
Real-Time Streaming User Guide

Amazon IVS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.



Amazon IVS Real-Time Streaming User Guide

Amazon IVS: Real-Time Streaming User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service 
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any 
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are 
the property of their respective owners, who may or may not be affiliated with, connected to, or 
sponsored by Amazon.



Amazon IVS Real-Time Streaming User Guide

Table of Contents

What is IVS Real-Time Streaming? ................................................................................................. 1
Global Solution, Regional Control ............................................................................................................ 2

Streaming and Viewing are Global ..................................................................................................... 2
Control is Regional ................................................................................................................................. 2

Getting Started with IVS ................................................................................................................. 4
Introduction ................................................................................................................................................... 4

Prerequisites ............................................................................................................................................. 4
Other References ..................................................................................................................................... 4
Real-Time Streaming Terminology ...................................................................................................... 5
Overview of Steps ................................................................................................................................... 5

Step 1: Set Up IAM Permissions ................................................................................................................ 6
Use an Existing Policy for IVS Permissions ........................................................................................ 6
Optional: Create a Custom Policy for Amazon IVS Permissions .................................................... 6
Create a New User and Add Permissions ........................................................................................... 8
Add Permissions to an Existing User .................................................................................................. 9

Step 2: Create a Stage .............................................................................................................................. 10
Console Instructions ............................................................................................................................. 10
CLI Instructions ...................................................................................................................................... 11

Step 3: Distribute Participant Tokens .................................................................................................... 12
Creating Tokens with a Key Pair ........................................................................................................ 12
Creating Tokens with the IVS Real-Time Streaming API .............................................................. 17

Step 4: Integrate the IVS Broadcast SDK .............................................................................................. 20
Web .......................................................................................................................................................... 20
Android .................................................................................................................................................... 21
iOS ............................................................................................................................................................ 22

Step 5: Publish and Subscribe to Video ................................................................................................ 23
IVS Console ............................................................................................................................................ 24
Web .......................................................................................................................................................... 24
Android .................................................................................................................................................... 32
iOS ............................................................................................................................................................ 57

Monitoring ...................................................................................................................................... 88
What is a Stage Session? .......................................................................................................................... 88
View Stage Sessions and Participants ................................................................................................... 88

Console Instructions ............................................................................................................................. 88

iii



Amazon IVS Real-Time Streaming User Guide

View Events for a Participant .................................................................................................................. 88
Console Instructions ............................................................................................................................. 88
CLI Instructions ...................................................................................................................................... 89

Access CloudWatch Metrics ...................................................................................................................... 90
CloudWatch Console Instructions ...................................................................................................... 90
CLI Instructions ...................................................................................................................................... 91

CloudWatch Metrics: IVS Real-Time Streaming ................................................................................... 91
IVS Broadcast SDK ......................................................................................................................... 96

Platform Requirements ............................................................................................................................. 96
Native Platforms ................................................................................................................................... 96
Desktop Browsers ................................................................................................................................. 97
Mobile Browsers (iOS and Android) .................................................................................................. 97

Webviews ..................................................................................................................................................... 98
Required Device Access ............................................................................................................................. 98
Support ......................................................................................................................................................... 98

Versioning ............................................................................................................................................... 99
Web Guide ................................................................................................................................................... 99

Getting Started ................................................................................................................................... 100
Publishing and Subscribing .............................................................................................................. 103
Known Issues and Workarounds ..................................................................................................... 120
Error Handling ..................................................................................................................................... 122

Android Guide ........................................................................................................................................... 125
Getting Started ................................................................................................................................... 126
Publishing and Subscribing .............................................................................................................. 129
Known Issues and Workarounds ..................................................................................................... 144
Error Handling ..................................................................................................................................... 145

iOS Guide ................................................................................................................................................... 148
Getting Started ................................................................................................................................... 149
Publishing and Subscribing .............................................................................................................. 151
How iOS Chooses Camera Resolution and Frame Rate .............................................................. 164
Known Issues and Workarounds ..................................................................................................... 166
Error Handling ..................................................................................................................................... 167

Custom Image Sources ........................................................................................................................... 169
Android ................................................................................................................................................. 170
iOS ......................................................................................................................................................... 170

Third-Party Camera Filters ..................................................................................................................... 171

iv



Amazon IVS Real-Time Streaming User Guide

Integrating Third-Party Camera Filters .......................................................................................... 171
BytePlus ................................................................................................................................................ 172
DeepAR ................................................................................................................................................. 174
Snap ....................................................................................................................................................... 174
Background Replacement ................................................................................................................. 199

Mobile Audio Modes ............................................................................................................................... 221
Introduction ......................................................................................................................................... 221
Audio Mode Presets ........................................................................................................................... 222
Advanced Use Cases .......................................................................................................................... 224
Integrating with Other SDKs ............................................................................................................ 227

Using Amazon EventBridge with IVS ......................................................................................... 228
Creating Amazon EventBridge Rules for Amazon IVS ...................................................................... 230
Examples: Composition State Change ................................................................................................. 230
Examples: Individual Participant Recording State Change .............................................................. 234
Examples: Stage Update ........................................................................................................................ 236

Server-Side Composition ............................................................................................................ 239
Overview .................................................................................................................................................... 239

Benefits ................................................................................................................................................. 240
Composition Lifecycle ........................................................................................................................ 241
IVS API .................................................................................................................................................. 242
Layouts .................................................................................................................................................. 243

Getting Started ........................................................................................................................................ 245
Prerequisites ........................................................................................................................................ 245
CLI Instructions ................................................................................................................................... 246

Enabling Screen Share ............................................................................................................................ 249
Create the EncoderConfiguration Resource .................................................................................. 249
Start the Composition ....................................................................................................................... 250
Stop the Composition ....................................................................................................................... 251

Recording ..................................................................................................................................... 253
Individual Participant Recording ........................................................................................................... 253
Composite Recording .............................................................................................................................. 254
Thumbnails ................................................................................................................................................ 254
Individual Participant Recording ........................................................................................................... 255

Introduction ......................................................................................................................................... 255
Workflow .............................................................................................................................................. 256
Audio-Only Recording ....................................................................................................................... 259

v



Amazon IVS Real-Time Streaming User Guide

Thumbnail-Only Recording ............................................................................................................... 260
Recording Contents ............................................................................................................................ 260
JSON Metadata Files .......................................................................................................................... 262

Composite Recording .............................................................................................................................. 268
................................................................................................................................................................ 254
Recording Contents ............................................................................................................................ 271
Bucket Policy for StorageConfiguration ........................................................................................ 272
JSON Metadata Files .......................................................................................................................... 273
Playback of Recorded Content from Private Buckets ................................................................. 280
Troubleshooting .................................................................................................................................. 285
Known Issue ......................................................................................................................................... 285

Stream Ingest ............................................................................................................................... 286
Supported Protocols ............................................................................................................................... 286
Supported Media Specifications ........................................................................................................... 287
RTMP ........................................................................................................................................................... 287

Create Stage ........................................................................................................................................ 288
Create an Ingest Configuration ....................................................................................................... 288
Publish Using an RTMP Encoder ..................................................................................................... 288

WHIP ........................................................................................................................................................... 289
OBS Guide ............................................................................................................................................ 290

Service Quotas ............................................................................................................................. 292
Service Quota Increases ......................................................................................................................... 292
API Call Rate Quotas ............................................................................................................................... 292

................................................................................................................................................................ 292
Other Quotas ............................................................................................................................................ 294

................................................................................................................................................................ 294
Streaming Optimizations ............................................................................................................ 296

Introduction ............................................................................................................................................... 296
Adaptive Streaming: Layered Encoding with Simulcast ................................................................... 296

Default Layers, Qualities, and Framerates .................................................................................... 297
Resolution of Layers .......................................................................................................................... 298
Configuring Layered Encoding with Simulcast (Publisher) ........................................................ 298
Configuring Layered Encoding with Simulcast (Subscriber) ...................................................... 299

Streaming Configurations ...................................................................................................................... 300
Changing Video Stream Bitrate ....................................................................................................... 300
Changing Video Stream Framerate ................................................................................................ 301

vi



Amazon IVS Real-Time Streaming User Guide

Optimizing Audio Bitrate and Stereo Support ............................................................................. 302
Changing Subscriber Jitter Buffer MinDelay ................................................................................. 303

Suggested Optimizations ....................................................................................................................... 304
Network Requirements ............................................................................................................... 306

Common ..................................................................................................................................................... 306
Media .......................................................................................................................................................... 306

Resources & Support ................................................................................................................... 307
Resources ................................................................................................................................................... 307
Demos ......................................................................................................................................................... 307
Support ...................................................................................................................................................... 308

Glossary ........................................................................................................................................ 309
Document History ........................................................................................................................ 327

Real-Time Streaming User Guide Changes ......................................................................................... 327
IVS Real-Time Streaming API Reference Changes ............................................................................ 352

Release Notes ............................................................................................................................... 356
February 20, 2025 ................................................................................................................................... 356

Amazon IVS Broadcast SDK: Android 1.27.0, iOS 1.27.0 (Real-Time Streaming) ................... 356
February 20, 2025 ................................................................................................................................... 357

IVS Broadcast SDK: Web 1.21.0 (Real-Time Streaming) ............................................................. 357
January 30, 2025 ..................................................................................................................................... 358

Amazon IVS Broadcast SDK: Android 1.26.0, iOS 1.26.0 (Real-Time Streaming) ................... 358
January 23, 2025 ..................................................................................................................................... 359

IVS Broadcast SDK: Web 1.20.0 (Real-Time Streaming) ............................................................. 359
December 12, 2024 ................................................................................................................................. 359

Amazon IVS Broadcast SDK: Android 1.25.0, iOS 1.25.0 (Real-Time Streaming) ................... 359
December 12, 2024 ................................................................................................................................. 362

IVS Broadcast SDK: Web 1.19.0 (Real-Time Streaming) ............................................................. 362
December 10, 2024 ................................................................................................................................. 362

Real-Time Streaming Thumbnail Configuration .......................................................................... 362
November 13, 2024 ................................................................................................................................ 363

Amazon IVS Broadcast SDK: Android 1.24.0, iOS 1.24.0 (Real-Time Streaming) ................... 363
November 12, 2024 ................................................................................................................................ 364

IVS Broadcast SDK: Web 1.18.0 (Real-Time Streaming) ............................................................. 364
October 10, 2024 .................................................................................................................................... 365

IVS Broadcast SDK: Web 1.17.0 (Real-Time Streaming) ............................................................. 365
October 10, 2024 .................................................................................................................................... 365

vii



Amazon IVS Real-Time Streaming User Guide

Amazon IVS Broadcast SDK: Android 1.23.0, iOS 1.23.0 (Real-Time Streaming) ................... 365
September 11, 2024 ............................................................................................................................... 367

Amazon IVS Broadcast SDK: Android 1.22.0, iOS 1.22.0 (Real-Time Streaming) ................... 367
September 11, 2024 ............................................................................................................................... 368

IVS Broadcast SDK: Web 1.16.0 (Real-Time Streaming) ............................................................. 368
September 9, 2024 .................................................................................................................................. 368

RTMP Ingest ......................................................................................................................................... 368
August 19, 2024 ...................................................................................................................................... 368

In-Console Publish/Subscribe .......................................................................................................... 368
August 15, 2024 ...................................................................................................................................... 369

IVS Broadcast SDK: Web 1.15.0 (Real-Time Streaming) ............................................................. 369
August 15, 2024 ...................................................................................................................................... 370

Amazon IVS Broadcast SDK: Android 1.21.0, iOS 1.21.0 (Real-Time Streaming) ................... 370
July 18, 2024 ............................................................................................................................................ 371

IVS Broadcast SDK: Web 1.14.0 (Real-Time Streaming) ............................................................. 371
July 18, 2024 ............................................................................................................................................ 372

Amazon IVS Broadcast SDK: Android 1.20.0, iOS 1.20.0 (Real-Time Streaming) ................... 372
June 26, 2024 ........................................................................................................................................... 373

Generate Participant Tokens with a Key Pair ............................................................................... 373
June 20, 2024 ........................................................................................................................................... 373

Individual Participant Recording ..................................................................................................... 373
June 13, 2024 ........................................................................................................................................... 374

Amazon IVS Broadcast SDK: Android 1.19.0, iOS 1.19.0 (Real-Time Streaming) ................... 374
June 13, 2024 ........................................................................................................................................... 375

IVS Broadcast SDK: Web 1.13.0 (Real-Time Streaming) ............................................................. 375
May 20, 2024 ............................................................................................................................................ 376

IVS Broadcast SDK: Web 1.12.0 (Real-Time Streaming) ............................................................. 376
May 16, 2024 ............................................................................................................................................ 376

Amazon IVS Broadcast SDK: Android 1.18.0, iOS 1.18.0 (Real-Time Streaming) ................... 376
May 6, 2024 .............................................................................................................................................. 378

IVS Broadcast SDK: Web 1.11.0 (Real-Time Streaming) ............................................................. 378
April 30, 2024 ........................................................................................................................................... 378

IVS Broadcast SDK: Web 1.10.1 (Real-Time Streaming) ............................................................. 378
April 30, 2024 ........................................................................................................................................... 379

Amazon IVS Broadcast SDK: Android 1.15.2, iOS 1.15.2 (Real-Time Streaming) ................... 379
April 22, 2024 ........................................................................................................................................... 380

viii



Amazon IVS Real-Time Streaming User Guide

Amazon IVS Broadcast SDK: Android 1.17.0, iOS 1.17.0 (Real-Time Streaming) ................... 380
March 21, 2024 ........................................................................................................................................ 381

Amazon IVS Broadcast SDK: Android 1.16.0, iOS 1.16.0, Web 1.10.0 (Real-Time 
Streaming) ............................................................................................................................................ 381

March 13, 2024 ........................................................................................................................................ 383
Amazon IVS Broadcast SDK: Android 1.15.1, iOS 1.15.1 (Real-Time Streaming) ................... 383

March 13, 2024 ........................................................................................................................................ 384
Server-Side Composition API Updates ........................................................................................... 384

March 8, 2024 .......................................................................................................................................... 384
Server-Side Composition Layout Updates ..................................................................................... 384

February 22, 2024 ................................................................................................................................... 384
Amazon IVS Broadcast SDK: Android 1.15.0, iOS 1.15.0, Web 1.9.0 (Real-Time 
Streaming) ............................................................................................................................................ 384

February 7, 2024 ..................................................................................................................................... 386
Server-Side Composition Layout Updates ..................................................................................... 386

February 6, 2024 ..................................................................................................................................... 388
OBS and WHIP Support .................................................................................................................... 388

February 1, 2024 ..................................................................................................................................... 388
Amazon IVS Broadcast SDK: Android 1.14.1, iOS 1.14.1, Web 1.8.0 (Real-Time 
Streaming) ............................................................................................................................................ 388

January 3, 2024 ....................................................................................................................................... 390
Amazon IVS Broadcast SDK: Android 1.13.4, iOS 1.13.4, Web 1.7.0 (Real-Time 
Streaming) ............................................................................................................................................ 390

December 7, 2023 ................................................................................................................................... 392
New CloudWatch Metrics .................................................................................................................. 392

December 4, 2023 ................................................................................................................................... 393
Amazon IVS Broadcast SDK: Android 1.13.2 and iOS 1.13.2 (Real-Time Streaming) ............ 393

November 21, 2023 ................................................................................................................................ 394
Amazon IVS Broadcast SDK: Android 1.13.1 (Real-Time Streaming) ....................................... 394

November 17, 2023 ................................................................................................................................ 395
Amazon IVS Broadcast SDK: Android 1.13.0 and iOS 1.13.0 (Real-Time Streaming) ............ 395

November 16, 2023 ................................................................................................................................ 399
Composite Recording ......................................................................................................................... 399

November 16, 2023 ................................................................................................................................ 400
Server-Side Composition .................................................................................................................. 400

October 16, 2023 .................................................................................................................................... 400

ix



Amazon IVS Real-Time Streaming User Guide

Amazon IVS Broadcast SDK: Web 1.6.0 (Real-Time Streaming) ................................................ 400
October 12, 2023 .................................................................................................................................... 401

New CloudWatch Metrics and Participant Data ........................................................................... 401
October 12, 2023 .................................................................................................................................... 401

Amazon IVS Broadcast SDK: Android 1.12.1 (Real-Time Streaming) ....................................... 401
September 14, 2023 ............................................................................................................................... 402

Amazon IVS Broadcast SDK: Web 1.5.2 (Real-Time Streaming) ................................................ 402
August 23, 2023 ...................................................................................................................................... 402

Amazon IVS Broadcast SDK: Web 1.5.1, Android 1.12.0, and iOS 1.12.0 (Real-Time 
Streaming) ............................................................................................................................................ 402

August 7, 2023 ......................................................................................................................................... 405
Amazon IVS Broadcast SDK: Web 1.5.0, Android 1.11.0, and iOS 1.11.0 ................................ 405

August 7, 2023 ......................................................................................................................................... 406
Real-Time Streaming ......................................................................................................................... 406

x



Amazon IVS Real-Time Streaming User Guide

What is Amazon IVS Real-Time Streaming?

Amazon Interactive Video Service (IVS) Real-Time Streaming gives you everything you need to add 
real-time audio and video to your applications.

Strengths:

• Real-time latency — Build applications for latency-sensitive use cases, helping your viewers stay 
connected and engaged with IVS real-time streaming. Deliver live streams with a latency that can 
be under 300 milliseconds from host to viewer.

• High concurrency — Unlock the potential of large-scale interactions with IVS real-time 
streaming. Accommodate audiences of up to 25,000 viewers and enable up to 12 hosts to take 
the virtual stage.

• Mobile optimized — IVS real-time streaming is optimized for mobile use cases, catering to a 
diverse range of devices and network capabilities. By integrating the Amazon IVS broadcast 
SDKs for Android and iOS, your users can engage as hosts or viewers, enjoying high-quality live 
streams on their mobile devices.

Use cases:

• Guest spots — Create applications that allow hosts to promote guests "on stage," turning viewers 
into hosts for real-time interactions.

• Versus (VS) mode — Produce experiences with side-by-side competitions and let viewers watch 
hosts compete in real-time.

• Audio rooms — Invite listeners to join the conversation as guests and foster deeper engagement 
in your audio rooms.

• Live video auctions — Turn auctions into interactive video events and maintain their excitement 
and integrity with real-time latency.

In addition to the product documentation here, see https://ivs.rocks/, a dedicated site to browse 
published content (demos, code samples, blog posts), estimate cost, and experience Amazon IVS 
through live demos.

1

https://ivs.rocks/


Amazon IVS Real-Time Streaming User Guide

Global Solution, Regional Control

Streaming and Viewing are Global

You can use Amazon IVS to stream to viewers worldwide:

• When you stream, Amazon IVS automatically ingests video at a location near you.

• Viewers can watch your live streams globally.

Another way of saying this is that the "data plane" is global. The data plane refers to streaming/
ingesting and viewing.

Control is Regional

While the Amazon IVS data plane is global, the "control plane" is regional. The control plane refers 
to the Amazon IVS console, API, and resources (stages).

Another way of saying this is that Amazon IVS is a "regional AWS service." That is, Amazon IVS 
resources in each region are independent of similar resources in other regions. For example, a stage 
that you create in one region is independent of stages you create in other regions.

When you use resources (e.g., create a stage), you must specify the region in which it will be 
created. Subsequently, when you manage resources, you must do so from the same region where 
they were created.

If you use the ... You specify the region by ...

Amazon IVS console Using the Select a Region drop-down in the top right of the navigation 
bar.

Amazon IVS API Using the appropriate service endpoint. See the Amazon IVS Real-Time 
Streaming API Reference.

(If you access the API through an SDK, set up the SDK’s region
parameter. See Tools to Build on AWS.)

AWS CLI Either:

• Appending --region <aws-region>  to your CLI command.

Global Solution, Regional Control 2

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/Welcome.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/Welcome.html
https://aws.amazon.com/developer/tools/


Amazon IVS Real-Time Streaming User Guide

If you use the ... You specify the region by ...

• Putting the region in your local AWS configuration file.

Remember, regardless of the region in which a stage was created, you can stream to Amazon IVS 
from anywhere, and viewers can watch from anywhere.

Control is Regional 3



Amazon IVS Real-Time Streaming User Guide

Getting Started with IVS Real-Time Streaming

This document takes you through the steps involved in integrating Amazon IVS Real-Time 
Streaming into your app.

Topics

• Introduction to IVS Real-Time Streaming

• Step 1: Set Up IAM Permissions

• Step 2: Create a Stage

• Step 3: Distribute Participant Tokens

• Step 4: Integrate the IVS Broadcast SDK

• Step 5: Publish and Subscribe to Video

Introduction to IVS Real-Time Streaming

This section lists prerequisites for using real-time streaming and introduces key terminology.

Prerequisites

Before you use Real-Time Streaming for the first time, complete the following tasks. For 
instructions, see Getting Started with IVS Low-Latency Streaming.

• Create an AWS Account

• Set Up Root and Administrative Users

Other References

• IVS Web Broadcast SDK Reference

• IVS Android Broadcast SDK Reference

• IVS iOS Broadcast SDK Reference

• IVS Real-Time Streaming API Reference

Introduction 4

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/getting-started.html
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-broadcast-docs/latest/android/
https://aws.github.io/amazon-ivs-broadcast-docs/latest/ios/
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/Welcome.html


Amazon IVS Real-Time Streaming User Guide

Real-Time Streaming Terminology

Term Description

Stage A virtual space where 
participants can exchange 
video in real time.

Host A participant that sends local 
video to the stage.

Viewer A participant that receives 
video of the hosts.

Participant A user connected to the stage 
as a host or viewer.

Participant token A token that authenticates a 
participant when they join a 
stage.

Broadcast SDK A client library that enables 
participants to send and 
receive video.

Overview of Steps

1. Set up IAM Permissions — Create an AWS Identity and Access Management (IAM) policy that 
gives users a basic set of permissions and assign that policy to users.

2. Create a stage — Create a virtual space where participants can exchange video in real time.

3. Distribute participant tokens — Send tokens to participants so they can join your stage.

4. Integrate the IVS Broadcast SDK — Add the broadcast SDK to your app to enable participants to 
send and receive video: the section called “Web”, the section called “Android”, and the section 
called “iOS”.

Real-Time Streaming Terminology 5



Amazon IVS Real-Time Streaming User Guide

5. Publish and subscribe to video — Send your video to the stage and receive video from other 
hosts: IVS console, the section called “Web”, the section called “Android”, and the section called 
“iOS”.

Step 1: Set Up IAM Permissions

Next, you must create an AWS Identity and Access Management (IAM) policy that gives users a 
basic set of permissions (e.g., to create an Amazon IVS stage and create participant tokens) and 
assign that policy to users. You can either assign the permissions when creating a new user or add 
permissions to an existing user. Both procedures are given below.

For more information (for example, to learn about IAM users and policies, how to attach a policy to 
a user, and how to constrain what users can do with Amazon IVS), see:

• Creating an IAM User in the IAM User Guide

• The information in Amazon IVS Security on IAM and "Managed Policies for IVS."

• The IAM information in Amazon IVS Security

You can either use an existing AWS managed policy for Amazon IVS or create a new policy that 
customizes the permissions you want to grant to a set of users, groups, or roles. Both approaches 
are described below.

Use an Existing Policy for IVS Permissions

In most cases, you will want to use an AWS managed policy for Amazon IVS. They are described 
fully in the Managed Policies for IVS section of IVS Security.

• Use the IVSReadOnlyAccess AWS managed policy to give your application developers access 
to all IVS Get and List API operations (for both low-latency and real-time streaming).

• Use the IVSFullAccess AWS managed policy to give your application developers access to all 
IVS API operations (for both low-latency and real-time streaming).

Optional: Create a Custom Policy for Amazon IVS Permissions

Follow these steps:

Step 1: Set Up IAM Permissions 6

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#Using_CreateUser_console
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/security.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/security.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/security-iam-awsmanpol.html


Amazon IVS Real-Time Streaming User Guide

1. Sign in to the AWS Management Console and open the IAM console at https:// 
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies, then choose Create policy. A Specify permissions
window opens..

3. In the Specify permissions window, choose the JSON tab, and copy and paste the following 
IVS policy to the Policy editor text area. (The policy does not include all Amazon IVS actions. 
You can add/delete (Allow/Deny) operation access permissions as needed. See IVS Real-Time 
Streaming API Reference for details on IVS operations.)

{ 
   "Version": "2012-10-17", 
   "Statement": [ 
      { 
         "Effect": "Allow", 
         "Action": [ 
            "ivs:CreateStage", 
            "ivs:CreateParticipantToken", 
            "ivs:GetStage", 
            "ivs:GetStageSession", 
            "ivs:ListStages", 
            "ivs:ListStageSessions", 
            "ivs:CreateEncoderConfiguration", 
            "ivs:GetEncoderConfiguration", 
            "ivs:ListEncoderConfigurations", 
            "ivs:GetComposition", 
            "ivs:ListCompositions", 
            "ivs:StartComposition", 
            "ivs:StopComposition" 
          ], 
          "Resource": "*" 
      }, 
      { 
         "Effect": "Allow", 
         "Action": [ 
            "cloudwatch:DescribeAlarms", 
            "cloudwatch:GetMetricData", 
            "s3:DeleteBucketPolicy", 
            "s3:GetBucketLocation", 
            "s3:GetBucketPolicy", 
            "s3:PutBucketPolicy", 
            "servicequotas:ListAWSDefaultServiceQuotas", 
            "servicequotas:ListRequestedServiceQuotaChangeHistoryByQuota", 

Optional: Create a Custom Policy for Amazon IVS Permissions 7

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/Welcome.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/Welcome.html


Amazon IVS Real-Time Streaming User Guide

            "servicequotas:ListServiceQuotas", 
            "servicequotas:ListServices", 
            "servicequotas:ListTagsForResource" 
         ], 
         "Resource": "*" 
      } 
   ]
}

4. Still in the Specify permissions window, choose Next (scroll to the bottom of the window to see 
this). A Review and create window opens.

5. On the Review and create window, enter a Policy name and optionally add a Description. Make 
a note of the policy name, as you will need it when creating users (below). Choose Create policy
(at the bottom of the window).

6. You are returned to the IAM console window, where you should see a banner confirming that 
your new policy was created.

Create a New User and Add Permissions

IAM User Access Keys

IAM access keys consist of an access key ID and a secret access key. They are used to sign 
programmatic requests that you make to AWS. If you don't have access keys, you can create them 
from the AWS Management Console. As a best practice, do not create root-user access keys.

The only time that you can view or download a secret access key is when you create access keys. You 
cannot recover them later. However, you can create new access keys at any time; you must have 
permissions to perform the required IAM actions.

Always store access keys securely. Never share them with third parties (even if an inquiry seems to 
come from Amazon). For more information, see Managing access keys for IAM users in the IAM User 
Guide.

Procedure

Follow these steps:

1. In the navigation pane, choose Users, then choose Create user. A Specify user details window 
opens.

Create a New User and Add Permissions 8

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html


Amazon IVS Real-Time Streaming User Guide

2. In the Specify user details window:

a. Under User details, type the new User name to be created.

b. Check Provide user access to the AWS Management Console.

c. Under Console password, select Autogenerated password.

d. Check Users must create a new password at next sign-in.

e. Choose Next. A Set permissions window opens.

3. Under Set permissions, select Attach policies directly. A Permissions policies window opens.

4. In the search box, enter an IVS policy name (either an AWS managed policy or your previously 
created custom policy). When it is found, check the box to select the policy.

5. Choose Next (at the bottom of the window). A Review and create window opens.

6. On the Review and create window, confirm that all user details are correct, then choose Create 
user (at the bottom of the window).

7. The Retrieve password window opens, containing your Console sign-in details. Save this 
information securely for future reference. When you are done, choose Return to users list.

Add Permissions to an Existing User

Follow these steps:

1. Sign in to the AWS Management Console and open the IAM console at https:// 
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users, then choose an existing user name to be updated. (Choose 
the name by clicking on it; do not check the selection box.)

3. On the Summary page, on the Permissions tab, choose Add permissions. An Add permissions
window opens.

4. Select Attach existing policies directly. A Permissions policies window opens.

5. In the search box, enter an IVS policy name (either an AWS managed policy or your previously 
created custom policy). When the policy is found, check the box to select the policy.

6. Choose Next (at the bottom of the window). A Review window opens.

7. On the Review window, select Add permissions (at the bottom of the window).

8. On the Summary page, confirm that the IVS policy was added.

Add Permissions to an Existing User 9

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/


Amazon IVS Real-Time Streaming User Guide

Step 2: Create a Stage

A stage is a virtual space where participants can exchange video in real time. It is the foundational 
resource of the Real-Time Streaming API. You can create a stage using either the console or the 
CreateStage operation.

We recommend that where possible, you create a new stage for each logical session and delete 
it when done, rather than keeping around old stages for possible reuse. If stale resources (old 
stages, not to be reused) are not cleaned up, you're likely to hit the limit of the maximum number 
of stages faster.

Console Instructions

1. Open the Amazon IVS console.

(You also can access the Amazon IVS console through the AWS Management Console.)

2. On the left navigation pane, select Stages, then select Create stage. The Create stage window 
appears.

Step 2: Create a Stage 10

https://console.aws.amazon.com/ivs
https://console.aws.amazon.com/


Amazon IVS Real-Time Streaming User Guide

3. Optionally enter a Stage name. Select Create stage to create the stage. The stage details page 
appears, for the new stage.

CLI Instructions

To install the AWS CLI, see Install or update to the latest version of the AWS CLI.

Now you can use the CLI to create and manage resources. The stage API is under the ivs-realtime 
namespace. For example, to create a stage:

aws ivs-realtime create-stage --name "test-stage"

The response is:

{ 

CLI Instructions 11

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html


Amazon IVS Real-Time Streaming User Guide

   "stage": { 
      "arn": "arn:aws:ivs:us-west-2:376666121854:stage/VSWjvX5XOkU3", 
      "name": "test-stage" 
   }
}

Step 3: Distribute Participant Tokens

Now that you have a stage, you need to create tokens and distribute them to participants, to 
enable the participants to join the stage and start sending and receiving video. There are two 
approaches to generating tokens:

• Create tokens with a key pair.

• Create tokens with the IVS real-time-streaming API.

Both of these approaches are described below.

Creating Tokens with a Key Pair

You can create tokens on your server application and distribute them to participants to join a stage. 
You need to generate an ECDSA public/private key pair to sign the JWTs and import the public key 
to IVS. Then IVS can verify the tokens at the time of stage join.

IVS does not offer key expiry. If your private key is compromised, you must delete the old public 
key.

Create a New Key Pair

There are various ways to create a key pair. Below, we give two examples.

To create a new key pair in the console, follow these steps:

1. Open the Amazon IVS console. Choose your stage’s region if you are not already on it.

2. In the left navigation menu, choose Real-time streaming > Public keys.

3. Choose Create public key. A Create public key dialog appears.

4. Follow the prompts and choose Create.

5. Amazon IVS generates a new key pair. The public key is imported as a public key resource 
and the private key is immediately made available for download. The public key can also be 
downloaded later if necessary.

Step 3: Distribute Participant Tokens 12

https://console.aws.amazon.com/ivs


Amazon IVS Real-Time Streaming User Guide

Amazon IVS generates the key on the client side and does not store the private key. Be sure you 
save the key; you cannot retrieve it later.

To create a new P384 EC key pair with OpenSSL (you may have to install OpenSSL first), follow 
these steps. This process enables you to access both the private and public keys. You need the 
public key only if you want to test verification of your tokens.

openssl ecparam -name secp384r1 -genkey -noout -out priv.pem
openssl ec -in priv.pem -pubout -out public.pem

Now import your new public key, using the instructions below.

Import the Public Key

Once you have a key pair, you can import the public key into IVS. The private key is not needed by 
our system but is employed by you to sign tokens.

To import an existing public key with the console:

1. Open the Amazon IVS console. Choose your stage’s region if you are not already on it.

2. In the left navigation menu, choose Real-time streaming > Public keys.

3. Choose Import. An Import public key dialog appears.

4. Follow the prompts and choose Import.

5. Amazon IVS imports your public key and generates a public key resource.

To import an existing public key with the CLI:

aws ivs-realtime import-public-key --public-key-material "`cat public.pem`" --region 
 <aws-region>

You can omit --region <aws-region> if the region is in your local AWS configuration file.

Here is an example response:

{ 
    "publicKey": { 
        "arn": "arn:aws:ivs:us-west-2:123456789012:public-key/f99cde61-c2b0-4df3-8941-
ca7d38acca1a", 

Creating Tokens with a Key Pair 13

https://www.openssl.org/source/
https://console.aws.amazon.com/ivs


Amazon IVS Real-Time Streaming User Guide

        "fingerprint": "98:0d:1a:a0:19:96:1e:ea:0a:0a:2c:9a:42:19:2b:e7", 
        "publicKeyMaterial": "-----BEGIN PUBLIC KEY-----
\nMHYwEAYHKoZIzj0CAQYFK4EEACIDYgAEVjYMV+P4ML6xemanCrtse/FDwsNnpYmS
\nS6vRV9Wx37mjwi02hObKuCJqpj7x0lpz0bHm5v1JBvdZYAd/r2LR5aChK+/GM2Wj
\nl8MG9NJIVFaw1u3bvjEjzTASSfS1BDX1\n-----END PUBLIC KEY-----\n", 
        "tags": {} 
    }
}

API Request

POST /ImportPublicKey HTTP/1.1
{ 
  "publicKeyMaterial": "<pem file contents>"
}

Generate and Sign the Token

For details on working with JWTs and the supported libraries for signing tokens, visit jwt.io. On the 
jwt.io interface, you must enter your private key to sign tokens. The public key is needed only if you 
want to verify tokens.

All JWTs have three fields: header, payload, and signature.

The JSON schemas for the JWT’s header and payload are described below. Alternatively you can 
copy a sample JSON from the IVS console. To get the header and payload JSON from the IVS 
console:

1. Open the Amazon IVS console. Choose your stage’s region if you are not already on it.

2. In the left navigation menu, choose Real-time streaming > Stages.

3. Select the stage you want to use. Select View details.

4. In the Participant tokens section, select the drop-down next to Create token.

5. Select Build token header and payload.

6. Fill in the form and copy the JWT header and payload shown at the bottom of the popup.

Token Schema: Header

The header specifies:

Creating Tokens with a Key Pair 14

https://jwt.io/
https://console.aws.amazon.com/ivs


Amazon IVS Real-Time Streaming User Guide

• alg is the signing algorithm. This is ES384, an ECDSA signature algorithm that uses the SHA-384 
hash algorithm.

• typ is the token type, JWT.

• kid is the ARN of the public key used to sign the token. It must be the same ARN returned from 
the  GetPublicKey API request.

{ 
  "alg": "ES384", 
  "typ": "JWT" 
  “kid”: “arn:aws:ivs:123456789012:us-east-1:public-key/abcdefg12345”
}

Token Schema: Payload

The payload contains data specific to IVS. All fields except user_id are mandatory.

• RegisteredClaims in the JWT specification are reserved claims that need to be provided for 
stage token to be valid:

• exp (expiration time) is a Unix UTC timestamp for when the token expires. (A Unix timestamp 
is a numeric value representing the number of seconds from 1970-01-01T00:00:00Z UTC 
until the specified UTC date/time, ignoring leap seconds.) The token is validated when 
the participant joins a stage. IVS provides tokens with a default 12-hour TTL, which we 
recommend; this can be extended to a maximum of 14 days from the issued at time (iat). This 
must be an integer type value.

• iat (issued at time) is a Unix UTC timestamp for when the JWT was issued. (See the note for
exp about Unix timestamps.) It must be an integer type value.

• jti (JWT ID) is the participant ID used for tracking and referring to the participant to whom 
the token is granted. Every token must have a unique participant ID. It must be a case-sensitive 
string, up to 64 characters long, containing only alphanumeric, hyphen (-), and underscore (_) 
characters. No other special characters are allowed.

• user_id is an optional, customer-assigned name to help identify the token; this can be used to 
link a participant to a user in the customer’s own systems. This should match the userId field in 
the CreateParticipantToken API request. It can be any UTF-8 encoded text and is a string of up to 
128 characters. This field is exposed to all stage participants and should not be used for personally 
identifying, confidential, or sensitive information.

Creating Tokens with a Key Pair 15

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_CreateParticipantToken.html


Amazon IVS Real-Time Streaming User Guide

• resource is the ARN of the stage; e.g., arn:aws:ivs:us-east-1:123456789012:stage/
oRmLNwuCeMlQ.

• topic is the ID of the stage, which can be extracted from stage ARN. For example, if the stage 
ARN is arn:aws:ivs:us-east-1:123456789012:stage/oRmLNwuCeMlQ, the stage ID is
oRmLNwuCeMlQ.

• events_url must be the events endpoint returned from the CreateStage or GetStage 
operation. We recommend that you cache this value at stage-creation time; the value can be 
cached for up to 14 days. An example value is wss://global.events.live-video.net.

• whip_url must be the WHIP endpoint returned from the CreateStage or GetStage operation. 
We recommend that you cache this value at stage-creation time; the value can be cached for 
up to 14 days. An example value is https://453fdfd2ad24df.global-bm.whip.live-
video.net.

• capabilities specifies the capabilities of the token; valid values are allow_publish and
allow_subscribe. For subscribe-only tokens, set only allow_subscribe to true.

• attributes is an optional field where you can specify application-provided attributes to 
encode into the token and attach to a stage. Map keys and values can contain UTF-8 encoded 
text. The maximum length of this field is 1 KB total. This field is exposed to all stage participants 
and should not be used for personally identifying, confidential, or sensitive information.

• version must be 1.0.

{ 
  "exp": 1697322063, 
  "iat": 1697149263, 
  "jti": "Mx6clRRHODPy", 
  "user_id": "<optional_customer_assigned_name>", 
  "resource": "<stage_arn>", 
  "topic": "<stage_id>", 
  "events_url": "wss://global.events.live-video.net", 
  "whip_url": "https://114ddfabadaf.global-bm.whip.live-video.net", 
  "capabilities": { 
    "allow_publish": true, 
    "allow_subscribe": true 
  }, 
  "attributes": { 
    "optional_field_1": "abcd1234", 
    "optional_field_2": "false" 
  }, 
  "version": "1.0"

Creating Tokens with a Key Pair 16



Amazon IVS Real-Time Streaming User Guide

}

Token Schema: Signature

To create the signature, use the private key with the algorithm specified in the header (ES384) to 
sign the encoded header and encoded payload.

ECDSASHA384( 
  base64UrlEncode(header) + "." + 
  base64UrlEncode(payload), 
  <private-key>
)

Instructions

1. Generate the token’s signature with an ES384 signing algorithm and a private key that is 
associated with the public key provided to IVS.

2. Assemble the token.

base64UrlEncode(header) + "." +
base64UrlEncode(payload) + "." +
base64UrlEncode(signature)

Creating Tokens with the IVS Real-Time Streaming API

As shown above, a client application asks your server application for a token, and the server 
application calls CreateParticipantToken using an AWS SDK or SigV4 signed request. Since 

Creating Tokens with the IVS Real-Time Streaming API 17



Amazon IVS Real-Time Streaming User Guide

AWS credentials are used to call the API, the token should be generated in a secure server-side 
application, not the client-side application.

When creating a participant token, you can optionally specify attributes and/or capabilities:

• You can specify application-provided attributes to encode into the token and attach to a stage. 
Map keys and values can contain UTF-8 encoded text. The maximum length of this field is 
1 KB total. This field is exposed to all stage participants and should not be used for personally 
identifying, confidential, or sensitive information.

• You can specify capabilities enabled by the token. The default is PUBLISH and SUBSCRIBE, 
which allows the participant to send and receive audio and video, but you could issue tokens 
with a subset of capabilities. For example, you could issue a token with only the SUBSCRIBE
capability for moderators. In that case, the moderators could see the participants that are 
sending video but not send their own video.

For details, see CreateParticipantToken.

You can create participant tokens via the console or CLI for testing and development, but most 
likely you will want to create them with the AWS SDK in your production environment.

You will need a way to distribute tokens from your server to each client (e.g., via an API request). 
We do not provide this functionality. For this guide, you can simply copy and paste the tokens into 
client code in the following steps.

Important: Treat tokens as opaque; i.e., do not build functionality based on token contents. The 
format of tokens could change in the future.

Console Instructions

1. Navigate to the stage you created in the prior step.

2. Select Create token. The Create token window appears.

3. Enter a user ID to be associated with the token. This can be any UTF-8 encoded text.

4. Select Create.

5. Copy the token. Important: Be sure to save the token; IVS does not store it and you cannot retrieve 
it later.

Creating Tokens with the IVS Real-Time Streaming API 18

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_CreateParticipantToken.html


Amazon IVS Real-Time Streaming User Guide

CLI Instructions

Creating a token with the AWS CLI requires that you first download and configure the CLI on your 
machine. For details, see the AWS Command Line Interface User Guide. Note that generating 
tokens with the AWS CLI is good for testing purposes, but for production use, we recommend that 
you generate tokens on the server side with the AWS SDK (see instructions below).

1. Run the create-participant-token command with the stage ARN. Include any or all of the 
following capabilities: "PUBLISH", "SUBSCRIBE".

aws ivs-realtime create-participant-token --stage-arn arn:aws:ivs:us-
west-2:376666121854:stage/VSWjvX5XOkU3 --capabilities '["PUBLISH", "SUBSCRIBE"]'

2. This returns a participant token:

{ 
    "participantToken": { 
        "capabilities": [ 
            "PUBLISH", 
            "SUBSCRIBE" 
        ], 
        "expirationTime": "2023-06-03T07:04:31+00:00", 
        "participantId": "tU06DT5jCJeb", 
        "token": 
 "eyJhbGciOiJLTVMiLCJ0eXAiOiJKV1QifQ.eyJleHAiOjE2NjE1NDE0MjAsImp0aSI6ImpGcFdtdmVFTm9sUyIsInJlc291cmNlIjoiYXJuOmF3czppdnM6dXMtd2VzdC0yOjM3NjY2NjEyMTg1NDpzdGFnZS9NbzhPUWJ0RGpS123JldmVudHNfdXJsIjoid3NzOi8vdXMtd2VzdC0yLmV2ZW50cy5saXZlLXZpZGVvLm5ldCIsIndoaXBfdXJsIjoiaHR0cHM6Ly82NmY3NjVhYzgzNzcuZ2xvYmFsLndoaXAubGl2ZS12aWRlby5uZXQiLCJjYXBhYmlsaXRpZXMiOnsiYWxsb3dfcHVibGlzaCI6dHJ1ZSwiYWxsb3dfc3Vic2NyaWJlIjp0cnVlfX0.MGQCMGm9affqE3B2MAb_DSpEm0XEv25hfNNhYn5Um4U37FTpmdc3QzQKTKGF90swHqVrDgIwcHHHIDY3c9eanHyQmcKskR1hobD0Q9QK_GQETMQS54S-
TaKjllW9Qac6c5xBrdAk"    }
}

3. Save this token. You will need this to join the stage and send and receive video.

AWS SDK Instructions

You can use the AWS SDK to create tokens. Below are instructions for the AWS SDK using 
JavaScript.

Important: This code must be executed on the server side and its output passed to the client.

Prerequisite: To use the code sample below, you need to install the aws-sdk/client-ivs-realtime 
package. For details, see  Getting started with the AWS SDK for JavaScript.

Creating Tokens with the IVS Real-Time Streaming API 19

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/getting-started.html


Amazon IVS Real-Time Streaming User Guide

import { IVSRealTimeClient, CreateParticipantTokenCommand } from "@aws-sdk/client-ivs-
realtime";

const ivsRealtimeClient = new IVSRealTimeClient({ region: 'us-west-2' });
const stageArn = 'arn:aws:ivs:us-west-2:123456789012:stage/L210UYabcdef';
const createStageTokenRequest = new CreateParticipantTokenCommand({ 
  stageArn,
});
const response = await ivsRealtimeClient.send(createStageTokenRequest);
console.log('token', response.participantToken.token);

Step 4: Integrate the IVS Broadcast SDK

IVS provides a broadcast SDK for web, Android, and iOS that you can integrate into your 
application. The broadcast SDK is used for both sending and receiving video. If you have configured 
RTMP Ingest for your stage, you may use any encoder that can broadcast to an RTMP endpoint 
(e.g., OBS or ffmpeg).

In this section, we write a simple application that enables two or more participants to interact in 
real time. The steps below guide you through creating an app called BasicRealTime. The full app 
code is on CodePen and GitHub:

• Web: https://codepen.io/amazon-ivs/pen/ZEqgrpo

• Android: https://github.com/aws-samples/amazon-ivs-real-time-streaming-android-samples

• iOS: https://github.com/aws-samples/amazon-ivs-real-time-streaming-ios-samples

Web

Set Up Files

To start, set up your files by creating a folder and an initial HTML and JS file:

mkdir realtime-web-example
cd realtime-web-example
touch index.html
touch app.js

You can install the broadcast SDK using a script tag or npm. Our example uses the script tag for 
simplicity but is easy to modify if you choose to use npm later.

Step 4: Integrate the IVS Broadcast SDK 20

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-stream-ingest.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-stream-ingest.html
https://codepen.io/amazon-ivs/pen/ZEqgrpo
https://github.com/aws-samples/amazon-ivs-real-time-streaming-android-samples
https://github.com/aws-samples/amazon-ivs-real-time-streaming-ios-samples


Amazon IVS Real-Time Streaming User Guide

Using a Script Tag

The Web broadcast SDK is distributed as a JavaScript library and can be retrieved at https://web-
broadcast.live-video.net/1.21.0/amazon-ivs-web-broadcast.js.

When loaded via <script> tag, the library exposes a global variable in the window scope named
IVSBroadcastClient.

Using npm

To install the npm package:

npm install amazon-ivs-web-broadcast

You can now access the IVSBroadcastClient object:

const { Stage } = IVSBroadcastClient;

Android

Create the Android Project

1. In Android Studio, create a New Project.

2. Choose Empty Views Activity.

Note: In some older versions of Android Studio, the View-based activity is called Empty Activity. 
If your Android Studio window shows Empty Activity and does not show Empty Views Activity, 
select Empty Activity. Otherwise, don't select Empty Activity, since we'll be using View APIs 
(not Jetpack Compose).

3. Give your project a Name, then select Finish.

Install the Broadcast SDK

To add the Amazon IVS Android broadcast library to your Android development environment, 
add the library to your module’s build.gradle file, as shown here (for the latest version of the 
Amazon IVS broadcast SDK). In newer projects the mavenCentral repository may already be 
included in your settings.gradle file, if that is the case you can omit the repositories block. 
For our sample, we’ll also need to enable data binding in the android block.

Android 21

https://web-broadcast.live-video.net/1.21.0/amazon-ivs-web-broadcast.js
https://web-broadcast.live-video.net/1.21.0/amazon-ivs-web-broadcast.js


Amazon IVS Real-Time Streaming User Guide

android { 
    dataBinding.enabled true
}

repositories { 
    mavenCentral()
} 
  
dependencies { 
     implementation 'com.amazonaws:ivs-broadcast:1.27.0:stages@aar'
}

Alternately, to install the SDK manually, download the latest version from this location:

https://search.maven.org/artifact/com.amazonaws/ivs-broadcast

iOS

Create the iOS Project

1. Create a new Xcode project.

2. For Platform, select iOS.

3. For Application, select App.

4. Enter the Product Name of your app, then select Next.

5. Choose (navigate to) a directory in which to save the project, then select Create.

Next you need to bring in the SDK. We recommend that you integrate the broadcast SDK via 
CocoaPods. Alternatively, you can manually add the framework to your project. Both methods are 
described below.

Recommended: Install the Broadcast SDK (CocoaPods)

Assuming your project name is BasicRealTime, create a Podfile in the project folder with the 
following contents and then run pod install:

target 'BasicRealTime' do 
  # Comment the next line if you don't want to use dynamic frameworks 
  use_frameworks! 

iOS 22

https://search.maven.org/artifact/com.amazonaws/ivs-broadcast


Amazon IVS Real-Time Streaming User Guide

  # Pods for BasicRealTime 
  pod 'AmazonIVSBroadcast/Stages'
end

Alternate Approach: Install the Framework Manually

1. Download the latest version from  https://broadcast.live-video.net/1.27.0/
AmazonIVSBroadcast-Stages.xcframework.zip.

2. Extract the contents of the archive. AmazonIVSBroadcast.xcframework contains the SDK for 
both device and simulator.

3. Embed AmazonIVSBroadcast.xcframework by dragging it into the Frameworks, Libraries, 
and Embedded Content section of the General tab for your application target:

Configure Permissions

You need to update your project’s Info.plist to add two new entries for
NSCameraUsageDescription and NSMicrophoneUsageDescription. For the values, provide 
user-facing explanations of why your app is asking for camera and microphone access.

Step 5: Publish and Subscribe to Video

You can publish/subscribe (real-time) to IVS with:

Step 5: Publish and Subscribe to Video 23

https://broadcast.live-video.net/1.27.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.27.0/AmazonIVSBroadcast-Stages.xcframework.zip


Amazon IVS Real-Time Streaming User Guide

• The native IVS broadcast SDKs, which support WebRTC and RTMPS. We recommend this, 
especially for production scenarios. See the details below for Web, Android, and iOS.

• The Amazon IVS console — This is suitable for testing streams. See below.

• Other streaming software and hardware encoders — You can use any streaming encoder that 
supports the RTMP, RTMPS, or SRT protocols. See Stream Ingest for more information.

IVS Console

1. Open the Amazon IVS console.

(You can also access the Amazon IVS console through the AWS Management Console.)

2. In the navigation pane, select Stages. (If the nav pane is collapsed, expand it by selecting the 
hamburger icon.)

3. Select the stage to which you want to subscribe or publish, to go to its details page.

4. To subscribe: If the stage has one or more publishers, you can subscribe to it by pressing the
Subscribe button, under the Subscribe tab. (Tabs are below the General Configuration section.)

5. To publish:

a. Select the Publish tab.

b. You will be prompted to grant the IVS console access to your camera and microphone; Allow
those permissions.

c. Toward the bottom of the Publish tab, use the dropdown boxes to select input devices for the 
microphone and camera.

d. To begin publishing, select Start publishing.

e. To view your published content, go back to the Subscribe tab.

f. To stop publishing, go to the Publish tab and press the Stop publishing button towards the 
bottom.

Note: Subscribing and publishing consume resources, and you will incur an hourly rate for the time 
you are connected to the stage. To learn more, see Real-Time Streaming on the IVS Pricing page.

Publish & Subscribe with the IVS Web Broadcast SDK

This section takes you through the steps involved in publishing and subscribing to a stage using 
your web app.

IVS Console 24

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/getting-started-set-up-streaming.html#broadcast-sdk
https://console.aws.amazon.com/ivs
https://console.aws.amazon.com/
https://aws.amazon.com/ivs/pricing/#Real-Time_Streaming


Amazon IVS Real-Time Streaming User Guide

Create HTML Boilerplate

First let's create the HTML boilerplate and import the library as a script tag:

<!DOCTYPE html>
<html lang="en">

<head> 
  <meta charset="UTF-8" /> 
  <meta http-equiv="X-UA-Compatible" content="IE=edge" /> 
  <meta name="viewport" content="width=device-width, initial-scale=1.0" /> 

  <!-- Import the SDK --> 
  <script src="https://web-broadcast.live-video.net/1.21.0/amazon-ivs-web-
broadcast.js"></script>
</head>

<body>

<!-- TODO - fill in with next sections -->
<script src="./app.js"></script>

</body>
</html>

Accept Token Input and Add Join/Leave Buttons

Here we fill in the body with our input controls. These take as input the token, and they set up Join
and Leave buttons. Typically applications will request the token from your application's API, but for 
this example you'll copy and paste the token into the token input.

<h1>IVS Real-Time Streaming</h1>
<hr />

<label for="token">Token</label>
<input type="text" id="token" name="token" />
<button class="button" id="join-button">Join</button>
<button class="button" id="leave-button" style="display: none;">Leave</button>
<hr />

Web 25



Amazon IVS Real-Time Streaming User Guide

Add Media Container Elements

These elements will hold the media for our local and remote participants. We add a script tag to 
load our application's logic defined in app.js.

<!-- Local Participant -->
<div id="local-media"></div>

<!-- Remote Participants -->
<div id="remote-media"></div>

<!-- Load Script -->
<script src="./app.js"></script>

This completes the HTML page and you should see this when loading index.html in a browser:

Create app.js

Let's move to defining the contents of our app.js file. Begin by importing all the requisite 
properties from the SDK's global:

const { 
  Stage, 
  LocalStageStream, 
  SubscribeType, 
  StageEvents, 
  ConnectionState, 
  StreamType
} = IVSBroadcastClient;

Create Application Variables

Establish variables to hold references to our Join and Leave button HTML elements and store state 
for the application:

Web 26



Amazon IVS Real-Time Streaming User Guide

let joinButton = document.getElementById("join-button");
let leaveButton = document.getElementById("leave-button");

// Stage management
let stage;
let joining = false;
let connected = false;
let localCamera;
let localMic;
let cameraStageStream;
let micStageStream;

Create joinStage 1: Define the Function and Validate Input

The joinStage function takes the input token, creates a connection to the stage, and begins to 
publish video and audio retrieved from getUserMedia.

To start, we define the function and validate the state and token input. We'll flesh out this function 
in the next few sections.

const joinStage = async () => { 
  if (connected || joining) { 
    return; 
  } 
  joining = true; 

  const token = document.getElementById("token").value; 

  if (!token) { 
    window.alert("Please enter a participant token"); 
    joining = false; 
    return; 
  } 

  // Fill in with the next sections
};

Create joinStage 2: Get Media to Publish

Here is the media that will be published to the stage:

async function getCamera() { 

Web 27



Amazon IVS Real-Time Streaming User Guide

  // Use Max Width and Height 
  return navigator.mediaDevices.getUserMedia({ 
    video: true, 
    audio: false 
  });
}

async function getMic() { 
  return navigator.mediaDevices.getUserMedia({ 
    video: false, 
    audio: true 
  });
}

// Retrieve the User Media currently set on the page
localCamera = await getCamera();
localMic = await getMic();

// Create StageStreams for Audio and Video
cameraStageStream = new LocalStageStream(localCamera.getVideoTracks()[0]);
micStageStream = new LocalStageStream(localMic.getAudioTracks()[0]);

Create joinStage 3: Define the Stage Strategy and Create the Stage

This stage strategy is the heart of the decision logic that the SDK uses to decide what to publish 
and which participants to subscribe to. For more information on the function's purpose, see
Strategy.

This strategy is simple. After joining the stage, publish the streams we just retrieved and subscribe 
to every remote participant's audio and video:

const strategy = { 
  stageStreamsToPublish() { 
    return [cameraStageStream, micStageStream]; 
  }, 
  shouldPublishParticipant() { 
    return true; 
  }, 
  shouldSubscribeToParticipant() { 
    return SubscribeType.AUDIO_VIDEO; 
  }
};

Web 28



Amazon IVS Real-Time Streaming User Guide

stage = new Stage(token, strategy);

Create joinStage 4: Handle Stage Events and Render Media

Stages emit many events. We'll need to listen to the STAGE_PARTICIPANT_STREAMS_ADDED
and STAGE_PARTICIPANT_LEFT to render and remove media to and from the page. A more 
exhaustive set of events are listed in Events.

Note that we create four helper functions here to assist us in managing necessary DOM elements:
setupParticipant, teardownParticipant, createVideoEl, and createContainer.

stage.on(StageEvents.STAGE_CONNECTION_STATE_CHANGED, (state) => { 
  connected = state === ConnectionState.CONNECTED; 

  if (connected) { 
    joining = false; 
    joinButton.style = "display: none"; 
    leaveButton.style = "display: inline-block"; 
  }
});

stage.on( 
  StageEvents.STAGE_PARTICIPANT_STREAMS_ADDED, 
  (participant, streams) => { 
    console.log("Participant Media Added: ", participant, streams); 

    let streamsToDisplay = streams; 

    if (participant.isLocal) { 
      // Ensure to exclude local audio streams, otherwise echo will occur 
      streamsToDisplay = streams.filter( 
        (stream) => stream.streamType === StreamType.VIDEO 
      ); 
    } 

    const videoEl = setupParticipant(participant); 
    streamsToDisplay.forEach((stream) => 
      videoEl.srcObject.addTrack(stream.mediaStreamTrack) 
    ); 
  }
);

stage.on(StageEvents.STAGE_PARTICIPANT_LEFT, (participant) => { 

Web 29



Amazon IVS Real-Time Streaming User Guide

  console.log("Participant Left: ", participant); 
  teardownParticipant(participant);
});

// Helper functions for managing DOM

function setupParticipant({ isLocal, id }) { 
  const groupId = isLocal ? "local-media" : "remote-media"; 
  const groupContainer = document.getElementById(groupId); 

  const participantContainerId = isLocal ? "local" : id; 
  const participantContainer = createContainer(participantContainerId); 
  const videoEl = createVideoEl(participantContainerId); 

  participantContainer.appendChild(videoEl); 
  groupContainer.appendChild(participantContainer); 

  return videoEl;
}

function teardownParticipant({ isLocal, id }) { 
  const groupId = isLocal ? "local-media" : "remote-media"; 
  const groupContainer = document.getElementById(groupId); 
  const participantContainerId = isLocal ? "local" : id; 

  const participantDiv = document.getElementById( 
    participantContainerId + "-container" 
  ); 
  if (!participantDiv) { 
    return; 
  } 
  groupContainer.removeChild(participantDiv);
}

function createVideoEl(id) { 
  const videoEl = document.createElement("video"); 
  videoEl.id = id; 
  videoEl.autoplay = true; 
  videoEl.playsInline = true; 
  videoEl.srcObject = new MediaStream(); 
  return videoEl;
}

Web 30



Amazon IVS Real-Time Streaming User Guide

function createContainer(id) { 
  const participantContainer = document.createElement("div"); 
  participantContainer.classList = "participant-container"; 
  participantContainer.id = id + "-container"; 

  return participantContainer;
}

Create joinStage 5: Join the Stage

Let's complete our joinStage function by finally joining the stage!

try { 
  await stage.join();
} catch (err) { 
  joining = false; 
  connected = false; 
  console.error(err.message);
}

Create leaveStage

Define the leaveStage function which the leave button will invoke.

const leaveStage = async () => { 
  stage.leave(); 

  joining = false; 
  connected = false;
};

Initialize Input-Event Handlers

We'll add one last function to our app.js file. This function is invoked immediately when the page 
loads and establishes event handlers for joining and leaving the stage.

const init = async () => { 
  try { 
    // Prevents issues on Safari/FF so devices are not blank 
    await navigator.mediaDevices.getUserMedia({ video: true, audio: true }); 

Web 31



Amazon IVS Real-Time Streaming User Guide

  } catch (e) { 
    alert( 
      "Problem retrieving media! Enable camera and microphone permissions." 
    ); 
  } 

  joinButton.addEventListener("click", () => { 
    joinStage(); 
  }); 

  leaveButton.addEventListener("click", () => { 
    leaveStage(); 
    joinButton.style = "display: inline-block"; 
    leaveButton.style = "display: none"; 
  });
};

init(); // call the function

Run the Application and Provide a Token

At this point you can share the web page locally or with others, open the page, and put in a 
participant token and join the stage.

What’s Next?

For more detailed examples involving npm, React, and more, see the IVS Broadcast SDK: Web Guide 
(Real-Time Streaming Guide).

Publish & Subscribe with the IVS Android Broadcast SDK

This section takes you through the steps involved in publishing and subscribing to a stage using 
your Android app.

Create Views

We start by creating a simple layout for our app using the auto-created activity_main.xml file. 
The layout contains an EditText to add a token, a Join Button, a TextView to show the stage 
state, and a CheckBox to toggle publishing.

Android 32



Amazon IVS Real-Time Streaming User Guide

Here is the XML behind the view:

<?xml version="1.0" encoding="utf-8"?>
<layout xmlns:android="http://schemas.android.com/apk/res/android" 
    xmlns:app="http://schemas.android.com/apk/res-auto" 
    xmlns:tools="http://schemas.android.com/tools"> 

    <androidx.constraintlayout.widget.ConstraintLayout 
        android:keepScreenOn="true" 
        android:layout_width="match_parent" 
        android:layout_height="match_parent" 
        tools:context=".BasicActivity"> 

        <androidx.constraintlayout.widget.ConstraintLayout 
            android:id="@+id/main_controls_container" 
            android:layout_width="match_parent" 

Android 33



Amazon IVS Real-Time Streaming User Guide

            android:layout_height="wrap_content" 
            android:background="@color/cardview_dark_background" 
            android:padding="12dp" 
            app:layout_constraintTop_toTopOf="parent"> 

            <EditText 
                android:id="@+id/main_token" 
                android:layout_width="0dp" 
                android:layout_height="wrap_content" 
                android:autofillHints="@null" 
                android:backgroundTint="@color/white" 
                android:hint="@string/token" 
                android:imeOptions="actionDone" 
                android:inputType="text" 
                android:textColor="@color/white" 
                app:layout_constraintEnd_toStartOf="@id/main_join" 
                app:layout_constraintStart_toStartOf="parent" 
                app:layout_constraintTop_toTopOf="parent" /> 

            <Button 
                android:id="@+id/main_join" 
                android:layout_width="wrap_content" 
                android:layout_height="wrap_content" 
                android:backgroundTint="@color/black" 
                android:text="@string/join" 
                android:textAllCaps="true" 
                android:textColor="@color/white" 
                android:textSize="16sp" 
                app:layout_constraintBottom_toBottomOf="@+id/main_token" 
                app:layout_constraintEnd_toEndOf="parent" 
                app:layout_constraintStart_toEndOf="@id/main_token" /> 

            <TextView 
                android:id="@+id/main_state" 
                android:layout_width="wrap_content" 
                android:layout_height="wrap_content" 
                android:text="@string/state" 
                android:textColor="@color/white" 
                android:textSize="18sp" 
                app:layout_constraintBottom_toBottomOf="parent" 
                app:layout_constraintStart_toStartOf="parent" 
                app:layout_constraintTop_toBottomOf="@id/main_token" /> 

            <TextView 

Android 34



Amazon IVS Real-Time Streaming User Guide

                android:id="@+id/main_publish_text" 
                android:layout_width="wrap_content" 
                android:layout_height="wrap_content" 
                android:text="@string/publish" 
                android:textColor="@color/white" 
                android:textSize="18sp" 
                app:layout_constraintBottom_toBottomOf="parent" 
                app:layout_constraintEnd_toStartOf="@id/main_publish_checkbox" 
                app:layout_constraintTop_toBottomOf="@id/main_token" /> 

            <CheckBox 
                android:id="@+id/main_publish_checkbox" 
                android:layout_width="wrap_content" 
                android:layout_height="wrap_content" 
                android:buttonTint="@color/white" 
                android:checked="true" 
                app:layout_constraintBottom_toBottomOf="@id/main_publish_text" 
                app:layout_constraintEnd_toEndOf="parent" 
                app:layout_constraintTop_toTopOf="@id/main_publish_text" /> 

        </androidx.constraintlayout.widget.ConstraintLayout> 

        <androidx.recyclerview.widget.RecyclerView 
            android:id="@+id/main_recycler_view" 
            android:layout_width="match_parent" 
            android:layout_height="0dp" 
            app:layout_constraintTop_toBottomOf="@+id/main_controls_container" 
            app:layout_constraintBottom_toBottomOf="parent" /> 

    </androidx.constraintlayout.widget.ConstraintLayout>
<layout>

We referenced a couple of string IDs here, so we’ll create our entire strings.xml file now:

<resources> 
    <string name="app_name">BasicRealTime</string> 
    <string name="join">Join</string> 
    <string name="leave">Leave</string> 
    <string name="token">Participant Token</string> 
    <string name="publish">Publish</string> 
    <string name="state">State: %1$s</string>
</resources>

Android 35



Amazon IVS Real-Time Streaming User Guide

Let’s link those views in the XML to our MainActivity.kt:

import android.widget.Button
import android.widget.CheckBox
import android.widget.EditText
import android.widget.TextView
import androidx.recyclerview.widget.RecyclerView

private lateinit var checkboxPublish: CheckBox
private lateinit var recyclerView: RecyclerView
private lateinit var buttonJoin: Button
private lateinit var textViewState: TextView
private lateinit var editTextToken: EditText

override fun onCreate(savedInstanceState: Bundle?) { 
    super.onCreate(savedInstanceState) 
    setContentView(R.layout.activity_main) 

    checkboxPublish = findViewById(R.id.main_publish_checkbox) 
    recyclerView = findViewById(R.id.main_recycler_view) 
    buttonJoin = findViewById(R.id.main_join) 
    textViewState = findViewById(R.id.main_state) 
    editTextToken = findViewById(R.id.main_token)
}

Now we create an item view for our RecyclerView. To do this, right-click your
res/layout directory and select New > Layout Resource File. Name this new file
item_stage_participant.xml.

Android 36



Amazon IVS Real-Time Streaming User Guide

The layout for this item is simple: it contains a view for rendering a participant’s video stream and a 
list of labels for displaying information about the participant:

Android 37



Amazon IVS Real-Time Streaming User Guide

Here is the XML:

<?xml version="1.0" encoding="utf-8"?>
<com.amazonaws.ivs.realtime.basicrealtime.ParticipantItem xmlns:android="http://
schemas.android.com/apk/res/android" 
    xmlns:app="http://schemas.android.com/apk/res-auto" 
    xmlns:tools="http://schemas.android.com/tools" 
    android:layout_width="match_parent" 
    android:layout_height="match_parent"> 

    <FrameLayout 
        android:id="@+id/participant_preview_container" 
        android:layout_width="match_parent" 
        android:layout_height="match_parent" 
        tools:background="@android:color/darker_gray" /> 

Android 38



Amazon IVS Real-Time Streaming User Guide

    <LinearLayout 
        android:layout_width="wrap_content" 
        android:layout_height="wrap_content" 
        android:layout_marginStart="8dp" 
        android:layout_marginTop="8dp" 
        android:background="#50000000" 
        android:orientation="vertical" 
        android:paddingLeft="4dp" 
        android:paddingTop="2dp" 
        android:paddingRight="4dp" 
        android:paddingBottom="2dp" 
        app:layout_constraintStart_toStartOf="parent" 
        app:layout_constraintTop_toTopOf="parent"> 

        <TextView 
            android:id="@+id/participant_participant_id" 
            android:layout_width="wrap_content" 
            android:layout_height="wrap_content" 
            android:textColor="@android:color/white" 
            android:textSize="16sp" 
            tools:text="You (Disconnected)" /> 

        <TextView 
            android:id="@+id/participant_publishing" 
            android:layout_width="wrap_content" 
            android:layout_height="wrap_content" 
            android:textColor="@android:color/white" 
            android:textSize="16sp" 
            tools:text="NOT_PUBLISHED" /> 

        <TextView 
            android:id="@+id/participant_subscribed" 
            android:layout_width="wrap_content" 
            android:layout_height="wrap_content" 
            android:textColor="@android:color/white" 
            android:textSize="16sp" 
            tools:text="NOT_SUBSCRIBED" /> 

        <TextView 
            android:id="@+id/participant_video_muted" 
            android:layout_width="wrap_content" 
            android:layout_height="wrap_content" 
            android:textColor="@android:color/white" 
            android:textSize="16sp" 

Android 39



Amazon IVS Real-Time Streaming User Guide

            tools:text="Video Muted: false" /> 

        <TextView 
            android:id="@+id/participant_audio_muted" 
            android:layout_width="wrap_content" 
            android:layout_height="wrap_content" 
            android:textColor="@android:color/white" 
            android:textSize="16sp" 
            tools:text="Audio Muted: false" /> 

        <TextView 
            android:id="@+id/participant_audio_level" 
            android:layout_width="wrap_content" 
            android:layout_height="wrap_content" 
            android:textColor="@android:color/white" 
            android:textSize="16sp" 
            tools:text="Audio Level: -100 dB" /> 

    </LinearLayout>

</com.amazonaws.ivs.realtime.basicrealtime.ParticipantItem>

This XML file inflates a class we haven’t created yet, ParticipantItem. Because the XML includes 
the full namespace, be sure to update this XML file to your namespace. Let’s create this class and 
set up the views, but otherwise leave it blank for now.

Create a new Kotlin class, ParticipantItem:

package com.amazonaws.ivs.realtime.basicrealtime

import android.content.Context
import android.util.AttributeSet
import android.widget.FrameLayout
import android.widget.TextView
import kotlin.math.roundToInt

class ParticipantItem @JvmOverloads constructor( 
    context: Context, 
    attrs: AttributeSet? = null, 
    defStyleAttr: Int = 0, 
    defStyleRes: Int = 0,
) : FrameLayout(context, attrs, defStyleAttr, defStyleRes) { 

Android 40



Amazon IVS Real-Time Streaming User Guide

    private lateinit var previewContainer: FrameLayout 
    private lateinit var textViewParticipantId: TextView 
    private lateinit var textViewPublish: TextView 
    private lateinit var textViewSubscribe: TextView 
    private lateinit var textViewVideoMuted: TextView 
    private lateinit var textViewAudioMuted: TextView 
    private lateinit var textViewAudioLevel: TextView 

    override fun onFinishInflate() { 
        super.onFinishInflate() 
        previewContainer = findViewById(R.id.participant_preview_container) 
        textViewParticipantId = findViewById(R.id.participant_participant_id) 
        textViewPublish = findViewById(R.id.participant_publishing) 
        textViewSubscribe = findViewById(R.id.participant_subscribed) 
        textViewVideoMuted = findViewById(R.id.participant_video_muted) 
        textViewAudioMuted = findViewById(R.id.participant_audio_muted) 
        textViewAudioLevel = findViewById(R.id.participant_audio_level) 
    }
}

Permissions

To use the camera and microphone, you need to request permissions from the user. We follow a 
standard permissions flow for this:

override fun onStart() { 
    super.onStart() 
    requestPermission()
}

private val requestPermissionLauncher = 
    registerForActivityResult(ActivityResultContracts.RequestMultiplePermissions()) 
 { permissions -> 
        if (permissions[Manifest.permission.CAMERA] == true && 
 permissions[Manifest.permission.RECORD_AUDIO] == true) { 
            viewModel.permissionGranted() // we will add this later 
        } 
    }

private val permissions = listOf( 
    Manifest.permission.CAMERA, 
    Manifest.permission.RECORD_AUDIO,
)

Android 41



Amazon IVS Real-Time Streaming User Guide

private fun requestPermission() { 
    when { 
        this.hasPermissions(permissions) -> viewModel.permissionGranted() // we will 
 add this later 
        else -> requestPermissionLauncher.launch(permissions.toTypedArray()) 
    }
}

private fun Context.hasPermissions(permissions: List<String>): Boolean { 
    return permissions.all { 
        ContextCompat.checkSelfPermission(this, it) == 
 PackageManager.PERMISSION_GRANTED 
    }
}

App State

Our application keeps track of the participants locally in a MainViewModel.kt and the state will 
be communicated back to the MainActivity using Kotlin’s StateFlow.

Create a new Kotlin class MainViewModel:

package com.amazonaws.ivs.realtime.basicrealtime

import android.app.Application
import androidx.lifecycle.AndroidViewModel

class MainViewModel(application: Application) : AndroidViewModel(application), 
 Stage.Strategy, StageRenderer {

}

In MainActivity.kt we manage our view model:

import androidx.activity.viewModels

private val viewModel: MainViewModel by viewModels()

To use AndroidViewModel and these Kotlin ViewModel extensions, you’ll need to add the 
following to your module’s build.gradle file:

Android 42

https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/-state-flow/


Amazon IVS Real-Time Streaming User Guide

implementation 'androidx.core:core-ktx:1.10.1'
implementation "androidx.activity:activity-ktx:1.7.2"
implementation 'androidx.appcompat:appcompat:1.6.1'
implementation 'com.google.android.material:material:1.10.0'
implementation "androidx.lifecycle:lifecycle-extensions:2.2.0"

def lifecycle_version = "2.6.1"
implementation "androidx.lifecycle:lifecycle-livedata-ktx:$lifecycle_version"
implementation "androidx.lifecycle:lifecycle-viewmodel-ktx:$lifecycle_version"
implementation 'androidx.constraintlayout:constraintlayout:2.1.4'

RecyclerView Adapter

We’ll create a simple RecyclerView.Adapter subclass to keep track of our participants and 
update our RecyclerView on stage events. But first, we need a class that represents a participant. 
Create a new Kotlin class StageParticipant:

package com.amazonaws.ivs.realtime.basicrealtime

import com.amazonaws.ivs.broadcast.Stage
import com.amazonaws.ivs.broadcast.StageStream

class StageParticipant(val isLocal: Boolean, var participantId: String?) { 
    var publishState = Stage.PublishState.NOT_PUBLISHED 
    var subscribeState = Stage.SubscribeState.NOT_SUBSCRIBED 
    var streams = mutableListOf<StageStream>() 

    val stableID: String 
        get() { 
            return if (isLocal) { 
                "LocalUser" 
            } else { 
                requireNotNull(participantId) 
            } 
        }
}

We’ll use this class in the ParticipantAdapter class that we’ll create next. We start by defining 
the class and creating a variable to track the participants:

package com.amazonaws.ivs.realtime.basicrealtime

Android 43



Amazon IVS Real-Time Streaming User Guide

import android.view.LayoutInflater
import android.view.ViewGroup
import androidx.recyclerview.widget.RecyclerView

class ParticipantAdapter : RecyclerView.Adapter<ParticipantAdapter.ViewHolder>() { 

    private val participants = mutableListOf<StageParticipant>()

We also have to define our RecyclerView.ViewHolder before implementing the rest of the 
overrides:

class ViewHolder(val participantItem: ParticipantItem) : 
 RecyclerView.ViewHolder(participantItem)

Using this, we can implement the standard RecyclerView.Adapter overrides:

override fun onCreateViewHolder(parent: ViewGroup, viewType: Int): ViewHolder { 
    val item = LayoutInflater.from(parent.context) 
        .inflate(R.layout.item_stage_participant, parent, false) as ParticipantItem 
    return ViewHolder(item)
}

override fun getItemCount(): Int { 
    return participants.size
}

override fun getItemId(position: Int): Long = 
    participants[position] 
        .stableID 
        .hashCode() 
        .toLong()

override fun onBindViewHolder(holder: ViewHolder, position: Int) { 
    return holder.participantItem.bind(participants[position])
}

override fun onBindViewHolder(holder: ViewHolder, position: Int, payloads: 
 MutableList<Any>) { 
    val updates = payloads.filterIsInstance<StageParticipant>() 
    if (updates.isNotEmpty()) { 
        updates.forEach { holder.participantItem.bind(it) // implemented later } 
    } else { 
        super.onBindViewHolder(holder, position, payloads) 

Android 44



Amazon IVS Real-Time Streaming User Guide

    }
}

Finally, we add new methods that we will call from our MainViewModel when changes to 
participants are made. These methods are standard CRUD operations on the adapter.

fun participantJoined(participant: StageParticipant) { 
    participants.add(participant) 
    notifyItemInserted(participants.size - 1)
}

fun participantLeft(participantId: String) { 
    val index = participants.indexOfFirst { it.participantId == participantId } 
    if (index != -1) { 
        participants.removeAt(index) 
        notifyItemRemoved(index) 
    }
}

fun participantUpdated(participantId: String?, update: (participant: StageParticipant) 
 -> Unit) { 
    val index = participants.indexOfFirst { it.participantId == participantId } 
    if (index != -1) { 
        update(participants[index]) 
        notifyItemChanged(index, participants[index]) 
    }
}

Back in MainViewModel we need to create and hold a reference to this adapter:

internal val participantAdapter = ParticipantAdapter()

Stage State

We also need to track some stage state within MainViewModel. Let’s define those properties now:

private val _connectionState = MutableStateFlow(Stage.ConnectionState.DISCONNECTED)
val connectionState = _connectionState.asStateFlow()

private var publishEnabled: Boolean = false 
    set(value) { 
        field = value 

Android 45



Amazon IVS Real-Time Streaming User Guide

        // Because the strategy returns the value of `checkboxPublish.isChecked`, just 
 call `refreshStrategy`. 
        stage?.refreshStrategy() 
    }

private var deviceDiscovery: DeviceDiscovery? = null
private var stage: Stage? = null
private var streams = mutableListOf<LocalStageStream>()

To see your own preview before joining a stage, we create a local participant immediately:

init { 
    deviceDiscovery = DeviceDiscovery(application) 

    // Create a local participant immediately to render our camera preview and 
 microphone stats 
    val localParticipant = StageParticipant(true, null) 
    participantAdapter.participantJoined(localParticipant)
}

We want to make sure we clean up these resources when our ViewModel is cleaned up. We 
override onCleared() right away, so we don’t forget to clean these resources.

override fun onCleared() { 
    stage?.release() 
    deviceDiscovery?.release() 
    deviceDiscovery = null 
    super.onCleared()
}

Now we populate our local streams property as soon as permissions are granted, implementing 
the permissionsGranted method that we called earlier:

internal fun permissionGranted() { 
    val deviceDiscovery = deviceDiscovery ?: return 
    streams.clear() 
    val devices = deviceDiscovery.listLocalDevices() 
    // Camera 
    devices 
        .filter { it.descriptor.type == Device.Descriptor.DeviceType.CAMERA } 
        .maxByOrNull { it.descriptor.position == Device.Descriptor.Position.FRONT } 
        ?.let { streams.add(ImageLocalStageStream(it)) } 

Android 46



Amazon IVS Real-Time Streaming User Guide

    // Microphone 
    devices 
        .filter { it.descriptor.type == Device.Descriptor.DeviceType.MICROPHONE } 
        .maxByOrNull { it.descriptor.isDefault } 
        ?.let { streams.add(AudioLocalStageStream(it)) } 

    stage?.refreshStrategy() 

    // Update our local participant with these new streams 
    participantAdapter.participantUpdated(null) { 
        it.streams.clear() 
        it.streams.addAll(streams) 
    }
}

Implementing the Stage SDK

Three core concepts underlie real-time functionality: stage, strategy, and renderer. The design goal 
is minimizing the amount of client-side logic necessary to build a working product.

Stage.Strategy

Our Stage.Strategy implementation is simple:

override fun stageStreamsToPublishForParticipant( 
    stage: Stage, 
    participantInfo: ParticipantInfo
): MutableList<LocalStageStream> { 
    // Return the camera and microphone to be published. 
    // This is only called if `shouldPublishFromParticipant` returns true. 
    return streams
}

override fun shouldPublishFromParticipant(stage: Stage, participantInfo: 
 ParticipantInfo): Boolean { 
    return publishEnabled
}

override fun shouldSubscribeToParticipant(stage: Stage, participantInfo: 
 ParticipantInfo): Stage.SubscribeType { 
    // Subscribe to both audio and video for all publishing participants. 
    return Stage.SubscribeType.AUDIO_VIDEO
}

Android 47



Amazon IVS Real-Time Streaming User Guide

To summarize, we publish based on our internal publishEnabled state, and if we publish we 
will publish the streams we collected earlier. Finally for this sample, we always subscribe to other 
participants, receiving both their audio and video.

StageRenderer

The StageRenderer implementation also is fairly simple, though given the number of functions 
it contains quite a bit more code. The general approach in this renderer is to update our
ParticipantAdapter when the SDK notifies us of a change to a participant. There are certain 
scenarios where we handle local participants differently, because we have decided to manage them 
ourselves so they can see their camera preview before joining.

override fun onError(exception: BroadcastException) { 
    Toast.makeText(getApplication(), "onError ${exception.localizedMessage}", 
 Toast.LENGTH_LONG).show() 
    Log.e("BasicRealTime", "onError $exception")
}

override fun onConnectionStateChanged( 
    stage: Stage, 
    connectionState: Stage.ConnectionState, 
    exception: BroadcastException?
) { 
    _connectionState.value = connectionState
}

override fun onParticipantJoined(stage: Stage, participantInfo: ParticipantInfo) { 
    if (participantInfo.isLocal) { 
        // If this is the local participant joining the stage, update the participant 
 with a null ID because we 
        // manually added that participant when setting up our preview 
        participantAdapter.participantUpdated(null) { 
            it.participantId = participantInfo.participantId 
        } 
    } else { 
        // If they are not local, add them normally 
        participantAdapter.participantJoined( 
            StageParticipant( 
                participantInfo.isLocal, 
                participantInfo.participantId 
            ) 
        ) 
    }

Android 48



Amazon IVS Real-Time Streaming User Guide

}

override fun onParticipantLeft(stage: Stage, participantInfo: ParticipantInfo) { 
    if (participantInfo.isLocal) { 
        // If this is the local participant leaving the stage, update the ID but keep 
 it around because 
        // we want to keep the camera preview active 
        participantAdapter.participantUpdated(participantInfo.participantId) { 
            it.participantId = null 
        } 
    } else { 
        // If they are not local, have them leave normally 
        participantAdapter.participantLeft(participantInfo.participantId) 
    }
}

override fun onParticipantPublishStateChanged( 
    stage: Stage, 
    participantInfo: ParticipantInfo, 
    publishState: Stage.PublishState
) { 
    // Update the publishing state of this participant 
    participantAdapter.participantUpdated(participantInfo.participantId) { 
        it.publishState = publishState 
    }
}

override fun onParticipantSubscribeStateChanged( 
    stage: Stage, 
    participantInfo: ParticipantInfo, 
    subscribeState: Stage.SubscribeState
) { 
    // Update the subscribe state of this participant 
    participantAdapter.participantUpdated(participantInfo.participantId) { 
        it.subscribeState = subscribeState 
    }
}

override fun onStreamsAdded(stage: Stage, participantInfo: ParticipantInfo, streams: 
 MutableList<StageStream>) { 
    // We don't want to take any action for the local participant because we track 
 those streams locally 
    if (participantInfo.isLocal) { 
        return 

Android 49



Amazon IVS Real-Time Streaming User Guide

    } 
    // For remote participants, add these new streams to that participant's streams 
 array. 
    participantAdapter.participantUpdated(participantInfo.participantId) { 
        it.streams.addAll(streams) 
    }
}

override fun onStreamsRemoved(stage: Stage, participantInfo: ParticipantInfo, streams: 
 MutableList<StageStream>) { 
    // We don't want to take any action for the local participant because we track 
 those streams locally 
    if (participantInfo.isLocal) { 
        return 
    } 
    // For remote participants, remove these streams from that participant's streams 
 array. 
    participantAdapter.participantUpdated(participantInfo.participantId) { 
        it.streams.removeAll(streams) 
    }
}

override fun onStreamsMutedChanged( 
    stage: Stage, 
    participantInfo: ParticipantInfo, 
    streams: MutableList<StageStream>
) { 
    // We don't want to take any action for the local participant because we track 
 those streams locally 
    if (participantInfo.isLocal) { 
        return 
    } 
    // For remote participants, notify the adapter that the participant has been 
 updated. There is no need to modify 
    // the `streams` property on the `StageParticipant` because it is the same 
 `StageStream` instance. Just 
    // query the `isMuted` property again. 
    participantAdapter.participantUpdated(participantInfo.participantId) {}
}

Android 50



Amazon IVS Real-Time Streaming User Guide

Implementing a Custom RecyclerView LayoutManager

Laying out different numbers of participants can be complex. You want them to take up the entire 
parent view’s frame but you don’t want to handle each participant configuration independently. To 
make this easy, we’ll walk through implementing a RecyclerView.LayoutManager.

Create another new class, StageLayoutManager, which should extend GridLayoutManager. 
This class is designed to calculate the layout for each participant based on the number of 
participants in a flow-based row/column layout. Each row is the same height as the others, but 
columns can be different widths per row. See the code comment above the layouts variable for a 
description of how to customize this behavior.

package com.amazonaws.ivs.realtime.basicrealtime

import android.content.Context
import androidx.recyclerview.widget.GridLayoutManager
import androidx.recyclerview.widget.RecyclerView

class StageLayoutManager(context: Context?) : GridLayoutManager(context, 6) { 

    companion object { 
        /** 
         * This 2D array contains the description of how the grid of participants 
 should be rendered 
         * The index of the 1st dimension is the number of participants needed to 
 active that configuration 
         * Meaning if there is 1 participant, index 0 will be used. If there are 5 
 participants, index 4 will be used. 
         * 
         * The 2nd dimension is a description of the layout. The length of the array is 
 the number of rows that 
         * will exist, and then each number within that array is the number of columns 
 in each row. 
         * 
         * See the code comments next to each index for concrete examples. 
         * 
         * This can be customized to fit any layout configuration needed. 
         */ 
        val layouts: List<List<Int>> = listOf( 
            // 1 participant 
            listOf(1), // 1 row, full width 
            // 2 participants 

Android 51



Amazon IVS Real-Time Streaming User Guide

            listOf(1, 1), // 2 rows, all columns are full width 
            // 3 participants 
            listOf(1, 2), // 2 rows, first row's column is full width then 2nd row's 
 columns are 1/2 width 
            // 4 participants 
            listOf(2, 2), // 2 rows, all columns are 1/2 width 
            // 5 participants 
            listOf(1, 2, 2), // 3 rows, first row's column is full width, 2nd and 3rd 
 row's columns are 1/2 width 
            // 6 participants 
            listOf(2, 2, 2), // 3 rows, all column are 1/2 width 
            // 7 participants 
            listOf(2, 2, 3), // 3 rows, 1st and 2nd row's columns are 1/2 width, 3rd 
 row's columns are 1/3rd width 
            // 8 participants 
            listOf(2, 3, 3), 
            // 9 participants 
            listOf(3, 3, 3), 
            // 10 participants 
            listOf(2, 3, 2, 3), 
            // 11 participants 
            listOf(2, 3, 3, 3), 
            // 12 participants 
            listOf(3, 3, 3, 3), 
        ) 
    } 

    init { 
        spanSizeLookup = object : SpanSizeLookup() { 
            override fun getSpanSize(position: Int): Int { 
                if (itemCount <= 0) { 
                    return 1 
                } 
                // Calculate the row we're in 
                val config = layouts[itemCount - 1] 
                var row = 0 
                var curPosition = position 
                while (curPosition - config[row] >= 0) { 
                    curPosition -= config[row] 
                    row++ 
                } 
                // spanCount == max spans, config[row] = number of columns we want 
                // So spanCount / config[row] would be something like 6 / 3 if we want 
 3 columns. 

Android 52



Amazon IVS Real-Time Streaming User Guide

                // So this will take up 2 spans, with a max of 6 is 1/3rd of the view. 
                return spanCount / config[row] 
            } 
        } 
    } 

    override fun onLayoutChildren(recycler: RecyclerView.Recycler?, state: 
 RecyclerView.State?) { 
        if (itemCount <= 0 || state?.isPreLayout == true) return 

        val parentHeight = height 
        val itemHeight = parentHeight / layouts[itemCount - 1].size // height divided 
 by number of rows. 

        // Set the height of each view based on how many rows exist for the current 
 participant count. 
        for (i in 0 until childCount) { 
            val child = getChildAt(i) ?: continue 
            val layoutParams = child.layoutParams as RecyclerView.LayoutParams 
            if (layoutParams.height != itemHeight) { 
                layoutParams.height = itemHeight 
                child.layoutParams = layoutParams 
            } 
        } 
        // After we set the height for all our views, call super. 
        // This works because our RecyclerView can not scroll and all views are always 
 visible with stable IDs. 
        super.onLayoutChildren(recycler, state) 
    } 

    override fun canScrollVertically(): Boolean = false 
    override fun canScrollHorizontally(): Boolean = false
}

Back in MainActivity.kt we need to set the adapter and layout manager for our
RecyclerView:

// In onCreate after setting recyclerView.
recyclerView.layoutManager = StageLayoutManager(this)
recyclerView.adapter = viewModel.participantAdapter

Android 53



Amazon IVS Real-Time Streaming User Guide

Hooking Up UI Actions

We are getting close; there are just a few UI actions that we need to hook up.

First we’ll have our MainActivity observe the StateFlow changes from MainViewModel:

// At the end of your onCreate method
lifecycleScope.launch { 
    repeatOnLifecycle(Lifecycle.State.CREATED) { 
        viewModel.connectionState.collect { state -> 
            buttonJoin.setText(if (state == ConnectionState.DISCONNECTED) R.string.join 
 else R.string.leave) 
            textViewState.text = getString(R.string.state, state.name) 
        } 
    }
}

Next we add listeners to our Join button and Publish checkbox:

buttonJoin.setOnClickListener { 
    viewModel.joinStage(editTextToken.text.toString())
}
checkboxPublish.setOnCheckedChangeListener { _, isChecked -> 
    viewModel.setPublishEnabled(isChecked)
}

Both of the above call functionality in our MainViewModel, which we implement now:

internal fun joinStage(token: String) { 
    if (_connectionState.value != Stage.ConnectionState.DISCONNECTED) { 
        // If we're already connected to a stage, leave it. 
        stage?.leave() 
    } else { 
        if (token.isEmpty()) { 
            Toast.makeText(getApplication(), "Empty Token", Toast.LENGTH_SHORT).show() 
            return 
        } 
        try { 
            // Destroy the old stage first before creating a new one. 
            stage?.release() 
            val stage = Stage(getApplication(), token, this) 
            stage.addRenderer(this) 

Android 54



Amazon IVS Real-Time Streaming User Guide

            stage.join() 
            this.stage = stage 
        } catch (e: BroadcastException) { 
            Toast.makeText(getApplication(), "Failed to join stage 
 ${e.localizedMessage}", Toast.LENGTH_LONG).show() 
            e.printStackTrace() 
        } 
    }
}

internal fun setPublishEnabled(enabled: Boolean) { 
    publishEnabled = enabled
}

Rendering the Participants

Finally, we need to render the data we receive from the SDK onto the participant item that we 
created earlier. We already have the RecyclerView logic finished, so we just need to implement 
the bind API in ParticipantItem.

We’ll start by adding the empty function and then walk through it step by step:

fun bind(participant: StageParticipant) {

}

First we’ll handle the easy state, the participant ID, publish state, and subscribe state. For these, we 
just update our TextViews directly:

val participantId = if (participant.isLocal) { 
    "You (${participant.participantId ?: "Disconnected"})"
} else { 
    participant.participantId
}
textViewParticipantId.text = participantId
textViewPublish.text = participant.publishState.name
textViewSubscribe.text = participant.subscribeState.name

Next we’ll update the audio and video muted states. To get the muted state, we need to find the
ImageDevice and AudioDevice from the streams array. To optimize performance, we remember 
the last attached device IDs.

Android 55



Amazon IVS Real-Time Streaming User Guide

// This belongs outside the `bind` API.
private var imageDeviceUrn: String? = null
private var audioDeviceUrn: String? = null

// This belongs inside the `bind` API.
val newImageStream = participant 
    .streams 
    .firstOrNull { it.device is ImageDevice }
textViewVideoMuted.text = if (newImageStream != null) { 
    if (newImageStream.muted) "Video muted" else "Video not muted"
} else { 
    "No video stream"
}

val newAudioStream = participant 
    .streams 
    .firstOrNull { it.device is AudioDevice }
textViewAudioMuted.text = if (newAudioStream != null) { 
    if (newAudioStream.muted) "Audio muted" else "Audio not muted"
} else { 
    "No audio stream"
}

Finally we want to render a preview for the imageDevice:

if (newImageStream?.device?.descriptor?.urn != imageDeviceUrn) { 
    // If the device has changed, remove all subviews from the preview container 
    previewContainer.removeAllViews() 
    (newImageStream?.device as? ImageDevice)?.let { 
        val preview = it.getPreviewView(BroadcastConfiguration.AspectMode.FIT) 
        previewContainer.addView(preview) 
        preview.layoutParams = FrameLayout.LayoutParams( 
            FrameLayout.LayoutParams.MATCH_PARENT, 
            FrameLayout.LayoutParams.MATCH_PARENT 
        ) 
    }
}
imageDeviceUrn = newImageStream?.device?.descriptor?.urn

And we display audio stats from the audioDevice:

if (newAudioStream?.device?.descriptor?.urn != audioDeviceUrn) { 

Android 56



Amazon IVS Real-Time Streaming User Guide

    (newAudioStream?.device as? AudioDevice)?.let { 
        it.setStatsCallback { _, rms -> 
            textViewAudioLevel.text = "Audio Level: ${rms.roundToInt()} dB" 
        } 
    }
}
audioDeviceUrn = newAudioStream?.device?.descriptor?.urn

Publish & Subscribe with the IVS iOS Broadcast SDK

This section takes you through the steps involved in publishing and subscribing to a stage using 
your iOS app.

Create Views

We start by using the auto-created ViewController.swift file to import
AmazonIVSBroadcast and then add some @IBOutlets to link:

import AmazonIVSBroadcast

class ViewController: UIViewController { 

    @IBOutlet private var textFieldToken: UITextField! 
    @IBOutlet private var buttonJoin: UIButton! 
    @IBOutlet private var labelState: UILabel! 
    @IBOutlet private var switchPublish: UISwitch! 
    @IBOutlet private var collectionViewParticipants: UICollectionView!

Now we create those views and link them up in Main.storyboard. Here is the view structure that 
we’ll use:

iOS 57



Amazon IVS Real-Time Streaming User Guide

For AutoLayout configuration, we need to customize three views. The first view is Collection View 
Participants (a UICollectionView). Bound Leading, Trailing, and Bottom to Safe Area. Also 
bound Top to Controls Container.

iOS 58



Amazon IVS Real-Time Streaming User Guide

The second view is Controls Container. Bound Leading, Trailing, and Top to Safe Area:

iOS 59



Amazon IVS Real-Time Streaming User Guide

The third and last view is Vertical Stack View. Bound Top, Leading, Trailing, and Bottom to
Superview. For styling, set the spacing to 8 instead of 0.

iOS 60



Amazon IVS Real-Time Streaming User Guide

The UIStackViews will handle the layout of the remaining views. For all three UIStackViews, use
Fill as the Alignment and Distribution.

iOS 61



Amazon IVS Real-Time Streaming User Guide

Finally, let’s link these views to our ViewController. From above, map the following views:

• Text Field Join binds to textFieldToken.

• Button Join binds to buttonJoin.

• Label State binds to labelState.

• Switch Publish binds to switchPublish.

• Collection View Participants binds to collectionViewParticipants.

Also use this time to set the dataSource of the Collection View Participants item to the owning
ViewController:

iOS 62



Amazon IVS Real-Time Streaming User Guide

Now we create the UICollectionViewCell subclass in which to render the participants. Start by 
creating a new Cocoa Touch Class file:

iOS 63



Amazon IVS Real-Time Streaming User Guide

Name it ParticipantUICollectionViewCell and make it a subclass of
UICollectionViewCell in Swift. We start in the Swift file again, creating our @IBOutlets to 
link:

import AmazonIVSBroadcast

class ParticipantCollectionViewCell: UICollectionViewCell { 

    @IBOutlet private var viewPreviewContainer: UIView! 
    @IBOutlet private var labelParticipantId: UILabel! 
    @IBOutlet private var labelSubscribeState: UILabel! 
    @IBOutlet private var labelPublishState: UILabel! 
    @IBOutlet private var labelVideoMuted: UILabel! 
    @IBOutlet private var labelAudioMuted: UILabel! 
    @IBOutlet private var labelAudioVolume: UILabel!

iOS 64



Amazon IVS Real-Time Streaming User Guide

In the associated XIB file, create this view hierarchy:

For AutoLayout, we’ll modify three views again. The first view is View Preview Container. Set
Trailing, Leading, Top, and Bottom to Participant Collection View Cell.

iOS 65



Amazon IVS Real-Time Streaming User Guide

The second view is View. Set Leading and Top to Participant Collection View Cell and change the 
value to 4.

iOS 66



Amazon IVS Real-Time Streaming User Guide

The third view is Stack View. Set Trailing, Leading, Top, and Bottom to Superview and change the 
value to 4.

iOS 67



Amazon IVS Real-Time Streaming User Guide

Permissions and Idle Timer

Going back to our ViewController, we will disable the system idle timer to prevent the device 
from going to sleep while our application is being used:

override func viewDidAppear(_ animated: Bool) { 
    super.viewDidAppear(animated) 
    // Prevent the screen from turning off during a call. 
    UIApplication.shared.isIdleTimerDisabled = true
}

override func viewDidDisappear(_ animated: Bool) { 
    super.viewDidDisappear(animated) 
    UIApplication.shared.isIdleTimerDisabled = false
}

Next we request camera and microphone permissions from the system:

iOS 68



Amazon IVS Real-Time Streaming User Guide

private func checkPermissions() { 
    checkOrGetPermission(for: .video) { [weak self] granted in 
        guard granted else { 
            print("Video permission denied") 
            return 
        } 
        self?.checkOrGetPermission(for: .audio) { [weak self] granted in 
            guard granted else { 
                print("Audio permission denied") 
                return 
            } 
            self?.setupLocalUser() // we will cover this later 
        } 
    }
}

private func checkOrGetPermission(for mediaType: AVMediaType, _ result: @escaping 
 (Bool) -> Void) { 
    func mainThreadResult(_ success: Bool) { 
        DispatchQueue.main.async { 
            result(success) 
        } 
    } 
    switch AVCaptureDevice.authorizationStatus(for: mediaType) { 
    case .authorized: mainThreadResult(true) 
    case .notDetermined: 
        AVCaptureDevice.requestAccess(for: mediaType) { granted in 
            mainThreadResult(granted) 
        } 
    case .denied, .restricted: mainThreadResult(false) 
    @unknown default: mainThreadResult(false) 
    }
}

App State

We need to configure our collectionViewParticipants with the layout file that we created 
earlier:

override func viewDidLoad() { 
    super.viewDidLoad() 
    // We render everything to exactly the frame, so don't allow scrolling. 
    collectionViewParticipants.isScrollEnabled = false 

iOS 69



Amazon IVS Real-Time Streaming User Guide

    collectionViewParticipants.register(UINib(nibName: "ParticipantCollectionViewCell", 
 bundle: .main), forCellWithReuseIdentifier: "ParticipantCollectionViewCell")
}

To represent each participant, we create a simple struct called StageParticipant. This can be 
included in the ViewController.swift file, or a new file can be created.

import Foundation
import AmazonIVSBroadcast

struct StageParticipant { 
    let isLocal: Bool 
    var participantId: String? 
    var publishState: IVSParticipantPublishState = .notPublished 
    var subscribeState: IVSParticipantSubscribeState = .notSubscribed 
    var streams: [IVSStageStream] = [] 

    init(isLocal: Bool, participantId: String?) { 
        self.isLocal = isLocal 
        self.participantId = participantId 
    }
}

To track those participants, we keep an array of them as a private property in our
ViewController:

private var participants = [StageParticipant]()

This property will be used to power our UICollectionViewDataSource that was linked from 
the storyboard earlier:

extension ViewController: UICollectionViewDataSource { 

    func collectionView(_ collectionView: UICollectionView, numberOfItemsInSection 
 section: Int) -> Int { 
        return participants.count 
    } 

    func collectionView(_ collectionView: UICollectionView, cellForItemAt indexPath: 
 IndexPath) -> UICollectionViewCell { 
        if let cell = collectionView.dequeueReusableCell(withReuseIdentifier: 
 "ParticipantCollectionViewCell", for: indexPath) as? ParticipantCollectionViewCell { 

iOS 70



Amazon IVS Real-Time Streaming User Guide

            cell.set(participant: participants[indexPath.row]) 
            return cell 
        } else { 
            fatalError("Couldn't load custom cell type 
 'ParticipantCollectionViewCell'") 
        } 
    }

}

To see your own preview before joining a stage, we create a local participant immediately:

override func viewDidLoad() { 
    /* existing UICollectionView code */ 
    participants.append(StageParticipant(isLocal: true, participantId: nil))
}

This results in a participant cell being rendered immediately once the app is running, representing 
the local participant.

Users want to be able to see themselves before joining a stage, so next we implement the
setupLocalUser() method that gets called from the permissions-handling code earlier. We store 
the camera and microphone reference as IVSLocalStageStream objects.

private var streams = [IVSLocalStageStream]()
private let deviceDiscovery = IVSDeviceDiscovery()

private func setupLocalUser() { 
    // Gather our camera and microphone once permissions have been granted 
    let devices = deviceDiscovery.listLocalDevices() 
    streams.removeAll() 
    if let camera = devices.compactMap({ $0 as? IVSCamera }).first { 
        streams.append(IVSLocalStageStream(device: camera)) 
        // Use a front camera if available. 
        if let frontSource = camera.listAvailableInputSources().first(where: 
 { $0.position == .front }) { 
            camera.setPreferredInputSource(frontSource) 
        } 
    } 
    if let mic = devices.compactMap({ $0 as? IVSMicrophone }).first { 
        streams.append(IVSLocalStageStream(device: mic)) 
    } 

iOS 71



Amazon IVS Real-Time Streaming User Guide

    participants[0].streams = streams 
    participantsChanged(index: 0, changeType: .updated)
}

Here we’ve found the device’s camera and microphone through the SDK and stored them in 
our local streams object, then assigned the streams array of the first participant (the local 
participant that we created earlier) to our streams. Finally we call participantsChanged with 
an index of 0 and changeType of updated. That function is a helper function for updating our
UICollectionView with nice animations. Here’s what it looks like:

private func participantsChanged(index: Int, changeType: ChangeType) { 
    switch changeType { 
    case .joined: 
        collectionViewParticipants?.insertItems(at: [IndexPath(item: index, section: 
 0)]) 
    case .updated: 
        // Instead of doing reloadItems, just grab the cell and update it ourselves. It 
 saves a create/destroy of a cell 
        // and more importantly fixes some UI flicker. We disable scrolling so the 
 index path per cell 
        // never changes. 
        if let cell = collectionViewParticipants?.cellForItem(at: IndexPath(item: 
 index, section: 0)) as? ParticipantCollectionViewCell { 
            cell.set(participant: participants[index]) 
        } 
    case .left: 
        collectionViewParticipants?.deleteItems(at: [IndexPath(item: index, section: 
 0)]) 
    }
}

Don’t worry about cell.set yet; we’ll get to that later, but that’s where we will render the cell’s 
contents based on the participant.

The ChangeType is a simple enum:

enum ChangeType { 
    case joined, updated, left
}

iOS 72



Amazon IVS Real-Time Streaming User Guide

Finally, we want to keep track of whether the stage is connected. We use a simple bool to track 
that, which will automatically update our UI when it is updated itself.

private var connectingOrConnected = false { 
    didSet { 
        buttonJoin.setTitle(connectingOrConnected ? "Leave" : "Join", for: .normal) 
        buttonJoin.tintColor = connectingOrConnected ? .systemRed : .systemBlue 
    }
}

Implement the Stage SDK

Three core concepts underlie real-time functionality: stage, strategy, and renderer. The design goal 
is minimizing the amount of client-side logic necessary to build a working product.

IVSStageStrategy

Our IVSStageStrategy implementation is simple:

extension ViewController: IVSStageStrategy { 
    func stage(_ stage: IVSStage, streamsToPublishForParticipant participant: 
 IVSParticipantInfo) -> [IVSLocalStageStream] { 
        // Return the camera and microphone to be published. 
        // This is only called if `shouldPublishParticipant` returns true. 
        return streams 
    } 

    func stage(_ stage: IVSStage, shouldPublishParticipant participant: 
 IVSParticipantInfo) -> Bool { 
        // Our publish status is based directly on the UISwitch view 
        return switchPublish.isOn 
    } 

    func stage(_ stage: IVSStage, shouldSubscribeToParticipant participant: 
 IVSParticipantInfo) -> IVSStageSubscribeType { 
        // Subscribe to both audio and video for all publishing participants. 
        return .audioVideo 
    }
}

iOS 73



Amazon IVS Real-Time Streaming User Guide

To summarize, we only publish if the publish switch is in the “on” position, and if we publish we will 
publish the streams that we collected earlier. Finally, for this sample, we always subscribe to other 
participants, receiving both their audio and video.

IVSStageRenderer

The IVSStageRenderer implementation also is fairly simple, though given the number of 
functions it contains quite a bit more code. The general approach in this renderer is to update 
our participants array when the SDK notifies us of a change to a participant. There are certain 
scenarios where we handle local participants differently, because we have decided to manage them 
ourselves so they can see their camera preview before joining.

extension ViewController: IVSStageRenderer { 

    func stage(_ stage: IVSStage, didChange connectionState: IVSStageConnectionState, 
 withError error: Error?) { 
        labelState.text = connectionState.text 
        connectingOrConnected = connectionState != .disconnected 
    } 

    func stage(_ stage: IVSStage, participantDidJoin participant: IVSParticipantInfo) { 
        if participant.isLocal { 
            // If this is the local participant joining the Stage, update the first 
 participant in our array because we 
            // manually added that participant when setting up our preview 
            participants[0].participantId = participant.participantId 
            participantsChanged(index: 0, changeType: .updated) 
        } else { 
            // If they are not local, add them to the array as a newly joined 
 participant. 
            participants.append(StageParticipant(isLocal: false, participantId: 
 participant.participantId)) 
            participantsChanged(index: (participants.count - 1), changeType: .joined) 
        } 
    } 

    func stage(_ stage: IVSStage, participantDidLeave participant: IVSParticipantInfo) 
 { 
        if participant.isLocal { 
            // If this is the local participant leaving the Stage, update the first 
 participant in our array because 
            // we want to keep the camera preview active 
            participants[0].participantId = nil 

iOS 74



Amazon IVS Real-Time Streaming User Guide

            participantsChanged(index: 0, changeType: .updated) 
        } else { 
            // If they are not local, find their index and remove them from the array. 
            if let index = participants.firstIndex(where: { $0.participantId == 
 participant.participantId }) { 
                participants.remove(at: index) 
                participantsChanged(index: index, changeType: .left) 
            } 
        } 
    } 

    func stage(_ stage: IVSStage, participant: IVSParticipantInfo, didChange 
 publishState: IVSParticipantPublishState) { 
        // Update the publishing state of this participant 
        mutatingParticipant(participant.participantId) { data in 
            data.publishState = publishState 
        } 
    } 

    func stage(_ stage: IVSStage, participant: IVSParticipantInfo, didChange 
 subscribeState: IVSParticipantSubscribeState) { 
        // Update the subscribe state of this participant 
        mutatingParticipant(participant.participantId) { data in 
            data.subscribeState = subscribeState 
        } 
    } 

    func stage(_ stage: IVSStage, participant: IVSParticipantInfo, 
 didChangeMutedStreams streams: [IVSStageStream]) { 
        // We don't want to take any action for the local participant because we track 
 those streams locally 
        if participant.isLocal { return } 
        // For remote participants, notify the UICollectionView that they have updated. 
 There is no need to modify 
        // the `streams` property on the `StageParticipant` because it is the same 
 `IVSStageStream` instance. Just 
        // query the `isMuted` property again. 
        if let index = participants.firstIndex(where: { $0.participantId == 
 participant.participantId }) { 
            participantsChanged(index: index, changeType: .updated) 
        } 
    } 

iOS 75



Amazon IVS Real-Time Streaming User Guide

    func stage(_ stage: IVSStage, participant: IVSParticipantInfo, didAdd streams: 
 [IVSStageStream]) { 
        // We don't want to take any action for the local participant because we track 
 those streams locally 
        if participant.isLocal { return } 
        // For remote participants, add these new streams to that participant's streams 
 array. 
        mutatingParticipant(participant.participantId) { data in 
            data.streams.append(contentsOf: streams) 
        } 
    } 

    func stage(_ stage: IVSStage, participant: IVSParticipantInfo, didRemove streams: 
 [IVSStageStream]) { 
        // We don't want to take any action for the local participant because we track 
 those streams locally 
        if participant.isLocal { return } 
        // For remote participants, remove these streams from that participant's 
 streams array. 
        mutatingParticipant(participant.participantId) { data in 
            let oldUrns = streams.map { $0.device.descriptor().urn } 
            data.streams.removeAll(where: { stream in 
                return oldUrns.contains(stream.device.descriptor().urn) 
            }) 
        } 
    } 

    // A helper function to find a participant by its ID, mutate that participant, and 
 then update the UICollectionView accordingly. 
    private func mutatingParticipant(_ participantId: String?, modifier: (inout 
 StageParticipant) -> Void) { 
        guard let index = participants.firstIndex(where: { $0.participantId == 
 participantId }) else { 
            fatalError("Something is out of sync, investigate if this was a sample app 
 or SDK issue.") 
        } 

        var participant = participants[index] 
        modifier(&participant) 
        participants[index] = participant 
        participantsChanged(index: index, changeType: .updated) 
    }
}

iOS 76



Amazon IVS Real-Time Streaming User Guide

This code uses an extension to convert the connection state into human-friendly text:

extension IVSStageConnectionState { 
    var text: String { 
        switch self { 
        case .disconnected: return "Disconnected" 
        case .connecting: return "Connecting" 
        case .connected: return "Connected" 
        @unknown default: fatalError() 
        } 
    }
}

Implementing a Custom UICollectionViewLayout

Laying out different numbers of participants can be complex. You want them to take up the entire 
parent view’s frame but you don’t want to handle each participant configuration independently. To 
make this easy, we’ll walk through implementing a UICollectionViewLayout.

Create another new file, ParticipantCollectionViewLayout.swift, which should extend
UICollectionViewLayout. This class will use another class called StageLayoutCalculator, 
which we’ll cover soon. The class receives calculated frame values for each participant and then 
generates the necessary UICollectionViewLayoutAttributes objects.

import Foundation
import UIKit

/** 
 Code modified from https://developer.apple.com/documentation/uikit/views_and_controls/
collection_views/layouts/customizing_collection_view_layouts?language=objc 
 */
class ParticipantCollectionViewLayout: UICollectionViewLayout { 

    private let layoutCalculator = StageLayoutCalculator() 

    private var contentBounds = CGRect.zero 
    private var cachedAttributes = [UICollectionViewLayoutAttributes]() 

    override func prepare() { 
        super.prepare() 

        guard let collectionView = collectionView else { return } 

iOS 77



Amazon IVS Real-Time Streaming User Guide

        cachedAttributes.removeAll() 
        contentBounds = CGRect(origin: .zero, size: collectionView.bounds.size) 

        layoutCalculator.calculateFrames(participantCount: 
 collectionView.numberOfItems(inSection: 0), 
                                         width: collectionView.bounds.size.width, 
                                         height: collectionView.bounds.size.height, 
                                         padding: 4) 
        .enumerated() 
        .forEach { (index, frame) in 
            let attributes = UICollectionViewLayoutAttributes(forCellWith: 
 IndexPath(item: index, section: 0)) 
            attributes.frame = frame 
            cachedAttributes.append(attributes) 
            contentBounds = contentBounds.union(frame) 
        } 
    } 

    override var collectionViewContentSize: CGSize { 
        return contentBounds.size 
    } 

    override func shouldInvalidateLayout(forBoundsChange newBounds: CGRect) -> Bool { 
        guard let collectionView = collectionView else { return false } 
        return !newBounds.size.equalTo(collectionView.bounds.size) 
    } 

    override func layoutAttributesForItem(at indexPath: IndexPath) -> 
 UICollectionViewLayoutAttributes? { 
        return cachedAttributes[indexPath.item] 
    } 

    override func layoutAttributesForElements(in rect: CGRect) -> 
 [UICollectionViewLayoutAttributes]? { 
        var attributesArray = [UICollectionViewLayoutAttributes]() 

        // Find any cell that sits within the query rect. 
        guard let lastIndex = cachedAttributes.indices.last, let firstMatchIndex = 
 binSearch(rect, start: 0, end: lastIndex) else { 
            return attributesArray 
        } 

iOS 78



Amazon IVS Real-Time Streaming User Guide

        // Starting from the match, loop up and down through the array until all the 
 attributes 
        // have been added within the query rect. 
        for attributes in cachedAttributes[..<firstMatchIndex].reversed() { 
            guard attributes.frame.maxY >= rect.minY else { break } 
            attributesArray.append(attributes) 
        } 

        for attributes in cachedAttributes[firstMatchIndex...] { 
            guard attributes.frame.minY <= rect.maxY else { break } 
            attributesArray.append(attributes) 
        } 

        return attributesArray 
    } 

    // Perform a binary search on the cached attributes array. 
    func binSearch(_ rect: CGRect, start: Int, end: Int) -> Int? { 
        if end < start { return nil } 

        let mid = (start + end) / 2 
        let attr = cachedAttributes[mid] 

        if attr.frame.intersects(rect) { 
            return mid 
        } else { 
            if attr.frame.maxY < rect.minY { 
                return binSearch(rect, start: (mid + 1), end: end) 
            } else { 
                return binSearch(rect, start: start, end: (mid - 1)) 
            } 
        } 
    }
}

More important is the StageLayoutCalculator.swift class. It is designed to calculate the 
frames for each participant based on the number of participants in a flow-based row/column 
layout. Each row is the same height as the others, but the columns can be different widths per row. 
See the code comment above the layouts variable for a description of how to customize this 
behavior.

import Foundation
import UIKit

iOS 79



Amazon IVS Real-Time Streaming User Guide

class StageLayoutCalculator { 

    /// This 2D array contains the description of how the grid of participants should 
 be rendered 
    /// The index of the 1st dimension is the number of participants needed to active 
 that configuration 
    /// Meaning if there is 1 participant, index 0 will be used. If there are 5 
 participants, index 4 will be used. 
    /// 
    /// The 2nd dimension is a description of the layout. The length of the array is 
 the number of rows that 
    /// will exist, and then each number within that array is the number of columns in 
 each row. 
    /// 
    /// See the code comments next to each index for concrete examples. 
    /// 
    /// This can be customized to fit any layout configuration needed. 
    private let layouts: [[Int]] = [ 
        // 1 participant 
        [ 1 ], // 1 row, full width 
        // 2 participants 
        [ 1, 1 ], // 2 rows, all columns are full width 
        // 3 participants 
        [ 1, 2 ], // 2 rows, first row's column is full width then 2nd row's columns 
 are 1/2 width 
        // 4 participants 
        [ 2, 2 ], // 2 rows, all columns are 1/2 width 
        // 5 participants 
        [ 1, 2, 2 ], // 3 rows, first row's column is full width, 2nd and 3rd row's 
 columns are 1/2 width 
        // 6 participants 
        [ 2, 2, 2 ], // 3 rows, all column are 1/2 width 
        // 7 participants 
        [ 2, 2, 3 ], // 3 rows, 1st and 2nd row's columns are 1/2 width, 3rd row's 
 columns are 1/3rd width 
        // 8 participants 
        [ 2, 3, 3 ], 
        // 9 participants 
        [ 3, 3, 3 ], 
        // 10 participants 
        [ 2, 3, 2, 3 ], 
        // 11 participants 
        [ 2, 3, 3, 3 ], 

iOS 80



Amazon IVS Real-Time Streaming User Guide

        // 12 participants 
        [ 3, 3, 3, 3 ], 
    ] 

    // Given a frame (this could be for a UICollectionView, or a Broadcast Mixer's 
 canvas), calculate the frames for each 
    // participant, with optional padding. 
    func calculateFrames(participantCount: Int, width: CGFloat, height: CGFloat, 
 padding: CGFloat) -> [CGRect] { 
        if participantCount > layouts.count { 
            fatalError("Only \(layouts.count) participants are supported at this time") 
        } 
        if participantCount == 0 { 
            return [] 
        } 
        var currentIndex = 0 
        var lastFrame: CGRect = .zero 

        // If the height is less than the width, the rows and columns will be flipped. 
        // Meaning for 6 participants, there will be 2 rows of 3 columns each. 
        let isVertical = height > width 

        let halfPadding = padding / 2.0 

        let layout = layouts[participantCount - 1] // 1 participant is in index 0, so 
 `-1`. 
        let rowHeight = (isVertical ? height : width) / CGFloat(layout.count) 

        var frames = [CGRect]() 
        for row in 0 ..< layout.count { 
            // layout[row] is the number of columns in a layout 
            let itemWidth = (isVertical ? width : height) / CGFloat(layout[row]) 
            let segmentFrame = CGRect(x: (isVertical ? 0 : lastFrame.maxX) + 
 halfPadding, 
                                      y: (isVertical ? lastFrame.maxY : 0) + 
 halfPadding, 
                                      width: (isVertical ? itemWidth : rowHeight) - 
 padding, 
                                      height: (isVertical ? rowHeight : itemWidth) - 
 padding) 

            for column in 0 ..< layout[row] { 
                var frame = segmentFrame 
                if isVertical { 

iOS 81



Amazon IVS Real-Time Streaming User Guide

                    frame.origin.x = (itemWidth * CGFloat(column)) + halfPadding 
                } else { 
                    frame.origin.y = (itemWidth * CGFloat(column)) + halfPadding 
                } 
                frames.append(frame) 
                currentIndex += 1 
            } 

            lastFrame = segmentFrame 
            lastFrame.origin.x += halfPadding 
            lastFrame.origin.y += halfPadding 
        } 
        return frames 
    }

}

Back in Main.storyboard, be sure to set the layout class for the UICollectionView to the class 
we just created:

iOS 82



Amazon IVS Real-Time Streaming User Guide

Hooking Up UI Actions

We are getting close, there are a few IBActions that we need to create.

First we’ll handle the join button. It responds differently based on the value of
connectingOrConnected. When it is already connected, it just leaves the stage. If it is 
disconnected, it reads the text from the token UITextField and creates a new IVSStage with 
that text. Then we add our ViewController as the strategy, errorDelegate, and renderer for 
the IVSStage, and finally we join the stage asynchronously.

@IBAction private func joinTapped(_ sender: UIButton) { 
    if connectingOrConnected { 
        // If we're already connected to a Stage, leave it. 
        stage?.leave() 
    } else { 
        guard let token = textFieldToken.text else { 

iOS 83



Amazon IVS Real-Time Streaming User Guide

            print("No token") 
            return 
        } 
        // Hide the keyboard after tapping Join 
        textFieldToken.resignFirstResponder() 
        do { 
            // Destroy the old Stage first before creating a new one. 
            self.stage = nil 
            let stage = try IVSStage(token: token, strategy: self) 
            stage.errorDelegate = self 
            stage.addRenderer(self) 
            try stage.join() 
            self.stage = stage 
        } catch { 
            print("Failed to join stage - \(error)") 
        } 
    }
}

The other UI action we need to hook up is the publish switch:

@IBAction private func publishToggled(_ sender: UISwitch) { 
    // Because the strategy returns the value of `switchPublish.isOn`, just call 
 `refreshStrategy`. 
    stage?.refreshStrategy()
}

Rendering the Participants

Finally, we need to render the data we receive from the SDK onto the participant cell that we 
created earlier. We already have the UICollectionView logic finished, so we just need to 
implement the set API in ParticipantCollectionViewCell.swift.

We’ll start by adding the empty function and then walk through it step by step:

func set(participant: StageParticipant) { 
    
}

First we handle the easy state, the participant ID, publish state, and subscribe state. For these, we 
just update our UILabels directly:

iOS 84



Amazon IVS Real-Time Streaming User Guide

labelParticipantId.text = participant.isLocal ? "You (\(participant.participantId ?? 
 "Disconnected"))" : participant.participantId
labelPublishState.text = participant.publishState.text
labelSubscribeState.text = participant.subscribeState.text

The text properties of the publish and subscribe enums come from local extensions:

extension IVSParticipantPublishState { 
    var text: String { 
        switch self { 
        case .notPublished: return "Not Published" 
        case .attemptingPublish: return "Attempting to Publish" 
        case .published: return "Published" 
        @unknown default: fatalError() 
        } 
    }
}

extension IVSParticipantSubscribeState { 
    var text: String { 
        switch self { 
        case .notSubscribed: return "Not Subscribed" 
        case .attemptingSubscribe: return "Attempting to Subscribe" 
        case .subscribed: return "Subscribed" 
        @unknown default: fatalError() 
        } 
    }
}

Next we update the audio and video muted states. To get the muted states we need to find the
IVSImageDevice and IVSAudioDevice from the streams array. To optimize performance, we 
will remember the last devices attached.

// This belongs outside `set(participant:)`
private var registeredStreams: Set<IVSStageStream> = []
private var imageDevice: IVSImageDevice? { 
    return registeredStreams.lazy.compactMap { $0.device as? IVSImageDevice }.first
}
private var audioDevice: IVSAudioDevice? { 
    return registeredStreams.lazy.compactMap { $0.device as? IVSAudioDevice }.first
}

iOS 85



Amazon IVS Real-Time Streaming User Guide

// This belongs inside `set(participant:)`
let existingAudioStream = registeredStreams.first { $0.device is IVSAudioDevice }
let existingImageStream = registeredStreams.first { $0.device is IVSImageDevice }

registeredStreams = Set(participant.streams)

let newAudioStream = participant.streams.first { $0.device is IVSAudioDevice }
let newImageStream = participant.streams.first { $0.device is IVSImageDevice }

// `isMuted != false` covers the stream not existing, as well as being muted.
labelVideoMuted.text = "Video Muted: \(newImageStream?.isMuted != false)"
labelAudioMuted.text = "Audio Muted: \(newAudioStream?.isMuted != false)"

Finally we want to render a preview for the imageDevice and display audio stats from the
audioDevice:

if existingImageStream !== newImageStream { 
    // The image stream has changed 
    updatePreview() // We’ll cover this next
}

if existingAudioStream !== newAudioStream { 
    (existingAudioStream?.device as? IVSAudioDevice)?.setStatsCallback(nil) 
    audioDevice?.setStatsCallback( { [weak self] stats in 
        self?.labelAudioVolume.text = String(format: "Audio Level: %.0f dB", stats.rms) 
    }) 
    // When the audio stream changes, it will take some time to receive new stats. 
 Reset the value temporarily. 
    self.labelAudioVolume.text = "Audio Level: -100 dB"
}

The last function we need to create is updatePreview(), which adds a preview of the participant 
to our view:

private func updatePreview() { 
    // Remove any old previews from the preview container 
    viewPreviewContainer.subviews.forEach { $0.removeFromSuperview() } 
    if let imageDevice = self.imageDevice { 
        if let preview = try? imageDevice.previewView(with: .fit) { 
            viewPreviewContainer.addSubviewMatchFrame(preview) 
        } 
    }

iOS 86



Amazon IVS Real-Time Streaming User Guide

}

The above uses a helper function on UIView to make embedding subviews easier:

extension UIView { 
    func addSubviewMatchFrame(_ view: UIView) { 
        view.translatesAutoresizingMaskIntoConstraints = false 
        self.addSubview(view) 
        NSLayoutConstraint.activate([ 
            view.topAnchor.constraint(equalTo: self.topAnchor, constant: 0), 
            view.bottomAnchor.constraint(equalTo: self.bottomAnchor, constant: 0), 
            view.leadingAnchor.constraint(equalTo: self.leadingAnchor, constant: 0), 
            view.trailingAnchor.constraint(equalTo: self.trailingAnchor, constant: 0), 
        ]) 
    }
}

iOS 87



Amazon IVS Real-Time Streaming User Guide

Monitoring Amazon IVS Real-Time Streaming

This document provides details about options available for monitoring your IVS real-time 
streaming application.

What is a Stage Session?

A stage session begins when the first participant joins a stage and ends a few minutes after the last 
participant stops publishing to the stage. Stage sessions help with debugging long-lived stages by 
separating out events and participants into short-lived sessions.

View Stage Sessions and Participants

Console Instructions

1. Open the Amazon IVS console.

(You also can access the Amazon IVS console through the AWS Management Console.)

2. On the navigation pane, choose Stages. (If the nav pane is collapsed, first open it by choosing 
the hamburger icon.)

3. Choose the stage to go to its details page.

4. Scroll down the page until you see the Stage sessions section, then select a stage session to 
view its details page.

5. To view participants in the session, scroll down until you see the Participants section, then 
select a participant to view its details page, including charts for Amazon CloudWatch metrics.

View Events for a Participant

Events are sent when a participant’s status in a stage changes, such as joining a stage or 
encountering an error trying to publish to a stage. Not all errors cause events; e.g., client-side 
network errors and token-signature errors are not sent as events. To handle these errors in your 
client application, use the IVS broadcast SDKs.

Console Instructions

1. Navigate to the participant details page as instructed above.

What is a Stage Session? 88

https://console.aws.amazon.com/ivs
https://console.aws.amazon.com


Amazon IVS Real-Time Streaming User Guide

2. Scroll down until you see the Events section. This displays an ordered list of participant events. 
See Using Amazon EventBridge with Amazon IVS for details on events that are emitted for 
participants.

CLI Instructions

Accessing stage-session events with the AWS CLI is an advanced option and requires that you 
first download and configure the CLI on your machine. For details, see the AWS Command Line 
Interface User Guide.

1. List stage sessions to find a stage session:

aws ivs-realtime list-stage-sessions --stage-arn <arn>

2. List participants for a stage session to find a participant:

aws ivs-realtime list-participants --stage-arn <arn> –session-id <sessionId>

3. List events for a stage session and participant:

aws ivs-realtime list-participant-events --stage-arn <arn> --session-id <sessionId> 
 –-participant-id <participantId>

Here is a sample response to the list-participant-events call:

{ 
    "events": [ 
        { 
            "eventTime": "2023-04-04T22:48:41+00:00", 
            "name": "JOINED", 
            "participantId": "AdRezBl021t0" 
        }, 
        { 
            "eventTime": "2023-04-04T22:48:41+00:00", 
            "name": "SUBSCRIBE_STARTED", 
            "participantId": "AdRezBl021t0", 
            "remoteParticipantId": "Ou5b5n5XLMdC" 
        }, 
        { 
            "eventTime": "2023-04-04T22:49:45+00:00", 

CLI Instructions 89

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html


Amazon IVS Real-Time Streaming User Guide

            "name": "SUBSCRIBE_STOPPED", 
            "participantId": "AdRezBl021t0", 
            "remoteParticipantId": "Ou5b5n5XLMdC" 
        }, 
        { 
            "eventTime": "2023-04-04T22:49:45+00:00", 
            "name": "LEFT", 
            "participantId": "AdRezBl021t0" 
        } 
    ]
}

Access CloudWatch Metrics

For CloudWatch metrics to be available, the following IVS Broadcast SDK versions are required: 
Web 1.5.0 or later, Android 1.12.0 or later, or iOS 1.12.0 or later.

CloudWatch Console Instructions

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the side navigation, expand the Metrics dropdown, then select All metrics.

3. On the Browse tab, using the unlabeled dropdown at the left, select your “home” region, where 
your channel(s) was(were) created. For more on regions, see Global Solution, Regional Control. 
For a list of supported regions, see the Amazon IVS page in the AWS General Reference.

4. At the bottom of the Browse tab, select the IVSRealTime namespace.

5. Do one of the following:

a. In the search bar, enter your resource ID (part of the ARN, arn:::ivs:stage/<resource 
id>).

Then select IVSRealTime > Stage Metrics.

b. If IVSRealTime appears as a selectable service under AWS Namespaces, select it. It will 
be listed if you use Amazon IVS Real-Time Streaming and it is sending metrics to Amazon 
CloudWatch. (If IVSRealTime is not listed, you do not have any Amazon IVS metrics.)

Then choose a dimension grouping as desired; available dimensions are listed in CloudWatch 
Metrics below.

6. Choose metrics to add to the graph. Available metrics are listed in CloudWatch Metrics below.

Access CloudWatch Metrics 90

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/what-is.html#what-is-aws
https://docs.aws.amazon.com/general/latest/gr/ivs.html


Amazon IVS Real-Time Streaming User Guide

You also can access your stream session’s CloudWatch chart from the stream session’s details page, 
by selecting the View in CloudWatch button.

CLI Instructions

You also can access the metrics using the AWS CLI. This requires that you first download and 
configure the CLI on your machine. For details, see the AWS Command Line Interface User Guide.

Then, to access Amazon IVS real-time streaming metrics using the AWS CLI:

• At a command prompt, run:

aws cloudwatch list-metrics --namespace AWS/IVSRealTime

For more information, see Using Amazon CloudWatch Metrics in the Amazon CloudWatch User 
Guide.

CloudWatch Metrics: IVS Real-Time Streaming

Amazon IVS provides the following metrics in the AWS/IVSRealTime namespace.

For CloudWatch metrics to be available, Web Broadcast SDK 1.5.2 or later must be used.

The dimension can have the following valid values:

• The Stage dimension is a resource ID (part of the ARN, arn:::stage/<resource id>).

• The Participant dimension is a participantID.

• The SimulcastLayer is "hi", "mid", "low", or "no-rid" for a MediaType of "video" or "disabled" 
for a MediaType of "audio." This value also can be empty.

• The MediaType dimension is "video" or "audio" (string).

Metric Dimension Description

DownloadP 
acketLoss

Stage Each sample represents the percentage of packets that 
were lost by a given subscriber while downloading from 
the IVS server.

CLI Instructions 91

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html


Amazon IVS Real-Time Streaming User Guide

Metric Dimension Description

Unit: Percent

Valid statistics: Average, Maximum, Minimum — Average 
number, largest number, or smallest number (respecti 
vely) of packet loss over the configured interval

DownloadP 
acketLoss

Stage,Par 
ticipant

Filters DownloadPacketLoss  by participant, 
for subscribers who are also publishers. Samples 
represent the percentage of packets that were lost by 
the subscriber while downloading from the IVS server. 
Samples are emitted only when the participant is also a 
publisher.

Unit: Percent

Valid statistics: Average, Maximum, Minimum — Average 
number, largest number, or smallest number (respecti 
vely) of dropped frames over the configured interval

DroppedFr 
ames

Stage Each sample represents the percentage of frames that 
were dropped by a given subscriber.

Unit: Percent

Valid statistics: Average, Maximum, Minimum — Average 
number, largest number, or smallest number (respecti 
vely) of dropped frames over the configured interval

CloudWatch Metrics: IVS Real-Time Streaming 92



Amazon IVS Real-Time Streaming User Guide

Metric Dimension Description

DroppedFr 
ames

Stage,Par 
ticipant

Filters DroppedFrames  by participant, for subscribe 
rs who are also publishers. Samples represent the 
percentage of frames that were dropped between the 
subscribing participant and all publishers in the stage. 
Samples are emitted only when the participant is also a 
publisher.

Unit: Percent

Valid statistics: Average, Maximum, Minimum — Average 
number, largest number, or smallest number (respecti 
vely) of dropped frames over the configured interval

PublishBi 
trate

Stage Samples emitted represent the total rate at which a 
given publisher is sending both video and audio data 
(summed across all simulcast layers).

Unit: Bits/second

Valid statistics: Average, Maximum, Minimum — Average 
number, largest number, or smallest number (respecti 
vely) of bitrate over the configured interval

PublishBi 
trate

Stage, 
Participa 
nt, 
Simulcast 
Layer, 
MediaType

Filters PublishBitrate  by participant, simulcast 
 layer, and media type. The simulcast layer ID is set by 
the broadcast SDK. When simulcast is disabled, this layer 
ID will be set to "disabled". The media type is either 
video or audio.

Unit: Bits/second

Valid statistics: Average, Maximum, Minimum — Average 
number, largest number, or smallest number (respecti 
vely) of bitrate over the configured interval

CloudWatch Metrics: IVS Real-Time Streaming 93



Amazon IVS Real-Time Streaming User Guide

Metric Dimension Description

PublishFr 
amerate

Stage, 
Participant

How often video frames are received from a given 
publisher. This metric is available only for participants 
publishing over RTMP.

Unit: Count/second

Valid statistics: Average, Maximum, Minimum — Average 
number, largest number, or smallest number (respecti 
vely) of framerate over the configured interval

Publishers Stage Number of participants publishing to the stage.

Unit: Count

Valid statistics: Average, Maximum, Minimum

PublishRe 
solution

Stage, 
Participa 
nt, 
Simulcast 
Layer, 
MediaType

Number of pixels across the smaller of the width or 
height of the frame. For example, for a landscape frame 
of size 1920x1080, the PublishResolution is 1080. For a 
portrait frame of size 720x1280, the PublishResolution 
is 720.

Unit: Count

Valid statistics: Average, Maximum, Minimum

Subscribe 
Bitrate

Stage Samples emitted represent the total rate at which a 
given subscriber is receiving both video and audio data.

Unit: Bits/second

Valid statistics: Average, Maximum, Minimum — Average 
number, largest number, or smallest number (respecti 
vely) of bitrate over the configured interval

CloudWatch Metrics: IVS Real-Time Streaming 94



Amazon IVS Real-Time Streaming User Guide

Metric Dimension Description

Subscribe 
Bitrate

Stage,Par 
ticipant, 
MediaType

Filters SubscribeBitrate  by participant, for 
subscribers who are also publishers. Samples represent 
the bitrate at which a given subscriber is receiving the 
given MediaType . Samples are only emitted while the 
subscribing participant is publishing.

Unit: Bits/second

Valid statistics: Average, Maximum, Minimum — Average 
number, largest number, or smallest number (respecti 
vely) of bitrate over the configured interval

Subscribers Stage Number of participants subscribed to the stage. 
Note that participants that are actively publishing 
and subscribing are counted as both publishers and 
subscribers.

Unit: Count

Valid statistics: Average, Maximum, Minimum

CloudWatch Metrics: IVS Real-Time Streaming 95



Amazon IVS Real-Time Streaming User Guide

IVS Broadcast SDK | Real-Time Streaming

The Amazon Interactive Video Services (IVS) Real-Time Streaming broadcast SDK is for developers 
who are building applications with Amazon IVS. This SDK is designed to leverage the Amazon IVS 
architecture and will see continual improvement and new features, alongside Amazon IVS. As a 
native broadcast SDK, it is designed to minimize the performance impact on your application and 
on the devices with which your users access your application.

Note that the broadcast SDK is used for both sending and receiving video; i.e., you use the same 
SDK for hosts and viewers. No separate player SDK needed.

Your application can leverage the key features of the Amazon IVS broadcast SDK:

• High quality streaming — The broadcast SDK supports high quality streaming. Capture video 
from your camera and encode it at up to 720p.

• Automatic Bitrate Adjustments — Smartphone users are mobile, so their network conditions 
can change throughout the course of a broadcast. The Amazon IVS broadcast SDK automatically 
adjusts the video bitrate to accommodate changing network conditions.

• Portrait and Landscape Support — No matter how your users hold their devices, the image 
appears right-side up and properly scaled. The broadcast SDK supports both portrait and 
landscape canvas sizes. It automatically manages the aspect ratio when the users rotate their 
device away from the configured orientation.

• Secure Streaming — Your user’s broadcasts are encrypted using TLS, so they can keep their 
streams secure.

• External Audio Devices — The Amazon IVS broadcast SDK supports audio jack, USB, and 
Bluetooth SCO external microphones.

Platform Requirements

Native Platforms

Platform Supported Versions

Android 9.0 and later -- note customers can build with version 5.0 but will not be 
able to use real-time streaming functionality.

Platform Requirements 96



Amazon IVS Real-Time Streaming User Guide

Platform Supported Versions

iOS 14 and later

IVS supports a minimum of 4 major iOS versions and 6 major Android versions. Our current version 
support may extend beyond these minimums. Customers will be notified via SDK release notes at 
least 3 months in advance of a major version no longer being supported.

Desktop Browsers

Browser Supported 
Platforms

Supported Versions

Chrome Windows, 
macOS

Two major versions (current and most recent prior 
version)

Firefox Windows, 
macOS

Two major versions (current and most recent prior 
version)

Edge Windows 8.1 
and later

Two major versions (current and most recent prior 
version)

Excludes Edge Legacy

Safari macOS Two major versions (current and most recent prior 
version)

Mobile Browsers (iOS and Android)

Browser Supported 
Platforms

Supported Versions

Chrome iOS, Android Two major versions (current and most recent prior 
version)

Desktop Browsers 97



Amazon IVS Real-Time Streaming User Guide

Browser Supported 
Platforms

Supported Versions

Firefox Android Two major versions (current and most recent prior 
version)

Safari iOS Two major versions (current and most recent prior 
version)

Known Limitations

• On all mobile devices, we do not recommend publishing/subscribing with four or more 
participants at the same time, due to issues with video artifacts and black screens. If you require 
more participants, configure audio-only publish and subscribe.

• We do not recommend compositing a stage and broadcasting it to a channel on Android Mobile 
Web, due to performance considerations and potential crashes. If broadcast functionality is 
required, integrate the IVS real-time streaming Android broadcast SDK.

Webviews

The Web broadcast SDK does not provide support for webviews or weblike environments (TVs, 
consoles, etc). For mobile implementations, see the Real-Time Streaming Broadcast SDK Guide for
Android and for iOS.

Required Device Access

The broadcast SDK requires access to the device's cameras and microphones, both those built into 
the device and those connected through Bluetooth, USB, or audio jack.

Support

The broadcast SDK is continually improved. See Amazon IVS Release Notes for available versions 
and fixed issues. If appropriate, before contacting support, update your version of the broadcast 
SDK and see if that resolves your issue.

Webviews 98



Amazon IVS Real-Time Streaming User Guide

Versioning

The Amazon IVS broadcast SDKs use semantic versioning.

For this discussion, suppose:

• The latest release is 4.1.3.

• The latest release of the prior major version is 3.2.4.

• The latest release of version 1.x is 1.5.6.

Backward-compatible new features are added as minor releases of the latest version. In this case, 
the next set of new features will be added as version 4.2.0.

Backward-compatible, minor bug fixes are added as patch releases of the latest version. Here, the 
next set of minor bug fixes will be added as version 4.1.4.

Backward-compatible, major bug fixes are handled differently; these are added to several versions:

• Patch release of the latest version. Here, this is version 4.1.4.

• Patch release of the prior minor version. Here, this is version 3.2.5.

• Patch release of the latest version 1.x release. Here, this is version 1.5.7.

Major bug fixes are defined by the Amazon IVS product team. Typical examples are critical security 
updates and selected other fixes necessary for customers.

Note: In the examples above, released versions increment without skipping any numbers (e.g., from 
4.1.3 to 4.1.4). In reality, one or more patch numbers may remain internal and not be released, so 
the released version could increment from 4.1.3 to, say, 4.1.6.

IVS Broadcast SDK: Web Guide | Real-Time Streaming

The IVS real-time streaming Web broadcast SDK gives developers the tools to build interactive, 
real-time experiences on the web. This SDK is for developers who are building web applications 
with Amazon IVS.

The Web broadcast SDK enables participants to send and receive video. The SDK supports the 
following operations:

Versioning 99

https://semver.org/


Amazon IVS Real-Time Streaming User Guide

• Join a stage

• Publish media to other participants in the stage

• Subscribe to media from other participants in the stage

• Manage and monitor video and audio published to the stage

• Get WebRTC statistics for each peer connection

• All operations from the IVS low-latency streaming Web broadcast SDK

Latest version of Web broadcast SDK: 1.21.0 (Release Notes)

Reference documentation: For information on the most important methods available in the 
Amazon IVS Web Broadcast SDK, see https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-
reference. Make sure the most current version of the SDK is selected.

Sample code: The samples below are a good place to get started quickly with the SDK:

• HTML and JavaScript

• React

Platform requirements: See Amazon IVS Broadcast SDK for a list of supported platforms

Getting Started with the IVS Web Broadcast SDK | Real-Time Streaming

This document takes you through the steps involved in getting started with the IVS real-time 
streaming Web broadcast SDK.

Imports

The building blocks for real-time are located in a different namespace than the root broadcasting 
modules.

Using a Script Tag

Using the same script imports, the classes and enums defined in the examples below can be found 
on the global object IVSBroadcastClient:

const { Stage, SubscribeType } = IVSBroadcastClient;

Getting Started 100

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#feb20-25-broadcast-web-rt
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://codepen.io/amazon-ivs/project/editor/DYapzL#
https://codepen.io/amazon-ivs/project/editor/ZzWobn
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast.html


Amazon IVS Real-Time Streaming User Guide

Using npm

The classes, enums, and types also can be imported from the package module:

import { Stage, SubscribeType, LocalStageStream } from 'amazon-ivs-web-broadcast'

Server-Side Rendering Support

The Web Broadcast SDK Stages library cannot be loaded in a server-side context, as it references 
browser primitives necessary to the functioning of the library when loaded. To work around this, 
load the library dynamically, as demonstrated in the Web Broadcast Demo using Next and React.

Request Permissions

Your app must request permission to access the user’s camera and microphone, and it must be 
served using HTTPS. (This is not specific to Amazon IVS; it is required for any website that needs 
access to cameras and microphones.)

Here's an example function showing how you can request and capture permissions for both audio 
and video devices:

async function handlePermissions() { 
   let permissions = { 
       audio: false, 
       video: false, 
   }; 
   try { 
       const stream = await navigator.mediaDevices.getUserMedia({ video: true, audio: 
 true }); 
       for (const track of stream.getTracks()) { 
           track.stop(); 
       } 
       permissions = { video: true, audio: true }; 
   } catch (err) { 
       permissions = { video: false, audio: false }; 
       console.error(err.message); 
   } 
   // If we still don't have permissions after requesting them display the error 
 message 
   if (!permissions.video) { 
       console.error('Failed to get video permissions.'); 

Getting Started 101

https://github.com/aws-samples/amazon-ivs-broadcast-web-demo/blob/main/hooks/useBroadcastSDK.js#L26-L31


Amazon IVS Real-Time Streaming User Guide

   } else if (!permissions.audio) { 
       console.error('Failed to get audio permissions.'); 
   }
}

For additional information, see the Permissions API and MediaDevices.getUserMedia().

List Available Devices

To see what devices are available to capture, query the browser's MediaDevices.enumerateDevices()
method:

const devices = await navigator.mediaDevices.enumerateDevices();
window.videoDevices = devices.filter((d) => d.kind === 'videoinput');
window.audioDevices = devices.filter((d) => d.kind === 'audioinput');

Retrieve a MediaStream from a Device

After acquiring the list of available devices, you can retrieve a stream from any number of devices. 
For example, you can use the getUserMedia() method to retrieve a stream from a camera.

If you'd like to specify which device to capture the stream from, you can explicitly set the
deviceId in the audio or video section of the media constraints. Alternately, you can omit the
deviceId and have users select their devices from the browser prompt.

You also can specify an ideal camera resolution using the width and height constraints. (Read 
more about these constraints here.) The SDK automatically applies width and height constraints 
that correspond to your maximum broadcast resolution; however, it's a good idea to also apply 
these yourself to ensure that the source aspect ratio is not changed after you add the source to the 
SDK.

For real-time streaming, ensure that media is constrained to 720p resolution. Specifically, your
getUserMedia and getDisplayMedia constraint values for width and height must not exceed 
921600 (1280*720) when multiplied together.

const videoConfiguration = { 
  maxWidth: 1280, 
  maxHeight: 720, 
  maxFramerate: 30,

Getting Started 102

https://developer.mozilla.org/en-US/docs/Web/API/Permissions_API
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/enumerateDevices
https://developer.mozilla.org/en-US/docs/Web/API/MediaTrackConstraints#properties_of_video_tracks


Amazon IVS Real-Time Streaming User Guide

}

window.cameraStream = await navigator.mediaDevices.getUserMedia({ 
   video: { 
       deviceId: window.videoDevices[0].deviceId, 
       width: { 
           ideal: videoConfiguration.maxWidth, 
       }, 
       height: { 
           ideal:videoConfiguration.maxHeight, 
       }, 
   },
});
window.microphoneStream = await navigator.mediaDevices.getUserMedia({ 
   audio: { deviceId: window.audioDevices[0].deviceId },
});

Publishing & Subscribing with the IVS Web Broadcast SDK | Real-Time 
Streaming

This document takes you through the steps involved in publishing and subscribing to a stage using 
the IVS real-time streaming Web broadcast SDK.

Concepts

Three core concepts underlie real-time functionality: stage, strategy, and events. The design goal is 
minimizing the amount of client-side logic necessary to build a working product.

Stage

The Stage class is the main point of interaction between the host application and the SDK. It 
represents the stage itself and is used to join and leave the stage. Creating and joining a stage 
requires a valid, unexpired token string from the control plane (represented as token). Joining and 
leaving a stage are simple:

const stage = new Stage(token, strategy)

try { 
   await stage.join();
} catch (error) { 
   // handle join exception

Publishing and Subscribing 103



Amazon IVS Real-Time Streaming User Guide

}

stage.leave();

Strategy

The StageStrategy interface provides a way for the host application to communicate 
the desired state of the stage to the SDK. Three functions need to be implemented:
shouldSubscribeToParticipant, shouldPublishParticipant, and
stageStreamsToPublish. All are discussed below.

To use a defined strategy, pass it to the Stage constructor. The following is a complete example 
of an application using a strategy to publish a participant's webcam to the stage and subscribe to 
all participants. Each required strategy function's purpose is explained in detail in the subsequent 
sections.

const devices = await navigator.mediaDevices.getUserMedia({  
   audio: true, 
   video: { 
        width: { max: 1280 }, 
        height: { max: 720 }, 
    }  
});
const myAudioTrack = new LocalStageStream(devices.getAudioTracks()[0]);
const myVideoTrack = new LocalStageStream(devices.getVideoTracks()[0]);

// Define the stage strategy, implementing required functions
const strategy = { 
   audioTrack: myAudioTrack, 
   videoTrack: myVideoTrack, 

   // optional 
   updateTracks(newAudioTrack, newVideoTrack) { 
      this.audioTrack = newAudioTrack; 
      this.videoTrack = newVideoTrack; 
   }, 

   // required 
   stageStreamsToPublish() { 
      return [this.audioTrack, this.videoTrack]; 
   }, 

Publishing and Subscribing 104



Amazon IVS Real-Time Streaming User Guide

   // required 
   shouldPublishParticipant(participant) { 
      return true; 
   }, 

   // required 
   shouldSubscribeToParticipant(participant) { 
      return SubscribeType.AUDIO_VIDEO; 
   }
};

// Initialize the stage and start publishing
const stage = new Stage(token, strategy);
await stage.join();

// To update later (e.g. in an onClick event handler)
strategy.updateTracks(myNewAudioTrack, myNewVideoTrack);
stage.refreshStrategy();

Subscribing to Participants

shouldSubscribeToParticipant(participant: StageParticipantInfo): SubscribeType

When a remote participant joins the stage, the SDK queries the host application about the desired 
subscription state for that participant. The options are NONE, AUDIO_ONLY, and AUDIO_VIDEO. 
When returning a value for this function, the host application does not need to worry about the 
publish state, current subscription state, or stage connection state. If AUDIO_VIDEO is returned, 
the SDK waits until the remote participant is publishing before it subscribes, and it updates the 
host application by emitting events throughout the process.

Here is a sample implementation:

const strategy = { 
    
   shouldSubscribeToParticipant: (participant) => { 
      return SubscribeType.AUDIO_VIDEO; 
   } 

   // ... other strategy functions
}

Publishing and Subscribing 105



Amazon IVS Real-Time Streaming User Guide

This is the complete implementation of this function for a host application that always wants all 
participants to see each other; e.g., a video chat application.

More advanced implementations also are possible. For example, assume the application provides a
role attribute when creating the token with CreateParticipantToken. The application could use the
attributes property on StageParticipantInfo to selectively subscribe to participants based 
on the server-provided attributes:

const strategy = { 
    
   shouldSubscribeToParticipant(participant) { 
      switch (participant.attributes.role) { 
         case 'moderator': 
            return SubscribeType.NONE; 
         case 'guest': 
            return SubscribeType.AUDIO_VIDEO; 
         default: 
            return SubscribeType.NONE; 
      } 
   } 
   // . . . other strategies properties
}

This can be used to create a stage where moderators can monitor all guests without being seen or 
heard themselves. The host application could use additional business logic to let moderators see 
each other but remain invisible to guests.

Configuration for Subscribing to Participants

subscribeConfiguration(participant: StageParticipantInfo): SubscribeConfiguration

If a remote participant is being subscribed to (see Subscribing to Participants), the SDK queries the 
host application about a custom subscribe configuration for that participant. This configuration 
is optional and allows the host application to control certain aspects of subscriber behavior. 
For information on what can be configured, see SubscribeConfiguration in the SDK reference 
documentation.

Here is a sample implementation:

const strategy = { 
    

Publishing and Subscribing 106

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference/interfaces/SubscribeConfiguration


Amazon IVS Real-Time Streaming User Guide

   subscribeConfiguration: (participant) => { 
      return { 
         jitterBuffer: { 
            minDelay: JitterBufferMinDelay.MEDIUM 
         }   
      } 

   // ... other strategy functions
}

This implementation updates the jitter-buffer minimum delay for all subscribed participants to a 
preset of MEDIUM.

As with shouldSubscribeToParticipant, more advanced implementations are possible. The 
given ParticipantInfo can be used to selectively update the subscribe configuration for specific 
participants.

We recommend using the default behaviors. Specify custom configuration only if there is a 
particular behavior you want to change.

Publishing

shouldPublishParticipant(participant: StageParticipantInfo): boolean

Once connected to the stage, the SDK queries the host application to see if a particular participant 
should publish. This is invoked only on local participants that have permission to publish based on 
the provided token.

Here is a sample implementation:

const strategy = { 
    
   shouldPublishParticipant: (participant) => { 
      return true; 
   } 

   // . . . other strategies properties
}

This is for a standard video chat application where users always want to publish. They can mute 
and unmute their audio and video, to instantly be hidden or seen/heard. (They also can use 

Publishing and Subscribing 107



Amazon IVS Real-Time Streaming User Guide

publish/unpublish, but that is much slower. Mute/unmute is preferable for use cases where 
changing visibility often is desirable.)

Choosing Streams to Publish

stageStreamsToPublish(): LocalStageStream[];

When publishing, this is used to determine what audio and video streams should be published. This 
is covered in more detail later in  Publish a Media Stream.

Updating the Strategy

The strategy is intended to be dynamic: the values returned from any of the above functions can 
be changed at any time. For example, if the host application does not want to publish until the end 
user taps a button, you could return a variable from shouldPublishParticipant (something 
like hasUserTappedPublishButton). When that variable changes based on an interaction by 
the end user, call stage.refreshStrategy() to signal to the SDK that it should query the 
strategy for the latest values, applying only things that have changed. If the SDK observes that the
shouldPublishParticipant value has changed, it starts the publish process. If the SDK queries 
and all functions return the same value as before, the refreshStrategy call does not modify the 
stage.

If the return value of shouldSubscribeToParticipant changes from AUDIO_VIDEO to
AUDIO_ONLY, the video stream is removed for all participants with changed returned values, if a 
video stream existed previously.

Generally, the stage uses the strategy to most efficiently apply the difference between the previous 
and current strategies, without the host application needing to worry about all the state required 
to manage it properly. Because of this, think of calling stage.refreshStrategy() as a cheap 
operation, because it does nothing unless the strategy changes.

Events

A Stage instance is an event emitter. Using stage.on(), the state of the stage is communicated 
to the host application. Updates to the host application’s UI usually can be supported entirely by 
the events. The events are as follows:

stage.on(StageEvents.STAGE_CONNECTION_STATE_CHANGED, (state) => {})
stage.on(StageEvents.STAGE_PARTICIPANT_JOINED, (participant) => {})
stage.on(StageEvents.STAGE_PARTICIPANT_LEFT, (participant) => {})

Publishing and Subscribing 108



Amazon IVS Real-Time Streaming User Guide

stage.on(StageEvents.STAGE_PARTICIPANT_PUBLISH_STATE_CHANGED, (participant, state) => 
 {})
stage.on(StageEvents.STAGE_PARTICIPANT_SUBSCRIBE_STATE_CHANGED, (participant, state) => 
 {})
stage.on(StageEvents.STAGE_PARTICIPANT_STREAMS_ADDED, (participant, streams) => {})
stage.on(StageEvents.STAGE_PARTICIPANT_STREAMS_REMOVED, (participant, streams) => {})
stage.on(StageEvents.STAGE_STREAM_ADAPTION_CHANGED, (participant, stream, isAdapting) 
 => ())
stage.on(StageEvents.STAGE_STREAM_LAYERS_CHANGED, (participant, stream, layers) => ())
stage.on(StageEvents.STAGE_STREAM_LAYER_SELECTED, (participant, stream, layer, reason) 
 => ())
stage.on(StageEvents.STAGE_STREAM_MUTE_CHANGED, (participant, stream) => {})
stage.on(StageEvents.STAGE_STREAM_SEI_MESSAGE_RECEIVED, (participant, stream) => {})

For most of these events, the corresponding ParticipantInfo is provided.

It is not expected that the information provided by the events impacts the return values of the 
strategy. For example, the return value of shouldSubscribeToParticipant is not expected to 
change when STAGE_PARTICIPANT_PUBLISH_STATE_CHANGED is called. If the host application 
wants to subscribe to a particular participant, it should return the desired subscription type 
regardless of that participant’s publish state. The SDK is responsible for ensuring that the desired 
state of the strategy is acted on at the correct time based on the state of the stage.

Publish a Media Stream

Local devices like microphones and cameras are retrieved using the same steps as outlined above 
in Retrieve a MediaStream from a Device. In the example we use MediaStream to create a list of
LocalStageStream objects used for publishing by the SDK:

try { 
    // Get stream using steps outlined in document above 
    const stream = await getMediaStreamFromDevice(); 

    let streamsToPublish = stream.getTracks().map(track => { 
        new LocalStageStream(track) 
    }); 

    // Create stage with strategy, or update existing strategy 
    const strategy = { 
        stageStreamsToPublish: () => streamsToPublish 
    }
}

Publishing and Subscribing 109



Amazon IVS Real-Time Streaming User Guide

Publish a Screenshare

Applications often need to publish a screenshare in addition to the user's web camera. Publishing a 
screenshare necessitates creating an additional token for the stage, specifically for publishing the 
screenshare's media. Use getDisplayMedia and constrain the resolution to a maximum of 720p. 
After that, the steps are similar to publishing a camera to the stage.

// Invoke the following lines to get the screenshare's tracks
const media = await navigator.mediaDevices.getDisplayMedia({ 
   video: { 
      width: { 
         max: 1280, 
      }, 
      height: { 
         max: 720, 
      } 
   }
});
const screenshare = { videoStream: new LocalStageStream(media.getVideoTracks()[0]) };
const screenshareStrategy = { 
   stageStreamsToPublish: () => { 
      return [screenshare.videoStream]; 
   }, 
   shouldPublishParticipant: (participant) => { 
      return true; 
   }, 
   shouldSubscribeToParticipant: (participant) => { 
      return SubscribeType.AUDIO_VIDEO; 
   }
}
const screenshareStage = new Stage(screenshareToken, screenshareStrategy);
await screenshareStage.join();

Display and Remove Participants

After subscribing is completed, you receive an array of StageStream objects through the
STAGE_PARTICIPANT_STREAMS_ADDED event. The event also gives you participant info to help 
when displaying media streams:

stage.on(StageEvents.STAGE_PARTICIPANT_STREAMS_ADDED, (participant, streams) => { 
    const streamsToDisplay = streams; 

Publishing and Subscribing 110



Amazon IVS Real-Time Streaming User Guide

    if (participant.isLocal) { 
        // Ensure to exclude local audio streams, otherwise echo will occur 
        streamsToDisplay = streams.filter(stream => stream.streamType === 
 StreamType.VIDEO) 
    } 

    // Create or find video element already available in your application 
    const videoEl = getParticipantVideoElement(participant.id); 

    // Attach the participants streams 
    videoEl.srcObject = new MediaStream(); 
    streamsToDisplay.forEach(stream => 
 videoEl.srcObject.addTrack(stream.mediaStreamTrack));
})

When a participant stops publishing or is unsubscribed from a stream, the
STAGE_PARTICIPANT_STREAMS_REMOVED function is called with the streams that were removed. 
Host applications should use this as a signal to remove the participant’s video stream from the 
DOM.

STAGE_PARTICIPANT_STREAMS_REMOVED is invoked for all scenarios in which a stream might be 
removed, including:

• The remote participant stops publishing.

• A local device unsubscribes or changes subscription from AUDIO_VIDEO to AUDIO_ONLY.

• The remote participant leaves the stage.

• The local participant leaves the stage.

Because STAGE_PARTICIPANT_STREAMS_REMOVED is invoked for all scenarios, no custom 
business logic is required around removing participants from the UI during remote or local leave 
operations.

Mute and Unmute Media Streams

LocalStageStream objects have a setMuted function that controls whether the stream 
is muted. This function can be called on the stream before or after it is returned from the
stageStreamsToPublish strategy function.

Important: If a new LocalStageStream object instance is returned by
stageStreamsToPublish after a call to refreshStrategy, the mute state of the new stream 

Publishing and Subscribing 111



Amazon IVS Real-Time Streaming User Guide

object is applied to the stage. Be careful when creating new LocalStageStream instances to 
make sure the expected mute state is maintained.

Monitor Remote Participant Media Mute State

When participants change the mute state of their video or audio, the
STAGE_STREAM_MUTE_CHANGED event is triggered with a list of streams that have changed. Use 
the isMuted property on StageStream to update your UI accordingly:

stage.on(StageEvents.STAGE_STREAM_MUTE_CHANGED, (participant, stream) => { 
   if (stream.streamType === 'video' && stream.isMuted) { 
       // handle UI changes for video track getting muted 
   }
})

Also, you can look at StageParticipantInfo for state information on whether audio or video is 
muted:

stage.on(StageEvents.STAGE_STREAM_MUTE_CHANGED, (participant, stream) => { 
   if (participant.videoStopped || participant.audioMuted) { 
       // handle UI changes for either video or audio 
   }
})

Get WebRTC Statistics

To get the latest WebRTC statistics for a publishing stream or subscribing stream, use getStats
on StageStream. This is an asynchronous method with which you can retrieve statistics either via 
await or by chaining a promise. The result is an RTCStatsReport which is a dictionary containing 
all standard statistics.

try { 
   const stats = await stream.getStats();
} catch (error) { 
   // Unable to retrieve stats
}

Optimizing Media

It's recommended to limit getUserMedia and getDisplayMedia calls to the following 
constraints for the best performance:

Publishing and Subscribing 112

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference#stageparticipantinfo


Amazon IVS Real-Time Streaming User Guide

const CONSTRAINTS = { 
    video: { 
        width: { ideal: 1280 }, // Note: flip width and height values if portrait is 
 desired 
        height: { ideal: 720 }, 
        framerate: { ideal: 30 }, 
    },
};

You can further constrain the media through additional options passed to the LocalStageStream
constructor:

const localStreamOptions = { 
    minBitrate?: number; 
    maxBitrate?: number; 
    maxFramerate?: number; 
    simulcast: { 
        enabled: boolean 
    }
}
const localStream = new LocalStageStream(track, localStreamOptions)

In the code above:

• minBitrate sets a minimum bitrate that the browser should be expected to use. However, a low 
complexity video stream may push the encoder to go lower than this bitrate.

• maxBitrate sets a maximum bitrate that the browser should be expected to not exceed for this 
stream.

• maxFramerate sets a maximum frame rate that the browser should be expected to not exceed 
for this stream.

• The simulcast option is usable only on Chromium-based browsers. It enables sending three 
rendition layers of the stream.

• This allows the server to choose which rendition to send to other participants, based on their 
networking limitations.

• When simulcast is specified along with a maxBitrate and/or maxFramerate value, it 
is expected that the highest rendition layer will be configured with these values in mind, 
provided the maxBitrate does not go below the internal SDK’s second highest layer’s default
maxBitrate value of 900 kbps.

Publishing and Subscribing 113



Amazon IVS Real-Time Streaming User Guide

• If maxBitrate is specified as too low compared to the second highest layer’s default value,
simulcast will be disabled.

• simulcast cannot be toggled on and off without republishing the media through 
a combination of having shouldPublishParticipant return false, calling
refreshStrategy, having shouldPublishParticipant return true and calling
refreshStrategy again.

Get Participant Attributes

If you specify attributes in the CreateParticipantToken operation request, you can see the 
attributes in StageParticipantInfo properties:

stage.on(StageEvents.STAGE_PARTICIPANT_JOINED, (participant) => { 
   console.log(`Participant ${participant.id} info:`, participant.attributes);
})

Supplemental Enhancement Information (SEI)

The Supplemental Enhancement Information (SEI) NAL unit is used to store frame-aligned 
metadata alongside the video. It can be used when publishing and subscribing to H.264 video 
streams. SEI payloads are not guaranteed to arrive to subscribers, especially in bad network 
conditions.

Inserting SEI Payloads

Publishing clients can insert SEI payloads to a stage stream that is being published by configuring 
their video's LocalStageStream to enable inBandMessaging and subsequently invoking the
insertSeiMessage method.

Payloads must be of the ArrayBuffer type. The payload size must be greater than 0KB and less than 
1KB. The number of SEI messages inserted per second must not exceed 10KB per second.

const config = { 
    inBandMessaging: { enabled: true }
};
const vidStream = new LocalStageStream(videoTrack, config);
const payload = new TextEncoder().encode('hello world').buffer;
vidStream.insertSeiMessage(payload);

Publishing and Subscribing 114

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer


Amazon IVS Real-Time Streaming User Guide

Repeating SEI Payloads

Optionally provide a repeatCount to repeat the insertion of SEI payloads for the next N frames 
sent. This could be helpful to mitigate the inherent loss that may occur due to the underlying UDP 
transport protocol used to send video. Note this value must be between 0 and 30. Receiving clients 
must have logic to de-duplicate the message.

vidStream.insertSeiMessage(payload, { repeatCount: 5 }); // Optional config, 
 repeatCount must be between 0 and 30

Reading SEI Payloads

Subscribing clients can read SEI payloads from a publisher who is publishing H.264 video if present 
by configuring the subscriber(s) SubscribeConfiguration to enable inBandMessaging and 
listening to the StageEvents.STAGE_STREAM_SEI_MESSAGE_RECEIVED event, as shown in the 
following example:

const strategy = { 
    subscribeConfiguration: (participant) => { 
        return { 
            inBandMessaging: { 
                enabled: true 
            } 
        } 
    } 
    // ... other strategy functions
}

stage.on(StageEvents.STAGE_STREAM_SEI_MESSAGE_RECEIVED, (participant, seiMessage) => { 
    console.log(seiMessage.payload, seiMessage.uuid);
});

Layered Encoding with Simulcast

Layered encoding with simulcast is an IVS real-time streaming feature that allows publishers to 
send multiple different quality layers of video, and subscribers to dynamically or manually change 
those layers. The feature is described more in the Streaming Optimizations document.

Publishing and Subscribing 115

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/real-time-streaming-optimization.html


Amazon IVS Real-Time Streaming User Guide

Configuring Layered Encoding (Publisher)

As a publisher, to enable layered encoding with simulcast, add the following configuration to your
LocalStageStream on instantiation:

// Enable Simulcast
let cameraStream = new LocalStageStream(cameraDevice, { 
   simulcast: { enabled: true }
})

Depending on the input resolution of your camera device, a set number of layers will be encoded 
and sent as defined in the Default Layers, Qualities, and Framerates section of Streaming 
Optimizations.

Configuring Layered Encoding (Subscriber)

As a subscriber, there is nothing needed to enable layered encoding. If a publisher is sending 
simulcast layers, then by default the server dynamically adapts between the layers to choose the 
optimal quality based on the subscriber's device and network conditions.

Alternatively, to pick explicit layers that the publisher is sending, there are several options, 
described below.

Option 1: Initial Layer Quality Preference

Using the subscribeConfiguration strategy, it is possible to choose what initial layer you want 
to receive as a subscriber:

const strategy = { 
    subscribeConfiguration: (participant) => { 
        return { 
            simulcast: { 
                initialLayerPreference: InitialLayerPreference.LOWEST_QUALITY 
            } 
        } 
    } 
    // ... other strategy functions
}

By default, subscribers always are sent the lowest quality layer first; this slowly ramps up to the 
highest quality layer. This optimizes end-user bandwidth consumption and provides the best time 
to video, reducing initial video freezes for users on weaker networks.

Publishing and Subscribing 116



Amazon IVS Real-Time Streaming User Guide

These options are available for InitialLayerPreference:

• LOWEST_QUALITY — The server delivers the lowest quality layer of video first. This optimizes 
bandwidth consumption, as well as time to media. Quality is defined as the combination of size, 
bitrate, and framerate of the video. For example, 720p video is lower quality than 1080p video.

• HIGHEST_QUALITY — The server delivers the highest quality layer of video first. This optimizes 
quality but may increase the time to media. Quality is defined as the combination of size, bitrate, 
and framerate of the video. For example, 1080p video is higher quality than 720p video.

Note: For initial layer preferences to take effect, a re-subscribe is necessary as these updates do not 
apply to the active subscription.

Option 2: Preferred Layer for Stream

Once a stream has started, you can use the preferredLayerForStream  strategy method. This 
strategy method exposes the participant and the stream information.

The strategy method can be returned with the following:

• The layer object directly, based on what RemoteStageStream.getLayers returns

• The layer object label string, based on StageStreamLayer.label

• Undefined or null, which indicates that no layer should be selected, and dynamic adaption is 
preferred

For example, the following strategy will always have the users selecting the lowest quality layer of 
video available:

const strategy = { 
    preferredLayerForStream: (participant, stream) => { 
        return stream.getLowestQualityLayer(); 
    } 
    // ... other strategy functions
}

To reset the layer selection and return to dynamic adaption, return null or undefined in the 
strategy. In this example appState is a dummy variable that represents the possible application 
state.

Publishing and Subscribing 117



Amazon IVS Real-Time Streaming User Guide

const strategy = { 
    preferredLayerForStream: (participant, stream) => { 
        if (appState.isAutoMode) { 
            return null; 
        } else { 
            return appState.layerChoice 
        } 
    } 
    // ... other strategy functions
}

Option 3: RemoteStageStream Layer Helpers

RemoteStageStream has several helpers which can be used to make decisions about layer 
selection and display the corresponding selections to end users:

• Layer Events — Alongside StageEvents, the RemoteStageStream object itself has events 
which communicate layer and simulcast adaption changes:

• stream.on(RemoteStageStreamEvents.ADAPTION_CHANGED, (isAdapting) => {})

• stream.on(RemoteStageStreamEvents.LAYERS_CHANGED, (layers) => {})

• stream.on(RemoteStageStreamEvents.LAYER_SELECTED, (layer, reason) => 
{})

• Layer Methods — RemoteStageStream has several helper methods which can be used to get 
information about the stream and the layers being presented. These methods are available on 
the remote stream provided in the preferredLayerForStream strategy, as well as remote 
streams exposed via StageEvents.STAGE_PARTICIPANT_STREAMS_ADDED.

• stream.getLayers

• stream.getSelectedLayer

• stream.getLowestQualityLayer

• stream.getHighestQualityLayer

For details, see the RemoteStageStream class in the SDK reference documentation. For the
LAYER_SELECTED reason, if UNAVAILABLE is returned, this indicates that the requested layer 
could not be selected. A best-effort selection is made in its place, which typically is a lower quality 
layer to maintain stream stability.

Publishing and Subscribing 118

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference


Amazon IVS Real-Time Streaming User Guide

Handling Network Issues

When the local device’s network connection is lost, the SDK internally tries to reconnect without 
any user action. In some cases, the SDK is not successful and user action is needed.

Broadly the state of the stage can be handled via the STAGE_CONNECTION_STATE_CHANGED
event:

stage.on(StageEvents.STAGE_CONNECTION_STATE_CHANGED, (state) => { 
   switch (state) { 
      case StageConnectionState.DISCONNECTED: 
         // handle disconnected UI 
         break; 
      case StageConnectionState.CONNECTING: 
         // handle establishing connection UI 
         break; 
      case StageConnectionState.CONNECTED: 
         // SDK is connected to the Stage 
         break; 
      case StageConnectionState.ERRORED: 
         // SDK encountered an error and lost its connection to the stage. Wait for 
 CONNECTED. 
         break;
})

In general, you can ignore an errored state that is encountered after successfully joining a stage, as 
the SDK will try to recover internally. If the SDK reports an ERRORED state and the stage remains 
in the CONNECTING state for an extended period of time (e.g., 30 seconds or longer), you probably 
are disconnected from the network.

Broadcast the Stage to an IVS Channel

To broadcast a stage, create a separate IVSBroadcastClient session and then follow the usual 
instructions for broadcasting with the SDK, described above. The list of StageStream exposed via
STAGE_PARTICIPANT_STREAMS_ADDED can be used to retrieve the participant media streams 
which can be applied to the broadcast stream composition, as follows:

// Setup client with preferred settings
const broadcastClient = getIvsBroadcastClient();

stage.on(StageEvents.STAGE_PARTICIPANT_STREAMS_ADDED, (participant, streams) => { 

Publishing and Subscribing 119



Amazon IVS Real-Time Streaming User Guide

    streams.forEach(stream => { 
        const inputStream = new MediaStream([stream.mediaStreamTrack]); 
        switch (stream.streamType) { 
            case StreamType.VIDEO: 
                broadcastClient.addVideoInputDevice(inputStream, `video-
${participant.id}`, { 
                    index: DESIRED_LAYER, 
                    width: MAX_WIDTH, 
                    height: MAX_HEIGHT 
                }); 
                break; 
            case StreamType.AUDIO: 
                broadcastClient.addAudioInputDevice(inputStream, `audio-
${participant.id}`); 
                break; 
        } 
    })
})

Optionally, you can composite a stage and broadcast it to an IVS low-latency channel, to reach a 
larger audience. See Enabling Multiple Hosts on an Amazon IVS Stream in the IVS Low-Latency 
Streaming User Guide.

Known Issues & Workarounds in the IVS Web Broadcast SDK | Real-
Time Streaming

This document lists known issues that you might encounter when using the Amazon IVS real-time 
streaming Web broadcast SDK and suggests potential workarounds.

• When closing browser tabs or exiting browsers without calling stage.leave(), users can still 
appear in the session with a frozen frame or black screen for up to 10 seconds.

Workaround: None.

• Safari sessions intermittently appear with a black screen to users joining after a session has 
begun.

Workaround: Refresh the browser and reconnect the session.

• Safari does not recover gracefully from switching networks.

Workaround: Refresh the browser and reconnect the session.

Known Issues and Workarounds 120

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/multiple-hosts.html


Amazon IVS Real-Time Streaming User Guide

• The developer console repeats an Error: UnintentionalError at 
StageSocket.onClose error.

Workaround: Only one stage can be created per participant token. This error occurs when more 
than one Stage instance is created with the same participant token, regardless of whether the 
instance is on one device or multiple devices.

• You may have trouble maintaining a StageParticipantPublishState.PUBLISHED state and 
may receive repeated StageParticipantPublishState.ATTEMPTING_PUBLISH states when 
listening to the StageEvents.STAGE_PARTICIPANT_PUBLISH_STATE_CHANGED event.

Workaround: Constrain video resolution to 720p when invoking getUserMedia or
getDisplayMedia. Specifically, your getUserMedia and getDisplayMedia constraint values 
for width and height must not exceed 921600 (1280*720) when multiplied together.

Safari Limitations

• Denying a permissions prompt requires resetting the permission in Safari website settings at the 
OS level.

• Safari does not natively detect all devices as effectively as Firefox or Chrome. For example, OBS 
Virtual Camera does not get detected.

Firefox Limitations

• System permissions need to be enabled for Firefox to screen share. After enabling them, the user 
must restart Firefox for it to work correctly; otherwise, if permissions are perceived as blocked, 
the browser will throw a NotFoundError exception.

• The getCapabilities method is missing. This means users cannot get the media track's 
resolution or aspect ratio. See this bugzilla thread.

• Several AudioContext properties are missing; e.g., latency and channel count. This could pose a 
problem for advanced users who want to manipulate the audio tracks.

• Camera feeds from getUserMedia are restricted to a 4:3 aspect ratio on MacOS. See bugzilla 
thread 1 and bugzilla thread 2.

• Audio capture is not supported with getDisplayMedia. See this bugzilla thread.

Known Issues and Workarounds 121

https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getDisplayMedia#exceptions
https://bugzilla.mozilla.org/show_bug.cgi?id=1179084
https://bugzilla.mozilla.org/show_bug.cgi?id=1193640
https://bugzilla.mozilla.org/show_bug.cgi?id=1193640
https://bugzilla.mozilla.org/show_bug.cgi?id=1306034
https://bugzilla.mozilla.org/show_bug.cgi?id=1541425


Amazon IVS Real-Time Streaming User Guide

• Framerate in screen capture is suboptimal (approximately 15fps?). See this bugzilla thread.

Mobile Web Limitations

• getDisplayMedia screen sharing is unsupported on mobile devices.

Workaround: None.

• Participant takes 15-30 seconds to leave when closing a browser without calling leave().

Workaround: Add a UI that encourages users to properly disconnect.

• Backgrounding app causes publishing video to stop.

Workaround: Display a UI slate when the publisher is paused.

• Video framerate drops for approximately 5 seconds after unmuting a camera on Android devices.

Workaround: None.

• The video feed is stretched on rotation for iOS 16.0.

Workaround: Display a UI outlining this known OS issue.

• Switching the audio-input device automatically switches the audio-output device.

Workaround: None.

• Backgrounding the browser causes the publishing stream to go black and produce only audio.

Workaround: None. This is for security reasons.

Error Handling in the IVS Web Broadcast SDK | Real-Time Streaming

This section is an overview of error conditions, how the Web broadcast SDK reports them to the 
application, and what an application should do when those errors are encountered. Errors are 
reported by the SDK to listeners of the StageEvents.ERROR event:

stage.on(StageEvents.ERROR, (error: StageError) => { 
    // log or handle errors here 
    console.log(`${error.code}, ${error.category}, ${error.message}`);
});

Error Handling 122

https://bugzilla.mozilla.org/show_bug.cgi?id=1703522
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getDisplayMedia#browser_compatibility


Amazon IVS Real-Time Streaming User Guide

Stage Errors

A StageError is reported when the SDK encounters a problem it cannot recover from and generally 
requires app intervention and/or network reconnection to recover.

Each reported StageError has a code (or StageErrorCode), message (string), and category 
(StageErrorCategory). Each is related to an underlying operation category.

The operation category of the error is determined based on whether it is related to the connection 
to the stage (JOIN_ERROR), sending media to the stage (PUBLISH_ERROR), or receiving an 
incoming media stream from the stage (SUBSCRIBE_ERROR).

The code property of a StageError reports the specific problem:

Name Code Recommended Action

TOKEN_MALFORMED 1 Create a valid token and retry instantiating the stage.

TOKEN_EXPIRED 2 Create an unexpired token and retry instantiating the 
stage.

TIMEOUT 3 The operation timed out. If the stage exists and the 
token is valid, this failure likely is a network issue. In 
that case, wait for the device’s connectivity to recover.

FAILED 4 A fatal condition was encountered when attempting 
an operation. Check error details.

If the stage exists and the token is valid, this failure 
likely is a network issue. In that case, wait for the 
device’s connectivity to recover.

CANCELED 5 Check application code and ensure there are no 
repeated join, refreshStrategy , or replaceSt 
rategy  invocations, which may cause repeated 
operations to be started and canceled before 
completion.

STAGE_AT_CAPACITY 6 Try the operation again when the stage is no longer 
at capacity, by refreshing the strategy.

Error Handling 123



Amazon IVS Real-Time Streaming User Guide

Name Code Recommended Action

CODEC_MISMATCH 7 The codec is not supported by the stage. Check the 
browser and platform for codec support. For IVS real-
time streaming, browsers must support the H.264 
codec for video and the Opus codec for audio.

TOKEN_NOT_ALLOWED 8 The token does not have permission for the operation 
. Recreate the token with the correct permission(s) 
and try again.

Handling StageError Example

Use the StageError code to determine if the error is due to an expired token:

stage.on(StageEvents.ERROR, (error: StageError) => { 
    if (error.code === StageError.TOKEN_EXPIRED) { 
        // recreate the token and stage instance and re-join 
    }
});

Network Errors when Already Joined

If the device’s network connection goes down, the SDK may lose its connection to stage servers. 
You may see errors in the console because the SDK can no longer reach backend services. POSTs to 
https://broadcast.stats.live-video.net will fail.

If you are publishing and/or subscribing, you will see errors in the console related to attempts to 
publish/subscribe.

Internally the SDK will try to reconnect with an exponential backoff strategy.

Action: Wait for the device’s connectivity to recover.

Errored States

We recommend you use these states for application logging and to display messaging to users that 
alerts them of connectivity issues to the stage for a particular participant.

Error Handling 124



Amazon IVS Real-Time Streaming User Guide

Publish

The SDK reports ERRORED when a publish fails.

stage.on(StageEvents.STAGE_PARTICIPANT_PUBLISH_STATE_CHANGED, (participantInfo, state) 
 => { 
  if (state === StageParticipantPublishState.ERRORED) { 
      // Log and/or display message to user 
  }
});

Subscribe

The SDK reports ERRORED when a subscribe fails. This can occur due to network conditions or if a 
stage is at capacity for subscribers.

stage.on(StageEvents.STAGE_PARTICIPANT_SUBSCRIBE_STATE_CHANGED, (participantInfo, 
 state) => { 
  if (state === StageParticipantSubscribeState.ERRORED) { 
    // Log and/or display message to user 
  }
});

IVS Broadcast SDK: Android Guide | Real-Time Streaming

The IVS real-time streaming Android broadcast SDK enables participants to send and receive video 
on Android.

The com.amazonaws.ivs.broadcast package implements the interface described in this 
document. The SDK supports the following operations:

• Join a stage

• Publish media to other participants in the stage

• Subscribe to media from other participants in the stage

• Manage and monitor video and audio published to the stage

• Get WebRTC statistics for each peer connection

• All operations from the IVS low-latency streaming Android broadcast SDK

Latest version of Android broadcast SDK: 1.27.0 (Release Notes)

Android Guide 125

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#feb20-25-broadcast-mobile-rt


Amazon IVS Real-Time Streaming User Guide

Reference documentation: For information on the most important methods available in the 
Amazon IVS Android broadcast SDK, see the reference documentation at https://aws.github.io/ 
amazon-ivs-broadcast-docs/1.27.0/android/.

Sample code: See the Android sample repository on GitHub: https://github.com/aws-samples/ 
amazon-ivs-broadcast-android-sample.

Platform requirements: Android 9.0 and later.

Getting Started with the IVS Android Broadcast SDK | Real-Time 
Streaming

This document takes you through the steps involved in getting started with the IVS real-time 
streaming Android broadcast SDK.

Install the Library

There are several ways to add the Amazon IVS Android broadcast library to your Android 
development environment: use Gradle directly, use Gradle version catalogs, or install the SDK 
manually.

Use Gradle directly: Add the library to your module’s build.gradle file, as shown here (for the 
latest version of the IVS broadcast SDK):

repositories { 
    mavenCentral()
} 
  
dependencies { 
     implementation 'com.amazonaws:ivs-broadcast:1.27.0:stages@aar'
}

Use Gradle version catalogs: First include this in your module’s build.gradle file:

implementation(libs.ivs){ 
   artifact { 
      classifier = "stages" 
      type = "aar" 
   }
}

Getting Started 126

https://aws.github.io/amazon-ivs-broadcast-docs/1.27.0/android/
https://aws.github.io/amazon-ivs-broadcast-docs/1.27.0/android/
https://github.com/aws-samples/amazon-ivs-broadcast-android-sample
https://github.com/aws-samples/amazon-ivs-broadcast-android-sample


Amazon IVS Real-Time Streaming User Guide

Then include the following in the libs.version.toml file (for the latest version of the IVS 
broadcast SDK):

[versions]
ivs="1.27.0"

[libraries]
ivs = {module = "com.amazonaws:ivs-broadcast", version.ref = "ivs"}

Install the SDK manually: Download the latest version from this location:

https://search.maven.org/artifact/com.amazonaws/ivs-broadcast

Be sure to download the aar with -stages appended.

Also allow SDK control over the speakerphone: Regardless of which installation method you 
choose, also add the following permission to your manifest, to allow the SDK to enable and disable 
the speakerphone:

<uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS"/>

Using the SDK with Debug Symbols

We also publish a version of the Android broadcast SDK which includes debug symbols. You can 
use this version to improve the quality of debug reports (stack traces) in Firebase Crashlytics, if you 
run into crashes in the IVS broadcast SDK; i.e., libbroadcastcore.so. When you report these 
crashes to the IVS SDK team, the higher quality stack traces make it easier to fix the issues.

To use this version of the SDK, put the following in your Gradle build files:

implementation "com.amazonaws:ivs-broadcast:$version:stages-unstripped@aar"

Use the above line instead of this:

implementation "com.amazonaws:ivs-broadcast:$version:stages@aar"

Uploading Symbols to Firebase Crashlytics

Ensure that your Gradle build files are set up for Firebase Crashlytics. Follow Google’s instructions 
here:

Getting Started 127

https://search.maven.org/artifact/com.amazonaws/ivs-broadcast


Amazon IVS Real-Time Streaming User Guide

https://firebase.google.com/docs/crashlytics/ndk-reports

Be sure to include com.google.firebase:firebase-crashlytics-ndk as a dependency.

When building your app for release, the Firebase Crashlytics plugin should upload symbols 
automatically. To upload symbols manually, run either of the following:

gradle uploadCrashlyticsSymbolFileRelease

./gradlew uploadCrashlyticsSymbolFileRelease

(It will not hurt if symbols are uploaded twice, both automatically and manually.)

Preventing your Release .apk from Becoming Larger

Before packaging the release .apk file, the Android Gradle Plugin automatically tries 
to strip debug information from shared libraries (including the IVS broadcast SDK's
libbroadcastcore.so library). However, sometimes this does not happen. As a result, your
.apk file could become larger and you could get a warning message from the Android Gradle 
Plugin that it’s unable to strip debug symbols and is packaging .so files as is. If this happens, do 
the following:

• Install an Android NDK. Any recent version will work.

• Add ndkVersion <your_installed_ndk_version_number> to your application’s
build.gradle file. Do this even if your application itself does not contain native code.

For more information, see this issue report.

Request Permissions

Your app must request permission to access the user’s camera and mic. (This is not specific to 
Amazon IVS; it is required for any application that needs access to cameras and microphones.)

Here, we check whether the user has already granted permissions and, if not, ask for them:

final String[] requiredPermissions = 
         { Manifest.permission.CAMERA, Manifest.permission.RECORD_AUDIO };

for (String permission : requiredPermissions) { 

Getting Started 128

https://firebase.google.com/docs/crashlytics/ndk-reports
https://issuetracker.google.com/issues/353554169


Amazon IVS Real-Time Streaming User Guide

    if (ContextCompat.checkSelfPermission(this, permission)  
                != PackageManager.PERMISSION_GRANTED) { 
        // If any permissions are missing we want to just request them all. 
        ActivityCompat.requestPermissions(this, requiredPermissions, 0x100); 
        break; 
    }
}

Here, we get the user’s response:

@Override
public void onRequestPermissionsResult(int requestCode,  
                                      @NonNull String[] permissions, 
                                      @NonNull int[] grantResults) { 
    super.onRequestPermissionsResult(requestCode, 
               permissions, grantResults); 
    if (requestCode == 0x100) { 
        for (int result : grantResults) { 
            if (result == PackageManager.PERMISSION_DENIED) { 
                return; 
            } 
        } 
        setupBroadcastSession(); 
    }
}

Publishing & Subscribing with the IVS Android Broadcast SDK | Real-
Time Streaming

This document takes you through the steps involved in publishing and subscribing to a stage using 
the IVS real-time streaming Android broadcast SDK.

Concepts

Three core concepts underlie real-time functionality: stage, strategy, and renderer. The design goal 
is minimizing the amount of client-side logic necessary to build a working product.

Stage

The Stage class is the main point of interaction between the host application and the SDK. It 
represents the stage itself and is used to join and leave the stage. Creating and joining a stage 

Publishing and Subscribing 129



Amazon IVS Real-Time Streaming User Guide

requires a valid, unexpired token string from the control plane (represented as token). Joining and 
leaving a stage are simple.

Stage stage = new Stage(context, token, strategy);

try { 
 stage.join();
} catch (BroadcastException exception) { 
 // handle join exception
}

stage.leave();

The Stage class is also where the StageRenderer can be attached:

stage.addRenderer(renderer); // multiple renderers can be added

Strategy

The Stage.Strategy interface provides a way for the host application to communicate 
the desired state of the stage to the SDK. Three functions need to be implemented:
shouldSubscribeToParticipant, shouldPublishFromParticipant, and
stageStreamsToPublishForParticipant. All are discussed below.

Subscribing to Participants

Stage.SubscribeType shouldSubscribeToParticipant(@NonNull Stage stage, @NonNull 
 ParticipantInfo participantInfo);

When a remote participant joins the stage, the SDK queries the host application about the desired 
subscription state for that participant. The options are NONE, AUDIO_ONLY, and AUDIO_VIDEO. 
When returning a value for this function, the host application does not need to worry about the 
publish state, current subscription state, or stage connection state. If AUDIO_VIDEO is returned, 
the SDK waits until the remote participant is publishing before subscribing, and it updates the host 
application through the renderer throughout the process.

Here is a sample implementation:

@Override
Stage.SubscribeType shouldSubscribeToParticipant(@NonNull Stage stage, @NonNull 
 ParticipantInfo participantInfo) { 

Publishing and Subscribing 130



Amazon IVS Real-Time Streaming User Guide

 return Stage.SubscribeType.AUDIO_VIDEO;
}

This is the complete implementation of this function for a host application that always wants all 
participants to see each other; e.g., a video chat application.

More advanced implementations also are possible. Use the userInfo property on
ParticipantInfo to selectively subscribe to participants based on server-provided attributes:

@Override
Stage.SubscribeType shouldSubscribeToParticipant(@NonNull Stage stage, @NonNull 
 ParticipantInfo participantInfo) { 
 switch(participantInfo.userInfo.get(“role”)) { 
  case “moderator”: 
   return Stage.SubscribeType.NONE; 
  case “guest”: 
   return Stage.SubscribeType.AUDIO_VIDEO; 
  default: 
   return Stage.SubscribeType.NONE; 
 }
}

This can be used to create a stage where moderators can monitor all guests without being seen or 
heard themselves. The host application could use additional business logic to let moderates see 
each other but remain invisible to guests.

Configuration for Subscribing to Participants

SubscribeConfiguration subscribeConfigurationForParticipant(@NonNull Stage stage, 
 @NonNull ParticipantInfo participantInfo);

If a remote participant is being subscribed to (see Subscribing to Participants), the SDK queries the 
host application about a custom subscribe configuration for that participant. This configuration 
is optional and allows the host application to control certain aspects of subscriber behavior. 
For information on what can be configured, see SubscribeConfiguration in the SDK reference 
documentation.

Here is a sample implementation:

@Override

Publishing and Subscribing 131

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference/interfaces/SubscribeConfiguration


Amazon IVS Real-Time Streaming User Guide

public SubscribeConfiguration subscribeConfigrationForParticipant(@NonNull Stage stage, 
 @NonNull ParticipantInfo participantInfo) { 
    SubscribeConfiguration config = new SubscribeConfiguration(); 

    
 config.jitterBuffer.setMinDelay(JitterBufferConfiguration.JitterBufferDelay.MEDIUM()); 

    return config;
}

This implementation updates the jitter-buffer minimum delay for all subscribed participants to a 
preset of MEDIUM.

As with shouldSubscribeToParticipant, more advanced implementations are possible. The 
given ParticipantInfo can be used to selectively update the subscribe configuration for specific 
participants.

We recommend using the default behaviors. Specify custom configuration only if there is a 
particular behavior you want to change.

Publishing

boolean shouldPublishFromParticipant(@NonNull Stage stage, @NonNull ParticipantInfo 
 participantInfo);

Once connected to the stage, the SDK queries the host application to see if a particular participant 
should publish. This is invoked only on local participants that have permission to publish based on 
the provided token.

Here is a sample implementation:

@Override
boolean shouldPublishFromParticipant(@NonNull Stage stage, @NonNull ParticipantInfo 
 participantInfo) { 
 return true;
}

This is for a standard video chat application where users always want to publish. They can mute 
and unmute their audio and video, to instantly be hidden or seen/heard. (They also can use 
publish/unpublish, but that is much slower. Mute/unmute is preferable for use cases where 
changing visibility often is desirable.)

Publishing and Subscribing 132



Amazon IVS Real-Time Streaming User Guide

Choosing Streams to Publish

@Override
List<LocalStageStream> stageStreamsToPublishForParticipant(@NonNull Stage stage, 
 @NonNull ParticipantInfo participantInfo);
}

When publishing, this is used to determine what audio and video streams should be published. This 
is covered in more detail later in Publish a Media Stream.

Updating the Strategy

The strategy is intended to be dynamic: the values returned from any of the above functions can 
be changed at any time. For example, if the host application does not want to publish until the 
end user taps a button, you could return a variable from shouldPublishFromParticipant
(something like hasUserTappedPublishButton). When that variable changes based on 
an interaction by the end user, call stage.refreshStrategy() to signal to the SDK that it 
should query the strategy for the latest values, applying only things that have changed. If the 
SDK observes that the shouldPublishFromParticipant value has changed, it will start 
the publish process. If the SDK queries and all functions return the same value as before, the
refreshStrategy call will not perform any modifications to the stage.

If the return value of shouldSubscribeToParticipant changes from AUDIO_VIDEO to
AUDIO_ONLY, the video stream will be removed for all participants with changed returned values, 
if a video stream existed previously.

Generally, the stage uses the strategy to most efficiently apply the difference between the previous 
and current strategies, without the host application needing to worry about all the state required 
to manage it properly. Because of this, think of calling stage.refreshStrategy() as a cheap 
operation, because it does nothing unless the strategy changes.

Renderer

The StageRenderer interface communicates the state of the stage to the host application. 
Updates to the host application’s UI usually can be powered entirely by the events provided by the 
renderer. The renderer provides the following functions:

void onParticipantJoined(@NonNull Stage stage, @NonNull ParticipantInfo 
 participantInfo);

Publishing and Subscribing 133



Amazon IVS Real-Time Streaming User Guide

void onParticipantLeft(@NonNull Stage stage, @NonNull ParticipantInfo participantInfo);

void onParticipantPublishStateChanged(@NonNull Stage stage, @NonNull ParticipantInfo 
 participantInfo, @NonNull Stage.PublishState publishState);

void onParticipantSubscribeStateChanged(@NonNull Stage stage, @NonNull ParticipantInfo 
 participantInfo, @NonNull Stage.SubscribeState subscribeState);

void onStreamsAdded(@NonNull Stage stage, @NonNull ParticipantInfo participantInfo, 
 @NonNull List<StageStream> streams);

void onStreamsRemoved(@NonNull Stage stage, @NonNull ParticipantInfo participantInfo, 
 @NonNull List<StageStream> streams);

void onStreamsMutedChanged(@NonNull Stage stage, @NonNull ParticipantInfo 
 participantInfo, @NonNull List<StageStream> streams);

void onError(@NonNull BroadcastException exception);

void onConnectionStateChanged(@NonNull Stage stage, @NonNull Stage.ConnectionState 
 state, @Nullable BroadcastException exception); 
                 
void onStreamAdaptionChanged(@NonNull Stage stage, @NonNull ParticipantInfo 
 participantInfo, @NonNull RemoteStageStream stream, boolean adaption);

void onStreamLayersChanged(@NonNull Stage stage, @NonNull ParticipantInfo 
 participantInfo, @NonNull RemoteStageStream stream, @NonNull 
 List<RemoteStageStream.Layer> layers);

void onStreamLayerSelected(@NonNull Stage stage, @NonNull ParticipantInfo 
 participantInfo, @NonNull RemoteStageStream stream, @Nullable RemoteStageStream.Layer 
 layer, @NonNull RemoteStageStream.LayerSelectedReason reason);

For most of these methods, the corresponding Stage and ParticipantInfo are provided.

It is not expected that the information provided by the renderer impacts the return values of the 
strategy. For example, the return value of shouldSubscribeToParticipant is not expected to 
change when onParticipantPublishStateChanged is called. If the host application wants to 
subscribe to a particular participant, it should return the desired subscription type regardless of 
that participant’s publish state. The SDK is responsible for ensuring that the desired state of the 
strategy is acted on at the correct time based on the state of the stage.

The StageRenderer can be attached to the stage class:

Publishing and Subscribing 134



Amazon IVS Real-Time Streaming User Guide

stage.addRenderer(renderer); // multiple renderers can be added

Note that only publishing participants trigger onParticipantJoined, and whenever a 
participant stops publishing or leaves the stage session, onParticipantLeft is triggered.

Publish a Media Stream

Local devices such as built-in microphones and cameras are discovered via DeviceDiscovery. 
Here is an example of selecting the front-facing camera and default microphone, then return them 
as LocalStageStreams to be published by the SDK:

DeviceDiscovery deviceDiscovery = new DeviceDiscovery(context);

List<Device> devices = deviceDiscovery.listLocalDevices();
List<LocalStageStream> publishStreams = new ArrayList<LocalStageStream>();

Device frontCamera = null;
Device microphone = null;

// Create streams using the front camera, first microphone
for (Device device : devices) { 
 Device.Descriptor descriptor = device.getDescriptor(); 
 if (!frontCamera && descriptor.type == Device.Descriptor.DeviceType.Camera && 
 descriptor.position = Device.Descriptor.Position.FRONT) { 
  front Camera = device; 
 } 
 if (!microphone && descriptor.type == Device.Descriptor.DeviceType.Microphone) { 
  microphone = device; 
 }
}

ImageLocalStageStream cameraStream = new ImageLocalStageStream(frontCamera);
AudioLocalStageStream microphoneStream = new AudioLocalStageStream(microphoneDevice);

publishStreams.add(cameraStream);
publishStreams.add(microphoneStream);

// Provide the streams in Stage.Strategy
@Override
@NonNull List<LocalStageStream> stageStreamsToPublishForParticipant(@NonNull Stage 
 stage, @NonNull ParticipantInfo participantInfo) { 
 return publishStreams;

Publishing and Subscribing 135



Amazon IVS Real-Time Streaming User Guide

}

Display and Remove Participants

After subscribing is completed, you will receive an array of StageStream objects through the 
renderer’s onStreamsAdded function. You can retrieve the preview from an ImageStageStream:

ImagePreviewView preview = ((ImageStageStream)stream).getPreview();

// Add the view to your view hierarchy
LinearLayout previewHolder = findViewById(R.id.previewHolder);
preview.setLayoutParams(new LinearLayout.LayoutParams( 
  LinearLayout.LayoutParams.MATCH_PARENT, 
  LinearLayout.LayoutParams.MATCH_PARENT));
previewHolder.addView(preview);

You can retrieve the audio-level stats from an AudioStageStream:

((AudioStageStream)stream).setStatsCallback((peak, rms) -> { 
 // handle statistics
});

When a participant stops publishing or is unsubscribed from, the onStreamsRemoved function is 
called with the streams that were removed. Host applications should use this as a signal to remove 
the participant’s video stream from the view hierarchy.

onStreamsRemoved is invoked for all scenarios in which a stream might be removed, including:

• The remote participant stops publishing.

• A local device unsubscribes or changes subscription from AUDIO_VIDEO to AUDIO_ONLY.

• The remote participant leaves the stage.

• The local participant leaves the stage.

Because onStreamsRemoved is invoked for all scenarios, no custom business logic is required 
around removing participants from the UI during remote or local leave operations.

Publishing and Subscribing 136



Amazon IVS Real-Time Streaming User Guide

Mute and Unmute Media Streams

LocalStageStream objects have a setMuted function that controls whether the stream 
is muted. This function can be called on the stream before or after it is returned from the
streamsToPublishForParticipant strategy function.

Important: If a new LocalStageStream object instance is returned by
streamsToPublishForParticipant after a call to refreshStrategy, the mute state of the 
new stream object is applied to the stage. Be careful when creating new LocalStageStream
instances to make sure the expected mute state is maintained.

Monitor Remote Participant Media Mute State

When a participant changes the mute state of their video or audio stream, the renderer
onStreamMutedChanged function is invoked with a list of streams that have changed. Use the
getMuted method on StageStream to update your UI accordingly.

@Override
void onStreamsMutedChanged(@NonNull Stage stage, @NonNull ParticipantInfo 
 participantInfo, @NonNull List<StageStream> streams) { 
 for (StageStream stream : streams) { 
  boolean muted = stream.getMuted(); 
  // handle UI changes 
 }
}

Get WebRTC Statistics

To get the latest WebRTC statistics for a publishing stream or a subscribing stream, use
requestRTCStats on StageStream. When a collection is completed, you will receive statistics 
through the StageStream.Listener which can be set on StageStream.

stream.requestRTCStats();

@Override
void onRTCStats(Map<String, Map<String, String>> statsMap) { 
 for (Map.Entry<String, Map<String, string>> stat : statsMap.entrySet()) { 
  for(Map.Entry<String, String> member : stat.getValue().entrySet()) { 
   Log.i(TAG, stat.getKey() + “ has member “ + member.getKey() + “ with value “ + 
 member.getValue()); 

Publishing and Subscribing 137



Amazon IVS Real-Time Streaming User Guide

  } 
 }
}

Get Participant Attributes

If you specify attributes in the CreateParticipantToken operation request, you can see the 
attributes in ParticipantInfo properties:

@Override
void onParticipantJoined(@NonNull Stage stage, @NonNull ParticipantInfo 
 participantInfo) { 
 for (Map.Entry<String, String> entry : participantInfo.userInfo.entrySet()) { 
  Log.i(TAG, “attribute: “ + entry.getKey() + “ = “ + entry.getValue()); 
 }
}

Get Supplemental Enhancement Information (SEI)

The Supplemental Enhancement Information (SEI) NAL unit is used to store frame-aligned 
metadata alongside the video. Subscribing clients can read SEI payloads from a publisher 
who is publishing H.264 video by inspecting the embeddedMessages property on the
ImageDeviceFrame objects coming out of the publisher’s ImageDevice. To do this, 
acquire a publisher’s ImageDevice, then observe each frame via a callback provided to
setOnFrameCallback, as shown in the following example:

// in a StageRenderer’s onStreamsAdded function, after acquiring the new ImageStream

val imageDevice = imageStream.device as ImageDevice
imageDevice.setOnFrameCallback(object : ImageDevice.FrameCallback { 
 override fun onFrame(frame: ImageDeviceFrame) { 
      for (message in frame.embeddedMessages) { 
          if (message is UserDataUnregisteredSeiMessage) { 
              val seiMessageBytes = message.data 
              val seiMessageUUID = message.uuid 
              
              // interpret the message's data based on the UUID 
          } 
      } 
 }
})

Publishing and Subscribing 138



Amazon IVS Real-Time Streaming User Guide

Continue Session in the Background

When the app enters the background, you may want to stop publishing or subscribe only to other 
remote participants’ audio. To accomplish this, update your Strategy implementation to stop 
publishing, and subscribe to AUDIO_ONLY (or NONE, if applicable).

// Local variables before going into the background
boolean shouldPublish = true;
Stage.SubscribeType subscribeType = Stage.SubscribeType.AUDIO_VIDEO;

// Stage.Strategy implementation
@Override
boolean shouldPublishFromParticipant(@NonNull Stage stage, @NonNull ParticipantInfo 
 participantInfo) { 
 return shouldPublish;
}

@Override
Stage.SubscribeType shouldSubscribeToParticipant(@NonNull Stage stage, @NonNull 
 ParticipantInfo participantInfo) { 
 return subscribeType;
}

// In our Activity, modify desired publish/subscribe when we go to background, then 
 call refreshStrategy to update the stage
@Override
void onStop() { 
 super.onStop(); 
 shouldPublish = false; 
 subscribeTpye = Stage.SubscribeType.AUDIO_ONLY; 
 stage.refreshStrategy();
}

Layered Encoding with Simulcast

Layered encoding with simulcast is an IVS real-time streaming feature that allows publishers to 
send multiple different quality layers of video, and subscribers to dynamically or manually change 
those layers. The feature is described more in the Streaming Optimizations document.

Publishing and Subscribing 139



Amazon IVS Real-Time Streaming User Guide

Configuring Layered Encoding (Publisher)

As a publisher, to enable layered encoding with simulcast, add the following configuration to your
LocalStageStream on instantiation:

// Enable Simulcast
StageVideoConfiguration config = new StageVideoConfiguration();
config.simulcast.setEnabled(true);

ImageLocalStageStream cameraStream = new ImageLocalStageStream(frontCamera, config);

// Other Stage implementation code

Depending on the resolution you set on video configuration, a set number of layers will be 
encoded and sent as defined in the Default Layers, Qualities, and Framerates section of Streaming 
Optimizations.

Configuring Layered Encoding (Subscriber)

As a subscriber, there is nothing needed to enable layered encoding. If a publisher is sending 
simulcast layers, then by default the server dynamically adapts between the layers to choose the 
optimal quality based on the subscriber's device and network conditions.

Alternatively, to pick explicit layers that the publisher is sending, there are several options, 
described below.

Option 1: Initial Layer Quality Preference

Using the subscribeConfiguration strategy, it is possible to choose what initial layer you want 
to receive as a subscriber:

@Override
public SubscribeConfiguration subscribeConfigrationForParticipant(@NonNull Stage stage, 
 @NonNull ParticipantInfo participantInfo) { 
    SubscribeConfiguration config = new SubscribeConfiguration(); 

    
 config.simulcast.setInitialLayerPreference(SubscribeSimulcastConfiguration.InitialLayerPreference.LOWEST_QUALITY); 

    return config;
}

Publishing and Subscribing 140



Amazon IVS Real-Time Streaming User Guide

By default, subscribers always are sent the lowest quality layer first; this slowly ramps up to the 
highest quality layer. This optimizes end-user bandwidth consumption and provides the best time 
to video, reducing initial video freezes for users on weaker networks.

These options are available for InitialLayerPreference:

• LOWEST_QUALITY — The server delivers the lowest quality layer of video first. This optimizes 
bandwidth consumption, as well as time to media. Quality is defined as the combination of size, 
bitrate, and framerate of the video. For example, 720p video is lower quality than 1080p video.

• HIGHEST_QUALITY — The server delivers the highest quality layer of video first. This optimizes 
quality but may increase the time to media. Quality is defined as the combination of size, bitrate, 
and framerate of the video. For example, 1080p video is higher quality than 720p video.

Note: For initial layer preferences to take effect, a re-subscribe is necessary as these updates do not 
apply to the active subscription.

Option 2: Preferred Layer for Stream

Once a stream has started, you can use the preferredLayerForStream strategy method. This 
strategy method exposes the participant and the stream information.

The strategy method can be returned with the following:

• The layer object directly based on what RemoteStageStream.getLayers returns.

• null, which indicates that no layer should be selected and dynamic adaption is preferred.

For example, the following strategy will always have the users selecting the lowest quality layer of 
video available:

@Nullable
@Override
public RemoteStageStream.Layer preferredLayerForStream(@NonNull Stage stage, @NonNull 
 ParticipantInfo participantInfo, @NonNull RemoteStageStream stream) { 
    return stream.getLowestQualityLayer();
}

To reset the layer selection and return to dynamic adaption, return null or undefined in the 
strategy. In this example appState is a dummy variable that represents the possible application 
state.

Publishing and Subscribing 141



Amazon IVS Real-Time Streaming User Guide

@Nullable
@Override
public RemoteStageStream.Layer preferredLayerForStream(@NonNull Stage stage, @NonNull 
 ParticipantInfo participantInfo, @NonNull RemoteStageStream stream) { 
    if (appState.isAutoMode) { 
        return null; 
    } else { 
        return appState.layerChoice; 
    }
}

Option 3: RemoteStageStream Layer Helpers

RemoteStageStream has several helpers which can be used to make decisions about layer 
selection and display the corresponding selections to end users:

• Layer Events — Alongside StageRenderer, the RemoteStageStream.Listener has events 
which communicate layer and simulcast adaption changes:

• void onAdaptionChanged(boolean adaption)

• void onLayersChanged(@NonNull List<Layer> layers)

• void onLayerSelected(@Nullable Layer layer, @NonNull 
LayerSelectedReason reason)

• Layer Methods — RemoteStageStream has several helper methods which can be used to get 
information about the stream and the layers being presented. These methods are available on 
the remote stream provided in the preferredLayerForStream strategy, as well as remote 
streams exposed via StageRenderer.onStreamsAdded.

• stream.getLayers

• stream.getSelectedLayer

• stream.getLowestQualityLayer

• stream.getHighestQualityLayer

• stream.getLayersWithConstraints

For details, see the RemoteStageStream class in the SDK reference documentation. For the
LayerSelected reason, if UNAVAILABLE is returned, this indicates that the requested layer could 
not be selected. A best-effort selection is made in its place, which typically is a lower quality layer 
to maintain stream stability.
Publishing and Subscribing 142

https://aws.github.io/amazon-ivs-broadcast-docs/latest/android/


Amazon IVS Real-Time Streaming User Guide

Video-Configuration Limitations

The SDK does not support forcing portrait mode or landscape mode using
StageVideoConfiguration.setSize(BroadcastConfiguration.Vec2 size). In portrait 
orientation, the smaller dimension is used as the width; in landscape orientation, the height. This 
means that the following two calls to setSize have the same effect on the video configuration:

StageVideo Configuration config = new StageVideo Configuration();

config.setSize(BroadcastConfiguration.Vec2(720f, 1280f);
config.setSize(BroadcastConfiguration.Vec2(1280f, 720f);

Handling Network Issues

When the local device’s network connection is lost, the SDK internally tries to reconnect without 
any user action. In some cases, the SDK is not successful and user action is needed. There are two 
main errors related to losing the network connection:

• Error code 1400, message: "PeerConnection is lost due to unknown network error"

• Error code 1300, message: "Retry attempts are exhausted"

If the first error is received but the second is not, the SDK is still connected to the stage and will 
try to reestablish its connections automatically. As a safeguard, you can call refreshStrategy
without any changes to the strategy method’s return values, to trigger a manual reconnect 
attempt.

If the second error is received, the SDK’s reconnect attempts have failed and the local device is 
no longer connected to the stage. In this case, try to rejoin the stage by calling join after your 
network connection has been reestablished.

In general, encountering errors after joining a stage successfully indicates that the SDK was 
unsuccessful in reestablishing a connection. Create a new Stage object and try to join when 
network conditions improve.

Using Bluetooth Microphones

To publish using Bluetooth microphone devices, you must start a Bluetooth SCO connection:

Bluetooth.startBluetoothSco(context);

Publishing and Subscribing 143



Amazon IVS Real-Time Streaming User Guide

// Now bluetooth microphones can be used
…
// Must also stop bluetooth SCO
Bluetooth.stopBluetoothSco(context);

Known Issues & Workarounds in the IVS Android Broadcast SDK | Real-
Time Streaming  

This document lists known issues that you might encounter when using the Amazon IVS real-time 
streaming Android broadcast SDK and suggests potential workarounds.

• When an Android device goes to sleep and wakes up, it is possible for the preview to be in a 
frozen state.

Workaround: Create and use a new Stage.

• When a participant joins with a token that is being used by another participant, the first 
connection is disconnected without a specific error.

Workaround: None.

• There is a rare issue where the publisher is publishing but the publish state that subscribers 
receive is inactive.

Workaround: Try leaving and then joining the session. If the issue remains, create a new token 
for the publisher.

• A rare audio-distortion issue may occur intermittently during a stage session, typically on calls of 
longer durations.

Workaround: The participant with distorted audio can either leave and rejoin the session, or 
unpublish and republish their audio to fix the issue.

• External microphones are not supported when publishing to a stage.

Workaround: Do not use an external microphone connected via USB for publishing to a stage.

• Publishing to a stage with screen share using createSystemCaptureSources is not 
supported.

Workaround: Manage the system capture manually, using custom image-input sources and 
custom audio-input sources.

Known Issues and Workarounds 144



Amazon IVS Real-Time Streaming User Guide

• When an ImagePreviewView is removed from a parent (e.g., removeView() is called at the 
parent), the ImagePreviewView is released immediately. The ImagePreviewView does not 
show any frames when it is added to another parent view.

Workaround: Request another preview using getPreview.

• When joining a stage with a Samsung Galaxy S22/+ with Android 12, you may encounter a 1401 
error and the local device fails to join the stage or joins but has no audio.

Workaround: Upgrade to Android 13.

• When joining a stage with a Nokia X20 on Android 13, the camera may fail to open and an 
exception is thrown.

Workaround: None.

• Devices with the MediaTek Helio chipset may not render video of remote participants properly.

Workaround: None.

• On a few devices, the device OS may choose a different microphone than what’s selected 
through the SDK. This is because the Amazon IVS Broadcast SDK cannot control how the
VOICE_COMMUNICATION audio route is defined, as it varies according to different device 
manufacturers.

Workaround: None.

• Some Android video encoders cannot be configured with a video size less than 176x176. 
Configuring a smaller size causes an error and prevents streaming.

Workaround: Do not configure the video size to be less than 176x176.

Error Handling in the IVS Android Broadcast SDK | Real-Time 
Streaming

This section is an overview of error conditions, how the IVS real-time streaming Android broadcast 
SDK reports them to the application, and what an application should do when those errors are 
encountered.

Fatal vs. Non-Fatal Errors

The error object has an "is fatal" boolean field of BroadcastException.

Error Handling 145



Amazon IVS Real-Time Streaming User Guide

In general, fatal errors are related to connection to the Stages server (either a connection cannot 
be established or is lost and cannot be recovered). The application should re-create the stage and 
re-join, possibly with a new token or when the device’s connectivity recovers.

Non-fatal errors generally are related to the publish/subscribe state and are handled by the SDK, 
which retries the publish/subscribe operation.

You can check this property:

try { 
  stage.join(...)
} catch (e: BroadcastException) { 
  If (e.isFatal) {  
    // the error is fatal

Join Errors

Malformed Token

This happens when the stage token is malformed.

The SDK throws a Java exception from a call to stage.join, with error code = 1000 and fatal = 
true.

Action: Create a valid token and retry joining.

Expired Token

This happens when the stage token is expired.

The SDK throws a Java exception from a call to stage.join, with error code = 1001 and fatal = 
true.

Action: Create a new token and retry joining.

Invalid or Revoked Token

This happens when the stage token is not malformed but is rejected by the Stages server. This is 
reported asynchronously through the application-supplied stage renderer.

The SDK calls onConnectionStateChanged with an exception, with error code = 1026 and fatal 
= true.

Error Handling 146



Amazon IVS Real-Time Streaming User Guide

Action: Create a valid token and retry joining.

Network Errors for Initial Join

This happens when the SDK cannot contact the Stages server to establish a connection. This is 
reported asynchronously through the application-supplied stage renderer.

The SDK calls onConnectionStateChanged with an exception, with error code = 1300 and fatal 
= true.

Action: Wait for the device’s connectivity to recover and retry joining.

Network Errors when Already Joined

If the device’s network connection goes down, the SDK may lose its connection to Stage servers. 
This is reported asynchronously through the application-supplied stage renderer.

The SDK calls onConnectionStateChanged with an exception, with error code = 1300 and fatal 
= true.

Action: Wait for the device’s connectivity to recover and retry joining.

Publish/Subscribe Errors

Initial

There are several errors:

• MultihostSessionOfferCreationFailPublish (1020)

• MultihostSessionOfferCreationFailSubscribe (1021)

• MultihostSessionNoIceCandidates (1022)

• MultihostSessionStageAtCapacity (1024)

• SignallingSessionCannotRead (1201)

• SignallingSessionCannotSend (1202)

• SignallingSessionBadResponse (1203)

These are reported asynchronously through the application-supplied stage renderer.

Error Handling 147



Amazon IVS Real-Time Streaming User Guide

The SDK retries the operation for a limited number of times. During retries, the publish/subscribe 
state is ATTEMPTING_PUBLISH / ATTEMPTING_SUBSCRIBE. If the retry attempts succeed, the 
state changes to PUBLISHED / SUBSCRIBED.

The SDK calls onError with the relevant error code and fatal = false.

Action: No action is needed, as the SDK retries automatically. Optionally, the application can 
refresh the strategy to force more retries.

Already Established, Then Fail

A publish or subscribe can fail after it is established, most likely due to a network error. The error 
code for a "peer connection lost due to network error" is 1400.

This is reported asynchronously through the application-supplied stage renderer.

The SDK retries the publish/subscribe operation. During retries, the publish/subscribe state is
ATTEMPTING_PUBLISH / ATTEMPTING_SUBSCRIBE. If the retry attempts succeed, the state 
changes to PUBLISHED / SUBSCRIBED.

The SDK calls onError with the error code = 1400 and fatal = false.

Action: No action is needed, as the SDK retries automatically. Optionally, the application can 
refresh the strategy to force more retries. In the event of total connectivity loss, it’s likely that the 
connection to Stages will fail too.

IVS Broadcast SDK: iOS Guide | Real-Time Streaming

The IVS real-time streaming iOS broadcast SDK enables participants to send and receive video on 
iOS.

The AmazonIVSBroadcast module implements the interface described in this document. The 
following operations are supported:

• Join a stage

• Publish media to other participants in the stage

• Subscribe to media from other participants in the stage

• Manage and monitor video and audio published to the stage

• Get WebRTC statistics for each peer connection

iOS Guide 148



Amazon IVS Real-Time Streaming User Guide

• All operations from the IVS low-latency streaming iOS broadcast SDK

Latest version of iOS broadcast SDK: 1.27.0 (Release Notes)

Reference documentation: For information on the most important methods available in the 
Amazon IVS iOS broadcast SDK, see the reference documentation at https://aws.github.io/ 
amazon-ivs-broadcast-docs/1.27.0/ios/.

Sample code: See the iOS sample repository on GitHub: https://github.com/aws-samples/ 
amazon-ivs-broadcast-ios-sample.

Platform requirements: iOS 14 or greater

Getting Started with the IVS iOS Broadcast SDK | Real-Time Streaming

This document takes you through the steps involved in getting started with the IVS real-time 
streaming iOS broadcast SDK.

Install the Library

We recommend that you integrate the broadcast SDK via CocoaPods. (Alternatively, you can 
manually add the framework to your project.)

Recommended: Integrate the Broadcast SDK (CocoaPods)

Real-time functionality is published as a subspec of the iOS Low-Latency Streaming broadcast SDK. 
This is so customers can choose to include or exclude it based on their feature needs. Including it 
increases the package size.

Releases are published via CocoaPods under the name AmazonIVSBroadcast. Add this 
dependency to your Podfile:

pod 'AmazonIVSBroadcast/Stages'

Run pod install and the SDK will be available in your .xcworkspace.

Important: The IVS real-time streaming broadcast SDK (i.e., with the stage subspec) includes all 
features of the IVS low-latency streaming broadcast SDK. It is not possible to integrate both SDKs in 
the same project. If you add the stage subspec via CocoaPods to your project, be sure to remove any 

Getting Started 149

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#feb20-25-broadcast-mobile-rt
https://aws.github.io/amazon-ivs-broadcast-docs/1.27.0/ios/
https://aws.github.io/amazon-ivs-broadcast-docs/1.27.0/ios/
https://github.com/aws-samples/amazon-ivs-broadcast-ios-sample
https://github.com/aws-samples/amazon-ivs-broadcast-ios-sample


Amazon IVS Real-Time Streaming User Guide

other lines in the Podfile containing AmazonIVSBroadcast. For example, do not have both these 
lines in your Podfile:

pod 'AmazonIVSBroadcast'
pod 'AmazonIVSBroadcast/Stages'

Alternate Approach: Install the Framework Manually

1. Download the latest version from  https://broadcast.live-video.net/1.27.0/
AmazonIVSBroadcast-Stages.xcframework.zip.

2. Extract the contents of the archive. AmazonIVSBroadcast.xcframework contains the SDK for 
both device and simulator.

3. Embed AmazonIVSBroadcast.xcframework by dragging it into the Frameworks, Libraries, 
and Embedded Content section of the General tab for your application target.

Request Permissions

Your app must request permission to access the user’s camera and mic. (This is not specific to 
Amazon IVS; it is required for any application that needs access to cameras and microphones.)

Here, we check whether the user has already granted permissions and, if not, we ask for them:

switch AVCaptureDevice.authorizationStatus(for: .video) {
case .authorized: // permission already granted.
case .notDetermined: 
   AVCaptureDevice.requestAccess(for: .video) { granted in 
       // permission granted based on granted bool. 
   }
case .denied, .restricted: // permission denied.
@unknown default: // permissions unknown.

Getting Started 150

https://broadcast.live-video.net/1.27.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.27.0/AmazonIVSBroadcast-Stages.xcframework.zip


Amazon IVS Real-Time Streaming User Guide

}

You need to do this for both .video and .audio media types, if you want access to cameras and 
microphones, respectively.

You also need to add entries for NSCameraUsageDescription and
NSMicrophoneUsageDescription to your Info.plist. Otherwise, your app will crash when 
trying to request permissions.

Disable the Application Idle Timer

This is optional but recommended. It prevents your device from going to sleep while using the 
broadcast SDK, which would interrupt the broadcast.

override func viewDidAppear(_ animated: Bool) { 
   super.viewDidAppear(animated) 
   UIApplication.shared.isIdleTimerDisabled = true
}
override func viewDidDisappear(_ animated: Bool) { 
   super.viewDidDisappear(animated) 
   UIApplication.shared.isIdleTimerDisabled = false
}

Publishing & Subscribing with the IVS iOS Broadcast SDK | Real-Time 
Streaming

This document takes you through the steps involved in publishing and subscribing to a stage using 
the IVS real-time streaming iOS broadcast SDK.

Concepts

Three core concepts underlie real-time functionality: stage, strategy, and renderer. The design goal 
is minimizing the amount of client-side logic necessary to build a working product.

Stage

The IVSStage class is the main point of interaction between the host application and the SDK. 
The class represents the stage itself and is used to join and leave the stage. Creating or joining 
a stage requires a valid, unexpired token string from the control plane (represented as token). 
Joining and leaving a stage are simple.

Publishing and Subscribing 151



Amazon IVS Real-Time Streaming User Guide

let stage = try IVSStage(token: token, strategy: self)

try stage.join()

stage.leave()

The IVSStage class also is where the IVSStageRenderer and IVSErrorDelegate can be 
attached:

let stage = try IVSStage(token: token, strategy: self)
stage.errorDelegate = self
stage.addRenderer(self) // multiple renderers can be added

Strategy

The IVSStageStrategy protocol provides a way for the host application to 
communicate the desired state of the stage to the SDK. Three functions need to be 
implemented: shouldSubscribeToParticipant, shouldPublishParticipant, and
streamsToPublishForParticipant. All are discussed below.

Subscribing to Participants

func stage(_ stage: IVSStage, shouldSubscribeToParticipant participant: 
 IVSParticipantInfo) -> IVSStageSubscribeType

When a remote participant joins a stage, the SDK queries the host application about the desired 
subscription state for that participant. The options are .none, .audioOnly, and .audioVideo. 
When returning a value for this function, the host application does not need to worry about the 
publish state, current subscription state, or stage connection state. If .audioVideo is returned, 
the SDK waits until the remote participant is publishing before subscribing, and it updates the host 
application through the renderer throughout the process.

Here is a sample implementation:

func stage(_ stage: IVSStage, shouldSubscribeToParticipant participant: 
 IVSParticipantInfo) -> IVSStageSubscribeType { 
    return .audioVideo
}

Publishing and Subscribing 152



Amazon IVS Real-Time Streaming User Guide

This is the complete implementation of this function for a host application that always wants all 
participants to see each other; e.g., a video-chat application.

More advanced implementations also are possible. Use the attributes property on
IVSParticipantInfo to selectively subscribe to participants based on server-provided 
attributes:

func stage(_ stage: IVSStage, shouldSubscribeToParticipant participant: 
 IVSParticipantInfo) -> IVSStageSubscribeType { 
    switch participant.attributes["role"] { 
    case "moderator": return .none 
    case "guest": return .audioVideo 
    default: return .none 
    }
}

This can be used to create a stage where moderators can monitor all guests without being seen or 
heard themselves. The host application could use additional business logic to let moderators see 
each other but remain invisible to guests.

Configuration for Subscribing to Participants

func stage(_ stage: IVSStage, subscribeConfigurationForParticipant participant: 
 IVSParticipantInfo) -> IVSSubscribeConfiguration

If a remote participant is being subscribed to (see Subscribing to Participants), the SDK queries the 
host application about a custom subscribe configuration for that participant. This configuration 
is optional and allows the host application to control certain aspects of subscriber behavior. 
For information on what can be configured, see SubscribeConfiguration in the SDK reference 
documentation.

Here is a sample implementation:

func stage(_ stage: IVSStage, subscribeConfigurationForParticipant participant: 
 IVSParticipantInfo) -> IVSSubscribeConfiguration { 
    let config = IVSSubscribeConfiguration() 

    try! config.jitterBuffer.setMinDelay(.medium()) 

    return config

Publishing and Subscribing 153

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference/interfaces/SubscribeConfiguration


Amazon IVS Real-Time Streaming User Guide

}

This implementation updates the jitter-buffer minimum delay for all subscribed participants to a 
preset of MEDIUM.

As with shouldSubscribeToParticipant, more advanced implementations are possible. The 
given ParticipantInfo can be used to selectively update the subscribe configuration for specific 
participants.

We recommend using the default behaviors. Specify custom configuration only if there is a 
particular behavior you want to change.

Publishing

func stage(_ stage: IVSStage, shouldPublishParticipant participant: IVSParticipantInfo) 
 -> Bool

Once connected to the stage, the SDK queries the host application to see if a particular participant 
should publish. This is invoked only on local participants that have permission to publish based on 
the provided token.

Here is a sample implementation:

func stage(_ stage: IVSStage, shouldPublishParticipant participant: IVSParticipantInfo) 
 -> Bool { 
    return true
}

This is for a standard video chat application where users always want to publish. They can mute 
and unmute their audio and video, to instantly be hidden or seen/heard. (They also can use 
publish/unpublish, but that is much slower. Mute/unmute is preferable for use cases where 
changing visibility often is desirable.)

Choosing Streams to Publish

func stage(_ stage: IVSStage, streamsToPublishForParticipant participant: 
 IVSParticipantInfo) -> [IVSLocalStageStream]

When publishing, this is used to determine what audio and video streams should be published. This 
is covered in more detail later in Publish a Media Stream.

Publishing and Subscribing 154



Amazon IVS Real-Time Streaming User Guide

Updating the Strategy

The strategy is intended to be dynamic: the values returned from any of the above functions can 
be changed at any time. For example, if the host application does not want to publish until the end 
user taps a button, you could return a variable from shouldPublishParticipant (something 
like hasUserTappedPublishButton). When that variable changes based on an interaction by 
the end user, call stage.refreshStrategy() to signal to the SDK that it should query the 
strategy for the latest values, applying only things that have changed. If the SDK observes that 
the shouldPublishParticipant value has changed, it will start the publish process. If the SDK 
queries and all functions return the same value as before, the refreshStrategy call will not 
make any modifications to the stage.

If the return value of shouldSubscribeToParticipant changes from .audioVideo to
.audioOnly, the video stream will be removed for all participants with changed returned values, 
if a video stream existed previously.

Generally, the stage uses the strategy to most efficiently apply the difference between the previous 
and current strategies, without the host application needing to worry about all the state required 
to manage it properly. Because of this, think of calling stage.refreshStrategy() as a cheap 
operation, because it does nothing unless the strategy changes.

Renderer

The IVSStageRenderer protocol communicates the state of the stage to the host application. 
Updates to the host application’s UI usually can be powered entirely by the events provided by the 
renderer. The renderer provides the following functions:

func stage(_ stage: IVSStage, participantDidJoin participant: IVSParticipantInfo)

func stage(_ stage: IVSStage, participantDidLeave participant: IVSParticipantInfo)

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, didChange publishState: 
 IVSParticipantPublishState)

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, didChange 
 subscribeState: IVSParticipantSubscribeState)

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, didAdd streams: 
 [IVSStageStream])

Publishing and Subscribing 155



Amazon IVS Real-Time Streaming User Guide

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, didRemove streams: 
 [IVSStageStream])

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, didChangeMutedStreams 
 streams: [IVSStageStream])

func stage(_ stage: IVSStage, didChange connectionState: IVSStageConnectionState, 
 withError error: Error?)

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, stream: 
 IVSRemoteStageStream, didChangeStreamAdaption adaption: Bool)

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, stream: 
 IVSRemoteStageStream, didChange layers: [IVSRemoteStageStreamLayer])

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, stream: 
 IVSRemoteStageStream, didSelect layer: IVSRemoteStageStreamLayer?, reason: 
 IVSRemoteStageStream.LayerSelectedReason)

It is not expected that the information provided by the renderer impacts the return values of the 
strategy. For example, the return value of shouldSubscribeToParticipant is not expected to 
change when participant:didChangePublishState is called. If the host application wants 
to subscribe to a particular participant, it should return the desired subscription type regardless of 
that participant’s publish state. The SDK is responsible for ensuring that the desired state of the 
strategy is acted on at the correct time based on the state of the stage.

Note that only publishing participants trigger participantDidJoin, and whenever a participant 
stops publishing or leaves the stage session, participantDidLeave is triggered.

Publish a Media Stream

Local devices such as built-in microphones and cameras are discovered via IVSDeviceDiscovery. 
Here is an example of selecting the front-facing camera and default microphone, then returning 
them as IVSLocalStageStreams to be published by the SDK:

let devices = IVSDeviceDiscovery().listLocalDevices()

// Find the camera virtual device, choose the front source, and create a stream
let camera = devices.compactMap({ $0 as? IVSCamera }).first!
let frontSource = camera.listAvailableInputSources().first(where: { $0.position 
 == .front })!

Publishing and Subscribing 156



Amazon IVS Real-Time Streaming User Guide

camera.setPreferredInputSource(frontSource)
let cameraStream = IVSLocalStageStream(device: camera)

// Find the microphone virtual device and create a stream
let microphone = devices.compactMap({ $0 as? IVSMicrophone }).first!
let microphoneStream = IVSLocalStageStream(device: microphone)

// Configure the audio manager to use the videoChat preset, which is optimized for bi-
directional communication, including echo cancellation.
IVSStageAudioManager.sharedInstance().setPreset(.videoChat)

// This is a function on IVSStageStrategy
func stage(_ stage: IVSStage, streamsToPublishForParticipant participant: 
 IVSParticipantInfo) -> [IVSLocalStageStream] { 
    return [cameraStream, microphoneStream]
}

Display and Remove Participants

After subscribing is completed, you will receive an array of IVSStageStream objects through the 
renderer’s didAddStreams function. To preview or receive audio level stats about this participant, 
you can access the underlying IVSDevice object from the stream:

if let imageDevice = stream.device as? IVSImageDevice { 
    let preview = imageDevice.previewView() 
    /* attach this UIView subclass to your view */
} else if let audioDevice = stream.device as? IVSAudioDevice { 
    audioDevice.setStatsCallback( { stats in 
        /* process stats.peak and stats.rms */ 
    })
}

When a participant stops publishing or is unsubscribed from, the didRemoveStreams function is 
called with the streams that were removed. Host applications should use this as a signal to remove 
the participant’s video stream from the view hierarchy.

didRemoveStreams is invoked for all scenarios in which a stream might be removed, including:

• The remote participant stops publishing.

• A local device unsubscribes or changes subscription from .audioVideo to .audioOnly.

• The remote participant leaves the stage.

Publishing and Subscribing 157



Amazon IVS Real-Time Streaming User Guide

• The local participant leaves the stage.

Because didRemoveStreams is invoked for all scenarios, no custom business logic is required 
around removing participants from the UI during remote or local leave operations.

Mute and Unmute Media Streams

IVSLocalStageStream objects have a setMuted function that controls whether the stream 
is muted. This function can be called on the stream before or after it is returned from the
streamsToPublishForParticipant strategy function.

Important: If a new IVSLocalStageStream object instance is returned by
streamsToPublishForParticipant after a call to refreshStrategy, the mute state of the 
new stream object is applied to the stage. Be careful when creating new IVSLocalStageStream
instances to make sure the expected mute state is maintained.

Monitor Remote Participant Media Mute State

When a participant changes the mute state of its video or audio stream, the renderer
didChangeMutedStreams function is invoked with an array of streams that have changed. Use 
the isMuted property on IVSStageStream to update your UI accordingly:

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, didChangeMutedStreams 
 streams: [IVSStageStream]) { 
    streams.forEach { stream in  
        /* stream.isMuted */ 
    }
}

Create a Stage Configuration

To customize the values of a stage’s video configuration, use
IVSLocalStageStreamVideoConfiguration:

let config = IVSLocalStageStreamVideoConfiguration()
try config.setMaxBitrate(900_000)
try config.setMinBitrate(100_000)
try config.setTargetFramerate(30)
try config.setSize(CGSize(width: 360, height: 640))
config.degradationPreference = .balanced

Publishing and Subscribing 158



Amazon IVS Real-Time Streaming User Guide

Get WebRTC Statistics

To get the latest WebRTC statistics for a publishing stream or a subscribing stream, use
requestRTCStats on IVSStageStream. When a collection is completed, you will receive 
statistics through the IVSStageStreamDelegate which can be set on IVSStageStream. To 
continually collect WebRTC statistics, call this function on a Timer.

func stream(_ stream: IVSStageStream, didGenerateRTCStats stats: [String : [String : 
 String]]) { 
    for stat in stats { 
      for member in stat.value { 
         print("stat \(stat.key) has member \(member.key) with value \(member.value)") 
      } 
   }
}

Get Participant Attributes

If you specify attributes in the CreateParticipantToken operation request, you can see the 
attributes in IVSParticipantInfo properties:

func stage(_ stage: IVSStage, participantDidJoin participant: IVSParticipantInfo) { 
    print("ID: \(participant.participantId)") 
    for attribute in participant.attributes { 
        print("attribute: \(attribute.key)=\(attribute.value)") 
    }
}

Get Supplemental Enhancement Information (SEI)

The Supplemental Enhancement Information (SEI) NAL unit is used to store frame-aligned 
metadata alongside the video. Subscribing clients can read SEI payloads from a publisher 
who is publishing H.264 video by inspecting the embeddedMessages property on the
IVSImageDeviceFrame objects coming out of the publisher’s IVSImageDevice. To do this, 
acquire a publisher’s IVSImageDevice, then observe each frame via a callback provided to
setOnFrameCallback, as shown in the following example:

// in an IVSStageRenderer’s stage:participant:didAddStreams: function, after acquiring 
 the new IVSImageStream

Publishing and Subscribing 159



Amazon IVS Real-Time Streaming User Guide

let imageDevice: IVSImageDevice? = imageStream.device as? IVSImageDevice
imageDevice?.setOnFrameCallback { frame in 
 for message in frame.embeddedMessages { 
      if let seiMessage = message as? IVSUserDataUnregisteredSEIMessage { 
          let seiMessageData = seiMessage.data 
          let seiMessageUUID = seiMessage.UUID 

          // interpret the message's data based on the UUID 
      } 
 }
}

Continue Session in the Background

When the app enters the background, you can continue to be in the stage while hearing remote 
audio, though it is not possible to continue to send your own image and audio. You will need to 
update your IVSStrategy implementation to stop publishing and subscribe to .audioOnly (or
.none, if applicable):

func stage(_ stage: IVSStage, shouldPublishParticipant participant: IVSParticipantInfo) 
 -> Bool { 
    return false
}
func stage(_ stage: IVSStage, shouldSubscribeToParticipant participant: 
 IVSParticipantInfo) -> IVSStageSubscribeType { 
    return .audioOnly
}

Then make a call to stage.refreshStrategy().

Layered Encoding with Simulcast

Layered encoding with simulcast is an IVS real-time streaming feature that allows publishers to 
send multiple different quality layers of video, and subscribers to dynamically or manually change 
those layers. The feature is described more in the Streaming Optimizations document.

Configuring Layered Encoding (Publisher)

As a publisher, to enable layered encoding with simulcast, add the following configuration to your
IVSLocalStageStream on instantiation:

Publishing and Subscribing 160



Amazon IVS Real-Time Streaming User Guide

// Enable Simulcast
let config = IVSLocalStageStreamVideoConfiguration()
config.simulcast.enabled = true

let cameraStream = IVSLocalStageStream(device: camera, configuration: config)

// Other Stage implementation code

Depending on the resolution you set on video configuration, a set number of layers will be 
encoded and sent as defined in the Default Layers, Qualities, and Framerates section of Streaming 
Optimizations.

Configuring Layered Encoding (Subscriber)

As a subscriber, there is nothing needed to enable layered encoding. If a publisher is sending 
simulcast layers, then by default the server dynamically adapts between the layers to choose the 
optimal quality based on the subscriber's device and network conditions.

Alternatively, to pick explicit layers that the publisher is sending, there are several options, 
described below.

Option 1: Initial Layer Quality Preference

Using the subscribeConfiguration strategy, it is possible to choose what initial layer you want 
to receive as a subscriber:

func stage(_ stage: IVSStage, subscribeConfigurationForParticipant participant: 
 IVSParticipantInfo) -> IVSSubscribeConfiguration { 
    let config = IVSSubscribeConfiguration() 

    config.simulcast.initialLayerPreference = .lowestQuality 

    return config
}

By default, subscribers always are sent the lowest quality layer first; this slowly ramps up to the 
highest quality layer. This optimizes end-user bandwidth consumption and provides the best time 
to video, reducing initial video freezes for users on weaker networks.

These options are available for InitialLayerPreference:

Publishing and Subscribing 161



Amazon IVS Real-Time Streaming User Guide

• lowestQuality — The server delivers the lowest quality layer of video first. This optimizes 
bandwidth consumption, as well as time to media. Quality is defined as the combination of size, 
bitrate, and framerate of the video. For example, 720p video is lower quality than 1080p video.

• highestQuality — The server delivers the highest quality layer of video first. This optimizes 
quality but may increase the time to media. Quality is defined as the combination of size, bitrate, 
and framerate of the video. For example, 1080p video is higher quality than 720p video.

Note: For initial layer preferences to take effect, a re-subscribe is necessary as these updates do not 
apply to the active subscription.

Option 2: Preferred Layer for Stream

Once a stream has started, you can use the preferredLayerForStream strategy method. This 
strategy method exposes the participant and the stream information.

The strategy method can be returned with the following:

• The layer object directly, based on what IVSRemoteStageStream.layers returns.

• nil, which indicates that no layer should be selected and dynamic adaption is preferred.

For example, the following strategy will always have the users selecting the lowest quality layer of 
video available:

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, preferredLayerFor 
 stream: IVSRemoteStageStream) -> IVSRemoteStageStreamLayer? { 
    return stream.lowestQualityLayer
}

To reset the layer selection and return to dynamic adaption, return nil in the strategy. In this 
example appState is a dummy variable that represents the possible application state.

func stage(_ stage: IVSStage, participant: IVSParticipantInfo, preferredLayerFor 
 stream: IVSRemoteStageStream) -> IVSRemoteStageStreamLayer? { 
    If appState.isAutoMode { 
        return nil 
    } else { 
        return appState.layerChoice 
    }

Publishing and Subscribing 162



Amazon IVS Real-Time Streaming User Guide

}

Option 3: RemoteStageStream Layer Helpers

IVSRemoteStageStream has several helpers which can be used to make decisions about layer 
selection and display the corresponding selections to end users:

• Layer Events — Alongside IVSStageRenderer, the IVSRemoteStageStreamDelegate has 
events which communicate layer and simulcast adaption changes:

• func stream(_ stream: IVSRemoteStageStream, didChangeAdaption adaption: 
Bool)

• func stream(_ stream: IVSRemoteStageStream, didChange layers: 
[IVSRemoteStageStreamLayer])

• func stream(_ stream: IVSRemoteStageStream, didSelect layer: 
IVSRemoteStageStreamLayer?, reason: 
IVSRemoteStageStream.LayerSelectedReason)

• Layer Methods — IVSRemoteStageStream has several helper methods which can be used 
to get information about the stream and the layers being presented. These methods are 
available on the remote stream provided in the preferredLayerForStream strategy, as 
well as remote streams exposed via func stage(_ stage: IVSStage, participant: 
IVSParticipantInfo, didAdd streams: [IVSStageStream]).

• stream.layers

• stream.selectedLayer

• stream.lowestQualityLayer

• stream.highestQualityLayer

• stream.layers(with: IVSRemoteStageStreamLayerConstraints)

For details, see the IVSRemoteStageStream class in the SDK reference documentation. For the
LayerSelected reason, if UNAVAILABLE is returned, this indicates that the requested layer could 
not be selected. A best-effort selection is made in its place, which typically is a lower quality layer 
to maintain stream stability.

Broadcast the Stage to an IVS Channel

To broadcast a stage, create a separate IVSBroadcastSession and then follow the usual 
instructions for broadcasting with the SDK, described above. The device property on

Publishing and Subscribing 163

https://aws.github.io/amazon-ivs-broadcast-docs/latest/ios/


Amazon IVS Real-Time Streaming User Guide

IVSStageStream will be either an IVSImageDevice or IVSAudioDevice as shown in the 
snippet above; these can be connected to the IVSBroadcastSession.mixer to broadcast the 
entire stage in a customizable layout.

Optionally, you can composite a stage and broadcast it to an IVS low-latency channel, to reach a 
larger audience. See Enabling Multiple Hosts on an Amazon IVS Stream in the IVS Low-Latency 
Streaming User Guide.

How iOS Chooses Camera Resolution and Frame Rate

The camera managed by the broadcast SDK optimizes its resolution and frame rate (frames-per-
second, or FPS) to minimize heat production and energy consumption. This section explains how 
the resolution and frame rate are selected to help host applications optimize for their use cases.

When creating an IVSLocalStageStream with an IVSCamera, the camera is optimized 
for a frame rate of IVSLocalStageStreamVideoConfiguration.targetFramerate
and a resolution of IVSLocalStageStreamVideoConfiguration.size. Calling
IVSLocalStageStream.setConfiguration updates the camera with newer values.

Camera Preview

If you create a preview of an IVSCamera without attaching it to a IVSBroadcastSession or
IVSStage, it defaults to a resolution of 1080p and a frame rate of 60 fps.

Broadcasting a Stage

When using an IVSBroadcastSession to broadcast an IVSStage, the SDK tries to optimize the 
camera with a resolution and frame rate that meet the criteria of both sessions.

For example, if the broadcast configuration is set to have a frame rate of 15 FPS and a resolution 
of 1080p, while the Stage has a frame rate of 30 FPS and a resolution of 720p, the SDK will 
select a camera configuration with a frame rate of 30 FPS and a resolution of 1080p. The
IVSBroadcastSession will drop every other frame from the camera, and the IVSStage will 
scale the 1080p image down to 720p.

If a host application plans on using both IVSBroadcastSession and IVSStage together, with 
a camera, we recommend that the targetFramerate and size properties of the respective 
configurations match. A mismatch could cause the camera to reconfigure itself while capturing 
video, which will cause a brief delay in video-sample delivery.

How iOS Chooses Camera Resolution and Frame Rate 164

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/multiple-hosts.html


Amazon IVS Real-Time Streaming User Guide

If having identical values does not meet the host application’s use case, creating the higher quality 
camera first will prevent the camera from reconfiguring itself when the lower quality session is 
added. For example, if you broadcast at 1080p and 30 FPS and then later join a Stage set to 720p 
and 30 FPS, the camera will not reconfigure itself and video will continue uninterrupted. This is 
because 720p is less than or equal to 1080p and 30 FPS is less than or equal to 30 FPS.

Arbitrary Frame Rates, Resolutions, and Aspect Ratios

Most camera hardware can exactly match common formats, such as 720p at 30 FPS or 1080p at 
60 FPS. However, it is not possible to exactly match all formats. The broadcast SDK chooses the 
camera configuration based on the following rules (in priority order):

1. The width and height of the resolution are greater than or equal to the desired resolution, but 
within this constraint, width and height are as small as possible.

2. The frame rate is greater than or equal to the desired frame rate, but within this constraint, 
frame rate is as low as possible.

3. The aspect ratio matches the desired aspect ratio.

4. If there are multiple matching formats, the format with the greatest field of view is used.

Here are two examples:

• The host application is trying to broadcast in 4k at 120 FPS. The selected camera supports 
only 4k at 60 FPS or 1080p at 120 FPS. The selected format will be 4k at 60 FPS, because the 
resolution rule is higher priority than the frame-rate rule.

• An irregular resolution is requested, 1910x1070. The camera will use 1920x1080. Be careful: 
choosing a resolution like 1921x1080 will causes the camera to scale up to the next available 
resolution (such as 2592x1944), which incurs a CPU and memory-bandwidth penalty.

What about Android?

Android does not adjust its resolution or frame rate on the fly like iOS does, so this does not impact 
the Android broadcast SDK.

How iOS Chooses Camera Resolution and Frame Rate 165



Amazon IVS Real-Time Streaming User Guide

Known Issues & Workarounds in the IVS iOS Broadcast SDK | Real-Time 
Streaming  

This document lists known issues that you might encounter when using the Amazon IVS real-time 
streaming iOS broadcast SDK and suggests potential workarounds.

• Changing Bluetooth audio routes can be unpredictable. If you connect a new device mid-session, 
iOS may or may not automatically change the input route. Also, it is not possible to choose 
between multiple Bluetooth headsets that are connected at the same time. This happens in both 
regular broadcast and stage sessions.

Workaround: If you plan to use a Bluetooth headset, connect it before starting the broadcast or 
stage and leave it connected throughout the session.

• Participants using an iPhone 14, iPhone 14 Plus, iPhone 14 Pro, or iPhone 14 Pro Max may cause 
an audio echo issue for other participants.

Workaround: Participants using the affected devices can use headphones to prevent the echo 
issue for other participants.

• When a participant joins with a token that is being used by another participant, the first 
connection is disconnected without a specific error.

Workaround: None.

• There is a rare issue where the publisher is publishing but the publish state that subscribers 
receive is inactive.

Workaround: Try leaving and then joining the session. If the issue remains, create a new token 
for the publisher.

• When a participant is publishing or subscribing, it is possible to receive an error with code 1400 
that indicates disconnection due to a network issue, even when the network is stable.

Workaround: Try republishing / resubscribing.

• A rare audio-distortion issue may occur intermittently during a stage session, typically on calls of 
longer durations.

Workaround: The participant with distorted audio can either leave and rejoin the session, or 
unpublish and republish their audio to fix the issue.

Known Issues and Workarounds 166



Amazon IVS Real-Time Streaming User Guide

Error Handling in the IVS iOS Broadcast SDK | Real-Time Streaming

This section is an overview of error conditions, how the IVS real-time streaming iOS broadcast 
SDK reports them to the application, and what an application should do when those errors are 
encountered.

Fatal vs. Non-Fatal Errors

The error object has an "is fatal" boolean. This is a dictionary entry under
IVSBroadcastErrorIsFatalKey which contains a boolean.

In general, fatal errors are related to connection to the Stages server (either a connection cannot 
be established or is lost and cannot be recovered). The application should re-create the stage and 
re-join, possibly with a new token or when the device’s connectivity recovers.

Non-fatal errors generally are related to the publish/subscribe state and are handled by the SDK, 
which retries the publish/subscribe operation.

You can check this property:

let nsError = error as NSError
if nsError.userInfo[IVSBroadcastErrorIsFatalKey] as? Bool == true { 
  // the error is fatal
}

Join Errors

Malformed Token

This happens when the stage token is malformed.

The SDK throws a Swift exception with error code = 1000 and IVSBroadcastErrorIsFatalKey = YES.

Action: Create a valid token and retry joining.

Expired Token

This happens when the stage token is expired.

The SDK throws a Swift exception with error code = 1001 and IVSBroadcastErrorIsFatalKey = YES.

Action: Create a new token and retry joining.

Error Handling 167



Amazon IVS Real-Time Streaming User Guide

Invalid or Revoked Token

This happens when the stage token is not malformed but is rejected by the Stages server. This is 
reported asynchronously through the application-supplied stage renderer.

The SDK calls stage(didChange connectionState, withError error) with error code = 
1026 and IVSBroadcastErrorIsFatalKey = YES.

Action: Create a valid token and retry joining.

Network Errors for Initial Join

This happens when the SDK cannot contact the Stages server to establish a connection. This is 
reported asynchronously through the application-supplied stage renderer.

The SDK calls stage(didChange connectionState, withError error) with error code = 
1300 and IVSBroadcastErrorIsFatalKey = YES.

Action: Wait for the device’s connectivity to recover and retry joining.

Network Errors when Already Joined

If the device’s network connection goes down, the SDK may lose its connection to Stage servers. 
This is reported asynchronously through the application-supplied stage renderer.

The SDK calls stage(didChange connectionState, withError error) with error code = 
1300 and IVSBroadcastErrorIsFatalKey value = YES.

Action: Wait for the device’s connectivity to recover and retry joining.

Publish/Subscribe Errors

Initial

There are several errors:

• MultihostSessionOfferCreationFailPublish (1020)

• MultihostSessionOfferCreationFailSubscribe (1021)

• MultihostSessionNoIceCandidates (1022)

• MultihostSessionStageAtCapacity (1024)

Error Handling 168



Amazon IVS Real-Time Streaming User Guide

• SignallingSessionCannotRead (1201)

• SignallingSessionCannotSend (1202)

• SignallingSessionBadResponse (1203)

These are reported asynchronously through the application-supplied stage renderer.

The SDK retries the operation for a limited number of times. During retries, the publish/subscribe 
state is ATTEMPTING_PUBLISH / ATTEMPTING_SUBSCRIBE. If the retry attempts succeed, the 
state changes to PUBLISHED / SUBSCRIBED.

The SDK calls IVSErrorDelegate:didEmitError with the relevant error code and
IVSBroadcastErrorIsFatalKey == NO.

Action: No action is needed, as the SDK retries automatically. Optionally, the application can 
refresh the strategy to force more retries.

Already Established, Then Fail

A publish or subscribe can fail after it is established, most likely due to a network error. The error 
code for a "peer connection lost due to network error" is 1400.

This is reported asynchronously through the application-supplied stage renderer.

The SDK retries the publish/subscribe operation. During retries, the publish/subscribe state is
ATTEMPTING_PUBLISH / ATTEMPTING_SUBSCRIBE. If the retry attempts succeed, the state 
changes to PUBLISHED / SUBSCRIBED.

The SDK calls didEmitError with error code = 1400 and IVSBroadcastErrorIsFatalKey = NO.

Action: No action is needed, as the SDK retries automatically. Optionally, the application can 
refresh the strategy to force more retries. In the event of total connectivity loss, it’s likely that the 
connection to Stages will fail too.

IVS Broadcast SDK: Custom Image Sources | Real-Time 
Streaming

Custom image-input sources allow an application to provide its own image input to the broadcast 
SDK, instead of being limited to the preset cameras. A custom image source can be as simple as a 

Custom Image Sources 169



Amazon IVS Real-Time Streaming User Guide

semi-transparent watermark or static “be right back” scene, or it can allow the app to do additional 
custom processing like adding beauty filters to the camera.

When you use a custom image-input source for custom control of the camera (such as using 
beauty-filter libraries that require camera access), the broadcast SDK is no longer responsible for 
managing the camera. Instead, the application is responsible for handling the camera’s lifecycle 
correctly. See official platform documentation on how your application should manage the camera.

Android

After you create a DeviceDiscovery session, create an image-input source:

CustomImageSource imageSource = deviceDiscovery.createImageInputSource(new 
 BroadcastConfiguration.Vec2(1280, 720));

This method returns a CustomImageSource, which is an image source backed by a standard 
Android Surface. The sublcass SurfaceSource can be resized and rotated. You also can create an
ImagePreviewView to display a preview of its contents.

To retrieve the underlying Surface:

Surface surface = surfaceSource.getInputSurface();

This Surface can be used as the output buffer for image producers like Camera2, OpenGL ES, and 
other libraries. The simplest use case is directly drawing a static bitmap or color into the Surface’s 
Canvas. However, many libraries (such as beauty-filter libraries) provide a method that allows an 
application to specify an external Surface for rendering. You can use such a method to pass this
Surface to the filter library, which allows the library to output processed frames for the broadcast 
session to stream.

This CustomImageSource can be wrapped in a LocalStageStream and returned by the
StageStrategy to publish to a Stage.

iOS

After you create a DeviceDiscovery session, create an image-input source:

let customSource = broadcastSession.createImageSource(withName: "customSourceName")

Android 170

https://developer.android.com/reference/android/view/Surface


Amazon IVS Real-Time Streaming User Guide

This method returns an IVSCustomImageSource, which is an image source that allows the 
application to submit CMSampleBuffers manually. For supported pixel formats, see the iOS 
Broadcast SDK Reference; a link to the most current version is in the Amazon IVS Release Notes for 
the latest broadcast SDK release.

Samples submitted to the custom source will be streamed to the Stage:

customSource.onSampleBuffer(sampleBuffer)

For streaming video, use this method in a callback. For example, if you’re using the camera, then 
every time a new sample buffer is received from an AVCaptureSession, the application can 
forward the sample buffer to the custom image source. If desired, the application can apply further 
processing (like a beauty filter) before submitting the sample to the custom image source.

The IVSCustomImageSource can be wrapped in an IVSLocalStageStream and returned by the
IVSStageStrategy to publish to a Stage.

IVS Broadcast SDK: Third-Party Camera Filters | Real-Time 
Streaming

This guide assumes you are already familiar with custom image sources as well as integrating the
IVS real-time streaming broadcast SDK into your application.

Camera filters enable live-stream creators to augment or alter their facial or background 
appearance. This potentially can increase viewer engagement, attract viewers, and enhance the 
live-streaming experience.

Integrating Third-Party Camera Filters

You can integrate third-party camera filter SDKs with the IVS broadcast SDK by feeding the filter 
SDK’s output to a custom image input source. A custom image-input source allows an application 
to provide its own image input to the Broadcast SDK. A third-party filter provider’s SDK may 
manage the camera’s lifecycle to process images from the camera, apply a filter effect, and output 
it in a format that can be passed to a custom image source.

Third-Party Camera Filters 171



Amazon IVS Real-Time Streaming User Guide

Consult your third-party filter provider’s documentation for built-in methods to convert a camera 
frame, with the filter effect, applied to a format that can be passed to a custom image-input 
source. The process varies, depending on which version of the IVS broadcast SDK is used:

• Web — The filter provider must be able to render its output to a canvas element. The
captureStream method can then be used to return a MediaStream of the canvas’s contents. The 
MediaStream can then be converted to an instance of a LocalStageStream and published to a 
Stage.

• Android — The filter provider’s SDK can either render a frame to an Android Surface provided 
by the IVS broadcast SDK or convert the frame to a bitmap. If using a bitmap, it can then be 
rendered to the underlying Surface provided by the custom image source, by unlocking and 
writing to a canvas.

• iOS — A third-party filter provider’s SDK must provide a camera frame with a filter effect 
applied as a CMSampleBuffer. Refer to your third-party filter vendor SDK’s documentation 
for information on how to get a CMSampleBuffer as the final output after a camera image is 
processed.

Using BytePlus with the IVS Broadcast SDK

This document explains how to use the BytePlus Effects SDK with the IVS broadcast SDK.

Android

Install and Set Up the BytePlus Effects SDK

See the BytePlus Android Access Guide for details on how to install, initialize, and set up the 
BytePlus Effects SDK.

Set Up the Custom Image Source

After initializing the SDK, feed processed camera frames with a filter effect applied to a custom-
image input source. To do that, create an instance of a DeviceDiscovery object and create a 
custom image source. Note that when you use a custom image input source for custom control 
of the camera, the broadcast SDK is no longer responsible for managing the camera. Instead, the 
application is responsible for handling the camera’s lifecycle correctly.

Java

var deviceDiscovery = DeviceDiscovery(applicationContext)

BytePlus 172

https://developer.mozilla.org/en-US/docs/Web/API/HTMLCanvasElement/captureStream
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference/classes/LocalStageStream
https://docs.byteplus.com/en/effects/docs/android-v4101-access-guide


Amazon IVS Real-Time Streaming User Guide

var customSource = deviceDiscovery.createImageInputSource( BroadcastConfiguration.Vec2(
720F, 1280F
))
var surface: Surface = customSource.inputSurface
var filterStream = ImageLocalStageStream(customSource)

Convert Output to a Bitmap and Feed to Custom Image Input Source

To enable camera frames with a filter effect applied from the BytePlus Effect SDK to be forwarded 
directly to the IVS broadcast SDK, convert the BytePlus Effects SDK’s output of a texture to a 
bitmap. When an image is processed, the onDrawFrame() method is invoked by the SDK. The
onDrawFrame() method is a public method of Android’s GLSurfaceView.Renderer interface. In the 
Android sample app provided by BytePlus, this method is called on every camera frame; it outputs 
a texture. Concurrently, you can supplement the onDrawFrame() method with logic to convert 
this texture to a bitmap and feed it to a custom image input source. As shown in the following 
code sample, use the transferTextureToBitmap method provided by the BytePlus SDK to do 
this conversion. This method is provided by the com.bytedance.labcv.core.util.ImageUtil library 
from the BytePlus Effects SDK, as shown in the following code sample.You can then render to 
the underlying Android Surface of a CustomImageSource by writing the resulting bitmap to a 
Surface’s canvas. Many successive invocations of onDrawFrame() results in a sequence of bitmaps, 
and when combined, creates a stream of video.

Java

import com.bytedance.labcv.core.util.ImageUtil;
...
protected ImageUtil imageUtility;
...

@Override
public void onDrawFrame(GL10 gl10) { 
  ...  
  // Convert BytePlus output to a Bitmap 
  Bitmap outputBt = imageUtility.transferTextureToBitmap(output.getTexture(),ByteEffect 
      
  Constants.TextureFormat.Texture2D,output.getWidth(), output.getHeight()); 

  canvas = surface.lockCanvas(null); 
  canvas.drawBitmap(outputBt, 0f, 0f, null); 
  surface.unlockCanvasAndPost(canvas);

BytePlus 173

https://developer.android.com/reference/android/opengl/GLSurfaceView.Renderer
https://docs.byteplus.com/en/effects/docs/android-v4101-access-guide#Appendix:%20convert%20input%20texture%20to%202D%20texture%20with%20upright%20face


Amazon IVS Real-Time Streaming User Guide

Using DeepAR with the IVS Broadcast SDK

This document explains how to use the DeepAR SDK with the IVS broadcast SDK.

Android

See the Android Integration Guide from DeepAR for details on how to integrate the DeepAR SDK 
with the Android IVS broadcast SDK.

iOS

See the iOS Integration Guide from DeepAR for details on how to integrate the DeepAR SDK with 
the iOS IVS broadcast SDK.

Using Snap with the IVS Broadcast SDK

This document explains how to use Snap’s Camera Kit SDK with the IVS broadcast SDK.

Web

This section assumes you are already familiar with publishing and subscribing to video using the 
Web Broadcast SDK.

To integrate Snap’s Camera Kit SDK with the IVS real-time streaming Web broadcast SDK, you need 
to:

1. Install the Camera Kit SDK and Webpack. (Our example uses Webpack as the bundler, but you 
can use any bundler of your choice.)

2. Create index.html.

3. Add setup elements.

4. Create index.css.

5. Display and set up participants.

6. Display connected cameras and microphones.

7. Create a Camera Kit session.

8. Fetch lenses and populate lens selector.

9. Render the output from a Camera Kit session to a canvas.

10.Create a function to populate the Lens dropdown.

11.Provide Camera Kit with a media source for rendering and publish a LocalStageStream.

DeepAR 174

https://docs.deepar.ai/deepar-sdk/integrations/video-calling/amazon-ivs/android/
https://docs.deepar.ai/deepar-sdk/integrations/video-calling/amazon-ivs/ios/


Amazon IVS Real-Time Streaming User Guide

12.Create package.json.

13.Create a Webpack config file.

14.Set up an HTTPS server and test.

Each of these steps is described below.

Install the Camera Kit SDK and Webpack

In this example we use Webpack as our bundler; however, you can use any bundler.

npm i @snap/camera-kit webpack webpack-cli

Create index.html

Next, create the HTML boilerplate and import the Web broadcast SDK as a script tag. In the 
following code, be sure to replace <SDK version> with the broadcast SDK version that you are 
using.

HTML

<!--
/*! Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-
Identifier: Apache-2.0 */
-->
<!DOCTYPE html>
<html lang="en">

<head> 
  <meta charset="UTF-8" /> 
  <meta http-equiv="X-UA-Compatible" content="IE=edge" /> 
  <meta name="viewport" content="width=device-width, initial-scale=1.0" /> 

  <title>Amazon IVS Real-Time Streaming Web Sample (HTML and JavaScript)</title> 

  <!-- Fonts and Styling --> 
  <link rel="stylesheet" href="https://fonts.googleapis.com/css?
family=Roboto:300,300italic,700,700italic" /> 
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.1/
normalize.css" /> 
  <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/milligram/1.4.1/
milligram.css" /> 
  <link rel="stylesheet" href="./index.css" /> 

Snap 175



Amazon IVS Real-Time Streaming User Guide

  <!-- Stages in Broadcast SDK --> 
  <script src="https://web-broadcast.live-video.net/<SDK version>/amazon-ivs-web-
broadcast.js"></script>
</head>

<body> 
  <!-- Introduction --> 
  <header> 
    <h1>Amazon IVS Real-Time Streaming Web Sample (HTML and JavaScript)</h1> 

    <p>This sample is used to demonstrate basic HTML / JS usage. <b><a href="https://
docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/multiple-hosts.html">Use the AWS 
 CLI</a></b> to create a <b>Stage</b> and a corresponding <b>ParticipantToken</b>. 
 Multiple participants can load this page and put in their own tokens. You can <b><a 
 href="https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-guides/stages#glossary" 
 target="_blank">read more about stages in our public docs.</a></b></p> 
  </header> 
  <hr /> 
   
  <!-- Setup Controls --> 
  
  <!-- Display Local Participants --> 
   
  <!-- Lens Selector --> 

  <!-- Display Remote Participants --> 

  <!-- Load All Desired Scripts -->

Add Setup Elements

Create the HTML for selecting a camera, microphone, and lens and specifying a participant token:

HTML

<!-- Setup Controls --> 
  <div class="row"> 
    <div class="column"> 
      <label for="video-devices">Select Camera</label> 
      <select disabled id="video-devices"> 
        <option selected disabled>Choose Option</option> 
      </select> 

Snap 176



Amazon IVS Real-Time Streaming User Guide

    </div> 
    <div class="column"> 
      <label for="audio-devices">Select Microphone</label> 
      <select disabled id="audio-devices"> 
        <option selected disabled>Choose Option</option> 
      </select> 
    </div> 
    <div class="column"> 
      <label for="token">Participant Token</label> 
      <input type="text" id="token" name="token" /> 
    </div> 
    <div class="column" style="display: flex; margin-top: 1.5rem"> 
      <button class="button" style="margin: auto; width: 100%" id="join-button">Join 
 Stage</button> 
    </div> 
    <div class="column" style="display: flex; margin-top: 1.5rem"> 
      <button class="button" style="margin: auto; width: 100%" id="leave-button">Leave 
 Stage</button> 
    </div> 
  </div>

Add additional HTML beneath that to display camera feeds from local and remote participants:

HTML

 <!-- Local Participant -->
<div class="row local-container"> 
    <canvas id="canvas"></canvas> 

    <div class="column" id="local-media"></div> 
    <div class="static-controls hidden" id="local-controls"> 
      <button class="button" id="mic-control">Mute Mic</button> 
      <button class="button" id="camera-control">Mute Camera</button> 
    </div> 
  </div> 

   
  <hr style="margin-top: 5rem"/> 
   
  <!-- Remote Participants --> 
  <div class="row"> 
    <div id="remote-media"></div> 
  </div>

Snap 177



Amazon IVS Real-Time Streaming User Guide

Load additional logic, including helper methods for setting up the camera and the bundled 
JavaScript file. (Later in this section, you will create these JavaScript files and bundle them into 
a single file, so you can import Camera Kit as a module. The bundled JavaScript file will contain 
the logic for setting up Camera Kit, applying a Lens, and publishing the camera feed with a Lens 
applied to a stage.) Add closing tags for the body and html elements to complete the creation of
index.html.

HTML

<!-- Load all Desired Scripts --> 
  <script src="./helpers.js"></script> 
  <script src="./media-devices.js"></script> 
  <!-- <script type="module" src="./stages-simple.js"></script> --> 
  <script src="./dist/bundle.js"></script>
</body>
</html> 
   

Create index.css

Create a CSS source file to style the page. We will not be going over this code so as to focus on the 
logic for managing a Stage and integrating with Snap’s Camera Kit SDK.

CSS

/*! Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-
Identifier: Apache-2.0 */

html,
body { 
  margin: 2rem; 
  box-sizing: border-box; 
  height: 100vh; 
  max-height: 100vh; 
  display: flex; 
  flex-direction: column;
}

hr { 
  margin: 1rem 0;
}

Snap 178



Amazon IVS Real-Time Streaming User Guide

table { 
  display: table;
}

canvas { 
  margin-bottom: 1rem; 
  background: green;
}

video { 
  margin-bottom: 1rem; 
  background: black; 
  max-width: 100%; 
  max-height: 150px;
}

.log { 
  flex: none; 
  height: 300px;
}

.content { 
  flex: 1 0 auto;
}

.button { 
  display: block; 
  margin: 0 auto;
}

.local-container { 
  position: relative;
}

.static-controls { 
  position: absolute; 
  margin-left: auto; 
  margin-right: auto; 
  left: 0; 
  right: 0; 
  bottom: -4rem; 
  text-align: center;
}

Snap 179



Amazon IVS Real-Time Streaming User Guide

.static-controls button { 
  display: inline-block;
}

.hidden { 
  display: none;
}

.participant-container { 
  display: flex; 
  align-items: center; 
  justify-content: center; 
  flex-direction: column; 
  margin: 1rem;
}

video { 
  border: 0.5rem solid #555; 
  border-radius: 0.5rem;
}
.placeholder { 
  background-color: #333333; 
  display: flex; 
  text-align: center; 
  margin-bottom: 1rem;
}
.placeholder span { 
  margin: auto; 
  color: white;
}
#local-media { 
  display: inline-block; 
  width: 100vw;
}

#local-media video { 
  max-height: 300px;
}

#remote-media { 
  display: flex; 
  justify-content: center; 
  align-items: center; 
  flex-direction: row; 

Snap 180



Amazon IVS Real-Time Streaming User Guide

  width: 100%;
}

#lens-selector { 
  width: 100%; 
  margin-bottom: 1rem;
}

Display and Set Up Participants

Next, create helpers.js, which contains helper methods that you will use to display and set up 
participants:

JavaScript

/*! Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-
Identifier: Apache-2.0 */

function setupParticipant({ isLocal, id }) { 
  const groupId = isLocal ? 'local-media' : 'remote-media'; 
  const groupContainer = document.getElementById(groupId); 

  const participantContainerId = isLocal ? 'local' : id; 
  const participantContainer = createContainer(participantContainerId); 
  const videoEl = createVideoEl(participantContainerId); 

  participantContainer.appendChild(videoEl); 
  groupContainer.appendChild(participantContainer); 

  return videoEl;
}

function teardownParticipant({ isLocal, id }) { 
  const groupId = isLocal ? 'local-media' : 'remote-media'; 
  const groupContainer = document.getElementById(groupId); 
  const participantContainerId = isLocal ? 'local' : id; 

  const participantDiv = document.getElementById( 
    participantContainerId + '-container' 
  ); 
  if (!participantDiv) { 
    return; 
  } 

Snap 181



Amazon IVS Real-Time Streaming User Guide

  groupContainer.removeChild(participantDiv);
}

function createVideoEl(id) { 
  const videoEl = document.createElement('video'); 
  videoEl.id = id; 
  videoEl.autoplay = true; 
  videoEl.playsInline = true; 
  videoEl.srcObject = new MediaStream(); 
  return videoEl;
}

function createContainer(id) { 
  const participantContainer = document.createElement('div'); 
  participantContainer.classList = 'participant-container'; 
  participantContainer.id = id + '-container'; 

  return participantContainer;
}

Display Connected Cameras and Microphones

Next, create media-devices.js, which contains helper methods for displaying cameras and 
microphones connected to your device:

JavaScript

/*! Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-
Identifier: Apache-2.0 */

/** 
 * Returns an initial list of devices populated on the page selects 
 */
async function initializeDeviceSelect() { 
  const videoSelectEl = document.getElementById('video-devices'); 
  videoSelectEl.disabled = false; 

  const { videoDevices, audioDevices } = await getDevices(); 
  videoDevices.forEach((device, index) => { 
    videoSelectEl.options[index] = new Option(device.label, device.deviceId); 
  }); 

  const audioSelectEl = document.getElementById('audio-devices'); 

Snap 182



Amazon IVS Real-Time Streaming User Guide

  audioSelectEl.disabled = false; 
  audioDevices.forEach((device, index) => { 
    audioSelectEl.options[index] = new Option(device.label, device.deviceId); 
  });
}

/** 
 * Returns all devices available on the current device 
 */
async function getDevices() { 
  // Prevents issues on Safari/FF so devices are not blank 
  await navigator.mediaDevices.getUserMedia({ video: true, audio: true }); 

  const devices = await navigator.mediaDevices.enumerateDevices(); 
  // Get all video devices 
  const videoDevices = devices.filter((d) => d.kind === 'videoinput'); 
  if (!videoDevices.length) { 
    console.error('No video devices found.'); 
  } 

  // Get all audio devices 
  const audioDevices = devices.filter((d) => d.kind === 'audioinput'); 
  if (!audioDevices.length) { 
    console.error('No audio devices found.'); 
  } 

  return { videoDevices, audioDevices };
}

async function getCamera(deviceId) { 
  // Use Max Width and Height 
  return navigator.mediaDevices.getUserMedia({ 
    video: { 
      deviceId: deviceId ? { exact: deviceId } : null, 
    }, 
    audio: false, 
  });
}

async function getMic(deviceId) { 
  return navigator.mediaDevices.getUserMedia({ 
    video: false, 
    audio: { 

Snap 183



Amazon IVS Real-Time Streaming User Guide

      deviceId: deviceId ? { exact: deviceId } : null, 
    }, 
  });
}

Create a Camera Kit Session

Create stages.js, which contains the logic for applying a Lens to the camera feed and publishing 
the feed to a stage. We recommend copying and pasting the following code block into stages.js. 
You can then review the code piece by piece to understand what’s going on in the following 
sections.

JavaScript

/*! Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-
Identifier: Apache-2.0 */

const { 
  Stage, 
  LocalStageStream, 
  SubscribeType, 
  StageEvents, 
  ConnectionState, 
  StreamType,
} = IVSBroadcastClient;

import { 
  bootstrapCameraKit, 
  createMediaStreamSource, 
  Transform2D,
} from '@snap/camera-kit';

let cameraButton = document.getElementById('camera-control');
let micButton = document.getElementById('mic-control');
let joinButton = document.getElementById('join-button');
let leaveButton = document.getElementById('leave-button');

let controls = document.getElementById('local-controls');
let videoDevicesList = document.getElementById('video-devices');
let audioDevicesList = document.getElementById('audio-devices');

let lensSelector = document.getElementById('lens-selector');
let session;

Snap 184



Amazon IVS Real-Time Streaming User Guide

let availableLenses = [];

// Stage management
let stage;
let joining = false;
let connected = false;
let localCamera;
let localMic;
let cameraStageStream;
let micStageStream;

const liveRenderTarget = document.getElementById('canvas');

const init = async () => { 
  await initializeDeviceSelect(); 

  const cameraKit = await bootstrapCameraKit({ 
    apiToken: 'INSERT_YOUR_API_TOKEN_HERE', 
  }); 

  session = await cameraKit.createSession({ liveRenderTarget }); 
  const { lenses } = await cameraKit.lensRepository.loadLensGroups([ 
    'INSERT_YOUR_LENS_GROUP_ID_HERE', 
  ]); 

  availableLenses = lenses; 
  populateLensSelector(lenses); 

  const snapStream = liveRenderTarget.captureStream(); 

  lensSelector.addEventListener('change', handleLensChange); 
  lensSelector.disabled = true; 
  cameraButton.addEventListener('click', () => { 
    const isMuted = !cameraStageStream.isMuted; 
    cameraStageStream.setMuted(isMuted); 
    cameraButton.innerText = isMuted ? 'Show Camera' : 'Hide Camera'; 
  }); 

  micButton.addEventListener('click', () => { 
    const isMuted = !micStageStream.isMuted; 
    micStageStream.setMuted(isMuted); 
    micButton.innerText = isMuted ? 'Unmute Mic' : 'Mute Mic'; 
  }); 

Snap 185



Amazon IVS Real-Time Streaming User Guide

  joinButton.addEventListener('click', () => { 
    joinStage(session, snapStream); 
  }); 

  leaveButton.addEventListener('click', () => { 
    leaveStage(); 
  });
};

async function setCameraKitSource(session, mediaStream) { 
  const source = createMediaStreamSource(mediaStream); 
  await session.setSource(source); 
  source.setTransform(Transform2D.MirrorX); 
  session.play();
}

const populateLensSelector = (lenses) => { 
  lensSelector.innerHTML = '<option selected disabled>Choose Lens</option>'; 

  lenses.forEach((lens, index) => { 
    const option = document.createElement('option'); 
    option.value = index; 
    option.text = lens.name || `Lens ${index + 1}`; 
    lensSelector.appendChild(option); 
  });
};

const handleLensChange = (event) => { 
  const selectedIndex = parseInt(event.target.value); 
  if (session && availableLenses[selectedIndex]) { 
    session.applyLens(availableLenses[selectedIndex]); 
  }
};

const joinStage = async (session, snapStream) => { 
  if (connected || joining) { 
    return; 
  } 
  joining = true; 

  const token = document.getElementById('token').value; 

  if (!token) { 
    window.alert('Please enter a participant token'); 

Snap 186



Amazon IVS Real-Time Streaming User Guide

    joining = false; 
    return; 
  } 

  // Retrieve the User Media currently set on the page 
  localCamera = await getCamera(videoDevicesList.value); 
  localMic = await getMic(audioDevicesList.value); 
  await setCameraKitSource(session, localCamera); 

  // Create StageStreams for Audio and Video 
  cameraStageStream = new LocalStageStream(snapStream.getVideoTracks()[0]); 
  micStageStream = new LocalStageStream(localMic.getAudioTracks()[0]); 

  const strategy = { 
    stageStreamsToPublish() { 
      return [cameraStageStream, micStageStream]; 
    }, 
    shouldPublishParticipant() { 
      return true; 
    }, 
    shouldSubscribeToParticipant() { 
      return SubscribeType.AUDIO_VIDEO; 
    }, 
  }; 

  stage = new Stage(token, strategy); 

  // Other available events: 
  // https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-guides/stages#events 
  stage.on(StageEvents.STAGE_CONNECTION_STATE_CHANGED, (state) => { 
    connected = state === ConnectionState.CONNECTED; 

    if (connected) { 
      joining = false; 
      controls.classList.remove('hidden'); 
      lensSelector.disabled = false; 
    } else { 
      controls.classList.add('hidden'); 
      lensSelector.disabled = true; 
    } 
  }); 

  stage.on(StageEvents.STAGE_PARTICIPANT_JOINED, (participant) => { 
    console.log('Participant Joined:', participant); 

Snap 187



Amazon IVS Real-Time Streaming User Guide

  }); 

  stage.on( 
    StageEvents.STAGE_PARTICIPANT_STREAMS_ADDED, 
    (participant, streams) => { 
      console.log('Participant Media Added: ', participant, streams); 

      let streamsToDisplay = streams; 

      if (participant.isLocal) { 
        // Ensure to exclude local audio streams, otherwise echo will occur 
        streamsToDisplay = streams.filter( 
          (stream) => stream.streamType === StreamType.VIDEO 
        ); 
      } 

      const videoEl = setupParticipant(participant); 
      streamsToDisplay.forEach((stream) => 
        videoEl.srcObject.addTrack(stream.mediaStreamTrack) 
      ); 
    } 
  ); 

  stage.on(StageEvents.STAGE_PARTICIPANT_LEFT, (participant) => { 
    console.log('Participant Left: ', participant); 
    teardownParticipant(participant); 
  }); 

  try { 
    await stage.join(); 
  } catch (err) { 
    joining = false; 
    connected = false; 
    console.error(err.message); 
  }
};

const leaveStage = async () => { 
  stage.leave(); 

  joining = false; 
  connected = false; 

  cameraButton.innerText = 'Hide Camera'; 

Snap 188



Amazon IVS Real-Time Streaming User Guide

  micButton.innerText = 'Mute Mic'; 
  controls.classList.add('hidden');
};

init();

In the first part of this file, we import the broadcast SDK and Camera Kit Web SDK and initialize the 
variables we will use with each SDK. We create a Camera Kit session by calling createSession
after bootstrapping the Camera Kit Web SDK. Note that a canvas element object is passed to a 
session; this tells Camera Kit to render into that canvas.

JavaScript

/*! Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-
Identifier: Apache-2.0 */

const { 
  Stage, 
  LocalStageStream, 
  SubscribeType, 
  StageEvents, 
  ConnectionState, 
  StreamType,
} = IVSBroadcastClient;

import { 
  bootstrapCameraKit, 
  createMediaStreamSource, 
  Transform2D,
} from '@snap/camera-kit';

let cameraButton = document.getElementById('camera-control');
let micButton = document.getElementById('mic-control');
let joinButton = document.getElementById('join-button');
let leaveButton = document.getElementById('leave-button');

let controls = document.getElementById('local-controls');
let videoDevicesList = document.getElementById('video-devices');
let audioDevicesList = document.getElementById('audio-devices');

let lensSelector = document.getElementById('lens-selector');
let session;
let availableLenses = [];

Snap 189

https://kit.snapchat.com/reference/CameraKit/web/0.7.0/index.html#bootstrapping-the-sdk


Amazon IVS Real-Time Streaming User Guide

// Stage management
let stage;
let joining = false;
let connected = false;
let localCamera;
let localMic;
let cameraStageStream;
let micStageStream;

const liveRenderTarget = document.getElementById('canvas');

const init = async () => { 
  await initializeDeviceSelect(); 

  const cameraKit = await bootstrapCameraKit({ 
    apiToken: 'INSERT_YOUR_API_TOKEN_HERE', 
  }); 

  session = await cameraKit.createSession({ liveRenderTarget });

Fetch Lenses and Populate Lens Selector

To fetch your Lenses, replace the placeholder for the Lens Group ID with your own, which can 
be found in the Camera Kit Developer Portal. Populate the Lens selection dropdown using the
populateLensSelector() function which we will create later.

JavaScript

session = await cameraKit.createSession({ liveRenderTarget }); 
  const { lenses } = await cameraKit.lensRepository.loadLensGroups([ 
    'INSERT_YOUR_LENS_GROUP_ID_HERE', 
  ]); 

  availableLenses = lenses; 
  populateLensSelector(lenses);

Render the Output from a Camera Kit Session to a Canvas

Use the captureStream method to return a MediaStream of the canvas’s contents. The canvas 
will contain a video stream of the camera feed with a Lens applied. Also, add event listeners 
for buttons to mute the camera and microphone as well as event listeners for joining and 

Snap 190

https://camera-kit.snapchat.com/
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCanvasElement/captureStream


Amazon IVS Real-Time Streaming User Guide

leaving a stage. In the event listener for joining a stage, we pass in a Camera Kit session and the
MediaStream from the canvas so it can be published to a stage.

JavaScript

const snapStream = liveRenderTarget.captureStream(); 

  lensSelector.addEventListener('change', handleLensChange); 
  lensSelector.disabled = true; 
  cameraButton.addEventListener('click', () => { 
    const isMuted = !cameraStageStream.isMuted; 
    cameraStageStream.setMuted(isMuted); 
    cameraButton.innerText = isMuted ? 'Show Camera' : 'Hide Camera'; 
  }); 

  micButton.addEventListener('click', () => { 
    const isMuted = !micStageStream.isMuted; 
    micStageStream.setMuted(isMuted); 
    micButton.innerText = isMuted ? 'Unmute Mic' : 'Mute Mic'; 
  }); 

  joinButton.addEventListener('click', () => { 
    joinStage(session, snapStream); 
  }); 

  leaveButton.addEventListener('click', () => { 
    leaveStage(); 
  });
};

Create a Function to Populate the Lens Dropdown

Create the following function to populate the Lens selector with the lenses fetched earlier. The
Lens selector is a UI element on the page that lets you select from a list of lenses to apply to the 
camera feed. Also, create the handleLensChange callback function to apply the specified lens 
when it is selected from the Lens dropdown.

JavaScript

const populateLensSelector = (lenses) => { 
  lensSelector.innerHTML = '<option selected disabled>Choose Lens</option>'; 

  lenses.forEach((lens, index) => { 

Snap 191



Amazon IVS Real-Time Streaming User Guide

    const option = document.createElement('option'); 
    option.value = index; 
    option.text = lens.name || `Lens ${index + 1}`; 
    lensSelector.appendChild(option); 
  });
};

const handleLensChange = (event) => { 
  const selectedIndex = parseInt(event.target.value); 
  if (session && availableLenses[selectedIndex]) { 
    session.applyLens(availableLenses[selectedIndex]); 
  }
};

Provide Camera Kit with a Media Source for Rendering and Publish a LocalStageStream

To publish a video stream with a Lens applied, create a function called setCameraKitSource to 
pass in the MediaStream captured from the canvas earlier. The MediaStream from the canvas 
isn’t doing anything at the moment because we have not incorporated our local camera feed yet. 
We can incorporate our local camera feed by calling the getCamera helper method and assigning 
it to localCamera . We can then pass in our local camera feed (via localCamera) and the session 
object to setCameraKitSource. The setCameraKitSource function converts our local camera 
feed to a source of media for CameraKit by calling createMediaStreamSource. The media 
source for CameraKit is then transformed to mirror the front-facing camera. The Lens effect is 
then applied to the media source and rendered to the output canvas by calling session.play().

With Lens now applied to the MediaStream captured from the canvas, we can then proceed 
to publishing it to a stage. We do that by creating a LocalStageStream with the video 
tracks from the MediaStream. An instance of LocalStageStream can then be passed in to a
StageStrategy to be published.

JavaScript

async function setCameraKitSource(session, mediaStream) { 
  const source = createMediaStreamSource(mediaStream); 
  await session.setSource(source); 
  source.setTransform(Transform2D.MirrorX); 
  session.play();
}

const joinStage = async (session, snapStream) => { 

Snap 192

https://docs.snap.com/camera-kit/integrate-sdk/web/web-configuration#creating-a-camerakitsource
https://docs.snap.com/camera-kit/integrate-sdk/web/web-configuration#2d-transforms


Amazon IVS Real-Time Streaming User Guide

  if (connected || joining) { 
    return; 
  } 
  joining = true; 

  const token = document.getElementById('token').value; 

  if (!token) { 
    window.alert('Please enter a participant token'); 
    joining = false; 
    return; 
  } 

  // Retrieve the User Media currently set on the page 
  localCamera = await getCamera(videoDevicesList.value); 
  localMic = await getMic(audioDevicesList.value); 
  await setCameraKitSource(session, localCamera); 
  // Create StageStreams for Audio and Video 
  // cameraStageStream = new LocalStageStream(localCamera.getVideoTracks()[0]); 
  cameraStageStream = new LocalStageStream(snapStream.getVideoTracks()[0]); 
  micStageStream = new LocalStageStream(localMic.getAudioTracks()[0]); 

  const strategy = { 
    stageStreamsToPublish() { 
      return [cameraStageStream, micStageStream]; 
    }, 
    shouldPublishParticipant() { 
      return true; 
    }, 
    shouldSubscribeToParticipant() { 
      return SubscribeType.AUDIO_VIDEO; 
    }, 
  };

The remaining code below is for creating and managing our stage:

JavaScript

stage = new Stage(token, strategy); 

  // Other available events: 
  // https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-guides/stages#events 

  stage.on(StageEvents.STAGE_CONNECTION_STATE_CHANGED, (state) => { 

Snap 193



Amazon IVS Real-Time Streaming User Guide

    connected = state === ConnectionState.CONNECTED; 

    if (connected) { 
      joining = false; 
      controls.classList.remove('hidden'); 
    } else { 
      controls.classList.add('hidden'); 
    } 
  }); 

  stage.on(StageEvents.STAGE_PARTICIPANT_JOINED, (participant) => { 
    console.log('Participant Joined:', participant); 
  }); 

  stage.on( 
    StageEvents.STAGE_PARTICIPANT_STREAMS_ADDED, 
    (participant, streams) => { 
      console.log('Participant Media Added: ', participant, streams); 

      let streamsToDisplay = streams; 

      if (participant.isLocal) { 
        // Ensure to exclude local audio streams, otherwise echo will occur 
        streamsToDisplay = streams.filter( 
          (stream) => stream.streamType === StreamType.VIDEO 
        ); 
      } 

      const videoEl = setupParticipant(participant); 
      streamsToDisplay.forEach((stream) => 
        videoEl.srcObject.addTrack(stream.mediaStreamTrack) 
      ); 
    } 
  ); 

  stage.on(StageEvents.STAGE_PARTICIPANT_LEFT, (participant) => { 
    console.log('Participant Left: ', participant); 
    teardownParticipant(participant); 
  }); 

  try { 
    await stage.join(); 
  } catch (err) { 
    joining = false; 

Snap 194



Amazon IVS Real-Time Streaming User Guide

    connected = false; 
    console.error(err.message); 
  }
};

const leaveStage = async () => { 
  stage.leave(); 

  joining = false; 
  connected = false; 

  cameraButton.innerText = 'Hide Camera'; 
  micButton.innerText = 'Mute Mic'; 
  controls.classList.add('hidden');
};

init();

Create package.json

Create package.json and add the following JSON configuration. This file defines our 
dependencies and includes a script command for bundling our code.

JSON Configuration

{ 
  "dependencies": { 
    "@snap/camera-kit": "^0.10.0" 
  }, 
  "name": "ivs-stages-with-snap-camerakit", 
  "version": "1.0.0", 
  "main": "index.js", 
  "scripts": { 
    "build": "webpack" 
  }, 
  "keywords": [], 
  "author": "", 
  "license": "ISC", 
  "description": "", 
  "devDependencies": { 
    "webpack": "^5.95.0", 
    "webpack-cli": "^5.1.4" 
  }

Snap 195



Amazon IVS Real-Time Streaming User Guide

}

Create a Webpack Config File

Create webpack.config.js and add the following code. This bundles the code we created thus 
far so that we can use the import statement to use Camera Kit.

JavaScript

const path = require('path');
module.exports = { 
  entry: ['./stage.js'], 
  output: { 
    filename: 'bundle.js', 
    path: path.resolve(__dirname, 'dist'), 
  },
};

Finally, run npm run build to bundle your JavaScript as defined in the Webpack config file. 
For testing purposes, you can then serve HTML and JavaScript from your local computer. In this 
example, we use Python’s http.server module.

Set Up an HTTPS Server and Test

To test our code, we need to set up an HTTPS server. Using an HTTPS server for local development 
and testing of your web app's integration with the Snap Camera Kit SDK will help avoid CORS 
(Cross-Origin Resource Sharing) issues.

Open a terminal and navigate to the directory where you created all the code up to this point. Run 
the following command to generate a self-signed SSL/TLS certificate and private key:

openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days 365 -nodes

This creates two files: key.pem (the private key) and cert.pem (the self-signed certificate). Create 
a new Python file named https_server.py and add the following code:

Python

import http.server
import ssl

# Set the directory to serve files from

Snap 196



Amazon IVS Real-Time Streaming User Guide

DIRECTORY = '.'

# Create the HTTPS server
server_address = ('', 4443)
httpd = http.server.HTTPServer( 
    server_address, http.server.SimpleHTTPRequestHandler)

# Wrap the socket with SSL/TLS
context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER)
context.load_cert_chain('cert.pem', 'key.pem')
httpd.socket = context.wrap_socket(httpd.socket, server_side=True)

print(f'Starting HTTPS server on https://localhost:4443, serving {DIRECTORY}')
httpd.serve_forever()

Open a terminal, navigate to the directory where you created the https_server.py file, and run 
the following command:

python3 https_server.py

This starts the HTTPS server on https://localhost:4443, serving files from the current 
directory. Make sure that the cert.pem and key.pem files are in the same directory as the
https_server.py file.

Open your browser and navigate to https://localhost:4443. Since this is a self-signed SSL/TLS 
certificate, it will not be trusted by your web browser, so you will get a warning. Since this is only 
for testing purposes, you can bypass the warning. You should then see the AR effect for the Snap 
Lens you specified earlier applied to your camera feed on screen.

Note that this setup using Python's built-in http.server and ssl modules is suitable for local 
development and testing purposes, but it is not recommended for a production environment. The 
self-signed SSL/TLS certificate used in this setup is not trusted by web browsers and other clients, 
which means users will encounter security warnings when accessing the server. Also, although we 
use Python’s built-in http.server and ssl modules in this example, you may choose to use another 
HTTPS server solution.

Android

To integrate Snap’s Camera Kit SDK with the IVS Android broadcast SDK, you must install the 
Camera Kit SDK, initialize a Camera Kit session, apply a Lens and feed the Camera Kit session’s 
output to the custom-image input source.

Snap 197



Amazon IVS Real-Time Streaming User Guide

To install the Camera Kit SDK, add the following to your module’s build.gradle file. Replace
$cameraKitVersion with the latest Camera Kit SDK version.

Java

implementation "com.snap.camerakit:camerakit:$cameraKitVersion"

Initialize and obtain a cameraKitSession. Camera Kit also provides a convenient wrapper for 
Android’s CameraX APIs, so you don’t have to write complicated logic to use CameraX with Camera 
Kit. You can use the CameraXImageProcessorSource object as a Source for ImageProcessor, 
which allows you to start camera-preview streaming frames.

Java

 protected void onCreate(@Nullable Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 

        setContentView(R.layout.activity_main); 

        // Camera Kit support implementation of ImageProcessor that is backed by 
 CameraX library: 
        // https://developer.android.com/training/camerax 
        CameraXImageProcessorSource imageProcessorSource = new 
 CameraXImageProcessorSource(  
            this /*context*/, this /*lifecycleOwner*/ 
        ); 
        imageProcessorSource.startPreview(true /*cameraFacingFront*/); 

        cameraKitSession = Sessions.newBuilder(this) 
                .imageProcessorSource(imageProcessorSource) 
                .attachTo(findViewById(R.id.camerakit_stub)) 
                .build(); 
    }

Fetch and Apply Lenses

You can configure Lenses and their ordering in the carousel on the Camera Kit Developer Portal:

Java

// Fetch lenses from repository and apply them 
 // Replace LENS_GROUP_ID with Lens Group ID from https://camera-kit.snapchat.com

Snap 198

https://docs.snap.com/camera-kit/integrate-sdk/mobile/changelog-mobile
https://developer.android.com/media/camera/camerax
https://snapchat.github.io/camera-kit-reference/api/android/latest/-camera-kit/com.snap.camerakit/-source/index.html
https://snapchat.github.io/camera-kit-reference/api/android/latest/-camera-kit/com.snap.camerakit/-image-processor/index.html
https://camera-kit.snapchat.com/


Amazon IVS Real-Time Streaming User Guide

cameraKitSession.getLenses().getRepository().get(new Available(LENS_GROUP_ID), 
 available -> { 
     Log.d(TAG, "Available lenses: " + available); 
     Lenses.whenHasFirst(available, lens -> 
 cameraKitSession.getLenses().getProcessor().apply(lens, result -> { 
          Log.d(TAG,  "Apply lens [" + lens + "] success: " + result); 
      }));
});

To broadcast, send processed frames to the underlying Surface of a custom image source. Use a
DeviceDiscovery object and create a CustomImageSource to return a SurfaceSource. You 
can then render the output from a CameraKit session to the underlying Surface provided by the
SurfaceSource.

Java

val publishStreams = ArrayList<LocalStageStream>()

val deviceDiscovery = DeviceDiscovery(applicationContext)
val customSource = 
 deviceDiscovery.createImageInputSource(BroadcastConfiguration.Vec2(720f, 1280f))

cameraKitSession.processor.connectOutput(outputFrom(customSource.inputSurface))
val customStream = ImageLocalStageStream(customSource)

// After rendering the output from a Camera Kit session to the Surface, you can  
// then return it as a LocalStageStream to be published by the Broadcast SDK
val customStream: ImageLocalStageStream = ImageLocalStageStream(surfaceSource)
publishStreams.add(customStream)

@Override
fun stageStreamsToPublishForParticipant(stage: Stage, participantInfo: 
 ParticipantInfo): List<LocalStageStream> = publishStreams

Using Background Replacement with the IVS Broadcast SDK

Background replacement is a type of camera filter that enables live-stream creators to change their 
backgrounds. As shown in the following diagram, replacing your background involves:

1. Getting a camera image from the live camera feed.

2. Segmenting it into foreground and background components using Google ML Kit.

Background Replacement 199



Amazon IVS Real-Time Streaming User Guide

3. Combining the resulting segmentation mask with a custom background image.

4. Passing it to a Custom Image Source for broadcast.

Web

This section assumes you are already familiar with publishing and subscribing to video using the 
Web Broadcast SDK.

To replace the background of a live stream with a custom image, use the selfie segmentation 
model with MediaPipe Image Segmenter. This is a machine-learning model that identifies which 
pixels in the video frame are in the foreground or background. You can then use the results from 
the model to replace the background of a live stream, by copying foreground pixels from the video 
feed to a custom image representing the new background.

To integrate background replacement with the IVS real-time streaming Web broadcast SDK, you 
need to:

1. Install MediaPipe and Webpack. (Our example uses Webpack as the bundler, but you can use any 
bundler of your choice.)

2. Create index.html.

3. Add media elements.

4. Add a script tag.

5. Create app.js.

6. Load a custom background image.

7. Create an instance of ImageSegmenter.

8. Render the video feed to a canvas.

9. Create background replacement logic.

10.Create Webpack config File.

11.Bundle Your JavaScript file.

Background Replacement 200

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-pub-sub-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-pub-sub-web.html
https://developers.google.com/mediapipe/solutions/vision/image_segmenter#selfie-model
https://developers.google.com/mediapipe/solutions/vision/image_segmenter#selfie-model
https://developers.google.com/mediapipe/solutions/vision/image_segmenter


Amazon IVS Real-Time Streaming User Guide

Install MediaPipe and Webpack

To start, install the @mediapipe/tasks-vision and webpack npm packages. The example 
below uses Webpack as a JavaScript bundler; you can use a different bundler if preferred.

JavaScript

npm i @mediapipe/tasks-vision webpack webpack-cli

Make sure to also update your package.json to specify webpack as your build script:

JavaScript

"scripts": { 
    "test": "echo \"Error: no test specified\" && exit 1", 
    "build": "webpack" 
  },

Create index.html

Next, create the HTML boilerplate and import the Web broadcast SDK as a script tag. In the 
following code, be sure to replace <SDK version> with the broadcast SDK version that you are 
using.

JavaScript

<!DOCTYPE html>
<html lang="en">

<head> 
  <meta charset="UTF-8" /> 
  <meta http-equiv="X-UA-Compatible" content="IE=edge" /> 
  <meta name="viewport" content="width=device-width, initial-scale=1.0" /> 

  <!-- Import the SDK --> 
  <script src="https://web-broadcast.live-video.net/<SDK version>/amazon-ivs-web-
broadcast.js"></script>
</head>

<body>

</body>

Background Replacement 201



Amazon IVS Real-Time Streaming User Guide

</html>

Add Media Elements

Next, add a video element and two canvas elements within the body tag. The video element will 
contain your live camera feed and will be used as input to the MediaPipe Image Segmenter. The 
first canvas element will be used to render a preview of the feed that will be broadcast. The second 
canvas element will be used to render the custom image that will be used as a background. Since 
the second canvas with the custom image is used only as a source to programmatically copy pixels 
from it to the final canvas, it is hidden from view.

JavaScript

<div class="row local-container"> 
      <video id="webcam" autoplay style="display: none"></video> 
    </div> 
    <div class="row local-container"> 
      <canvas id="canvas" width="640px" height="480px"></canvas> 

      <div class="column" id="local-media"></div> 
      <div class="static-controls hidden" id="local-controls"> 
        <button class="button" id="mic-control">Mute Mic</button> 
        <button class="button" id="camera-control">Mute Camera</button> 
      </div> 
    </div> 
    <div class="row local-container"> 
      <canvas id="background" width="640px" height="480px" style="display: none"></
canvas> 
    </div>

Add a Script Tag

Add a script tag to load a bundled JavaScript file that will contain the code to do the background 
replacement and publish it to a stage:

<script src="./dist/bundle.js"></script>

Create app.js

Next, create a JavaScript file to get the element objects for the canvas and video elements that 
were created in the HTML page. Import the ImageSegmenter and FilesetResolver modules. 
The ImageSegmenter module will be used to perform the segmentation task.

Background Replacement 202



Amazon IVS Real-Time Streaming User Guide

JavaScript

const canvasElement = document.getElementById("canvas");
const background = document.getElementById("background");
const canvasCtx = canvasElement.getContext("2d");
const backgroundCtx = background.getContext("2d");
const video = document.getElementById("webcam");

import { ImageSegmenter, FilesetResolver } from "@mediapipe/tasks-vision";

Next, create a function called init() to retrieve the MediaStream from the user’s camera and 
invoke a callback function each time a camera frame finishes loading. Add event listeners for the 
buttons to join and leave a stage.

Note that when joining a stage, we pass in a variable named segmentationStream. This is a 
video stream that is captured from a canvas element, containing a foreground image overlaid on 
the custom image representing the background. Later, this custom stream will be used to create an 
instance of a LocalStageStream, which can be published to a stage.

JavaScript

const init = async () => { 
  await initializeDeviceSelect(); 

  cameraButton.addEventListener("click", () => { 
    const isMuted = !cameraStageStream.isMuted; 
    cameraStageStream.setMuted(isMuted); 
    cameraButton.innerText = isMuted ? "Show Camera" : "Hide Camera"; 
  }); 

  micButton.addEventListener("click", () => { 
    const isMuted = !micStageStream.isMuted; 
    micStageStream.setMuted(isMuted); 
    micButton.innerText = isMuted ? "Unmute Mic" : "Mute Mic"; 
  }); 

  localCamera = await getCamera(videoDevicesList.value); 
  const segmentationStream = canvasElement.captureStream(); 

  joinButton.addEventListener("click", () => { 
    joinStage(segmentationStream); 
  }); 

Background Replacement 203



Amazon IVS Real-Time Streaming User Guide

  leaveButton.addEventListener("click", () => { 
    leaveStage(); 
  });
};

Load a Custom Background Image

At the bottom of the init function, add code to call a function named initBackgroundCanvas, 
which loads a custom image from a local file and renders it onto a canvas. We will define this 
function in the next step. Assign the MediaStream retrieved from the user’s camera to the video 
object. Later, this video object will be passed to the Image Segmenter. Also, set a function named
renderVideoToCanvas as the callback function to invoke whenever a video frame has finished 
loading. We will define this function in a later step.

JavaScript

initBackgroundCanvas(); 

  video.srcObject = localCamera; 
  video.addEventListener("loadeddata", renderVideoToCanvas);

Let’s implement the initBackgroundCanvas function, which loads an image from a local file. 
In this example, we use an image of a beach as the custom background. The canvas containing the 
custom image will be hidden from display, as you will merge it with the foreground pixels from the 
canvas element containing the camera feed.

JavaScript

const initBackgroundCanvas = () => { 
  let img = new Image(); 
  img.src = "beach.jpg"; 

  img.onload = () => { 
    backgroundCtx.clearRect(0, 0, canvas.width, canvas.height); 
    backgroundCtx.drawImage(img, 0, 0); 
  };
};

Background Replacement 204



Amazon IVS Real-Time Streaming User Guide

Create an Instance of ImageSegmenter

Next, create an instance of ImageSegmenter, which will segment the image and return the result 
as a mask. When creating an instance of an ImageSegmenter, you will use the selfie segmentation 
model.

JavaScript

const createImageSegmenter = async () => { 
  const audio = await FilesetResolver.forVisionTasks("https://cdn.jsdelivr.net/npm/
@mediapipe/tasks-vision@0.10.2/wasm"); 

  imageSegmenter = await ImageSegmenter.createFromOptions(audio, { 
    baseOptions: { 
      modelAssetPath: "https://storage.googleapis.com/mediapipe-models/image_segmenter/
selfie_segmenter/float16/latest/selfie_segmenter.tflite", 
      delegate: "GPU", 
    }, 
    runningMode: "VIDEO", 
    outputCategoryMask: true, 
  });
};

Render the Video Feed to a Canvas

Next, create the function that renders the video feed to the other canvas element. We need to 
render the video feed to a canvas so we can extract the foreground pixels from it using the Canvas 
2D API. While doing this, we also will pass a video frame to our instance of ImageSegmenter, 
using the segmentforVideo method to segment the foreground from the background in the video 
frame. When the segmentforVideo method returns, it invokes our custom callback function,
replaceBackground, for doing the background replacement.

JavaScript

const renderVideoToCanvas = async () => { 
  if (video.currentTime === lastWebcamTime) { 
    window.requestAnimationFrame(renderVideoToCanvas); 
    return; 
  } 
  lastWebcamTime = video.currentTime; 
  canvasCtx.drawImage(video, 0, 0, video.videoWidth, video.videoHeight); 

Background Replacement 205

https://developers.google.com/mediapipe/solutions/vision/image_segmenter#selfie-model
https://developers.google.com/mediapipe/solutions/vision/image_segmenter#selfie-model
https://developers.google.com/mediapipe/api/solutions/js/tasks-vision.imagesegmenter#imagesegmentersegmentforvideo
https://developers.google.com/mediapipe/api/solutions/js/tasks-vision.imagesegmenter#imagesegmentersegmentforvideo


Amazon IVS Real-Time Streaming User Guide

  if (imageSegmenter === undefined) { 
    return; 
  } 

  let startTimeMs = performance.now(); 

  imageSegmenter.segmentForVideo(video, startTimeMs, replaceBackground);
};

Create Background Replacement Logic

Create the replaceBackground function, which merges the custom background image with 
the foreground from the camera feed to replace the background. The function first retrieves the 
underlying pixel data of the custom background image and the video feed from the two canvas 
elements created earlier. It then iterates through the mask provided by ImageSegmenter, which 
indicates which pixels are in the foreground. As it iterates through the mask, it selectively copies 
pixels that contain the user’s camera feed to the corresponding background pixel data. Once that is 
done, it converts the final pixel data with the foreground copied on to the background and draws it 
to a Canvas.

JavaScript

function replaceBackground(result) { 
  let imageData = canvasCtx.getImageData(0, 0, video.videoWidth, 
 video.videoHeight).data; 
  let backgroundData = backgroundCtx.getImageData(0, 0, video.videoWidth, 
 video.videoHeight).data; 
  const mask = result.categoryMask.getAsFloat32Array(); 
  let j = 0; 

  for (let i = 0; i < mask.length; ++i) { 
    const maskVal = Math.round(mask[i] * 255.0); 

    j += 4; 
  // Only copy pixels on to the background image if the mask indicates they are in the 
 foreground 
    if (maskVal < 255) { 
      backgroundData[j] = imageData[j]; 
      backgroundData[j + 1] = imageData[j + 1]; 
      backgroundData[j + 2] = imageData[j + 2]; 
      backgroundData[j + 3] = imageData[j + 3]; 
    } 

Background Replacement 206



Amazon IVS Real-Time Streaming User Guide

  } 

 // Convert the pixel data to a format suitable to be drawn to a canvas 
  const uint8Array = new Uint8ClampedArray(backgroundData.buffer); 
  const dataNew = new ImageData(uint8Array, video.videoWidth, video.videoHeight); 
  canvasCtx.putImageData(dataNew, 0, 0); 
  window.requestAnimationFrame(renderVideoToCanvas);
}

For reference, here is the complete app.js file containing all the logic above:

JavaScript

/*! Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-
Identifier: Apache-2.0 */

// All helpers are expose on 'media-devices.js' and 'dom.js'
const { setupParticipant } = window;

const { Stage, LocalStageStream, SubscribeType, StageEvents, ConnectionState, 
 StreamType } = IVSBroadcastClient;
const canvasElement = document.getElementById("canvas");
const background = document.getElementById("background");
const canvasCtx = canvasElement.getContext("2d");
const backgroundCtx = background.getContext("2d");
const video = document.getElementById("webcam");

import { ImageSegmenter, FilesetResolver } from "@mediapipe/tasks-vision";

let cameraButton = document.getElementById("camera-control");
let micButton = document.getElementById("mic-control");
let joinButton = document.getElementById("join-button");
let leaveButton = document.getElementById("leave-button");

let controls = document.getElementById("local-controls");
let audioDevicesList = document.getElementById("audio-devices");
let videoDevicesList = document.getElementById("video-devices");

// Stage management
let stage;
let joining = false;
let connected = false;
let localCamera;
let localMic;

Background Replacement 207



Amazon IVS Real-Time Streaming User Guide

let cameraStageStream;
let micStageStream;
let imageSegmenter;
let lastWebcamTime = -1;

const init = async () => { 
  await initializeDeviceSelect(); 

  cameraButton.addEventListener("click", () => { 
    const isMuted = !cameraStageStream.isMuted; 
    cameraStageStream.setMuted(isMuted); 
    cameraButton.innerText = isMuted ? "Show Camera" : "Hide Camera"; 
  }); 

  micButton.addEventListener("click", () => { 
    const isMuted = !micStageStream.isMuted; 
    micStageStream.setMuted(isMuted); 
    micButton.innerText = isMuted ? "Unmute Mic" : "Mute Mic"; 
  }); 

  localCamera = await getCamera(videoDevicesList.value); 
  const segmentationStream = canvasElement.captureStream(); 

  joinButton.addEventListener("click", () => { 
    joinStage(segmentationStream); 
  }); 

  leaveButton.addEventListener("click", () => { 
    leaveStage(); 
  }); 

  initBackgroundCanvas(); 

  video.srcObject = localCamera; 
  video.addEventListener("loadeddata", renderVideoToCanvas);
};

const joinStage = async (segmentationStream) => { 
  if (connected || joining) { 
    return; 
  } 
  joining = true; 

  const token = document.getElementById("token").value; 

Background Replacement 208



Amazon IVS Real-Time Streaming User Guide

  if (!token) { 
    window.alert("Please enter a participant token"); 
    joining = false; 
    return; 
  } 

  // Retrieve the User Media currently set on the page 
  localMic = await getMic(audioDevicesList.value); 

  cameraStageStream = new LocalStageStream(segmentationStream.getVideoTracks()[0]); 
  micStageStream = new LocalStageStream(localMic.getAudioTracks()[0]); 

  const strategy = { 
    stageStreamsToPublish() { 
      return [cameraStageStream, micStageStream]; 
    }, 
    shouldPublishParticipant() { 
      return true; 
    }, 
    shouldSubscribeToParticipant() { 
      return SubscribeType.AUDIO_VIDEO; 
    }, 
  }; 

  stage = new Stage(token, strategy); 

  // Other available events: 
  // https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-guides/stages#events 
  stage.on(StageEvents.STAGE_CONNECTION_STATE_CHANGED, (state) => { 
    connected = state === ConnectionState.CONNECTED; 

    if (connected) { 
      joining = false; 
      controls.classList.remove("hidden"); 
    } else { 
      controls.classList.add("hidden"); 
    } 
  }); 

  stage.on(StageEvents.STAGE_PARTICIPANT_JOINED, (participant) => { 
    console.log("Participant Joined:", participant); 
  }); 

Background Replacement 209



Amazon IVS Real-Time Streaming User Guide

  stage.on(StageEvents.STAGE_PARTICIPANT_STREAMS_ADDED, (participant, streams) => { 
    console.log("Participant Media Added: ", participant, streams); 

    let streamsToDisplay = streams; 

    if (participant.isLocal) { 
      // Ensure to exclude local audio streams, otherwise echo will occur 
      streamsToDisplay = streams.filter((stream) => stream.streamType === 
 StreamType.VIDEO); 
    } 

    const videoEl = setupParticipant(participant); 
    streamsToDisplay.forEach((stream) => 
 videoEl.srcObject.addTrack(stream.mediaStreamTrack)); 
  }); 

  stage.on(StageEvents.STAGE_PARTICIPANT_LEFT, (participant) => { 
    console.log("Participant Left: ", participant); 
    teardownParticipant(participant); 
  }); 

  try { 
    await stage.join(); 
  } catch (err) { 
    joining = false; 
    connected = false; 
    console.error(err.message); 
  }
};

const leaveStage = async () => { 
  stage.leave(); 

  joining = false; 
  connected = false; 

  cameraButton.innerText = "Hide Camera"; 
  micButton.innerText = "Mute Mic"; 
  controls.classList.add("hidden");
};

function replaceBackground(result) { 
  let imageData = canvasCtx.getImageData(0, 0, video.videoWidth, 
 video.videoHeight).data; 

Background Replacement 210



Amazon IVS Real-Time Streaming User Guide

  let backgroundData = backgroundCtx.getImageData(0, 0, video.videoWidth, 
 video.videoHeight).data; 
  const mask = result.categoryMask.getAsFloat32Array(); 
  let j = 0; 

  for (let i = 0; i < mask.length; ++i) { 
    const maskVal = Math.round(mask[i] * 255.0); 

    j += 4; 
    if (maskVal < 255) { 
      backgroundData[j] = imageData[j]; 
      backgroundData[j + 1] = imageData[j + 1]; 
      backgroundData[j + 2] = imageData[j + 2]; 
      backgroundData[j + 3] = imageData[j + 3]; 
    } 
  } 
  const uint8Array = new Uint8ClampedArray(backgroundData.buffer); 
  const dataNew = new ImageData(uint8Array, video.videoWidth, video.videoHeight); 
  canvasCtx.putImageData(dataNew, 0, 0); 
  window.requestAnimationFrame(renderVideoToCanvas);
}

const createImageSegmenter = async () => { 
  const audio = await FilesetResolver.forVisionTasks("https://cdn.jsdelivr.net/npm/
@mediapipe/tasks-vision@0.10.2/wasm"); 

  imageSegmenter = await ImageSegmenter.createFromOptions(audio, { 
    baseOptions: { 
      modelAssetPath: "https://storage.googleapis.com/mediapipe-models/image_segmenter/
selfie_segmenter/float16/latest/selfie_segmenter.tflite", 
      delegate: "GPU", 
    }, 
    runningMode: "VIDEO", 
    outputCategoryMask: true, 
  });
};

const renderVideoToCanvas = async () => { 
  if (video.currentTime === lastWebcamTime) { 
    window.requestAnimationFrame(renderVideoToCanvas); 
    return; 
  } 
  lastWebcamTime = video.currentTime; 
  canvasCtx.drawImage(video, 0, 0, video.videoWidth, video.videoHeight); 

Background Replacement 211



Amazon IVS Real-Time Streaming User Guide

  if (imageSegmenter === undefined) { 
    return; 
  } 

  let startTimeMs = performance.now(); 

  imageSegmenter.segmentForVideo(video, startTimeMs, replaceBackground);
};

const initBackgroundCanvas = () => { 
  let img = new Image(); 
  img.src = "beach.jpg"; 

  img.onload = () => { 
    backgroundCtx.clearRect(0, 0, canvas.width, canvas.height); 
    backgroundCtx.drawImage(img, 0, 0); 
  };
};

createImageSegmenter();
init();

Create a Webpack Config File

Add this configuration to your Webpack config file to bundle app.js, so the import calls will work:

JavaScript

const path = require("path");
module.exports = { 
  entry: ["./app.js"], 
  output: { 
    filename: "bundle.js", 
    path: path.resolve(__dirname, "dist"), 
  },
};

Bundle Your JavaScript files

npm run build

Background Replacement 212



Amazon IVS Real-Time Streaming User Guide

Start a simple HTTP server from the directory containing index.html and open
localhost:8000 to see the result:

python3 -m http.server -d ./

Android

To replace the background in your live stream, you can use the selfie segmentation API of Google 
ML Kit. The selfie segmentation API accepts a camera image as input and returns a mask that 
provides a confidence score for each pixel of the image, indicating whether it was in the foreground 
or the background. Based on the confidence score, you can then retrieve the corresponding pixel 
color from either the background image or the foreground image. This process continues until 
all confidence scores in the mask have been examined. The result is a new array of pixel colors 
containing foreground pixels combined with pixels from the background image.

To integrate background replacement with the IVS real-time streaming Android broadcast SDK, you 
need to:

1. Install CameraX libraries and the Google ML kit.

2. Initialize boilerplate variables.

3. Create a custom image source.

4. Manage camera frames.

5. Pass camera frames to Google ML Kit.

6. Overlay camera frame foreground onto your custom background.

7. Feed the new image to a custom image source.

Install CameraX Libraries and Google ML Kit

To extract images from the live camera feed, use Android’s CameraX library. To install the CameraX 
library and Google ML Kit, add the following to your module’s build.gradle file. Replace
${camerax_version} and ${google_ml_kit_version} with the latest version of the
CameraX and Google ML Kit libraries, respectively.

Java

implementation "com.google.mlkit:segmentation-selfie:${google_ml_kit_version}"
implementation "androidx.camera:camera-core:${camerax_version}"

Background Replacement 213

https://developers.google.com/ml-kit/vision/selfie-segmentation
https://developers.google.com/ml-kit/vision/selfie-segmentation
https://developer.android.com/jetpack/androidx/releases/camera
https://developers.google.com/ml-kit/vision/selfie-segmentation/android


Amazon IVS Real-Time Streaming User Guide

implementation "androidx.camera:camera-lifecycle:${camerax_version}"

Import the following libraries:

Java

import androidx.camera.core.CameraSelector
import androidx.camera.core.ImageAnalysis
import androidx.camera.core.ImageProxy
import androidx.camera.lifecycle.ProcessCameraProvider
import com.google.mlkit.vision.segmentation.selfie.SelfieSegmenterOptions

Initialize Boilerplate Variables

Initialize an instance of ImageAnalysis and an instance of an ExecutorService:

Java

private lateinit var binding: ActivityMainBinding
private lateinit var cameraExecutor: ExecutorService
private var analysisUseCase: ImageAnalysis? = null

Initialize a Segmenter instance in STREAM_MODE:

Java

private val options = 
        SelfieSegmenterOptions.Builder() 
            .setDetectorMode(SelfieSegmenterOptions.STREAM_MODE) 
            .build()

private val segmenter = Segmentation.getClient(options)

Create a Custom Image Source

In the onCreate method of your activity, create an instance of a DeviceDiscovery object and 
create a custom image source. The Surface provided by the Custom Image Source will receive 
the final image, with the foreground overlaid on a custom background image. You will then create 
an instance of a ImageLocalStageStream using the Custom Image Source. The instance of a
ImageLocalStageStream (named filterStream in this example) can then be published to a 

Background Replacement 214

https://developers.google.com/ml-kit/vision/selfie-segmentation/android#detector_mode


Amazon IVS Real-Time Streaming User Guide

stage. See the IVS Android Broadcast SDK Guide for instructions on setting up a stage. Finally, also 
create a thread that will be used to manage the camera.

Java

var deviceDiscovery = DeviceDiscovery(applicationContext)
var customSource = deviceDiscovery.createImageInputSource( BroadcastConfiguration.Vec2(
720F, 1280F
))
var surface: Surface = customSource.inputSurface
var filterStream = ImageLocalStageStream(customSource)

cameraExecutor = Executors.newSingleThreadExecutor()

Manage Camera Frames

Next, create a function to initialize the camera. This function uses the CameraX library to extract 
images from the live camera feed. First, you create an instance of a ProcessCameraProvider
called cameraProviderFuture. This object represents a future result of obtaining a camera 
provider. Then you load an image from your project as a bitmap. This example uses an image of a 
beach as a background, but it can be any image you want.

You then add a listener to cameraProviderFuture. This listener is notified when the camera 
becomes available or if an error occurs during the process of obtaining a camera provider.

Java

private fun startCamera(surface: Surface) { 
        val cameraProviderFuture = ProcessCameraProvider.getInstance(this) 
        val imageResource = R.drawable.beach 
        val bgBitmap: Bitmap = BitmapFactory.decodeResource(resources, imageResource) 
        var resultBitmap: Bitmap; 

        cameraProviderFuture.addListener({ 
            val cameraProvider: ProcessCameraProvider = cameraProviderFuture.get() 

             
                if (mediaImage != null) { 
                    val inputImage = 
                        InputImage.fromMediaImage(mediaImage, 
 imageProxy.imageInfo.rotationDegrees) 

Background Replacement 215



Amazon IVS Real-Time Streaming User Guide

                            resultBitmap = overlayForeground(mask, maskWidth, 
 maskHeight, inputBitmap, backgroundPixels) 
                            canvas = surface.lockCanvas(null); 
                            canvas.drawBitmap(resultBitmap, 0f, 0f, null) 

                            surface.unlockCanvasAndPost(canvas); 

                        } 
                        .addOnFailureListener { exception -> 
                            Log.d("App", exception.message!!) 
                        } 
                        .addOnCompleteListener { 
                            imageProxy.close() 
                        } 

                } 
            }; 

            val cameraSelector = CameraSelector.DEFAULT_FRONT_CAMERA 

            try { 
                // Unbind use cases before rebinding 
                cameraProvider.unbindAll() 

                // Bind use cases to camera 
                cameraProvider.bindToLifecycle(this, cameraSelector, analysisUseCase) 

            } catch(exc: Exception) { 
                Log.e(TAG, "Use case binding failed", exc) 
            } 

        }, ContextCompat.getMainExecutor(this)) 
    }

Within the listener, create ImageAnalysis.Builder to access each individual frame from the live 
camera feed. Set the back-pressure strategy to STRATEGY_KEEP_ONLY_LATEST. This guarantees 
that only one camera frame at a time is delivered for processing. Convert each individual camera 
frame to a bitmap, so you can extract its pixels to later combine it with the custom background 
image.

Java

val imageAnalyzer = ImageAnalysis.Builder()

Background Replacement 216



Amazon IVS Real-Time Streaming User Guide

analysisUseCase = imageAnalyzer 
    .setTargetResolution(Size(360, 640)) 
    .setBackpressureStrategy(ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST) 
    .build()

analysisUseCase?.setAnalyzer(cameraExecutor) { imageProxy: ImageProxy -> 
    val mediaImage = imageProxy.image 
    val tempBitmap = imageProxy.toBitmap(); 
    val inputBitmap = tempBitmap.rotate(imageProxy.imageInfo.rotationDegrees.toFloat())

Pass Camera Frames to Google ML Kit

Next, create an InputImage and pass it to the instance of Segmenter for processing. An
InputImage can be created from an ImageProxy provided by the instance of ImageAnalysis. 
Once an InputImage is provided to Segmenter, it returns a mask with confidence scores indicating 
the likelihood of a pixel being in the foreground or background. This mask also provides width and 
height properties, which you will use to create a new array containing the background pixels from 
the custom background image loaded earlier.

Java

if (mediaImage != null) { 
        val inputImage = 
            InputImage.fromMediaImag

segmenter.process(inputImage) 
    .addOnSuccessListener { segmentationMask -> 
        val mask = segmentationMask.buffer 
        val maskWidth = segmentationMask.width 
        val maskHeight = segmentationMask.height 
        val backgroundPixels = IntArray(maskWidth * maskHeight) 
        bgBitmap.getPixels(backgroundPixels, 0, maskWidth, 0, 0, maskWidth, maskHeight)

Overlay the Camera Frame Foreground onto Your Custom Background

With the mask containing the confidence scores, the camera frame as a bitmap, and the color pixels 
from the custom background image, you have everything you need to overlay the foreground onto 
your custom background. The overlayForeground function is then called with the following 
parameters:

Background Replacement 217



Amazon IVS Real-Time Streaming User Guide

Java

resultBitmap = overlayForeground(mask, maskWidth, maskHeight, inputBitmap, 
 backgroundPixels)

This function iterates through the mask and checks the confidence values to determine whether 
to get the corresponding pixel color from the background image or the camera frame. If the 
confidence value indicates that a pixel in the mask is most likely in the background, it will get the 
corresponding pixel color from the background image; otherwise, it will get the corresponding 
pixel color from the camera frame to build the foreground. Once the function finishes iterating 
through the mask, a new bitmap is created using the new array of color pixels and returned. This 
new bitmap contains the foreground overlaid on the custom background.

Java

private fun overlayForeground( 
        byteBuffer: ByteBuffer, 
        maskWidth: Int, 
        maskHeight: Int, 
        cameraBitmap: Bitmap, 
        backgroundPixels: IntArray 
    ): Bitmap { 
        @ColorInt val colors = IntArray(maskWidth * maskHeight) 
        val cameraPixels = IntArray(maskWidth * maskHeight) 

        cameraBitmap.getPixels(cameraPixels, 0, maskWidth, 0, 0, maskWidth, maskHeight) 

        for (i in 0 until maskWidth * maskHeight) { 
            val backgroundLikelihood: Float = 1 - byteBuffer.getFloat() 

            // Apply the virtual background to the color if it's not part of the 
 foreground 
            if (backgroundLikelihood > 0.9) { 
                // Get the corresponding pixel color from the background image 
                // Set the color in the mask based on the background image pixel color 
                colors[i] = backgroundPixels.get(i) 
            } else { 
                // Get the corresponding pixel color from the camera frame 
                // Set the color in the mask based on the camera image pixel color 
                colors[i] = cameraPixels.get(i) 
            } 
        } 

Background Replacement 218



Amazon IVS Real-Time Streaming User Guide

        return Bitmap.createBitmap( 
            colors, maskWidth, maskHeight, Bitmap.Config.ARGB_8888 
        ) 
    }

Feed the New Image to a Custom Image Source

You can then write the new bitmap to the Surface provided by a custom image source. This will 
broadcast it to your stage.

Java

resultBitmap = overlayForeground(mask, inputBitmap, mutableBitmap, bgBitmap)
canvas = surface.lockCanvas(null);
canvas.drawBitmap(resultBitmap, 0f, 0f, null)

Here is the complete function for getting the camera frames, passing it to Segmenter, and 
overlaying it on the background:

Java

@androidx.annotation.OptIn(androidx.camera.core.ExperimentalGetImage::class) 
    private fun startCamera(surface: Surface) { 
        val cameraProviderFuture = ProcessCameraProvider.getInstance(this) 
        val imageResource = R.drawable.clouds 
        val bgBitmap: Bitmap = BitmapFactory.decodeResource(resources, imageResource) 
        var resultBitmap: Bitmap; 

        cameraProviderFuture.addListener({ 
            // Used to bind the lifecycle of cameras to the lifecycle owner 
            val cameraProvider: ProcessCameraProvider = cameraProviderFuture.get() 

            val imageAnalyzer = ImageAnalysis.Builder() 
            analysisUseCase = imageAnalyzer 
                .setTargetResolution(Size(720, 1280)) 
                .setBackpressureStrategy(ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST) 
                .build() 

            analysisUseCase!!.setAnalyzer(cameraExecutor) { imageProxy: ImageProxy -> 
                val mediaImage = imageProxy.image 
                val tempBitmap = imageProxy.toBitmap(); 

Background Replacement 219



Amazon IVS Real-Time Streaming User Guide

                val inputBitmap = 
 tempBitmap.rotate(imageProxy.imageInfo.rotationDegrees.toFloat()) 

                if (mediaImage != null) { 
                    val inputImage = 
                        InputImage.fromMediaImage(mediaImage, 
 imageProxy.imageInfo.rotationDegrees) 

                    segmenter.process(inputImage) 
                        .addOnSuccessListener { segmentationMask -> 
                            val mask = segmentationMask.buffer 
                            val maskWidth = segmentationMask.width 
                            val maskHeight = segmentationMask.height 
                            val backgroundPixels = IntArray(maskWidth * maskHeight) 
                            bgBitmap.getPixels(backgroundPixels, 0, maskWidth, 0, 0, 
 maskWidth, maskHeight) 

                            resultBitmap = overlayForeground(mask, maskWidth, 
 maskHeight, inputBitmap, backgroundPixels) 
                            canvas = surface.lockCanvas(null); 
                            canvas.drawBitmap(resultBitmap, 0f, 0f, null) 

                            surface.unlockCanvasAndPost(canvas); 

                        } 
                        .addOnFailureListener { exception -> 
                            Log.d("App", exception.message!!) 
                        } 
                        .addOnCompleteListener { 
                            imageProxy.close() 
                        } 

                } 
            }; 

            val cameraSelector = CameraSelector.DEFAULT_FRONT_CAMERA 

            try { 
                // Unbind use cases before rebinding 
                cameraProvider.unbindAll() 

                // Bind use cases to camera 
                cameraProvider.bindToLifecycle(this, cameraSelector, analysisUseCase) 

Background Replacement 220



Amazon IVS Real-Time Streaming User Guide

            } catch(exc: Exception) { 
                Log.e(TAG, "Use case binding failed", exc) 
            } 

        }, ContextCompat.getMainExecutor(this)) 
    }

IVS Broadcast SDK: Mobile Audio Modes | Real-Time Streaming

Audio quality is an important part of any real-team media experience, and there isn’t a one-size-
fits-all audio configuration that works best for every use case. To ensure that your users have the 
best experience when listening to an IVS real-time stream, our mobile SDKs provide several preset 
audio configurations, as well as more powerful customizations as needed.

Introduction

The IVS mobile broadcast SDKs provide a StageAudioManager class. This class is designed to 
be the single point of contact for controlling the underlying audio modes on both platforms. On 
Android, this controls the AudioManager, including the audio mode, audio source, content type, 
usage, and communication devices. On iOS, it controls the application AVAudioSession, as well as 
whether voiceProcessing is enabled.

Important: Do not interact with AVAudioSession or AudioManager directly while the IVS real-
time broadcast SDK is active. Doing so could result in the loss of audio, or audio being recorded 
from or played back on the wrong device.

Before you create your first DeviceDiscovery or Stage object, the StageAudioManager class 
must be configured.

Android (Kotlin)

StageAudioManager.getInstance(context).setPreset(StageAudioManager.UseCasePreset.VIDEO_CHAT) // 
 The default value

val deviceDiscovery = DeviceDiscovery(context)
val stage = Stage(context, token, this)

// Other Stage implementation code 
                     

Mobile Audio Modes 221

https://developer.android.com/reference/android/media/AudioManager
https://developer.apple.com/documentation/avfaudio/avaudiosession
https://developer.apple.com/documentation/avfaudio/avaudioionode/3152101-voiceprocessingenabled?language=objc


Amazon IVS Real-Time Streaming User Guide

iOS (Swift)

IVSStageAudioManager.sharedInstance().setPreset(.videoChat) // The default value

let deviceDiscovery = IVSDeviceDiscovery()
let stage = try? IVSStage(token: token, strategy: self)

// Other Stage implementation code 
                     

If nothing is set on the StageAudioManager before initialization of a DeviceDiscovery or
Stage instance, the VideoChat preset is applied automatically.

Audio Mode Presets

The real-time broadcast SDK provides three presets, each tailored to common use cases, as 
described below. For each preset, we cover five key categories that differentiate the presets from 
each other.

The Volume Rocker category refers to the type of volume (media volume or call volume) that is 
used or changed via the physical volume rockers on the device. Note that this impacts volume 
when switching audio modes. For example, suppose the device volume is set to the maximum 
value while using the Video Chat preset. Switching to the Subscribe Only preset causes a different 
volume level from the operating system, which could lead to a significant volume change on the 
device.

Video Chat

This is the default preset, designed for when the local device is going to have a real-time 
conversation with other participants.

Known issue on iOS: Using this preset and not attaching a microphone causes audio to play 
through the earpiece instead of the device speaker. Use this preset only in combination with a 
microphone.

Category Android iOS

Echo Cancellation Enabled Enabled

Audio Mode Presets 222



Amazon IVS Real-Time Streaming User Guide

Category Android iOS

Volume Rocker Call Volume Call Volume

Microphone 
Selection

Limited based on the OS. USB 
microphones may not be available 
.

Limited based on the OS. USB and 
Bluetooth microphones may not 
be available.

Bluetooth headsets that handle 
both input and output together 
should work; e.g., AirPods.

Audio Output Any output device should work. Limited based on the OS. Wired 
headsets may not be available.

Audio Quality Medium / Low. It will sound 
like a phone call, not like media 
playback.

Medium / Low. It will sound 
like a phone call, not like media 
playback.

Subscribe Only

This preset is designed for when you plan to subscribe to other publishing participants but not 
publish yourself. It focuses on audio quality and supporting all available output devices.

Category Android iOS

Echo Cancellation Disabled Disabled

Volume Rocker Media Volume Media Volume

Microphone 
Selection

N/A, this preset is not designed 
for publishing.

N/A, this preset is not designed 
for publishing.

Audio Output Any output device should work. Any output device should work.

Audio Quality High. Any media type should 
come through clearly, including 
 music.

High. Any media type should 
come through clearly, including 
 music.

Audio Mode Presets 223



Amazon IVS Real-Time Streaming User Guide

Studio

This preset is designed for high quality subscribing while maintaining the ability to publish. It 
requires the recording and playback hardware to provide echo cancellation. A use case here would 
be using a USB microphone and a wired headset. The SDK will maintain the highest quality audio 
while relying on the physical separation of those devices from causing echo.

Category Android iOS

Echo Cancellation Disabled Disabled

Volume Rocker Media Volume in most cases. 
Call Volume when a Bluetooth 
 microphone is connected.

Media Volume

Microphone 
Selection

Any microphone should work. Any microphone should work.

Audio Output Any output device should work. Any output device should work.

Audio Quality High. Both sides should be able to 
send music and hear it clearly on 
the other side.

When a Bluetooth headset is 
connected, audio quality will drop 
due to Bluetooth SCO mode being 
enabled.

High. Both sides should be able to 
send music and hear it clearly on 
the other side.

When a Bluetooth headset is 
connected, audio quality may 
drop due to Bluetooth SCO mode 
being enabled, depending on the 
headset.

Advanced Use Cases

Beyond the presets, both the iOS and Android real-time streaming broadcast SDKs allow 
configuring the underlying platform audio modes:

• On Android, set the AudioSource, Usage, and ContentType.

• On iOS, use AVAudioSession.Category, AVAudioSession.CategoryOptions, AVAudioSession.Mode, 
and the ability to toggle if voice processing is enabled or not while publishing.

Advanced Use Cases 224

https://developer.android.com/reference/android/media/MediaRecorder.AudioSource
https://developer.android.com/reference/android/media/AudioAttributes#USAGE_ALARM
https://developer.android.com/reference/android/media/AudioAttributes#CONTENT_TYPE_MOVIE
https://developer.apple.com/documentation/avfaudio/avaudiosession/category
https://developer.apple.com/documentation/avfaudio/avaudiosession/categoryoptions
https://developer.apple.com/documentation/avfaudio/avaudiosession/mode
https://developer.apple.com/documentation/avfaudio/avaudioionode/3152101-voiceprocessingenabled?language=objc


Amazon IVS Real-Time Streaming User Guide

Note: When using these audio SDK methods, it is possible to incorrectly configure the underlying 
audio session. For example, using the .allowBluetooth option on iOS in combination with the
.playback category creates an invalid audio configuration and the SDK cannot record or play 
back audio. These methods are designed to be used only when an application has specific audio-
session requirements that have been validated.

Android (Kotlin)

// This would act similar to the Subscribe Only preset, but it uses a different 
 ContentType.
StageAudioManager.getInstance(context) 
    .setConfiguration(StageAudioManager.Source.GENERIC, 
                      StageAudioManager.ContentType.MOVIE, 
                      StageAudioManager.Usage.MEDIA);

val stage = Stage(context, token, this)

// Other Stage implementation code 
                     

iOS (Swift)

// This would act similar to the Subscribe Only preset, but it uses a different mode 
 and options.
IVSStageAudioManager.sharedInstance() 
    .setCategory(.playback, 
                 options: [.duckOthers, .mixWithOthers], 
                 mode: .default)

let stage = try? IVSStage(token: token, strategy: self)

// Other Stage implementation code 
                     

iOS Echo Cancellation

Echo cancellation on iOS can be independently controlled via IVSStageAudioManager as well 
using its echoCancellationEnabled method. This method controls whether voice processing is 
enabled on the input and output nodes of the underlying AVAudioEngine used by the SDK. It is 
important to understand the effect of changing this property manually:

Advanced Use Cases 225

https://developer.apple.com/documentation/avfaudio/avaudioionode/3152101-voiceprocessingenabled?language=objc


Amazon IVS Real-Time Streaming User Guide

• The AVAudioEngine property is honored only if the SDK’s microphone is active; this 
is necessary due to the iOS requirement that voice processing be enabled on both the 
input and output nodes simultaneously. Normally this is done by using the microphone 
returned by IVSDeviceDiscovery to create an IVSLocalStageStream to publish. 
Alternately, the microphone can be enabled, without being used to publish, by attaching an
IVSAudioDeviceStatsCallback to the microphone itself. This alternate approach is useful if 
echo cancellation is needed while using a custom audio-source-based microphone instead of the 
IVS SDK’s microphone.

• Enabling the AVAudioEngine property requires a mode of .videoChat or .voiceChat. 
Requesting a different mode causes iOS’s underlying audio framework to fight the SDK, causing 
audio loss.

• Enabling AVAudioEngine automatically enables the .allowBluetooth option.

Behaviors can differ depending on the device and iOS version.

iOS Custom Audio Sources

Custom audio sources can be used with the SDK by using
IVSDeviceDiscovery.createAudioSource. When connecting to a Stage, the IVS real-
time streaming broadcast SDK still manages an internal AVAudioEngine instance for 
audio playback, even if the SDK’s microphone is not used. As a result, the values provided to
IVSStageAudioManager must be compatible with the audio being provided by the custom audio 
source.

If the custom audio source being used to publish is recording from the microphone but managed 
by the host application, the echo-cancellation SDK above will not work unless the SDK-managed 
microphone is activated. To work around that requirement, see iOS Echo Cancellation.

Publishing with Bluetooth on Android

The SDK automatically reverts to the VIDEO_CHAT preset on Android when the following 
conditions are met:

• The assigned configuration does not use the VOICE_COMMUNICATION usage value.

• A Bluetooth microphone is connected to the device.

• The local participant is publishing to a Stage.

Advanced Use Cases 226



Amazon IVS Real-Time Streaming User Guide

This is a limitation of the Android operating system in regard to how Bluetooth headsets are used 
for recording audio.

Integrating with Other SDKs

Because both iOS and Android support only one active audio mode per application, it is common 
to run into conflicts if your application uses multiple SDKs that require control of the audio mode. 
When you run into these conflicts, there are some common resolution strategies to try, explained 
below.

Match Audio Mode Values

Using either the IVS SDK’s advanced audio-configuration options or the other SDK’s functionality, 
have the two SDKs align on the underlying values.

Agora

iOS

On iOS, telling the Agora SDK to keep the AVAudioSession active will prevent it from 
deactivating while the IVS real-time streaming broadcast SDK is using it.

myRtcEngine.SetParameters("{\"che.audio.keep.audiosession\":true}");

Android

Avoid calling setEnableSpeakerphone on RtcEngine, and call enableLocalAudio(false)
while publishing with the IVS real-time streaming broadcast SDK. You can call
enableLocalAudio(true) again when the IVS SDK is not publishing.

Integrating with Other SDKs 227



Amazon IVS Real-Time Streaming User Guide

Using Amazon EventBridge with IVS Real-Time 
Streaming

You can use Amazon EventBridge to monitor your Amazon Interactive Video Service (IVS) streams.

Amazon IVS sends change events about the status of your streams to Amazon EventBridge. All 
events that are delivered are valid. However, events are sent on a best-effort basis, which means 
there is no guarantee that:

• Events are delivered — A designated event can occur (e.g., a participant published) but it is 
possible that Amazon IVS will not send a corresponding event to EventBridge. Amazon IVS tries 
to deliver events for several hours before giving up.

• Events that are delivered will arrive in a specified timeframe — You may receive events up to a 
few hours old.

• Events are delivered in order — Events may be out of order, especially if they are sent within a 
short time of each other. For example, you could see Participant Unpublished before Participant 
Published.

While it's rare for events to be missing, late, or out of sequence, you should handle these 
possibilities if you write business-critical programs that depend on the order or existence of 
notification events.

You can create EventBridge rules for any of the following events.

Event Type Event Sent When ...

IVS Composition State Change Destination 
Failure

An attempt to output to a Destinati 
on failed. For example, broadcast 
ing to a channel failed because 
there was no stream key or another 
broadcast was happening.

IVS Composition State Change Destination 
Start

Output to a Destination successfully 
started.

IVS Composition State Change Destination End Output to a Destination finished.

228



Amazon IVS Real-Time Streaming User Guide

Event Type Event Sent When ...

IVS Composition State Change Destination 
Reconnecting

Output to a Destination was 
interrupted and a reconnect is being 
attempted.

IVS Composition State Change Session Start A Composition session was created. 
This event fires when a Composition 
process pipeline successfully initializ 
es. At this point, the Composition 
pipeline has successfully subscribe 
d to a Stage and is receiving media 
and able to compose video.

IVS Composition State Change Session End A Composition session completed.

IVS Composition State Change Session Failure A Composition pipeline failed to 
initialize due to Stage resources not 
being available, or any other internal 
error.

IVS Participant Recording State 
Change

Recording Start A publisher has connected to the 
stage and is being recorded to S3.

IVS Participant Recording State 
Change

Recording End A publisher has disconnected from 
the stage and all remaining files 
have been written to S3.

IVS Participant Recording State 
Change

Recording Start 
Failure

A publisher connects to the stage, 
but recording fails to start due to 
errors (for example, the S3 bucket 
does not exist or is not in the correct 
region). This publisher's live stream 
is not recorded

229



Amazon IVS Real-Time Streaming User Guide

Event Type Event Sent When ...

IVS Participant Recording State 
Change

Recording End 
Failure

Recording ends with failure, due to 
errors encountered during recording 
(e.g., if the attempt to write the 
media playlist continuously fails). 
Some objects may still be written to 
the configured storage location.

IVS Stage Update Participant 
Published

A participant begins publishing to a 
stage.

IVS Stage Update Participant 
Unpublished

A participant has stopped publishing 
to a stage.

IVS Stage Update Participant 
Publish Error

A participant's attempt to publish to 
a stage failed.

Creating Amazon EventBridge Rules for Amazon IVS

You can create a rule that triggers on an event emitted by Amazon IVS. Follow the steps in Create 
a rule in Amazon EventBridge in the Amazon EventBridge User Guide. When selecting a service, 
choose Interactive Video Service (IVS).

Examples: Composition State Change

Destination Failure: This event is sent when an attempt to output to a Destination failed. For 
example, broadcasting to a channel failed because there was no stream key or another broadcast 
was happening.

{ 
   "version": "0", 
   "id": "01234567-0123-0123-0123-012345678901", 
   "detail-type": "IVS Composition State Change", 
   "source": "aws.ivs", 
   "account": "aws_account_id", 
   "time": "2017-06-12T10:23:43Z", 
   "region": "us-east-1", 

Creating Amazon EventBridge Rules for Amazon IVS 230

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-get-started.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-get-started.html


Amazon IVS Real-Time Streaming User Guide

   "resources": [ 
     "arn:aws:ivs:us-east-1:aws_account_id:composition/123456789012" 
   ], 
   "detail": { 
     "event_name": "Destination Failure", 
     "stage_arn": "<stage-arn>", 
     "id": "<Destination-id>", 
     "reason": "eg. stream key invalid" 
   }
}

Destination Start: This event is sent when output to a Destination successfully started.

{ 
   "version": "0", 
   "id": "01234567-0123-0123-0123-012345678901", 
   "detail-type": "IVS Composition State Change", 
   "source": "aws.ivs", 
   "account": "aws_account_id", 
   "time": "2017-06-12T10:23:43Z", 
   "region": "us-east-1", 
   "resources": [ 
     "arn:aws:ivs:us-east-1:aws_account_id:composition/123456789012" 
   ], 
   "detail": { 
     "event_name": "Destination Start", 
     "stage_arn": "<stage-arn>", 
     "id": "<destination-id>", 
   }
}

Destination End: This event is sent when output to a Destination finished.

{ 
   "version": "0", 
   "id": "01234567-0123-0123-0123-012345678901", 
   "detail-type": "IVS Composition State Change", 
   "source": "aws.ivs", 
   "account": "aws_account_id", 
   "time": "2017-06-12T10:23:43Z", 
   "region": "us-east-1", 
   "resources": [ 
     "arn:aws:ivs:us-east-1:aws_account_id:composition/123456789012" 

Examples: Composition State Change 231



Amazon IVS Real-Time Streaming User Guide

   ], 
   "detail": { 
     "event_name": "Destination End", 
     "stage_arn": "<stage-arn>", 
     "id": "<Destination-id>", 
   }
}

Destination Reconnecting: This event is sent when output to a Destination was interrupted and a 
reconnect is being attempted.

{ 
   "version": "0", 
   "id": "01234567-0123-0123-0123-012345678901", 
   "detail-type": "IVS Composition State Change", 
   "source": "aws.ivs", 
   "account": "aws_account_id", 
   "time": "2017-06-12T10:23:43Z", 
   "region": "us-east-1", 
   "resources": [ 
     "arn:aws:ivs:us-east-1:aws_account_id:composition/123456789012" 
   ], 
   "detail": { 
     "event_name": "Destination Reconnecting", 
     "stage_arn": "<stage-arn>", 
     "id": "<Destination-id>", 
   }
}

Session Start: This event is sent when a Composition session was created. This event fires when 
a Composition process pipeline successfully initializes. At this point, the Composition pipeline has 
successfully subscribed to a Stage and is receiving media and able to compose video.

{ 
   "version": "0", 
   "id": "01234567-0123-0123-0123-012345678901", 
   "detail-type": "IVS Composition State Change", 
   "source": "aws.ivs", 
   "account": "aws_account_id", 
   "time": "2017-06-12T10:23:43Z", 
   "region": "us-east-1", 
   "resources": [ 

Examples: Composition State Change 232



Amazon IVS Real-Time Streaming User Guide

     "arn:aws:ivs:us-east-1:aws_account_id:composition/123456789012" 
   ], 
   "detail": { 
     "event_name": "Session Start", 
     "stage_arn": "<stage-arn>" 
   }
}

Session End: This event is sent when a Composition session completed and all resources were 
deleted.

{ 
   "version": "0", 
   "id": "01234567-0123-0123-0123-012345678901", 
   "detail-type": "IVS Composition State Change", 
   "source": "aws.ivs", 
   "account": "aws_account_id", 
   "time": "2017-06-12T10:23:43Z", 
   "region": "us-east-1", 
   "resources": [ 
     "arn:aws:ivs:us-east-1:aws_account_id:composition/123456789012" 
   ], 
   "detail": { 
     "event_name": "Session End", 
     "stage_arn": "<stage-arn>" 
   }
}

Session Failure: This event is sent when a Composition pipeline failed to initialize due to Stage 
resources not being available, no participants being in the stage, or any other internal error.

{ 
   "version": "0", 
   "id": "01234567-0123-0123-0123-012345678901", 
   "detail-type": "IVS Composition State Change", 
   "source": "aws.ivs", 
   "account": "aws_account_id", 
   "time": "2017-06-12T10:23:43Z", 
   "region": "us-east-1", 
   "resources": [ 
     "arn:aws:ivs:us-east-1:aws_account_id:composition/123456789012" 
   ], 

Examples: Composition State Change 233



Amazon IVS Real-Time Streaming User Guide

   "detail": { 
     "event_name": "Session Failure", 
     "stage_arn": "<stage-arn>", 
     "reason": "eg. no participants in the stage" 
   }
}

Examples: Individual Participant Recording State Change

Recording Start: This event is sent when a publisher has connected to the stage and is being 
recorded to S3.

{ 
   "version": "0", 
   "id": "12345678-1a23-4567-a1bc-1a2b34567890", 
   "detail-type": "IVS Participant Recording State Change", 
   "source": "aws.ivs", 
   "account": "123456789012", 
   "time": "2024-03-13T22:09:58Z", 
   "region": "us-east-1", 
   "resources": ["arn:aws:ivs:us-west-2:aws_account_id:stage/AbCdef1G2hij"], 
   "detail": { 
      "session_id": "st-ZyXwvu1T2s", 
      "event_name": "Recording Start", 
      "participant_id": "xYz1c2d3e4f", 
      "recording_s3_bucket_name": "bucket-name", 
      "recording_s3_key_prefix": "<stage_id>/<session_id>/
<participant_id>/2024-01-01T12-00-55Z" 
   }
}

Recording End: This event is sent when a publisher has disconnected from the stage and all 
remaining files have been written to S3.

{ 
   "version": "0", 
   "id": "12345678-1a23-4567-a1bc-1a2b34567890", 
   "detail-type": "IVS Participant Recording State Change", 
   "source": "aws.ivs", 
   "account": "123456789012", 
   "time": "2024-03-13T22:19:04Z", 

Examples: Individual Participant Recording State Change 234



Amazon IVS Real-Time Streaming User Guide

   "region": "us-east-1", 
   "resources": ["arn:aws:ivs:us-west-2:aws_account_id:stage/AbCdef1G2hij"], 
   "detail": { 
      "session_id": "st-ZyXwvu1T2s", 
      "event_name": "Recording End", 
      "participant_id": "xYz1c2d3e4f", 
      "recording_s3_bucket_name": "bucket-name", 
      "recording_s3_key_prefix": "<stage_id>/<session_id>/
<participant_id>/2024-01-01T12-00-55Z" 
      "recording_duration_ms": 547327 
   }
}

Recording Start Failure: This event is sent when a publisher connects to the stage, but recording 
fails to start due to errors (e.g., the S3 bucket does not exist or is not in the correct region). The 
publisher's live stream is not recorded.

{ 
   "version": "0", 
   "id": "12345678-1a23-4567-a1bc-1a2b34567890", 
   "detail-type": "IVS Participant Recording State Change", 
   "source": "aws.ivs", 
   "account": "123456789012", 
   "time": "2024-03-13T22:09:58Z", 
   "region": "us-east-1", 
   "resources": ["arn:aws:ivs:us-west-2:aws_account_id:stage/AbCdef1G2hij"], 
   "detail": { 
      "session_id": "st-ZyXwvu1T2s", 
      "event_name": "Recording Start Failure", 
      "participant_id": "xYz1c2d3e4f", 
      "recording_s3_bucket_name": "bucket-name", 
      "recording_s3_key_prefix": "<stage_id>/<session_id>/
<participant_id>/2024-01-01T12-00-55Z" 
   }
}

Recording End Failure: This event is sent when the recording ends with failure, due to errors 
encountered during recording (e.g., if the attempt to write a master playlist fails). Some objects 
may still be written to the configured storage location.

{ 
   "version": "0", 

Examples: Individual Participant Recording State Change 235



Amazon IVS Real-Time Streaming User Guide

   "id": "12345678-1a23-4567-a1bc-1a2b34567890", 
   "detail-type": "IVS Participant Recording State Change", 
   "source": "aws.ivs", 
   "account": "123456789012", 
   "time": "2024-03-13T22:19:04Z", 
   "region": "us-east-1", 
   "resources": ["arn:aws:ivs:us-west-2:aws_account_id:stage/AbCdef1G2hij"], 
   "detail": { 
      "session_id": "st-ZyXwvu1T2s", 
      "event_name": "Recording End Failure", 
      "participant_id": "xYz1c2d3e4f", 
      "recording_s3_bucket_name": "bucket-name", 
      "recording_s3_key_prefix": "<stage_id>/<session_id>/
<participant_id>/2024-01-01T12-00-55Z" 
      "recording_duration_ms": 547327 
   }
}

Examples: Stage Update

Stage update events include an event name (which classifies the event) and metadata about the 
event. The metadata includes the participant ID which triggered the event, the associated stage 
and session IDs, and the user ID.

Participant Published: This event is sent when a participant begins publishing to a stage.

{ 
    "version": "0", 
    "id": "12345678-1a23-4567-a1bc-1a2b34567890", 
    "detail-type": "IVS Stage Update", 
    "source": "aws.ivs", 
    "account": "123456789012", 
    "time": "2020-06-23T20:12:36Z", 
    "region": "us-west-2", 
    "resources": [ 
        "arn:aws:ivs:us-west-2:123456789012:stage/AbCdef1G2hij" 
    ], 
    "detail": { 
        "session_id": "st-ZyXwvu1T2s", 
        "event_name": "Participant Published", 
        "user_id": "Your User Id", 
        "participant_id": "xYz1c2d3e4f" 

Examples: Stage Update 236



Amazon IVS Real-Time Streaming User Guide

    }
}

Participant Unpublished: This event is sent when a participant has stopped publishing to a stage.

{ 
    "version": "0", 
    "id": "12345678-1a23-4567-a1bc-1a2b34567890", 
    "detail-type": "IVS Stage Update", 
    "source": "aws.ivs", 
    "account": "123456789012", 
    "time": "2020-06-23T20:12:36Z", 
    "region": "us-west-2", 
    "resources": [ 
        "arn:aws:ivs:us-west-2:123456789012:stage/AbCdef1G2hij" 
    ], 
    "detail": { 
        "session_id": "st-ZyXwvu1T2s", 
        "event_name": "Participant Unpublished", 
        "user_id": "Your User Id", 
        "participant_id": "xYz1c2d3e4f" 
    }
}

Participant Publish Error: This event is sent when a participant's attempt to publish to a stage 
failed.

{ 
    "version": "0", 
    "id": "12345678-1a23-4567-a1bc-1a2b34567890", 
    "detail-type": "IVS Stage Update", 
    "source": "aws.ivs", 
    "account": "123456789012", 
    "time": "2020-06-23T20:12:36Z", 
    "region": "us-west-2", 
    "resources": [ 
        "arn:aws:ivs:us-west-2:123456789012:stage/AbCdef1G2hij" 
    ], 
    "detail": { 
        "session_id": "st-ZyXwvu1T2s", 
        "event_name": "Participant Publish Error", 
        "event_time": "2024-08-13T14:38:17.089061676Z", 
        "user_id": "Your User Id", 

Examples: Stage Update 237



Amazon IVS Real-Time Streaming User Guide

        "participant_id": "xYz1c2d3e4f", 
        "error_code": "BITRATE_EXCEEDED" 
    }
}

Examples: Stage Update 238



Amazon IVS Real-Time Streaming User Guide

IVS Server-Side Composition | Real-Time Streaming

Server-side composition uses an IVS server to mix audio and video from all stage participants and 
then sends this mixed video to an IVS channel (e.g., to reach a larger audience) or an S3 bucket. 
Server-side composition is invoked through IVS control-plane operations in the stage’s home 
region.

Broadcasting or recording a stage using server-side composition offers numerous benefits, making 
it an attractive choice for users seeking efficient and reliable cloud-based video workflows.

Topics

• Overview of IVS Server-Side Composition

• Getting Started with IVS Server-Side Composition

• Enabling Screen Share in IVS Server-Side Composition

Overview of IVS Server-Side Composition

This diagram illustrates how server-side composition works:

Overview 239



Amazon IVS Real-Time Streaming User Guide

Benefits

Compared to client-side composition, server-side composition has the following benefits:

• Reduced client load — With server-side composition, the burden of processing and combining 
audio and video sources is shifted from individual client devices to the server itself. Server-side 
composition eliminates the need for client devices to use their CPU and network resources for 
compositing the view and transmitting it to IVS. This means viewers can watch the broadcast 
without their devices having to handle resource-intensive tasks, which can lead to improved 
battery life and smoother viewing experiences.

• Consistent quality — Server-side composition allows for precise control over the quality, 
resolution, and bitrate of the final stream. This ensures a consistent viewing experience for all 
viewers, regardless of their individual devices' capabilities.

• Resilience — By centralizing the composition process on the server, the broadcast becomes more 
robust. Even if a publisher device experiences technical limitations or fluctuations, the server can 
adapt and provide a smoother stream to all audience members.

Benefits 240



Amazon IVS Real-Time Streaming User Guide

• Bandwidth efficiency — Since the server handles the composition, stage publishers do not have 
to spend extra bandwidth broadcasting the video to IVS.

Alternatively, to broadcast a stage to an IVS channel, you can do the composition client side; see
Enabling Multiple Hosts on an IVS Stream in the IVS Low-Latency Streaming User Guide.

Composition Lifecycle

Use the diagram below to understand the state transitions of a composition:

At a high level, the life cycle of a Composition is as follows:

1. A Composition resource is created when the user calls the StartComposition operation.

2. Once IVS successfully starts the Composition, an “IVS Composition State Change (Session Start)” 
EventBridge event is sent. See Using EventBridge with IVS Real-Time Streaming for details about 
events.

3. Once a Composition is in an active state, the following can happen:

• User stops the Composition — If the StopComposition operation is called, IVS initiates a 
graceful shutdown of the Composition, sending "Destination End" events followed by a 
"Session End" event.

Composition Lifecycle 241

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/multiple-hosts.html


Amazon IVS Real-Time Streaming User Guide

• Composition performs auto-shutdown — If no participant is actively publishing to the IVS 
stage, the Composition is finalized automatically after 60 seconds and EventBridge events are 
sent.

• Destination failure — If a destination unexpectedly fails (e.g., the IVS channel gets deleted), 
the destination transitions to the RECONNECTING state and a “Destination Reconnecting” 
event is sent. If recovery is impossible, IVS transitions the destination to the FAILED state 
and a “Destination Failure” event is sent. IVS keeps the composition alive if at least one of its 
destinations is active.

4. Once the composition is in the STOPPED or FAILED state, it is automatically cleaned up after 
five minutes. (Then it no longer is retrieved by ListCompositions or GetComposition.)

IVS API

Server-side composition uses these key API elements:

• An EncoderConfiguration object allows you to customize the format of the video to be generated 
(height, width, bitrate, and other streaming parameters). You can reuse an EncoderConfiguration 
every time you call the StartComposition operation.

• Composition operations track the video composition and output to an IVS channel.

• StorageConfiguration tracks the S3 bucket where compositions are recorded.

To use server-side composition, you need to create an EncoderConfiguration and attach it when 
calling the StartComposition operation. In this example, the SquareVideo EncoderConfiguration is 
used in two Compositions:

IVS API 242



Amazon IVS Real-Time Streaming User Guide

For complete information, see IVS Real-Time Streaming API Reference.

Layouts

The StartComposition operation offers two layout options: grid and pip (Picture-in-Picture).

Grid Layout

The grid layout arranges stage participants in a grid of equally sized slots. It provides several 
customizable properties:

• videoAspectRatio sets the participant display mode to control the aspect ratio of video tiles.

• videoFillMode defines how video content fits within the participant tile.

• gridGap specifies the spacing between participant tiles in pixels.

• omitStoppedVideo allows excluding stopped video streams from the composition.

• featuredParticipantAttribute identifies the featured slot. When this is set, the featured 
participant is displayed in a larger slot on the main screen, with other participants shown below 
it.

For details on grid layout (including valid values and defaults for all fields), see the
GridConfiguration data type.

Layouts 243

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/Welcome.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_GridConfiguration.html


Amazon IVS Real-Time Streaming User Guide

Picture-in-Picture (PiP) Layout

The PiP layout enables displaying a participant in an overlay window with configurable size, 
position, and behavior. Key properties include:

• pipParticipantAttribute specifies the participant for the PiP window.

• pipPosition determines the corner position of the PiP window.

• pipWidth and pipHeightconfigure the width and height of the PiP window.

• pipOffset sets the offset position of the PiP window in pixels from the closest edges.

• pipBehavior defines PiP behavior when all other participants have left.

Like the grid layout, the PiP supports featuredParticipantAttribute, omitStoppedVideo,
videoFillMode, and gridGap to further customize the composition.

For details on PiP layout (including valid values and defaults for all fields), see the PipConfiguration
data type.

Layouts 244

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_PipConfiguration.html


Amazon IVS Real-Time Streaming User Guide

Note: The maximum resolution supported by a stage publisher on server-side composition is 
1080p. If a publisher sends video higher than 1080p, the publisher will be rendered as an audio-
only participant.

Important: Ensure your application does not depend on the specific features of the current layout, 
such as size and position of tiles. Visual improvements to layouts can be introduced at any time.

Getting Started with IVS Server-Side Composition

This document takes you through the steps involved in getting started with IVS server-side 
composition.

Prerequisites

To use server-side composition, you must have a stage with active publishers and use an IVS 
channel and/or an S3 bucket as the composition destination. Below, we describe one possible 
workflow that uses EventBridge events to start a composition that broadcasts the stage to an IVS 
channel when a participant publishes. Alternatively, you can start and stop compositions based 

Getting Started 245



Amazon IVS Real-Time Streaming User Guide

on your own app logic. See Composite Recording for another example which showcases the use of 
server-side composition to record a stage directly to an S3 bucket.

1. Create an IVS channel. See Getting Started with Amazon IVS Low-Latency Streaming.

2. Create an IVS stage and participant tokens for each publisher.

3. Create an EncoderConfiguration.

4. Join the stage and publish to it. (See the "Publishing and Subscribing" sections of the real-time 
streaming broadcast SDK guides: Web, Android, and iOS.)

5. When you receive a Participant Published EventBridge event, call StartComposition with your 
desired layout configuration.

6. Wait for a few seconds and see the composited view in the channel playback.

Note: A Composition performs auto-shutdown after 60 seconds of inactivity from publisher 
participants on the stage. At that point, the Composition is terminated and transitions to a
STOPPED state. A Composition is automatically deleted after a few minutes in the STOPPED state.

CLI Instructions

Using the AWS CLI is an advanced option and requires that you first download and configure the 
CLI on your machine. For details, see the AWS Command Line Interface User Guide.

Now you can use the CLI to create and manage resources. The Composition operations are under 
the ivs-realtime namespace.

CLI Instructions 246

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/getting-started.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_EncoderConfiguration.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/web-publish-subscribe.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/android-publish-subscribe.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/ios-publish-subscribe.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_StartComposition.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html


Amazon IVS Real-Time Streaming User Guide

Create the EncoderConfiguration Resource

An EncoderConfiguration is an object that allows you to customize the format of the 
generated video (height, width, bitrate, and other streaming parameters). You can reuse an 
EncoderConfiguration every time you call the Composition operation, as explained in the next step.

The command below creates an EncoderConfiguration resource that configures server-side video 
composition parameters like video bitrate, frame rate and resolution:

aws ivs-realtime create-encoder-configuration --name "MyEncoderConfig" --video 
 "bitrate=2500000,height=720,width=1280,framerate=30"

The response is:

{
"encoderConfiguration": { 
  "arn": "arn:aws:ivs:us-east-1:927810967299:encoder-configuration/9W59OBY2M8s4", 
  "name": "MyEncoderConfig", 
  "tags": {}, 
  "video": { 
  "bitrate": 2500000, 
  "framerate": 30, 
  "height": 720, 
  "width": 1280 
  }
}
}

Start a Composition

Using the EncoderConfiguration ARN provided in the response above, create your Composition 
resource:

Grid Layout Example

aws ivs-realtime start-composition --stage-arn "arn:aws:ivs:us-
east-1:927810967299:stage/8faHz1SQp0ik" --destinations '[{"channel": 
 {"channelArn": "arn:aws:ivs:us-east-1:927810967299:channel/
DOlMW4dfMR8r", "encoderConfigurationArn": "arn:aws:ivs:us-
east-1:927810967299:encoder-configuration/9W59OBY2M8s4"}}]' --layout '{"grid":
{"featuredParticipantAttribute":"isFeatured","videoFillMode":"COVER","gridGap":0}}'

CLI Instructions 247



Amazon IVS Real-Time Streaming User Guide

PiP Layout Example

aws ivs-realtime start-composition --stage-arn "arn:aws:ivs:us-
east-1:927810967299:stage/8faHz1SQp0ik" --destinations '[{"channel": {"channelArn": 
 "arn:aws:ivs:us-east-1:927810967299:channel/DOlMW4dfMR8r", "encoderConfigurationArn": 
 "arn:aws:ivs:us-east-1:927810967299:encoder-configuration/DEkQHWPVaOwO"}}]' --layout 
 '{"pip":{"pipParticipantAttribute":"isPip","pipOffset":10,"pipPosition":"TOP_RIGHT"}}'

Note: You can use this tool to more easily generate the --layout configuration based on your 
layout choices.

The response will show that the Composition is created with a STARTING state. Once the 
Composition starts publishing the composition, the state transitions to ACTIVE. (You can see the 
state by calling the ListCompositions or GetComposition operation.)

Once a Composition is ACTIVE, the composite view of the IVS stage is visible on the IVS channel, 
using ListCompositions:

aws ivs-realtime list-compositions

The response is:

{
"compositions": [ 
  { 
  "arn": "arn:aws:ivs:us-east-1:927810967299:composition/YVoaXkKdEdRP", 
  "destinations": [ 
  { 
     "id": "bD9rRoN91fHU", 
     "startTime": "2023-09-21T15:38:39+00:00", 
     "state": "ACTIVE" 
  } 
  ], 
  "stageArn": "arn:aws:ivs:us-east-1:927810967299:stage/8faHz1SQp0ik", 
  "startTime": "2023-09-21T15:38:37+00:00", 
  "state": "ACTIVE", 
  "tags": {} 
  }
]
}

CLI Instructions 248

https://composition.ivsdemos.com/


Amazon IVS Real-Time Streaming User Guide

Note: You need to have publisher participants actively publishing to the stage to keep the 
composition alive. For more information, see the "Publishing and Subscribing" sections of the real-
time streaming broadcast SDK guides: Web, Android, and iOS. You must create a distinct stage 
token for each participant.

Enabling Screen Share in IVS Server-Side Composition

To use a fixed screen-share layout, follow the steps below.

Create the EncoderConfiguration Resource

The command below creates an EncoderConfiguration resource that configures server-side 
composition parameters (video bitrate, framerate, and resolution).

aws ivs-realtime create-encoder-configuration --name "test-ssc-with-screen-share" --
video={bitrate=2000000,framerate=30,height=720,width=1280}

Create a stage participant token with a screen-share attribute. Since we will specify screen-
share as the name of the featured slot, we need to create a stage token with the screen-
share attribute set to true:

aws ivs-realtime create-participant-token --stage-arn "arn:aws:ivs:us-
east-1:123456789012:stage/u9OiE29bT7Xp" --attributes screen-share=true

The response is:

{ 
   "participantToken": { 
      "attributes": { 
         "screen-share": "true" 
      }, 
      "expirationTime": "2023-08-04T05:26:11+00:00", 
      "participantId": "E813MFklPWLF", 
      "token": 
 "eyJhbGciOiJLTVMiLCJ0eXAiOiJKV1QifQ.eyJleHAiOjE2OTExMjY3NzEsImlhdCI6MTY5MTA4MzU3MSwianRpIjoiRTgxM01Ga2xQV0xGIiwicmVzb3VyY2UiOiJhcm46YXdzOml2czp1cy1lYXN0LTE6OTI3ODEwOTY3Mjk5OnN0YWdlL3U5T2lFMjliVDdYcCIsInRvcGljIjoidTlPaUUyOWJUN1hwIiwiZXZlbnRzX3VybCI6IndzczovL3VzLWVhc3QtMS5ldmVudHMubGl2ZS12aWRlby5uZXQiLCJ3aGlwX3VybCI6Imh0dHBzOi8vYjJlYTVjMmZmMzU1Lmdsb2JhbC53aGlwLmxpdmUtdmlkZW8ubmV0IiwiYXR0cmlidXRlcyI6eyJzY3JlZW4tc2hhcmUiOiJ0cnVlIn0sImNhcGFiaWxpdGllcyI6eyJhbGxvd19wdWJsaXNoIjp0cnVlLCJhbGxvd19zdWJzY3JpYmUiOnRydWV9LCJ2ZXJzaW9uIjoiMC4zIn0.MGUCMFvMzv35O4yVzM9tIWZl7n3mmFQhleqsRSBx_G2qT2YUDlWSNg6H1vL7sAWQMeydSAIxAIvdfqt3Fh1MLiyelc9NnTjI5hL3YPKqDX6J3NDH1fksh8_5y1jztoPDy4yVA5OmtA" 
   }
}

Enabling Screen Share 249

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/web-publish-subscribe.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/android-publish-subscribe.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/ios-publish-subscribe.html


Amazon IVS Real-Time Streaming User Guide

Start the Composition

To start the composition using the screen-share feature, we use this command:

aws ivs-realtime start-composition --stage-arn "arn:aws:ivs:us-
east-1:927810967299:stage/8faHz1SQp0ik" --destinations  '[{"channel": {"channelArn": 
 "arn:aws:ivs:us-east-1:927810967299:channel/DOlMW4dfMR8r", "encoderConfigurationArn": 
 "arn:aws:ivs:us-east-1:927810967299:encoder-configuration/DEkQHWPVaOwO"}}]' --layout 
 '{"grid":{"featuredParticipantAttribute":"screen-share"}}'

The response is:

{
"composition" : {
"arn" : "arn:aws:ivs:us-east-1:927810967299:composition/B19tQcXRgtoz",
"destinations" : [ { 
 "configuration" : { 
 "channel" : { 
    "channelArn" : "arn:aws:ivs:us-east-1:927810967299:channel/DOlMW4dfMR8r", 
    "encoderConfigurationArn" : "arn:aws:ivs:us-east-1:927810967299:encoder-
configuration/DEkQHWPVaOwO" 
 }, 
 "name" : "" 
 }, 
 "id" : "SGmgBXTULuXv", 
 "state" : "STARTING"
} ],
"layout" : { 
 "grid" : { 
 "featuredParticipantAttribute" : "screen-share", 
 "gridGap": 2, 
 "omitStoppedVideo": false, 
 "videoAspectRatio": "VIDEO" 
 }
},
"stageArn" : "arn:aws:ivs:us-east-1:927810967299:stage/8faHz1SQp0ik",
"startTime" : "2023-09-27T21:32:38Z",
"state" : "STARTING",
"tags" : { }
}
}

Start the Composition 250



Amazon IVS Real-Time Streaming User Guide

When the stage participant E813MFklPWLF joins the stage, that participant’s video will be 
displayed in the featured slot, and all other stage publishers will be rendered below the slot:

Stop the Composition

To stop a composition at any point, call the StopComposition operation:

Stop the Composition 251



Amazon IVS Real-Time Streaming User Guide

aws ivs-realtime stop-composition --arn arn:aws:ivs:us-east-1:927810967299:composition/
B19tQcXRgtoz

Stop the Composition 252



Amazon IVS Real-Time Streaming User Guide

IVS Recording | Real-Time Streaming

There are two recording options for IVS real-time streaming:

• With individual participant recording, each publisher’s media is recorded in separate files.

• In contrast, composite recording combines media from all publishers into a single view and 
records it in one file.

Individual participant recording incurs no additional Amazon IVS charges, while composite 
recording incurs charges for the hourly rate for the video encoded. Both recording options incur 
standard S3 storage and request costs. For more details, see Amazon IVS pricing.

For a more customizable solution, consider using the open-source IVSStageSaverr project as the 
foundation for your own self-hosted recording service.

Individual Participant Recording

This option is ideal for live streams with a single publisher or when separate recordings of each 
publisher are needed, especially for moderation purposes. For more details, see Individual 
Participant Recording.

Individual Participant Recording 253

https://aws.amazon.com/ivs/pricing/
https://github.com/aws-samples/amazon-ivs-stage-recorder


Amazon IVS Real-Time Streaming User Guide

Composite Recording

This option combines media from multiple publishers into a single view and records it in one file, 
ideal for a video-on-demand experience. For more details, see Composite Recording.

Thumbnails

Thumbnail recording for IVS real-time streaming can be set up for both individual participant 
recordings and composite (multi-participant) recordings. To enable or disable thumbnail recording 
and adjust the interval at which thumbnails are generated:

• For individual participant recordings, use the thumbnailConfiguration property.

• For composite recordings, use the thumbnailConfigurations property.

Thumbnail intervals range from 1 to 86400 seconds (24 hours); by default, thumbnail recording is 
disabled. For details, see the Amazon IVS Real-Time Streaming API Reference.

A thumbnail configuration includes a storage field, which can be set to SEQUENTIAL and/or
LATEST. The storage field determines the S3 storage behavior for the thumbnails:

• SEQUENTIAL saves all thumbnails in a serial manner. This is the default.

• LATEST saves only the most recent thumbnail, overwriting the previous one.

Composite Recording 254

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/Welcome.html


Amazon IVS Real-Time Streaming User Guide

If you specify both SEQUENTIAL and LATEST, thumbnails are written to two separate S3 paths, 
one for the sequential archive and one for the latest thumbnail.

IVS Individual Participant Recording | Real-Time Streaming

This document explains how to use individual participant recording with IVS real-time streaming.

Standard S3 storage and request costs apply. Thumbnails incur no additional IVS charges. For 
details, see Amazon IVS Pricing.

Introduction

Individual participant recording allows IVS real-time streaming customers to record IVS stage 
publishers individually into S3 buckets. When individual participant recording is enabled for a 
stage, publisher content is recorded once they start publishing to the stage.

Note: If you need to have all stage participants mixed in a single video, the composite recording 
feature is a better fit. See Recording for a summary of recording IVS real-time-streaming content.

Individual Participant Recording 255

https://aws.amazon.com/ivs/pricing/


Amazon IVS Real-Time Streaming User Guide

Workflow

1. Create an S3 Bucket

You will need an S3 bucket to write VODs. For details, see the S3 documentation on how to create 
buckets. Note that for individual participant recording, the S3 buckets must be created in the same 
AWS region as the IVS stage.

Important: If you use an existing S3 bucket, the Object Ownership setting must be Bucket 
owner enforced or Bucket owner preferred. For details, see the S3 documentation on controlling 
ownership of objects.

2. Create a StorageConfiguration Object

After creating a bucket, call the IVS real-time streaming API to create a StorageConfiguration
object. Once the storage configuration is successfully created, IVS will have permission to write to 
the provided S3 bucket. You can re-use this StorageConfiguration object on multiple stages.

3. Create a Stage with Participant Tokens

Now you need to create an IVS stage with individual participant recording enabled (by setting the 
AutoParticipantRecordingConfiguration object), as well as participant tokens for each publisher.

The request below creates a stage with two participant tokens and individual participant recording 
enabled.

Workflow 256

https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/about-object-ownership.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/about-object-ownership.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_CreateStorageConfiguration.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_CreateStage.html


Amazon IVS Real-Time Streaming User Guide

POST /CreateStage HTTP/1.1
Content-type: application/json

{ 
   "autoParticipantRecordingConfiguration": {  
      "mediaTypes": ["AUDIO_VIDEO"], 
      "storageConfigurationArn": "arn:aws:ivs:us-west-2:123456789012:storage-
configuration/AbCdef1G2hij", 
      "thumbnailConfiguration": { 
         "recordingMode": "INTERVAL", 
         "storage": ["LATEST", "SEQUENTIAL"], 
         "targetIntervalSeconds": 60 
      } 
   }, 
   "name": "TestStage", 
   "participantTokenConfigurations": [  
      {  
         "capabilities": ["PUBLISH", "SUBSCRIBE"], 
         "duration": 20160, 
         "userId": "1" 
      }, 
      {  
         "capabilities": ["PUBLISH", "SUBSCRIBE"], 
         "duration": 20160, 
         "userId": "2" 
      } 
   ]
}

4. Join the Stage as an Active Publisher

Distribute the participant tokens to your publishers, and have them join the stage and start
publishing to it.

When they join the stage and start publishing to it using one of IVS real-time streaming broadcast 
SDKs, the participant-recording process starts automatically and sends you an EventBridge event
indicating that the recording started. (The event is IVS Participant Recording State Change - 
Recording Start.) Concurrently, the participant-recording process starts writing the VOD and 
metadata files to the configured S3 bucket. Note: Participants connected for extremely short 
durations (less than 5s) are not guaranteed to be recorded.

There are two ways to get the S3 prefix for each recording:

Workflow 257

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-pub-sub.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast.html


Amazon IVS Real-Time Streaming User Guide

• Listen to the EventBridge event:

{ 
   "version": "0", 
   "id": "12345678-1a23-4567-a1bc-1a2b34567890", 
   "detail-type": "IVS Participant Recording State Change", 
   "source": "aws.ivs", 
   "account": "123456789012", 
   "time": "2024-03-13T22:19:04Z", 
   "region": "us-east-1", 
   "resources": ["arn:aws:ivs:us-west-2:123456789012:stage/AbCdef1G2hij"], 
   "detail": { 
      "session_id": "st-ZyXwvu1T2s", 
      "event_name": "Recording Start", 
      "participant_id": "xYz1c2d3e4f", 
      "recording_s3_bucket_name": "ivs-recordings", 
      "recording_s3_key_prefix": "<stage_id>/<session_id>/
<participant_id>/2024-01-01T12-00-55Z" 
   }
}

• Use the GetParticipant API operation — The response includes the S3 bucket and prefix to where 
a participant is being recorded. Here is the request:

POST /GetParticipant HTTP/1.1
Content-type: application/json
{ 
   "participantID": "xYz1c2d3e4f", 
   "sessionId": "st-ZyXwvu1T2s", 
   "stageArn": "arn:aws:ivs:us-west-2:123456789012:stage/AbCdef1G2hij"
}

And here is the response:

Content-type: application/json
{ 
   "participant": { 
      ... 
      "recordingS3BucketName": "ivs-recordings", 
      "recordingS3Prefix": "<stage_id>/<session_id>/<participant_id>", 
      "recordingState": "ACTIVE", 
      ... 

Workflow 258

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_GetParticipant.html


Amazon IVS Real-Time Streaming User Guide

   }
}

5. Play Back the VOD

After the recording is finalized, you can watch it using the IVS player. See Playback of Recorded 
Content from Private Buckets for instructions on setting up CloudFront distributions for VOD 
playback.

Audio-Only Recording

When setting up individual participant recording, you can choose to have only audio HLS segments 
written to your S3 bucket. To use this feature, choose the AUDIO_ONLY mediaType when creating 
the stage:

POST /CreateStage HTTP/1.1
Content-type: application/json

{ 
   "autoParticipantRecordingConfiguration": {  
      "storageConfigurationArn": "arn:aws:ivs:us-west-2:123456789012:storage-
configuration/AbCdef1G2hij", 
      "mediaTypes": ["AUDIO_ONLY"], 
      "thumbnailConfiguration": { 
         "recordingMode": "DISABLED" 
      } 
   }, 
   "name": "TestStage", 
   "participantTokenConfigurations": [  
      {  
         "capabilities": ["PUBLISH", "SUBSCRIBE"], 
         "duration": 20160, 
         "userId": "1" 
      }, 
      {  
         "capabilities": ["PUBLISH", "SUBSCRIBE"], 
         "duration": 20160, 
         "userId": "2" 
      } 
   ]
}

Audio-Only Recording 259

https://debug.ivsdemos.com/?p=ivs
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-composite-recording.html#comp-rec-playback
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-composite-recording.html#comp-rec-playback


Amazon IVS Real-Time Streaming User Guide

Thumbnail-Only Recording

When setting up individual participant recording, you can choose to have only thumbnails written 
to your S3 bucket. To use this feature, set mediaType to NONE when creating the stage. This 
ensures that no HLS segments are generated; thumbnails are still created and written to your S3 
bucket.

POST /CreateStage HTTP/1.1
Content-type: application/json
{ 
   "autoParticipantRecordingConfiguration": {  
      "storageConfigurationArn": "arn:aws:ivs:us-west-2:123456789012:storage-
configuration/AbCdef1G2hij", 
      "mediaTypes": ["NONE"], 
      "thumbnailConfiguration": { 
         "recordingMode": "INTERVAL", 
         "storage": ["LATEST", "SEQUENTIAL"], 
         "targetIntervalSeconds": 60 
      } 
   }, 
   "name": "TestStage", 
   "participantTokenConfigurations": [  
      {  
         "capabilities": ["PUBLISH", "SUBSCRIBE"], 
         "duration": 20160, 
         "userId": "1" 
      }, 
      {  
         "capabilities": ["PUBLISH", "SUBSCRIBE"], 
         "duration": 20160, 
         "userId": "2" 
      } 
   ]
}

Recording Contents

When individual participant recording is active, HLS video segments, metadata files, and 
thumbnails will start being written to the S3 bucket provided when the stage was created. This 
content is available for post-processing or playback as on-demand video.

Thumbnail-Only Recording 260



Amazon IVS Real-Time Streaming User Guide

Note that after a recording is finalized, an IVS Participant Recording State Change - Recording End 
event is sent through EventBridge. We recommend that you play back or process recorded streams 
only after this event is received. For details, see Using EventBridge with IVS Real-Time Streaming.

The following is a sample directory structure and contents of a recording of a live IVS session:

s3://mybucket/stageId/stageSessionId/participantId/timestamp 
   events 
      recording-started.json 
      recording-ended.json 
   media 
      hls 
  multivariant.m3u8 
         high 
            playlist.m3u8 
            1.mp4 
      thumbnails 
         high 
            1.jpg 
            2.jpg 
      latest_thumbnail 
         high 
            thumb.jpg

The events folder contains the metadata files corresponding to the recording event. JSON 
metadata files are generated when recording starts, ends successfully, or ends with failures:

• events/recording-started.json

• events/recording-ended.json

• events/recording-failed.json

A given events folder contains recording-started.json and either recording-ended.json
or recording-failed.json. These contain metadata related to the recorded session and its 
output formats. JSON details are given below.

The media folder contains the supported media contents. The hls subfolder contains all media 
and the manifest files generated during the recording session and is playable with the IVS player. If 
configured, the thumbnails and latest_thumbnail subfolders contain JPEG thumbnail media 
files generated during the recording session.

Recording Contents 261



Amazon IVS Real-Time Streaming User Guide

JSON Metadata Files

This metadata is in JSON format. It comprises the following information:

Field Type Required Description

stage_arn string Yes ARN of the stage being used as 
the source of the recording.

session_id string Yes String representing the stage's
session_id  where the 
participant is recorded.

participant_id string Yes String representing the identifier 
of the recorded participant.

recording_started_at string Condition 
al

RFC 3339 UTC timestamp when 
the recording started. This is 
unavailable when recording 
_status  is RECORDING 
_START_FAILED . Also, see 
the note below for recording 
_ended_at .

recording_ended_at string Condition 
al

RFC 3339 UTC timestamp when 
the recording ended. This is 
available only when recording 
_status  is "RECORDIN 
G_ENDED"  or "RECORDIN 
G_ENDED_WITH_FAILURE" .

Note: recording_started_ 
at  and recording_ended_at

 are timestamps when these 
events are generated and may not 
exactly match the HLS video-seg 
ment timestamps. To accuratel 
y determine the duration of a 

JSON Metadata Files 262



Amazon IVS Real-Time Streaming User Guide

Field Type Required Description

recording, use the duration_ms
field.

recording_status string Yes Status of the recording. Valid 
values: "RECORDING_STARTED 
" , "RECORDING_ENDED" ,
"RECORDING_START_F 
AILED" , "RECORDIN 
G_ENDED_WITH_FAILURE" .

recording_status_m 
essage

string Condition 
al

Descriptive information on the 
status. This is available only 
when recording_status
is "RECORDING_ENDED"
or "RECORDING_ENDED_W 
ITH_FAILURE" .

media object Yes Object that contains the 
enumerated objects of media 
content available for this 
recording. Valid value: "hls".

hls object Yes Enumerated field that describes 
the Apple HLS format output.

duration_ms integer Condition 
al

Duration of the recorded HLS 
content in milliseconds. This is 
available only when recording 
_status  is "RECORDIN 
G_ENDED"  or "RECORDIN 
G_ENDED_WITH_FAILURE" . 
If a failure occurred before any 
recording was done, this is 0.

path string Yes Relative path from the S3 prefix 
where HLS content is stored.

JSON Metadata Files 263



Amazon IVS Real-Time Streaming User Guide

Field Type Required Description

playlist string Yes Name of the HLS master playlist 
file.

renditions object Yes Array of renditions (HLS variants) 
of metadata objects. There always 
is at least one rendition.

path string Yes Relative path from the S3 prefix 
where HLS content is stored for 
this rendition.

playlist string Yes Name of the media playlist file for 
this rendition.

thumbnails object Condition 
al

Enumerated field that describes 
thumbnails output. This 
is available only when the 
thumbnail configuration’s
storage field includes
SEQUENTIAL

path string Yes Relative path from the S3 prefix 
where sequential thumbnail 
content is stored.

renditions object Yes Array of renditions (thumbnai 
l variants) of metadata objects. 
There always is at least one 
rendition.

path string Yes Relative path from the S3 prefix 
where thumbnail content is stored 
for this rendition.

JSON Metadata Files 264



Amazon IVS Real-Time Streaming User Guide

Field Type Required Description

latest_thumbnail object Condition 
al

Enumerated field that describes 
thumbnails output. This 
is available only when the 
thumbnail configuration’s
storage field includes LATEST.

path string Yes Relative path from the S3 prefix 
where latest_thumbnail  is 
stored.

renditions object Yes Array of renditions (thumbnai 
l variants) of metadata objects. 
There always is at least one 
rendition.

path string Yes Relative path from the S3 prefix 
where the latest thumbnail is 
stored for this rendition.

version string Yes The version of the metadata 
schema.

Example: recording-started.json

{ 
   "version": "v1", 
   "stage_arn": "arn:aws:ivs:us-west-2:aws_account_id:stage/AbCdef1G2hij", 
   "session_id": "st-ZyXwvu1T2s", 
   "participant_id": "xYz1c2d3e4f", 
   "recording_started_at": "2024-03-13T13:17:17Z", 
   "recording_status": "RECORDING_STARTED", 
   "media": { 
      "hls": { 
         "path": "media/hls", 
         "playlist": "multivariant.m3u8", 
         "renditions": [ 
            { 

JSON Metadata Files 265



Amazon IVS Real-Time Streaming User Guide

               "path": "high", 
               "playlist": "playlist.m3u8" 
            } 
         ] 
      }, 
      "thumbnails": { 
         "path": "media/thumbnails", 
         "renditions": [ 
            { 
               "path": "high" 
            } 
         ] 
      }, 
      "latest_thumbnail": { 
         "path": "media/latest_thumbnail", 
         "renditions": [ 
            { 
               "path": "high" 
            } 
         ] 
      } 
   }
}

Example: recording-ended.json

{ 
   "version": "v1", 
   "stage_arn": "arn:aws:ivs:us-west-2:aws_account_id:stage/AbCdef1G2hij", 
   "session_id": "st-ZyXwvu1T2s", 
   "participant_id": "xYz1c2d3e4f", 
   "recording_started_at": "2024-03-13T19:44:19Z", 
   "recording_ended_at": "2024-03-13T19:55:04Z", 
   "recording_status": "RECORDING_ENDED", 
   "media": { 
      "hls": { 
         "duration_ms": 645237, 
         "path": "media/hls", 
         "playlist": "multivariant.m3u8", 
         "renditions": [ 
            { 
               "path": "high", 
               "playlist": "playlist.m3u8" 

JSON Metadata Files 266



Amazon IVS Real-Time Streaming User Guide

            } 
         ] 
      }, 
      "thumbnails": { 
         "path": "media/thumbnails", 
         "renditions": [ 
            { 
               "path": "high" 
            } 
         ] 
      }, 
      "latest_thumbnail": { 
         "path": "media/latest_thumbnail", 
         "renditions": [ 
            { 
               "path": "high" 
            } 
         ] 
      } 
   }
}

Example: recording-failed.json

{ 
   "version": "v1", 
   "stage_arn": "arn:aws:ivs:us-west-2:aws_account_id:stage/AbCdef1G2hij", 
   "session_id": "st-ZyXwvu1T2s", 
   "participant_id": "xYz1c2d3e4f", 
   "recording_started_at": "2024-03-13T19:44:19Z", 
   "recording_ended_at": "2024-03-13T19:55:04Z", 
   "recording_status": "RECORDING_ENDED_WITH_FAILURE", 
   "media": { 
      "hls": { 
         "duration_ms": 645237, 
         "path": "media/hls", 
         "playlist": "multivariant.m3u8", 
         "renditions": [ 
            { 
               "path": "high", 
               "playlist": "playlist.m3u8" 
            } 
         ] 

JSON Metadata Files 267



Amazon IVS Real-Time Streaming User Guide

      }, 
      "thumbnails": { 
         "path": "media/thumbnails", 
         "renditions": [ 
            { 
               "path": "high" 
            } 
         ] 
      }, 
      "latest_thumbnail": { 
         "path": "media/latest_thumbnail", 
         "renditions": [ 
            { 
               "path": "high" 
            } 
         ] 
      } 
   }
}

IVS Composite Recording | Real-Time Streaming

This document explains how to use the composite-recording feature within server-side 
composition. Composite recording allows you to generate HLS recordings of an IVS stage by 
effectively combining all stage publishers into one view using an IVS server, and then saving the 
resulting video to an S3 bucket.

Standard S3 storage and request costs apply. Thumbnails incur no additional IVS charges. For 
details, see Amazon IVS Pricing.

Prerequisites

To use composite recording, you must have a stage with active publishers and an S3 bucket to 
use as the recording destination. Below, we describe one possible workflow that uses EventBridge 
events to record a composition to an S3 bucket. Alternatively, you can start and stop compositions 
based on your own app logic.

1. Create an IVS stage and participant tokens for each publisher.

2. Create an EncoderConfiguration (an object representing how the recorded video should be 
rendered).

Composite Recording 268

https://aws.amazon.com/ivs/pricing/
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_CreateEncoderConfiguration.html


Amazon IVS Real-Time Streaming User Guide

3. Create an S3 bucket and a StorageConfiguration (where the recording contents will be stored).

Important: If you use an existing S3 bucket, the Object Ownership setting must be Bucket 
owner enforced or Bucket owner preferred. For details, see the S3 documentation on
controlling ownership of objects.

4. Join the stage and publish to it.

5. When you receive a Participant Published EventBridge event, call StartComposition with an S3 
DestinationConfiguration object as the destination

6. After a few seconds, you should be able to see the HLS segments being persisted to your S3 
buckets.

Note: A composition performs auto-shutdown after 60 seconds of inactivity from publisher 
participants on the stage. At that point, the composition is terminated and transitions to a
STOPPED state. A composition is automatically deleted after a few minutes in the STOPPED state. 
For details, see Composition Lifecycle in Server-Side Composition.

Composite Recording Example: StartComposition with an S3 Bucket Destination

The example below shows a typical call to the StartComposition operation, specifying S3 as 
the only destination for the composition. Once the composition transitions to an ACTIVE
state, video segments and metadata will start to be written to the S3 bucket specified by the
storageConfiguration object. To create compositions with different layouts, see “Layouts” in
Server-Side Composition and the IVS Real-Time Streaming API Reference.

Composite Recording 269

https://docs.aws.amazon.com/AmazonS3/latest/userguide/creating-bucket.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_CreateStorageConfiguration.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/about-object-ownership.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_StartComposition.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_StartComposition.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_LayoutConfiguration.html


Amazon IVS Real-Time Streaming User Guide

Request

POST /StartComposition HTTP/1.1
Content-type: application/json

{ 
   "destinations": [ 
      { 
         "s3": { 
            "encoderConfigurationArns": [ 
              "arn:aws:ivs:ap-northeast-1:927810967299:encoder-configuration/
PAAwglkRtjge" 
            ], 
            "storageConfigurationArn": "arn:aws:ivs:ap-
northeast-1:927810967299:storage-configuration/ZBcEbgbE24Cq", 
     "thumbnailConfigurations": [ 
        { 
    "storage": ["LATEST", "SEQUENTIAL"], 
    "targetIntervalSeconds": 30 
               } 
     ] 
  } 
      } 
   ], 
   "idempotencyToken": "db1i782f1g9", 
   "stageArn": "arn:aws:ivs:ap-northeast-1:927810967299:stage/WyGkzNFGwiwr"
}

Response

{ 
    "composition": { 
        "arn": "arn:aws:ivs:ap-northeast-1:927810967299:composition/s2AdaGUbvQgp", 
        "destinations": [ 
            { 
                "configuration": { 
                    "name": "", 
                    "s3": { 
                        "encoderConfigurationArns": [ 
                            "arn:aws:ivs:ap-northeast-1:927810967299:encoder-
configuration/PAAwglkRtjge" 
                        ], 
                        "recordingConfiguration": { 

Composite Recording 270



Amazon IVS Real-Time Streaming User Guide

                            "format": "HLS" 
                        }, 
                        "storageConfigurationArn": "arn:aws:ivs:ap-
northeast-1:927810967299:storage-configuration/ZBcEbgbE24Cq", 
                 "thumbnailConfigurations": [ 
                    { 
                "storage": ["LATEST", "SEQUENTIAL"], 
                "targetIntervalSeconds": 30 
                           } 
                 ] 
                    } 
                }, 
                "detail": { 
                    "s3": { 
                        "recordingPrefix": "MNALAcH9j2EJ/s2AdaGUbvQgp/2pBRKrNgX1ff/
composite" 
                    } 
                }, 
                "id": "2pBRKrNgX1ff", 
                "state": "STARTING" 
            } 
        ], 
        "layout": null, 
        "stageArn": "arn:aws:ivs:ap-northeast-1:927810967299:stage/WyGkzNFGwiwr", 
        "startTime": "2023-11-01T06:25:37Z", 
        "state": "STARTING", 
        "tags": {} 
    }
}

The recordingPrefix field, present in the StartComposition response can be used to determine 
where the recording contents will be stored.

Recording Contents

When the composition transitions to an ACTIVE state, HLS video segments, metadata files, 
and thumbnails (if configured) will start being written to the S3 bucket specified during the 
StartComposition call. This content is available for post-processing or playback as on-demand 
video.

Note that after a composition becomes live, an “IVS Composition State Change” event is emitted, 
and it may take a little time before the manifest files, video segments, and thumbnails are written. 

Recording Contents 271



Amazon IVS Real-Time Streaming User Guide

We recommend that you play back or process recorded streams only after the “IVS Composition 
State Change (Session End)” event is received. For details, see Using EventBridge with IVS Real-
Time Streaming .

The following is a sample directory structure and contents of a recording of a live IVS session:

MNALAcH9j2EJ/s2AdaGUbvQgp/2pBRKrNgX1ff/composite 
   events 
      recording-started.json 
      recording-ended.json 
   media 
      hls 
      thumbnails 
      latest_thumbnail

The events folder contains the metadata files corresponding to the recording event. JSON 
metadata files are generated when recording starts, ends successfully, or ends with failures:

• events/recording-started.json

• events/recording-ended.json

• events/recording-failed.json

A given events folder will contain recording-started.json and either recording-
ended.json or recording-failed.json.

These contain metadata related to the recorded session and its output formats. JSON details are 
given below.

The media folder contains the supported media contents. The hls subfolder contains all media 
and the manifest files generated during the composition session and is playable with the IVS 
player. The HLS manifest is located in the multivariant.m3u8 folder. If configured, the
thumbnails and latest_thumbnail subfolders contain JPEG thumbnail media files generated 
during the composition session.

Bucket Policy for StorageConfiguration

When a StorageConfiguration object is created, IVS will get access to write content to the specified 
S3 bucket. This access is granted by making modifications to the S3 bucket's policy. If the policy for 
the bucket is altered in a way that removes IVS's access, ongoing and new recordings will fail.

Bucket Policy for StorageConfiguration 272



Amazon IVS Real-Time Streaming User Guide

The example below shows an S3 bucket policy that allows IVS to write to the S3 bucket:

{ 
    "Version": "2012-10-17", 
    "Statement": [ 
        { 
            "Sid": "CompositeWrite-y1d212y", 
            "Effect": "Allow", 
            "Principal": { 
                "Service": "ivs-composite.ap-northeast-1.amazonaws.com" 
            }, 
            "Action": [ 
                "s3:PutObject", 
                "s3:PutObjectAcl" 
            ], 
            "Resource": "arn:aws:s3:::my-s3-bucket/*", 
            "Condition": { 
                "StringEquals": { 
                    "s3:x-amz-acl": "bucket-owner-full-control" 
                }, 
                "Bool": { 
                    "aws:SecureTransport": "true" 
                } 
            } 
        } 
    ]
}

JSON Metadata Files

This metadata is in JSON format. It comprises the following information:

Field Type Required Description

stage_arn string Yes ARN of the stage being used as 
the source of the composition.

media object Yes Object that contains the 
enumerated objects of media 
content available for this 
recording. Valid values: "hls".

JSON Metadata Files 273



Amazon IVS Real-Time Streaming User Guide

Field Type Required Description

hls object Yes Enumerated field that describes 
the Apple HLS format output.

duration_ms integer Condition 
al

Duration of the recorded HLS 
content in milliseconds. This is 
available only when recording 
_status  is "RECORDIN 
G_ENDED"  or "RECORDIN 
G_ENDED_WITH_FAILURE" . 
If a failure occurred before any 
recording was done, this is 0.

path string Yes Relative path from the S3 prefix 
where HLS content is stored.

playlist string Yes Name of the HLS master playlist 
file.

renditions object Yes Array of renditions (HLS variant) 
of metadata objects. There always 
is at least one rendition.

path string Yes Relative path from the S3 prefix 
where HLS content is stored for 
this rendition.

playlist string Yes Name of the media playlist file for 
this rendition.

resolution_height int Condition 
al

Pixel resolution height of the 
encoded video. This is available 
 only when the rendition contains 
a video track.

JSON Metadata Files 274



Amazon IVS Real-Time Streaming User Guide

Field Type Required Description

resolution_width int Condition 
al

Pixel resolution width of the 
encoded video. This is available 
 only when the rendition contains 
a video track.

thumbnails object Condition 
al

Enumerated field that describes 
thumbnails output. This 
is available only when the 
thumbnail configuration’s
storage field includes
SEQUENTIAL

path string Yes Relative path from the S3 prefix 
where sequential thumbnail 
content is stored.

resolutions object Yes Array of resolutions (thumbnai 
l variants) of metadata objects. 
There always is at least one 
resolution.

path string Yes Relative path from the S3 prefix 
where thumbnail content is stored 
for this resolution.

resolution_height int Yes Pixel resolution height of the 
thumbnails.

resolution_width int Yes Pixel resolution width of the 
thumbnails.

latest_thumbnail object Condition 
al

Enumerated field that describes 
thumbnails output. This 
is available only when the 
thumbnail configuration’s
storage field includes LATEST.

JSON Metadata Files 275



Amazon IVS Real-Time Streaming User Guide

Field Type Required Description

path string Yes Relative path from the S3 prefix 
where latest_thumbnail  is 
stored.

resolutions object Yes Array of resolutions (thumbnai 
l variants) of metadata objects. 
There always is at least one 
resolution.

path string Yes Relative path from the S3 prefix 
where the latest thumbnail is 
stored for this resolution.

resolution_height int Yes Pixel resolution height of the 
latest thumbnail.

resolution_width int Yes Pixel resolution width of the 
latest thumbnail.

recording_ended_at string Condition 
al

RFC 3339 UTC timestamp when 
the recording ended. This is 
available only when recording 
_status  is "RECORDIN 
G_ENDED"  or "RECORDIN 
G_ENDED_WITH_FAILURE" .

recording_started_at
and recording_ended_at

 are timestamps when these 
events are generated and may not 
exactly match the HLS video-seg 
ment timestamps. To accuratel 
y determine the duration of a 
recording, use the duration_ms
field.

JSON Metadata Files 276



Amazon IVS Real-Time Streaming User Guide

Field Type Required Description

recording_started_at string Condition 
al

RFC 3339 UTC timestamp when 
the recording started. This is 
unavailable when recording 
_status  is RECORDING 
_START_FAILED .

See the note above for
recording_ended_at .

recording_status string Yes Status of the recording. Valid 
values: "RECORDING_STARTED 
" , "RECORDING_ENDED" ,
"RECORDING_START_F 
AILED" , "RECORDIN 
G_ENDED_WITH_FAILURE" .

recording_status_m 
essage

string Condition 
al

Descriptive information on the 
status. This is available only 
when recording_status
is "RECORDING_ENDED"
or "RECORDING_ENDED_W 
ITH_FAILURE" .

version string Yes The version of the metadata 
schema.

Example: recording-started.json

{ 
  "version": "v1", 
  "stage_arn": "arn:aws:ivs:ap-northeast-1:123456789012:stage/aAbBcCdDeE12", 
  "recording_started_at": "2023-11-01T06:01:36Z", 
  "recording_status": "RECORDING_STARTED", 
  "media": { 
    "hls": { 
      "path": "media/hls", 

JSON Metadata Files 277



Amazon IVS Real-Time Streaming User Guide

      "playlist": "multivariant.m3u8", 
      "renditions": [ 
        { 
          "path": "720p30-abcdeABCDE12", 
          "playlist": "playlist.m3u8", 
          "resolution_width": 1280, 
          "resolution_height": 720 
        } 
      ] 
    }, 
    "thumbnails": { 
      "path": "media/thumbnails", 
      "resolutions": [ 
        { 
          "path": "1280x720", 
          "resolution_width": 1280, 
          "resolution_height": 720 
        } 
      ] 
    }, 
    "latest_thumbnail": { 
      "path": "media/latest_thumbnail", 
      "resolutions": [ 
        { 
          "path": "1280x720", 
          "resolution_width": 1280, 
          "resolution_height": 720 
        } 
      ] 
    } 
  }
}

Example: recording-ended.json

{ 
  "version": "v1", 
  "stage_arn": "arn:aws:ivs:ap-northeast-1:123456789012:stage/aAbBcCdDeE12", 
  "recording_started_at": "2023-10-27T17:00:44Z", 
  "recording_ended_at": "2023-10-27T17:08:24Z", 
  "recording_status": "RECORDING_ENDED", 
  "media": { 
    "hls": { 

JSON Metadata Files 278



Amazon IVS Real-Time Streaming User Guide

      "duration_ms": 460315, 
      "path": "media/hls", 
      "playlist": "multivariant.m3u8", 
      "renditions": [ 
        { 
          "path": "720p30-abcdeABCDE12", 
          "playlist": "playlist.m3u8", 
          "resolution_width": 1280, 
          "resolution_height": 720 
        } 
      ] 
    }, 
    "thumbnails": { 
      "path": "media/thumbnails", 
      "resolutions": [ 
        { 
          "path": "1280x720", 
          "resolution_width": 1280, 
          "resolution_height": 720 
        } 
      ] 
    }, 
    "latest_thumbnail": { 
      "path": "media/latest_thumbnail", 
      "resolutions": [ 
        { 
          "path": "1280x720", 
          "resolution_width": 1280, 
          "resolution_height": 720 
        } 
      ] 
    } 
  }
}

Example: recording-failed.json

{ 
  "version": "v1", 
  "stage_arn": "arn:aws:ivs:ap-northeast-1:123456789012:stage/aAbBcCdDeE12", 
  "recording_started_at": "2023-10-27T17:00:44Z", 
  "recording_ended_at": "2023-10-27T17:08:24Z", 
  "recording_status": "RECORDING_ENDED_WITH_FAILURE", 

JSON Metadata Files 279



Amazon IVS Real-Time Streaming User Guide

  "media": { 
    "hls": { 
      "duration_ms": 460315, 
      "path": "media/hls", 
      "playlist": "multivariant.m3u8", 
      "renditions": [ 
        { 
          "path": "720p30-abcdeABCDE12", 
          "playlist": "playlist.m3u8", 
          "resolution_width": 1280, 
          "resolution_height": 720 
        } 
      ] 
    }, 
    "thumbnails": { 
      "path": "media/thumbnails", 
      "resolutions": [ 
        { 
          "path": "1280x720", 
          "resolution_width": 1280, 
          "resolution_height": 720 
        } 
      ] 
    }, 
    "latest_thumbnail": { 
      "path": "media/latest_thumbnail", 
      "resolutions": [ 
        { 
          "path": "1280x720", 
          "resolution_width": 1280, 
          "resolution_height": 720 
        } 
      ] 
    } 
  }
}

Playback of Recorded Content from Private Buckets

By default, the recorded content is private; hence, these objects are inaccessible for playback using 
the direct S3 URL. If you try to open the HLS multivariate playlist (m3u8 file) for playback using 
the IVS player or another player, you will get an error (e.g., “You do not have permission to access 

Playback of Recorded Content from Private Buckets 280



Amazon IVS Real-Time Streaming User Guide

the requested resource”). Instead, you can play back these files with the Amazon CloudFront CDN 
(Content Delivery Network).

CloudFront distributions can be configured to serve content from private buckets. Typically this 
is preferable to having openly accessible buckets where reads bypass the controls offered by 
CloudFront. You can set up your distribution to be served from a private bucket by creating an 
origin access control (OAC), which is a special CloudFront user that has read permissions on the 
private origin bucket. You can create the OAC after you create your distribution, through the 
CloudFront console or API. See Creating a new origin access control in the Amazon CloudFront 
Developer Guide.

Setting Up Playback using CloudFront with CORS Enabled

This example covers how a developer can set up a CloudFront distribution with CORS enabled, 
enabling playback of their recordings from any domain. This is especially useful during the 
development phase, but you can modify the example below to match your production needs.

Step 1: Create an S3 Bucket

Create an S3 bucket that will be used to store the recordings. Note that the bucket needs to be in 
the same region that you use for your IVS workflow.

Add a permissive CORS policy to the bucket:

1. In the AWS console, go to the S3 Bucket Permissions tab.

2. Copy the CORS policy below and paste it under Cross-origin resource sharing (CORS). This will 
enable CORS access on the S3 bucket.

[ 
    { 
        "AllowedHeaders": [ 
            "*" 
        ], 
        "AllowedMethods": [ 
            "PUT", 
            "POST", 
            "DELETE", 
            "GET" 
        ], 
        "AllowedOrigins": [ 

Playback of Recorded Content from Private Buckets 281

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html#create-oac-overview-s3


Amazon IVS Real-Time Streaming User Guide

            "*" 
        ], 
        "ExposeHeaders": [ 
            "x-amz-server-side-encryption", 
            "x-amz-request-id", 
            "x-amz-id-2" 
        ] 
    }
]

Step 2: Create a CloudFront Distribution

See  Creating a CloudFront distribution in the CloudFront Developer Guide.

Using the AWS console, enter the following information:

For this field … Choose this …

Origin Domain The S3 bucket created in the previous step

Origin Access Origin access control settings (recommended), 
using default parameters

Default cache behavior: Viewer Protocol Policy Redirect HTTP to HTTPS

Default cache behavior: Allowed HTTP 
methods

GET, HEAD and OPTIONS

Default cache behavior: Cache key and origin 
requests

CachingDisabled policy

Default cache behavior: Origin request policy CORS-S3Origin

Default cache behavior: Response headers 
policy

SimpleCORS

Web Application Firewall Enable security protections

Then save the CloudFront distribution.

Playback of Recorded Content from Private Buckets 282

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-creating-console.html


Amazon IVS Real-Time Streaming User Guide

Step 3: Set Up the S3 Bucket Policy

1. Delete any StorageConfiguration that you have set up for the S3 bucket. This will remove any 
bucket policies that were automatically added when creating the policy for that bucket.

2. Go to your CloudFront Distribution, make sure all distribution fields are in the states defined in 
the previous step, and Copy the Bucket Policy (use the Copy policy button).

3. Go to your S3 bucket. On the Permissions tab, select Edit Bucket Policy and paste the bucket 
policy that you copied in the previous step. After this step, the bucket policy should have the 
CloudFront policy exclusively.

4. Create a StorageConfiguration, specifying the S3 bucket.

After the StorageConfiguration is created, you will see two items in the S3 bucket policy, one 
allowing CloudFront to read contents and another one allowing IVS to write contents. An example 
of a final bucket policy, with CloudFront and IVS access, is shown in Example: S3 Bucket Policy with 
CloudFront and IVS Access.

Step 4: Play Back Recordings

After you successfully set up the CloudFront distribution and update the bucket policy, you should 
be able to play back recordings using the IVS player:

1. Successfully start a Composition and make sure you have a recording stored on the S3 bucket.

2. After following the Step 1 through Step 3 in this example, the video files should be available 
for consumption through the CloudFront URL. Your CloudFront URL is the Distribution domain 
name on the Details tab in the Amazon CloudFront console. It should be something like this:

a1b23cdef4ghij.cloudfront.net

3. To play the recorded video through the CloudFront distribution, find the object key for your
multivariant.m3u8 file under the s3 bucket. It should be something like this:

FDew6Szq5iTt/9NIpWJHj0wPT/fjFKbylPb3k4/composite/media/hls/
multivariant.m3u8

4. Append the object key to the end of your CloudFront URL. Your final URL will be something like 
this:

https://a1b23cdef4ghij.cloudfront.net/FDew6Szq5iTt/9NIpWJHj0wPT/
fjFKbylPb3k4/composite/media/hls/multivariant.m3u8

Playback of Recorded Content from Private Buckets 283



Amazon IVS Real-Time Streaming User Guide

5. You can now add the final URL to the source attribute of an IVS player to watch the full 
recording. To watch the recorded video, you can use the demo in  Getting Started in the IVS 
Player SDK: Web Guide.

Example: S3 Bucket Policy with CloudFront and IVS Access

The snippet below illustrates an S3 bucket policy that allows CloudFront to read content to 
the private bucket and IVS to write content to the bucket. Note: Do not copy and paste the 
snippet below to your own bucket. Your policy should contain the IDs that are relevant to your 
CloudFront distribution and StorageConfiguration.

{ 
  "Version": "2012-10-17", 
  "Statement": [ 
    { 
      "Sid": "CompositeWrite-7eiKaIGkC9DO", 
      "Effect": "Allow", 
      "Principal": { 
        "Service": "ivs-composite.ap-northeast-1.amazonaws.com" 
      }, 
      "Action": [ 
        "s3:PutObject", 
        "s3:PutObjectAcl" 
      ], 
      "Resource": "arn:aws:s3:::eicheane-test-1026-2-ivs-recordings/*", 
      "Condition": { 
        "StringEquals": { 
          "s3:x-amz-acl": "bucket-owner-full-control" 
        }, 
        "Bool": { 
          "aws:SecureTransport": "true" 
        } 
      } 
    }, 
    { 
      "Sid": "AllowCloudFrontServicePrincipal", 
      "Effect": "Allow", 
      "Principal": { 
        "Service": "cloudfront.amazonaws.com" 
      }, 
      "Action": "s3:GetObject", 
      "Resource": "arn:aws:s3:::eicheane-test-1026-2-ivs-recordings/*", 

Playback of Recorded Content from Private Buckets 284

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/web-getting-started.html


Amazon IVS Real-Time Streaming User Guide

      "Condition": { 
        "StringEquals": { 
          "AWS:SourceArn": "arn:aws:cloudfront::844311324168:distribution/
E1NG4YMW5MN25A" 
        } 
      } 
    } 
  ]
}

Troubleshooting

• The composition is not written to the S3 bucket — Ensure that the S3 bucket and 
StorageConfiguration objects are created and in the same region. Also ensure that IVS has access 
to the bucket by checking your bucket policy; see Bucket Policy for StorageConfiguration.

• I can’t find a composition when performing ListCompositions — Compositions are ephemeral 
resources. Once they transition to a final state, they are deleted automatically after a few 
minutes.

• My composition stops automatically — A composition will stop automatically if there is no 
publisher on the stage for more than 60 seconds.

Known Issue

The media playlist written by composite recording has the tag #EXT-X-PLAYLIST-TYPE:EVENT
while the composition is ongoing. When composition is done, the tag is updated to #EXT-X-
PLAYLIST-TYPE:VOD. For a smooth playback experience, we recommend that you use this playlist 
only after the composition finalizes successfully.

Troubleshooting 285



Amazon IVS Real-Time Streaming User Guide

IVS Stream Ingest | Real-Time Streaming

As an alternative to using the IVS broadcast SDK, you can publish video to an IVS stage from a 
WHIP or RTMP source. This approach offers flexibility for workflows where using the SDK is not 
feasible or preferred, such as when publishing video from OBS Studio or a hardware encoder. 
Whenever possible, we recommend using the IVS broadcast SDK, as we cannot guarantee the 
performance or compatibility of third-party solutions with IVS.

This diagram illustrates how publishing with WHIP and RTMP works:

Supported Protocols

IVS real-time streaming supports several ingest protocols:

• RTMP (Real-Time Messaging Protocol) — An industry standard for transmitting video over a 
network.

• RTMPS — The secure version of RTMP that operates over TLS.

• WHIP (WebRTC-HTTP Ingestion Protocol) — An IETF draft developed to standardize WebRTC 
ingestion.

Supported Protocols 286



Amazon IVS Real-Time Streaming User Guide

RTMP generally has higher latency than WHIP, making it ideal for one-to-many live streams. For 
detailed guidance on using these protocols, see our RTMP and WHIP documentation.

Supported Media Specifications

• Audio input format

• Codec: AAC-LC for RTMP and Opus for WHIP

• Channels: 2 (Stereo) or 1 (Mono)

• Sample rate: 44.1 kHz or 48 kHz

• Maximum bitrate: 160 Kbps

• Video input format

• Codec: H.264

• H.264 profile: Baseline

• IDR interval: 1 or 2 seconds

• Frame rate: 10 to 60 FPS

• B-frames: 0

Note: The IVS broadcast SDK has B-frames enabled by default when using RTMP. Therefore, 
developers must disable B-frames: on iOS, use the usesBFrames method; on Android,
setUseBFrames. If developers do not disable B-Frames, their streams will be disconnected.

• Resolution: Maximum: 720p. Minimum: 160p

• Maximum bitrate: 8.5 Mbps

• Encoder configuration: We recommend using veryfast and zerolatency settings for an 
H.264 encoder. Also: the sliced_threads x264 option is included in the zerolatency
presets, and we recommend that you disable it. For example, when using FFmpeg, your 
command should include: -preset:v veryfast -tune zerolatency -x264-params 
sliced-threads=0

IVS RTMP Publishing | Real-Time Streaming

This document outlines the process of publishing to an IVS stage using RTMP. For additional details 
on various ingest options, refer to the Stream Ingest documentation

Supported Media Specifications 287

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-rtmp-publishing.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/obs-whip-support.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-stream-ingest.html


Amazon IVS Real-Time Streaming User Guide

Create Stage

To create a stage, use the following command:

aws ivs-realtime create-stage --name "test-stage"

See CreateStage for details, including the response.

Important: In the response, note the endpoints field, which lists both RTMP and RTMPS 
endpoints. These are required for setting up your RTMP encoder.

Create an Ingest Configuration

To publish to a stage using RTMPS, you must first create an ingest configuration and associate it 
with your stage. When you publish to the stage (using the stream key from the ingest configuration 
and the RTMP endpoint from the stage), the media will be published to the stage as a participant. 
You have the option to specify a userId and custom attributes, which will be associated with 
the participant that connects to the stage.

aws ivs-realtime create-ingest-configuration --name 'test' --stage-arn arn:aws:ivs:us-
east-1:123456789012:stage/8faHz1SQp0ik --user-id = '123' --ingest-protocol 'RTMPS'

See CreateIngestConfiguration for details, including the response.

When creating an ingest configuration, you can associate it with a specific stage ARN up front. 
Without this association, the stream key is unusable. Also, ingest configurations (including the
stageArn field) can be updated via the UpdateIngestConfiguration operation, allowing you to 
reuse the same configuration for different stages.

Note: The ingest configuration insecureIngest field defaults to false, requiring the use of 
RTMPS. RTMP connections will be rejected. If you must use RTMP, set insecureIngest to true. 
We recommend using RTMPS unless you have specific and verified use cases that require RTMP.

Publish Using an RTMP Encoder

This example demonstrates how to use OBS Studio; however, you can use any RTMP encoder that 
meets the IVS media specifications.

1. Download and install the software: "https://obsproject.com/download.

Create Stage 288

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_CreateStage.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_Participant.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_CreateIngestConfiguration.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_UpdateIngestConfiguration.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-stream-ingest.html#supported-media-specifications
https://obsproject.com/download


Amazon IVS Real-Time Streaming User Guide

2. Click Settings. In the Stream section of the Settings panel, select Custom from the Service
dropdown.

3. For the Server, enter the RTMP or RTMPS endpoint from the stage.

4. For the Stream Key, enter the streamKey from the ingest configuration.

5. Configure your video settings as you normally would, with a few restrictions:

a. IVS real-time streaming supports input up to 720p at 8.5 Mbps. If you exceed either of these 
limits, your stream will be disconnected.

b. We recommend setting your Keyframe Interval in the Output panel to 1s or 2s. A low 
keyframe interval allows video playback to start more quickly for viewers. We also 
recommend setting CPU Usage Preset to veryfast and Tune to zerolatency, to enable the 
lowest latency.

c. Because OBS does not support simulcast, we recommend keeping your bitrate below 2.5 
Mbps. This enables viewers on lower-bandwidth connections to watch.

d. Disable B-frames, as streams with B-frames will be automatically disconnected. Do one of the 
following:

• In x264 options, enter bframes=0 sliced-threads=0.

• Set B-frames to 0 if it is an option (e.g., for NVENC).

Note: RTMP streams must include both audio and video tracks, or they will be disconnected.

6. Select Start Streaming

Important: If your encoder’s maximum bitrate is set to 8.5 Mbps, the publisher occasionally 
disappears from the session. This is because the maximum bitrate setting is only a target, and 
encoders occasionally go over the target. To prevent this, set your encoder’s maximum bitrate 
lower; e.g. to 6 Mbps.

IVS WHIP Publishing | Real-Time Streaming

This document explains how to use WHIP-compatible encoders like OBS to publish to IVS real-
time streaming. WHIP (WebRTC-HTTP Ingestion Protocol) is an IETF draft developed to standardize 
WebRTC ingestion.

WHIP enables compatibility with software like OBS, offering an alternative (to the IVS broadcast 
SDK) for desktop publishing. More sophisticated streamers familiar with OBS may prefer it for 
its advanced production features, such as scene transitions, audio mixing, and overlay graphics. 

WHIP 289

https://www.ietf.org/archive/id/draft-ietf-wish-whip-01.html


Amazon IVS Real-Time Streaming User Guide

This provides developers with a versatile option: use the IVS web broadcast SDK for direct browser 
publishing or allow streamers to use OBS on their desktop for more powerful tools.

Also, WHIP is beneficial in situations where using the IVS broadcast SDK isn't feasible or preferred. 
For example, in setups involving hardware encoders, the IVS broadcast SDK might not be an option. 
However, if the encoder supports WHIP, you can still publish directly from the encoder to IVS.

Note: Your SDP offer must include an H.264 video track, even if you are only publishing audio. If 
the offer does not include a video track, the connection will be rejected.

OBS Guide

OBS supports WHIP as of version 30. To start, download OBS v30 or newer: https:// 
obsproject.com/.

To publish to an IVS stage using OBS via WHIP, follow these steps:

1. Generate a participant token with publish capability. In WHIP terms, a participant token is a 
bearer token. By default, participant tokens expire in 12 hours, but you can extend the duration 
up to 14 days.

2. Click Settings. In the Stream section of the Settings panel, select WHIP from the Service
dropdown.

3. For the Server, enter https://global.whip.live-video.net.

4. For the Bearer Token, enter the participant token that you generated in step 1.

5. Configure your video settings as you normally would, with a few restrictions:

a. IVS real-time streaming supports input up to 720p at 8.5 Mbps. If you exceed either of these 
limits, your stream will be disconnected.

b. We recommend setting your Keyframe Interval in the Output panel to 1s or 2s. A low 
keyframe interval allows video playback to start more quickly for viewers. We also 
recommend setting CPU Usage Preset to veryfast and Tune to zerolatency, to enable the 
lowest latency.

c. Because OBS does not support simulcast, we recommend keeping your bitrate below 2.5 
Mbps. This enables viewers on lower-bandwidth connections to watch.

6. Press Start Streaming.

Note: We are aware of quality issues (like intermittent video freezing) that can occur with WHIP 
in OBS. These typically arise when the broadcaster's network is unstable. We recommend testing 

OBS Guide 290

https://obsproject.com/
https://obsproject.com/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-distribute-tokens.html


Amazon IVS Real-Time Streaming User Guide

WHIP in OBS before using it for production live streams. Lowering your broadcast bitrate also may 
help reduce the occurrence of these issues.

OBS Guide 291



Amazon IVS Real-Time Streaming User Guide

IVS Service Quotas | Real-Time Streaming

The following are service quotas and limits for Amazon Interactive Video Service (IVS) real-time 
endpoints, resources, and other operations. Service quotas (also known as limits) are the maximum 
number of service resources or operations for your AWS account. That is, these limits are per AWS 
account, unless noted otherwise in the table. Also see AWS Service Quotas.

You use an endpoint to connect programmatically to an AWS service. Also see AWS Service 
Endpoints.

All quotas are enforced per region.

Service Quota Increases

For quotas that are adjustable, you can request a rate increase through the AWS console. Use the 
console to view information about service quotas too.

API call rate quotas are not adjustable.

API Call Rate Quotas

Operation Type Operation Default

Composition GetComposition 5 TPS

Composition ListCompositions 5 TPS

Composition StartComposition 5 TPS

Composition StopComposition 5 TPS

IngestConfiguration CreateIngestConfiguration 5 TPS

IngestConfiguration DeleteIngestConfiguration 5 TPS

IngestConfiguration GetIngestConfiguration 5 TPS

IngestConfiguration ListIngestConfigurations 5 TPS

Service Quota Increases 292

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://console.aws.amazon.com/servicequotas/


Amazon IVS Real-Time Streaming User Guide

Operation Type Operation Default

IngestConfiguration UpdateIngestConfiguration 5 TPS

MediaEncoder CreateEncoderConfiguration 5 TPS

MediaEncoder DeleteEncoderConfiguration 5 TPS

MediaEncoder GetEncoderConfiguration 5 TPS

MediaEncoder ListEncoderConfigurations 5 TPS

PublicKey DeletePublicKey 3 TPS

PublicKey GetPublicKey 3 TPS

PublicKey ImportPublicKey 3 TPS

PublicKey ListPublicKeys 3 TPS

Stage CreateParticipantToken 50 TPS

Stage CreateStage 5 TPS

Stage DeleteStage 5 TPS

Stage DisconnectParticipant 5 TPS

Stage GetParticipant 5 TPS

Stage GetStage 5 TPS

Stage GetStageSession 5 TPS

Stage ListStages 5 TPS

Stage UpdateStage 5 TPS

Stage ListParticipants 5 TPS

Stage ListParticipantEvents 5 TPS

API Call Rate Quotas 293



Amazon IVS Real-Time Streaming User Guide

Operation Type Operation Default

Stage ListStageSessions 5 TPS

StorageConfiguration CreateStorageConfiguration 5 TPS

StorageConfiguration DeleteStorageConfiguration 5 TPS

StorageConfiguration GetStorageConfiguration 5 TPS

StorageConfiguration ListStorageConfigurations 5 TPS

Tags ListTagsForResource 10 TPS

Tags TagResource 10 TPS

Tags UntagResource 10 TPS

Other Quotas

Resource or Feature Default Adjustable Description

EncoderConfigurations 20 Yes Maximum number of 
EncoderConfiguration objects 
per account.

Composition destinations 2 No Maximum number of 
Destination objects in a 
Composition object.

Composition: max duration 24 No Maximum amount of time 
a composition can exist, in 
hours.

Compositions 5 Yes Maximum concurrent 
Composition objects per 
account.

Other Quotas 294



Amazon IVS Real-Time Streaming User Guide

Resource or Feature Default Adjustable Description

IngestConfigurations 100 Yes Maximum number of 
IngestConfiguration objects 
per account.

Participant publish bitrate 8.5 Mbps No Maximum bits per second 
that can be streamed to a 
stage.

Participant publish or 
subscribe duration

24 No Maximum length of time a 
participant can publish or 
remain subscribed to a stage, 
in hours.

Participant publish resolution 720p No Maximum resolution of video 
published by participants.

Participant download bitrate 8.5 Mbps No Maximum aggregate 
download bitrate across all of 
a participant’s subscriptions.

PublicKeys 3 No Maximum number of public 
keys, per AWS Region.

Stage participants (publishe 
rs)

12 No Maximum number of 
participants who can be 
publishing to a stage at once.

Stage participants (subscrib 
ers)

10,000 Yes (up to 
25,000)

Maximum number of 
participants who can be 
subscribing to a stage at once.

Stages 1,000 Yes Maximum number of stages, 
per AWS Region.

StorageConfigurations 5 Yes Maximum number of 
StorageConfiguration objects 
per account.

Other Quotas 295



Amazon IVS Real-Time Streaming User Guide

IVS Real-Time Streaming Optimizations

To ensure that your users have the best experience when streaming and viewing video using 
IVS real-time streaming, there are several ways you can improve or optimize for parts of the 
experience, using features that we offer today.

Introduction

When optimizing for a user's quality of experience, it’s important to consider their desired 
experience, which can change depending on the content they are watching and network 
conditions.

Throughout this guide we focus on users who are either publishers of streams or subscribers of 
streams, and we consider the desired actions and experiences of those users.

Adaptive Streaming: Layered Encoding with Simulcast

This feature is supported only in the following client versions:

• iOS and Android 1.18.0+

• Web 1.12.0+

When using IVS real-time broadcast SDKs, publishers can encode multiple layers of video and 
subscribers automatically adapt or change to the quality best suited for their network. We call this
layered encoding with simulcast.

Layered encoding with simulcast is supported on Android and iOS, and on the Chrome and Edge 
desktop browsers (for Windows and macOS). We do not support layered encoding on other 
browsers.

In the diagram below, the host is sending three video qualities (high, medium, and low). IVS 
forwards the highest quality video to each viewer based on available bandwidth; this provides an 
optimal experience for each viewer. If Viewer 1's network connection changes from good to bad, 
IVS automatically starts sending Viewer 1 lower quality video, so Viewer 1 can keep watching the 
stream uninterrupted (with the best quality possible).

Introduction 296



Amazon IVS Real-Time Streaming User Guide

Default Layers, Qualities, and Framerates

The default qualities and layers provided for mobile and web users are as follows:

Mobile (Android, iOS) Web (Chrome)

High layer (or custom):

• Max bitrate: 900,000 bps

• Framerate: 15 fps

High layer (or custom):

• Max bitrate: 1,700,000 bps

• Framerate: 30 fps

Mid layer: none (not needed, 
because the difference between 
the high- and low-layer bitrates on 
mobile is narrow)

Mid layer:

• Max bitrate: 700,000 bps

• Framerate: 20 fps

Low layer:

• Max bitrate: 100,000 bps

• Framerate: 15 fps

Low layer:

• Max bitrate: 200,000 bps

• Framerate: 15 fps

Default Layers, Qualities, and Framerates 297



Amazon IVS Real-Time Streaming User Guide

Resolution of Layers

The resolutions of the mid and low layers are automatically scaled down from the high layer, to 
maintain the same aspect ratio.

Mid and low layers are excluded if their resolutions are too close to the layer above. For example, if 
the configured resolution is 320x180, the SDK won't also send lower-resolution layers.

The table below shows the resolutions of layers generated for different configured resolutions. The 
listed values are in landscape orientation but can be applied in reverse for portrait content.

Input Resolutio 
n

Output Layer Resolutions: Mobile Output Layer Resolutions: Web

720p (1280x720 
)

Hi (1280x720)

Low (320x180)

Hi (1280x720)

Mid (640x360)

Low (320x180)

540p (960x540) Hi (960x540)

Low (320x180)

Hi (960x540)

Low (320x180)

360p (640x360) Hi (640x360)

Low (360x180)

Hi (640x360)

Low (360x180)

270p (480x270) Hi (480x270) Hi (480x270)

180p (320x180) Hi (320x180) Hi (320x180)

For custom input resolutions not mapped above, you can calculate them using the following tool.

Configuring Layered Encoding with Simulcast (Publisher)

To use layered encoding with simulcast, you must have enabled the feature on the client. If you 
enable it, you will see an increase in upload bandwidth usage by the publisher, potentially with less 
video freezing for viewers.

Resolution of Layers 298

https://codepen.io/amazon-ivs/full/ZENQQvo


Amazon IVS Real-Time Streaming User Guide

Android

// Enable Simulcast
StageVideoConfiguration config = new StageVideoConfiguration();
config.simulcast.setEnabled(true);

ImageLocalStageStream cameraStream = new ImageLocalStageStream(frontCamera, config);

// Other Stage implementation code

iOS

// Enable Simulcast
let config = IVSLocalStageStreamVideoConfiguration()
config.simulcast.enabled = true

let cameraStream = IVSLocalStageStream(device: camera, configuration: config)

// Other Stage implementation code

Web

// Enable Simulcast
let cameraStream = new LocalStageStream(cameraDevice, { 
   simulcast: { enabled: true }
})

// Other Stage implementation code

Configuring Layered Encoding with Simulcast (Subscriber)

To configure what layers are received by subscribers, see the "Layered Encoding with Simulcast" 
sections in the real-time streaming SDK guides:

• Android Broadcast SDK

• iOS Broadcast SDK

• Web Broadcast SDK

With subscriber configuration, it’s possible to define the InitialLayerPreference. This dictates 
what quality of video is delivered initially, as well as the preferredLayerForStream, which 

Configuring Layered Encoding with Simulcast (Subscriber) 299



Amazon IVS Real-Time Streaming User Guide

in turn determines what layer is selected during video playback. There are events and stream 
methods for notifying when layers change, adaption changes, or a layer selection is made.

Streaming Configurations

This section explores other configurations you can make to your video and audio streams.

Changing Video Stream Bitrate

To change the bitrate of your video stream, use the following configuration samples.

Android

StageVideoConfiguration config = new StageVideoConfiguration();

// Update Max Bitrate to 1.5mbps
config.setMaxBitrate(1500000);

ImageLocalStageStream cameraStream = new ImageLocalStageStream(frontCamera, config);

// Other Stage implementation code

iOS

let config = IVSLocalStageStreamVideoConfiguration();

// Update Max Bitrate to 1.5mbps
try! config.setMaxBitrate(1500000);

let cameraStream = IVSLocalStageStream(device: camera, configuration: config);

// Other Stage implementation code

Web

let cameraStream = new LocalStageStream(camera.getVideoTracks()[0], { 
   // Update Max Bitrate to 1.5mbps or 1500kbps 
   maxBitrate: 1500
})

Streaming Configurations 300



Amazon IVS Real-Time Streaming User Guide

// Other Stage implementation code

Changing Video Stream Framerate

To change the framerate of your video stream, use the following configuration samples.

Android

StageVideoConfiguration config = new StageVideoConfiguration();

// Update target framerate to 10fps
config.targetFramerate(10);

ImageLocalStageStream cameraStream = new ImageLocalStageStream(frontCamera, config);

// Other Stage implementation code

iOS

let config = IVSLocalStageStreamVideoConfiguration();

// Update target framerate to 10fps
try! config.targetFramerate(10);

let cameraStream = IVSLocalStageStream(device: camera, configuration: config);

// Other Stage implementation code

Web

// Note: On web it is also recommended to configure the framerate of your device from 
 userMedia
const camera = await navigator.mediaDevices.getUserMedia({ 
   video: { 
      frameRate: { 
         ideal: 10, 
         max: 10, 
      }, 
   },
});

let cameraStream = new LocalStageStream(camera.getVideoTracks()[0], { 

Changing Video Stream Framerate 301



Amazon IVS Real-Time Streaming User Guide

   // Update Max Framerate to 10fps 
   maxFramerate: 10
})
// Other Stage implementation code

Optimizing Audio Bitrate and Stereo Support

To change the bitrate and stereo settings of your audio stream, use the following configuration 
samples.

Web

// Note: Disable autoGainControl, echoCancellation, and noiseSuppression when enabling 
 stereo.
const camera = await navigator.mediaDevices.getUserMedia({ 
   audio: { 
      autoGainControl: false, 
      echoCancellation: false, 
      noiseSuppression: false 
   },
});

let audioStream = new LocalStageStream(camera.getAudioTracks()[0], { 
   // Optional: Update Max Audio Bitrate to 96Kbps. Default is 64Kbps 
   maxAudioBitrateKbps: 96, 

   // Signal stereo support. Note requires dual channel input source. 
   stereo: true
})

// Other Stage implementation code

Android

StageAudioConfiguration config = new StageAudioConfiguration();

// Update Max Bitrate to 96Kbps. Default is 64Kbps.
config.setMaxBitrate(96000);

AudioLocalStageStream microphoneStream = new AudioLocalStageStream(microphone, config);

// Other Stage implementation code

Optimizing Audio Bitrate and Stereo Support 302



Amazon IVS Real-Time Streaming User Guide

iOS

let config = IVSLocalStageStreamConfiguration();

// Update Max Bitrate to 96Kbps. Default is 64Kbps.
try! config.audio.setMaxBitrate(96000);

let microphoneStream = IVSLocalStageStream(device: microphone, config: config);

// Other Stage implementation code

Changing Subscriber Jitter Buffer MinDelay

To change the jitter buffer minimum delay for a participant who is being subscribed to, a custom
subscribeConfiguration can be used. The jitter buffer determines how many packets are 
stored before playback begins. The minimum delay represents the target for the minimum amount 
of data that should be stored. Changing the minimum delay can help playback be more resilient 
when facing packet loss/connection issues.

The tradeoff when increasing the size of the jitter buffer is that it also will increase the delay 
before playback begins. Increasing the minimum delay provides more resilience, at the cost of 
impacting time to video. Note that increasing the minimum delay during playback has a similar 
effect: playback will pause briefly to allow the jitter buffer to fill.

If more resiliency is needed, we recommend starting with a minimum-delay preset of MEDIUM and 
setting the subscribe configuration before playback begins.

Note that the minimum delay is applied only if a participant is subscribe-only. If a participant is 
publishing themselves, the minimum delay is not applied. This is done to ensure that multiple 
publishers can speak to each other without additional delay.

The examples below use a minimum delay preset of MEDIUM. See the SDK reference 
documentation for all possible values.

Web

const strategy = {   
   subscribeConfiguration: (participant) => { 
      return { 
         jitterBuffer: { 

Changing Subscriber Jitter Buffer MinDelay 303



Amazon IVS Real-Time Streaming User Guide

            minDelay: JitterBufferMinDelay.MEDIUM 
         }   
      } 

   // ... other strategy functions
}

Android

@Override
public SubscribeConfiguration subscribeConfigrationForParticipant(@NonNull Stage stage, 
 @NonNull ParticipantInfo participantInfo) { 
    SubscribeConfiguration config = new SubscribeConfiguration(); 

    
 config.jitterBuffer.setMinDelay(JitterBufferConfiguration.JitterBufferDelay.MEDIUM()); 

    return config;
}

iOS

func stage(_ stage: IVSStage, subscribeConfigurationForParticipant participant: 
 IVSParticipantInfo) -> IVSSubscribeConfiguration { 
    let config = IVSSubscribeConfiguration() 

    try! config.jitterBuffer.setMinDelay(.medium()) 

    return config
}

Suggested Optimizations

Scenario Recommendations

Streams with text, or slow moving 
content, like presentations or slides

Use layered encoding with simulcast or configure 
streams with lower framerate.

Streams with action or a lot of 
movement

Use layered encoding with simulcast.

Suggested Optimizations 304



Amazon IVS Real-Time Streaming User Guide

Scenario Recommendations

Streams with conversation or little 
movement

Use layered encoding with simulcast or choose audio-
only (see "Subscribing to Participants" in the Real-Time 
Streaming Broadcast SDK Guides: Web, Android, and
iOS).

Users streaming with limited data Use layered encoding with simulcast or, if you want 
lower data usage for everyone, configure a lower 
framerate and lower the bitrate manually.

Suggested Optimizations 305



Amazon IVS Real-Time Streaming User Guide

Network Requirements | Real-Time Streaming

Amazon IVS real-time streaming relies on WebRTC and WebSocket protocols for the transmission 
of media and data. To ensure a seamless experience, the destinations and ports listed below must 
be accessible. Any restrictions on inbound or outbound traffic to these destinations may disrupt the 
functionality of IVS real-time streaming.

You can use this network test tool to ensure that your network is properly configured and that 
traffic to and from the necessary destinations and ports is not being blocked.

Common

Destination Ports

*.live-video.net TCP:443

Media

IVS real-time streaming relies on UDP for the transmission of media to ensure low-latency and 
high-performance streaming. If UDP traffic is completely blocked, media transmission will fail.

Destination Ports

All subnets listed under the IVS_REALTIME
service in ip-ranges.json must be accessible, 
regardless of their region or your chosen 
AWS Region. Participants may be connected to 
any subnet automatically. See Global Solution, 
Regional Control for details.

UDP:3478

TCP:443

Common 306

https://diagnostics.ivs.rocks/
https://docs.aws.amazon.com/vpc/latest/userguide/aws-ip-ranges.html


Amazon IVS Real-Time Streaming User Guide

IVS Resources and Support | Real-Time Streaming

This document lists resources to help support your use of Amazon IVS real-time streaming.

Resources

https://ivs.rocks/ is a dedicated site to browse published content (demos, code samples, blog 
posts), estimate cost, and experience Amazon IVS through live demos.

Demos

The IVS real-time streaming demo for iOS and Android shows developers how to use Amazon 
IVS to build a compelling real-time, social-user-generated content application. This application 
features a scrollable feed of user-generated real-time streams. Users can create video streams and 
audio-only rooms. Video-stream guests can join in guest spot or versus (VS) mode. Instructions on 
how to deploy the required backend and build the application are available in the following GitHub 
repositories:

Resources 307

https://ivs.rocks/


Amazon IVS Real-Time Streaming User Guide

• iOS:  https://github.com/aws-samples/amazon-ivs-real-time-for-ios-demo/

• Android:  https://github.com/aws-samples/amazon-ivs-real-time-for-android-demo/

• Backend:  https://github.com/aws-samples/amazon-ivs-real-time-serverless-demo/

Support

The AWS Support Center offers a range of plans that provide access to tools and expertise to 
support your AWS solutions. All support plans provide 24/7 access to customer service. For 
technical support and more resources to plan, deploy, and improve your AWS environment, choose 
a support plan that best aligns with your AWS use case.

AWS Premium Support is a one-on-one, fast-response support channel to help you build and run 
applications on AWS.

AWS re:Post is a community-based Q&A site for developers to discuss technical questions related 
to Amazon IVS.

Contact AWS has links for nontechnical inquiries about your billing or account. For technical 
questions, use the discussion forums or support links above.

Support 308

https://github.com/aws-samples/amazon-ivs-real-time-for-ios-demo/
https://github.com/aws-samples/amazon-ivs-real-time-for-android-demo/
https://github.com/aws-samples/amazon-ivs-real-time-serverless-demo/
https://console.aws.amazon.com/support/home
https://aws.amazon.com/premiumsupport/
https://repost.aws/tags/TAAkUVScqiTFmkt-h6LdmJHw/amazon-interactive-video-service
https://aws.amazon.com/contact-us/


Amazon IVS Real-Time Streaming User Guide

IVS Glossary

Also see the AWS glossary. In the table below, LL stands for IVS low-latency streaming; RT, IVS real-
time streaming.

Term Description LL RT Chat

AAC Advanced Audio Coding. AAC is an audio coding 
standard for lossy digital audio compression. 
Designed to be the successor of the MP3 format, 
AAC generally achieves higher sound quality than 
MP3 at the same bitrate. AAC has been standardi 
zed by ISO and IEC as part of the MPEG-2 and 
MPEG-4 specifications.

✓ ✓  

Adaptive bitrate 
streaming

Adaptive Bitrate (ABR) streaming allows the IVS 
player to switch to a lower bitrate when connectio 
n quality suffers, and to switch back to a higher 
bitrate when connection quality improves.

✓    

Adaptive streaming See Layered encoding with simulcast.   ✓  

Administrative user An AWS user with administrative access to 
resources and services available in an AWS 
account. See Terminology in AWS Setup User 
Guide.

✓ ✓ ✓

ARN Amazon Resource Name, a unique identifier for an 
AWS resource. Specific ARN formats depend on 
the resource type. For ARN formats used by IVS 
resources, see in Service Authorization Reference.

✓ ✓ ✓

Aspect ratio Describes the ratio of frame width to frame 
height. For example, 16:9 is the aspect ratio that 
corresponds to the Full HD or 1080p resolution.

✓ ✓  

Audio mode A preset or custom audio configuration optimized 
for different types of mobile device users and the 

  ✓  

309

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html
https://docs.aws.amazon.com/SetUp/latest/UserGuide/setup-terminology.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html


Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

equipment that they use. See  IVS Broadcast SDK: 
Mobile Audio Modes (Real-Time Streaming).

AVC, H.264, 
MPEG-4 Part 10

Advanced Video Coding, also referred to as H.264 
or MPEG-4 Part 10, a video compression standard 
for lossy digital video compression.

✓ ✓  

Background 
replacement

A type of camera filter that enables live-stre 
am creators to change their backgrounds. See 
Background Replacement in IVS Broadcast SDK: 
Third-Party Camera Filters (Real-Time Streaming).

  ✓  

Bitrate A streaming metric for the number of bits 
transmitted or received per second.

✓ ✓  

Broadcast, 
broadcaster

Other terms for stream, streamer. ✓    

Buffering A condition that occurs when the playback device 
is unable to download the content before the 
content is supposed to be played. Buffering can 
manifest in several ways: content may randomly 
stop and start (also known as stuttering), content 
may stop for long periods of time (also known as 
freezing), or the IVS player may pause playback.

✓ ✓  

Byte-range playlist A more granular playlist than the standard HLS 
playlist. The standard HLS playlist is made up of 
10-second media files. With a byte-range playlist, 
the segment duration is the same as the keyframe 
interval configured for the stream.

Byte-range playlist is available only for the 
broadcasts that were auto-recorded to an S3 
bucket. It is created in addition to the HLS playlist. 
See Byte-Range Playlists in Auto-Record to 
Amazon S3 (Low-Latency Streaming).

✓    

310

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-mobile-audio-modes.html#modes
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-mobile-audio-modes.html#modes
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-3p-camera-filters-background-replacement.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-3p-camera-filters-background-replacement.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/record-to-s3.html#r2s3-byte-range-playlists


Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

CBR Constant Bitrate, a rate-control method for 
encoders that maintains a consistent bitrate 
throughout the entire playback of a video, 
regardless of what is happening during the 
broadcast. Lulls in the action may be padded to 
achieve the desired bitrate, and peaks may be 
quantized by adjusting the quality of encoding to 
match the target bitrate. We strongly recommend 
using CBR instead of VBR.

✓ ✓  

CDN Content Delivery Network or Content Distribut 
ion Network, a geographically distributed solution 
that optimizes delivery of content such as 
streaming video by bringing it closer to where 
users are located.

✓    

Channel An IVS resource that stores configuration for 
streaming, including an ingest server, a stream 
key, a playback URL, and recording options. 
Streamers use the stream key associated with 
a channel to start a broadcast. All metrics and
events generated during a broadcast are associate 
d with a channel resource.

✓    

Channel type Determines the allowable resolution and frame 
rate for the channel. See Channel Types in the IVS 
Low-Latency Streaming API Reference.

✓    

Chat logging An advanced option that can be enabled by 
associating a logging configuration with a chat 
room.

    ✓

311

https://docs.aws.amazon.com/ivs/latest/LowLatencyAPIReference/channel-types.html


Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

Chat room An IVS resource that stores configuration for a 
chat session, including optional features such as
Message Review Handler and Chat Logging. See
Step 2: Create a Chat Room in Getting Started with 
IVS Chat.

    ✓

Client-side 
composition

Uses a host device to mix audio and video streams 
from stage participants and then sends them 
as a composite stream to an IVS channel. This 
allows more control over the look of the compositi 
on at the cost of higher utilization of client 
resources and a higher risk of a stage or a host
issue impacting the viewers.

Also see server-side composition.

✓ ✓  

CloudFront A CDN service provided by Amazon. ✓    

CloudTrail An AWS service for collecting, monitoring, 
analyzing, and retaining events and account 
activity from AWS and external sources. See
Logging IVS API Calls with AWS CloudTrail.

✓ ✓ ✓

CloudWatch An AWS service for monitoring applications, 
responding to performance changes, optimizing 
resource use, and providing insights into operation 
al health. You can use CloudWatch to monitor IVS 
metrics; see Monitoring IVS Real-Time Streaming
 and Monitoring IVS Low-Latency Streaming.

✓ ✓ ✓

Composition The process of combining audio and video streams 
from multiple sources into a single stream.

✓ ✓  

Composition 
pipeline

A sequence of processing steps required to 
combine multiple streams and encode the 
resulting stream.

✓ ✓  

312

https://docs.aws.amazon.com/ivs/latest/ChatUserGuide/getting-started-chat-create-room.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/cloudtrail.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/stage-health.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/stage-health.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/stream-health.html


Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

Compression Encoding of information using fewer bits than the 
original representation. Any particular compressi 
on is either lossless or lossy. Lossless compressi 
on reduces bits by identifying and eliminating 
statistical redundancy. No information is lost in 
lossless compression. Lossy compression reduces 
bits by removing unnecessary or less important 
 information.

✓ ✓  

Control plane Stores information about IVS resources such as
channels, stages, or chat rooms and provides 
interfaces for creating and managing these 
resources. It is regional (based on AWS regions).

✓ ✓ ✓

CORS Cross-Origin Resource Sharing, an AWS feature 
that allows client web applications that are loaded 
in one domain to interact with resources such as
S3 buckets in a different domain. Access can be 
configured based on headers, HTTP methods, and 
origin domains. See Using cross-origin resource 
sharing (CORS) - Amazon Simple Storage Service
in Amazon Simple Storage Service User Guide.

✓    

Custom image 
source

An interface provided by the IVS Broadcast SDK
that allows an application to provide its own 
image input instead of being limited to the preset 
cameras.

✓ ✓  

Data plane The infrastructure that carries data from ingest
to egress. It operates based on the configuration 
managed in the control plane and is not restricted 
to an AWS region.

✓ ✓ ✓

Encoder, encoding The process of converting video and audio content 
into a digital format, suitable for streaming. 
Encoding can be hardware or software based.

✓ ✓  

313

https://docs.aws.amazon.com/AmazonS3/latest/userguide/cors.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/cors.html


Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

Event An automatic notification published by IVS to the 
AmazonEventBridge monitoring service. An event 
represents a state or health change of a streaming 
resource such as a stage or a composition pipeline. 
See Using Amazon EventBridge with IVS Low-
Latency Streaming and Using Amazon EventBrid 
ge with IVS Real-Time Streaming.

✓ ✓ ✓

FFmpeg A free and open-source software project consistin 
g of a suite of libraries and programs for handling 
video and audio files and streams. FFmpeg
provides a cross-platform solution to record, 
convert and stream audio and video.

✓    

Fragmented stream Created when a broadcast disconnects and then 
reconnects within the interval specified in the
channel’s recording configuration. The resulting 
multiple streams are considered a single broadcast 
and merged together into a single recorded 
stream. See Merge Fragmented Streams in Auto-
Record to Amazon S3 (Low-Latency Streaming).

✓    

Frame rate A streaming metric for the number of video 
frames transmitted or received per second.

✓ ✓  

HLS HTTP Live Streaming (HLS), an HTTP-based
adaptive bitrate streaming communications 
protocol used to deliver IVS streams to viewers.

✓    

HLS playlist A list of media segments that make up a stream. 
Standard HLS playlists are made up of 10-second 
media files. HLS also supports more granular
byte-range playlists.

✓    

Host A real-time event participant who sends video 
and/or audio to the stage.

  ✓  

314

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/eventbridge.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/eventbridge.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/eventbridge.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/eventbridge.html
https://www.ffmpeg.org/
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/record-to-s3.html#r2s3-merge-fragmented-streams


Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

IAM Identity and Access Management, an AWS service 
that allows users to securely manage identitie 
s and access to AWS services and resources, 
including IVS.

✓ ✓ ✓

Ingest IVS process for receiving video streams from a 
host or broadcaster for processing or delivery to 
viewers or other participants.

✓ ✓  

Ingest server Receives video streams and delivers them to a 
transcoding system, where streams are transmuxe 
d or transcoded into HLS for delivery to viewers.

Ingest servers are specific IVS components 
that receive streams for channels, along with 
an ingestion protocol (RTMP, RTMPS). See the 
information on creating a channel in Getting 
Started with IVS Low-Latency Streaming.

  ✓  

Interlaced video Transmits and displays only odd or even lines of 
subsequent frames to create perceived doubling 
of frame rate without consuming extra bandwidth. 
We do not recommend using interlaced video due 
to the video quality concerns.

✓ ✓  

JSON JavaScript Object Notation, an open-standard file 
format that uses human-readable text to transmit 
data objects consisting of attribute-value pairs 
and array data types or other serializable values.

✓ ✓ ✓

315

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/getting-started.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/getting-started.html


Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

Keyframe, delta 
frame, keyframe 
interval

The keyframe (also referred to as intra-cod 
ed or i-frame) is a full frame of the image in a 
video. Subsequent frames, the delta frames (also 
referred to as predicted or p-frames), only contain 
the information that has changed. Keyframes will 
appear multiple times within a stream, depending 
on the keyframe interval defined in the encoder.

✓ ✓  

Lambda An AWS service for running code (referred to 
as Lambda functions) without provisioning any 
server infrastructure. Lambda functions can run 
in response to events and invocation requests, or 
based on a schedule. For example, IVS Chat uses 
Lambda functions to enable message review for a
chat room.

✓ ✓ ✓

Latency, glass-to- 
glass latency

A delay in data transfer. IVS defines latency ranges 
as:

• Low latency: under 3 sec

• Real-time latency: under 300 ms

Glass-to-glass latency refers to the delay from 
when a camera captures a live stream to when the 
stream appears on a viewer’s screen.

✓ ✓  

Layered encoding 
with simulcast

Enables simultaneous encoding and publishing 
of multiple video streams with different quality 
levels. See Adaptive Streaming: Layered Encoding 
with Simulcast in Real-Time Streaming Optimizat 
ions.

  ✓  

316

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/real-time-streaming-optimization.html#real-time-streaming-optimization-adaptive
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/real-time-streaming-optimization.html#real-time-streaming-optimization-adaptive


Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

Message review 
handler

Enables IVS Chat customers to automatically 
review/filter user chat messages before they 
are delivered to the chat room. It is enabled by 
associating a Lambda function with a chat room. 
See Creating a Lambda Function in Chat Message 
Review Handler.

    ✓

Mixer A feature of the IVS Mobile Broadcast SDKs
that takes multiple audio and video sources and 
generates a single output. It supports managemen 
t of on-screen video and audio elements represent 
ing sources such as cameras, microphones, screen 
captures, and audio and video generated by the 
application. The output can then be streamed 
to IVS. See Configuring a Broadcast Session for 
Mixing in IVS Broadcast SDK: Mixer Guide (Low-
Latency Streaming).

✓    

Multi-host 
streaming

Combines streams from multiple hosts into a 
single stream. This can be accomplished using 
either client-side or server-side composition.

Multi-host streaming enables scenarios such as 
inviting viewers onto a stage for Q&A, competiti 
ons between hosts, video chat, and hosts 
conversing with each other in front of a large 
audience.

  ✓  

Multivariant playlist An index of all the variant streams available for a 
broadcast.

✓    

OAC Origin Access Control, a mechanism for restricti 
ng access to an S3 bucket, so that content such 
as a recorded stream can be served only through
CloudFront CDN.

✓    

317

https://docs.aws.amazon.com/ivs/latest/ChatUserGuide/chat-message-review-handler.html#create-lambda-function
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/broadcast-mixer.html#broadcast-mixer-configure-session
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/broadcast-mixer.html#broadcast-mixer-configure-session


Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

OBS Open Broadcaster Software, free and open source 
software for video recording and live streaming 
. OBS offers an alternative (to the IVS broadcast
SDK) for desktop publishing. More sophisticated 
streamers familiar with OBS may prefer it for 
its advanced production features, such as scene 
transitions, audio mixing, and overlay graphics.

✓ ✓  

Participant A real-time user connected to a stage as a host or
viewer.

  ✓  

Participant token Authenticates a real-time event participant when 
they join a stage. A participant token also controls 
whether a participant can send video to the stage.

  ✓  

Playback token, 
playback key pair

An authorization mechanism that allows 
customers to restrict video playback on private 
channels. Playback tokens are generated from a 
playback key pair.

A playback key pair is the public-private pair 
of keys used to sign and validate the viewer 
authorization token for playback. See Create 
or Import an IVS Playback Key in Setting up IVS 
Private Channels and see the Playback Key Pair 
operations in the IVS Low-Latency API Reference.

✓    

Playback URL Identifies the address a viewer uses to start 
playback for a specific channel. This address can 
be used globally. IVS automatically selects the 
best location on the IVS global content delivery 
network for delivering the video to each viewer. 
See the information on creating a channel in
Getting Started with IVS Low-Latency Streaming.

✓    

318

https://obsproject.com/
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/private-channels-create-key.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/private-channels-create-key.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyAPIReference/Welcome.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/getting-started.html


Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

Private channel Allows customers to restrict access to their 
streams using an authorization mechanism based 
on playback tokens. See Workflow for IVS Private 
Channels in Setting up IVS Private Channels.

✓    

Progressive video Transmits and displays all lines of each frame in 
sequence. We recommend using progressive video 
during all stages of a broadcast.

✓ ✓  

Quotas The maximum numbers of IVS service resources 
or operations for your AWS account. That is, 
these limits are per AWS account, unless noted 
otherwise. All quotas are enforced per region. See
Amazon Interactive Video Service endpoints and 
quotas in AWS General Reference Guide.

✓ ✓ ✓

Regions Provide access to AWS services that physicall 
y reside in a specific geographic area. Regions 
provide fault tolerance, stability, and resilience, 
and can also reduce latency. With Regions, you can 
create redundant resources that remain available 
and unaffected by a regional outage.

Most AWS service requests are associated with 
a particular geographic region. The resources 
that you create in one region do not exist in any 
other region unless you explicitly use a replication 
feature offered by an AWS service. For example, 
Amazon S3 supports cross-region replication. 
Some services, such as IAM, do not have cross-reg 
ional resources.

✓ ✓ ✓

Resolution Describes the number of pixels in a single video 
frame, for example, Full HD or 1080p defines a 
frame with 1920x1080 pixels.

✓ ✓  

319

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/private-channels-workflow.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/private-channels-workflow.html
https://docs.aws.amazon.com/general/latest/gr/ivs.html
https://docs.aws.amazon.com/general/latest/gr/ivs.html


Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

Root user The owner of an AWS account. The root user has 
complete access to all AWS services and resources 
in the AWS account.

✓ ✓ ✓

RTMP, RTMPS Real-Time Messaging Protocol, an industry 
standard for transmitting audio, video, and data 
over a network. RTMPS is the secure version of 
RTMP, running over a Transport Layer Security 
(TLS/SSL) connection.

✓ ✓  

S3 bucket A collection of objects stored in Amazon S3. Many 
policies, including access and replication, are 
defined at the bucket level and apply to all objects 
in the bucket. For example, an IVS broadcast is 
stored as multiple objects in an S3 bucket.

✓    

SDK Software Development Kit, a collection of libraries 
for the developers building applications with IVS.

✓ ✓ ✓

Selfie segmentation Enables replacing the background in a live stream, 
using a client-specific solution that accepts a 
camera image as input and returns a mask that 
provides a confidence score for each pixel of the 
image, indicating whether it is in the foreground 
or the background. See Background Replacement
in IVS Broadcast SDK: Third-Party Camera Filters 
(Real-Time Streaming).

  ✓  

Semantic versionin 
g

A version format in the form of Major.Minor.Patch. 
Bug fixes not affecting the API increment the 
patch version, backward compatible API additions 
/changes increment the minor version, and 
backward incompatible API changes increment the 
major version.

✓ ✓ ✓

320

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-3p-camera-filters-background-replacement.html


Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

Server-side 
composition

Uses an IVS server to mix audio and video from 
stage participants and then sends this mixed video 
to an IVS channel to reach a larger audience or 
to store it in an S3 bucket. Server-side compositi 
on reduces client load, improves resilience of 
the broadcast, and enables more efficient use of 
bandwidth.

Also see client-side composition.

  ✓  

Service quotas An AWS service that helps you manage your
quotas for many AWS services from one location. 
Along with looking up the quota values, you can 
also request a quota increase from the Service 
Quotas console.

✓ ✓ ✓

Service-linked role A unique type of IAM role that is linked directly to 
an AWS service. Service-linked roles are automatic 
ally created by IVS and include all the permissio 
ns that the service requires to call other AWS 
services on your behalf, for example, to access an
S3 bucket. See Using Service-Linked Roles for IVS
in IVS Security.

✓    

Stage An IVS resource that represents a virtual space 
where real-time event participants can exchange 
video in real time. See Create a Stage in Getting 
Started with IVS Real-Time Streaming.

  ✓  

Stage session Begins when the first participant joins a stage and 
ends a few minutes after the last participant stops 
publishing to the stage. A long-lived stage may 
have multiple sessions over its lifetime.

  ✓  

Stream Data representing video or audio content being 
sent continuously from a source to a destination.

✓ ✓  

321

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/security-service-linked-roles.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-create-stage.html


Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

Stream key An identifier assigned by IVS when you create a
channel; it is used to authorize streaming to the 
channel.  Treat the stream key like a secret, since 
anyone with it can stream to the channel. See
Getting Started with IVS Low-Latency Streaming.

✓    

Stream starvation A delay or halt in stream delivery to IVS. It 
occurs when IVS does not receive the expected 
amount of bits that the encoding device advertise 
d it would send over a certain timeframe. An 
occurrence of stream starvation results in a stream 
starvation event.

From a viewer's perspective, stream starvatio 
n may appear as video that lags, buffers, or 
freezes. Stream starvation can be brief (less than 
5 seconds) or long (several minutes), depending 
on the specific situation that resulted in stream 
starvation. See What is Stream Starvation in
Troubleshooting FAQ.

✓ ✓  

Streamer A person or a device sending a video or audio
stream to IVS.

✓ ✓  

Subscriber A real-time event participant who receives video 
and/or audio of the hosts. See What is IVS Real-
Time Streaming.

  ✓  

Tag A metadata label that you assign to an AWS 
resource. Tags can help you identify and organize 
your AWS resources. On the IVS documentation 
landing page, see “Tagging” in any of the IVS API 
documentation (for real-time streaming, low-laten 
cy streaming, or chat).

✓ ✓ ✓

322

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/getting-started.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/troubleshooting-faqs.html#broadcast-encode-stream-starvation
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/what-is.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/what-is.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/


Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

Third-party camera 
filters

Software components that can be integrated with 
the IVS Broadcast SDK to allow an application 
to process images before providing them to the 
Broadcast SDK as a custom image source. A third-
party camera filter may process images from the 
camera, apply a filter effect, etc.

✓ ✓  

Thumbnail A reduced-size image taken from a stream. By 
default, thumbnails are generated every 60 
seconds, but a shorter interval can be configure 
d. Thumbnail resolution depends on the channel 
type. See Recording Contents in Auto-Record to 
Amazon S3 (Low-Latency Streaming).

✓    

Timed metadata Metadata tied to specific timestamps within a 
stream. It can be added programmatically using 
the IVS API and becomes associated with specific 
frames. This ensures that all viewers receive the 
metadata at the same point relative to the stream.

Timed metadata can be used to trigger actions on 
the client such as updating team statistics during 
a sporting event. See Embedding Metadata within 
a Video Stream.

✓    

Transcoding Converts video and audio from one format to 
another. An incoming stream may be transcode 
d to a different format at multiple bitrates and 
resolutions, to support a range of playback 
devices and network conditions.

✓ ✓  

323

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/record-to-s3.html#r2s3-contents
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/metadata.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/metadata.html


Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

Transmuxing A simple repackaging of an ingested stream to 
IVS, with no re-encoding of the video stream. 
“Transmux” is short for transcode multiplexing, 
a process that changes the format of an audio 
and/or video file while keeping some or all of 
the original streams. Transmuxing converts to a 
different container format without changing the 
file contents. Distinguished from transcoding.

✓ ✓  

Variant streams A set of encodings of the same broadcast in 
several distinct quality levels. Each variant stream 
is encoded as a separate HLS playlist. An index of 
the available variant streams is referred to as a
multivariant playlist.

After the IVS player receives a multivariant playlist 
from IVS, it can then choose between the variant 
streams during playback, changing back and forth 
seamlessly as network conditions change.

✓    

VBR Variable Bitrate, a rate-control method for 
encoders that uses a dynamic bitrate that changes 
throughout playback, depending on the level of 
detail needed. We strongly recommend against 
using VBR due to video-quality concerns; use CBR
instead.

✓ ✓  

324



Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

View A unique viewing session which is actively 
downloading or playing video. Views are the basis 
for the concurrent views quota.

A view starts when a viewing session begins 
video playback. A view ends when a viewing 
session stops video playback. Playback is the sole 
indicator of viewership; engagement heuristic 
s such as audio levels, browser tab focus, and 
video quality are not considered. When counting 
views, IVS does not consider the legitimacy of 
individual viewers or try to deduplicate localized 
viewership, such as multiple video players on 
a single machine. See Other Quotas in Service 
Quotas (Low-Latency Streaming).

✓    

Viewer A person receiving a stream from IVS. ✓    

WebRTC Web Real-Time Communication, an open-sour 
ce project providing web browsers and mobile 
applications with real-time communication. It 
allows audio and video communication to work 
inside web pages by allowing direct peer-to-peer 
communication, eliminating the need to install 
plugins or download native apps.

The technologies behind WebRTC are implement 
ed as an open web standard and are available as 
regular JavaScript APIs in all major browsers or as 
libraries for native clients, like Android and iOS.

✓ ✓  

325

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/service-quotas.html#quotas-other
https://webrtc.org/


Amazon IVS Real-Time Streaming User Guide

Term Description LL RT Chat

WHIP WebRTC-HTTP Ingestion Protocol, an HTTP based 
protocol that allows WebRTC based ingestion of 
content into streaming services and/or CDNs.
WHIP is an IETF draft developed to standardize 
WebRTC ingestion.

WHIP enables compatibility with software like
OBS, offering an alternative (to the IVS broadcast
SDK) for desktop publishing. More sophisticated 
streamers familiar with OBS may prefer it for 
its advanced production features, such as scene 
transitions, audio mixing, and overlay graphics

WHIP is also beneficial in situations where using 
the IVS broadcast SDK isn't feasible or preferred 
. For example, in setups involving hardware 
encoders, the IVS broadcast SDK might not be an 
option. However, if the encoder supports WHIP, 
you can still publish directly from the encoder to 
IVS.

See IVS WHIP Support (Real-Time Streaming).

  ✓  

WSS WebSocket Secure, a protocol for establishing 
WebSockets over an encrypted TLS connection. It 
is being used for connecting to IVS Chat endpoints 
. See  Step 4: Send and Receive Your First Message
in Getting Started with IVS Chat.

    ✓

326

https://www.ietf.org/archive/id/draft-ietf-wish-whip-01.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/obs-whip-support.html
https://docs.aws.amazon.com/ivs/latest/ChatUserGuide/getting-started-chat-send-and-receive.html


Amazon IVS Real-Time Streaming User Guide

IVS Document History | Real-Time Streaming

The following tables describe the important changes to the documentation for Amazon IVS Real-
Time Streaming. We update the documentation frequently, for new releases and to address the 
feedback that you send us.

Real-Time Streaming User Guide Changes

Change Description Date

Broadcast SDK: Android 
1.27.0, iOS 1.27.0

Updated version number and 
artifact links in the real-time 
-streaming broadcast SDK 
guides: Web, Android and iOS. 
Also see the Release Notes.

February 20, 2025

Broadcast SDK: Web 1.21.0 Updated version number 
and artifact links in the low-
latency-streaming broadcast 
SDK guide: Web. Also see the
Release Notes.

February 20, 2025

Broadcast SDK: Android 
1.26.0, iOS 1.26.0

Updated version number and 
artifact links in the real-time 
-streaming broadcast SDK 
guides: Web, Android and iOS. 
Also see the Release Notes.

January 30, 2025

Broadcast SDK: Web 1.20.0 Updated version number 
and artifact links in the low-
latency-streaming broadcast 
SDK guide: Web. Also see the
Release Notes.

We also updated "Suppleme 
ntal Enhanced Information."

January 23, 2025

Real-Time Streaming User Guide Changes 327

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#feb20-25-broadcast-mobile-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#feb20-25-broadcast-web-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#jan30-25-broadcast-ai-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#jan23-25-broadcast-web-rt


Amazon IVS Real-Time Streaming User Guide

RTMP Publishing In Publish Using an RTMP 
Encoder, we noted that 
streams must include both 
audio and video tracks or they 
will be disconnected.

January 21, 2025

Network Requirements Added this new top-level 
page.

January 21, 2025

Broadcast SDK: Android 
1.25.0, iOS 1.25.0

Updated version number and 
artifact links in the real-time 
-streaming broadcast SDK 
guides: Android and iOS. Also 
see the Release Notes.

In each guide, we also:

• Added "Get Supplemental 
Enhancement Information."

• Added "Layered Encoding 
with Simulcast."

• Added three simulcast 
items in "Renderer."

• Deleted "Enable/Disable 
Layered Encoding with 
Simulcast."

December 12, 2024

Streaming Optimizations Renamed "Configuring 
Layered Encoding with 
Simulcast" to "Configur 
ing Layered Encoding with 
Simulcast (Publisher)" and 
added "Configuring Layered 
Encoding with Simulcast 
(Subscriber)."

December 12, 2024

Real-Time Streaming User Guide Changes 328

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-rtmp-publishing.html#rtmp-publish-using-an-rtmp-encoder
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-rtmp-publishing.html#rtmp-publish-using-an-rtmp-encoder
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#dec12-24-broadcast-ai-rt


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK: Web 1.19.0 Updated version number 
and artifact links in the low-
latency-streaming broadcast 
SDK guide: Web. Also see the
Release Notes.

We also added "Layered 
Encoding with Simulcast" and 
added three simulcast items 
in "Events."

December 12, 2024

Real-time thumbnail 
configuration

In Individual Participant 
Recording and Composite 
 Recording, updated examples 
and JSON metadata informati 
on, and added pricing 
information. In Individual 
Participant Recording, added 
"Thumbnail-Only Recordings."

December 10, 2024

Broadcast SDK: Android 
1.24.0, iOS 1.24.0

Updated version number and 
artifact links in the real-time 
-streaming broadcast SDK 
guides: Android and iOS. Also 
see the Release Notes.

November 13, 2024

Third-Party Camera Filters Many changes in Using Snap 
with the IVS Broadcast SDK > 
Web.

November 12, 2024

Real-Time Streaming User Guide Changes 329

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#dec12-24-broadcast-web-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-individual-participant-recording.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-individual-participant-recording.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-composite-recording.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-composite-recording.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-individual-participant-recording.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-individual-participant-recording.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#nov13-24-broadcast-ai-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-3p-camera-filters-integrating-snap.html#integrating-snap-web
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-3p-camera-filters-integrating-snap.html#integrating-snap-web
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-3p-camera-filters-integrating-snap.html#integrating-snap-web


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK: Web 1.18.0 Updated version number 
and artifact links in the low-
latency-streaming broadcast 
SDK guide: Web. Also see the
Release Notes.

We added a new section, Get 
Supplemental Enhancement 
Information (SEI), to the SDK 
Guide.

November 12, 2024

RTMP In "Create an Ingest 
Configuration," updated 
example (added --ingest- 
protocol ).

November 7, 2024

Broadcast SDK: Web 1.17.0 Updated version number 
and artifact links on the IVS 
documentation landing page
and in the low-latency-stream 
ing broadcast SDK guide:
Web. Also see the Release 
Notes.

October 10, 2024

Broadcast SDK: Android 
1.23.0, iOS 1.23.0

Updated version number 
and artifact links on the IVS 
documentation landing page
and in the real-time-streamin 
g broadcast SDK guides:
Android and iOS. Also see the
Release Notes.

For Android, we added Using 
the SDK with Debug Symbols.

October 10, 2024

Service Quotas We added a quota for 
"Participant publish bitrate."

September 25, 2024

Real-Time Streaming User Guide Changes 330

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#nov12-24-broadcast-web-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/web-publish-subscribe.html#web-publish-subscribe-sei-attributes
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/web-publish-subscribe.html#web-publish-subscribe-sei-attributes
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/web-publish-subscribe.html#web-publish-subscribe-sei-attributes
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#oct10-24-broadcast-web-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#oct10-24-broadcast-web-rt
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#oct10-24-broadcast-ai-rt


Amazon IVS Real-Time Streaming User Guide

Monitoring IVS Real-Time 
Streaming

Added the PublishFr 
amerate  CloudWatch 
metric.

September 13, 2024

Broadcast SDK: Android 
1.22.0, iOS 1.22.0

Updated version number 
and artifact links on the IVS 
documentation landing page
and in the real-time-streamin 
g broadcast SDK guides:
Android and iOS. Also see the
Release Notes.

We also updated a section, 
"Getting Started > Install 
the Library" in the Android 
broadcast SDK guide.

September 11, 2024

Broadcast SDK: Web 1.16.0 Updated version number 
and artifact links on the IVS 
documentation landing page
and in the low-latency-stream 
ing broadcast SDK guide:
Web. Also see the Release 
Notes.

September 11, 2024

Real-Time Streaming User Guide Changes 331

https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#sep11-24-broadcast-ai-rt
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#sep11-24-broadcast-web-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#sep11-24-broadcast-web-rt


Amazon IVS Real-Time Streaming User Guide

RTMP ingest We added an IVS Stream 
Ingest page. Under this are 
two pages, RTMP (new) and 
WHIP.

In Using EventBridge with 
IVS Real-Time Streaming, we 
added an IVS Stage Update 
event, Participant Publish 
Error.

In Service Quotas, we added 
TPS values for the five new 
API operations and 1 new 
IngestConfiguration quota (in 
"Other Quotas").

API changes are described in 
the API Reference table.

September 9, 2024

Real-Time Streaming 
Optimizations

Made various simulcast-
related updates and added 
"Resolution of Layers."

August 22, 2024

In-console publish/subscribe In Getting Started with IVS 
Real-Time Streaming, we 
added in-console publishin 
g and subscribing to Publish 
and Subscribe to Video.

August 19, 2024

Real-Time Streaming User Guide Changes 332

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-stream-ingest.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-stream-ingest.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/eventbridge.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/eventbridge.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/service-quotas.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-pub-sub.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-pub-sub.html


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK: Web 1.15.0 Updated version number 
and artifact links on the IVS 
documentation landing page
and in the low-latency-stream 
ing broadcast SDK guide:
Web. Also see the Release 
Notes.

We also added a new section,
Configuration for Subscribi 
ng to Participants, to the Web 
Broadcast SDK Guide.

In Streaming Optimizations, 
we added a new section,
Changing Subscriber Jitter 
Buffer MinDelay. This includes 
information about the Web, 
Android, and iOS Broadcast 
SDKs.

August 15, 2024

Broadcast SDK: Android 
1.21.0, iOS 1.21.0

Updated version number 
and artifact links on the IVS 
documentation landing page
and in the real-time-streamin 
g broadcast SDK guides:
Android and iOS. Also see the
Release Notes.

We also added a new section, 
"Configuration for Subscribi 
ng to Participants," to the
Android and iOS Broadcast 
SDK Guides.

August 15, 2024

Real-Time Streaming User Guide Changes 333

https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#aug15-24-broadcast-web-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#aug15-24-broadcast-web-rt
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#aug15-24-broadcast-ai-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/android-publish-subscribe.html#android-publish-subscribe-concepts-strategy-participants-config
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/ios-publish-subscribe.html#ios-publish-subscribe-concepts-strategy-participants-config


Amazon IVS Real-Time Streaming User Guide

Recording clarification Added a note about using 
an existing S3 bucket, 
in Individual Participant 
Recording (in 1: Create an 
S3 Bucket) and Composite 
Recording (in Prerequis 
ites, Step 3). The Object 
Ownership setting must be
Bucket owner enforced or
Bucket owner preferred.

August 13, 2024

Broadcast SDK: Web 1.14.0 Updated version number 
and artifact links on the IVS 
documentation landing page
and in the low-latency-stream 
ing broadcast SDK guide:
Web. Also see the Release 
Notes.

July 18, 2024

Broadcast SDK: Android 
1.20.0, iOS 1.20.0

Updated version number 
and artifact links on the IVS 
documentation landing page
and in the real-time-streamin 
g broadcast SDK guides:
Android and iOS. Also see the
Release Notes.

July 18, 2024

Getting Started with Real-
Time Streaming

Added information on 
attributes to "Distribute 
Participant Tokens," in both 
"Token Schema: Payload" and 
"Creating Tokens with the IVS 
Real-Time Streaming API."

July 12, 2024

Service Quotas Increased the maximum 
number of stage subscribers 
from 10,000 to 25,000.

June 27, 2024

Real-Time Streaming User Guide Changes 334

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-individual-participant-recording.html#ind-part-rec-create-s3-bucket
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-individual-participant-recording.html#ind-part-rec-create-s3-bucket
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-composite-recording.html#comp-rec-prerequisites
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-composite-recording.html#comp-rec-prerequisites
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#jul18-24-broadcast-web-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#jul18-24-broadcast-web-rt
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#jul18-24-broadcast-ai-rt


Amazon IVS Real-Time Streaming User Guide

Generate Participant Tokens 
with a Key Pair

In Getting Started with IVS 
Real-Time Streaming, we 
updated Distribute Participa 
nt Tokens to explain the two 
ways to generate tokens (API 
and key pair) and we added 
"Creating Tokens with a Key 
Pair."

June 26, 2024

Individual participant 
recording

Added a new documentation 
section on Recording, with 
sub-documents on Individua 
l Participant Recording (new) 
and Composite Recording 
 (pre-existing). We also added 
Participant Recording State 
Change events and examples 
to Using EventBridge with 
IVS.

API changes are described in 
the API Reference table.

June 20, 2024

Service Quotas Increased the Stages quota 
from 100 to 1,000.

June 14, 2024

Broadcast SDK: Android 
1.19.0, iOS 1.19.0

Updated version number 
and artifact links on the IVS 
documentation landing page
and in the real-time-streamin 
g broadcast SDK guides:
Android and iOS. Also see the
Release Notes.

June 13, 2024

Real-Time Streaming User Guide Changes 335

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-distribute-tokens.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-distribute-tokens.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-recording.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-individual-participant-recording.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-individual-participant-recording.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/eventbridge.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/eventbridge.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#jun13-24-broadcast-ai-rt


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK: Web 1.13.0 Updated version number 
and artifact links on the IVS 
documentation landing page
and in the low-latency-stream 
ing broadcast SDK guide:
Web. Also see the Release 
Notes.

In the guide, we updated the 
information in Error Handling
for the new ERROR stage 
event.

June 13, 2024

Broadcast SDK: Web 1.12.0 Updated version number 
and artifact links on the IVS 
documentation landing page
and in the low-latency-stream 
ing broadcast SDK guide:
Web. Also see the Release 
Notes.

In the guide, we updated 
the information in Handling 
Network Issues about the 
stage-connection ERRORED
state.

May 20, 2024

Real-Time Streaming 
Optimizations

In Default Layers, Qualities 
, and Framerates, changed 
the max bitrate for Mobile, 
Low Layer, from 150,000 to 
100,000 bps.

May 16, 2024

Real-Time Streaming User Guide Changes 336

https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#jun13-24-broadcast-web-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#jun13-24-broadcast-web-rt
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#may20-24-broadcast-web-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#may20-24-broadcast-web-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/web-publish-subscribe.html#web-publish-subscribe-network-issues
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/web-publish-subscribe.html#web-publish-subscribe-network-issues
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/real-time-streaming-optimization.html#real-time-streaming-optimization-default-layers
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/real-time-streaming-optimization.html#real-time-streaming-optimization-default-layers


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK: Android 
1.18.0, iOS 1.18.0

Updated version number 
and artifact links on the IVS 
documentation landing page
and in the real-time-streamin 
g broadcast SDK guides:
Android and iOS. Also see the
Release Notes.

May 16, 2024

Broadcast SDK: Web 1.11.0 Updated version number 
and artifact links on the IVS 
documentation landing page
and in the real-time-streamin 
g broadcast SDK guide: Web. 
Also see the Release Notes.

May 6, 2024

Broadcast SDK: Web 1.10.1 Updated version number 
and artifact links on the IVS 
documentation landing page
and in the real-time-streamin 
g broadcast SDK guide: Web. 
Also see the Release Notes.

April 30, 2024

Broadcast SDK: Android 
1.15.2, iOS 1.15.2

Updated version number 
and artifact links on the IVS 
documentation landing page
and in the real-time-streamin 
g broadcast SDK guides:
Android and iOS. Also see the
Release Notes.

April 30, 2024

Broadcast SDK: iOS Guide In Publish a Media Stream, we 
updated the code example.

April 26, 2024

Real-Time Streaming User Guide Changes 337

https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#may16-24-broadcast-ai-rt
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#may06-24-broadcast-web-rt
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#apr30-24-broadcast-web-1101-rt
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#apr30-24-broadcast-1152-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/ios-publish-subscribe.html#ios-publish-subscribe-publish-stream


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK: Android 
1.17.0, iOS 1.17.0

Updated version number 
and artifact links for the new 
release, in the real-time-
streaming broadcast SDK 
guides: Android and iOS. On 
the Amazon IVS documenta 
tion landing page, updated 
the broadcast SDK Reference 
links to point to the new 
version. Also see the Amazon 
IVS Release Notes for this 
release.

April 22, 2024

Server-side composition In SSC, made various changes, 
especially in "Layout," to 
explain PiP and grid layouts.

In the Web Broadcast SDK 
Guide, added Server-Side 
Rendering Support.

March 26, 2024

OBS and WHIP Support Added a note about quality 
issues (like intermittent video 
freezing) that can occur with 
WHIP in OBS.

March 22, 2024

Real-Time Streaming User Guide Changes 338

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#apr22-24-broadcast-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/server-side-composition.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web-getting-started.html#broadcast-web-getting-started-imports-server-side-rendering
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web-getting-started.html#broadcast-web-getting-started-imports-server-side-rendering


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK: Android 
1.16.0, iOS 1.16.0, Web 1.10.0

Updated version number 
and artifact links for the new 
release, in the real-time-
streaming broadcast SDK 
guides: Android, iOS, and
Web. On the Amazon IVS 
documentation landing page, 
updated the broadcast SDK 
Reference links to point to 
the new version. Also see the 
Amazon IVS Release Notes for 
this release.

March 21, 2024

Broadcast SDK: Android 
1.15.1, iOS 1.15.1

Updated version number 
and artifact links for the new 
release, in the real-time-
streaming broadcast SDK 
guides: Android and iOS. On 
the Amazon IVS documenta 
tion landing page, updated 
the broadcast SDK Reference 
links to point to the new 
version. Also see the Amazon 
IVS Release Notes for this 
release.

March 13, 2024

Real-Time Streaming User Guide Changes 339

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#mar21-24-broadcast-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#mar13-24-broadcast-rt


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK: Mobile Audio 
Modes

In "Audio Mode Presets," 
added information on 
the Volume Rocker preset 
category and an iOS known 
issue with the Video Chat 
preset. In "Advanced Use 
Cases," added a note on 
avoiding incorrect configura 
tions, and added sections on 
"iOS Echo Cancellation" and 
"iOS Custom Audio Sources."

March 1, 2024

Broadcast SDK: Android 
1.15.0, iOS 1.15.0, Web 1.9.0

Updated version number 
and artifact links for the new 
release, in the real-time-
streaming broadcast SDK 
guides: Android, iOS, and
Web. On the Amazon IVS 
documentation landing page, 
updated the broadcast SDK 
Reference links to point to 
the new version. Also see the 
Amazon IVS Release Notes for 
this release.

February 22, 2024

OBS and WHIP Support Added a new page. This 
document explains how 
to use WHIP-compatible 
encoders like OBS to publish 
to IVS real-time streaming 
. WHIP (WebRTC-HTTP 
Ingestion Protocol) is an IETF 
draft developed to standardi 
ze WebRTC ingestion.

February 6, 2024

Real-Time Streaming User Guide Changes 340

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#feb22-24-rt


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK: Android 
1.14.1, iOS 1.14.1, Web 1.8.0

Updated version number 
and artifact links for the new 
release, in the real-time-
streaming broadcast SDK 
guides: Android, iOS, and
Web. On the Amazon IVS 
documentation landing page, 
updated the broadcast SDK 
Reference links to point to 
the new version. Also see the 
Amazon IVS Release Notes for 
this release.

For the Android Guide, 
we added a new Known 
Issue (video size less than 
176x176).

For the Web Guide, we added 
a new Known Issue. The 
workaround is constraining 
video resolution to 720p 
when invoking getUserMe 
dia  or getDisplayMedia .

In Real-Time Streaming 
Optimizations we updated
Configuring Layered Encoding 
with Simulcast; now this is 
disabled by default.

February 1, 2024

Real-Time Streaming User Guide Changes 341

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#feb01-24-rt


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK: Android 
1.13.4, iOS 1.13.4, Web 1.7.0

Updated version number 
and artifact links for the new 
release, in the real-time-
streaming broadcast SDK 
guides: Android, iOS, and
Web. On the Amazon IVS 
documentation landing page, 
updated the broadcast SDK 
Reference links to point to 
the new version. Also see the 
Amazon IVS Release Notes for 
this release.

January 3, 2024

IVS Glossary Extended the glossary, 
covering IVS real-time, low-
latency, and chat terms.

December 20, 2023

Stage Health: New CloudWatc 
h Metrics

Renamed the PacketLos 
s (Stage) metric to be 
DownloadPacketLoss (Stage) 
and released additional 
CloudWatch metrics for IVS 
real-time streaming:

• DownloadPacketLoss 
(Stage,Participant)

• DroppedFrames (Stage,Pa 
rticipant)

• SubscribeBitrate (Stage,Pa 
rticipant,MediaType)

See Monitoring IVS Real-Time 
 Streaming.

December 7, 2023

Real-Time Streaming User Guide Changes 342

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#jan03-24-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/stage-health.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/stage-health.html


Amazon IVS Real-Time Streaming User Guide

IAM managed policies Added two managed policies, 
IVSReadOnlyAccess and 
IVSFullAccess. See:

• The new section on
Managed Policies for 
Amazon IVS on the Security
page.

• Changes to Step 3: Set Up 
IAM Permissions in Getting 
Started with IVS Low-Laten 
cy Streaming.

December 5, 2023

Broadcast SDK: Android 
1.13.2, iOS 1.13.2

Updated version number 
and artifact links for the new 
release, in the real-time-
streaming broadcast SDK 
guides: Android and iOS.

On the Amazon IVS 
documentation landing page, 
updated the broadcast SDK 
Reference links to point to the 
new version.

Also see the Amazon IVS
Release Notes for this release.

December 4, 2023

Real-Time Streaming User Guide Changes 343

https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/getting-started-iam-permissions.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/getting-started-iam-permissions.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#dec04-23-rt


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK: Android 
1.13.1

Updated version number 
and artifact links for the new 
release, in the real-time-
streaming broadcast SDK 
guide: Android.

On the Amazon IVS 
documentation landing page, 
updated the broadcast SDK 
Reference links to point to the 
new version.

Also see the Amazon IVS
Release Notes for this release.

November 21, 2023

Service Quotas Changed "Participant publish 
resolution" from 1080p to 
720p.

November 18, 2023

Real-Time Streaming User Guide Changes 344

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#nov21-23-rt


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK: Android 
1.13.0, iOS 1.13.0

Updated version number 
and artifact links for the new 
release, in the real-time-
streaming broadcast SDK 
guides: Android and iOS.

On the Amazon IVS 
documentation landing page, 
updated the broadcast SDK 
Reference links to point to the 
new version.

Also see the Amazon IVS
Release Notes for this release.

We also made various updates 
to Streaming Optimizations. 
Among other things, the 
"Adaptive Streaming: Layered 
Encoding with Simulcast" 
feature now requires explicit 
opt-in and is supported only 
in recent versions of the SDK.

November 17, 2023

Composite Recording Made the following changes:

• Added a Composite 
Recording page for this new 
feature.

• Updated Getting Started 
with IVS Real-Time 
Streaming with S3 
endpoints in the policy in 
"Set Up IAM Permissions."

• Updated Service Quotas
with call-rate quotas for the 
new endpoints.

November 16, 2023

Real-Time Streaming User Guide Changes 345

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#nov17-23-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/real-time-streaming-optimization.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-composite-recording.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/rt-composite-recording.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/service-quotas.html


Amazon IVS Real-Time Streaming User Guide

Server-side composition 
(SSC)

IVS server-side composition 
enables clients to offload the 
composition and broadcast 
ing of an IVS stage to an IVS-
managed service. SSC and 
RTMP broadcast to a channel 
are invoked through IVS 
control-plane endpoints in 
the stage’s home region. See:

• Getting Started – We added 
SSC endpoints to the policy 
in "Set Up IAM Permissio 
ns."

• Using Amazon EventBridge 
with IVS – We added new 
metrics.

• Server-Side Compositi 
on – This new document 
includes an overview and 
setup instructions.

• Service Quotas – We added 
new call-rate limits and 
other quotas.

Also see:

• Changes listed below in IVS 
Real-Time Streaming API 
Reference Changes.

• Changes listed in Document 
History (Low-Latency 
Streaming).

November 16, 2023

Real-Time Streaming User Guide Changes 346

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/eventbridge.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/eventbridge.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/server-side-composition.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/server-side-composition.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/service-quotas.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/doc-history.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/doc-history.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/doc-history.html


Amazon IVS Real-Time Streaming User Guide

IVS broadcast SDK In the Broadcast SDK 
overview, we updated 
Platform Requirements > 
Native Platforms to clarify 
which SDK versions are 
supported and we added 
"Mobile Browsers (iOS and 
Android)."

In the Broadcast Web Guide, 
we added "Mobile Web 
Limitations."

November 9, 2023

IVS broadcast SDK We added a new page on
Third-Party Camera Filters.

November 9, 2023

Getting Started with IVS Real-
Time Streaming

We updated procedures in Set 
Up IAM Permissions.

October 20, 2023

Monitoring Real-Time 
Streaming

In CloudWatch Metrics: IVS 
Real-Time Streaming, we 
added sample values for 
dimensions.

October 17, 2023

Broadcast SDK: Web Guide We made several changes to
Monitor Remote Participant 
Media Mute State.

October 17, 2023

Real-Time Streaming User Guide Changes 347

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-3p-camera-filters.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-iam-permissions.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-iam-permissions.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/stage-health.html#stage-health-cloudwatch-metrics
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/stage-health.html#stage-health-cloudwatch-metrics
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/web-publish-subscribe.html#web-publish-subscribe-mute-state
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/web-publish-subscribe.html#web-publish-subscribe-mute-state


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK: Web 1.6.0 Updated version number 
and artifact links for the new 
release, in the real-time-
streaming broadcast SDK 
guide: Web.

The Amazon IVS documenta 
tion landing page points 
to the current version of 
Broadcast SDK References.

Also see the Amazon IVS
Release Notes for this release.

In the Web Guide, in "Retrieve 
a MediaStream from a 
Device," we also deleted the 
two max lines; best practice is 
to specify only ideal.

In Real-Time Streaming 
Optimizations, we added 
a new section, Optimizin 
g Audio Bitrate and Stereo 
Support.

October 16, 2023

Stage Health: New CloudWatc 
h Metrics

Released CloudWatch metrics 
for IVS real-time streaming. 
See Monitoring IVS Real-Time 
Streaming.

October 12, 2023

Real-Time Streaming User Guide Changes 348

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#oct16-23-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/real-time-streaming-optimization.html#real-time-streaming-optimize-audio-stream
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/real-time-streaming-optimization.html#real-time-streaming-optimize-audio-stream
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/real-time-streaming-optimization.html#real-time-streaming-optimize-audio-stream
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/stage-health.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/stage-health.html


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK: Android 
1.12.1

Updated version number 
and artifact links for the new 
release, in the real-time-
streaming broadcast SDK 
guide: Android. Also added a 
new section, Using Bluetooth 
Microphones.

The Amazon IVS documenta 
tion landing page points 
to the current version of 
Broadcast SDK References.

Also see the Amazon IVS
Release Notes for this release.

October 12, 2023

Broadcast SDK: Web 1.5.2 Updated version number 
and artifact links for the new 
release, in the real-time-
streaming broadcast SDK 
guide: Web.

The Amazon IVS documenta 
tion landing page points 
to the current version of 
Broadcast SDK References.

Also see the Amazon IVS
Release Notes for this release.

September 14, 2023

Getting Started with IVS Real-
Time Streaming

In Android > Install the 
Broadcast SDK, added data 
binding.

September 12, 2023

Broadcast SDK error handling Added "Error Handling" 
sections to the Broadcast SDK 
Guides: Web, Android, and
iOS.

September 12, 2023

Real-Time Streaming User Guide Changes 349

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/android-publish-subscribe.html#android-publish-subscribe-bluetooth-microphones
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/android-publish-subscribe.html#android-publish-subscribe-bluetooth-microphones
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#oct12-23-rt
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#sep14-23
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-broadcast-sdk.html#getting-started-broadcast-sdk-android
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-broadcast-sdk.html#getting-started-broadcast-sdk-android
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html


Amazon IVS Real-Time Streaming User Guide

Getting Started with IVS Real-
Time Streaming

In Distribute Participant 
Tokens, added an Important
 note about not building 
functionality based on current 
token format.

September 1, 2023

Getting Started with IVS Real-
Time Streaming

In Set Up IAM Permissions, 
updated the set of permissio 
ns.

August 31, 2023

Broadcast SDK: Web 1.5.1, 
Android 1.12.0, and iOS 
1.12.0

Updated version number 
and artifact links for the new 
release, in the real-time-
streaming broadcast SDK 
guides: Web, Android, and
iOS.

On the Amazon IVS 
documentation landing page, 
updated the broadcast SDK 
Reference links to point to the 
new version.

Also see the Amazon IVS
Release Notes for this release.

August 23, 2023

Real-Time Streaming User Guide Changes 350

https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-distribute-tokens.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-distribute-tokens.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/getting-started-iam-permissions.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#aug23-23_2


Amazon IVS Real-Time Streaming User Guide

Real-time streaming launch Major documentation changes 
accompany this release. 
We renamed the previous 
documentation to be IVS 
Low-Latency Streaming and 
published new IVS Real-
Time Streaming documenta 
tion. The IVS documenta 
tion landing page now has 
separate sections for real-
time streaming and low-laten 
cy streaming. Each section has 
its own User Guide and API 
Reference.

For other documentation 
changes, see  Document 
History (Low-Latency 
Streaming).

August 7, 2023

Broadcast SDK: Web 1.5.0, 
Android 1.11.0, and iOS 
1.11.0

Updated version number 
and artifact links for the new 
release, in the broadcast SDK 
guides: Web, Android, and
iOS.

On the Amazon IVS 
documentation landing page, 
updated the broadcast SDK 
Reference links to point to the 
new version.

Also see the Amazon IVS 
Release Notes for this release.

August 7, 2023

Real-Time Streaming User Guide Changes 351

https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/doc-history.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/doc-history.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/doc-history.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-web.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-android.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/broadcast-ios.html
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#aug07-23-broadcast
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/release-notes.html#aug07-23-broadcast


Amazon IVS Real-Time Streaming User Guide

IVS Real-Time Streaming API Reference Changes

API Change Description Date

Real-time thumbnail 
configuration

Modified the S3DestinationConfiguration object: 
added thumbnailConfigurations . This affects 
the GetComposition response and StartComposition 
request and response.

Modified the AutoParticipantRecordingConfiguratio 
n object: added thumbnailConfiguration
and added NONE as a valid value for mediaTypes . 
This affects the CreateStage request and response, 
 GetStage response, and UpdateStage request and 
response.

Added two objects: CompositionThumbnailConfigu 
ration and ParticipantThumbnailConfiguration.

December 
10, 2024

Update Event and Video 
objects

In the Event object, we added more valid values for
errorCode .

In the Video object, we clarified that height and
width must be even numbers.

October 2, 
2024

RTMP ingest We added two objects: IngestConfiguration and 
IngestConfigurationSummary. We added five 
IngestConfiguration endpoints (Create, Delete, Get, 
List, and Update).

We updated DeleteStage (description of the 
operation) and DisconnectParticipant (descriptions 
of the operation and participantId ).

We modified the Participant object (added the
protocol field); that affects the GetParticipant 
response.

September 
9, 2024

IVS Real-Time Streaming API Reference Changes 352



Amazon IVS Real-Time Streaming User Guide

API Change Description Date

We modified the StageEndpoints object (added the
rtmp and rtmps fields); that affects the CreateSta 
ge, GetStage, and UpdateStage responses. We also 
updated this object's description (added a caching 
recommendation).

Generate Participant 
Tokens with a Key Pair

We added three objects (PublicKey, PublicKey 
Summary, StageEndpoints) and four endpoints: 
(DeletePublicKey, GetPublicKey, ImportPublicKey, 
ListPublicKeys). We modified the Stage object 
(added the endpoints  field); that affects the 
CreateStage, GetStage, and UpdateStage responses.

June 26, 
2024

Individual participant 
recording

We added one object (AutoParticipantRecordingCo 
nfiguration) and modified three objects (Particip 
ant, ParticipantSummary, Stage). This affects five 
endpoints: CreateStage request and response, 
GetParticipant response, GetStage response, 
 ListParticipants request and response, and 
UpdateStage request and response.

June 20, 
2024

Remove svs from ARN 
patterns

ARN patterns which specified [is]vs were updated 
to specify ivs. This affects all three Tag endpoints 
and the ChannelDestinationConfigura 
tion$channelArn  field.

April 25, 
2024

Server-side composition 
updates

We added one object: PipConfiguration.

We modified two objects (LayoutConfiguration, 
GridConfiguration). This affects the GetComposition 
response and the StartComposition request and 
response.

March 13, 
2024

IVS Real-Time Streaming API Reference Changes 353



Amazon IVS Real-Time Streaming User Guide

API Change Description Date

Composite recording We added 4 StorageConfiguration endpoints and 7 
objects (DestinationDetail, RecordingConfiguration, 
S3DestinationConfiguration, S3Detail, S3Storage 
Configuration, StorageConfiguration, StorageCo 
nfigurationSummary).

We modified 3 objects (Composition, Destinati 
on, DestinationConfiguration). This affects the 
GetComposition response and the StartComposition 
request and response.

November 
16, 2023

Server-side composition We added 8 Composition and EncoderConfigurati 
on endpoints and 11 objects (ChannelDestinatio 
nConfiguration, Composition, CompositionSummary 
, Destination, DestinationConfiguration, Destinati 
onSummary, EncoderConfiguration, EncoderCo 
nfigurationSummary, GridConfiguration, LayoutCon 
figuration, and Video).

November 
16, 2023

Stage Health: New 
Participant Data

Added six fields to the Participant object:
browserName , browserVersion , ispName,
osName, osVersion , and sdkVersion . This 
affects the GetParticipant response.

October 
12, 2023

Participant Token Added an Important note about not building 
functionality based on current token format.

September 
1, 2023

IVS Real-Time Streaming API Reference Changes 354

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_Participant.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/API_ParticipantToken.html


Amazon IVS Real-Time Streaming User Guide

API Change Description Date

IVS Real-Time Streaming 
launch

Major documentation changes accompany this 
release. We renamed the previous documentation 
to be IVS Low-Latency Streaming and published 
new IVS Real-Time Streaming documentation. The
IVS documentation landing page now has separate 
sections for real-time streaming and low-latency 
streaming. Each section has its own User Guide and 
API Reference.

IVS Real-Time Streaming API Reference is part of IVS 
real-time streaming documentation. Previously it 
was titled IVS Stage API Reference. Its prior history 
is described in Document History (Low-Latency 
Streaming).

August 7, 
2023

IVS Real-Time Streaming API Reference Changes 355

https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/Welcome.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/doc-history.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/doc-history.html


Amazon IVS Real-Time Streaming User Guide

IVS Release Notes | Real-Time Streaming

This document contains all Amazon IVS Real-Time Streaming release notes, latest first, organized 
by date of release.

February 20, 2025

Amazon IVS Broadcast SDK: Android 1.27.0, iOS 1.27.0 (Real-Time 
Streaming)

Platform Downloads and Changes

Android Broadcast SDK 1.27.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.27.0/andr 
oid/

• Bug fixes and stability improvements.

iOS Broadcast SDK 1.27.0 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.27.0/AmazonIVSBr 
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.27.0/ios/

• Bug fixes and stability improvements.

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.700 MB 14.197 MB

armeabi-v7a 4.944 MB 9.879 MB

x86_64 5.809 MB 14.802 MB

February 20, 2025 356

https://aws.github.io/amazon-ivs-broadcast-docs/1.27.0/android/
https://aws.github.io/amazon-ivs-broadcast-docs/1.27.0/android/
https://aws.github.io/amazon-ivs-broadcast-docs/1.27.0/android/
https://broadcast.live-video.net/1.27.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.27.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.27.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.27.0/ios/
https://aws.github.io/amazon-ivs-broadcast-docs/1.27.0/ios/


Amazon IVS Real-Time Streaming User Guide

Architecture Compressed Size Uncompressed Size

x86 6.073 MB 15.412 MB

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 3.625 MB 8.601 MB

February 20, 2025

IVS Broadcast SDK: Web 1.21.0 (Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.21.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-web-broadcast/docs/sdk-ref 
erence

• Updated preferredLayerForStream
strategy types to include null, which is a 
valid return.

• Fixed TypeScript compile errors when 
TSconfig skipLibCheck  is set to false.

Note: As part of this release, types have 
been consolidated into a single rollup. If an 
application imports nested types based on 
path, errors may occur. If errors do occur, 
change the import to simply 'amazon-i 
vs-broadcast' .

February 20, 2025 357

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference


Amazon IVS Real-Time Streaming User Guide

January 30, 2025

Amazon IVS Broadcast SDK: Android 1.26.0, iOS 1.26.0 (Real-Time 
Streaming)

Platform Downloads and Changes

Android Broadcast SDK 1.26.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.26.0/andr 
oid/

• Bug fixes and stability improvements.

iOS Broadcast SDK 1.26.0 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.26.0/AmazonIVSBr 
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.26.0/ios/

• Bug fixes and stability improvements.

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.695 MB 14.186 MB

armeabi-v7a 4.939 MB 9.872 MB

x86_64 5.804 MB 14.790 MB

x86 6.065 MB 15.398 MB

January 30, 2025 358

https://aws.github.io/amazon-ivs-broadcast-docs/1.26.0/android/
https://aws.github.io/amazon-ivs-broadcast-docs/1.26.0/android/
https://aws.github.io/amazon-ivs-broadcast-docs/1.26.0/android/
https://broadcast.live-video.net/1.26.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.26.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.26.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.26.0/ios/
https://aws.github.io/amazon-ivs-broadcast-docs/1.26.0/ios/


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 3.624 MB 8.601 MB

January 23, 2025

IVS Broadcast SDK: Web 1.20.0 (Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.20.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-web-broadcast/docs/sdk-ref 
erence

• Added the insertSeiMessage  method 
on LocalStageStream to enable the 
insertion of Supplemental Enhancement 
Information (SEI) payloads into a publishin 
g video stream. See Supplemental Enhanced 
Information in the IVS Broadcast SDK: Web 
Guide.

December 12, 2024

Amazon IVS Broadcast SDK: Android 1.25.0, iOS 1.25.0 (Real-Time 
Streaming)

Platform Downloads and Changes

Android Broadcast SDK 1.25.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.25.0/andr 
oid/

January 23, 2025 359

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-broadcast-docs/1.25.0/android/
https://aws.github.io/amazon-ivs-broadcast-docs/1.25.0/android/
https://aws.github.io/amazon-ivs-broadcast-docs/1.25.0/android/


Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

• Added a simulcast controls feature. 
See Configuring Layered Encoding with 
Simulcast (Subscriber) in Streaming 
 Optimizations.

• Made SEI (Supplemental Enhanced 
Information) payloads available to subscribe 
rs with a new field on ImageDeviceFrame 
objects. See Get Supplemental Enhanceme 
nt Information (SEI) in the IVS Broadcast 
SDK: Android Guide.

• Added the SubscribeConfigura 
tion::setInitialGain  method to 
allow the configuration of the initial gain 
value for incoming audio streams.

• Bug fixes and stability improvements.

Amazon IVS Broadcast SDK: Android 1.25.0, iOS 1.25.0 (Real-Time Streaming) 360



Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

iOS Broadcast SDK 1.25.0 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.25.0/AmazonIVSBr 
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.25.0/ios/

• Added a simulcast controls feature. 
See Configuring Layered Encoding with 
Simulcast (Subscriber) in Streaming 
 Optimizations.

• Made SEI (Supplemental Enhanced 
Information) payloads available to subscribe 
rs with a new field on IVSImageDeviceFram 
e objects. See Get Supplemental Enhanceme 
nt Information (SEI) in the IVS Broadcast 
SDK: iOS Guide.

• Added the IVSSubscribeConfig 
uration.initialGain  method to 
allow the configuration of the initial gain 
value for incoming audio streams.

• Bug fixes and stability improvements.

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.677 MB 14.103 MB

armeabi-v7a 4.905 MB 9.791 MB

x86_64 5.786 MB 14.725 MB

x86 6.030 MB 15.302 MB

Amazon IVS Broadcast SDK: Android 1.25.0, iOS 1.25.0 (Real-Time Streaming) 361

https://broadcast.live-video.net/1.25.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.25.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.25.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.25.0/ios/
https://aws.github.io/amazon-ivs-broadcast-docs/1.25.0/ios/


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 3.625 MB 8.585 MB

December 12, 2024

IVS Broadcast SDK: Web 1.19.0 (Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.19.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-web-broadcast/docs/sdk-ref 
erence

• Added a simulcast controls feature. 
See Configuring Layered Encoding with 
Simulcast (Subscriber) in Streaming 
 Optimizations.

• Bug fixes and stability improvements.

December 10, 2024

Real-Time Streaming Thumbnail Configuration

This release allows you to enable/disable the recording of thumbnails for a live session and modify 
the interval at which thumbnails are generated for the live session. This is the first release of this 
new functionality. See:

• Individual Participant Recording — We updated examples and JSON metadata information, and 
we added pricing information and "Thumbnail-Only Recordings."

• Composite Recording — We updated examples and JSON metadata information, and we added 
pricing information.

• API Reference RT — We made several changes:

December 12, 2024 362

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/Welcome.html


Amazon IVS Real-Time Streaming User Guide

• Modified the S3DestinationConfiguration object: added thumbnailConfigurations. This 
affects the GetComposition response and StartComposition request and response.

• Modified the AutoParticipantRecordingConfiguration object: added
thumbnailConfiguration and added NONE as a valid value for mediaTypes. This affects 
the CreateStage request and response, GetStage response, and UpdateStage request and 
response.

• Added two objects: CompositionThumbnailConfiguration and 
ParticipantThumbnailConfiguration.

November 13, 2024

Amazon IVS Broadcast SDK: Android 1.24.0, iOS 1.24.0 (Real-Time 
Streaming)

Platform Downloads and Changes

Android Broadcast SDK 1.24.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.24.0/andr 
oid/

• Bug fixes and stability improvements.

iOS Broadcast SDK 1.24.0 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.24.0/AmazonIVSBr 
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.24.0/ios/

• Bug fixes and stability improvements.

November 13, 2024 363

https://aws.github.io/amazon-ivs-broadcast-docs/1.24.0/android/
https://aws.github.io/amazon-ivs-broadcast-docs/1.24.0/android/
https://aws.github.io/amazon-ivs-broadcast-docs/1.24.0/android/
https://broadcast.live-video.net/1.24.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.24.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.24.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.24.0/ios/
https://aws.github.io/amazon-ivs-broadcast-docs/1.24.0/ios/


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.521 MB 13.791 MB

armeabi-v7a 4.789 MB 9.623 MB

x86_64 5.718 MB 14.709 MB

x86 5.933 MB 15.163 MB

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 3.589 MB 8.466 MB

November 12, 2024

IVS Broadcast SDK: Web 1.18.0 (Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.18.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-web-broadcast/docs/sdk-ref 
erence

• Added a new event to make SEI (Suppleme 
ntal Enhanced Information) payloads 
available to subscribers.

• Fixed an exception that would occur during 
unpublish and unsubscribe requests.

November 12, 2024 364

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference


Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

• Fixed a race condition where joining and 
leaving rapidly would cause an error for 
other participants.

October 10, 2024

IVS Broadcast SDK: Web 1.17.0 (Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.17.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-web-broadcast/docs/sdk-ref 
erence

• Minor bug fixes.

October 10, 2024

Amazon IVS Broadcast SDK: Android 1.23.0, iOS 1.23.0 (Real-Time 
Streaming)

Platform Downloads and Changes

Android Broadcast SDK 1.23.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.23.0/andr 
oid/

• With this release we also began publishing a 
version of the Android broadcast SDK which 
includes debug symbols. See Using the SDK 
with Debug Symbols.

• Minor bug fixes.

October 10, 2024 365

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-broadcast-docs/1.23.0/android/
https://aws.github.io/amazon-ivs-broadcast-docs/1.23.0/android/
https://aws.github.io/amazon-ivs-broadcast-docs/1.23.0/android/


Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

iOS Broadcast SDK 1.23.0 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.23.0/AmazonIVSBr 
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.23.0/ios/

• Minor bug fixes.

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.432 MB 13.560 MB

armeabi-v7a 4.707 MB 9.451 MB

x86_64 5.626 MB 14.459 MB

x86 5.838 MB 14.908 MB

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 3.542 MB 8.316 MB

Amazon IVS Broadcast SDK: Android 1.23.0, iOS 1.23.0 (Real-Time Streaming) 366

https://broadcast.live-video.net/1.23.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.23.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.23.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.23.0/ios/
https://aws.github.io/amazon-ivs-broadcast-docs/1.23.0/ios/


Amazon IVS Real-Time Streaming User Guide

September 11, 2024

Amazon IVS Broadcast SDK: Android 1.22.0, iOS 1.22.0 (Real-Time 
Streaming)

Platform Downloads and Changes

Android Broadcast SDK 1.22.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.22.0/andr 
oid/

• Fixed a bug where certain Android devices 
show a black frame in the preview after 
switching camera inputs.

• Minor bug fixes.

iOS Broadcast SDK 1.22.0 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.22.0/AmazonIVSBr 
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.22.0/ios/

• Minor bug fixes.

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.359 MB 13.392 MB

armeabi-v7a 4.636 MB 9.325 MB

x86_64 5.548 MB 14.268 MB

x86 5.754 MB 14.710 MB

September 11, 2024 367

https://aws.github.io/amazon-ivs-broadcast-docs/1.22.0/android/
https://aws.github.io/amazon-ivs-broadcast-docs/1.22.0/android/
https://aws.github.io/amazon-ivs-broadcast-docs/1.22.0/android/
https://broadcast.live-video.net/1.22.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.22.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.22.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.22.0/ios/
https://aws.github.io/amazon-ivs-broadcast-docs/1.22.0/ios/


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 3.488 MB 8.199 MB

September 11, 2024

IVS Broadcast SDK: Web 1.16.0 (Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.16.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-web-broadcast/docs/sdk-ref 
erence

• Minor bug fixes.

September 9, 2024

RTMP Ingest

As an alternative to using the IVS broadcast SDK, you can now publish video to an IVS stage from 
an RTMP source (in addition to WHIP, which already was supported). For documentation changes, 
see the Document History (both the User Guide and API Reference tables).

August 19, 2024

In-Console Publish/Subscribe

You can now publish and subscribe from the IVS console. In Getting Started with IVS Real-Time 
Streaming, see Publish and Subscribe to Video.

September 11, 2024 368

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference


Amazon IVS Real-Time Streaming User Guide

August 15, 2024

IVS Broadcast SDK: Web 1.15.0 (Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.15.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-web-broadcast/docs/sdk-ref 
erence

• Fixed a race condition that impacts 
publisher media quality when join()
is called repeatedly. Calling join()
in succession no longer re-triggers the
STAGE_PARTICIPANT_JOINED  event, 
along with accompanying publish and 
stream state changes.

• Fixed a bug that causes issues parsing 
participant tokens when non-text characters 
are used in the token attributes  field.

• Added a method to configure a participa 
nt's subscribers. Initially, you can configure 
only the jitter-buffer minimum delay. 
See the SDK reference documentation,
Configuration for Subscribing to Participa 
nts in the Web Broadcast SDK Guide, and
Changing Subscriber Jitter Buffer MinDelay
in Streaming Optimizations.

August 15, 2024 369

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference


Amazon IVS Real-Time Streaming User Guide

August 15, 2024

Amazon IVS Broadcast SDK: Android 1.21.0, iOS 1.21.0 (Real-Time 
Streaming)

Platform Downloads and Changes

Android Broadcast SDK 1.21.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.21.0/andr 
oid/

• Fixed a bug impacting devices with MT6765 
chipsets, where the subscriber preview 
renders black frames under some circumsta 
nces.

• Added a method to configure a participa 
nt's subscribers. Initially, you can configure 
only the jitter-buffer minimum delay. 
See the SDK reference documentation,
Configuration for Subscribing to Participa 
nts in the Android Broadcast SDK Guide, and
Changing Subscriber Jitter Buffer MinDelay
in Streaming Optimizations.

• Minor bug fixes.

iOS Broadcast SDK 1.21.0 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.21.0/AmazonIVSBr 
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.21.0/ios/

• Added a method to configure a participa 
nt's subscribers. Initially, you can configure 
only the jitter-buffer minimum delay. 
See the SDK reference documentation,
Configuration for Subscribing to Participa 

August 15, 2024 370

https://aws.github.io/amazon-ivs-broadcast-docs/1.21.0/android/
https://aws.github.io/amazon-ivs-broadcast-docs/1.21.0/android/
https://aws.github.io/amazon-ivs-broadcast-docs/1.21.0/android/
https://broadcast.live-video.net/1.21.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.21.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.21.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.21.0/ios/
https://aws.github.io/amazon-ivs-broadcast-docs/1.21.0/ios/


Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

nts in the iOS Broadcast SDK Guide, and
Changing Subscriber Jitter Buffer MinDelay
in Streaming Optimizations.

• Minor bug fixes.

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.350 MB 13.378 MB

armeabi-v7a 4.628 MB 9.312 MB

x86_64 5.538 MB 14.253 MB

x86 5.744 MB 14.694 MB

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 3.485 MB 8.199 MB

July 18, 2024

IVS Broadcast SDK: Web 1.14.0 (Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.14.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-web-broadcast/docs/sdk-ref 
erence

• API documentation improvements.

July 18, 2024 371

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference


Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

• Fixed video and audio stats outliers reported 
during connection resets.

• Minor dependency updates.

July 18, 2024

Amazon IVS Broadcast SDK: Android 1.20.0, iOS 1.20.0 (Real-Time 
Streaming)

Platform Downloads and Changes

Android Broadcast SDK 1.20.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.20.0/andr 
oid

• Fixed a bug that prevented the Broadcast 
SDK from running on Chromebooks with 
Intel processors.

• Minor bug fixes.

iOS Broadcast SDK 1.20.0 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.20.0/AmazonIVSBr 
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.20.0/ios

• Minor bug fixes.

July 18, 2024 372

https://aws.github.io/amazon-ivs-broadcast-docs/1.20.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.20.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.20.0/android
https://broadcast.live-video.net/1.20.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.20.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.20.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.20.0/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.20.0/ios


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.318 MB 13.299 MB

armeabi-v7a 4.605 MB 9.254 MB

x86_64 5.507 MB 14.168 MB

x86 5.715 MB 14.608 MB

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 3.465 MB 8.164 MB

June 26, 2024

Generate Participant Tokens with a Key Pair

You can now generate participant tokens on your own server application by using a key pair. This 
enables you to avoid calling CreateParticipantToken every time you need a participant token. For 
documentation changes, see the Document History (both the User Guide and API Reference tables).

June 20, 2024

Individual Participant Recording

Individual participant recording allows IVS real-time streaming customers to record IVS stage 
publishers individually into S3 buckets. See Recording, Individual Participant Recording, and 
changes in the Real-Time Streaming API Reference. (For specific documentation changes, see the
Document History.)

June 26, 2024 373

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/Welcome.html


Amazon IVS Real-Time Streaming User Guide

June 13, 2024

Amazon IVS Broadcast SDK: Android 1.19.0, iOS 1.19.0 (Real-Time 
Streaming)

Platform Downloads and Changes

Android Broadcast SDK 1.19.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.19.0/andr 
oid

• Recent Android versions require an icon 
in the notification that is displayed when 
capturing the screen. If desired, you can now 
customize the icon by calling setSmallI 
con  on the Notification.Build 
er  returned by Session # createSer 
viceNotificationBuilder .

• Improved connection recovery time on 
devices transitioning from wifi to cellular 
connections. This change requires the
CHANGE_NETWORK_STATE  permission.

iOS Broadcast SDK 1.19.0 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.19.0/AmazonIVSBr 
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.19.0/ios

• Minor bug fixes.

June 13, 2024 374

https://aws.github.io/amazon-ivs-broadcast-docs/1.19.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.19.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.19.0/android
https://broadcast.live-video.net/1.19.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.19.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.19.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.19.0/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.19.0/ios


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.304 MB 13.340 MB

armeabi-v7a 4.598 MB 9.299 MB

x86_64 5.495 MB 14.207 MB

x86 5.694 MB 14.625 MB

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 3.393 MB 7.949 MB

June 13, 2024

IVS Broadcast SDK: Web 1.13.0 (Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.13.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-web-broadcast/docs/sdk-ref 
erence

• Updated the duration of event change 
behavior for StageEvents.STAGE_ 
PARTICIPANT_SUBSCRIBE_STATE 
_CHANGED  and StageEvents.STAGE_ 
PARTICIPANT_PUBLISH_STATE_C 
HANGED . Participants now remain in the
ATTEMPTING_SUBSCRIBE  or ATTEMPTIN 

June 13, 2024 375

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference


Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

G_PUBLISH  state for a longer time, until 
the ERRORED event is fired.

• Added the StageEvents.ERROR  event 
for listening to errors encountered by 
the SDK. See Error Handling in the Real-
Time Broadcast SDK: Web Guide for more 
information.

May 20, 2024

IVS Broadcast SDK: Web 1.12.0 (Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.12.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-web-broadcast/docs/sdk-ref 
erence

• Improved retry handling for publish and 
subscribe operations.

• Improved analytics, specifically latency and 
audio-quality measurement.

May 16, 2024

Amazon IVS Broadcast SDK: Android 1.18.0, iOS 1.18.0 (Real-Time 
Streaming)

Platform Downloads and Changes

Android Broadcast SDK 1.18.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.18.0/andr 
oid

May 20, 2024 376

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-broadcast-docs/1.18.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.18.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.18.0/android


Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

• The SDK now sends specific error codes 
when a connected Stage is deleted by the 
AWS control plane, or when the token in use 
is revoked.

• Minor bug fixes.

iOS Broadcast SDK 1.18.0 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.18.0/AmazonIVSBr 
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.18.0/ios

• The SDK now sends specific error codes 
when a connected Stage is deleted by the 
AWS control plane, or when the token in use 
is revoked.

• Added the IVSCamera setVideoZ 
oomFactor  method and the associated
IVSCameraDelegate  methods.

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.275 MB 13.279 MB

armeabi-v7a 4.573 MB 9.254 MB

x86_64 5.472 MB 14.142 MB

x86 5.664 MB 14.554 MB

Amazon IVS Broadcast SDK: Android 1.18.0, iOS 1.18.0 (Real-Time Streaming) 377

https://broadcast.live-video.net/1.18.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.18.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.18.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.18.0/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.18.0/ios


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 3.393 MB 7.916 MB

May 6, 2024

IVS Broadcast SDK: Web 1.11.0 (Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.11.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-web-broadcast/docs/sdk-ref 
erence

• Fixed an edge case where the SDK did not 
attempt to recover on a stage DISCONNEC 
T .

• Updated the error message for a join()
timeout error. Instead of "InitialConnectTim 
edOut after 10 seconds," the SDK now 
returns "Operation timed out."

April 30, 2024

IVS Broadcast SDK: Web 1.10.1 (Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.10.1 Reference documentation: https://aws.githu 
b.io/amazon-ivs-web-broadcast/docs/sdk-ref 
erence

• Minor bug fixes.

May 6, 2024 378

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference


Amazon IVS Real-Time Streaming User Guide

April 30, 2024

Amazon IVS Broadcast SDK: Android 1.15.2, iOS 1.15.2 (Real-Time 
Streaming)

Platform Downloads and Changes

Android Broadcast SDK 1.15.2 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.15.2/andr 
oid

• Minor bug fixes. Upgrade to this version 
only if you have a specific reason to do so; 
otherwise, use the highest version that is 
released.

iOS Broadcast SDK 1.15.2 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.15.2/AmazonIVSBr 
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.15.2/ios

• Minor bug fixes. Upgrade to this version 
only if you have a specific reason to do so; 
otherwise, use the highest version that is 
released.

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.244 MB 13.198 MB

armeabi-v7a 4.543 MB 9.192 MB

x86_64 5.437 MB 14.051 MB

April 30, 2024 379

https://aws.github.io/amazon-ivs-broadcast-docs/1.15.2/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.2/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.2/android
https://broadcast.live-video.net/1.15.2/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.15.2/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.15.2/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.2/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.2/ios


Amazon IVS Real-Time Streaming User Guide

Architecture Compressed Size Uncompressed Size

x86 5.631 MB 14.461 MB

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 3.359 MB 7.836 MB

April 22, 2024

Amazon IVS Broadcast SDK: Android 1.17.0, iOS 1.17.0 (Real-Time 
Streaming)

Platform Downloads and Changes

Android Broadcast SDK 1.17.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.17.0/andr 
oid

• Fixed a rare crash that can occur while 
publishing.

iOS Broadcast SDK 1.17.0 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.17.0/AmazonIVSBr 
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.17.0/ios

• The AmazonIVSBroadcast  framework 
now includes a privacy manifest, as required 
by Apple.

April 22, 2024 380

https://aws.github.io/amazon-ivs-broadcast-docs/1.17.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.17.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.17.0/android
https://broadcast.live-video.net/1.17.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.17.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.17.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.17.0/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.17.0/ios


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.273 MB 13.275 MB

armeabi-v7a 4.571 MB 9.251 MB

x86_64 5.468 MB 14.137 MB

x86 5.662 MB 14.549 MB

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 3.388 MB 7.916 MB

March 21, 2024

Amazon IVS Broadcast SDK: Android 1.16.0, iOS 1.16.0, Web 1.10.0 
(Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.10.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-web-broadcast/docs/sdk-ref 
erence

• Fixed an intermittent error when cleaning 
up connections after unsubscribing or 
leaving a stage.

Android Broadcast SDK 1.16.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.16.0/andr 
oid

March 21, 2024 381

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-broadcast-docs/1.16.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.16.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.16.0/android


Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

• Fixed a previews freeze on the Exynos 
variant of Samsung devices with Android 14.

• Added a function for querying camera zoom 
capabilities and setting the zoom factor.

iOS Broadcast SDK 1.16.0 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.16.0/AmazonIVSBr 
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.16.0/ios

• Minor bug fixes.

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.253 MB 13.21 MB

armeabi-v7a 4.551 MB 9.204 MB

x86_64 5.447 MB 14.070 MB

x86 5.640 MB 14.480 MB

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 3.361 MB 7.836 MB

Amazon IVS Broadcast SDK: Android 1.16.0, iOS 1.16.0, Web 1.10.0 (Real-Time Streaming) 382

https://broadcast.live-video.net/1.16.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.16.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.16.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.16.0/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.16.0/ios


Amazon IVS Real-Time Streaming User Guide

March 13, 2024

Amazon IVS Broadcast SDK: Android 1.15.1, iOS 1.15.1 (Real-Time 
Streaming)

Platform Downloads and Changes

Android Broadcast SDK 1.15.1 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.15.1/andr 
oid

• Fixed a rare crash when subscribing to a 
remote participant.

iOS Broadcast SDK 1.15.1 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.15.1/AmazonIVSBr 
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.15.1/ios

• Fixed a rare crash when subscribing to a 
remote participant.

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.243 MB 13.194 MB

armeabi-v7a 4.541 MB 9.188 MB

x86_64 5.628 MB 14.455 MB

x86 5.434 MB 14.046 MB

March 13, 2024 383

https://aws.github.io/amazon-ivs-broadcast-docs/1.15.1/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.1/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.1/android
https://broadcast.live-video.net/1.15.1/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.15.1/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.15.1/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.1/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.1/ios


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 3.358 MB 7.820 MB

March 13, 2024

Server-Side Composition API Updates

We introduced new properties to the GridConfiguration and a new picture-in-picture layout, 
enhancing the customization options for compositions. For specific documentation changes, see 
the Document History (see the table of API Reference changes).

Important: Ensure your application does not depend on the specific features of the current layout, 
such as size and position of tiles. Visual improvements to layouts can be introduced at any time.

March 8, 2024

Server-Side Composition Layout Updates

Today we enabled the changes to the default grid layout that are described in the February 7, 2024
entry.

February 22, 2024

Amazon IVS Broadcast SDK: Android 1.15.0, iOS 1.15.0, Web 1.9.0 
(Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.9.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-web-broadcast/docs/sdk-ref 
erence

• Improved internal error handling.

March 13, 2024 384

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference


Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

Android Broadcast SDK 1.15.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.15.0/andr 
oid

• Minor bug fixes.

iOS Broadcast SDK 1.15.0 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.15.0/AmazonIVSBr 
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.15.0/ios

• Added an AVPictureInPicture 
Controller  extension to allow creating 
a new instance with an IVSImageP 
reviewView .

• Added a new API on IVSImageDevice
to create an AVSampleBufferDisp 
layLayer  to which the device renders.

• Fixed a low bitrate issue on devices running 
iOS 17 and later.

• Minor bug fixes.

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.243 MB 13.194 MB

armeabi-v7a 4.541 MB 9.188 MB

x86_64 5.628 MB 14.455 MB

x86 5.434 MB 14.046 MB

Amazon IVS Broadcast SDK: Android 1.15.0, iOS 1.15.0, Web 1.9.0 (Real-Time Streaming) 385

https://aws.github.io/amazon-ivs-broadcast-docs/1.15.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.0/android
https://broadcast.live-video.net/1.15.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.15.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.15.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.0/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.15.0/ios


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 3.358 MB 7.820 MB

February 7, 2024

Server-Side Composition Layout Updates

This release introduces visual improvements to the default grid layout. These changes will optimize 
how video is displayed and reduce blank space. These changes will be enabled on March 7, 2024.

Important: Ensure your application does not depend on the specific features of the current layout, 
such as size and position of tiles. Visual improvements to layouts can be introduced at any time.

Description of the Change Old New

Automatically selects the 
optimal placement of 
participants to maximize 
video size.

Enhances space utilization by 
reducing gaps and minimizing 
black bars.

Adds a new “camera off” 
indicator for clear visibility 
of participants not sharing 
video.

February 7, 2024 386



Amazon IVS Real-Time Streaming User Guide

Description of the Change Old New

Improves space utilization 
and proportions for portrait 
use cases.

Enhances space utilizati 
on in portrait use cases by 
minimizing spacing between 
participants and reducing 
letterboxing or pillarboxing.

Server-Side Composition Layout Updates 387



Amazon IVS Real-Time Streaming User Guide

February 6, 2024

OBS and WHIP Support

IVS can be used with WHIP-compatible encoders like OBS to publish to IVS real-time streaming. 
WHIP (WebRTC-HTTP Ingestion Protocol) is an IETF draft developed to standardize WebRTC 
ingestion. See the new page on OBS and WHIP Support.

February 1, 2024

Amazon IVS Broadcast SDK: Android 1.14.1, iOS 1.14.1, Web 1.8.0 
(Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.8.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-web-broadcast/docs/sdk-ref 
erence

• Layered encoding with simulcast is now 
disabled by default.

• Fixed an issue where a Stage instance 
would not cleanly disconnect when a Stage 
was deleted, or when a participant was 
disconnected from the server. The SDK 
now emits a STAGE_CONNECTION_S 
TATE_CHANGED  event with a state of
DISCONNECTED  (instead of ERRORED and 
then CONNECTING ).

• Fixed issue where publishing would fail 
when updating the strategy with empty 
audio or video tracks.

Android Broadcast SDK 1.14.1 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.14.1/andr 
oid

February 6, 2024 388

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-broadcast-docs/1.14.1/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.14.1/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.14.1/android


Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

• Layered encoding with simulcast is now 
disabled by default.

• Updated libWebRTC  from M108 to M119.

• Fixed several crashes to improve overall 
stability.

• Added support for stereo publishing. This 
can be enabled through the StageAudi 
oConfiguration  object.

• Fixed a bug causing a black feed from 
participants after joining a session.

• Updated internal libWebRTC  reference 
s to avoid symbol conflicts when other
libWebRTC  versions are included in the 
same host application.

iOS Broadcast SDK 1.14.1 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.14.1/AmazonIVSBr 
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.14.1/ios

• Layered encoding with simulcast is now 
disabled by default.

• Updated libWebRTC  from M108 to M119.

• Fixed several crashes to improve overall 
stability.

• Added support for stereo publishing. 
This can be enabled through IVSLocalS 
tageStreamAudioConfiguration .

• Fixed a crash when enabling audio-only 
mode for other participants.

• Improved TTV and reduced binary size.

Amazon IVS Broadcast SDK: Android 1.14.1, iOS 1.14.1, Web 1.8.0 (Real-Time Streaming) 389

https://broadcast.live-video.net/1.14.1/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.14.1/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.14.1/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.14.1/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.14.1/ios


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.223 MB 13.118 MB

armeabi-v7a 4.524 MB 9.134 MB

x86_64 5.418 MB 13.955 MB

x86 5.61 MB 14.369 MB

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 3.350 MB 7.790 MB

January 3, 2024

Amazon IVS Broadcast SDK: Android 1.13.4, iOS 1.13.4, Web 1.7.0 
(Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.7.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-web-broadcast/docs/sdk-ref 
erence

• Improved time-to-video for subscribers 
joining stages.

• Removed the minAudioBitrateKbps
property (it was unused).

• Improved network recovery during internet 
outages or changes.

January 3, 2024 390

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference


Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

Android Broadcast SDK 1.13.4 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.13.4/andr 
oid

• StageAudioConfiguration now supports 
setting whether echo cancellation should be 
enabled.

iOS Broadcast SDK 1.13.4 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.13.4/AmazonIVSBr 
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.13.4/ios

• On iOS, we improved the audio engine for 
both recording and playback with a focus on 
stability and recoverability. This enhances 
support for route changes while in use, 
improves battery recovery for edge cases, 
and reduces the amount of main thread 
blocking.

• Fixed an issue where the microphone might 
stay active even after it was detached from 
a stage, leaving the iOS privacy indicator 
on. (The SDK was not processing incoming 
audio at the time.)

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.187 MB 13.025 MB

armeabi-v7a 4.491 MB 9.056 MB

Amazon IVS Broadcast SDK: Android 1.13.4, iOS 1.13.4, Web 1.7.0 (Real-Time Streaming) 391

https://aws.github.io/amazon-ivs-broadcast-docs/1.13.4/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.4/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.4/android
https://broadcast.live-video.net/1.13.4/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.13.4/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.13.4/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.4/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.4/ios


Amazon IVS Real-Time Streaming User Guide

Architecture Compressed Size Uncompressed Size

x86_64 5.359 MB 13.829 MB

x86 5.553 MB 14.214 MB

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 3.45 MB 7.84 MB

December 7, 2023

New CloudWatch Metrics

We renamed the PacketLoss (Stage) metric to be DownloadPacketLoss (Stage). We also released 
additional CloudWatch metrics for IVS real-time streaming:

• DownloadPacketLoss (Stage,Participant)

• DroppedFrames (Stage,Participant)

• SubscribeBitrate (Stage,Participant,MediaType)

For details, see Monitoring IVS Real-Time Streaming.

December 7, 2023 392



Amazon IVS Real-Time Streaming User Guide

December 4, 2023

Amazon IVS Broadcast SDK: Android 1.13.2 and iOS 1.13.2 (Real-Time 
Streaming)

Platform Downloads and Changes

All mobile (Android and iOS) • Noise-suppression configuration is available 
for developers to enable/disable for 
publishing.

Android Broadcast SDK 1.13.2 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.13.2/andr 
oid

• Improved the time it takes to load the 
video (TTV) when joining the first stage in a 
session.

iOS Broadcast SDK 1.13.2 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.13.2/AmazonIVSBr 
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.13.2/ios

• No changes in the real-time SDK.

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.177 MB 13.01 MB

armeabi-v7a 4.485 MB 9.045 MB

x86_64 5.352 MB 13.808 MB

December 4, 2023 393

https://aws.github.io/amazon-ivs-broadcast-docs/1.13.2/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.2/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.2/android
https://broadcast.live-video.net/1.13.2/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.13.2/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.13.2/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.2/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.2/ios


Amazon IVS Real-Time Streaming User Guide

Architecture Compressed Size Uncompressed Size

x86 5.547 MB 14.192 MB

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 3.45 MB 7.82 MB

November 21, 2023

Amazon IVS Broadcast SDK: Android 1.13.1 (Real-Time Streaming)

Platform Downloads and Changes

Android Broadcast SDK 1.13.1 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.13.1/andr 
oid

• Fixed an issue that caused a crash when 
quickly leaving, releasing, and rejoining the 
same stage.

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.177 MB 13.102 MB

armeabi-v7a 4.485 MB 9.046 MB

x86_64 5.353 MB 13.809 MB

x86 5.547 MB 14.192 MB

November 21, 2023 394

https://aws.github.io/amazon-ivs-broadcast-docs/1.13.1/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.1/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.1/android


Amazon IVS Real-Time Streaming User Guide

November 17, 2023

Amazon IVS Broadcast SDK: Android 1.13.0 and iOS 1.13.0 (Real-Time 
Streaming)

Platform Downloads and Changes

All mobile (Android and iOS) • Updated Streaming Optimizations. Among 
other things, the "Adaptive Streaming 
: Layered Encoding with Simulcast" 
feature now requires explicit opt-in and is 
supported only in recent versions of the 
SDK.

• Improved the stability of stages by reducing 
occurrences of rare crashes.

• Improved the time it takes to load the video 
(TTV) when joining a stage.

• Improved the experience with Bluetooth 
devices.

• Optimized SDK CPU and memory usage, 
and reduced the library size.

• Added the StageAudioManager  class, 
which can be used to set audio capture and 
playback parameters, including presets for 
voice communication, media playback and 
more. For details, see the new page, IVS 
Broadcast SDK: Mobile Audio Modes.

• Added a new requestQualityStats
function to display structured quality events 
from WebRTC stats.

• Added a new function to update the audio 
bitrate. It is set on LocalStageStream
objects just like the video configuration, but 
through a new audio configuration object.

November 17, 2023 395



Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

Android Broadcast SDK 1.13.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.13.0/andr 
oid

• All methods on the StageRenderer
interface are now optional.

• Added support to Surfaceview -based 
preview for better performance. The 
existing getPreview  methods in Session
and StageStream  continue to return a 
subclass of TextureView , but this may 
change in a future SDK version.

• If your application depends on
TextureView  specifically, you can 
continue with no changes. You also can 
switch from getPreview  to getPrevie 
wTextureView  to prepare for the 
eventual change of what the default
getPreview  returns.

• If your application does not require
TextureView  specifically, we 
recommend switching to getPrevie 
wSurfaceView  for lower CPU and 
memory usage.

• The SDK now implements a new type of 
preview called ImagePreviewSurfac 
eTarget  which works with the applicati 
on-provided Android Surface object. It is not 
a subclass of Android View, which provides 
better flexibility.

• Fixed the case where onFrame callback for 
remote participant is called at the wrong 
time with the wrong size.

Amazon IVS Broadcast SDK: Android 1.13.0 and iOS 1.13.0 (Real-Time Streaming) 396

https://aws.github.io/amazon-ivs-broadcast-docs/1.13.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.0/android


Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

• SurfaceSource # getInputSurface
is now annotated with @Nullable . Your 
code should check it before using it.

• Added UserId and attributes  to
ParticipantInfo . The UserId and
attributes  properties are embedded 
in the token and applications can retrieve 
them via ParticipantInfo  whenever a 
participant joins.

• Camera capture and preview rendering 
now defaults to 720 x 1280 or publish 
resolution (whichever is greater) at 15 fps. 
You can adjust the resolution and/or the fps 
using StageVideoConfiguration # 
setCameraCaptureQuality .

• IllegalArgumentException  thrown 
when setting configuration properties now 
includes the provided value in the exception 
message.

Amazon IVS Broadcast SDK: Android 1.13.0 and iOS 1.13.0 (Real-Time Streaming) 397



Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

iOS Broadcast SDK 1.13.0 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.13.0/AmazonIVSBr 
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.13.0/ios

• Fixed the issue where the SDK does not 
change video configuration if the video 
configuration is updated before publishing.

• Incorporated the Google fix for a LibVPX 
security vulnerability (CVE-2023-5217). 
(Note that the Android SDK did not require 
any changes for this issue.)

• Applications using other libraries that 
include libWebRTC  will no longer have 
conflicts with the IVS Broadcast SDK.

• All methods on the IVSStageRenderer
protocol are now marked @optional .

• Microphones and cameras returned by our 
SDKs now have a guaranteed sorting order, 
as documented in the SDKs themselves.

• Multiple cameras can now have a value 
of true for their isDefault  property, 
one for each position as determined by the 
operating system.

• Added IVSStageAudioManager , which 
allows precise control over the underlyin 
g AVAudioSession  to enable a wider 
variety of use cases for Stages functionality.

• Added UserId to ParticipantInfo .

Amazon IVS Broadcast SDK: Android 1.13.0 and iOS 1.13.0 (Real-Time Streaming) 398

https://broadcast.live-video.net/1.13.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.13.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.13.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.0/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.13.0/ios


Amazon IVS Real-Time Streaming User Guide

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.17 MB 13.00 MB

armeabi-v7a 4.48 MB 9.04 MB

x86_64 5.35 MB 13.80 MB

x86 5.54 MB 14.18 MB

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 3.45 MB 7.84 MB

November 16, 2023

Composite Recording

This new feature enables recording the composited view of an IVS Stage to an Amazon S3 bucket. 
For more information, see:

• Composite Recording – This is a new page.

• Getting Started with IVS Real-Time Streaming – We added S3 endpoints to the policy in "Set Up 
IAM Permissions."

• Service Quotas – We added call-rate quotas for the new endpoints.

• IVS Real-Time Streaming API Reference – We added 4 StorageConfiguration endpoints and 
7 objects (DestinationDetail, RecordingConfiguration, S3DestinationConfiguration, S3Detail, 
S3StorageConfiguration, StorageConfiguration, StorageConfigurationSummary). We also 
modified 3 objects (Composition, Destination, DestinationConfiguration); this affects the 
GetComposition response and the StartComposition request and response.

November 16, 2023 399

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/Welcome.html


Amazon IVS Real-Time Streaming User Guide

November 16, 2023

Server-Side Composition

IVS server-side composition enables clients to offload the composition and broadcasting of an IVS 
stage to an IVS-managed service. Server-side composition and RTMP broadcast to a channel are 
invoked through IVS control plane endpoints in the stage’s home region. For more information, 
see:

• Getting Started with IVS Real-Time Streaming – We added SSC endpoints to the policy in "Set Up 
IAM Permissions."

• Using Amazon EventBridge with IVS Real-Time Streaming – We added new metrics.

• Server-Side Composition – This new document includes an overview and setup instructions.

• Service Quotas (Real-Time Streaming) – We added new call-rate limits and other quotas.

• Real-Time Streaming API Reference – We added 8 Composition and EncoderConfiguration 
endpoints and 11 objects (ChannelDestinationConfiguration, Composition, 
CompositionSummary, Destination, DestinationConfiguration, DestinationSummary, 
EncoderConfiguration, EncoderConfigurationSummary, GridConfiguration, LayoutConfiguration, 
and Video).

In the IVS Low-Latency Streaming User Guide, see:

• Enabling Multiple Hosts on an IVS Stream – We added "Broadcasting a Stage: Client-Side versus 
Server-Side Composition" and updated "4. Broadcast the Stage."

October 16, 2023

Amazon IVS Broadcast SDK: Web 1.6.0 (Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.6.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-web-broadcast/docs/sdk-ref 
erence

• Improved Time-To-Video (TTV).

November 16, 2023 400

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/Welcome.html
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/multiple-hosts.html
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference


Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

• Added maxAudioBitrate  configuration, 
supporting up to 128kbps of mono or stereo 
audio channels.

October 12, 2023

New CloudWatch Metrics and Participant Data

We released CloudWatch metrics for IVS real-time streaming. For details, see Monitoring IVS Real-
Time Streaming.

We also added six fields to the Participant API object: browserName, browserVersion, ispName,
osName, osVersion, and sdkVersion. This affects the GetParticipant response. See the IVS Real-
Time Streaming API Reference.

October 12, 2023

Amazon IVS Broadcast SDK: Android 1.12.1 (Real-Time Streaming)

Platform Downloads and Changes

Android Broadcast SDK 1.12.1 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.12.1/andr 
oid

• Fixed a bug where calling Broadcast 
Session.setListener  resulted in an 
error.

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.853 MB 16.375 MB

October 12, 2023 401

https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/Welcome.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/Welcome.html
https://aws.github.io/amazon-ivs-broadcast-docs/1.12.1/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.12.1/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.12.1/android


Amazon IVS Real-Time Streaming User Guide

Architecture Compressed Size Uncompressed Size

armeabi-v7a 4.895 MB 10.803 MB

x86_64 6.149 MB 17.318 MB

x86 6.328 MB 17.186 MB

September 14, 2023

Amazon IVS Broadcast SDK: Web 1.5.2 (Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.5.2 Reference documentation: https://aws.githu 
b.io/amazon-ivs-web-broadcast/docs/sdk-ref 
erence

• Fixed a bug that prevented republish 
ing with refreshStrategy  when the 
published state enters an ERRORED state.

August 23, 2023

Amazon IVS Broadcast SDK: Web 1.5.1, Android 1.12.0, and iOS 1.12.0 
(Real-Time Streaming)

Platform Downloads and Changes

Web Broadcast SDK 1.5.1 Reference documentation: https://aws.githu 
b.io/amazon-ivs-web-broadcast/docs/sdk-ref 
erence

• Fixed a bug with internal Maybe types on 
TypeScript 5.

September 14, 2023 402

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference


Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

• Added better detection for Simulcast 
support.

• Fixed two race conditions with refreshSt 
rategy  when trying to publish.

• Fixed a race condition with refreshSt 
rategy  when trying to update participa 
nts to subscribe to.

All mobile (Android and iOS) • Fixed a rare issue where publishing action is 
never completed.

• Improved the stability of stages by reducing 
occurrences of rare crashes.

• Improved the stability of stages by resolving 
 race-condition issues caused by rapid join / 
leave.

• Added a new setOnFrameCallback
method on ImageDevice . This allows 
observation as frames pass through the 
device itself, giving insight into the aspect 
ratio of the latest images. This method also 
can be used to detect when the first frame is 
rendered for a remote participant in a stage.

Android Broadcast SDK 1.12.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.12.0/andr 
oid

• Android 9 is now supported.

• Improved CPU usage and performance.

Amazon IVS Broadcast SDK: Web 1.5.1, Android 1.12.0, and iOS 1.12.0 (Real-Time Streaming) 403

https://aws.github.io/amazon-ivs-broadcast-docs/1.12.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.12.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.12.0/android


Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

iOS Broadcast SDK 1.12.0 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.12.0/AmazonIVSBr 
oadcast-Stages.xcframework.zip

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.12.0/ios

• Corrected the signature of IVSDevice 
Discovery.createAudioSource 
WithName  to return an IVSCustom 
AudioSource  instead of IVSCustom 
ImageSource .

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.853 MB 16.375 MB

armeabi-v7a 4.895 MB 10.803 MB

x86_64 6.149 MB 17.318 MB

x86 6.328 MB 17.186 MB

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 5.06 MB 10.92 MB

Amazon IVS Broadcast SDK: Web 1.5.1, Android 1.12.0, and iOS 1.12.0 (Real-Time Streaming) 404

https://broadcast.live-video.net/1.12.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.12.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.12.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://aws.github.io/amazon-ivs-broadcast-docs/1.12.0/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.12.0/ios


Amazon IVS Real-Time Streaming User Guide

August 7, 2023

Amazon IVS Broadcast SDK: Web 1.5.0, Android 1.11.0, and iOS 1.11.0

Platform Downloads and Changes

Web Broadcast SDK 1.5.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-web-broadcast/docs/sdk-ref 
erence

• Added Simulcast – When enabled, this 
feature allows the publisher to send high- 
and low-quality layers of video. Subscribe 
rs automatically select their optimal quality 
based on their network conditions. See
Optimizing Media.

All mobile (Android and iOS) Added Simulcast – When enabled, this feature 
allows the publisher to send high- and low-
quality layers of video. Subscribers automatic 
ally select their optimal quality based on 
their network conditions. See “Enable/Disable 
Layered Encoding with Simulcast” in the
Android and iOS Broadcast SDK Guides.

Android Broadcast SDK 1.11.0 Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.11.0/andr 
oid

• Fixed an issue where creating many stages 
eventually results in a crash. (The exact 
number of stages depends on the device.)

iOS Broadcast SDK 1.11.0 Download for real-time streaming:  https:// 
broadcast.live-video.net/1.11.0/AmazonIVSBr 
oadcast-Stages.xcframework.zip

August 7, 2023 405

https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://aws.github.io/amazon-ivs-web-broadcast/docs/sdk-reference
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/web-publish-subscribe.html#web-publish-subscribe-optimizing-media
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/android-publish-subscribe.html#android-publish-subscribe-simulcast
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/ios-publish-subscribe.html#ios-publish-subscribe-simulcast
https://aws.github.io/amazon-ivs-broadcast-docs/1.11.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.11.0/android
https://aws.github.io/amazon-ivs-broadcast-docs/1.11.0/android
https://broadcast.live-video.net/1.11.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.11.0/AmazonIVSBroadcast-Stages.xcframework.zip
https://broadcast.live-video.net/1.11.0/AmazonIVSBroadcast-Stages.xcframework.zip


Amazon IVS Real-Time Streaming User Guide

Platform Downloads and Changes

Reference documentation: https://aws.githu 
b.io/amazon-ivs-broadcast-docs/1.11.0/ios

• Corrected the signature of IVSDevice 
Discovery.createAudioSource 
WithName  to return IVSCustom 
AudioSource  instead of IVSCustom 
ImageSource .

Broadcast SDK Size: Android

Architecture Compressed Size Uncompressed Size

arm64-v8a 5.811 MB 16.186 MB

armeabi-v7a 4.857 MB 10.646 MB

x86_64 6.108 MB 17.122 MB

x86 6.289 MB 16.994 MB

Broadcast SDK Size: iOS

Architecture Compressed Size Uncompressed Size

arm64 5.030 MB 10.810 MB

August 7, 2023

Real-Time Streaming

Amazon Interactive Video Service (IVS) Real-Time Streaming enables you to deliver live streams 
with a latency that can be under 300 milliseconds from host to viewer.

August 7, 2023 406

https://aws.github.io/amazon-ivs-broadcast-docs/1.11.0/ios
https://aws.github.io/amazon-ivs-broadcast-docs/1.11.0/ios


Amazon IVS Real-Time Streaming User Guide

Major documentation changes accompany this release. The  IVS documentation landing page now 
has separate sections for real-time streaming and low-latency streaming. Each section has its own 
User Guide and API Reference. For documentation details, see the Document History (for both real-
time and low-latency documentation changes). For real-time streaming, start with the IVS Real-
Time Streaming User Guide and IVS Real-Time Streaming API Reference.

Real-Time Streaming 407

https://docs.aws.amazon.com/ivs/
https://docs.aws.amazon.com/ivs/latest/LowLatencyUserGuide/doc-history.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/what-is.html
https://docs.aws.amazon.com/ivs/latest/RealTimeUserGuide/what-is.html
https://docs.aws.amazon.com/ivs/latest/RealTimeAPIReference/Welcome.html

	Amazon IVS
	Table of Contents
	What is Amazon IVS Real-Time Streaming?
	Global Solution, Regional Control
	Streaming and Viewing are Global
	Control is Regional


	Getting Started with IVS Real-Time Streaming
	Introduction to IVS Real-Time Streaming
	Prerequisites
	Other References
	Real-Time Streaming Terminology
	Overview of Steps

	Step 1: Set Up IAM Permissions
	Use an Existing Policy for IVS Permissions
	Optional: Create a Custom Policy for Amazon IVS Permissions
	Create a New User and Add Permissions
	IAM User Access Keys
	Procedure

	Add Permissions to an Existing User

	Step 2: Create a Stage
	Console Instructions
	CLI Instructions

	Step 3: Distribute Participant Tokens
	Creating Tokens with a Key Pair
	Create a New Key Pair
	Import the Public Key
	API Request
	Generate and Sign the Token
	Token Schema: Header
	Token Schema: Payload
	Token Schema: Signature
	Instructions


	Creating Tokens with the IVS Real-Time Streaming API
	Console Instructions
	CLI Instructions
	AWS SDK Instructions


	Step 4: Integrate the IVS Broadcast SDK
	Web
	Set Up Files
	Using a Script Tag
	Using npm

	Android
	Create the Android Project
	Install the Broadcast SDK

	iOS
	Create the iOS Project
	Recommended: Install the Broadcast SDK (CocoaPods)
	Alternate Approach: Install the Framework Manually
	Configure Permissions


	Step 5: Publish and Subscribe to Video
	IVS Console
	Publish & Subscribe with the IVS Web Broadcast SDK
	Create HTML Boilerplate
	Accept Token Input and Add Join/Leave Buttons
	Add Media Container Elements
	Create app.js
	Create Application Variables
	Create joinStage 1: Define the Function and Validate Input
	Create joinStage 2: Get Media to Publish
	Create joinStage 3: Define the Stage Strategy and Create the Stage
	Create joinStage 4: Handle Stage Events and Render Media
	Create joinStage 5: Join the Stage
	Create leaveStage
	Initialize Input-Event Handlers
	Run the Application and Provide a Token
	What’s Next?

	Publish & Subscribe with the IVS Android Broadcast SDK
	Create Views
	Permissions
	App State
	RecyclerView Adapter

	Stage State
	Implementing the Stage SDK
	Stage.Strategy
	StageRenderer

	Implementing a Custom RecyclerView LayoutManager
	Hooking Up UI Actions
	Rendering the Participants

	Publish & Subscribe with the IVS iOS Broadcast SDK
	Create Views
	Permissions and Idle Timer
	App State
	Implement the Stage SDK
	IVSStageStrategy
	IVSStageRenderer

	Implementing a Custom UICollectionViewLayout
	Hooking Up UI Actions
	Rendering the Participants



	Monitoring Amazon IVS Real-Time Streaming
	What is a Stage Session?
	View Stage Sessions and Participants
	Console Instructions

	View Events for a Participant
	Console Instructions
	CLI Instructions

	Access CloudWatch Metrics
	CloudWatch Console Instructions
	CLI Instructions

	CloudWatch Metrics: IVS Real-Time Streaming

	IVS Broadcast SDK | Real-Time Streaming
	Platform Requirements
	Native Platforms
	Desktop Browsers
	Mobile Browsers (iOS and Android)
	Known Limitations


	Webviews
	Required Device Access
	Support
	Versioning

	IVS Broadcast SDK: Web Guide | Real-Time Streaming
	Getting Started with the IVS Web Broadcast SDK | Real-Time Streaming
	Imports
	Using a Script Tag
	Using npm
	Server-Side Rendering Support

	Request Permissions
	List Available Devices
	Retrieve a MediaStream from a Device

	Publishing & Subscribing with the IVS Web Broadcast SDK | Real-Time Streaming
	Concepts
	Stage
	Strategy
	Subscribing to Participants
	Configuration for Subscribing to Participants
	Publishing
	Choosing Streams to Publish
	Updating the Strategy

	Events

	Publish a Media Stream
	Publish a Screenshare
	Display and Remove Participants
	Mute and Unmute Media Streams
	Monitor Remote Participant Media Mute State
	Get WebRTC Statistics
	Optimizing Media
	Get Participant Attributes
	Supplemental Enhancement Information (SEI)
	Inserting SEI Payloads
	Repeating SEI Payloads

	Reading SEI Payloads

	Layered Encoding with Simulcast
	Configuring Layered Encoding (Publisher)
	Configuring Layered Encoding (Subscriber)
	Option 1: Initial Layer Quality Preference
	Option 2: Preferred Layer for Stream
	Option 3: RemoteStageStream Layer Helpers

	Handling Network Issues
	Broadcast the Stage to an IVS Channel

	Known Issues & Workarounds in the IVS Web Broadcast SDK | Real-Time Streaming
	Safari Limitations
	Firefox Limitations
	Mobile Web Limitations

	Error Handling in the IVS Web Broadcast SDK | Real-Time Streaming
	Stage Errors
	Handling StageError Example
	Network Errors when Already Joined

	Errored States
	Publish
	Subscribe



	IVS Broadcast SDK: Android Guide | Real-Time Streaming
	Getting Started with the IVS Android Broadcast SDK | Real-Time Streaming
	Install the Library
	Using the SDK with Debug Symbols
	Uploading Symbols to Firebase Crashlytics
	Preventing your Release .apk from Becoming Larger

	Request Permissions

	Publishing & Subscribing with the IVS Android Broadcast SDK | Real-Time Streaming
	Concepts
	Stage
	Strategy
	Subscribing to Participants
	Configuration for Subscribing to Participants
	Publishing
	Choosing Streams to Publish
	Updating the Strategy

	Renderer

	Publish a Media Stream
	Display and Remove Participants
	Mute and Unmute Media Streams
	Monitor Remote Participant Media Mute State
	Get WebRTC Statistics
	Get Participant Attributes
	Get Supplemental Enhancement Information (SEI)
	Continue Session in the Background
	Layered Encoding with Simulcast
	Configuring Layered Encoding (Publisher)
	Configuring Layered Encoding (Subscriber)
	Option 1: Initial Layer Quality Preference
	Option 2: Preferred Layer for Stream
	Option 3: RemoteStageStream Layer Helpers

	Video-Configuration Limitations
	Handling Network Issues
	Using Bluetooth Microphones

	Known Issues & Workarounds in the IVS Android Broadcast SDK | Real-Time Streaming 
	Error Handling in the IVS Android Broadcast SDK | Real-Time Streaming
	Fatal vs. Non-Fatal Errors
	Join Errors
	Malformed Token
	Expired Token
	Invalid or Revoked Token
	Network Errors for Initial Join
	Network Errors when Already Joined

	Publish/Subscribe Errors
	Initial
	Already Established, Then Fail



	IVS Broadcast SDK: iOS Guide | Real-Time Streaming
	Getting Started with the IVS iOS Broadcast SDK | Real-Time Streaming
	Install the Library
	Recommended: Integrate the Broadcast SDK (CocoaPods)
	Alternate Approach: Install the Framework Manually

	Request Permissions
	Disable the Application Idle Timer

	Publishing & Subscribing with the IVS iOS Broadcast SDK | Real-Time Streaming
	Concepts
	Stage
	Strategy
	Subscribing to Participants
	Configuration for Subscribing to Participants
	Publishing
	Choosing Streams to Publish
	Updating the Strategy

	Renderer

	Publish a Media Stream
	Display and Remove Participants
	Mute and Unmute Media Streams
	Monitor Remote Participant Media Mute State
	Create a Stage Configuration
	Get WebRTC Statistics
	Get Participant Attributes
	Get Supplemental Enhancement Information (SEI)
	Continue Session in the Background
	Layered Encoding with Simulcast
	Configuring Layered Encoding (Publisher)
	Configuring Layered Encoding (Subscriber)
	Option 1: Initial Layer Quality Preference
	Option 2: Preferred Layer for Stream
	Option 3: RemoteStageStream Layer Helpers

	Broadcast the Stage to an IVS Channel

	How iOS Chooses Camera Resolution and Frame Rate
	Camera Preview
	Broadcasting a Stage
	Arbitrary Frame Rates, Resolutions, and Aspect Ratios
	What about Android?

	Known Issues & Workarounds in the IVS iOS Broadcast SDK | Real-Time Streaming 
	Error Handling in the IVS iOS Broadcast SDK | Real-Time Streaming
	Fatal vs. Non-Fatal Errors
	Join Errors
	Malformed Token
	Expired Token
	Invalid or Revoked Token
	Network Errors for Initial Join
	Network Errors when Already Joined

	Publish/Subscribe Errors
	Initial
	Already Established, Then Fail



	IVS Broadcast SDK: Custom Image Sources | Real-Time Streaming
	Android
	iOS

	IVS Broadcast SDK: Third-Party Camera Filters | Real-Time Streaming
	Integrating Third-Party Camera Filters
	Using BytePlus with the IVS Broadcast SDK
	Android
	Install and Set Up the BytePlus Effects SDK
	Set Up the Custom Image Source
	Java

	Convert Output to a Bitmap and Feed to Custom Image Input Source
	Java



	Using DeepAR with the IVS Broadcast SDK
	Android
	iOS

	Using Snap with the IVS Broadcast SDK
	Web
	Install the Camera Kit SDK and Webpack
	Create index.html
	HTML

	Add Setup Elements
	HTML
	HTML
	HTML

	Create index.css
	CSS

	Display and Set Up Participants
	JavaScript

	Display Connected Cameras and Microphones
	JavaScript

	Create a Camera Kit Session
	JavaScript
	JavaScript

	Fetch Lenses and Populate Lens Selector
	JavaScript

	Render the Output from a Camera Kit Session to a Canvas
	JavaScript

	Create a Function to Populate the Lens Dropdown
	JavaScript

	Provide Camera Kit with a Media Source for Rendering and Publish a LocalStageStream
	JavaScript
	JavaScript

	Create package.json
	JSON Configuration

	Create a Webpack Config File
	JavaScript

	Set Up an HTTPS Server and Test
	Python


	Android
	Java
	Java
	Fetch and Apply Lenses
	Java
	Java



	Using Background Replacement with the IVS Broadcast SDK
	Web
	Install MediaPipe and Webpack
	JavaScript
	JavaScript

	Create index.html
	JavaScript

	Add Media Elements
	JavaScript

	Add a Script Tag
	Create app.js
	JavaScript
	JavaScript

	Load a Custom Background Image
	JavaScript
	JavaScript

	Create an Instance of ImageSegmenter
	JavaScript

	Render the Video Feed to a Canvas
	JavaScript

	Create Background Replacement Logic
	JavaScript
	JavaScript

	Create a Webpack Config File
	JavaScript

	Bundle Your JavaScript files

	Android
	Install CameraX Libraries and Google ML Kit
	Java
	Java

	Initialize Boilerplate Variables
	Java
	Java

	Create a Custom Image Source
	Java

	Manage Camera Frames
	Java
	Java

	Pass Camera Frames to Google ML Kit
	Java

	Overlay the Camera Frame Foreground onto Your Custom Background
	Java
	Java

	Feed the New Image to a Custom Image Source
	Java
	Java




	IVS Broadcast SDK: Mobile Audio Modes | Real-Time Streaming
	Introduction
	Audio Mode Presets
	Video Chat
	Subscribe Only
	Studio

	Advanced Use Cases
	iOS Echo Cancellation
	iOS Custom Audio Sources
	Publishing with Bluetooth on Android

	Integrating with Other SDKs
	Match Audio Mode Values
	Agora
	iOS
	Android




	Using Amazon EventBridge with IVS Real-Time Streaming
	Creating Amazon EventBridge Rules for Amazon IVS
	Examples: Composition State Change
	Examples: Individual Participant Recording State Change
	Examples: Stage Update

	IVS Server-Side Composition | Real-Time Streaming
	Overview of IVS Server-Side Composition
	Benefits
	Composition Lifecycle
	IVS API
	Layouts
	Grid Layout
	Picture-in-Picture (PiP) Layout


	Getting Started with IVS Server-Side Composition
	Prerequisites
	CLI Instructions
	Create the EncoderConfiguration Resource
	Start a Composition


	Enabling Screen Share in IVS Server-Side Composition
	Create the EncoderConfiguration Resource
	Start the Composition
	Stop the Composition


	IVS Recording | Real-Time Streaming
	Individual Participant Recording
	Composite Recording
	Thumbnails
	IVS Individual Participant Recording | Real-Time Streaming
	Introduction
	Workflow
	1. Create an S3 Bucket
	2. Create a StorageConfiguration Object
	3. Create a Stage with Participant Tokens
	4. Join the Stage as an Active Publisher
	5. Play Back the VOD

	Audio-Only Recording
	Thumbnail-Only Recording
	Recording Contents
	JSON Metadata Files
	Example: recording-started.json
	Example: recording-ended.json
	Example: recording-failed.json


	IVS Composite Recording | Real-Time Streaming
	
	Prerequisites
	Composite Recording Example: StartComposition with an S3 Bucket Destination
	Request
	Response


	Recording Contents
	Bucket Policy for StorageConfiguration
	JSON Metadata Files
	Example: recording-started.json
	Example: recording-ended.json
	Example: recording-failed.json

	Playback of Recorded Content from Private Buckets
	Setting Up Playback using CloudFront with CORS Enabled
	Step 1: Create an S3 Bucket
	Step 2: Create a CloudFront Distribution
	Step 3: Set Up the S3 Bucket Policy
	Step 4: Play Back Recordings

	Example: S3 Bucket Policy with CloudFront and IVS Access

	Troubleshooting
	Known Issue


	IVS Stream Ingest | Real-Time Streaming
	Supported Protocols
	Supported Media Specifications
	IVS RTMP Publishing | Real-Time Streaming
	Create Stage
	Create an Ingest Configuration
	Publish Using an RTMP Encoder

	IVS WHIP Publishing | Real-Time Streaming
	OBS Guide


	IVS Service Quotas | Real-Time Streaming
	Service Quota Increases
	API Call Rate Quotas
	

	Other Quotas
	


	IVS Real-Time Streaming Optimizations
	Introduction
	Adaptive Streaming: Layered Encoding with Simulcast
	Default Layers, Qualities, and Framerates
	Resolution of Layers
	Configuring Layered Encoding with Simulcast (Publisher)
	Configuring Layered Encoding with Simulcast (Subscriber)

	Streaming Configurations
	Changing Video Stream Bitrate
	Changing Video Stream Framerate
	Optimizing Audio Bitrate and Stereo Support
	Changing Subscriber Jitter Buffer MinDelay

	Suggested Optimizations

	Network Requirements | Real-Time Streaming
	Common
	Media

	IVS Resources and Support | Real-Time Streaming
	Resources
	Demos
	Support

	IVS Glossary
	IVS Document History | Real-Time Streaming
	Real-Time Streaming User Guide Changes
	IVS Real-Time Streaming API Reference Changes

	IVS Release Notes | Real-Time Streaming
	February 20, 2025
	Amazon IVS Broadcast SDK: Android 1.27.0, iOS 1.27.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	February 20, 2025
	IVS Broadcast SDK: Web 1.21.0 (Real-Time Streaming)

	January 30, 2025
	Amazon IVS Broadcast SDK: Android 1.26.0, iOS 1.26.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	January 23, 2025
	IVS Broadcast SDK: Web 1.20.0 (Real-Time Streaming)

	December 12, 2024
	Amazon IVS Broadcast SDK: Android 1.25.0, iOS 1.25.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	December 12, 2024
	IVS Broadcast SDK: Web 1.19.0 (Real-Time Streaming)

	December 10, 2024
	Real-Time Streaming Thumbnail Configuration

	November 13, 2024
	Amazon IVS Broadcast SDK: Android 1.24.0, iOS 1.24.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	November 12, 2024
	IVS Broadcast SDK: Web 1.18.0 (Real-Time Streaming)

	October 10, 2024
	IVS Broadcast SDK: Web 1.17.0 (Real-Time Streaming)

	October 10, 2024
	Amazon IVS Broadcast SDK: Android 1.23.0, iOS 1.23.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	September 11, 2024
	Amazon IVS Broadcast SDK: Android 1.22.0, iOS 1.22.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	September 11, 2024
	IVS Broadcast SDK: Web 1.16.0 (Real-Time Streaming)

	September 9, 2024
	RTMP Ingest

	August 19, 2024
	In-Console Publish/Subscribe

	August 15, 2024
	IVS Broadcast SDK: Web 1.15.0 (Real-Time Streaming)

	August 15, 2024
	Amazon IVS Broadcast SDK: Android 1.21.0, iOS 1.21.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	July 18, 2024
	IVS Broadcast SDK: Web 1.14.0 (Real-Time Streaming)

	July 18, 2024
	Amazon IVS Broadcast SDK: Android 1.20.0, iOS 1.20.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	June 26, 2024
	Generate Participant Tokens with a Key Pair

	June 20, 2024
	Individual Participant Recording

	June 13, 2024
	Amazon IVS Broadcast SDK: Android 1.19.0, iOS 1.19.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	June 13, 2024
	IVS Broadcast SDK: Web 1.13.0 (Real-Time Streaming)

	May 20, 2024
	IVS Broadcast SDK: Web 1.12.0 (Real-Time Streaming)

	May 16, 2024
	Amazon IVS Broadcast SDK: Android 1.18.0, iOS 1.18.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	May 6, 2024
	IVS Broadcast SDK: Web 1.11.0 (Real-Time Streaming)

	April 30, 2024
	IVS Broadcast SDK: Web 1.10.1 (Real-Time Streaming)

	April 30, 2024
	Amazon IVS Broadcast SDK: Android 1.15.2, iOS 1.15.2 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	April 22, 2024
	Amazon IVS Broadcast SDK: Android 1.17.0, iOS 1.17.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	March 21, 2024
	Amazon IVS Broadcast SDK: Android 1.16.0, iOS 1.16.0, Web 1.10.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	March 13, 2024
	Amazon IVS Broadcast SDK: Android 1.15.1, iOS 1.15.1 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	March 13, 2024
	Server-Side Composition API Updates

	March 8, 2024
	Server-Side Composition Layout Updates

	February 22, 2024
	Amazon IVS Broadcast SDK: Android 1.15.0, iOS 1.15.0, Web 1.9.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	February 7, 2024
	Server-Side Composition Layout Updates

	February 6, 2024
	OBS and WHIP Support

	February 1, 2024
	Amazon IVS Broadcast SDK: Android 1.14.1, iOS 1.14.1, Web 1.8.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	January 3, 2024
	Amazon IVS Broadcast SDK: Android 1.13.4, iOS 1.13.4, Web 1.7.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	December 7, 2023
	New CloudWatch Metrics

	December 4, 2023
	Amazon IVS Broadcast SDK: Android 1.13.2 and iOS 1.13.2 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	November 21, 2023
	Amazon IVS Broadcast SDK: Android 1.13.1 (Real-Time Streaming)
	Broadcast SDK Size: Android


	November 17, 2023
	Amazon IVS Broadcast SDK: Android 1.13.0 and iOS 1.13.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	November 16, 2023
	Composite Recording

	November 16, 2023
	Server-Side Composition

	October 16, 2023
	Amazon IVS Broadcast SDK: Web 1.6.0 (Real-Time Streaming)

	October 12, 2023
	New CloudWatch Metrics and Participant Data

	October 12, 2023
	Amazon IVS Broadcast SDK: Android 1.12.1 (Real-Time Streaming)
	Broadcast SDK Size: Android


	September 14, 2023
	Amazon IVS Broadcast SDK: Web 1.5.2 (Real-Time Streaming)

	August 23, 2023
	Amazon IVS Broadcast SDK: Web 1.5.1, Android 1.12.0, and iOS 1.12.0 (Real-Time Streaming)
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	August 7, 2023
	Amazon IVS Broadcast SDK: Web 1.5.0, Android 1.11.0, and iOS 1.11.0
	Broadcast SDK Size: Android
	Broadcast SDK Size: iOS


	August 7, 2023
	Real-Time Streaming



