REL12-BP05 カオスエンジニアリングを使用して回復力をテストする
不利な条件下でシステムがどのように反応するかを理解するために、本番環境またはできるだけそれに近い環境で定期的にカオス実験を行います。
期待される成果:
イベント発生時のワークロードの既知の期待動作を検証する回復力テストに加え、フォールトインジェクション実験や想定外の負荷の注入という形でカオスエンジニアリングを適用し、ワークロードの回復力を定期的に検証します。カオスエンジニアリングと回復力テストの両方を組み合わせることで、ワークロードがコンポーネントの故障に耐え、予期せぬ中断から影響を最小限に抑えて回復できることへの信頼を得ることができます。
一般的なアンチパターン:
-
耐障害性を考慮した設計でありながら、障害発生時にワークロードが全体としてどのように機能するかを検証していない。
-
実際の条件および予期された負荷の下で実験を一切行わない。
-
実験をコードとして処理しないか、開発サイクルを通して維持しない。
-
CI/CD パイプラインの一部、またはデプロイの外部のどちらとしても、カオス実験を実行しない。
-
どの障害で実験するかを考慮する際に、過去のインシデント後の分析を軽視する。
このベストプラクティスを活用するメリット: ワークロードの回復力を検証するために障害を発生させることにより、耐障害性設計の回復手順が実際の障害発生時にも機能するという信頼性を得られます。
このベストプラクティスを活用しない場合のリスクレベル: ミディアム
実装のガイダンス
カオスエンジニアリングは、サービスプロバイダ、インフラストラクチャ、ワークロード、コンポーネントレベルにおいて、現実世界の障害 (シミュレーション) を継続的に発生させる機能を提供し、顧客には最小限の影響しか与えません。これにより、チームは障害から学び、ワークロードの回復力を観察、測定、改善することができます。また、イベント発生時にアラートが発せられ、チームに通知されることを確認することもできます。
カオスエンジニアリングを継続的に実施することで、ワークロードの欠陥が浮き彫りになり、そのままにしておくと可用性や オペレーションに悪影響が及ぶ可能性があります。
カオスエンジニアリングとは、あるシステムで実験を行い、実稼働時の混乱状態に耐えることができるかどうかの確信を得るための手法です。
カオスエンジニアリングの原則
もし、システムがこれらの混乱に耐えられるなら、カオス実験は自動化された回帰テストとして維持されるはずです。このように、カオス実験はシステム開発ライフサイクル (SDLC) の一部および CI/CD の一部として実行される必要があります。
ワークロードがコンポーネントの障害に耐えられることを確認するために、実際のイベントを実験の一部として挿入します。たとえば、Amazon EC2 インスタンスの喪失やプライマリ Amazon RDS データベースインスタンスのフェイルオーバーを実験し、ワークロードに影響がないこと (または最小限の影響にとどまること) を確認します。コンポーネントの障害の組み合わせを使用して、アベイラビリティーゾーンで中断によって発生する可能性のあるイベントをシミュレートします。
アプリケーションレベルの障害 (クラッシュなど) では、メモリや CPU の枯渇などのストレス要因から始めます。
断続的なネットワークの中断による外部依存のための フォールバックまたはフェイルオーバーメカニズム
その他の劣化モードでは、機能の低下や応答の遅れが発生し、サービスの中断につながることがよくあります。このパフォーマンス低下の一般的な原因は、主要サービスのレイテンシー増加と、信頼性の低いネットワーク通信 (パケットのドロップ) です。レイテンシー、メッセージのドロップ、DNS 障害などのネットワーク効果を含むこれらの障害の実験には、名前を解決できない、DNS サービスへリーチできない、または依存サービスへの接続を確立できないなどの可能性があります。
カオスエンジニアリングのツール:
AWS Fault Injection Simulator (AWS FIS) は、フォールトインジェクション実験を実行する完全マネージド型サービスであり、CD パイプラインの一部として、またはパイプラインの外で使用することができます。AWS FIS は、カオスエンジニアリングゲームデー中に使用するのに適しています。Amazon EC2、Amazon Elastic Container Service (Amazon ECS)、Amazon Elastic Kubernetes Service (Amazon EKS)、および Amazon RDS などを含む、異なるタイプのリソースに同時に障害を導入することをサポートします。これらの障害には、リソースの終了、強制フェイルオーバー、CPU にストレスをかける、スロットリング、またはメモリー、レイテンシー、およびパケットの損失が含まれます。Amazon CloudWatch アラームと連携しているため、ガードレールとして停止条件を設定し、予期せぬ影響を与えた場合に実験をロールバックすることができます。

ワークロードのフォールトインジェクション実験を実行するため、AWS リソースと統合された AWS Fault Injection Simulator。
フォールトインジェクション実験のためのサードパーティオプションもいくつかあります。これには、次のようなオープンソースのツールが含まれます。 Chaos Toolkit
実装手順
-
どの障害を実験に使用するかを決定する。
回復力に関してワークロードの設計を評価します。そのような設計 ( Well-Architected フレームワークのベストプラクティスを使用して作成) では、重要な依存関係、過去のイベント、既知の問題、およびコンプライアンス要件に基づくリスクが考慮されています。回復力を維持するために意図された設計の各要素と、それを軽減するために設計された障害をリストアップします。そのようなリストの作成に関する詳細については、 運用準備状況の確認に関するホワイトペーパー を確認し、過去のインシデントの再発を防ぐためのプロセスを作成する方法を学びます。障害モードと影響の分析 (FMEA) プロセスにより、障害とそれがワークロードに与える影響をコンポーネントレベルで解析するためのフレームワークが提供されます。FMEA については Adrian Cockcroft 氏による「 Failure Modes and Continuous Resilience
」内に詳しく記載されています。 -
それぞれの障害に優先度を割り当てる。
「高」「中」「低」などの大まかな分類から始めます。優先度を評価するためには、障害の発生頻度と障害によるワークロード全体への影響度を考慮します。
ある障害の発生頻度を考慮する場合、利用可能であれば、そのワークロードの過去のデータを分析します。利用できない場合は、類似の環境において実行されている他のワークロードのデータを使用します。
ある障害の影響を考慮する場合、一般に、障害の範囲が大きければ大きいほど、影響も大きくなります。また、ワークロードの設計と目的も考慮します。たとえば、ソースデータストアにアクセスする機能は、データ変換や分析を行うワークロードにとって重要です。この場合、アクセス障害、スロットルアクセス、レイテンシー挿入の実験を優先させることになります。
障害発生後の分析は、障害モードの頻度と影響の両方を理解するための良いデータソースとなります。
割り当てた優先度を使用して、どの障害を最初に実験するか、および新しいフォールトインジェクション実験を開発する順序を決定します。
-
実行するそれぞれの実験に対して、カオスエンジニアリングと継続的な回復力のフライホイールに従います。
Adrian Hornsby 氏による、科学的手法を用いたカオスエンジニアリングと継続的な回復力のフライホイール。
-
定常状態とは、正常な動作を示すワークロードの測定可能な出力であると定義する。
ワークロードは、信頼性が高く、期待通りに動作していれば、定常状態を示しています。したがって、定常状態を定義する前に、ワークロードが正常であることを検証します。障害が発生した場合、一定の割合で許容範囲内である可能性があるため、定常状態は、必ずしもワークロードに影響を与えないことを意味するものではありません。定常状態は、実験中に観察する基準値であり、次のステップで定義した仮説が予想通りにならない場合に、異常が浮き彫りになります。
たとえば、決済システムの定常状態は、成功率 99%、往復時間 500ms で 300TPS を処理することと定義することができます。
-
ワークロードがどのように障害に対応するかについての仮説を立てる。
良い仮説とは、定常状態を維持するために、ワークロードがどのように障害を軽減すると予想されるかに基づいています。仮説は、特定のタイプの障害が発生した場合、システムまたはワークロードが定常状態を維持することを示しています。なぜなら、ワークロードは特定の緩和策を講じて設計されているからです。特定の種類の障害および緩和策は、仮説の中で特定さ れる必要があります。
次のテンプレートが仮説に使用できます (ただし、他の表現も許容されます)。
注記 もし
特定の障害
が発生した場合、ワークロード名
ワークロードは緩和措置を説明
してビジネスまたは技術的なメトリクスの影響を維持します
。例:
-
Amazon EKS ノードグループの 20% のノードが停止しても、[Transaction Create API] は 100 ミリ秒未満で 99% のリクエストに対応し続けます (定常状態)。Amazon EKS ノードは 5 分以内に回復し、ポッドは実験開始後 8 分以内にスケジューリングされてトラフィックを処理するようになります。3 分以内にアラートが発せられます。
-
Amazon EC2 インスタンスの単一障害が発生した場合、注文システムの Elastic Load Balancing ヘルスチェックにより、Amazon EC2 Auto Scaling が障害インスタンスを置き換える間、Elastic Load Balancing は残りの健全なインスタンスにのみリクエストを送信し、サーバーサイド (5xx) エラーの増加を 0.01% 未満に維持します (定常状態)。
-
プライマリ Amazon RDS データベースインスタンスに障害が発生した場合、サプライチェーンデータ収集ワークロードはフェイルオーバーし、スタンバイ Amazon RDS データベースインスタンスに接続して、データベースの読み取りまたは書き込みエラーを 1 分未満に維持します (定常状態)。
-
-
障害を挿入して実験を実行する。
実験はデフォルトでフェイルセーフであり、ワークロードが耐えることができる必要があります。ワークロードが失敗することが分かっている場合は、実験を実行しないでください。カオスエンジニアリングは、既知の未知、または未知なる未知を見つけるために使用されるべきです。既知の未知 とは、認識はしているが完全に理解していないことであり、 未知なる未知 は、認識も完全な理解もしていないことです。壊れていると分かっているワークロードに対して実験を行っても、新しいインサイトを得ることはできません。実験は慎重に計画し、影響の範囲を明確にし、予期せぬ乱れが発生した場合に適用できるロールバックメカニズムを提供する必要があります。デューディリジェンスにより、ワークロードが実験に耐えられることが分かったら、実験を進めてください。障害を挿入するには、いくつかの方法があります。AWS 上のワークロードに対して、AWS FIS は多くの事前定義された障害シミュレーションを挿入します。これは、 アクションと呼ばれます。また、AWS FIS で実行するカスタムアクションも定義します。これには AWS Systems Manager ドキュメントを使用します。
カオス実験にカスタムスクリプトを使用することは、スクリプトがワークロードの現在の状態を理解する機能を持ち、ログを出力でき、可能であればロールバックと停止条件のメカニズムを提供しない限り、推奨されません。
カオスエンジニアリングをサポートする効果的なフレームワークやツールセットは、実験の現在の状態を追跡し、ログを出力し、実験の制御された実行をサポートするためのロールバックメカニズムを提供する必要があります。AWS FIS のように、実験範囲を明確に定義し、実験によって予期せぬ乱れが生じた場合に実験をロールバックする安全なメカニズムを備えた実験を行うことができる、確立されたサービスから始めてみてください。AWS FIS を使用した、より幅広い実験に関する詳細については、「 カオスエンジニアリングラボでの回復力と Well-Architected アプリ
」も参照してください。また、 AWS Resilience Hub はワークロードを分析し、AWS FIS で実装、実行することを選択できるような実験を作成します。 注記 すべての実験について、その範囲と影響を明確に理解します。本番環境で実行する前に、まず非本番環境で障害をシミュレートすることをお勧めします。
実験は、可能な限り、対照系と実験系の両方をスピンアップする canary デプロイ
を使用して、実世界の負荷で実稼働させる必要があります。オフピークの時間帯に実験を行うことは、本番で初めて実験を行う際に潜在的な影響を軽減するための良い習慣です。また、実際の顧客トラフィックを使用するとリスクが高すぎる場合は、本番インフラストラクチャの制御環境と実験環境に対して合成トラフィックを使用して実験を実行することができます。本番環境での実験が不可能な場合は、できるだけ本番環境に近いプレ本番環境で実験を行ってください。 実験が本番トラフィックや他のシステムに許容範囲を超えて影響を与えないように、ガードレールを確立してモニタリングする必要があります。停止条件を設定し、定義したガードレールのメトリクスでしきい値に達した場合に実験を停止するようにします。これには、ワークロードの定常状態のメトリクスと、障害を注入するコンポーネントに対するメトリク スを含める必要があります。ユーザー canary とも呼ばれる 合成モニタリング は、通常、ユーザープロキシとして含む必要がある 1 つのメトリクスです。AWS FIS への停止条件 は、実験テンプレートの一部としてサポートされており、1 テンプレートあたり最大 5 つの停止条件を設定することが可能です。
カオスの原則の 1 つは、実験の範囲とその影響を最小化することです。
短期的な悪影響は許容されなければなりませんが、実験の影響を最小化し、抑制することはカオスエンジニアの責任であり義務です。
範囲や潜在的な影響を検証する方法としては、本番環境で直接実験を行うのではなく、まず非本番環境で実験を行い、実験中に停止条件のしきい値が想定通りに作動するか、例外をキャッチするための観測性があるかどうかを確認することが挙げられます。
フォールトインジェクション実験を実施する場合、すべての責任者に情報が十分に提供されるようにします。オペレーションチーム、サービス信頼性チーム、カスタマーサポートなどの適切なチームとコミュニケーションをとり、実験がいつ実行され、何を期待されるかを伝えます。これらのチームには、何か悪影響が見られた場合に、実験を行っているチームに知らせるためのコミュニケーションツールを与えます。
ワークロードとその基盤となるシステムを元の既知の良好な状態に復元する必要があります。多くの場合、ワークロードの回復力のある設計が自己回復を行います。しかし、一部の障害設計や実験の失敗により、ワークロードが予期せぬ障害状態に陥ることがあります。実験が終了するまでに、このことを認識し、ワークロードとシステムを復旧させなければなりません。AWS FIS では、アクションのパラメータ内にロールバック設定 (ポストアクションとも呼ばれる) を設定することができます。ポストアクションは、アクションが実行される前にある状態にターゲットを返します。自動化 (AWS FIS の使用など) であれ手動であれ、これらのポストアクションは、障害を検出し処理する方法を説明するプレイブックの一部であるべきです。
-
仮説を検証する。
カオスエンジニアリングの原則
は、ワークロードの定常状態を検証する方法について、このようなガイダンスを示しています。 システムの内部属性ではなく、測定可能な出力に焦点を当てます。その出力を短期間で測定することによって、システムの安定状態のプロキシが構成されます。システム全体のスループット、エラーレート、レイテンシーのパーセンタイルはすべて、定常状態の動作を表す重要なメトリクスになり得ます。実験中にシステム的な動作パターンに注目することで、カオスエンジニアリングは、システムがどのように動作するかを検証するのではなく、システムが動作していることを検証します。
先の 2 つの例では、サーバーサイド (5xx) エラーの増加率が 0.01% 未満、データベースの読み取りと書き込みのエラーが 1 分未満という定常状態の測定基準が含まれています。
5xx エラーは、ワークロードのクライアントが直接経験する障害モードの結果であるため、良いメトリクスです。データベースエラーの測定は、障害の直接的な結果として適切ですが、顧客からのリクエストの失敗や、顧客に表面化したエラーなど、顧客への影響も測定して補足する必要があります。さらに、ワークロードのクライアントが直接アクセスする API や URI に、合成モニタリング (ユーザー canary としても知られる) を含めるようにしましょう。
-
回復力を高めるためのワークロード設計を改善する。
定常状態が維持されなかった場合、障害を軽減するためにワークロード設計をどのように改善できるかを調査し、 AWS Well-Architected 信頼性の柱のベストプラクティスを適用します。その他のガイダンスとリソースは AWS Builder's Library
にあり、ここでは、他の記事と共に ヘルスチェックを見直す 方法、または アプリケーションコード内のバックオフを使用した再試行の採用 に関する記事が掲載されています。 これらの変更を実施した後、再度実験を行い (カオスエンジニアリングフライホイールの点線で表示)、その効果を判断します。検証の結果、仮説が正しいことがわかれば、ワークロードは定常状態になり、このサイクルが続きます。
-
-
実験を定期的に実施する。
カオス実験はサイクルであり、実験はカオスエンジニアリングの一環として定期的に実施される必要があります。ワークロードが実験の仮説を満たした後、CI/CD パイプラインの回帰部分として継続的に実行されるように実験を自動化する必要があります。この方法については、このブログの「 how to run AWS FIS experiments using AWS CodePipeline
」を参照してください。このラボでは、 CI/CD パイプラインで AWS FIS 実験 を繰り返し行うことで、実践的に作業することができます。 フォールトインジェクション実験は、ゲームデーの一部でもあります (参照: REL12-BP06 定期的にゲームデーを実施する)。ゲームデーでは、障害やイベントをシミュレートし、システム、プロセス、チームの対応を検証します。その目的は、例外的な出来事が発生した場合にチームが実行することになっているアクションを実際に実行することです。
-
実験結果をキャプチャし、保存する。
フォールトインジェクション実験の結果は、キャプチャおよび保持される必要があります。実験結果や傾向を後で分析できるように、必要なデータ (時間、ワークロード、条件など) をすべて含めておきましょう。結果の例には、ダッシュボードのスクリーンショット、メトリクスのデータベースからの CSV ダンプ、実験中のイベントや観察結果を手書きで記録したものなどがあります。AWS FIS での実験記録 もデータキャプチャの一部となり得ます。
リソース
関連するベストプラクティス:
関連するドキュメント:
関連動画:
関連する例:
関連ツール: