Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.
Creazione di un endpoint di inferenza per l'esecuzione di query
Un endpoint di inferenza consente di eseguire query su un modello specifico creato dal processo di addestramento del modello. L'endpoint si collega al modello con le migliori prestazioni di un tipo specifico che il processo di addestramento è riuscito a generare. L'endpoint può quindi accettare le query Gremlin di Neptune e restituire le previsioni di quel modello per gli input nelle query. Dopo aver creato l'endpoint di inferenza, questo rimane attivo finché non viene eliminato.
Gestione degli endpoint di inferenza per Neptune ML
Dopo aver completato l'addestramento del modello sui dati esportati da Neptune, puoi creare un endpoint di inferenza usando un comando curl
(o awscurl
) come il seguente:
curl \ -X POST https://
(your Neptune endpoint)
/ml/endpoints -H 'Content-Type: application/json' \ -d '{ "id" : "(a unique ID for the new endpoint)
", "mlModelTrainingJobId": "(the model-training job-id of a completed job)
" }'
Puoi anche creare un endpoint di inferenza da un modello creato da un processo di trasformazione del modello completato, più o meno allo stesso modo:
curl \ -X POST https://
(your Neptune endpoint)
/ml/endpoints -H 'Content-Type: application/json' \ -d '{ "id" : "(a unique ID for the new endpoint)
", "mlModelTransformJobId": "(the model-transform job-id of a completed job)
" }'
I dettagli su come usare questi comandi sono spiegati in Comando endpoints, insieme alle informazioni su come recuperare lo stato di un endpoint, come eliminare un endpoint e come elencare tutti gli endpoint di inferenza.