot-sitewise.html

AWS IoT SiteWise User Guide

IoT SiteWise connector
version 10 released

Version 10 of the IoT SiteWise
connector is available.
This release configures
StreamManager to improve
handling when the source
connection is lost and re-
established. This version also
accepts OPC UA values with
a ServerTimestamp when
no SourceTimestamp is
available.

January 22, 2021

Date and time functions AWS IoT SiteWise now
supports date and time
functions.

January 21, 2021

Function syntax You can now use Uniform
Function Call Syntax (UFCS)
for AWS IoT SiteWise
functions.

January 11, 2021

Integrating with Grafana Added information about how
to visualize AWS IoT SiteWise
data in Grafana dashboards.

December 15, 2020

1190

https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/formula-expressions.html#expression-date-and-time-functions
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/formula-expressions.html#expression-function-syntax
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/grafana-integration.html

AWS IoT SiteWise User Guide

AWS IoT SiteWise feature
release

You can now monitor
your data with alarms,
process industrial data at
the edge, use Modbus TCP
and Ethernet/IP sources to
your SiteWise Edge gateway,
filter incoming data with
deadbands, and more.

• Added the Monitoring
data with alarms section
that you can use to define,
configure, and respond to
alarms in AWS IoT SiteWise.

• Added the Edge processin
g section that you can use
to configure processing of
your industrial data on your
edge devices.

• Added the Modbus TCP
and Ethernet/IP sections to
the SiteWise Edge gateway
source documentation.

• Added the source destinati
on section that you can
use to customize where
you send your incoming
industrial data.

• Added the OPC UA filtering
 section that you can use to
control the frequency and
type of data that is sent to
your SiteWise Edge gateway
from your industrial local
server.

December 15, 2020

1191

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/

AWS IoT SiteWise User Guide

AWS IoT SiteWise now
supports customer managed
CMKs.

AWS IoT SiteWise now
supports encryption with
customer managed CMKs.

November 24, 2020

IoT SiteWise connector
version 8 released

Version 8 of the IoT SiteWise
connector is available. This
release improves stability
when the connector experienc
es intermittent network
connectivity.

November 19, 2020

Using strings and conditionals
in formula expressions

Added information about how
to strings and conditional
functions in formula expressio
ns for transforms and metrics.

November 16, 2020

Ingesting data using AWS IoT
Greengrass stream manager

Added information about how
to ingest high-volume IoT
data from local data sources
using an AWS IoT Greengrass
edge device.

September 16, 2020

VPC endpoints (AWS PrivateLi
nk)

Added information about
how to establish a private
connection between your
virtual private cloud (VPC)
and the AWS IoT SiteWise
data APIs by creating an
interface VPC endpoint.

September 4, 2020

IoT SiteWise connector
version 7 released

Version 7 of the IoT SiteWise
connector is available. This
release fixes an issue with
SiteWise Edge gateway
metrics.

August 14, 2020

1192

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/encryption-at-rest.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/encryption-at-rest.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/encryption-at-rest.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/formula-expressions.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/formula-expressions.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/greengrass-stream-manager.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/greengrass-stream-manager.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html

AWS IoT SiteWise User Guide

Creating IAM Identity Center
users from the AWS IoT
SiteWise console

Added information about
how you can create IAM
Identity Center users in the
AWS IoT SiteWise console.
You can now create IAM
Identity Center users when
you assign users to a new or
existing portal. Updated the
Visualizing and sharing wind
farm data tutorial to use this
feature. This change reduces
the number of steps in the
tutorial.

August 4, 2020

Improved SiteWise Edge
gateway troubleshooting

Added additional information
about how to troubleshoot a
SiteWise Edge gateway and
how to export the OPC UA
client certificate for a source.

June 18, 2020

Console task documentation Added console task
documentation for Modeling
industrial assets, Querying
asset property data, and
Interacting with other
services. You can follow these
instructions to complete
tasks in the AWS IoT SiteWise
console.

June 11, 2020

Analyzing exported data
tutorial

Added a tutorial that you can
follow to learn how to use
Amazon Athena to analyze
asset data that you exported
to Amazon S3 with the export
feature AWS CloudFormation
template.

May 27, 2020

1193

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/administer-portals.html#portal-change-admins
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/administer-portals.html#portal-change-admins
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/administer-portals.html#portal-change-admins
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/monitor-wind-farm.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/monitor-wind-farm.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/troubleshooting-gateway.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/troubleshooting-gateway.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/configure-sources.html#enable-source-trust
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/configure-sources.html#enable-source-trust
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/industrial-asset-models
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/industrial-asset-models
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/query-industrial-data
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/query-industrial-data
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/interact-with-other-services
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/interact-with-other-services
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/analyze-exported-asset-data.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/analyze-exported-asset-data.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/export-to-s3.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/export-to-s3.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/export-to-s3.html

AWS IoT SiteWise User Guide

Improved using formula
expressions

Added detailed informati
on about the behavior of
AWS IoT SiteWise formula
properties and added an
example of how to count
filtered data points.

May 18, 2020

IoT SiteWise connector
version 6 released

Version 6 of the IoT SiteWise
connector is available. This
release adds support for
CloudWatch metrics and
automatic discovery of new
OPC UA tags. This means
you don't need to restart
your SiteWise Edge gateway
when tags change for your
OPC UA sources. This version
of the connector requires
stream manager and AWS
IoT Greengrass Core software
v1.10.0 or higher.

April 29, 2020

1194

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/formula-expressions.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/formula-expressions.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html

AWS IoT SiteWise User Guide

AWS IoT SiteWise feature
release

AWS IoT SiteWise feature
release. You can now manage
SiteWise Edge gateways with
the API, add your logo to
portals, view SiteWise Edge
gateway metrics, and more.

• Added the Exporting data
to Amazon S3 section with
an AWS CloudFormation
template that you can use
to export new data values
to an Amazon S3 bucket.

• Added the Configuring
data sources section that
improves SiteWise Edge
gateway source documenta
tion and includes the new
SiteWise Edge gateway
APIs.

• Added the SiteWise
Edge gateway metrics
section that describes the
CloudWatch metrics that
SiteWise Edge gateways
publish.

• Added the Configuring an
SiteWise Edge gateway
on Amazon EC2 section
with an AWS CloudForm
ation template that you
can use to quickly configure
SiteWise Edge gateway
dependencies on an
Amazon EC2 instance.

April 29, 2020

1195

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/

AWS IoT SiteWise User Guide

• Added the portal service
roles section that describes
the new permissions
feature of SiteWise Monitor
portals.

• Updated portal documenta
tion for portal service roles
and portal logos.

• Added the Tagging your
AWS IoT SiteWise resources
 section.

• Updated the Creating
dashboards (CLI) section
for the new dashboard
definition structure.

• Added the Security section.

Ingesting data from AWS IoT
Events

Added information about how
to ingest data from AWS IoT
Events when an event occurs.

April 20, 2020

Visualizing and sharing wind
farm data in SiteWise Monitor
tutorial

Added a tutorial that you can
follow to learn how to use
AWS IoT SiteWise Monitor to
visualize and share asset data.

March 12, 2020

AWS IoT SiteWise concepts Added a glossary of AWS
IoT SiteWise concepts that
you can use to learn about
the service and its common
terms.

March 5, 2020

1196

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/iot-events.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/iot-events.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/monitor-wind-farm.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/monitor-wind-farm.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/monitor-wind-farm.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/concept-overview.html

AWS IoT SiteWise User Guide

Removed AWS IoT Greengrass
installation instructions

Removed the AWS IoT
Greengrass Core software
installation instructions
from the AWS IoT SiteWise
User Guide. The AWS IoT
Greengrass Developer Guide
offers a device setup script
and instructions to set up
AWS IoT Greengrass on other
platforms such as Amazon
EC2 and Docker.

February 14, 2020

Improved ingesting data
using AWS IoT Core rules

Added detailed informati
on about how to use and
how to troubleshoot the
AWS IoT SiteWise rule action,
which you can use to ingest
data from MQTT messages
through AWS IoT Core.

February 14, 2020

IoT SiteWise connector
version 5 released

Version 5 of the IoT SiteWise
connector is available. This
release fixes a compatibility
issue with AWS IoT Greengras
s Core software v1.9.4.

February 12, 2020

IoT SiteWise connector
version 4 released

Version 4 of the IoT SiteWise
connector is available. This
release fixes an issue with
OPC UA server reconnection.

February 7, 2020

1197

https://docs.aws.amazon.com/greengrass/v1/developerguide/
https://docs.aws.amazon.com/greengrass/v1/developerguide/
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/iot-rules.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/iot-rules.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/iot-rules.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/troubleshooting.html#troubleshoot-rule
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html

AWS IoT SiteWise User Guide

Restructured modeling
industrial assets

Restructured the Updating
Assets and Models section
into multiple topics within
Modeling Industrial Assets.

• Asset and model states

• Manage data streams for
AWS IoT SiteWise

• Update attribute values

• Associate and disassociate
assets

• Update assets and models

• Delete assets and models in
AWS IoT SiteWise

February 4, 2020

Ingesting data from AWS IoT
things tutorial

Added a tutorial that you
can follow to learn how
to configure an AWS IoT
SiteWise rule action to ingest
data from a new or existing
fleet of AWS IoT things.

February 4, 2020

Restructured retrieving data
from AWS IoT SiteWise

Restructured the Retrieving
Data section into two top-
level sections: Querying
asset property values and
aggregates and Interacting
with other AWS services.

January 21, 2020

Publishing property
value updates to Amazon
DynamoDB tutorial

Added a tutorial that you
can follow to learn how to
use property value notificat
ions to store asset data in
DynamoDB.

January 8, 2020

1198

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/industrial-asset-models.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/industrial-asset-models.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/ingest-data-from-iot-things.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/ingest-data-from-iot-things.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/query-industrial-data.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/query-industrial-data.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/query-industrial-data.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/interact-with-other-services.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/interact-with-other-services.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/publish-to-amazon-dynamodb.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/publish-to-amazon-dynamodb.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/publish-to-amazon-dynamodb.html

AWS IoT SiteWise User Guide

Using formula expressions Added the formula expressio
n reference to organize the
constants and functions
 available for use in transform
and metric properties.
Restructured Asset propertie
s into separate topics for each
property type.

January 7, 2020

Using OPC UA node filters Added information about
how to use OPC UA node
filters to improve SiteWise
Edge gateway performance
when adding SiteWise Edge
gateway sources.

January 3, 2020

Upgrading a connector Added information about
how to upgrade a SiteWise
Edge gateway when a new
connector version is released.

December 30, 2019

IoT SiteWise connector
version 3 released

Version 3 of the IoT SiteWise
connector is available. This
release removes the iot:*
permissions requirement.

December 17, 2019

IoT SiteWise connector
version 2 released

Version 2 of the IoT SiteWise
connector is available. This
release adds support for
multiple OPC UA secret
resources.

December 10, 2019

Creating dashboards (AWS
CLI)

Added information about how
to create a dashboard in AWS
IoT SiteWise Monitor using
the AWS CLI.

December 6, 2019

1199

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/formula-expressions.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/asset-properties.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/asset-properties.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/opc-ua-node-filters.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/upgrade-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/greengrass/v1/developerguide/iot-sitewise-connector.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/create-dashboards-using-aws-cli.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/create-dashboards-using-aws-cli.html

AWS IoT SiteWise User Guide

AWS IoT SiteWise version 2
released

Released preview for version
2 of AWS IoT SiteWise. You
can now ingest data over OPC
UA, MQTT, and HTTP, model
your data in asset hierarchies,
and visualize your data with
SiteWise Monitor.

• Rewrote the asset modeling
section for changes to
assets, asset models, and
asset hierarchies.

• Updated the data ingestion
 section to include AWS
IoT Greengrass connector
steps and non-gateway
data ingestion sections.

• Added the AWS IoT
SiteWise Monitor section
and a separate application
guide that shows how to
use the SiteWise Monitor
web application.

• Added Query data from
AWS IoT SiteWise and
Interact with other AWS
services sections.

• Rewrote the getting started
section to match the
updated demo experience.

December 2, 2019

AWS IoT SiteWise version 1
released

Released initial preview
for version 1 of AWS IoT
SiteWise.

February 25, 2019

1200

https://docs.aws.amazon.com/iot-sitewise/latest/userguide/
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/
https://docs.aws.amazon.com/iot-sitewise/latest/appguide/
https://docs.aws.amazon.com/iot-sitewise/latest/appguide/
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/

	AWS IoT SiteWise
	Table of Contents
	What is AWS IoT SiteWise?
	How AWS IoT SiteWise works
	Ingest industrial data
	Model assets to contextualize gathered data
	Analyze using queries, alarms, and predictions
	Visualize operations
	Store data
	Integrate with other services

	Use cases for AWS IoT SiteWise
	Manufacturing
	Food and beverage
	Energy and utilities

	Using this service with an AWS SDK
	AWS IoT SiteWise concepts

	Get started with AWS IoT SiteWise
	Requirements
	Set up an AWS account
	Sign up for an AWS account
	Create a user with administrative access

	Use the AWS IoT SiteWise demo
	Create the AWS IoT SiteWise demo
	Delete the AWS IoT SiteWise demo

	AWS IoT SiteWise tutorials
	Calculate OEE in AWS IoT SiteWise
	Prerequisites
	How to calculate OEE

	Ingest data to AWS IoT SiteWise from AWS IoT things
	Prerequisites
	Step 1: Create an AWS IoT policy
	Step 2: Create and configure an AWS IoT thing
	Step 3: Create a device asset model
	Step 4: Create a device fleet asset model
	Step 5: Create and configure a device asset
	Step 6: Create and configure a device fleet asset
	Step 7: Create a rule in AWS IoT Core to send data to device assets
	Step 8: Run the device client script
	Step 9: Clean up resources after the tutorial

	Integrate data into SiteWise Edge using an MQTT-enabled, V3 gateway
	Prerequisites
	Step 1: Create an AWS IoT policy
	Step 2: Create and configure an AWS IoT thing
	Step 3: Configure your SiteWise Edge MQTT-enabled, V3 gateway
	Step 4: Install SiteWise Edge gateway software
	Step 5: Configure the EMQX broker to connect to external applications
	Step 6: Publish data with Mosquitto
	Step 7: Specify destinations
	Step 8: Specify path filters
	Step 9: Configure your AWS IoT resources
	Step 10: Visualize your data
	Step 11: Clean up resources after the tutorial
	

	Additional resources

	Visualize and share data in Grafana
	Prerequisites
	Step 1: Configure your Amazon Managed Grafana workspace
	Step 2: Add AWS IoT SiteWise as a data source
	Step 3: Create a dashboard to explore and visualize your data
	(optional) Step 4: Set up alerts to monitor performance
	Step 5: Clean up resources after the tutorial
	Additional resources

	Visualize and share wind farm data in SiteWise Monitor
	Prerequisites
	Step 1: Create a portal in SiteWise Monitor
	Step 2: Sign in to a portal
	Step 3: Create a wind farm project
	Step 4: Create a dashboard to visualize wind farm data
	Step 5: Explore the portal
	Step 6: Clean up resources after the tutorial

	Publish property value updates to Amazon DynamoDB
	Prerequisites
	Step 1: Configure AWS IoT SiteWise to publish property value updates
	Step 2: Create a rule in AWS IoT Core
	Step 3: Configure the DynamoDB rule action
	Step 4: Explore data in DynamoDB
	Step 5: Clean up resources after the tutorial

	Ingest data to AWS IoT SiteWise
	Manage data streams for AWS IoT SiteWise
	Configure permissions and settings
	Associate a data stream to an asset property
	Disassociate a data stream from an asset property
	Delete a data stream
	Update an asset property alias
	Common scenarios
	Move a data stream
	Error when assigning an alias to an asset property
	Error when associating a data stream to an asset property

	Ingest data with AWS IoT SiteWise APIs
	BatchPutAssetPropertyValue API
	CreateBulkImportJob API
	Create an AWS IoT SiteWise bulk import job (AWS CLI)
	Describe an AWS IoT SiteWise bulk import job (AWS CLI)
	List AWS IoT SiteWise bulk import jobs (AWS CLI)

	Ingest data to AWS IoT SiteWise using AWS IoT Core rules
	Grant AWS IoT the required access
	Configure the AWS IoT SiteWise rule action
	Getting timestamps for devices that don't report accurate time
	Converting timestamps that are in string format
	Converting nanosecond-precision timestamp strings
	Example rule configurations
	Troubleshooting the rule action

	Reduce costs with Basic Ingest in AWS IoT SiteWise

	Ingest data to AWS IoT SiteWise from AWS IoT Events
	Use AWS IoT Greengrass stream manager in AWS IoT SiteWise

	Use AWS IoT SiteWise Edge gateways
	Key concepts of SiteWise Edge gateways
	Benefits of implementing SiteWise Edge
	Self-host an AWS IoT SiteWise Edge gateway with AWS IoT Greengrass V2
	AWS IoT SiteWise Edge self-hosted gateway requirements
	Local device requirements
	Amazon S3 buckets to allowlist for local devices

	Data processing pack requirements
	Configure permissions to use SiteWise Edge gateways

	Create a self-hosted SiteWise Edge gateway
	Create a SiteWise Edge gateway

	Install the AWS IoT SiteWise Edge gateway software on your local device
	MQTT-enabled, V3 Gateways for AWS IoT SiteWise Edge
	Destinations and path filters
	Connect external applications to the EMQX broker
	Prerequisites
	Message payload format for the EMQX broker on AWS IoT SiteWise Edge
	MQTT topic requirements
	JSON payload structure

	Configure the EMQX broker
	Update the EMQX deployment configuration for authentication
	Enable username and password authentication

	Connect an application to the EMQX broker on AWS IoT SiteWise Edge
	Configure TLS for secure connections to the EMQX broker on AWS IoT SiteWise Edge
	Retrieve the TLS certificate
	Add custom DNS names/IP addresses to the TLS server certificate

	Test the EMQX broker connection on AWS IoT SiteWise Edge
	Use Mosquitto CLI client to test the EMQX broker connection

	Use your own CA
	Open port 8883 for external firewall connections

	Set up authorization rules for AWS IoT SiteWise Edge in EMQX
	Configure authorization using the built-in database with Linux
	Configure authorization using the built-in database with Windows
	Update the EMQX deployment configuration for authorization
	Add authorization rules through the EMQX Dashboard for users

	Process and visualize data with SiteWise Edge and open-source tools
	Deployment options
	Wind farm example overview
	Requirements for open-source integrations
	Security considerations
	Other considerations
	Set up open source integrations manually (Windows)
	Manual setup prerequisites
	Set up local storage with InfluxDB
	Configure Node-RED flows for AWS IoT SiteWise data integration
	Configure the data publish flow
	Configure the data input node
	Configure a node for data translation
	Configure the MQTT publisher
	Deploy and verify the nodes

	Configure the data retention flow
	Set up the MQTT subscription client
	Configure the InfluxDB translator
	Set up the InfluxDB writer
	Deploy and verify the retention flow

	Set up Grafana for SiteWise Edge
	Configure the data source
	Create a Grafana dashboard for SiteWise Edge data

	Set up open-source integrations with Docker (Linux)
	Docker setup prerequisites
	Deploy the services
	Set up the environment
	Configure the Docker network
	Prepare the Docker Compose file
	Expand to view the Docker Compose YAML file example

	Update the SiteWise Edge deployment
	Launch the services
	Access the services

	Verify the deployment

	Process data for open source integrations
	Process data with Node-RED nodes
	Data transformation nodes
	Metrics calculation nodes

	Create InfluxDB tasks
	Task features

	Use Grafana transformations

	Troubleshooting open-source integrations

	Classic streams, V2 gateways for AWS IoT SiteWise Edge
	Use packs to collect and process data in SiteWise Edge
	Upgrading packs

	Configure the AWS IoT SiteWise publisher component
	Destinations and AWS IoT Greengrass stream manager
	Configure edge capabilities on AWS IoT SiteWise Edge
	Set up edge capability in SiteWise Edge

	Configure edge data processing for AWS IoT SiteWise models and assets
	Configure an asset model for data processing on SiteWise Edge

	Add data sources to your AWS IoT SiteWise Edge gateway
	OPC UA data sources for AWS IoT SiteWise Edge gateways
	Support for additional industrial protocols
	Set up an OPC UA source in SiteWise Edge
	Configure an OPC UA source (console)
	Configure an OPC UA source (AWS CLI)
	Request body
	Additional capability configuration examples for Classic streams, V2 gateways (AWS CLI)

	Set up OPC UA servers to trust the AWS IoT SiteWise Edge gateway
	Exporting the OPC UA client certificate

	Filter data ingestion ranges with OPC UA
	Collect or filter out data based on quality
	Handle NaN or null values

	Control data collection frequency with Scan mode
	Filter OPC UA data ingestion with deadband ranges
	Types of deadbands
	Deadband timeouts

	Use OPC UA node filters in SiteWise Edge
	Converting unsupported data types
	Prerequisite
	Limitations

	Configure data source authentication for SiteWise Edge
	Step 1: Create source authentication secrets
	Step 2: Deploy secrets to your SiteWise Edge gateway device
	Step 3: Add authentication configurations

	Partner data sources on SiteWise Edge gateways
	Security
	Set up Docker on your SiteWise Edge gateway
	Verify Docker is installed
	Set up Docker

	Add a partner data source in SiteWise Edge
	Prerequisites
	Create a SiteWise Edge gateway with a partner data source
	Add a partner data source to an existing SiteWise Edge gateway

	SiteWise Edge gateway partner data source options
	CloudRail
	EasyEdge
	Litmus Edge

	AWS IoT Greengrass components for AWS IoT SiteWise Edge
	Filter assets on a SiteWise Edge gateway
	Set up edge filtering

	Configure proxy support and manage trust stores for AWS IoT SiteWise Edge
	Requirements for trust store and proxy configurations
	Best practices for trust store and proxy server edge configurations
	Configure proxy settings during AWS IoT SiteWise Edge gateway installation
	Troubleshooting during proxy-enabled installation

	Manually configure trust stores for HTTPS proxy support in AWS IoT SiteWise Edge
	Configure an AWS IoT Greengrass Core component trust store
	Configure HTTPS proxy on an established gateway

	Configure a Java-based component trust store
	System-level component trust store configuration
	Troubleshooting trust store issues

	Use AWS IoT SiteWise APIs on the edge
	All available AWS IoT SiteWise Edge device APIs
	Available AWS IoT SiteWise APIs
	Available edge-only APIs

	Edge-only APIs for use with AWS IoT SiteWise edge devices
	Authenticate
	Request syntax
	URI request Parameters
	Request body
	Response syntax
	Response elements
	Errors

	Enable CORS on AWS IoT SiteWise Edge APIs
	Configure session timeouts for AWS IoT SiteWise Edge
	Tutorial: List asset models on an AWS IoT SiteWise Edge gateway
	Prerequisites
	Step 1: Get a SiteWise Edge gateway service signed certificate
	Step 2: Get your SiteWise Edge gateway hostname
	Step 3: Get temporary credentials for your SiteWise Edge gateway
	Get temporary credentials using AWS OpsHub for AWS IoT SiteWise
	Get temporary credentials using the SiteWise Edge gateway API

	Step 4: Get a list of the asset models on the SiteWise Edge gateway

	Host a SiteWise Edge gateway on Siemens Industrial Edge
	Security
	Siemens Secure Storage and the AWS IoT SiteWise Edge application
	Destinations for Siemens Industrial Edge devices
	Prefixes for path filters
	Destinations and path filters

	Migrate from the preview application
	Troubleshooting
	AWS IoT SiteWise Edge application changelog
	Requirements for the AWS IoT SiteWise Edge application
	Create a gateway for Siemens Industrial Edge
	Create a Siemens Databus user for the application
	Access the AWS IoT SiteWise Edge application
	Install the application onto a Siemens device
	Update the AWS IoT SiteWise Edge application configuration
	Restarting the application

	Destinations and path filters
	Understand AWS IoT SiteWise Edge destinations
	How SiteWise Edge destinations enhance data management
	Destination types
	Compare destination functionality between gateway versions
	Destination limitations
	Use cases for SiteWise Edge destinations

	Understand path filters for AWS IoT SiteWise Edge destinations
	Path filter requirements
	Best practices for path filters
	Path filters for OPC UA servers
	Special characters in path filter names

	Add an AWS IoT SiteWise Edge real-time destination
	Add an AWS IoT SiteWise buffered destination using Amazon S3
	Add path filters to AWS IoT SiteWise Edge destinations
	Upload path filters in bulk

	Manage AWS IoT SiteWise Edge destinations
	Edit a destination
	Delete a destination
	Download all path filters in a destination (console)
	Edit a path filter
	Delete a path filter

	Manage SiteWise Edge gateways
	Manage your SiteWise Edge gateway with the AWS IoT SiteWise console
	Manage SiteWise Edge gateways using AWS OpsHub for AWS IoT SiteWise
	Access your SiteWise Edge gateway using local operating system credentials
	Access your SiteWise Edge gateway using Linux operating system credentials
	Access your SiteWise Edge gateway using Windows credentials

	Manage the SiteWise Edge gateway certificate
	Change the version of SiteWise Edge gateway component packs
	List SiteWise Edge gateways
	Describe a SiteWise Edge gateway
	Create a SiteWise Edge gateway
	Update a SiteWise Edge gateway
	Update gateway capability configuration
	Tag gateway resources
	List tags for a gateway
	Remove tags from a gateway
	Update the version of an AWS IoT SiteWise component
	Delete a SiteWise Edge gateway

	Back up and restore SiteWise Edge gateways
	Daily backups of metric data
	Restore a SiteWise Edge gateway
	Restore AWS IoT SiteWise data
	Validate successful backups and restorations

	Legacy gateways (AWS IoT Greengrass Version 1)

	Model industrial assets
	Assets overview
	Property aliases identify equipment data streams
	Asset hierarchies represent equipment relationships
	Asset models standardize equipment representation
	Modeling options for industrial equipment
	Creating and managing assets
	Managing complex asset models
	Asset and model states
	Check the status of an asset
	Check the status of an asset (console)
	Check the status of an asset (AWS CLI)

	Check the status of an asset or component model
	Check the status of an asset model or component model (console)
	Check the status of an asset model or component model (AWS CLI)

	Asset model versions
	Retrieve the active version of an asset model or component model (console)
	Retrieve the active version of an asset model or component model (AWS CLI)

	Custom composite models (components)
	Inline custom composite models
	Component-model-based custom composite models
	Use paths to reference custom composite model properties
	Obtain property paths
	Using property paths

	Asset model interfaces
	Asset model standardization use case
	Structure and components
	Considerations
	Understand the interface-asset model relationship
	Standardize existing asset models
	Hierarchy relationships
	Interface metrics and rollup calculations
	Rollup metrics with interfaces

	Create an interface
	Apply an interface to an asset model
	Manage interfaces, linked asset models, and properties
	Modify an interface and asset model relationship
	Modify an interface property mapping
	List interfaces linked to an asset model
	View the details of an interface and asset model relationship
	Remove an interface applied to an asset model

	Additional interface examples
	Energy generation equipment
	Water treatment facilities
	Hierarchical interfaces

	Set up AWS IoT SiteWise object IDs
	Work with object UUIDs
	Use external IDs
	Differences between external IDs and UUIDs
	Format of external IDs
	Reference objects with external IDs

	Create asset models, component models, and interfaces for AWS IoT SiteWise
	Create asset models in AWS IoT SiteWise
	Create an asset model (console)
	Create an asset model (AWS CLI)
	Example asset models
	Wind turbine asset model
	Wind farm asset model

	Define asset model hierarchies
	Define asset model hierarchies (console)
	Define asset hierarchies (AWS CLI)

	Create component models
	Create a component model (AWS CLI)
	Example component model
	Servo motor component model

	Define data properties
	Define static data (attributes)
	Define attributes (console)
	Define attributes (AWS CLI)

	Define data streams from equipment (measurements)
	Define measurements (console)
	Define measurements (AWS CLI)

	Transform data (transforms)
	Define transforms (console)
	Define transforms (AWS CLI)

	Aggregate data from properties and other assets (metrics)
	Define metrics (console)
	Supported time zones

	Define metrics (AWS CLI)

	Use formula expressions
	Use variables in formula expressions
	Use variables to reference properties

	Use literals in formula expressions
	Use operators in formula expressions
	Use constants in formula expressions
	Use functions in formula expressions
	Function syntax
	Use common functions in formula expressions
	Use comparison functions in formula expressions
	Use conditional functions in formula expressions
	Use string functions in formula expressions
	Use aggregation functions in formula expressions
	Use temporal functions in formula expressions
	Use temporal functions in metrics
	Use temporal functions in transforms

	Use date and time functions in formula expressions
	Supported time zone formats
	Supported time zone abbreviations
	Supported Region-based IDs

	Formula expression tutorials
	Use strings in formulas
	Filter data points
	Count data points that match a condition
	Late data in formulas
	Data quality in formulas
	Undefined, infinite, and overflow values

	Create custom composite models (components)
	Create an inline component (console)
	Create an inline custom composite model (AWS CLI)
	Create a component-model-based component (console)
	Create a component-model-based custom composite model (AWS CLI)

	Create assets for asset models in AWS IoT SiteWise
	Create an asset (console)
	Create an asset (AWS CLI)
	Configure a new asset

	Search assets on AWS IoT SiteWise console
	Prerequisites
	Advanced search on AWS IoT SiteWise console
	Metadata search
	Partial search

	Query builder search

	Update attribute values
	Associate and disassociate assets
	Associate and disassociate assets (console)
	Associate and disassociate assets (AWS CLI)

	Update assets and models
	Update assets in AWS IoT SiteWise
	Update an asset (console)
	Update an asset (AWS CLI)

	Update asset models, component models, and interfaces
	Updating an asset model, component model, or interface (console)
	Update an asset model, component model, or interface (AWS CLI)

	Update custom composite models (components)
	Update a component (console)
	Update a custom composite model (AWS CLI)

	Optimistic locking for asset model writes
	Performing asset model writes with optimistic lock (console)
	Performing asset model writes with optimistic lock (AWS CLI)

	Delete assets and models in AWS IoT SiteWise
	Delete assets in AWS IoT SiteWise
	Delete an asset (console)
	Delete an asset (AWS CLI)

	Delete asset models, component models, and interfaces in AWS IoT SiteWise
	Delete an asset model, component model, or interface (console)
	Delete an asset model, component model, or interface (AWS CLI)

	Bulk operations with assets and models
	Key concepts and terminology
	Supported functionality
	Bulk operation prerequisites
	IAM permissions
	AWS IoT SiteWise policy
	AWS IoT TwinMaker policy
	Amazon S3 policy

	

	Run a bulk import job
	Step 1: Prepare the file to import
	Step 2: Upload the prepared file to Amazon S3
	Import metadata (console)
	Import metadata (AWS CLI)

	Run a bulk export job
	Export metadata (console)
	Export metadata (AWS CLI)

	Jobs progress tracking and error handling
	Jobs progress tracking
	Review job progress and details (console)
	Review job progress and details (AWS CLI)

	Inspect errors for AWS IoT SiteWise
	Inspect error details (console)
	Inspect error details (AWS CLI)

	Import metadata examples
	Example of a bulk import
	Metadata file for import

	Example of initial on-boarding of models and assets
	JSON file to onboard assets and models for import

	Example of onboarding additional assets
	JSON file to onboard additional assets

	Example of onboarding new properties
	JSON file to onboard new properties

	Example of managing data streams
	JSON file to update property aliases

	Export metadata examples
	Filter by asset model
	Filter by asset

	AWS IoT SiteWise metadata transfer job schema

	Monitor data with alarms in AWS IoT SiteWise
	Alarm types
	Alarm states
	Alarm state properties
	Define alarms on asset models in AWS IoT SiteWise
	Requirements for alarm notifications in AWS IoT SiteWise
	Define AWS IoT Events alarms for AWS IoT SiteWise
	Define an AWS IoT Events alarm (AWS IoT SiteWise console)
	Define an AWS IoT Events alarm (AWS IoT Events console)
	Define an AWS IoT Events alarm (AWS CLI)
	Step 1: Define an alarm on an asset model
	Example: Boiler asset model

	Step 2: Define an AWS IoT Events alarm model
	Step 3: Enable data flow between AWS IoT SiteWise and AWS IoT Events

	Define external alarms in AWS IoT SiteWise
	Define an external alarm (console)
	Define an external alarm (CLI)

	Configure alarms on assets in AWS IoT SiteWise
	Configure a threshold value (console)
	Configure a threshold value (AWS CLI)
	Configure notification settings in AWS IoT SiteWise
	Configure notification settings (console)
	Configure notification settings (CLI)

	Respond to alarms in AWS IoT SiteWise
	Respond to an alarm (console)
	Acknowledge an alarm (console)
	Snooze an alarm (console)
	Disable an alarm (console)
	Enable an alarm (console)
	Reset an alarm (console)

	Respond to an alarm (API)

	Ingest an external alarm state in AWS IoT SiteWise
	Map external alarm state streams in AWS IoT SiteWise
	Map external alarm state streams (console)
	Map external alarm state streams (AWS CLI)

	Ingest alarm state data in AWS IoT SiteWise

	AWS IoT SiteWise Assistant
	Configure the AWS IoT SiteWise Assistant
	Create a dataset
	Edit a dataset
	Delete a dataset
	AWS IoT SiteWise Assistant questions

	Monitor data with AWS IoT SiteWise Monitor
	SiteWise Monitor roles
	SAML federation

	SiteWise Monitor concepts
	Get started with AWS IoT SiteWise Monitor (Classic)
	Create a portal in SiteWise Monitor
	Configure your portal in SiteWise Monitor
	Invite administrators in SiteWise Monitor
	Add portal users in SiteWise Monitor
	Create AWS IoT SiteWise dashboards (AWS CLI)
	Turn on alarms for your portals in AWS IoT SiteWise
	Enabling your AWS IoT SiteWise portal at the edge
	Administer your SiteWise Monitor portals
	Change portal details in AWS IoT SiteWise
	Add or remove portal administrators in AWS IoT SiteWise
	Send email invitations to portal administrators
	Add or remove portal users in AWS IoT SiteWise
	Delete a portal in AWS IoT SiteWise

	Get started with AWS IoT SiteWise Monitor (AI-aware) - preview
	Create a portal
	Configure your portal
	Administer your portals
	Edit portal attributes
	Add or remove portal administrators
	Send email invitations to portal administrators

	Delete a portal
	Create dashboards with AWS CLI
	Portal login
	Create a project
	Update a project
	Delete a project
	Create a dashboard
	Update a dashboard
	Delete a dashboard
	Configure dashboard
	Resource explorer
	Modeled
	Selection of assets
	Data stream selection
	Alarm selection

	Modeled assets visualization

	Unmodeled
	Dynamic assets

	Widgets
	Configure widgets
	Use widgets
	Edit widgets in the dashboard
	Resize widgets
	Delete widgets in the dashboard

	Alarms in widgets
	Alarms in different widgets

	AWS IoT SiteWise Assistant use in widgets
	Use case - Alarm summaries
	Use case - Situational summaries
	Use case - Deep dive summaries

	Sample questions to ask AWS IoT SiteWise Assistant

	Query data from AWS IoT SiteWise
	Query current asset property values in AWS IoT SiteWise
	Query an asset property's current value (console)
	Query an asset property's current value (AWS CLI)

	Query historical asset property values in AWS IoT SiteWise
	Query asset property aggregates in AWS IoT SiteWise
	Aggregates for an asset property (API)
	Aggregates for an asset property (AWS CLI)

	AWS IoT SiteWise query language
	Query language reference for AWS IoT SiteWise
	Query reference views
	Supported data types
	Supported clauses
	Logical operators
	Comparison operators
	NaN operators

	SQL functions
	Scalar functions
	Null data functions
	String functions
	Concatenation operator

	Math functions
	Date time functions
	Type conversion functions

	Aggregate functions

	Example queries
	Metadata filtering
	Value filtering

	Query optimization
	Metadata filters
	Raw data filters
	JOIN optimization
	Large queries

	ODBC
	Connection string syntax and options for the ODBC driver
	Connecting through a proxy

	Connection string examples for the AWS IoT SiteWise ODBC driver
	Example of connecting to the ODBC driver with IAM credentials
	Example of connecting to the ODBC driver with a profile
	Example of connecting to the ODBC driver with Okta
	Example of connecting to the ODBC driver with Azure Active Directory (AAD)
	Example of connecting to the ODBC driver with a specified endpoint and a log level of 2 (WARNING)

	Troubleshooting connection with the ODBC driver

	Interact with other AWS services
	Understand asset properties in MQTT topics
	Turn on asset property notifications in AWS IoT SiteWise
	Turn on asset property notifications (console)
	Turn on asset property notifications (AWS CLI)

	Query asset property notifications in AWS IoT SiteWise
	Export data to Amazon S3 with asset property notifications
	Integrate AWS IoT SiteWise with Grafana
	Integrate AWS IoT SiteWise and AWS IoT TwinMaker
	Enabling the integration
	Integrating AWS IoT SiteWise and AWS IoT TwinMaker
	To integrate by using the AWS IoT SiteWise console
	To integrate by using the AWS CLI

	Detect anomalies with Lookout for Equipment
	Add a prediction definition (console)
	Train a prediction (console)
	Start or stop inference on a prediction (console)
	Add a prediction definition (CLI)
	Train a prediction and starting inference (CLI)
	Train a prediction (CLI)
	Start or stop inference on a prediction (CLI)

	Native anomaly detection
	Native anomaly detection features
	Prerequisites
	Setup AWS CLI for Computation Model APIs
	Property requirements
	Labeling prerequisites
	Model evaluation prerequisites

	Enable anomaly detection on sensors of an asset
	Create a computation model (AWS CLI)
	ExecuteAction API payload preparation
	Option 1: Use a clean payload file
	Option 2: Inline string with escaped quotes

	Train the AWS CLI
	Start and stop inference (AWS CLI)
	Start inference
	Stop inference

	Find computation models that uses a given resource in data binding

	Enable anomaly detection on sensors across assets
	Create a computation model (AWS CLI)
	ExecuteAction API payload preparation
	Option 1: Use a clean payload file
	Option 2: Inline string with escaped quotes

	Train the AWS CLI
	Start and stop inference (AWS CLI)
	Start inference
	Stop inference

	Advanced training configurations
	Sample rate configuration
	Configure target sampling rate
	Handling timestamp misalignment
	Enable sampling

	Label your data
	Data labeling steps

	Evaluate your model

	Advanced inference configurations
	High frequency inferencing (5 minutes – 1 hour)
	Low frequency inferencing (2 hours – 1 day)
	Flexible scheduling
	Model version activation
	Use cases:
	Model version selection behavior

	Checking model versions
	Model version characteristics

	Review inference results
	Retrieve inference results
	Latest inference results
	Inference results history
	Example response
	Response fields

	Understand inference results

	Trigger custom actions on anomalous behavior (AWS Management Console)
	Best practices
	Understand the minimum date range
	Sampling for high-frequency data and consistency between training and inference
	Labeling recommendations

	Manage data storage in AWS IoT SiteWise
	Configure storage settings in AWS IoT SiteWise
	Impact of data retention in hot and warm tier storage
	Configure storage settings for warm tier (console)
	Configure storage settings for warm tier (AWS CLI)
	Configure storage settings for warm tier with AWS CLI
	Configure storage settings with AWS CLI and existing cold tier

	Configure storage settings for cold tier (console)
	Configure storage settings for cold tier (AWS CLI)
	(Optional) Create an AWS IoT Analytics data store (AWS CLI)

	Troubleshoot storage settings for AWS IoT SiteWise
	Error: Bucket doesn't exist
	Error: Access denied to Amazon S3 path
	Error: Role ARN can't be assumed
	Error: Failed to access cross-Region Amazon S3 bucket

	File paths and schemas of data saved in the cold tier
	Equipment data (measurements)
	File path
	

	Fields
	

	Metrics, transforms, and aggregates
	File path
	

	Fields
	

	Asset metadata
	File path
	

	Fields
	

	Asset hierarchy metadata
	File path
	

	Fields
	

	Storage data index files
	File path

	Code examples for AWS IoT SiteWise using AWS SDKs
	Hello AWS IoT SiteWise
	Basic examples for AWS IoT SiteWise using AWS SDKs
	Hello AWS IoT SiteWise
	Learn the basics of AWS IoT SiteWise with an AWS SDK
	Actions for AWS IoT SiteWise using AWS SDKs
	Use BatchPutAssetPropertyValue with an AWS SDK or CLI
	Use CreateAsset with an AWS SDK or CLI
	Use CreateAssetModel with an AWS SDK or CLI
	Use CreateGateway with an AWS SDK or CLI
	Use CreatePortal with an AWS SDK or CLI
	Use DeleteAsset with an AWS SDK or CLI
	Use DeleteAssetModel with an AWS SDK or CLI
	Use DeleteGateway with an AWS SDK or CLI
	Use DeletePortal with an AWS SDK or CLI
	Use DescribeAssetModel with an AWS SDK or CLI
	Use DescribeGateway with an AWS SDK or CLI
	Use DescribePortal with an AWS SDK or CLI
	Use GetAssetPropertyValue with an AWS SDK or CLI
	Use ListAssetModels with an AWS SDK or CLI

	Security in AWS IoT SiteWise
	Data protection in AWS IoT SiteWise
	Internetwork traffic privacy for AWS IoT SiteWise
	AWS IoT SiteWise Assistant Business Service improvement

	Data encryption in AWS IoT SiteWise
	Encryption at rest in AWS IoT SiteWise
	Data at rest in the AWS Cloud
	How it works
	AWS owned keys
	Customer managed keys

	Data at rest on SiteWise Edge gateways

	Data encryption in transit for AWS IoT SiteWise
	Data in transit over the internet
	Data in transit over the local network
	Data in transit between local components on SiteWise Edge

	Key management in AWS IoT SiteWise
	AWS IoT SiteWise cloud key management
	Enable encryption using customer managed keys

	SiteWise Edge gateway key management

	Identity and access management for AWS IoT SiteWise
	Audience for AWS IoT SiteWise security
	Authenticate with identities in AWS IoT SiteWise
	AWS account root user
	IAM users and groups
	IAM roles

	How AWS IoT SiteWise works with IAM
	AWS IoT SiteWise IAM roles
	Use temporary credentials with AWS IoT SiteWise
	Forward access sessions (FAS) for AWS IoT SiteWise
	Service-linked roles
	Service roles
	Choose an IAM role in AWS IoT SiteWise

	Authorization based on AWS IoT SiteWise tags
	AWS IoT SiteWise identity-based policies
	Policy actions
	BatchPutAssetPropertyValue authorization

	Policy resources
	Policy condition keys
	Examples

	AWS IoT SiteWise identity-based policy examples
	Policy best practices
	Use the AWS IoT SiteWise console
	Allow users to view their own permissions
	Allow users to ingest data to assets in one hierarchy
	View AWS IoT SiteWise assets based on tags

	Manage access using policies in AWS IoT SiteWise
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	AWS managed policies for AWS IoT SiteWise
	AWS managed policy: AWSIoTSiteWiseReadOnlyAccess
	AWS managed policy: AWSServiceRoleForIoTSiteWise
	AWS IoT SiteWise updates to AWS managed policies

	Use service-linked roles for AWS IoT SiteWise
	Service-linked role permissions for AWS IoT SiteWise
	Create a service-linked role for AWS IoT SiteWise
	Update a service-linked role for AWS IoT SiteWise
	Delete a service-linked role for AWS IoT SiteWise
	Supported Regions for AWS IoT SiteWise service-linked roles
	Use service roles for AWS IoT SiteWise Monitor
	Service role permissions for SiteWise Monitor (Classic)
	Service role permissions for SiteWise Monitor (AI-aware)
	Manage the SiteWise Monitor service role (console)
	Find a portal's service role (console)
	Create a SiteWise Monitor service role (AWS IoT SiteWise console)
	Create a SiteWise Monitor service role (IAM console)
	Change a portal's service role (console)

	Manage the SiteWise Monitor service role (CLI)
	Find a portal's service role (CLI)
	Create the SiteWise Monitor service role (CLI)

	SiteWise Monitor updates to AWSIoTSiteWiseMonitorServiceRole

	Set up permissions for event alarms in AWS IoT SiteWise
	Required action permissions
	(Optional) ListInputRoutings permission
	Required permissions for SiteWise Monitor

	Cross-service confused deputy prevention in AWS IoT SiteWise
	Troubleshoot AWS IoT SiteWise identity and access
	I am not authorized to perform an action in AWS IoT SiteWise
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AWS IoT SiteWise resources

	Compliance validation for AWS IoT SiteWise
	Resilience in AWS IoT SiteWise
	Infrastructure security in AWS IoT SiteWise
	Configuration and vulnerability analysis in AWS IoT SiteWise
	VPC endpoints for AWS IoT SiteWise
	API operations for VPC endpoints in AWS IoT SiteWise
	Create an interface VPC endpoint for AWS IoT SiteWise
	Access AWS IoT SiteWise through an interface VPC endpoint
	Create a VPC endpoint policy for AWS IoT SiteWise

	Security best practices for AWS IoT SiteWise
	Use authentication credentials on your OPC UA servers
	Use encrypted communication modes for your OPC UA servers
	Keep your components up to date
	Encrypt your SiteWise Edge gateway's file system
	Secure access to your edge configuration
	Securing data on Siemens Industrial Edge Management
	Grant SiteWise Monitor users minimum possible permissions
	Don't expose sensitive information
	Follow AWS IoT Greengrass security best practices
	See also

	Log and monitor in AWS IoT SiteWise
	Monitor with Amazon CloudWatch Logs
	Manage logging in AWS IoT SiteWise
	Find your logging level
	Change your logging level

	Example: AWS IoT SiteWise log file entries

	Monitor SiteWise Edge gateway logs
	Use Amazon CloudWatch Logs
	Use service logs in AWS IoT SiteWise
	AWS IoT SiteWise OPC UA Collector service log file
	AWS IoT SiteWise Publisher service log file

	Monitor AWS IoT SiteWise with Amazon CloudWatch metrics
	AWS IoT Greengrass Version 2 gateway metrics

	Log AWS IoT SiteWise API calls with AWS CloudTrail
	AWS IoT SiteWise information in CloudTrail
	AWS IoT SiteWise data events in CloudTrail
	AWS IoT SiteWise management events in CloudTrail
	Example: AWS IoT SiteWise log file entries

	Tag your AWS IoT SiteWise resources
	Use tags in AWS IoT SiteWise
	Tag with the AWS Management Console
	Tag with the AWS IoT SiteWise API

	Use tags with IAM policies

	Troubleshooting AWS IoT SiteWise
	Troubleshooting a SiteWise Edge gateway
	Configure and access SiteWise Edge gateway logs
	Troubleshooting SiteWise Edge gateway issues
	Unable to deploy packs to SiteWise Edge gateways
	AWS IoT SiteWise doesn't receive data from OPC UA servers
	No data shows in the dashboard
	"Could not find or load main class" showing up in the aws.iot.SiteWiseEdgePublisher logs at /greengrass/v2/logs error
	I see 'SESSION_TAKEN_OVER' or 'com.aws.greengrass.mqttclient.MqttClient: Failed to publish the message via Spooler and will retry.' in the logs
	I see 'com.aws.greengrass.deployment.IotJobsHelper: No deployment job found.' or 'Deployment result already reported.' in the logs
	I see a 'SYNC_FAILED' status when attempting to configure the timestamp setting in a property group on an OPC UA data source
	Converted data types are not included
	Trust store issues
	Proxy-enabled installation issues

	Troubleshooting the AWS IoT SiteWise Edge application on Siemens Industrial Edge
	My data doesn't display in AWS IoT SiteWise
	I see 'Config file missing AWS_REGION' in the logs
	I see an 'Out of sync' error message on the Edge gateway configuration

	Troubleshooting open-source integrations at the Edge
	Connection issues
	Data flow issues
	Performance issues
	Logging and diagnostics

	Troubleshooting AWS IoT Greengrass issues

	Troubleshoot an AWS IoT SiteWise portal
	Users and administrators can't access AWS IoT SiteWise portal

	Troubleshoot an AWS IoT SiteWise rule action
	Configure AWS IoT Core logs
	Configure a republish error action
	Troubleshoot rule issues
	Error: Member must be within 604800 seconds before and 300 seconds after the current timestamp
	Error: Property value does not match data type <type>
	Error: User: <role-arn> is not authorized to perform: iotsitewise:BatchPutAssetPropertyValue on resource
	Error: iot.amazonaws.com is unable to perform: sts:AssumeRole on resource: <role-arn>
	Info: No requests were sent. PutAssetPropertyValueEntries was empty after performing substitution templates.

	Troubleshoot a rule (AWS IoT SiteWise)
	Troubleshoot a rule (DynamoDB)

	Troubleshooting bulk import and export operations

	AWS IoT SiteWise endpoints and quotas
	AWS IoT SiteWise endpoints
	AWS IoT SiteWise quotas
	Quotas for AWS IoT SiteWise assets and asset models
	Quotas for AWS IoT SiteWise interfaces
	Quotas for AWS IoT SiteWise asset property data
	Quotas for SiteWise Edge gateways
	Quotas for AWS IoT SiteWise Monitor
	Quotas for AWS IoT SiteWise bulk import and export of metadata
	Quotas for AWS IoT SiteWise bulk import of data
	Quotas for AWS IoT SiteWise Assistant API throttling
	Quotas for anomaly detection

	Document history for the AWS IoT SiteWise User Guide

