AWS SDK または CLI StartTopicsDetectionJobで を使用する - AWS SDK コードの例

Doc AWS SDK Examples リポジトリには、他にも SDK の例があります。 AWS GitHub

翻訳は機械翻訳により提供されています。提供された翻訳内容と英語版の間で齟齬、不一致または矛盾がある場合、英語版が優先します。

AWS SDK または CLI StartTopicsDetectionJobで を使用する

以下のコード例は、StartTopicsDetectionJob の使用方法を示しています。

アクション例は、より大きなプログラムからのコードの抜粋であり、コンテキスト内で実行する必要があります。次のコード例で、このアクションのコンテキストを確認できます。

.NET
AWS SDK for .NET
注記

については、「」を参照してください GitHub。AWS コード例リポジトリ で全く同じ例を見つけて、設定と実行の方法を確認してください。

using System; using System.Threading.Tasks; using Amazon.Comprehend; using Amazon.Comprehend.Model; /// <summary> /// This example scans the documents in an Amazon Simple Storage Service /// (Amazon S3) bucket and analyzes it for topics. The results are stored /// in another bucket and then the resulting job properties are displayed /// on the screen. This example was created using the AWS SDK for .NEt /// version 3.7 and .NET Core version 5.0. /// </summary> public static class TopicModeling { /// <summary> /// This methos calls a topic detection job by calling the Amazon /// Comprehend StartTopicsDetectionJobRequest. /// </summary> public static async Task Main() { var comprehendClient = new AmazonComprehendClient(); string inputS3Uri = "s3://input bucket/input path"; InputFormat inputDocFormat = InputFormat.ONE_DOC_PER_FILE; string outputS3Uri = "s3://output bucket/output path"; string dataAccessRoleArn = "arn:aws:iam::account ID:role/data access role"; int numberOfTopics = 10; var startTopicsDetectionJobRequest = new StartTopicsDetectionJobRequest() { InputDataConfig = new InputDataConfig() { S3Uri = inputS3Uri, InputFormat = inputDocFormat, }, OutputDataConfig = new OutputDataConfig() { S3Uri = outputS3Uri, }, DataAccessRoleArn = dataAccessRoleArn, NumberOfTopics = numberOfTopics, }; var startTopicsDetectionJobResponse = await comprehendClient.StartTopicsDetectionJobAsync(startTopicsDetectionJobRequest); var jobId = startTopicsDetectionJobResponse.JobId; Console.WriteLine("JobId: " + jobId); var describeTopicsDetectionJobRequest = new DescribeTopicsDetectionJobRequest() { JobId = jobId, }; var describeTopicsDetectionJobResponse = await comprehendClient.DescribeTopicsDetectionJobAsync(describeTopicsDetectionJobRequest); PrintJobProperties(describeTopicsDetectionJobResponse.TopicsDetectionJobProperties); var listTopicsDetectionJobsResponse = await comprehendClient.ListTopicsDetectionJobsAsync(new ListTopicsDetectionJobsRequest()); foreach (var props in listTopicsDetectionJobsResponse.TopicsDetectionJobPropertiesList) { PrintJobProperties(props); } } /// <summary> /// This method is a helper method that displays the job properties /// from the call to StartTopicsDetectionJobRequest. /// </summary> /// <param name="props">A list of properties from the call to /// StartTopicsDetectionJobRequest.</param> private static void PrintJobProperties(TopicsDetectionJobProperties props) { Console.WriteLine($"JobId: {props.JobId}, JobName: {props.JobName}, JobStatus: {props.JobStatus}"); Console.WriteLine($"NumberOfTopics: {props.NumberOfTopics}\nInputS3Uri: {props.InputDataConfig.S3Uri}"); Console.WriteLine($"InputFormat: {props.InputDataConfig.InputFormat}, OutputS3Uri: {props.OutputDataConfig.S3Uri}"); } }
  • API の詳細については、「 API リファレンスStartTopicsDetectionJob」の「」を参照してください。 AWS SDK for .NET

CLI
AWS CLI

トピック検出分析ジョブを開始するには

次の start-topics-detection-job の例では、--input-data-config タグで指定されたアドレスにあるすべてのファイルの非同期トピック検出ジョブを開始します。ジョブが完了すると、フォルダ、output--ouput-data-config タグで指定された場所に配置されます。output には topic-terms.csv と doc-topics.csv が含まれています。最初の出力ファイル topic-terms.csv は、コレクション内のトピックのリストです。デフォルトでは、リストには、各トピックの上位の言葉が重みに応じてトピック別に含まれています。2 つ目のファイル doc-topics.csv には、トピックに関連するドキュメントと、そのトピックに関係するドキュメントの割合が一覧表示されます。

aws comprehend start-topics-detection-job \ --job-name example_topics_detection_job \ --language-code en \ --input-data-config "S3Uri=s3://DOC-EXAMPLE-BUCKET/" \ --output-data-config "S3Uri=s3://DOC-EXAMPLE-DESTINATION-BUCKET/testfolder/" \ --data-access-role-arn arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role \ --language-code en

出力:

{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }

詳細については、「Amazon Comprehend デベロッパーガイド」の「トピックのモデリング」を参照してください。

  • API の詳細については、「 コマンドリファレンスStartTopicsDetectionJob」の「」を参照してください。 AWS CLI

Python
SDK for Python (Boto3)
注記

については、「」を参照してください GitHub。AWS コード例リポジトリ で全く同じ例を見つけて、設定と実行の方法を確認してください。

class ComprehendTopicModeler: """Encapsulates a Comprehend topic modeler.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def start_job( self, job_name, input_bucket, input_key, input_format, output_bucket, output_key, data_access_role_arn, ): """ Starts a topic modeling job. Input is read from the specified Amazon S3 input bucket and written to the specified output bucket. Output data is stored in a tar archive compressed in gzip format. The job runs asynchronously, so you can call `describe_topics_detection_job` to get job status until it returns a status of SUCCEEDED. :param job_name: The name of the job. :param input_bucket: An Amazon S3 bucket that contains job input. :param input_key: The prefix used to find input data in the input bucket. If multiple objects have the same prefix, all of them are used. :param input_format: The format of the input data, either one document per file or one document per line. :param output_bucket: The Amazon S3 bucket where output data is written. :param output_key: The prefix prepended to the output data. :param data_access_role_arn: The Amazon Resource Name (ARN) of a role that grants Comprehend permission to read from the input bucket and write to the output bucket. :return: Information about the job, including the job ID. """ try: response = self.comprehend_client.start_topics_detection_job( JobName=job_name, DataAccessRoleArn=data_access_role_arn, InputDataConfig={ "S3Uri": f"s3://{input_bucket}/{input_key}", "InputFormat": input_format.value, }, OutputDataConfig={"S3Uri": f"s3://{output_bucket}/{output_key}"}, ) logger.info("Started topic modeling job %s.", response["JobId"]) except ClientError: logger.exception("Couldn't start topic modeling job.") raise else: return response
  • API の詳細については、StartTopicsDetectionJobAWS 「 SDK for Python (Boto3) API リファレンス」の「」を参照してください。