AWS SDK を使用して Amazon Rekognition コレクションを構築し、その中の顔を検索する - AWS SDK コード例

Doc AWS SDK Examples リポジトリには、他にも SDK の例があります。 AWS GitHub

翻訳は機械翻訳により提供されています。提供された翻訳内容と英語版の間で齟齬、不一致または矛盾がある場合、英語版が優先します。

AWS SDK を使用して Amazon Rekognition コレクションを構築し、その中の顔を検索する

次のコードサンプルは、以下の操作方法を示しています。

  • Amazon Rekognition コレクションを作成します。

  • このコレクションにイメージを追加し、その中から顔を検出します。

  • 参照イメージに一致する顔をコレクション内で検索します。

  • コレクションを削除します。

詳細については、コレクション内の顔を検索するには を参照してください。

Python
SDK for Python (Boto3)
注記

の詳細については、「」を参照してください GitHub。AWS コード例リポジトリ で全く同じ例を見つけて、設定と実行の方法を確認してください。

Amazon Rekognition 関数をラップするクラスを作成します。

import logging from pprint import pprint import boto3 from botocore.exceptions import ClientError from rekognition_objects import RekognitionFace from rekognition_image_detection import RekognitionImage logger = logging.getLogger(__name__) class RekognitionImage: """ Encapsulates an Amazon Rekognition image. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, image, image_name, rekognition_client): """ Initializes the image object. :param image: Data that defines the image, either the image bytes or an Amazon S3 bucket and object key. :param image_name: The name of the image. :param rekognition_client: A Boto3 Rekognition client. """ self.image = image self.image_name = image_name self.rekognition_client = rekognition_client @classmethod def from_file(cls, image_file_name, rekognition_client, image_name=None): """ Creates a RekognitionImage object from a local file. :param image_file_name: The file name of the image. The file is opened and its bytes are read. :param rekognition_client: A Boto3 Rekognition client. :param image_name: The name of the image. If this is not specified, the file name is used as the image name. :return: The RekognitionImage object, initialized with image bytes from the file. """ with open(image_file_name, "rb") as img_file: image = {"Bytes": img_file.read()} name = image_file_name if image_name is None else image_name return cls(image, name, rekognition_client) class RekognitionCollectionManager: """ Encapsulates Amazon Rekognition collection management functions. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, rekognition_client): """ Initializes the collection manager object. :param rekognition_client: A Boto3 Rekognition client. """ self.rekognition_client = rekognition_client def create_collection(self, collection_id): """ Creates an empty collection. :param collection_id: Text that identifies the collection. :return: The newly created collection. """ try: response = self.rekognition_client.create_collection( CollectionId=collection_id ) response["CollectionId"] = collection_id collection = RekognitionCollection(response, self.rekognition_client) logger.info("Created collection %s.", collection_id) except ClientError: logger.exception("Couldn't create collection %s.", collection_id) raise else: return collection def list_collections(self, max_results): """ Lists collections for the current account. :param max_results: The maximum number of collections to return. :return: The list of collections for the current account. """ try: response = self.rekognition_client.list_collections(MaxResults=max_results) collections = [ RekognitionCollection({"CollectionId": col_id}, self.rekognition_client) for col_id in response["CollectionIds"] ] except ClientError: logger.exception("Couldn't list collections.") raise else: return collections class RekognitionCollection: """ Encapsulates an Amazon Rekognition collection. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, collection, rekognition_client): """ Initializes a collection object. :param collection: Collection data in the format returned by a call to create_collection. :param rekognition_client: A Boto3 Rekognition client. """ self.collection_id = collection["CollectionId"] self.collection_arn, self.face_count, self.created = self._unpack_collection( collection ) self.rekognition_client = rekognition_client @staticmethod def _unpack_collection(collection): """ Unpacks optional parts of a collection that can be returned by describe_collection. :param collection: The collection data. :return: A tuple of the data in the collection. """ return ( collection.get("CollectionArn"), collection.get("FaceCount", 0), collection.get("CreationTimestamp"), ) def to_dict(self): """ Renders parts of the collection data to a dict. :return: The collection data as a dict. """ rendering = { "collection_id": self.collection_id, "collection_arn": self.collection_arn, "face_count": self.face_count, "created": self.created, } return rendering def describe_collection(self): """ Gets data about the collection from the Amazon Rekognition service. :return: The collection rendered as a dict. """ try: response = self.rekognition_client.describe_collection( CollectionId=self.collection_id ) # Work around capitalization of Arn vs. ARN response["CollectionArn"] = response.get("CollectionARN") ( self.collection_arn, self.face_count, self.created, ) = self._unpack_collection(response) logger.info("Got data for collection %s.", self.collection_id) except ClientError: logger.exception("Couldn't get data for collection %s.", self.collection_id) raise else: return self.to_dict() def delete_collection(self): """ Deletes the collection. """ try: self.rekognition_client.delete_collection(CollectionId=self.collection_id) logger.info("Deleted collection %s.", self.collection_id) self.collection_id = None except ClientError: logger.exception("Couldn't delete collection %s.", self.collection_id) raise def index_faces(self, image, max_faces): """ Finds faces in the specified image, indexes them, and stores them in the collection. :param image: The image to index. :param max_faces: The maximum number of faces to index. :return: A tuple. The first element is a list of indexed faces. The second element is a list of faces that couldn't be indexed. """ try: response = self.rekognition_client.index_faces( CollectionId=self.collection_id, Image=image.image, ExternalImageId=image.image_name, MaxFaces=max_faces, DetectionAttributes=["ALL"], ) indexed_faces = [ RekognitionFace({**face["Face"], **face["FaceDetail"]}) for face in response["FaceRecords"] ] unindexed_faces = [ RekognitionFace(face["FaceDetail"]) for face in response["UnindexedFaces"] ] logger.info( "Indexed %s faces in %s. Could not index %s faces.", len(indexed_faces), image.image_name, len(unindexed_faces), ) except ClientError: logger.exception("Couldn't index faces in image %s.", image.image_name) raise else: return indexed_faces, unindexed_faces def list_faces(self, max_results): """ Lists the faces currently indexed in the collection. :param max_results: The maximum number of faces to return. :return: The list of faces in the collection. """ try: response = self.rekognition_client.list_faces( CollectionId=self.collection_id, MaxResults=max_results ) faces = [RekognitionFace(face) for face in response["Faces"]] logger.info( "Found %s faces in collection %s.", len(faces), self.collection_id ) except ClientError: logger.exception( "Couldn't list faces in collection %s.", self.collection_id ) raise else: return faces def search_faces(self, face_id, threshold, max_faces): """ Searches for faces in the collection that match another face from the collection. :param face_id: The ID of the face in the collection to search for. :param threshold: The match confidence must be greater than this value for a face to be included in the results. :param max_faces: The maximum number of faces to return. :return: The list of matching faces found in the collection. This list does not contain the face specified by `face_id`. """ try: response = self.rekognition_client.search_faces( CollectionId=self.collection_id, FaceId=face_id, FaceMatchThreshold=threshold, MaxFaces=max_faces, ) faces = [RekognitionFace(face["Face"]) for face in response["FaceMatches"]] logger.info( "Found %s faces in %s that match %s.", len(faces), self.collection_id, face_id, ) except ClientError: logger.exception( "Couldn't search for faces in %s that match %s.", self.collection_id, face_id, ) raise else: return faces def search_faces_by_image(self, image, threshold, max_faces): """ Searches for faces in the collection that match the largest face in the reference image. :param image: The image that contains the reference face to search for. :param threshold: The match confidence must be greater than this value for a face to be included in the results. :param max_faces: The maximum number of faces to return. :return: A tuple. The first element is the face found in the reference image. The second element is the list of matching faces found in the collection. """ try: response = self.rekognition_client.search_faces_by_image( CollectionId=self.collection_id, Image=image.image, FaceMatchThreshold=threshold, MaxFaces=max_faces, ) image_face = RekognitionFace( { "BoundingBox": response["SearchedFaceBoundingBox"], "Confidence": response["SearchedFaceConfidence"], } ) collection_faces = [ RekognitionFace(face["Face"]) for face in response["FaceMatches"] ] logger.info( "Found %s faces in the collection that match the largest " "face in %s.", len(collection_faces), image.image_name, ) except ClientError: logger.exception( "Couldn't search for faces in %s that match %s.", self.collection_id, image.image_name, ) raise else: return image_face, collection_faces class RekognitionFace: """Encapsulates an Amazon Rekognition face.""" def __init__(self, face, timestamp=None): """ Initializes the face object. :param face: Face data, in the format returned by Amazon Rekognition functions. :param timestamp: The time when the face was detected, if the face was detected in a video. """ self.bounding_box = face.get("BoundingBox") self.confidence = face.get("Confidence") self.landmarks = face.get("Landmarks") self.pose = face.get("Pose") self.quality = face.get("Quality") age_range = face.get("AgeRange") if age_range is not None: self.age_range = (age_range.get("Low"), age_range.get("High")) else: self.age_range = None self.smile = face.get("Smile", {}).get("Value") self.eyeglasses = face.get("Eyeglasses", {}).get("Value") self.sunglasses = face.get("Sunglasses", {}).get("Value") self.gender = face.get("Gender", {}).get("Value", None) self.beard = face.get("Beard", {}).get("Value") self.mustache = face.get("Mustache", {}).get("Value") self.eyes_open = face.get("EyesOpen", {}).get("Value") self.mouth_open = face.get("MouthOpen", {}).get("Value") self.emotions = [ emo.get("Type") for emo in face.get("Emotions", []) if emo.get("Confidence", 0) > 50 ] self.face_id = face.get("FaceId") self.image_id = face.get("ImageId") self.timestamp = timestamp def to_dict(self): """ Renders some of the face data to a dict. :return: A dict that contains the face data. """ rendering = {} if self.bounding_box is not None: rendering["bounding_box"] = self.bounding_box if self.age_range is not None: rendering["age"] = f"{self.age_range[0]} - {self.age_range[1]}" if self.gender is not None: rendering["gender"] = self.gender if self.emotions: rendering["emotions"] = self.emotions if self.face_id is not None: rendering["face_id"] = self.face_id if self.image_id is not None: rendering["image_id"] = self.image_id if self.timestamp is not None: rendering["timestamp"] = self.timestamp has = [] if self.smile: has.append("smile") if self.eyeglasses: has.append("eyeglasses") if self.sunglasses: has.append("sunglasses") if self.beard: has.append("beard") if self.mustache: has.append("mustache") if self.eyes_open: has.append("open eyes") if self.mouth_open: has.append("open mouth") if has: rendering["has"] = has return rendering

ラッパークラスを使用して、一連のイメージから顔のコレクションを作成し、コレクション内の顔を検索します。

def usage_demo(): print("-" * 88) print("Welcome to the Amazon Rekognition face collection demo!") print("-" * 88) logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") rekognition_client = boto3.client("rekognition") images = [ RekognitionImage.from_file( ".media/pexels-agung-pandit-wiguna-1128316.jpg", rekognition_client, image_name="sitting", ), RekognitionImage.from_file( ".media/pexels-agung-pandit-wiguna-1128317.jpg", rekognition_client, image_name="hopping", ), RekognitionImage.from_file( ".media/pexels-agung-pandit-wiguna-1128318.jpg", rekognition_client, image_name="biking", ), ] collection_mgr = RekognitionCollectionManager(rekognition_client) collection = collection_mgr.create_collection("doc-example-collection-demo") print(f"Created collection {collection.collection_id}:") pprint(collection.describe_collection()) print("Indexing faces from three images:") for image in images: collection.index_faces(image, 10) print("Listing faces in collection:") faces = collection.list_faces(10) for face in faces: pprint(face.to_dict()) input("Press Enter to continue.") print( f"Searching for faces in the collection that match the first face in the " f"list (Face ID: {faces[0].face_id}." ) found_faces = collection.search_faces(faces[0].face_id, 80, 10) print(f"Found {len(found_faces)} matching faces.") for face in found_faces: pprint(face.to_dict()) input("Press Enter to continue.") print( f"Searching for faces in the collection that match the largest face in " f"{images[0].image_name}." ) image_face, match_faces = collection.search_faces_by_image(images[0], 80, 10) print(f"The largest face in {images[0].image_name} is:") pprint(image_face.to_dict()) print(f"Found {len(match_faces)} matching faces.") for face in match_faces: pprint(face.to_dict()) input("Press Enter to continue.") collection.delete_collection() print("Thanks for watching!") print("-" * 88)