Cookie の設定を選択する

当社は、当社のサイトおよびサービスを提供するために必要な必須 Cookie および類似のツールを使用しています。当社は、パフォーマンス Cookie を使用して匿名の統計情報を収集することで、お客様が当社のサイトをどのように利用しているかを把握し、改善に役立てています。必須 Cookie は無効化できませんが、[カスタマイズ] または [拒否] をクリックしてパフォーマンス Cookie を拒否することはできます。

お客様が同意した場合、AWS および承認された第三者は、Cookie を使用して便利なサイト機能を提供したり、お客様の選択を記憶したり、関連する広告を含む関連コンテンツを表示したりします。すべての必須ではない Cookie を受け入れるか拒否するには、[受け入れる] または [拒否] をクリックしてください。より詳細な選択を行うには、[カスタマイズ] をクリックしてください。

Best practice 15.7 – Efficiently manage your analytics infrastructure to reduce underutilized resources - Data Analytics Lens
このページはお客様の言語に翻訳されていません。 翻訳のリクエスト

Best practice 15.7 – Efficiently manage your analytics infrastructure to reduce underutilized resources

Ensuring your organization has the correct amount of resource provisioned for your workload is a difficult and challenging task. The common approach for ensuring your organization has the sufficient number of resources available for unpredicted peaks is to overprovision your resources. However, this approach generally leads to underutilization, and energy waste.

When designing your analytics workloads, consider using managed and serverless services. Managed services shift responsibility for maintaining high average utilization, and sustainability optimization of the deployed hardware, to AWS. Use managed services to distribute the sustainability impact of the service across all tenants of the service, reducing your individual contribution.

For a wider understanding of optimizing infrastructure for sustainability, refer to the following information:

How does your organization ensure efficient infrastructure usage?

Suggestion 15.7.1– Use managed and serverless services

Serverless is ideal when it is difficult to predict compute needs, such as with variable workloads, periodic workloads with idle time, and steady-state workloads with spikes. These kinds of workloads are common in analytics applications. Data processing pipelines, running reports, and as-necessary queries are some examples.

Use serverless services AWS Glue ETL and Amazon EMR Serverless to run your data processing jobs and let AWS manage and optimize the underlying resources efficiently. Similarly, using Amazon Athena and Amazon Redshift Serverless for data lakes and data warehousing ensures that you only use compute resources when needed, and allow these services to optimize resource utilization behind the scenes.

For more details, refer to the following information:

Suggestion 15.7.2– Pause your data warehouse and compute clusters when not in use

Compute resources should only be allocated when needed. If your workload cannot leverage serverless technologies, you should implement a process of stopping your compute clusters if there are periods when they will not be used (for example, during nights and weekends).

If your data warehouse uses Amazon Redshift, you can use the pause and resume feature. This retains the underlying data structures so that you can resume the cluster when needed. You can pause and resume clusters using the console, or the API, or even create a schedule that automatically pauses and resumes the cluster at set times.

Pausing data warehouse and compute clusters when not in use ensures there are fewer underutilized resources and reduces the environmental impact of your analytics workload.

For more details, refer to the following information:

Suggestion 15.7.3 – Scale your data warehouses and compute clusters to match demand

Only the necessary amount of compute resources should be allocated at any time. Scaling your data warehouse and compute clusters to match demand helps you maximize resource utilization, and reduce the environmental impact of your analytics workload.

For more details, refer to the following information:

Suggestion 15.7.4 – Run your analytics workloads on spare capacity in your Amazon EKS environment for optimal application infrastructure usage

If you use Amazon EKS to run your applications, you can use Amazon EMR on Amazon EKS to also run your analytics workloads, such as Apache Spark jobs, on the same infrastructure. This can make it possible to increase the utilization of your existing compute resources.

For more details, refer to the following information:

プライバシーサイト規約Cookie の設定
© 2025, Amazon Web Services, Inc. or its affiliates.All rights reserved.