Mistral AI Parametri e inferenza di Large 2 (24,07) - Amazon Bedrock

Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.

Mistral AI Parametri e inferenza di Large 2 (24,07)

Il Mistral AI il completamento della chat API consente di creare applicazioni conversazionali. Puoi anche usare Amazon Bedrock Converse APIcon questo modello. È possibile utilizzare gli strumenti per effettuare chiamate di funzioni.

Suggerimento

Puoi utilizzare il plugin Mistral AI completamento della chat API con le operazioni di inferenza di base (InvokeModelo InvokeModelWithResponseStream). Tuttavia, ti consigliamo di utilizzare il Converse APIper implementare i messaggi nella tua applicazione. Il Converse APIfornisce un set unificato di parametri che funzionano su tutti i modelli che supportano i messaggi. Per ulteriori informazioni, consulta Effettuare una conversazione con Converse Operazioni API.

Mistral AI i modelli sono disponibili con la licenza Apache 2.0. Per ulteriori informazioni sull'utilizzo Mistral AI modelli, vedi il Mistral AI documentazione.

Modelli supportati

Puoi usare quanto segue Mistral AI modelli con gli esempi di codice in questa pagina..

  • Mistral Large 2 (24.07)

È necessario l'ID modello per il modello che desideri utilizzare. Per ottenere l'ID del modello, vediModelli di fondazione supportati in Amazon Bedrock.

Esempi di richieste e risposte

Request

Mistral AI Esempio di modello di invoca Large 2 (24.07).

import boto3 import json bedrock = session.client('bedrock-runtime', 'us-west-2') response = bedrock.invoke_model( modelId='mistral.mistral-large-2407-v1:0', body=json.dumps({ 'messages': [ { 'role': 'user', 'content': 'which llm are you?' } ], }) ) print(json.dumps(json.loads(response['body']), indent=4))
Converse

Mistral AI Esempio di converso Large 2 (24.07).

import boto3 import json bedrock = session.client('bedrock-runtime', 'us-west-2') response = bedrock.converse( modelId='mistral.mistral-large-2407-v1:0', messages=[ { 'role': 'user', 'content': [ { 'text': 'which llm are you?' } ] } ] ) print(json.dumps(json.loads(response['body']), indent=4))
invoke_model_with_response_stream

Mistral AI Esempio di invoke_model_with_response_stream di grandi dimensioni di 2 (24.07).

import boto3 import json bedrock = session.client('bedrock-runtime', 'us-west-2') response = bedrock.invoke_model_with_response_stream( "body": json.dumps({ "messages": [{"role": "user", "content": "What is the best French cheese?"}], }), "modelId":"mistral.mistral-large-2407-v1:0" ) stream = response.get('body') if stream: for event in stream: chunk=event.get('chunk') if chunk: chunk_obj=json.loads(chunk.get('bytes').decode()) print(chunk_obj)
converse_stream

Mistral AI Esempio di converse_stream di grandi dimensioni di 2 (24.07).

import boto3 import json bedrock = session.client('bedrock-runtime', 'us-west-2') mistral_params = { "messages": [{ "role": "user","content": [{"text": "What is the best French cheese? "}] }], "modelId":"mistral.mistral-large-2407-v1:0", } response = bedrock.converse_stream(**mistral_params) stream = response.get('stream') if stream: for event in stream: if 'messageStart' in event: print(f"\nRole: {event['messageStart']['role']}") if 'contentBlockDelta' in event: print(event['contentBlockDelta']['delta']['text'], end="") if 'messageStop' in event: print(f"\nStop reason: {event['messageStop']['stopReason']}") if 'metadata' in event: metadata = event['metadata'] if 'usage' in metadata: print("\nToken usage ... ") print(f"Input tokens: {metadata['usage']['inputTokens']}") print( f":Output tokens: {metadata['usage']['outputTokens']}") print(f":Total tokens: {metadata['usage']['totalTokens']}") if 'metrics' in event['metadata']: print( f"Latency: {metadata['metrics']['latencyMs']} milliseconds")
JSON Output

Mistral AI Esempio di output Large 2 (24.07). JSON

import boto3 import json bedrock = session.client('bedrock-runtime', 'us-west-2') mistral_params = { "body": json.dumps({ "messages": [{"role": "user", "content": "What is the best French meal? Return the name and the ingredients in short JSON object."}] }), "modelId":"mistral.mistral-large-2407-v1:0", } response = bedrock.invoke_model(**mistral_params) body = response.get('body').read().decode('utf-8') print(json.loads(body))
Tooling

Mistral AI Esempio di strumenti Large 2 (24.07).

data = { 'transaction_id': ['T1001', 'T1002', 'T1003', 'T1004', 'T1005'], 'customer_id': ['C001', 'C002', 'C003', 'C002', 'C001'], 'payment_amount': [125.50, 89.99, 120.00, 54.30, 210.20], 'payment_date': ['2021-10-05', '2021-10-06', '2021-10-07', '2021-10-05', '2021-10-08'], 'payment_status': ['Paid', 'Unpaid', 'Paid', 'Paid', 'Pending'] } # Create DataFrame df = pd.DataFrame(data) def retrieve_payment_status(df: data, transaction_id: str) -> str: if transaction_id in df.transaction_id.values: return json.dumps({'status': df[df.transaction_id == transaction_id].payment_status.item()}) return json.dumps({'error': 'transaction id not found.'}) def retrieve_payment_date(df: data, transaction_id: str) -> str: if transaction_id in df.transaction_id.values: return json.dumps({'date': df[df.transaction_id == transaction_id].payment_date.item()}) return json.dumps({'error': 'transaction id not found.'}) tools = [ { "type": "function", "function": { "name": "retrieve_payment_status", "description": "Get payment status of a transaction", "parameters": { "type": "object", "properties": { "transaction_id": { "type": "string", "description": "The transaction id.", } }, "required": ["transaction_id"], }, }, }, { "type": "function", "function": { "name": "retrieve_payment_date", "description": "Get payment date of a transaction", "parameters": { "type": "object", "properties": { "transaction_id": { "type": "string", "description": "The transaction id.", } }, "required": ["transaction_id"], }, }, } ] names_to_functions = { 'retrieve_payment_status': functools.partial(retrieve_payment_status, df=df), 'retrieve_payment_date': functools.partial(retrieve_payment_date, df=df) } test_tool_input = "What's the status of my transaction T1001?" message = [{"role": "user", "content": test_tool_input}] def invoke_bedrock_mistral_tool(): mistral_params = { "body": json.dumps({ "messages": message, "tools": tools }), "modelId":"mistral.mistral-large-2407-v1:0", } response = bedrock.invoke_model(**mistral_params) body = response.get('body').read().decode('utf-8') body = json.loads(body) choices = body.get("choices") message.append(choices[0].get("message")) tool_call = choices[0].get("message").get("tool_calls")[0] function_name = tool_call.get("function").get("name") function_params = json.loads(tool_call.get("function").get("arguments")) print("\nfunction_name: ", function_name, "\nfunction_params: ", function_params) function_result = names_to_functions[function_name](**function_params) message.append({"role": "tool", "content": function_result, "tool_call_id":tool_call.get("id")}) new_mistral_params = { "body": json.dumps({ "messages": message, "tools": tools }), "modelId":"mistral.mistral-large-2407-v1:0", } response = bedrock.invoke_model(**new_mistral_params) body = response.get('body').read().decode('utf-8') body = json.loads(body) print(body) invoke_bedrock_mistral_tool()